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Abstract
Unions of conjunctive two-way regular path queries (UC2RPQs) are a common abstraction of query
languages for graph databases, much like unions of conjunctive queries (UCQs) in the relational
case. As in the case of UCQs, their evaluation is NP-complete in combined complexity. Semantic
tree-width, i.e. the minimal treewidth of equivalent queries, has been proposed as a candidate
criterion to characterize fixed-parameter tractability of UC2RPQs. It was recently shown how to
decide the semantic tree-width of a UC2RPQ, by constructing the best under-approximation of a
given treewidth, in the form of a UC2RPQ of size doubly exponential in the size of the original
query. This leads to an fpt algorithm for evaluating UC2RPQs of semantic TW k which runs in
time doubly exponential in the size of the parameter, i.e. in the UC2RPQ. Here we describe a more
efficient fpt algorithm for evaluating UC2RPQs of semantic treewidth k which runs in time singly
exponential in the size of the parameter. We do this by a careful construction of a witness query
which, while still being doubly exponential, can be represented as a Datalog program of bounded
width and singly exponential size.
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1 Introduction

“The future is big graphs” [21]. Already today graph databases are mainstream in a wide
range of application domains, including social networks, fraud detection, biological networks,
bioinformatics, cheminformatics, medical data, and knowledge management [3]. By 2025, as
Gartner predicts, graph technologies will be used in 80% of data and analytics innovations.
The landscape of graph technologies, however, is currently very fragmented, with multiple
vendors offering their own query languages (e.g. [13, 23]). This might change with the
upcoming Graph Query Language Standard [11], but for now theoretical research naturally
focuses on abstract formalisms, capturing the core of the multiple query languages.

While for relational databases conjunctive queries (CQs) and their unions (UCQs) are a
premier abstract query language, graph databases are typically queried using conjunctive
regular path queries (CRPQs) and unions thereof (UCRPQs) which generalize UCQs by
replacing atoms with regular path queries (RPQs) [19]. RPQs specify connections between
graph nodes using regular expressions over edge labels. If edges can be traversed both ways,
one speaks of two-way regular path queries (2RPQs) and (unions of) conjunctive two-way
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22:2 Evaluating Graph Queries Using Semantic Treewidth

regular path queries, abbreviated as (U)C2RPQs. While the original semantics for such
queries was based on the existence of simple paths, the most commonly adopted semantics
nowadays relies on unrestricted paths. Under the latter semantics, 2RPQs can be evaluated
in polynomial time, but the complexity of evaluating C2RPQs is the same as for CQs:
NP-complete in combined complexity.

In the classical setting, the intractability of CQs lead to a long line of research, where
different structural measures on queries were proposed in an attempt to identify cases where
evaluation can be done efficiently. This spans from the well-known polynomial time algorithm
of Yannakakis for evaluating acyclic CQs [24] to tractability results for queries of bounded
treewidth [9], bounded (fractional) hypertreewidth [14, 16], and culminates with the result
of Grohe [15] that establishes a dichotomy for fixed-parameter tractable evaluation of CQs
in the bounded arity setting.

Under an assumption from parameterized complexity theory, that W[1] ̸= FPT, Grohe’s
result establishes that exactly those classes of UCQs which have bounded treewidth modulo
equivalence (also known as bounded semantic treewidth) can be evaluated in FPT. Fur-
thermore, bounded semantic treewidth also guarantees tractability in a classical sense, i.e.
polynomial-time combined complexity. In the unbounded arity setting, a similar dichotomy
(again subject to an assumption, the Exponential Time Hypothesis [17]) has been established,
this time using another measure called submodular width [18, 10].

In the same vein, Barcelo et al. [4, 5] initiated the investigation of efficient evaluation of
UC2RPQs. They showed that acyclic UC2RPQs can be evaluated in polynomial time (even
linear in particular cases). Semantically acyclic UC2RPQs [6] enjoy the same good properties,
although deciding whether a UC2RPQ is semantically acyclic is ExpSpace-complete (unlike
for UCQs, for which it is NP-complete). This is not surprising given that the containment
problem for UC2RPQs is ExpSpace-complete [8].

As concerns semantic treewidth of (U)C2RPQs, Romero et al. [20] introduced two
notions of C2RPQ equivalence: one based on homomorphisms, and another based on
logical equivalence. They show that there exists a notion of homomorphism for C2RPQs
under which bounded treewidth modulo equivalence guarantees polynomial evaluation. For
logical equivalence, however, tractability is no longer achievable, so the focus shifts to fixed
parameter tractability. In this case, it follows from existing results on UCQ evaluation and
RPQ evaluation that UC2RPQs of bounded treewidth are fixed-parameter tractable: one
can simply materialize all the RPQs in the database and then regard the C2RPQ as a CQ
over the materialized database. The authors lift this to UC2RPQs of bounded semantic
treewidth, i.e. UC2RPQs that are logically equivalent to one of bounded treewidth. They
achieve this by computing a so-called witness for bounded semantic treewidth, whose actual
treewidth might be up to 2k + 1, when the semantic treewidth of the query is k. Again,
according to results on UCQ evaluation, together with the complexity of evaluating RPQs,
such a query can be evaluated in time O(f(Φ)|G|2k+1), where |Φ| is the size of the query, |G|
is the size of the graph database and f is a singly exponential function.

It remained open how to decide semantic TW of UC2RPQs, and, in particular, how to
construct a witness of optimal TW. This has been settled recently by Figueira and Morvan [12],
who construct for a given k the best (in the sense of tightest) under-approximations of
treewidth k of the original query. Such under-approximations have in the worst case size
doubly exponential in the size of the original query. As such an under-approximation is
equivalent to the original query when the semantic treewidth of the query is k, this leads to
an algorithm for evaluating UC2RPQs of semantic TW k which runs in time O(f(Φ)|G|k+1),
with f being a doubly exponential function. While this is a significant improvement in data
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complexity, as it lowers the exponent of the size of data from 2k + 1 to k + 1 compared to
existing algorithms, the algorithm is impractical due to its doubly exponential combined
complexity.

In this paper, we zoom into the problem of evaluating a UC2RPQ Φ of semantic TW k

and show that it is possible to evaluate Φ in time O(g(Φ)|G|k+1), with g a singly exponential
function. We do this by a careful construction of optimal approximations of a given
treewidth (and implicitly of semantic treewidth witness queries). We construct several
such approximations, starting with an infinitary one which we refine to ensure some good
structural properties, and ending with a finite witness of bounded size. As the finite witness
in the worst case is still doubly exponential in the size of Φ (as in [12]) we cannot use it
to get better complexity bounds. However, we can exploit the infinitary witness with good
structural properties. This query can be compiled into a union of singly exponentially many
queries, called skeleton queries.

Skeleton queries group together C2RPQs which share some common structure, the
skeleton. They can be seen as tree-shaped conjunctions of so-called type reachability queries.
Such type reachability queries encode all ways in which a top k + 1 tuple can be reached
from a bottom k + 1 tuple via a path query of width k. While there might be doubly
exponentially many such ways to reach a tuple, the type reachability query can be encoded
via an exponential sized Datalog program of width k + 1 by employing suitable notions of
types and compatibility between such types. As concerns skeleton queries, their tree-based
structure makes them amenable to evaluation via a dynamic programming approach. The
approach is reminiscent of Yannakakis’ algorithm for evaluating acyclic CQs [24], if one
regards type reachability queries as oracles that compute a set of target (k + 1)-tuples when
seeded with a set of source (k + 1)-tuples. Again, this step can be encoded via a Datalog
program of width k + 1 and polynomial size. By executing such a Datalog program, we
obtain an evaluation procedure which runs within the desired time bounds.

