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Abstract
Conditional independence plays a foundational role in database theory, probability theory, information
theory, and graphical models. In databases, a notion similar to conditional independence, known as
the (embedded) multivalued dependency, appears in database normalization. Many properties of
conditional independence are shared across various domains, and to some extent these commonalities
can be studied through a measure-theoretic approach. The present paper proposes an alternative
approach via semiring relations, defined by extending database relations with tuple annotations
from some commutative semiring. Integrating various interpretations of conditional independence in
this context, we investigate how the choice of the underlying semiring impacts the corresponding
axiomatic and decomposition properties. We specifically identify positivity and multiplicative
cancellativity as the key semiring properties that enable extending results from the relational context
to the broader semiring framework. Additionally, we explore the relationships between different
conditional independence notions through model theory.
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1 Introduction

Conditional independence (CI) is an expression of the form Y ⊥⊥ Z | X, stating that Y
and Z are conditionally independent given X. Common to its different interpretations is
that conditional independence is a mark of redundancy. For instance, on a relation schema
over attributes X,Y, Z, the multivalued dependency (MVD) X ↠ Y can be viewed as the
counterpart of the CI Y ⊥⊥ Z | X, expressing that a relation can be losslessly decomposed
into its projections on X,Y and X,Z. The process of splitting the schema into smaller
parts – in order to avoid data redundancy – is called normalization, and a database schema
is in fourth normal form if every non-trivial MVD follows from some key. In probability
theory, CIs over random variables give rise to factorizations of joint probability distributions
into conditional distributions. Since the decomposed distributions can be represented more
compactly, this allows more efficient reasoning about the random variables. In addition to
these classical examples, conditional independence has applications in ordinal conditional
functions [24], Dempster-Schaefer theory [8, 23], and possibility theory [29].

Since the notion of conditional independence has a relatively fixed meaning across various
contexts, it is no coincidence that the central rules governing its behavior are universally
shared. The semigraphoid axioms [21] state five basic rules that hold true for diverse
interpretations of conditional independence. Initially conjectured to be complete by Pearl,
Studený [25] proved incompleteness of these rules by discovering a new rule that is not
derivable by the semigraphoid axioms, while being sound for probability distributions. Later
he [26] proved that there cannot be any finite axiomatization for conditional independence, a
fact that had been established earlier for embedded multivalued dependencies (EMVDs) [15].
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20:2 Conditional Independence on Semiring Relations

The implication problem, which is to determine whether some set of dependencies Σ logically
implies a dependency τ , is in fact undecidable not only for EMVDs [14], but also for CIs in
probability theory, as has been recently shown [18, 20].

In some partial cases, the semigraphoid axioms are known to be complete. A saturated
conditional independence (SCI) is a CI that contains all the variables of the underlying joint
distribution. The semigraphoid axioms are complete for the implication of arbitrary CIs by
saturated ones under various semantics [12], and for the implication of CIs from a set of CIs
encoded in the topology of a Bayesian network [10]. In databases, where SCIs correspond to
MVDs, the implication problem for MVDs combined with functional dependencies (FDs) is
well-known to have a finite axiomatization and a polynomial-time algorithm [4].

Moving beyond saturated CIs, the implication problem not only becomes undecidable,
but also more sensitive to the underlying semantics. Studený [27] presents several example
inference rules that involve non-saturated CIs and are sound in one setting while failing to
be sound in others. For instance, the aforementioned rule1 showing incompleteness of the
semigraphoid axioms is not sound for database relations, but its soundness for probability
distributions follows by a simple information-theoretic argument. FDs and MVDs can also
be alternatively expressed in terms of information measures over a uniformly distributed
database relation [19], and their implication problem has recently been connected to validity
of information inequalities [16]. Galliani and Väänänen [9] associate relations with a so-called
diversity measure to capture FDs and other data dependencies. These measure-theoretic
approaches, however, fail to capture the semantics of the embedded multivalued dependency
in full generality.

This paper examines K-relations as a unifying framework for conditional independence
and other dependency concepts. Introduced in the seminal work [11], K-relations extend
ordinary relations by tuple annotations from a commutative semiring K, providing a powerful
abstraction for data provenance. While it is natural to consider propagation of tuple
annotations through queries in this context, one can also ask how tuple annotations couple
with data dependencies. Dependencies on K-relations have thus far received limited attention
(see, e.g., [2, 3, 7]). Related to this work, Barlag et al. [3] define conditional independence
for K-relations, and raise the question of how much the related axiomatic properties depend
on the algebraic properties of K. Atserias and Kolaitis [2] study the relationship between
local and global consistency for K-relations, introducing also many concepts that will be
adopted in this paper. Although the authors do not consider conditional independence, they
show that functional dependencies on K-relations entail lossless-join decompositions.

The following contributions are presented in this paper: First, we show that conditional
independence for K-relations corresponds to lossless-join decompositions whenever K is
positive and multiplicatively cancellative. Then, we provide a proof that, for any K exhibiting
these characteristics, the semigraphoid axioms are sound for general CIs, and extend to
a complete axiomatization of SCI+FD which is comparable to that of MVD+FD. This
entails that database normalization techniques extend to K-relations whenever positivity and
multiplicative cancellativity are assumed. To showcase potential applications, we illustrate
through an example how the semiring perspective can lead to decompositions of data tables
which appear non-decomposable when interpreted relationally. Lastly, we explore how K-
relations and model theory can shed light into the interconnections among different CI
semantics.

1 This rule states that A ⊥⊥ B | CD ∧ C ⊥⊥ D | A ∧ C ⊥⊥ D | B ∧ A ⊥⊥ B | ∅ if and only if
C ⊥⊥ D | AB ∧ A ⊥⊥ B | C ∧ A ⊥⊥ B | D ∧ C ⊥⊥ D | ∅. For probability distributions the rule follows by
the non-negativity of conditional mutual information I(Y ; Z|C), and the fact that I(Y ; Z|X) = 0 if and
only if Y and Z are conditionally independent given X. For database relations the rule is not sound;
see a counterexample in [27].
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2 Semirings

We commence by recapitulating concepts related to semirings. A semiring is a tuple
K = (K,⊕,⊗, 0, 1), where ⊕ and ⊗ are binary operations on K, (K,⊕, 0) is a commutative
monoid with identity element 0, (K,⊗, 1) is a monoid with identity element 1, ⊗ left and
right distributes over ⊕, and x ⊗ 0 = 0 = 0 ⊗ x for all x ∈ K. The semiring K is called
commutative if (K,⊗, 1) is a commutative monoid. That is, semirings are rings which need
not have additive inverses. As usual, we often write ab instead of a⊗ b. In this paper, we
assume that every semiring is non-trivial (0 ̸= 1) and commutative. The symbols ⊕,⊗,

⊕
,
⊗

are used in reference to specific semiring operations, and symbols +, ·,
∑
,
∏

refer to ordinary
arithmetic operations.

We list some example semirings that will be considered in this paper.
The Boolean semiring B = (B,∨,∧, 0, 1) models logical truth and is formed from the
two-element Boolean algebra. It is the simplest example of a semiring that is not a ring.
The probability semiring R≥0 = (R≥0,+, ·, 0, 1) consists of the non-negative reals with
standard addition and multiplication.
The semiring of natural numbers N = (N,+, ·, 0, 1) consists of natural numbers with their
usual operations.
The tropical semiring T = (R ∪ {∞},min,+,∞, 0) consists of the reals expanded with
infinity and has min and standard addition respectively plugged in for addition and
multiplication.
The Viterbi semiring V = ([0, 1],max, ·, 0, 1) associates the unit interval with maximum
as addition and standard multiplication.

