
Ranked Enumeration for MSO on Trees via
Knowledge Compilation
Antoine Amarilli #Ñ

LTCI, Télécom Paris, Institut Polytechnique de Paris, France

Pierre Bourhis #

Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

Florent Capelli # Ñ

Univ. Artois, CNRS, UMR 8188, Centre de Recherche en Informatique de Lens (CRIL),
F-62300 Lens, France

Mikaël Monet #Ñ

Université de Lille, CNRS, Inria, UMR 9189 – CRIStAL, F-59000 Lille, France

Abstract
We study the problem of enumerating the satisfying assignments for certain circuit classes from
knowledge compilation, where assignments are ranked in a specific order. In particular, we show
how this problem can be used to efficiently perform ranked enumeration of the answers to MSO
queries over trees, with the order being given by a ranking function satisfying a subset-monotonicity
property.

Assuming that the number of variables is constant, we show that we can enumerate the satisfying
assignments in ranked order for so-called multivalued circuits that are smooth, decomposable, and in
negation normal form (smooth multivalued DNNF). There is no preprocessing and the enumeration
delay is linear in the size of the circuit times the number of values, plus a logarithmic term in
the number of assignments produced so far. If we further assume that the circuit is deterministic
(smooth multivalued d-DNNF), we can achieve linear-time preprocessing in the circuit, and the
delay only features the logarithmic term.

2012 ACM Subject Classification Information systems → Relational database model

Keywords and phrases Enumeration, knowledge compilation, monadic second-order logic

Digital Object Identifier 10.4230/LIPIcs.ICDT.2024.25

Related Version Full Version (with all Proofs): https://arxiv.org/abs/2310.00731 [2]

Funding Antoine Amarilli: Partially supported by the ANR project EQUUS ANR-19-CE48-0019,
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 431183758, and by
the ANR project ANR-18-CE23-0003-02 (“CQFD”). This work was done in part while the author
was visiting the Simons Institute for the Theory of Computing.
Florent Capelli: This work was supported by project ANR KCODA, ANR-20-CE48-0004.
Mikaël Monet: This work was done in part while the author was visiting the Simons Institute for
the Theory of Computing.

1 Introduction

Data management tasks often require the evaluation of queries on large datasets, in settings
where the number of query answers may be very large. For this reason, the framework of
enumeration algorithms has been proposed as a way to distinguish the preprocessing time of
query evaluation algorithms and the maximal delay between two successive answers [32, 37].
Enumeration algorithms have been studied in several contexts: for conjunctive queries [8]

© Antoine Amarilli, Pierre Bourhis, Florent Capelli, and Mikaël Monet;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Database Theory (ICDT 2024).
Editors: Graham Cormode and Michael Shekelyan; Article No. 25; pp. 25:1–25:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antoine.amarilli@telecom-paris.fr
https://a3nm.net/
https://orcid.org/0000-0002-7977-4441
mailto:pierre.bourhis@univ-lille.fr
https://orcid.org/0000-0001-5699-0320
mailto:capelli@cril.fr
https://florent.capelli.me/
https://orcid.org/0000-0002-2842-8223
mailto:mikael.monet@inria.fr
https://mikael-monet.net/
https://orcid.org/0000-0002-6158-4607
https://doi.org/10.4230/LIPIcs.ICDT.2024.25
https://arxiv.org/abs/2310.00731
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Ranked Enumeration for MSO on Trees via Knowledge Compilation

and unions of conjunctive queries [10, 16] over relational databases; for first-order logic over
bounded-degree structures [23], structures with local bounded expansion [33], and nowhere
dense graphs [31]; and for monadic second-order logic (MSO) over trees [7, 25, 3].

We focus on the setting of MSO over trees. In this context, the following enumeration
result is already known. For any fixed MSO query Q (i.e., in data complexity) where the free
variables are assumed to be first-order, considering the answers of Q on a tree T given as input
(i.e., the functions that map the variables of Q to nodes of T in a way that satisfies Q), we
can enumerate them with linear preprocessing on the tree T and with constant delay. If the
free variables are second-order, then the delay is output-linear, i.e., linear in each produced
answer [7, 3]. Further results are known when the query is not fixed but given as input
as a potentially non-deterministic automaton [4, 5], or when maintaining the enumeration
structure under tree updates [28, 5].