The paper is organized as follows. We start with some preliminaries in Section 2.
Section 3 is dedicated to constructing TW k approximations. Then, in Section 4 we encode
the evaluation of TW k approximations into a Datalog program, to achieve higher efficiency.
Finally, in Section 5 we conclude and discuss future work.

2 Preliminaries

Relational structures, graph databases
A schema S is a finite set of relational symbols with associated arities. An S-fact has the
form r(a), where r ∈ S, and a is a tuple of constants of size the arity of r. An S-structure
A is a set of S-facts. The domain of a structure A, dom(A), is the set of constants which
occur in facts in A. A structure A maps into a structure B, written A → B if there exists a
function h : dom(A) → dom(B) such that for every fact r(a) in A, there exists a fact r(h(a))
in B, where h(a) is the tuple obtained from a by pointwise application of h. In this case,
h is said to be a homomorphism from A to B. The Gaifman graph of a structure A is an
undirected graph (V,E) with V = dom(A) and {a1, a2} ∈ E iff there exists some fact r(a) in
A such that both a1 and a2 occur in a.

In the following, let Σ be some countable alphabet. A graph database G over Σ is a
finite directed graph with edges labeled with symbols from Σ. It can be seen as a relational
structure over the schema {Ra | a ∈ Σ}, where each relational symbol is binary. A path p in
a graph database is a sequence (u1

a1−→ u2 . . . ul
al−→ ul+1) denoting that for every 1 ≤ i ≤ l,

Rai
(ui, ui+1) is in G. The label of p as above, denoted λ(p), is the word a1 . . . al from Σ∗.

ICDT 2024
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Regular expressions, automata
A non-deterministic finite automata (NFA) A is a tuple (Q,Σ, δ, s0, F ), where Q is the set of
states, δ : Q× Σ → 2Q is the transition function, s0 is the initial state and F ⊆ Q is a set of
final states. To access the set of states of any given automaton we use the function states(·);
that is, states(A) = Q. A run of A on a word w ∈ Σ∗ is a sequence of states of the form
(s0, . . . , sn), where n = |w| and for every 1 ≤ i ≤ n, si ∈ δ(wi, si−1). Automaton A accepts a
word w if there exists a run (s0, . . . , sn) of A on w such that sn ∈ F .

Every regular expression can be represented via an NFA of linear size. For such an
expression L, we denote with A(L) a fixed linear-size NFA for L. Conversely, each NFA A

can be converted into a regular expression E(A). For an NFA A and two states s, s′ we denote
with A(s, s′) the NFA having the same set of states and transition function as A, but having s
as initial state and s′ as a unique final state. When convenient, we abbreviate E(A(L)(s, s′))
as L[s, s′]. While L[s, s′] may be exponentially larger than L as its computation involves the
determinization of the NFA L[22], we actually always work with the NFA representation,
whose size does not grow.

UC2RPQs
A regular path query (RPQ) is a query of the form L(u, v) where L is a regular expression
over Σ. For a graph database G and u′, v′ ∈ dom(G), it is the case that G |= L(u′, v′) if there
exists a path p in G from u′ to v′ such that λ(p) ∈ L. When one is interested in two-way
navigation along labeled edges in a graph database, the regular expression L can be over
the alphabet Σ± = Σ ∪ {a− | a ∈ Σ}. In this case, L(u, v) is said to be a two-way RPQ
(2RPQ) and it is evaluated over the completion G± of a graph database with “reverse” edges:
G± = G ∪ {Ra−(v, u) | Ra(u, v) ∈ G}. A conjunctive two-way regular path query (C2RPQ)
ϕ(v′) is a query of the form ∃u′ ∧

1≤i≤n L(ui, vi) where each L(ui, vi) is a 2RPQ and (v′,u′)
is a disjoint partition of the set of variables v ∪ u occurring in the query. The variables v′

are called the free variables of ϕ. When v′ = ∅, we say that ϕ is Boolean. If v′ = v ∪ u, ϕ(v′)
is said to be a full C2RPQ. If all atoms in a C2RPQ ϕ are of the form L(u, v), with L a
language over Σ, we say that ϕ is a conjunctive query (CQ). For G a graph database and a a
tuple of constants from dom(G), it is the case that G |= ϕ(a) if there exists some mapping
h : u ∪ v → dom(G) such that h(v′) = a and G |= L(h(ui), h(vi)), for every 1 ≤ i ≤ n. When
ϕ is Boolean, we say that h is a homomorphism from ϕ to G.

A UC2RPQ Φ(v′) is a union of C2RPQs with free variables v′. When v′ = ∅, Φ is said
to be Boolean. For G a graph database and a a tuple of constants from dom(G), G |= Φ(a),
if G |= ϕ(a) for some C2RPQ ϕ in Φ. We say that a UC2RPQ Φ1 is contained in another
UC2RPQ Φ2, denoted Φ1 ⊆ Φ2, if for every graph database G and every tuple a of constants
from dom(G), G |= Φ1(a) implies G |= Φ2(a). If Φ1 ⊆ Φ2 and Φ2 ⊆ Φ1, we say that Φ1 and
Φ2 are equivalent, and we write Φ1 ≡ Φ2.

Trees, tree decompositions, semantic treewidth
A tree T is represented as an acyclic undirected graph (V,E), with a distinguished node
r ∈ V , the root. Given a tree T as above and two nodes v1, v2 ∈ V , the unique simple path in
T from v1 to v2 is denoted as pathT (v1, v2). We write v ≤T v′ if v ∈ pathT (r, v′) and v <T v′

if v ∈ pathT (r, v′) and v ̸= v′. The lowest common ancestor of v1 and v2 in T , denoted
as lcaT (v1, v2), is the node v such that v ≤T v1, v ≤T v2, and v ∈ pathT (v1, v2). We write
v1 ̸≶T v2 if v1 and v2 are ≤T -incomparable; that is, neither v1 ≤T v2 nor v1 ≥T v2.
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A tree decomposition of a graph G = (V,E) is a pair δ = (Tδ, χ), with Tδ = (Vδ, Eδ) a
tree with root rδ, and χ a labeling function Vδ → 2V such that:
1.

⋃
t∈Vδ

χ(t) = V .
2. If (v1, v2) ∈ E, then v1, v2 ⊆ χ(t) for some t ∈ Vδ.
3. For each v ∈ V , the set of nodes {t ∈ Vδ | v ∈ χ(t)} induces a connected subtree of Tδ.

We will refer to elements of Vδ as bags of the tree decomposition and to χ(v) as the
content of bag v, for v ∈ Vδ. For each u ∈ V , we denote with uδ the root of the subtree
{v ∈ Vδ | u ∈ χ(v)} of Tδ, i.e. the node v from Vδ for which there is no other node v′ ∈ Vδ

such that u ∈ χ(v′), and v′ <Tδ
v. The width of δ is maxv∈Vδ

(|χ(v)| − 1).
The treewidth (TW) of G, TW(G), is the smallest k such that there exists a tree

decomposition δ of G of width k.
For a graph database D, the treewidth of D, TW(D), is the treewidth of its Gaifman

graph GD. For a Boolean C2RPQ ϕ with variables v, we denote with Gϕ, the graph (V,E)
with V = v and E = {(u, v) | L(u, v) ∈ ϕ}. The treewidth of ϕ, denoted TW(ϕ), is TW(Gϕ).
The treewidth of a Boolean UC2RPQ Φ is the maximum treewidth among its C2RPQs:
TW(Φ) = maxϕ∈ΦTW(ϕ).