Other examples include the semiring of multivariate polynomials N[X] = (N[X],+, ·, 0, 1)
which is the free commutative semirings generated by the indeterminates in X, and the
Lukasiewicz semiring L = ([0, 1],max, ·, 0, 1), used in multivalued logic, which endows the
unit interval with max addition and multiplication a · b := max(0, a+ b− 1).

Let ≤ be a partial order. A binary operator ∗ is said to be monotone under ≤ if a ≤ b

and a′ ≤ b′ implies a ∗ a′ ≤ b ∗ b′. If ∗ = ⊕ (resp. ∗ = ⊗), we call this property of (K,≤)
additive monotony (resp. multiplicative monotony). A partially ordered semiring is a tuple
K = (K,⊕,⊗, 0, 1,≤), where (K,⊕,⊗, 0, 1) is a semiring, and (K,≤) is a partially ordered
set satisfying additive and multiplicative monotony. Given a semiring K = (K,⊕,⊗, 0, 1),
define a binary relation ≤K on K as

a ≤K b :⇔ ∃c : a⊕ c = b. (1)

This relation is a preorder, meaning it is reflexive and transitive. If ≤K is also antisymmetric,
it is a partial order, called the natural order of K, and K is said to be naturally ordered. In
this case, K endowed with its natural order is a partially ordered semiring. If additionally
the natural order is total, i.e., a ≤K b or b ≤K a for all a, b ∈ K, we say that K is naturally
totally ordered.

If a semiring K satisfies ab = 0 for some a, b ∈ K where a ̸= 0 ̸= b, we say that K has
divisors of 0. The semiring K is called ⊕-positive if a⊕ b = 0 implies that a = b = 0. If K is
both ⊕-positive and has no divisors of 0, it is called positive. For example, the modulo two
integer semiring Z2 is not positive since it is not ⊕-positive (even though it has no divisors
of 0). Conversely, an example of a semiring with divisors of 0 is Z4. A semiring is called
additively (resp. multiplicatively) cancellative if a⊕ b = a⊕ c implies b = c (resp. ab = ac

and a ̸= 0 implies b = c). It is simply cancellative if it is both additively and multiplicatively
cancellative. A semiring K in which each non-zero element has a multiplicative inverse is
called a semifield. A semifield K in which each element has an additive inverse is a field.

ICDT 2024
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In particular, note that the probability semiring R≥0, the semiring of natural numbers N,
the Boolean semiring B, and the tropical semiring are positive, multiplicatively cancellative,
and naturally ordered. Of these only the first two are also additively cancellative. This
difference seems to be crucial for the behavior of conditional independence.

This section concludes with two lemmata. The first lemma is applied when examining the
relationship between lossless-join decompositions and conditional independence (Theorem 10).
The second lemma comes into play when comparing the CI implication problem for different
semirings (Theorem 20). A formal definition of an embedding of a model into another model
is located in Appendix A. The lemma proofs can be found in the arXiv version [13]. A field
F endowed with a total order ≤ is a totally ordered field if (F,≤) satisfies additive monotony
and monotony of non-negative multiplication: a ≥ 0 and b ≥ 0 implies ab ≥ 0.

▶ Lemma 1. Any positive multiplicatively cancellative semiring K embeds in a positive
semifield F . Furthermore, if K is additively cancellative, then F is additively cancellative,
and if K is a naturally totally ordered, then F is naturally totally ordered.

▶ Lemma 2. Any naturally totally ordered cancellative semiring embeds in a totally ordered
field.

3 K-relations

This section introduces ordinary relations as well as K-relations and their associated basic
properties.

We use boldface letters to denote sets. For two sets X and Y , we write XY to denote
their union. If A is an individual element, we sometimes write A instead of {A} to denote
the singleton set consisting of A.

3.1 Relations
Fix disjoint countably infinite sets Var and Val of variables and values. Each variable A ∈ Var
is associated with a subset of Val, called the domain of A and denoted Dom(A). Given a
finite set of variables X, an X-tuple is a mapping t : X → Val such that t(A) ∈ Dom(A).
We write Tup(X) for the set of all X-tuples. Note that Tup(∅) is a singleton set consisting
of the empty tuple. For Y ⊆ X, the projection t[Y ] of t on Y is the unique Y -tuple that
agrees with t on X. In particular, t[∅] is always the empty tuple.

A relation R over X is a subset of Tup(X). The variable set X is also called the (relation)
schema of R. We sometimes write R(X) instead of R to emphasize that X is the schema of
R. For Y ⊆ X, the projection of R on Y , written R[Y ], is the set of all projections t[Y ]
where t ∈ R. A database D is a finite collection of relations {R1[X1], . . . , Rn[Xn]}. Unless
stated otherwise, we assume that each relation is finite.

3.2 K-relations
Fix a semiring K, and let X be a set of variables. A K-relation over X is a function
R : Tup(X) → K. Again, the variable set X is called the (relation) schema of R, and we
can write R(X) instead of R to emphasize that X is the schema of R. If K is the Boolean
semiring B, the tuple annotation R(t) characterizes an ordinary relation, and thus we will
often in this paper identify B-relations and relations. Note that a K-relation over ∅ associates
the empty tuple with some value of K. The support Supp(R) of a K-relation R over X is
the set {t ∈ Tup(X) | R(t) ̸= 0} of tuples associated with a non-zero value. We often write
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R′ for the support of R. The K-relation R is called total if for all t ∈ Tup(X) it holds that
R(t) ̸= 0, i.e., if Supp(R) = Tup(X). It is called normal if

⊕
t∈Tup(X) R(t) = 1. For a ∈ K,

we write aR for the K-relation over X defined by (aR)(t) = aR(t). For a Y -tuple t, where
Y ⊆ X, the marginal of R over t is defined as

R(t) :=
⊕

t′∈Tup(X)
t′[Y ]=t

R(t′). (2)

We then write R[Y ] for the relation over Y , called the marginal of R on Y , that consists of
the marginals of R over all Y -tuples. Note that the marginal R[∅] of R on the empty set is a
function that maps the empty tuple to

∑
t∈Tup(X) R(t). In particular, if K is the Boolean

semiring B, the marginal of R on Y is the projection of R on Y . In this paper, we assume
that each relation is finite and non-empty, and likewise each K-relation is assumed to have a
finite and non-empty support.

K-relations instantiated in different ways lead to familiar notions. For instance, a database
relation can be viewed as B-relation, and a probability distribution as a normal R≥0-relation.
Alternatively, database relations can be transformed to K-relations by reinterpreting variables
as tuple annotations.

▶ Example 3. Tab. 1 collects data about room prizes in a hotel. The table can be viewed as
a standard database relation. Since Price is a function of Room, Date, and Persons, one can
also interpret it as a K-relation Price(Room, Date, Persons) over some semiring K containing
positive integers. In principle, other variables such as Room and Persons can also be turned
into annotations.

Table 1 Price data for hotel rooms.