The semantic treewidth of a UC2RPQ Φ is the minimum treewidth of a UC2RPQ which
is equivalent to it.

Parameterized complexity
For a finite alphabet Σ, a parameterized problem is a tuple (P, κ), where P ⊆ Σ∗ is a problem,
and κ : Σ∗ → N is a PTime computable function called the parameterization of P . Such a
parameterized problem is fixed-parameter tractable if there exists an algorithm for deciding
P for an input x ∈ Σ∗ in time f(κ(x))poly(|x|), where f is a computable function and poly

is a polynomial. The class of all fixed-parameter tractable problems is denoted as FPT. In
this paper we are interested in the parameterized problem of evaluating Boolean UC2RPQs,
where the parameter is the size of the query.

Datalog
A term is a constant or variable. An atom is of the form p(t1, . . . , tn), where p is a predicate
symbol of arity n and t1, . . . , tn are terms. An atom is said to be ground if it contains no
variables. A Datalog program Π is a set of rules of the form

(r) : β(x,y) → a(x),

where β(x,y) is a set of atoms having as terms constants or variables from x ∪ y (called the
body of r), and a(x) is an atom with variables x (called the head of r). Predicate symbols
which occur only in atoms in the body of rules are called EDBs, while all other predicates
are called IDBs. The maximum number of variables occuring in some rule in Π is the width
of Π, denoted w(Π).

A structure I satisfies a Datalog rule r as above, if for every function h : x ∪ y → dom(I)
which is a homomorphism from β(x,y) to I, a(h(x)) ∈ I. Given a database D and a Datalog
program Π, a structure I is a model of Π if it extends D (we adopt the standard name
assumption – constants in dom(D) are interpreted as themselves) and satisfies every rule
from Π. For a ground atom a, we say that (Π, D) |= a if for every model I of Π and D,
I |= a.

ICDT 2024
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Datalog programs (in conjunction with DBs) have the property that they have a finite
minimal model [1], i.e. a model MΠ,D which is a sub-structure of every other model of Π
and D. The minimal model MΠ,D can be computed via a fix-point procedure (called naive
evaluation or chase) which constructs a sequence of converging instances (Ii)i≥0 as follows:
I0 = D; given Ii, Ii+1 is obtained by considering for every rule in Π all homomorphisms h
from β(x,y) to Ii and adding a(x) to I. Then, MΠ,D =

⋃
Ii. The procedure runs in time

O(f(|Π|)|D|w(Π)), where f is a polynomial function.

3 Treewidth-k Approximations

In this section we investigate how one can approximate a given UC2RPQ with a UC2RPQ
of a given treewidth.

▶ Definition 1. A UC2RPQ Φ′ is a TW-k approximation of a UC2RPQ Φ if
(i) Φ′ has TW k;
(ii) Φ′ ⊆ Φ; and
(iii) there is no UC2RPQ Φ′′ of TW k such that Φ′ ⊂ Φ′′ ⊆ Φ.

The actual goal of this section is to develop a toolbox for handling TW-k approximations,
suitable for our approach to query evaluation, described in Section 4. However, to focus our
attention, we set a local goal of re-proving the following result, established in [12].

▶ Theorem 2. For every UC2RPQ Φ and k > 1, it is possible to construct a TW-k
approximation Φk of size doubly exponential in the size of Φ.

Note that once we know how to construct TW-k approximations, we can compute the
semantic treewidth of a given UC2RPQ by constructing TW-k approximations for increasing
values of k and testing their equivalence to the original UC2RPQ. It is known that checking
containment of UC2RPQs is decidable and can actually be performed in ExpSpace [8].

We construct the TW-k approximation in several steps, starting from an infinitary
UC2RPQ and finally obtaining a UC2RPQ with the desired size bounds. For the initial step,
we use the following sufficient condition.

▶ Lemma 3. Let Φ be a UC2RPQ and Φ′ be a UC2RPQ of TW k which is contained in Φ
and is equivalent to Φ on graph databases of TW k. Then Φ′ is a TW-k approximation of Φ.

The proof of Lemma 3 uses the notion of expansion, which is a graph database of a certain
shape which satisfies a C2RPQ.

▶ Definition 4. Given a C2RPQ Φ and a graph database G such that G |= Φ, we say that G
is an expansion of Φ if there exists an injective homomorphism h from Φ to G such that G
can be seen as a set of paths of the form h(ui) → u′

2 → u′
3 → . . . → h(vi), one for each atom

of the form L(ui, vi) in Φ, that are pairwise disjoint except (possibly) for their endpoints.

The following lemma summarises some properties of expansions:

▶ Lemma 5 (Folklore). Let Φ be a C2RPQ. The following hold:
1. if Φ has TW k, with k > 1, so does every expansion G of Φ
2. for every graph database G such that G |= Φ, there exists an expansion G′ of Φ such that

G′ → G.

We are ready to provide the proof of Lemma 3.
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Proof. Towards contradiction, suppose that Φ′ is not a TW-k approximation of Φ and let
Φ′′ be one. Then, there exists a graph database G such that G |= Φ′′ but G ̸|= Φ′. From
Lemma 5, there must be an expansion G′ of Φ′′ of TW k such that G′ → G. Clearly, G′ |= Φ′′.
Since Φ′′ ⊆ Φ, G′ |= Φ. As G′ has TW k and Φ′ ≡k Φ, G′ |= Φ′. It follows immediately that
G |= Φ′, which contradicts the initial assumption and concludes the proof. ◀

In the following, we will denote with ≡k the notion of equivalence of UC2RPQs on TW-k
databases. Similarly, for ⊆k.

For technical convenience, we shall assume that each C2RPQ has at most one atom of
the form L(x, y) for each regular expression L. This is without loss of generality, as we
can always replace different occurrences of the same regular expression by equivalent but
syntactically different regular expressions. By a path in a C2RPQ ψ we mean a sequence
A0(x0, x1), A1(x1, x2), . . . , An(xn, xn+1) of atoms from ψ. We say the path is simple if
variables x0, x1, . . . , xn+1 are all different.

Following [20], we rely on subdivisions and quotients of C2RPQs, which we recall below.
For a UC2RPQ Φ, and some r ≥ 1, the set SDr(Φ) of r-subdivisions of Φ is the set of all
C2RPQs that can be obtained from a C2RPQ ϕ in Φ as follows: for each atom L(u, v) in
ϕ, consider fresh variables u1, . . . , ul, with l < r, and a sequence of states s0, s1, . . . , sl+1 of
A(L) such that s0 and sl+1 are an initial and a final state of A(L), and replace L(u, v) in ϕ

with a path L[s0, s1](u, u1), L[s1, s2](u1, u2), . . . , L[sl, sl+1](ul, v). We will refer to this path
as the L-path and to the introduced atoms as the L-atoms. For a set S of C2RPQs, we write
Q(S) for the set of quotients of C2RPQ in S; that is, C2RPQs that can be obtained from
a C2RPQ in S by variable identification. We let Qk(S) be the set of C2RPQs from Q(S)
which have treewidth k.

With that, we can make our first step in constructing the desired approximation of Φ.
Let Φk,∞ be the infinitary UC2RPQ consisting of all C2RPQs from

⋃
r>1 Qk(SDr(Φ)).

▶ Lemma 6. For each UC2RPQ Φ, Φk,∞ is a TW-k approximation of Φ.

The next step is to simplify the structure of C2RPQs building up the TW-k approximation.
This will help us ensure the desired size bounds, and will be crucial in the next section.

Given a C2RPQ ψ and a tree decomposition δ of ψ, we say that a path α in ψ is
unmeandering (wrt. δ) if each bag of δ covers at most one atom of α, i.e. it contains at most
one such atom with all arguments belonging to the bag.

Consider a C2RPQ ψ ∈ Qk(SDr(Φ)) obtained by quotienting an r-subdivision of a C2RPQ
ϕ from Φ. Identifying variables does not break paths, in the sense that L-paths are still
present in ψ, except that they need not be simple any more. We call a tree decomposition δ
of ψ unmeandering if each L-path in ψ is unmeandering wrt. δ.

Let Φ′
k,∞ be the UC2RPQ obtained from Φk,∞ by keeping only those C2RPQs that

admit an unmeandering tree decomposition of width k, and dropping the remaining ones.
By shortcutting meanders as shown in Figure 1, we can refine Lemma 6 as follows.

▶ Lemma 7. For each UC2RPQ Φ, Φ′
k,∞ is a TW-k approximation of Φ.

Proof. By construction, Φ′
k,∞ ⊆ Φk,∞ ⊆ Φ. We show that Φk,∞ ⊆ Φ′

k,∞ and thus, Φ ⊆k

Φ′
k,∞. Let ϕ′ be a C2RPQ from Φk,∞. That is, ϕ′ is obtained from a C2RPQ ϕ of Φ by an

r-subdivision followed by variable identification, and ϕ′ has TW k. Let δ = (T, χ) be a TW-k
decomposition of ϕ′ and let G be a database such that G |= ϕ′. We construct a query ϕ′′ from
Φ′

k,∞ such that G |= ϕ′′. For every atom L(u, v) in ϕ, query ϕ′ has atoms L[si, si+1](vi, vi+1)
for 0 ≤ i < l. We obtain ϕ′′ from ϕ′ by merging these atoms exhaustively, as follows. As long

ICDT 2024
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Figure 1 Shortcutting a meander. Whenever two atoms (dark red edges on the left) of some
L-path are covered by the same bag, we replace the whole segment between them (dark and light
red edges on the left) with a single summarizing atom (dark red on the right).

as some bag of δ covers two atoms of the forms L[si, si′ ](vi, vi′) and L[sj′ , sj ](vj′ , vj) with
i′ ≤ j′, we replace them by L[si, sj ](vi, vj). After each merging step, the current version of
ϕ′ satisfies the following invariant:

it has TW k (a witnessing decompositon is obtained from δ by dropping unused variables);
it is satisfied in G (via the same homomorphism restricted to currently used variables);
it can be obtained from ϕ via an r-subdivision followed by variable identification; and
it contains L-atoms L[si0 , si1 ](vi0 , vi1), . . . , L[sim

, sim+1 ](vim
, vim+1) for some m ≤ l and

0 = i0 < i1 < · · · < im+1 = l + 1.
When no more merges of L atoms are possible, the resulting query still satisfies the invariant
and additionally no bag of δ covers more than one of its L-atoms. We perform this exhaustive
procedure for each atom L(u, v) in ϕ. The resulting query ϕ′′ belongs to Φ′

k,∞ and holds in
G, as required. ◀

We now prove a strong structural property for unmeandering paths, showing that they
manifest in tree decompositions in one of three simple ways, illustrated in Figure 2.

▶ Lemma 8. Consider a C2RPQ ψ, a tree decomposition δ = (T, χ) of ψ, and an unmean-
dering path A0(x0, x1), A1(x1, x2), . . . , An(xn, xn+1) in ψ.

Then, there exists some 0 ≤ i ≤ n+ 1 such that:

δ(x0) >T δ(x1) >T · · · >T δ(xi) ≤T δ(xi+1) <T δ(xi+2) <T · · · <T δ(xn+1)

Moreover, if 1 ≤ i ≤ n, then either:
1. δ(xi−1) ̸≶T δ(xi+1) (Figure 2A), or
2. δ(xi−1) >T δ(xi+1) and δ(xi−1) ̸≶T δ(xj) for all j > i+ 1 (Figure 2B), or
3. δ(xi−1) <T δ(xi+1) and δ(xj) ̸≶T δ(xi+1) for all j < i− 1 (Figure 2C).
In particular, δ(x0), δ(x1), . . . , δ(xn+1) are all different, except potentially δ(xi) and δ(xi+1).
Also, if xj and xj′ belong to the same bag, then |j − j′| ≤ 1.



C. Feier, T. Gogacz, and F. Murlak 22:9

A
i

i− 1 i+ 1

0

i− 2

n+ 1

i+ 2

B

i+ 1i

i+ 2i− 1

0

i− 2

n+ 1

i+ 3

C

ii− 1

i+ 1i− 2

0

i− 3

n+ 1

i+ 2

Figure 2 An unmeandering path in a tree decomposition. A triangle with label j represents the
subtree of the decomposition consisting of bags containing the j-th variable of the path.

Note that Lemma 8 implies that each unmeandering path is simple, unless it consists of
a single atom. Indeed, while δ(xi) and δ(xi+1) might be equal, xi = xi+1 would mean that
each bag covering Ai−1(xi−1, xi) or Ai+1(xi+1, xi+2) also covers Ai(xi, xi+1).

As the last step before establishing the size bound, we use Lemma 8 to simplify tree
decompositions of queries in Φ′

k,∞. Given a tree decomposition δ = (T, χ) of a C2RPQ ψ,
and an unmeandering path α = A0(x0, x1), . . . , An(xn, xn+1), we define the chevron of α,
written α̂, as the union of two shortest paths in T : from δ(x0) to δ(xi) and from δ(xi) to
δ(xn+1). By the main path of the chevron we mean the shortest path from δ(x0) to δ(xn+1).
Note that the main path is contained in the chevron and the highest node on the main path is
the lowest common ancestor of δ(x0) to δ(xn+1). We call it the key of the chevron. We refer
to δ(x0) and δ(xn+1) as the endpoints of the chevron, and to δ(xi) as the tip. We divide the
main path into two parts: the up-path from δ(x0) to the key, and the down-path from the key
to δ(xn+1). Note that α̂ contains all δ(x0), δ(x1), . . . , δ(xn+1), and each atom Aj(xj , xj+1)
of α is covered by a bag from the main path of α̂. Given a C2RPQ ψ ∈ Qk(SDr(Φ)), a
chevron tree decomposition of ψ is any unmeandering tree decomposition in which each bag
belongs to the chevron of some L-path in ψ.

▶ Lemma 9. If a C2RPQ ψ ∈ Qk(SDr(Φ)) has an unmeandering tree decomposition of width
k, then it has a chevron tree decomposition of width k.

Consider a chevron tree decomposition δ = (T, χ) of a C2RPQ ψ ∈ Qk(SDr(Φ)). By
a critical node in T we mean a leaf, a root, a node that has at least two children, or an
endpoint of the chevron of an L-path.A segment in δ is a path of the form pathT (u, v) for
some critical nodes u and v such that u <T v, and all remaining nodes in pathT (u, v) are
non-critical. The number of leaves in δ is bounded by the number of variables in the original
C2RPQ ϕ ∈ Φ from which ψ was obtained, and there are at most twice as many critical
nodes. There is no bound, however, on the length of the segments. Our last step in the proof
of Theorem 2 essentially consists in providing such a bound. We begin with two preparatory
observations, which will be also useful in Section 4.

▷ Claim 10. If a segment p in δ shares a non-critical node with the main path of a chevron
α̂ of an L-path α in ψ, then p is contained in the up-path or the down-path of α̂ (but not
both).