Room Date Persons Price

double 2023-12-01 1 100
double 2023-12-01 2 120
double 2023-08-20 1 120
double 2023-08-20 2 140
twin 2023-08-20 1 110
twin 2023-08-20 2 120

3.3 Basic properties
Prior to delving into the concept of conditional independence, we here list some basic
properties regarding projections and supports of K-relations. Lemmata 4 and 5 appear in [2],
with the exception that there K is always assumed to be positive. Also the concept of a
marginal in that paper is stated otherwise as in Eq. (2), except that there t′ ranges over
R′ instead of Tup(X). Obviously the two versions lead to the same concept. To account
for these slight modifications, we include the proofs of these two lemmata in the arXiv
version [13].

▶ Lemma 4. Let R(X) be a K-relation, and let Z ⊆ Y ⊆ X. The following statements
hold:
1. Assuming K is ⊕-positive, for all Y ⊆ X it holds that R′[Y ] = R[Y ]′.
2. For all Z ⊆ Y ⊆ X it holds that R[Y ][Z] = R[Z].

ICDT 2024
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Two K-relations R and R′ over a variable set V are said to be equivalent (up to normal-
ization), written R ≡ R′, if there are a, b ∈ K \ {0} such that aR = bR′.

▶ Lemma 5. Let K be a semiring, let W ,V , W ⊆ V , be two variable sets, and let R,R′, R′′

be three K-relations over V . Then,
1. R ≡ R′ implies R[W ] ≡ R′[W ]; and
2. if K has no divisors of zero, R ≡ R′ and R′ ≡ R′′ implies R ≡ R′′.

4 Conditional independence and decompositions

Regardless of the context, what we call conditional independence tends to describe essentially
the same property. For a “system” consisting of three components X,Y ,Z, we might say
that Y is conditionally independent of Z given X if Y does not reveal anything about Z,
once X has been fixed. This usually entails that the “system” can be decomposed to its
“subsystems” over X,Y and X,Z without loss of information. In this section we consider
a general semantics for conditional independence over K-relations, and show that under
certain assumptions, this definition matches the above intuition.

▶ Definition 6 (Conditional independence for K-relations [3]). Let R be a K-relation over
a variable set V , and let X,Y ,Z be disjoint subsets of V . An expression of the form
Y ⊥⊥ Z | X is called a conditional independence (CI). We say that R satisfies Y ⊥⊥ Z | X,
denoted R |= Y ⊥⊥ Z | X, if for all V -tuples t,

R(t[XY ])R(t[XZ]) = R(t[XY Z])R(t[X]). (3)

Fix a relation schema V and three pairwise disjoint subsets X,Y ,Z ⊆ V . A saturated
conditional independence (SCI) is a CI of the form Y ⊥⊥ Z | X, where XY Z = V . Over
B-relations SCIs coincide with multivalued dependencies (MVDs), which are expressions of
the form X ↠ Y , where X and Y may overlap. A V -relation R satisfies X ↠ Y , written
R |= X ↠ Y , if for all two tuples t, t′ ∈ R such that t[X] = t′[X] there exists a third tuple
t′′ ∈ R such that t′′[XY ] = t′[XY ] and t[V \ XY ] = t′[V \ XY ]. An embedded multivalued
dependency (EMVD) is an expression of the form X ↠ Y | Z, where X, Y, Z may overlap.
We say that R satisfies X ↠ Y | Z, written R |= X ↠ Y | Z, if the projection R[XY Z]
satisfies the MVD X ↠ Y .

▶ Example 7. Returning to Example 3, we observe that the price function Price(Room, Date,
Persons) exhibits certain types of dependencies between its arguments. The room prices vary
depending on the date and the room type. Additionally, adding a second person incurs a
price increase by a flat rate which is independent of the date but depends on the room type.
This kind of independence can be captured by viewing the price function as a T-relation,
in which case it satisfies the SCI Date ⊥⊥ Persons | Room. Suppose instead of a flat price
increase, the addition of a second person incurs a 20% price increase for double rooms, and
a 10% price increase for twin rooms. Then, interpreting Price(Room, Date, Persons) as a
R≥0-relation, we again obtain Price |= Date ⊥⊥ Persons | Room. When Tab. 1 is viewed as
an ordinary relation, it satisfies the EMVD Room ↠ Date | Persons, while failing to satisfy
any MVD.

Several conditional independence notions from the literature can be recovered through
K-relations. For instance, beside EMVDs, the following examples were considered in [27]
and can now be restated using the previous definition.
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For K = R≥0, the definition coincides with the concept of conditional independence in
probability theory.
For K = T, the definition correponds to conditional independence over natural condi-
tional functions. A natural conditional function is a mapping f : Tup(X) → N, where
mint∈Tup(X) f(t) = 0. The notion of conditional independence over such functions [27]
coincides with Def. 6 over integral-valued, total, and normal T-relations. Recall that for
(min-plus) tropical semirings, addition is interpreted as minimum, and multiplication as
the usual addition, meaning that its neutral element is 0.
For K = V, the definition correponds to conditional independence over possibility func-
tions. A possibility function is a function f : Tup(X) → [0, 1], where

∑
t∈Tup(X) f(t) = 1.

Such functions can be viewed as normal V-relations, where V is the Viterbi semiring, in
which case their notion of conditional independence [27] matches Def. 6.

In order to connect conditional independence over K-relations to decompositions, we
next consider the concept of a join. An arguably reasonable expectation is that whenever
a K-relation T (ABC) satisfies a CI A ⊥⊥ C | B, then one should be able to retrieve T
from its projections on AB and BC using the join. That is, T should be equivalent to
the join of T [AB] and T [BC] up to normalization. In the relational context this is indeed
the outcome once A ⊥⊥ C | B is interpreted as the MVD B ↠ A, and the join R ▷◁ S of
two relations R(X) and S(Y ) is given in the usual way, i.e., as the relation consisting of
those XY -tuples t whose projections t[X] and t[Y ] appear respectively in R and S. In the
context of K-relations the join of R(X) and S(Y ) is often defined via multiplication as the
K-relation R ∗ S over XY where

(R ∗ S)(t) = R(t[X])S(t[Y ]) (4)

(see, e.g., [11]). Substituting K = B in this definition now yields the standard relational join.
Similarly, letting K = N we arrive at the bag join operation of SQL. However, as illustrated
in the next example, this notion of a join falls short of our expectations.

▶ Example 8. Continuing our running example, the two top tables in Fig. 1 illustrate
the projections of the T-relation Price(Room, Date, Persons) on {Room, Date} and {Room,
Persons}. The table in the bottom row is the multiplicative join (4) of the two projections.
Note that in the tropical semiring the aforementioned projections are formed as minima
of prices, while addition plays the role of multiplication in the join operation. We observe
that the multiplicative join is not equivalent to the original price function. In particular,
there is no uniform (tropical) scaling factor that returns us Price from Price([Room, Date]) ∗
Price([Room, Persons]).

Two K-relations R(X) and S(Y ) are said to be consistent if there exists a third relation
T (XY ) such that T [X] ≡ R and T [Y ] ≡ S. Atserias and Kolaitis [2] demonstrate that
the multiplicative join does not always witness the consistency of two K-relations, a fact
that can be also seen from our running example. Consequently, they introduce a novel join
operation which we will now incorporate into our approach. Intuitively this notion of a join
is an adaptation of the factorization of a probability distribution obtained from conditional
independence. Suppose two random events A and C are independent given a third event
B. The joint probability P (A,B,C) can then be rewritten as P (B)P (A | B)P (C | B) =
P (A,B)P (B,C)/P (B). We may recognize that this equation is similar to the multiplicative
join of two K-relations conditioned on their common part. In our example this corresponds
to multiplying the multiplicative join Price([Room, Date]) ∗ Price([Room, Persons]) with the
(tropical) multiplicative inverse of Price([Room]). We observe from Fig. 1 that this sequence
of operations yields the initial price function depicted in Tab. 1 (even without re-scaling), in
accordance with our expectations.

ICDT 2024
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Price[Room, Date]
Room Date Price

double 2023-12-01 100
double 2023-08-20 120
twin 2023-08-20 110

Price[Room, Persons]
Room Persons Price

double 1 100
double 2 120
twin 1 110
twin 2 120

Price([Room, Date]) ∗ Price([Room, Persons])
Room Date Persons Price

double 2023-12-01 1 200
double 2023-12-01 2 220
double 2023-08-20 1 220
double 2023-08-20 2 240
twin 2023-08-20 1 220
twin 2023-08-20 2 230

(Price[Room])−1

Room Price

double -100
twin -110

Figure 1 Decomposition of the price function.

We will now provide a precise definition of the join operation introduced in [2]. This
definition matches the above intuitive description with one exception: Semirings generally
lack multiplicative inverses, and therefore the conditioning on the common part of two
K-relations is defined indirectly. For a K-relation R(X), a subset Z ⊆ X, and a Z-tuple u,
define

c∗
R,Z :=

⊗
v∈R[Z]′

R(v) and cR(u) :=
⊗

v∈R[Z]′

v ̸=u

R(v),

with the convention that the empty product evaluates to 1, the neutral element of multi-
plication in K. We isolate the following simple property which is applied frequently in the
sequel.

▶ Proposition 9. Suppose K does not have divisors of zero. If R(X) is a K-relation, Z ⊆ X,
and u is a Z-tuple, then c∗

R,Z ̸= 0 and cR(u) ̸= ∅

If R(X) and S(Y ) are two K-relations, the join R ▷◁ S of R and S is the K-relation over
XY defined by

(R ▷◁ S)(t) := R(t[X])S(t[Y ])cS(t[X ∩ Y ]). (5)

If K is a semifield (i.e., it has multiplicative inverses), we may rewrite the join as

(R ▷◁ S)(t) =
c∗

S,X∩Y R(t[X])S(t[Y ])
S(t[X ∩ Y ]) .

The definition of R ▷◁ S is not symmetric, and hence there may be occasions where
commutativity fails, i.e., R ▷◁ S ̸= S ▷◁ R. However, whenever R and S agree on the marginals
on their shared variable set X ∩Y , commutativity holds by definition. In particular, Lemma 4
entails that the join of two projections R[X] and R[Y ] of the same relation R is commutative.
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The join operation (5) can also be described in terms of conditional independence and
consistency. Suppose K is a semifield, and suppose X,Y ,Z are pairwise disjoint. Let
S(XY ) and T (XZ) be two normal K-relations that are consistent. Since equivalence entails
identity for normal K-relations over semifields K, this is tantamount to finding a normal
K-relation R(XY Z) such that

R[XY ] = S and R[XZ] = T. (6)

In particular, Lemma 4 and Eq. (6) yield S[X] = T [X], whereby c∗
S,X = c∗

T,X . We may
now observe that R = 1/c∗

T,X(S ▷◁ T ) is the unique K-relation that satisfies (6) and the
CI Y ⊥⊥ Z | X. In the particular case where K = R≥0 – in which case S and T are
two consistent probability distributions – we also know that R = 1/c∗

T,X(S ▷◁ T ) is the
unique probability distribution that satisfies (6) and maximizes the entropy of XY Z (or
alternatively, the conditional entropy of Y Z given X) [2].

Let R be a K-relation over XY . The decomposition of R along X and Y consists of
its projections R[X] and R[Y ] on X and Y , respectively. Such a decomposition is called
a lossless-join decomposition if R[X] ▷◁ R[Y ] ≡ R. This definition, which appears already
in [2], generalizes the definition of a lossless-join decomposition in database relations. It turns
out, as we will next show, that if K is positive and multiplicatively cancellative, conditional
independence holds on a K-relation if and only if the corresponding decomposition is a
lossless-join one.

▶ Theorem 10 (Lossless-join decomposition). Let K be a positive semiring, X,Y ,Z pairwise
disjoint sets of variables, and R(XY Z) a K-relation. If R satisfies Y ⊥⊥ Z | X, then
the decomposition of R along XY and XZ is a lossless-join one. If K is additionally
multiplicatively cancellative, then the converse direction holds.

Proof. Assume R satisfies Y ⊥⊥ Z | X. We need to show that R[XY ]▷◁R[XZ] ≡ R. Let t
be an arbitrary tuple from Tup(XY Z). By assumption and Lemma 4 we obtain

(R[XY ]▷◁R[XZ])(t) =R(t[XY ])R(t[XZ])cR[XZ](t[X])

=R(t[X])R(t)
⊗

v∈R[XZ][X]′

v ̸=t[X]

R[XZ](v)

=R(t[X])R(t)
⊗

v∈R[X]′

v ̸=t[X]

R(v)

= c∗
R,XR(t),

where c∗
R,X ̸= 0 by Proposition 9. This proves that R[XY ]▷◁R[XZ] ≡ R.

For the converse direction, suppose R[XY ]▷◁R[XZ] ≡ R. Let a, b ∈ K \{0} be such that
aR = b(R[XY ]▷◁R[XZ]). By Lemma 1, we may assume without loss of generality that K
is a submodel of some positive semifield F . Hence R[XY ]▷◁R[XZ] = cR for c = ab−1 ∈ F .
We claim that c = c∗

R,X . Since we assume a non-empty support for each K-relation, we may
select a tuple t from R′. By Lemma 4 we have t[X] ∈ R[X]′, i.e., R(t[X]) ̸= 0. We can also
deduce the following:
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cR(t[X]) =
⊕

t′∈Tup(XY Z)
t′[X]=t[X]

cR(t′) =
⊕

t′∈Tup(XY Z)
t′[X]=t[X]

(R[XY ]▷◁R[XZ])(t′)

=
⊕

t′∈Tup(XY Z)
t′[X]=t[X]

R(t′[XY ])R(t′[XZ])cR[XZ](t′[X])

= cR[XZ](t′[X])
⊕

t′∈Tup(XY )
t′[X]=t[X]

R(t′[XY ])
⊕

t′∈Tup(XZ)
t′[X]=t[X]

R(t′[XZ])

=R(t[X])R(t[X])
⊗

v∈R[X]′

v ̸=t[X]

R(v) = c∗
R,XR(t[X]).

Multiplying (in F ) by the inverse of R(t[X]) then yields c = c∗
R,X , proving our claim.

Since R[XY ] ▷◁ R[XZ] = c∗
R,XR, we may apply the sequence of equations from the

previous case to obtain that for all t ∈ Tup(XY Z),

R(t[XY ])R(t[XZ])cR[XZ] = R(t[X])R(t)cR[XZ].

Since cR[XZ] is non-zero by Proposition 9, it can be removed from both sides of the equation
by multiplicative cancellativity. We conclude that R satisfies Y ⊥⊥ Z | X. ◀

The preceding proof entails that over positive and multiplicatively cancellative semirings
K, the satisfaction of Y ⊥⊥ Z | X by a K-relation R(XY Z) holds if and only if R[XY ]▷◁
R[XZ] = c∗

R,XR. If K is additionally a semifield, then R |= Y ⊥⊥ Z | X exactly when we
find two K-relations S(XY ) and T (XZ) such that R(t) = S(t[XY ])T (t[XZ]).