We write L(p) for the set of L-atoms such that segment p is contained in the main path
of the chevron of the L-path in ψ. We also define dirp : L(p) → {↑, ↓} as dirp(L) = ↑ if p is
contained in the up-path of the chevron of the L-path, and dirp(L) = ↓ if p is contained in
the down-path of the chevron of the L-path.
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▷ Claim 11. Let p = pathT (u, v) be a segment in δ and α = A0(x0, x1), . . . , An(xn, xn+1)
an L-path in ψ for some L ∈ L(p). Then, the atoms of α covered by bags from p are

Aℓ(xℓ, xℓ+1), Aℓ+1(xℓ+1, xℓ+2), . . . , Am−1(xm−1, xm)

for some 0 ≤ ℓ ≤ m ≤ n + 1 with xℓ ∈ χ(u) and xm ∈ χ(v), and there are nodes
uℓ, uℓ+1, . . . , um−1 ∈ p such that uj covers Aj(xj , xj+1) for all ℓ ≤ j < m, and either
uℓ <T uℓ+1 <T · · · <T um−1 or uℓ >T uℓ+1 >T · · · >T um−1.

We are now ready for the final step in the proof of Theorem 2. So far we have constructed
an infinitary TW-k approximation based on arbitrary subdivisions of atoms in the original
UC2RPQ. We next show that it suffices to consider bounded subdivisions. For a given r, let
Φ′

k,r be the UC2RPQ obtained from Φ′
k,∞ by keeping only those C2RPQs that belong to

Qk(SDr(Φ)), and dropping the remaining ones.

▶ Lemma 12. For each UC2RPQ Φ, there is a positive integer r, singly exponential in the
size of Φ, such that Φ′

k,r is a TW-k approximation of Φ.

Proof. We show that Φ′
k,∞ ⊆ Φ′

k,r for some r < ∞ whose value will follow from the
construction. Take ψ from Φ′

k,∞ and let δ = (T, χ) be a chevron tree decomposition of ψ.
We transform ψ into ψ′ from Φ′

k,r for such that ψ ⊆ ψ′.
We have already seen that the number of critical nodes in δ is bounded linearly in the size

of Φ, but the segments in δ can be arbitrarily long. We obtain ψ′ by shrinking the segments.
Consider a segment p in δ and an internal node v in p. We annotate variables in v with

multiple pairs of the form (L, s), where s is a state of the automaton for L. For each L ∈ L(p)
with dirp(L) = ↓, we annotate x with (L, s) if there is an atom L[s, s′](x, x′) in ψ. For each
L ∈ L(p) with dirp(L) = ↑, we annotate x with (L, s) if there is an atom L[s′, s](x′, x) in
ψ. Let ζ(v) be the set of variables in χ(v) that have non-empty annotation. We say that
internal nodes v1 and v2 are alike if there is an isomorphism between ψ restricted to χ(v1)
and ψ restricted to χ(v2) that preserves annotations and is identity over χ(v1) ∩χ(v2). (Note
that annotations of the same variable in different bags in p are the same.)

Suppose that segment p contains two internal nodes v1 and v2 such that v1 <T v2 and
v1 and v2 are alike via an isomorphism ι. Let u1 be the parent of v1, and u2 the parent of
v2. Note that u1 and u2 belong to p, and v1 ≤T u2. We can then shrink p as follows. We
replace the subtree of T rooted at v1 with the subtree of T rooted at v2, and replace each
variable x ∈ χ(u1) ∩ χ(v1) with ι(x), both in the tree decomposition and in the query. Note
that this removes all bags from pathT (v1, u2). We modify the query accordingly: we remove
all atoms that use a variable that does not occur in the modified tree decomposition.

Recalling the characterization of Claim 11, we can see that the effect this has on the
query is that for each L ∈ L(p), a subpath

Lj [sj , sj+1](xj , xj+1), Lj+1[sj+1, sj+2](xj+1, xj+2), . . . Lk−1[sk−1, sk](xk−1, xk)

with sj+1 = sk gets replaced with Lj [sj , sk](xj , xk), as shown in Figure 3. Hence, after a
single shrinking, the query still belongs to Q(SDr(Φ)). Also, the modified tree decomposition
has still width at most k and is unmeandering. Hence, the modified query belongs to Φ′

k,∞.
Finally, if the original query holds in some database, so does the modified one, with the same
witnessing mapping of variables to nodes.

We obtain ψ′ by repeatedly shrinking segments until it is no longer possible. By the
above invariants, ψ′ ∈ Φ′

k,∞ and ψ ⊆ ψ′. It remains to see that ψ′ ∈ Qk(SDr(Φ)) for some
r exponential in the size of Φ. Because we the tree decomposition corresponding to ψ′
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Figure 3 Shrinking a segment.

is unmeandering, the number of atoms in each L-path is bounded by the size of the tree
decomposition. We already know that the number of critical nodes is linear in the size of Φ.
Hence, so is the number of segments. After shrinking, no two internal bags in a segment are
alike, so the length of each segment is bounded by a function single exponential in the size of
Φ. Hence, the whole tree decomposition is of size single exponential in the size of Φ, and we
are done. ◀

Lemma 12 yields a TW-k approximation of a UC2RPQ Φ in which each C2RPQ has size
at most singly exponential in the size of Φ. As there are at most doubly exponentially many
such C2RPQs, Theorem 2 follows directly from the lemma.

Related Work
As explained in the beginning of this section, TW-k approximations for UC2RPQs have
already been constructed in [12]. Our construction has some common points, but also
differences, to the construction from [12]. In both approaches, an infinitary approximation is
constructed, which is first normalized, and then is shrunk by bounding the height of tree
decompositions. We will address these below.

Normalization of the approximation. In our case the normalization step consists in con-
structing approximations which admit unmeandering tree decompositions, while in [12]
original paths are contracted such that a bag of the tree decomposition is not revisited once
it is left. However, inside bags, atoms belonging to original paths might form cyclic paths
and they are not contracted. This is achieved by so-called tagged tree decompositions. As we
will see in the next section, the notion of unmeandering tree decomposition will be crucial for
our algorithm to efficiently evaluate UC2RPQs. As part of the algorithm, we will define a
notion of types which capture the content of bags that occur in such decompositions. While
we do not preclude the possibility to define a similar notion based on decompositions with
arbitrary bags, it would be much more cumbersome.

Shrinking of the approximation. Both approaches shrink paths of unbounded length in tree
decompositions of approximations. In our approach we annotate bags of tree decompositions
and completely remove paths between nodes which are alike w.r.t. annotations. Figueira
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and Morvan [12] annotate bags as well, using a less-constrained notion for identifying similar
bags. However, due to this less-constrained notion, it is is not possible for them to fully
remove the path between such nodes: instead, by using nice tree decompositions, they shrink
the path between two such similar nodes to a path of constant length.

4 Exploiting Semantic Treewidth

As discussed in the introduction, it is already known from [6] that UC2RPQs of bounded TW
are fpt. There, an algorithm based on computing and evaluating a witness of bounded TW
is presented. However, the treewidth of the witness might not be optimal: for a UC2RPQ
Φ of semantic TW-k, the witness query Φw from [6] might have treewidth 2k + 1. Using
standard results concerning CQ evaluation [15] and RPQ evaluation [7], it is possible to
evaluate Φw in time O(p(|Φw|)|G|2k+2)), for some polynomial p: one can first “materialize”
all the RPQs which occur in C2RPQs in Φw in the database, i.e. create a new database G′

which contains all facts L(a1, a2) such that G |= L(a1, a2), for every atom of the form L(u, v)
in Φw. This can be done in polynomial time in the size of Φw and dom(G′) = dom(G). In a
second step, Φw can be seen as a CQ of TW 2k + 1 over G′, which can then be evaluated
in time O(p(|Φw|)|G′|2k+2), where p is some polynomial. As |Φw| is bounded by a singly
exponential function in |Φ|, one obtains an algorithm for evaluating Φ which runs in time
O(g(|Φ|)|G′|2k+2), for g some singly exponential function.