Our running example demonstrates that semiring interpretations can give rise to lossless-
join decompositions which are unattainable under the relational interpretation.

▶ Example 11. Consider again Tab. 1 as a T-relation Price(Room, Date, Persons).
As we see from Fig. 1, this T-relation decomposes along {Room, Date} and {Room,
Persons}. In particular, Price[Room, Date] ▷◁ Price[Room, Persons] = c∗

Price,{Room}Price
where c∗

Price,{Room} = 210. However, viewed as an ordinary relation R over {Price, Room,
Date, Persons} this table is in sixth normal form, meaning that no decomposition along
X1, . . . , Xn is a lossless-join one, unless Xi for some i is the full variable set. Specifically, for
any X ⊊ {Price, Room, Date, Persons}, the projection of the tuple (double, 2023-08-20, 2,
120) on X is in R[X], even though the tuple itself does not belong to R.

Examples of positive semirings which are not multiplicatively cancellative seem somewhat
artificial. Consider K = (N>0,Z2) ∪ {(0, 0)} with the semiring structure pointwise inherited
from N and Z2. Note that K is positive but violates multiplicative cancellativity, as
(1, 1) ⊗ (1, 0) = (1, 0) ⊗ (1, 0), while (1, 1) ̸= (1, 0) ̸= (0, 0). Using K we can demonstrate that
the assumption of multiplicative cancellativity cannot be dropped from the second statement
of Lemma 10. We write X ⊥⊥ Y for the marginal independence between X and Y , defined
as the CI X ⊥⊥ Y | ∅. Consider the K-relation R from Fig. 2. This K-relation does not
satisfy A ⊥⊥ B: Choosing t(A,B) = (0, 0) we observe R(t[A]) ⊗R(t[B]) = (2, 1) ⊗ (2, 1) ̸=
(4, 0) ⊗ (1, 0) = R(∅) ⊗ R(t[AB]). On the other hand, we have R ≡ R[A] ▷◁R[B] because
aR = b(R[A]▷◁R[B]), where a = (4, 0) ̸= (0, 0) ̸= (1, 0) = b.

Similarly, the assumption of positivity is necessary for the first statement of Lemma 10.
Suppose a, b ∈ K \{0} are such that a⊕b = 0, and consider variables X,Y with domain {0, 1}.
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R

A B #

0 0 (1, 0)
0 1 (1, 1)
1 0 (1, 1)
1 1 (1, 0)

R[C], C ∈ {A,B}
C #

0 (2, 1)
1 (2, 1)

R[A]▷◁R[B]
A B #

0 0 (4, 1)
0 1 (4, 1)
1 0 (4, 1)
1 1 (4, 1)

Figure 2 Decomposition without independence.

(S1) Triviality: Y ⊥⊥ ∅ | X.
(S2) Symmetry: Y ⊥⊥ Z | X, then Z ⊥⊥ Y | X.
(S3) Decomposition: Y ⊥⊥ ZW | X, then Y ⊥⊥ Z | X.
(S4) Weak union: Y ⊥⊥ ZW | X, then Y ⊥⊥ W | XZ.
(S5) Contraction: Y ⊥⊥ Z | X and Y ⊥⊥ W | XZ, then Y ⊥⊥ ZW | X.
(G) Interaction: Y ⊥⊥ Z | XW and Y ⊥⊥ W | XZ, then Y ⊥⊥ ZW | X.

Figure 3 Semigraphoid axioms (S1–S5) and graphoid axioms (S1–S5,G).

Then, the K-relation R(XY ) corresponding to the set {(0, 0; a), (0, 1; b), (1, 0; b), (1, 1; a)} of
triples (t(X), t(Y );R(t)) satisfies X ⊥⊥ Y , but the decomposition along X and Y is obviously
not a lossless-join one. In fact, the definition of the marginal, Eq. (2), may not even be useful
if K is not positive. For instance, a pure quantum state |ψ⟩XY within a finite-dimensional
composite Hilbert space HXY can be conceived as a C-relation R(XY ) over complex numbers
C. Its marginal with respect to HX is however not obtained from Eq. (2), but through a
partial trace of the relevant density matrix. The marginal state may not even be a C-relation
anymore, because it can be mixed, i.e., a probability distribution over pure states.

5 Axiomatic properties

The previous section identifies positivity and multiplicative cancellativity as the key semiring
properties underlying the correspondence between conditional independence and lossless-join
decompositions. The main observation of the present section will be that the same key
semiring properties guarantee soundness and completeness of central axiomatic properties
associated with CIs.

5.1 Semigraphoid axioms
The semigraphoid axioms [21] (the first five rules in Fig. 3) are a collection of fundamental
conditional independence properties observed in various contexts, including database rela-
tions and probability distributions. The graphoid axioms are obtained by extending the
semigraphoid axioms with the interaction rule (the last rule in Fig. 3). While not sound in
general, the interaction rule is known to hold for probability distributions in which every
probability is positive. We observe next that these results extend to K-relations whenever K
is positive and multiplicatively cancellative; the interaction rule, in particular, is sound over
total K-relations.

To offer context for Theorem 12 which is proven in Appendix B, recall from information
theory the concept of conditional mutual information, which can be defined over sets of
random variables U, V, W as I(V ; W | U) := H(UV ) + H(UW ) − H(U) − H(UV W ),
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where H is the Shannon entropy. The conditional mutual information I(V ; W | U) is zero
if and only if the CI V ⊥⊥ W | U holds in the underlying probability distribution. Now,
consider the chain rule

I(Y ; Z | X) + I(Y ; W | XZ) = I(Y ; ZW | X)

of conditional mutual information. Since conditional mutual information is non-negative,
the chain rule readily entails Decomposition, Weak union, and Contraction for probability
distributions. In the semiring setting we cannot deduce these rules analogously, as there
seems to be no general measure to capture conditional independence over K-relations. We
can however use the measure-theoretic interpretation of conditional independence as a guide
toward a proof. Consider, for instance, the contraction rule, which can be restated in the
information context as follows: if

H(XY ) +H(XZ) = H(X) +H(XY Z) and (7)
H(XY Z) +H(XZW ) = H(XZ) +H(XY ZW ), (8)

then

H(XY ) +H(XZW ) = H(X) +H(XY ZW ). (9)

In particular, Eq. (9) is a consequence of subtracting H(XZ) + H(XY Z) from the
combination of Eqs. (7) and (8). The soundness proof for K-relations has now the same
general structure. Instantiations of Eq. (3) for the CIs appearing in the contraction rule are
structurally similar to Eqs. (7), (8), and (9), with addition between entropies being replaced by
multiplication within K. Instead of subtraction, one now applies multiplicative cancellativity
to remove all superfluous terms from the combination of two equations. Additionally, one
has to deal with those cases where the terms to be eliminated are zero, and multiplicative
cancellativity cannot be applied.

▶ Theorem 12. Triviality, Symmetry, and Decomposition are sound for K-relations. Weak
union and Contraction are sound for K-relations where K is positive and multiplicatively
cancellative. Interaction is sound for total K-relations where K is positive and multiplicatively
cancellative.

Having considered the graphoid axioms for K-relations, we next consider the interaction
between conditional independence and functional dependence.

5.2 Functional dependencies
Given two sets of variables X and Y , the expression X → Y is called a functional dependency
(FD). A relation R satisfies X → Y , denoted R |= X → Y , if for all t, t′ ∈ R, t[X] = t′[X]
implies t[Y ] = t′[Y ]. We extend this definition to K-relations R by stipulating that R
satisfies an FD σ whenever its support R′ satisfies σ.

The Armstrong axioms for FDs [1] comprise the first three rules in Fig. 4. These rules are
sound and complete for database relations, and hence, by definition, for K-relations over any
K. The last two rules are two combination rules for MVDs and FDs [4] rewritten in different
syntax. To extend these rules K-relations, we again need positivity and multiplicative
cancellativity. The following proposition is proven in the arXiv version [13].

▶ Proposition 13. CI introduction is sound for all K-relations, where K is ⊕-positive. FD
contraction is sound for all K-relations, where K is positive and multiplicatively cancellative.
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(FD1) Triviality: if Y ⊆ X, then X → Y .
(FD2) Augmentation: if X → Y and XZ → Y Z.
(FD3) Transitivity: if X → Y and Y → Z, then X → Z.

(FD-CI1) CI introduction: if X → Y , then Y ⊥⊥ Z | X.
(FD-CI2) FD contraction: if Y ⊥⊥ Z | X and XY → Z, then X → Z.

Figure 4 Armstrong’s axioms (FD1–FD3) and combination rules (FD–CI1,FD–CI2).

Soundness of CI introduction means that, for positive K, a functional dependency on
a K-relation leads to a lossless-join decomposition. The next proposition, stating this fact,
was proven originally in [2]. Alternatively, we now see that the proposition follows directly
by Theorem 10 and Proposition 13.

▶ Proposition 14 ([2]). Let K be a positive semiring, X,Y ,Z be pairwise disjoint sets of
variables, and R(XY Z) be a K-relation. If R satisfies X → Y , then the decomposition of
R along XY and XZ is a lossless-join one.

We have now examined fundamental inference rules for CIs and FDs that have their
origins in database theory and probability theory. The combination of these rules however
is not – and cannot be – complete in either context. Specifically, over both finite relations
and finite distributions, the implication problems for EMVDs/CIs are not even r.e. since
the problems are known to be undecidable [14, 18, 20] and co-r.e. [17]. In the next section
we restrict attention to saturated CIs which are known to exhibit favorable algorithmic and
axiomatic properties.

5.3 Saturated conditional independence and functional dependence
We next show that SCI+FD enjoys a complete axiomatization that is shared by all positive and
multiplicatively cancellative semirings K. This result readily entails that logical implication
within the class SCI+FD does not depend on the chosen semiring K, provided that it has
the fundamental properties mentioned above.

Given a set Σ ∪ {τ} of dependencies, we say that Σ implies τ over relations (resp. K-
relations), denoted Σ |= τ (resp. Σ |=K τ), if every relation (resp. K-relation) satisfying
Σ satisfies τ . Let σ 7→ σ∗ associate an SCI/CI with its corresponding MVD/EMVD.
Extend this mapping to be the identity on FDs, and extend it to sets in the natural way:
Σ∗ = {σ∗ | σ ∈ Σ}.

▶ Theorem 15. Let K be a positive and multiplicatively cancellative semiring. Let Σ ∪ {τ}
be a set of SCIs and FDs. The following are equivalent:
1. τ can be derived from Σ using (S1-S5), (FD1-FD3), and (FD-CI1,FD-CI2).
2. Σ implies τ over K-relations.
3. Σ∗ implies τ∗ over relations consisting of two tuples.
4. Σ∗ implies τ∗ over relations.

Proof. (1) ⇒ (2). This direction is immediate due to Theorem 12, Proposition 13, and
soundness of the Armstrong axioms for ordinary relations. (2) ⇒ (3). Any two-tuple
relation R = {t, t′} can be transformed to a K-relation S such that the support S′ is R, and
S(t) = S′(t) = 1. It is straightforward to verify that R satisfies σ∗ if and only if S satisfies
σ, for all CIs and FDs σ. From this, the direction follows. (3) ⇒ (4). This direction has
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been proven in [22]. (4) ⇒ (1). This direction follows from the fact that the system (S1-S5),
(FD1-FD3), (FD-CI1,FD-CI2) mirrors the complete axiomatization of MVDs and FDs. We
give an explicit proof in the arXiv version [13]. ◀

▶ Corollary 16. Let K,K ′ be positive and multiplicatively cancellative semirings, and let
Σ ∪ {τ} be a set of SCIs and FDs. Then, Σ implies τ over K-relations if and only if Σ
implies τ over K ′-relations.

Theorem 10 and Corollary 16 demonstrate that the decomposition properties arising
from multivalued and functional dependencies hold invariably for all K-relations, given K is
multiplicatively cancellative and positive. Standard database normalization methods thus
extend to diverse contexts and may sometimes coincide with existing methods. The following
example shows that relational normalizations can sometimes match the factorizations of
probability distributions arising from Bayesian networks.

A relational database schema is a set of relation schemata, each associated with a set of
constraints. It is in fourth normal form (4NF) if for any of its MVD constraints X ↠ Y ,
X is a superset of a key. A Bayesian network is a directed acyclic graph in which the
nodes represent random variables and the directed edges probabilistic dependencies between
variables. Each node is thus directly influenced by its parents in the graph. Conversely, each
node indirectly influences its descendants by transitivity. The local Markov property states
that once the parent nodes are known, the state of the current node does not reveal any
additional information about the states of its non-descendants, i.e., each node is conditionally
independent of its non-descendants given its parents.

▶ Example 17. Consider the Bayesian network in Fig. 5. The chain rule of probability dis-
tributions and the local Markov property implies that the joint distribution P (A,B,C,D,E)
has a factorization P (A)P (B | A)P (C | A)P (D | BC)P (E | D).

The local Markov property produces three non-trivial CIs up to symmetry, rewritten
as the following EMVDs A ↠ B|C, BC ↠ A|D, D ↠ ABC|E. Suppose our goal is to
transform the unirelational database schema {ABCDE} into 4NF, assuming absence of
key constraints. Since the last EMVD is also an MVD, we first decompose ABCDE along
ABCD and DE. Since the second EMVD is an MVD on ABCD, we continue by splitting
ABCD into ABC and BCD. To remove the last remaining MVD, we decompose ABC
along AB and AC. The final schema {AB,AC,BCD,DE} is free of MVDs, and thus in
4NF. Furthermore, the decomposition of P (as a R≥0-relation) along {AB,AC,BCD,DE}
reproduces the aforementioned factorization of P into conditional probabilities.

A

B C

D E

Figure 5 A simple Bayesian network.
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6 Comparison of implication

As mentioned previously, implication for non-saturated CIs depends heavily on the underlying
semantics. In this section, we examine the connections between different conditional inde-
pendence semantics in relation to the semiring properties they rely on. Using model-theoretic
arguments, we first show that Σ |=R≥0 τ implies Σ |=K τ , whenever K is cancellative and
equipped with a natural total order.

Consider a CI of the form τ = Y ⊥⊥ Z | X, where X,Y ,Z are disjoint subsets of a
schema V . Suppose the domain of each variable in V is finite. For each V -tuple t, introduce
a variable xt. Denote by x⃗V a sequence listing all variables xt, t ∈ Tup(V ). We associate τ
and V with a quantifier-free first-order arithmetic formula

ϕτ,V :=
∧

tX ∈Tup(X)
tY ∈Tup(Y )
tZ∈Tup(Z)

⊕
t∈Tup(XY Z)

t[X]=tX

xt

⊕
t∈Tup(XY Z)

t[X]=tX

t[Y ]=tY

t[Z]=tZ

xt =
⊕

t∈Tup(XY Z)
t[X]=tX

t[Y ]=tY

xt

⊕
t∈Tup(XY Z)

t[X]=tX

t[Z]=tZ

xt.