On the other hand, similarly to [12], in Section 3, for every k > 1, we constructed semantic
treewidth witnesses with optimal TW in the form of TW k-approximations of size doubly
exponential in the size of Φ. Let Φk be such an approximation of a UC2RPQ Φ. Using
similar arguments as for Φw, we obtain that there must be some function g such that Φk can
be evaluated in time O(g(|Φ|)|G|k+1), with g a doubly exponential function. While in our
parameterized setting, where we expect the size of the data to be much larger than that of
the query, this is an important improvement compared to the approach based on the witness
of non-optimal TW 2k + 1, the doubly exponential combined complexity makes such an
approach prohibitive.

However, as we will show in the following, there is an algorithm for evaluating Φ in time
O(g(Φ)|G|k+1), with g a singly exponential function. The evaluation procedure uses Φ′

k,∞,
the infinitary UC2RPQ constructed in Section 3, Lemma 7, which has the nice structural
property that all its C2RPQs admit unmeandering tree decompositions. We first observe
that Φ′

k,∞ can be regarded as a union of singly exponentially many queries, where each
of these queries is an infinitary UC2RPQ which contains all C2RPQs from Φ′

k,∞ which
share some common structure, called skeleton. We achieve a compact representation of each
such UC2RPQ by means of so-called reachability queries which are queries which impose
reachability conditions from one k + 1-tuple of variables to another k + 1-tuple. In this view
a skeleton query is a tree of reachability queries, one query associated to each edge of the
tree. This makes it possible to encode the evaluation of such a query in a Datalog program
which simulates a bottom-up evaluation of the skeleton tree. As the program has width k+ 1
and singly exponential size, we obtain the above-mentioned complexity bounds.

Abstracting C2RPQs via Skeletons
Recall that each C2RPQ ϕ′ from Φ′

k,∞ is from Qk(SDl(ϕ)), for some ϕ ∈ Φ, and l > 0 and,
thus there exists a natural mapping h from var(ϕ) to var(ϕ′). Given a tree decomposition δ′

for ϕ′ one can define the set of critical nodes and segments of δ′, denoted here as crit(δ′), and
seg(δ′), as in Section 3. A segment signature σ is a tuple of the form (Lσ, dirσ), where Lσ is
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a set of regular expressions and dirσ : Lσ → {↑, ↓}. For every segment p ∈ seg(δ′), we denote
with sig(p) its segment signature defined as follows: Lsig(p) = L(p) and dirsig(p)(L) = dirp(L),
for every L ∈ Lsig(p). We denote with sig(δ′) the set of all segment signatures sig(p), where
p ∈ seg(δ′) and with sig(Φ′

k,∞) the union of all sets sig(δ′), where δ′ is an unmeandering tree
decomposition of some C2RPQ ϕ′ from Φ′

k,∞.
We introduce some further notations: an extended1 C2RPQ is a C2RPQ in which we

allow also atoms of the form L[s](v), where L is a regular expression and s ∈ states(A(L)).
For a C2RPQ θ, we denote with ext(θ) the extended C2RPQ obtained from θ by adding
atoms L[s](v) and L[s′](v′), for every atom of the form L[s, s′](v, v′) in θ. Conversely, for an
extended C2RPQ γ, we denote with bin(γ), the C2RPQ obtained from γ by maintaining
only binary atoms.

The notation var is lifted to extended C2RPQ as expected. Also, given an extended
C2RPQ θ and a set of variables V ⊆ var(θ), we denote with θV the extended C2RPQ obtained
from θ by retaining every atom from θ with all arguments from V (be it binary or unary).
Given a set of regular expressions L, and a set of variables V, CL

k+1(V) is the set of all
extended C2RPQs using regular expressions from L with at most k + 1 variables from V.

We are now ready to define the data structure which will serve as a common abstraction
for different C2RPQs from Φk,∞:

▶ Definition 13. Given ϕ′ ∈ Φk,∞ and δ′ = (T ′, χ′) a tree decomposition of ϕ′, the skeleton
of ϕ′ w.r.t. δ′, sk(ϕ′, δ′), is a triple (T, q, µ), where:
1. T = (crit(δ′), E) is the tree induced by <′

T on crit(δ′);
2. q : crit(δ′) → CLϕ′

k+1(var(ϕ′)) is the function: q(v) = ext(ϕ′)χ′(v), for v ∈ crit(δ′); and
3. µ : E → sig(δ′) is the function: µ(v1, v2) = sig(v2, v1), for (v1, v2) ∈ E.

Intuitively, sk(ϕ′, δ′) abstracts ϕ′ w.r.t. δ′ by keeping only atoms covered by critical
bags (endpoints of segments) together with new unary atoms which are pointers to the
intersection(s) of L-paths with such a bag; the inner parts of segments are replaced with
their signature (captured by edges from E labelled by µ).

Let sk(Φ′
k,∞) be the set of all sk(ϕ′, δ′), where ϕ′ is a C2RPQ from Φ′

k,∞ and δ′ is an
unmeandering tree decomposition of ϕ′. For sk ∈ sk(Φ′

k,∞), and ϕ′ from Φ′
k,∞, we say that ϕ′

abstracts to sk if there exists an unmeandering tree decomposition δ′ such that sk(ϕ′, δ′) = sk.
In the following, for every sk ∈ sk(Φ′

k,∞), we let Φsk be the UC2RPQ which is the union of
all C2RPQs from Φ′

k,∞ which abstract to sk. Thus, Φsk contains all C2RPQs which share
common structure in the form of sk.

As all disjuncts of Φ′
k,∞ are covered by some UC2RPQ of the form Φsk, with sk ∈ sk(Φ′

k,∞),
we have that:

Φ′
k,∞ =

∨
sk∈sk(Φ′

k,∞)

Φsk.

▶ Proposition 14. The set sk(Φ′
k,∞) is of size singly exponential in |Φ| and can be computed

in singly exponential time in |Φ|.

In the following, we show how each query Φsk can be reformulated into a query which
mirrors the structure of a skeleton, in the sense that it can be seen as a conjunction of queries,
one corresponding to each edge in the tree underlying the skeleton. Each such query can
be seen as a type reachability query, i.e. a query which specifies how to reach the top type
induced by the segment signature attached to an edge from the corresponding bottom type.

1 We will not define the semantics of such a C2RPQ as its purpose is to serve mainly as a syntactical
object for later constructions.
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Types and Reachability Queries
We start by defining σ-types over at most k + 1 variables, where σ is a segment signature.
Intuitively, such a type captures for every L ∈ Lσ the intersection of the L-path with a bag
in some unmeandering tree decomposition belonging to a σ-segment, be it either in the form
of an L-atom or a single variable which is visited by the path in a certain state. We use
extended C2RPQs to capture such information. In the following, we reserve a set of fresh
2k + 1 variables V = {v1, . . . v2k+1}.

▶ Definition 15. For a segment signature σ, a σ-type τ is an extended full C2RPQ from
CLσ

k+1(V) such that for every L ∈ Lσ, one of the following holds:
1. τ contains exactly one atom of the form L[s, s′](v, v′);
2. τ contains exactly one atom of the form L[s](v).