A formula ϕ is said to be universal if it is of the form ∀x1 . . . ∀xnθ, where θ is quantifier-
free. All universal first-order properties of a model are preserved for its submodels (and any
of their isomorphic copies) [6].

▶ Proposition 18. Let A and B be models over a vocabulary τ , and let ϕ be a universal
first-order sentence over τ . If A embeds in B, then A |= ϕ implies B |= ϕ.

The following theorem lists some basic properties of real-closed fields [5, 6]. A field F is
called real if it can be associated with an ordering ≤ such that (F,≤) becomes an ordered
field. A field F ′ is an extension of a field F if F ⊆ F ′, and the field operations of F are those
inherited from F ′. The extension is proper if F is a strict subset of F ′, and algebraic if every
element in F ′ is a root of a non-zero polynomial with coefficients in F . A real field with no
proper real algebraic extension is called real closed. For instance, the field of real numbers is
real closed, whereas the field of rational numbers is real but not real closed. On the other
hand, no finite or algebraically closed field is real. A real closed field has a unique ordering,
which is definable by a ≤ b :⇔ ∃c(a⊕ c2 = b). An algebraic extension F ′ of an ordered field
(F,≤) is called a real closure of F if F ′ is real closed, and its unique ordering extends that of
F (i.e., the ordering is preserved under the inclusion map F ↪−→ F ′). Two models A and B
are elementarily equivalent, written A ≡ B, if they satisfy the same first-order sentences.

▶ Theorem 19.
Any totally ordered field (F,≤) has a real closure F ′.
If (F,≤) is a totally ordered field, and F0 and F1 are its real closures uniquely ordered
by ≤0 and ≤1, there is an isomorphism between (F0,≤0) and (F1,≤1) which is identity
on F .
Any two real-closed fields F0 and F1 are elementarily equivalent.

We can now prove the property that R≥0-implication entails K-implication, for any
semiring K embedded in a cancellative and naturally totally ordered one.

▶ Theorem 20. Let Σ ∪ {τ} be a finite set of CIs, and suppose K embeds in a naturally
totally ordered cancellative semiring. Then, Σ |=R≥0 τ implies Σ |=K τ .

Proof. By Lemma 2, Theorem 19, and transitivity of the embedding relation, K embeds in
a real-closed field F . Let R(V ) be a K-relation, where V is a set of variables that includes
each variable appearing in Σ ∪ {τ}. We need to show that R |= Σ implies R |= τ . Since
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satisfaction of a CI by R does not depend on tuple values that do not appear in R, we may
without loss of generality assume that the domain of each variable in V is finite. Then,
assuming Σ = {σ1, . . . , σn}, we may consider the universal first-order sentence

ψΣ,τ,V := ∀x⃗V (x⃗V ≥ 0⃗ ∧ ϕσ1,V ∧ . . . ∧ ϕσn,V → ϕτ,V ),

where, given a sequence x⃗ = (x1, . . . , xl), we write x⃗ ≥ 0⃗ as a shorthand for x1 ≥ 0∧. . .∧xl ≥ 0.
Since Σ |=R≥0 τ by hypothesis, ψΣ,τ,V must be true for the field of reals R (equipped with its
unique ordering). Since F and R are real-closed, they share the same first-order properties;
in particular, F also satisfies ψΣ,τ,V . By Proposition 18, K likewise satisfies ψΣ,τ,V , and
hence R |= Σ implies R |= τ . We conclude that Σ |=K τ . ◀

The preceding theorem readily entails that implication over R≥0 entails implication over
N≥0 and Q≥0. Another example is K = N × N with pointwise addition and multiplication,
and neutral elements (0, 0) and (1, 1). This semiring is not naturally totally ordered, because
it contains incomparable elements, such as (0, 1) and (1, 0). However, it can be extended
to K ∪ (Z × N>0) which is naturally totally ordered and cancellative. For another example,
consider the semiring K = N[X] of polynomials in X with coefficients from natural numbers.
Since K contains incomparable elements, such as X + 2 and 2X + 1, its natural order is not
total. The extension of K with those polynomials of Z[X] in which the leading coefficient is
positive produces a cancellative semiring whose natural order is total.

Let us then turn attention to the Boolean semiring B and its connections with other
semirings. First we note that although both R≥0 and B are naturally totally ordered, only
the first one is additively cancellative. In light of Theorem 20, this may help explain why
there is no implication from Σ |=R≥0 τ to Σ |=B τ . Another difference is that only the
Boolean semiring is associated with an idempotent addition; an operation ∗ on K is said to
be idempotent if a∗a = a for all a ∈ K. We observe that B-implication entails K-implication,
whenever K has an idempotent addition.

▶ Proposition 21. Let K be a semiring associated with an idempotent addition. Let Σ ∪ {τ}
be a set of CIs. Then, Σ |=K τ implies Σ |=B τ .

Proof. Recall that we consider only non-trivial semirings K, where 0 ̸= 1. Thus, any
B-relation R can be readily interpreted as a K-relation R′. The idempotence of addition
guarantees that R |= σ if and only if R′ |= σ, for any CI σ. The statement of the lemma
then follows. ◀

We leave it as an open question whether the statements of Theorem 20 and Proposition 21
hold also in the converse directions.

7 Conclusion

We have studied axiomatic and decomposition properties of conditional independence over
K-relations. For positive and multiplicatively cancellative K, we showed that (i) conditional
independence corresponds to lossless-join decompositions, (ii) the semigraphoid axioms
of conditional independence are sound, and (iii) saturated conditional independence and
functional dependence have a sound and complete axiom system, mirroring the sound and
complete axiom system of MVDs and FDs. To demonstrate possible applications, we provided
an example data table that admits a lossless-join decomposition only when one of its variables
is reinterpreted as a semiring annotation. Finally, we considered a model-theoretic approach
to study the relationships between different CI semantics.
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The questions of the axiomatic characterization [15, 26, 28] and decidability [14, 20] of the
CI implication problem have been answered in the negative in different frameworks. Having
identified positivity and multiplicative cancellativity as the fundamental semiring properties
for the notion of conditional independence, we may now ask whether these negative results
extend to any K with these characteristics.
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A Embeddings

Let τ be a first-order vocabulary consisting of function and relation symbols (constant
symbols can be viewed as 0-ary function symbols). We write write ar(α) for the arity of
a symbol α ∈ τ . Given a τ -structure M and an element α from τ , we write αM for the
interpretation of α in M. Let A and B be two τ -structures with domains A and B. We
call A a submodel of B, written A ⊆ B, if A ⊆ B, and the interpretation of every function
symbol and relation symbol in τ is inherited from B; i.e., for each α ∈ τ , αA is the restriction
αB ↾ Ak of αB to Ak. We say that A and B are isomorphic, written A ∼= B, if there exists a
bijection (called an isomorphism between A and B) π : A → B such that

π(fA(a1, . . . , aar(f))) = fB(π(a1), . . . , π(aar(f))), for all function symbols f ∈ τ and
elements a1, . . . , ak ∈ A, and
(a1, . . . , aar(R)) ∈ RA ⇐⇒ (π(a1), . . . , π(aar(R))) ∈ RB, for all relation symbols R ∈ τ

and elements a1, . . . , ak ∈ A.
We say that A embeds in B, written A ≼ B, if A and some submodel of B are isomorphic.