Given such a σ-type τ , based on the direction of paths in σ, we can compute enter
and exit points in the form of pairs (variable, state) for each path in σ w.r.t. τ . To
this purpose, we define functions inτ : Lσ → var(τ) ×

⋃
L∈Lσ

states(A(L)) and outτ : Lσ →
var(τ) ×

⋃
L∈Lσ

states(A(L)) as follows:
1. if τ contains an L-atom of the form L[s, s′](v, v′) and dirs(L) = ↑, then inτ (L) = (v, s)

and outτ (L) = (v′, s′);
2. if τ contains an L-atom of the form L[s, s′](v, v′) and dirs(L) = ↓, then inτ (L) = (v′, s′)

and outτ (L) = (v, s);
3. if τ contains no L-atom of the form L[s, s′](v, v′), then inτ (L) = outτ (L) = (v, s), where

L[s](v) is the unique L-atom from τ .

Conditions (1) and (2) above can be explained as follows. To build segments, types have
to be matched. With “out” we single out the node and state from which the path should
be continued in the next type and with “in” the node and state which continues the path
from a previous type; this is dependent on the direction of the path relative to the segment
it traverses. Because segments are built bottom-up, upward paths are built forward and
downward paths are built backwards. That is, for downward paths, the first argument of an
atom will have to be matched when we stack up another type; for upward paths, the second.
Constraint (3) simply ensures that paths are carried over in σ-types; it might be the case
that nothing new is added by a type to a certain path, in which case both “in” and “out”
refer to the same variable and the same state.

Building on these functions, we introduce a notion of type compatibility which captures
the idea that a σ-type τ1 is compatible with a σ-type τ2 if τ1 can be continued by τ2.

▶ Definition 16. Given a segment signature σ, and two σ-types τ1 and τ2, τ1 is compatible
with τ2 if for every L ∈ Lσ it is the case that either:
1. there is some atom of the form L[s, s′](v1, v2) ∈ τ2 ∩ τ1, or
2. inτ2(L) = outτ1(L);
Furthermore, for every v ∈ var(τ1)∩var(τ2), it must be the case that there exists some L ∈ Lσ

such that either v = v1 or v = v2 as in condition (1) above, or inτ2(L) = outτ1(L) = v.

Thus, for a type τ1 to be continuable by a type τ2 it must be the case that they either
share a common part of a path in the form of an L-atom or the ingoing L-variable of the
second type τ2 coincides with the outgoing L-variable of the first type τ1. Also, only variables
which occur in such a shared atom or are used to continue L-paths from one type to the
next, occur in both types.
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Figure 4 Constructing a skeleton query.

We will next introduce the notion of reachability query between so-called σ-types instan-
tiations. Given a type τ and a tuple of variables u⃗ such that |u⃗| = |var(τ)| (we assume that
all variables in u⃗ are distinct), the instantiation of τ with u⃗, τ(u⃗), is the extended C2RPQ
obtained from τ by replacing var(τ) with u⃗.

▶ Definition 17. Given two σ-types instantiations τ ′
1(x1) and τ ′

2(x2), a reachability query
from τ ′

1(x1) to τ ′
2(x2), denoted reach(τ ′

1(x1), τ ′
2(x2)) is the union of all C2RPQs of the form

∃y
∧

0≤i≤m

bin(τi(yi)),

where m ∈ N, m ≥ 2, and (taui(yi))1≤i≤m is a sequence of type instantiations such that:
1. τ0(y0) is τ ′

1(x1) and τm(ym) is τ ′
2(x2);

2. for every 0 ≤ i < m: τi is compatible with τi+1;
3. for every i ̸= j, 1 ≤ l ≤ |yi|, and 1 ≤ n ≤ |y|j : yi,l = yj,n iff zi,l = zj,n where zi = var(τi)

and zj = var(τj), and
4. y =

⋃
0<i<m yi \ (x1 ∪ x2).

Thus, the reachability query is a UC2RPQ with free variables x1 ∪ x2, in which each
C2RPQ can be seen as the conjunction of C2RPQs occurring in type instantiations from a
sequence of type instantiations. Condition (3) in Definition 17 asks for tuples yi and yj to
have the same intersection profile as the tuples of variables pertaining to types τi and τj ; for
example, if var(τi) = (v1, v2, v3) and var(τj) = (v2, v3, v4), then yi and yj will be of the form
(_, y1, y2) and (y1, y2,_), respectively, and yi ∩ yj = {y1, y2}.

Skeleton Queries
We now return to sk = (T, q, µ) from sk(Φ′

k,∞). We associate to every edge e = (v1, v2) ∈ E a
reachability query between the two µ(e)-type instantiations induced by v1 and v2. Recall that
for every v ∈ V , q(v) is an extended C2RPQ which contains atoms of the form L[s, s′](u, u′)
or L[s](u). For e = (v1, v2) ∈ E and i ∈ {1, 2}, we can read µ(e)-type instantiations τ i

e(xi
e)

from q(vi) by simply maintaining all L-atoms with L ∈ Lµ(e).
Let reache(x2

e,x1
e) be an abbreviation for reache(τ2

e (x2
e), τ1

e (x1
e)) and let qsk be the following

Boolean query:

∃e∈E,i∈{1,2} xi
e

∧
e∈E

reache(x2
e,x1

e).
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Figure 4 describes the construction of query qsk. On the left hand side, it depicts the
underlying skeleton sk: circles denote nodes from V with their corresponding extended
C2RPQs, while the grey quadrangles together with the colored directed paths denote segment
signatures. On the right hand side, we show how a C2RPQ from a reachability query
corresponding to an edge in the skeleton looks like.

An important observation is the following:

▶ Observation 18. For every sk ∈ sk(Φ′
k,∞), it holds that: qsk ≡ Φsk.

Proof. The query qsk is a conjunction of reachability queries, thus a conjunction of disjunc-
tions of C2RPQs. By distributing the disjunction over conjunction one obtains an equivalent
UC2RPQ Θ in which each C2RPQ is from Φ′

k,∞, and, in particular, from Φsk (as it abstracts
to sk). Conversely, each C2RPQ which abstracts to sk can be seen as a conjunction of
realizations of reachability queries over segments and thus is from Θ. ◀

As a corollary, we obtain the following:

▶ Corollary 19. For every k > 1, it is the case that Φ′
k,∞ ≡

∨
sk∈sk(Φ′

k,∞) qsk.

Using this insight, it is possible to evaluate queries of the form Φsk by means of a dynamic
programming approach based on traversing the data structure sk. The approach can be
seen as a Yannakakis-style [24] bottom-up evaluation algorithm for qsk in which we have
oracles to compute the upper end of a segment/reachability query given its lower end. We
encode both parts of the procedure, the meta-level, where segments are combined, and the
segment-specific type reachability queries, as a joint (k + 1)-Datalog program Πsk.

Datalog Encoding
We are now ready to define a Datalog rewriting ΠΦ,k for Φ∞,k. The program will have
several components. First, we assume that we have a program ΠL which contains binary
IDBs L (we slightly overload the notation, to avoid introducing new names), one for each
atom L(u, v) occurring in Φ∞,k. The purpose of the program is to materialize such atoms
w.r.t. the database. The encoding is fairly standard using rules with only two variables, so
we do not provide it here [2].

Next we define for every segment signature σ, a program Πσ which captures σ-types
and the way they can be interlinked to build segments. We start by introducing IDBs
corresponding to types. For every σ-type τ , we will have an IDB of the form I[τ ] with
arity |var(τ)|. Furthermore, for every such type we denote with exitτ the set of all variables
from var(τ) which are exit variable for some path L ∈ L(p), i.e. there exist some state s
such that outτ (L) = (v, s). Then, for such a type and every set of variables v′ such that
exit(τ) ⊆ v′ ⊂ var(τ) we will have an IDB predicate I[τ,v′] of arity |v′|. Intuitively, the
predicate stands for projections of a type; it collects instances of the (sub-)type in the
database. For every set of variables v′ such that exit(τ) ⊆ v′ ⊂ var(τ), program Πσ contains
a rule of the form:

I[τ ](var(τ)) → I[τ,v′](v′) (1)

We next provide a rule for combining σ-types. For every two σ-types τ1 and τ2 such that
τ1 is compatible with τ2, let v = var(τ1) ∩ var(τ2). Then we add the following rule to Πσ:

I[τ1,v](v), bin(τ2) → I[τ2](var(τ2)) (2)
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Intuitively, to keep the width of the program bounded by k+1, when combining compatible
types, we first project the first type on the variables relevant for matching, i.e. those
variables which occur also in the second type. We remark that although var(bin(τ2)) might
not contain all variables from var(τ2), the conditions on type compatibility ensure that
v ∪ var(bin(τ2)) = var(τ2). In particular, v contains all those variables from var(τ2) for which
there is no L-atom in bin(τ2), but are used to carry over information about L-paths by means
of unary L-atoms in τ2.

We next provide for every sk ∈ sk(Φk,∞), rules which, building on the axiomatizations of
previously introduced IDBs, encode the query Φsk, by simulating a bottom-up evaluation of
the equivalent query qsk. We denote the set of such rules as Πsk.

Let sk = (T, q, µ) with T = (V,E) and r being the root of T . Recall that each edge
e = (v1, v2) in E stands for a type reachability query reache(τ2

e (x2
e), τ1

e (x1
e)), where τ i

e is the
type instantiation induced by µ(e) and q(vi), for i ∈ {1, 2}. Each node v ∈ V is in the scope
of several such type reachability queries: some correspond to edges of the form (v′, v), and
at most one such a query corresponds to an edge of the form (v, v′). For a node v which is
not a leaf, we denote with Ev the set of edges of the form (v′, v) and with low(v) the set of
type instantiations corresponding to the second argument of such an edge: {τ2

e (x2
e) | e ∈ Ev}.

Also, for a node v which is not the root, let ev be the unique edge (v, v′) and τv(xv) be
the type instantiation corresponding to the first argument of ev (i.e. an abbreviation for
τ1

ev
(x1

ev
)).

There are three types of rules in the definition of Πsk: those pertaining to leaves of T ,
one rule pertaining to the root, and rules pertaining to the other nodes. We start with
the first type. For every node v ∈ V which is a leaf of T , we define a rule which seeds the
type instantiation τv(xv). Note that there might be variables in xv which do not occur in
bin(τv(xv)). To initialize such variables we assume that we have a built-in unary predicate
dom() which binds a variable to the domain of the given database. Assuming that v1, . . . , vl

are those dangling variables, our rule is as follows:

bin(τv(xv)), dom(v1), . . . , dom(vl) → I[τv](xv) (3)

We move on to nodes v ∈ V which are neither leaves, nor the root of T . For such nodes,
both τv(xv) and low(v) are defined. Assuming low(v) = {τ1(x1), . . . , τl(xl)} we add the
folowing rule to Πsk:

I[τ1](x1), . . . , I[τl](xl), bin(τv(xv)) → I[τv](xv) (4)

Rule 4 intersects the IDBs corresponding to the top ends of segments coming from below
to populate the IDB corresponding to the bottom end of the segment going upwards. Finally,
we move on to the root node of T , r. Assuming low(r) = {τ1(x1), . . . , τl(xl)} we add the
folowing rule to Πsk:

I[τ1](x1), . . . , I[τl](xl) → true (5)

Note that rules of type (4) and (5) as above have width at most k+ 1 as all xi-s are from
some var(q(v)), with v ∈ V .

Finally, let

ΠΦ,k = ΠL ∪
⋃

σ∈sig(Φ′
k,∞)

Πσ ∪
⋃

sk∈sk(Φ′
k,∞)

Πsk

The following proposition follows from Proposition 14 and the fact that there are singly
exponentially many segment signatures, and for each segment signature σ, singly exponentially
many σ-types:
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▶ Proposition 20. For Φ a Boolean UC2RPQ, and for every k > 1, the Datalog program
ΠΦ,k is of width k + 1, has size singly exponential in |Φ| and can be constructed in singly
exponential time in |Φ|.

Further on, we show that the program ΠΦ,k encodes TW k approximations:

▶ Proposition 21. For Φ a Boolean UC2RPQ, k > 1, and G be a graph database, it is the
case that: G |= Φ′

k,∞ iff (G,ΠΦ,k) |= true.

Proposition 20 and Proposition 21 together with complexity results on evaluation of
Datalog programs of width k + 1, yield our main result:

▶ Theorem 22. Let G be a graph database and Φ be a Boolean UC2RPQ of semantic TW k

with k > 1. Then, Φ be evaluated in time O(f(|Φ|)|G|k+1), where f is a singly exponential
function.

Related Work
The skeleton queries we constructed in this section have connections both to the witness
queries Φw constructed in [20] discussed at the beginning of this section and to the so-called
summary queries introduced in [12].

Figueira and Morvan [12] introduce so-called summary queries which are exponentially
more succinct representations of their TW-k approximations. To this purpose, they introduce
so-called path-l approximations which are queries whose semantics is defined in terms of
infinitary C2RPQs which admit a path-l decomposition, where a path decomposition is
defined to be any tree decomposition whose underlying tree is a path. Our notions of skeleton
queries and type reachability queries are based on similar intuitions, with the difference that
our queries are retricted to those which admit unmeandering tree decompositions, and thus
we have a clear notion of types and how they can be chained in a type reachability query.

Romero et. al [20] essentially construct witness queries of TW 2k+ 1 by first constructing
infinitary TW-k approximations using sub-divisions and quotients. In a subsequent step, they
identify a set of nodes which correspond to our set of critical nodes, and contract paths by
considering only their intersection with this set of critical nodes. By virtue of this contraction
operation, they obtain tree decompositions of TW 2k+ 1: intuitively, each two critical nodes
which are top and bottom end of some segment are merged giving rise to a bag in the new
tree decomposition. Each of our skeleton queries can be seen as the TW-k approximation of
such a C2RPQ of TW 2k + 1 belonging to Φw, as instead of contracting the paths between
two critical nodes, we consider all their realizations via paths of width k.

5 Summary and Outlook

In this paper we looked at the problem of efficient evaluation of UC2RPQs of bounded
semantic treewidth. Previous approaches based on computing a witness of semantic TW k

of doubly ponential size were running in time O(f(|Φ|)|G|k+1), with f a doubly exponential
function, where Φ is the size of the UC2RPQ and |G| is the size of the graph database. We
showed that it is possible to evaluate such UC2RPQs in time O(g(|Φ|)|G|k+1), with g a
singly exponential function. We did this by encoding the evaluation problem into a Datalog
program of singly exponential size and width k + 1.

Besides the improvement in worst-case running time, the Datalog encoding also opens
the way for practical approaches to evaluating UC2RPQs levaraging the plethora of available
Datalog engines.
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As open questions, a major one is a full characterisation of fixed parameter tractability
of UC2RPQs, in particular establishing lower bounds. Another question concerns the
precise complexity of computing semantic treewidth: for now it is known [12] that it is
ExpSpace-hard and in 2ExpSpace.
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