B Graphoid axioms

We will use the following helping lemma in the proof of Theorem 12.

▶ Lemma 22. Let R(X) be a K-relation, where K is ⊕-positive. Let t be a tuple of R, and
let Y ,Z be variable sets such that Z ⊆ Y ⊆ X. Then, t[Y ] ∈ R[Y ]′ implies t[Z] ∈ R[Z]′.
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Proof. By Lemma 4, R[Y ][Z] = R[Z]. Using Eq. (2) we have

R(t[Z]) =
⊕

u∈Tup(Y )
u[Z]=t[Z]

R(u) = R(t[Y ]) ⊕
⊕

u∈Tup(Y )
u[Z]=t[Z]
u[Y ] ̸=t[Y ]

R(u).

Since by assumption R(t[Y ]) ̸= 0, we obtain by ⊕-positivity of K that R(t[Z]) ̸= 0, i.e.,
t[Z] ∈ R[Z]′. ◀

▶ Theorem 12. Triviality, Symmetry, and Decomposition are sound for K-relations. Weak
union and Contraction are sound for K-relations where K is positive and multiplicatively
cancellative. Interaction is sound for total K-relations where K is positive and multiplicatively
cancellative.

Proof. Triviality and Symmetry are clearly sound for all K-teams. We thus consider only
Decomposition, Weak union, and Contraction. Fix a K-relation R(V ) over some variable set
V that contains XY ZW .

Decomposition: Suppose R satisfies Y ⊥⊥ ZW | X. Then, for all tuples t ∈ Tup(V ) it
holds that

R(t[XY ])R(t[XZW ]) = R(t[X])R(t[XY ZW ]) (10)

This implies

R(t[XY ])R(t[XZ]) = R(t[XY ])
⊕

t′∈Tup(XZW )
t′[XZ]=t[XZ]

R(t′[XZW ])

=
⊕

t′∈Tup(XY ZW )
t′[XY Z]=t[XY Z]

R(t′[XY ])R(t′[XZW ]) =
⊕

t′∈Tup(XY ZW )
t′[XY Z]=t[XY Z]

R(t′[X])R(t′[XY ZW ])

= R(t[X])
⊕

t′∈Tup(XY ZW )
t′[XY Z]=t[XY Z]

R(t′[XY ZW ]) = R(t[X])R(t[XY Z]).

Having showed

R(t[XY ])R(t[XZ]) = R(t[X])R(t[XY Z]), (11)

we conclude that R satisfies Y ⊥⊥ Z | X.
Weak union: Suppose again R satisfies Y ⊥⊥ ZW | X, in which case Eq. (10) holds for
all tuples t ∈ Tup(V ). Multiplying both sides by R[t(XZ)]R[t(XY Z)] yields

R(t[XY ])R(t[XZW ])R[t(XZ)]R[t(XY Z)]
=R(t[X])R(t[XY ZW ])R[t(XZ)]R[t(XY Z)].

If R(t[XY ])R(t[XZ]) ̸= 0, we may apply Eq. (11), which is implied by Eq. (10), and
multiplicative cancellativity to obtain

R(t[XZW ])R(t[XY Z]) = R[t(XZ)]R[t(XY ZW )]. (12)

Suppose then R(t[XY ])R(t[XZ]) = 0. Since K lacks zero divisors, either R(t[XY ]) = 0
or R(t[XZ]) = 0. By positivity and and Lemma 22, it follows that R(t[XY Z]) = 0 and
R(t[XY ZW ]) = 0. In particular, both sides of Eq. (12) vanish. Hence we may conclude
that R satisfies Y ⊥⊥ W | XZ.
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Contraction: Suppose R satisfies Y ⊥⊥ Z | X and Y ⊥⊥ W | XZ, in which case we have
Eq. (12) as well as

R(t[XY ])R(t[XZ]) = R(t[X])R(t[XY Z]), (13)

for all t ∈ Tup(V ). Multiplying both left-hand sides and right-hand sides of Eqs. (12)
and (13) with one another yields

R(t[XZW ])R(t[XY Z])R(t[XY ])R(t[XZ])
=R(t[XZ])R(t[XY ZW ])R(t[X])R(t[XY Z]).

If R(t[XZ])R(t[XY Z]) ̸= 0, we obtain Eq. (10) by multiplicative cancellativity. On the
other hand, assuming R(t[XZ])R(t[XY Z]) = 0 we have three cases:

1. R(t[XZ]) = R(t[XY Z]) = 0. Then R(t[XZW ]) = R(t[XY ZW ]) = 0 by positivity
of R and Lemma 22, wherefore both sides of Eq. (10) vanish.

2. R(t[XZ]) = 0 and R(t[XY Z]) ̸= 0. Then R(t[X]) = 0 by positivity of K and Eq.
(13). Again, both sides of Eq. (10) vanish.

3. R(t[XZ]) ̸= 0 and R(t[XY Z]) = 0. This time R(t[XY ]) = 0 by positivity of K and
Eq. (13), and once more we obtain Eq. (10).

Since Eq. (10) always holds, we conclude that R satisfies Y ⊥⊥ W Z | X.
Interaction: Suppose R satisfies Y ⊥⊥ Z | XW and Y ⊥⊥ W | XZ. Then, we have

R(t[XZW ])R(t[XY W ]) = R(t[XW ])R(t[XY ZW ]), (14)
R(t[XY Z])R(t[XZW ]) = R(t[XZ])R(t[XY ZW ]), (15)

for all tuples t ∈ Tup(V ). By Proposition 1, K embeds in some semifield F . Given
a ∈ K \{0}, let us write a−1 for its multiplicative inverse in F . By positivity of K, totality
of R, and Lemma 22, we observe R(t[U ]) ̸= 0 for all U ⊆ V and t ∈ Tup(V ). Thus, the
expression R(t[U ′] | t([U ]) := R(t[UU ′])R(t[U ])−1 is well defined for all U ,U ′ ⊆ V and
t ∈ Tup(V ). We may now rewrite Eqs. (14) and (15) as

R(t[XY W ] | t[XW ]) = R(t[XY ZW ] | t[XZW ]) = R(t[XY Z] | t[XZ])

from which we obtain

R(t[XY W ])R(t[XZ]) = R(t[XY Z])R(t[XW ])

for all t ∈ Tup(V ). Thus, for arbitrary t ∈ Tup(V ),

R(t[XY ])R(t[XZ]) =R(t[XZ])
⊕

t′∈Tup(XY W )
t′[XY ]=t[XY ]

R(t′[XY W ])

=
⊕

t′∈Tup(XY ZW )
t′[XY Z]=t[XY Z]

R(t′[XZ])R(t′[XY W ])

=
⊕

t′∈Tup(XY ZW )
t′[XY Z]=t[XY Z]

R(t′[XY Z])R(t′[XW ])

=R(t[XY Z])
⊕

t′∈Tup(XW )
t′[X]=t[X]

R(t′[XW ])

=R(t[XY Z])R(t[X]),

by which we conclude that R satisfies Y ⊥⊥ Z | X. Hence, R also satisfies Y ⊥⊥ ZW | X

by soundness of Contraction. ◀
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