However, despite their favorable delay bounds, a shortcoming of these enumeration
algorithms is that they enumerate answers in an opaque order which cannot be controlled.
This is in contrast with application settings where answers should be enumerated, e.g., by
decreasing order of relevance, or focusing on the top-k most relevant answers. This justifies
the need for enumeration algorithms that can produce answers in a user-defined order, even
if they do so at the expense of higher delay bounds.

This task, called ranked enumeration, has recently been studied in various contexts.
For instance, Carmeli et al. [17, 13, 14] study for which order functions one can efficiently
perform ranked direct access to the answers of conjunctive queries: here, efficient ranked
direct access implies efficient ranked enumeration. Ranked enumeration has also been studied
to support order-by operators on factorized databases [9]. Other works have studied ranked
enumeration for document spanners [21], which relate to the evaluation of MSO queries
over words. Closer to applications, some works have studied the ranked enumeration of
conjunctive query answers, e.g., Deep et al. [20, 19] or Tziavelis et al. [35, 36]. Variants
of in-order enumeration have been also studied on knowledge compilation circuit classes,
for instance top-k, with a pseudo-polynomial time algorithm [11]. Closest to the present
work, Bourhis et al. [12] have studied enumeration on words where the ranking function on
answers is expressed in the formalism of MSO cost functions. They show that enumeration
can be performed with linear preprocessing, with a delay between answers which is no longer
constant but logarithmic in the size of the input word. However, their result does not apply
in the more general context of trees.

Contributions. In this paper, we embark on the study of efficient ranked enumeration
algorithms for the answers to MSO queries on trees, assuming that all free variables are
first-order. We define this task by assigning scores to each so-called singleton assignment
[x→ d] describing that variable x is assigned tree node d, and combining these values into
a ranking function while assuming a subset-monotonicity property [36]: intuitively, when
extending two partial assignments in the same manner, then the order between them does
not change. This setting covers many ranking functions, e.g., those defined by order, sum, or
a lexicographic order on the variables. Our main contribution is then to show the following
results on the data complexity of ranked enumeration for MSO queries on trees:

▶ Result 1. For any fixed MSO query Q(x1, . . . , xn) with free first-order variables, given
as input a tree T and a subset-monotone ranking function w on the partial assignments of
x1, . . . , xn to nodes of T , we can enumerate the answers to Q on T in nonincreasing order
of scores according to w with a preprocessing time of O(|T |) and a delay of O(log(K + 1)),
where K is the number of answers produced so far.

A. Amarilli, P. Bourhis, F. Capelli, and M. Monet 25:3

Note that, as the total number of answers is at most |T |n, and as n is constant in data
complexity, the delay of O(log(K + 1)) can alternatively be bounded by O(n log |T |), or
O(log |T |). This matches the bound of [12] on words, though their notion of rank is different.
Further, our bound shows that the first answers can be produced faster, e.g., for top-k
computation.

Our results for MSO queries on trees are shown in the general framework of circuit-based
enumeration methods, introduced by [3]. In this framework, enumeration results are achieved
by first translating the task to a class of structured circuits from knowledge compilation, and
then proposing an enumeration algorithm that works directly on the structured class. This
makes it possible to re-use enumeration algorithms across a variety of problems that compile
to circuits. In this paper, as our task consists in enumerating assignments (from first-order
variables of an MSO query to tree nodes), we phrase our results in terms of multivalued
circuits. These circuits generalize Boolean circuits by allowing variables to take values in
a larger domain than {0, 1}: intuitively, the domain will be the set of the tree nodes. We
assume that circuits are decomposable, i.e., that no variable has a path to two different
inputs of a ∧-gate: this yields multivalued DNNFs, which generalize usual DNNFs. We also
assume that the circuits are smooth: intuitively, no variable is omitted when combining
partial assignments at an ∨-gate. Multivalued circuits can be smoothed while preserving
decomposability, in quadratic time or faster in some cases [34]. Smooth multivalued DNNF
circuits can alternatively be understood as factorized databases, but we do not impose that
they are normal [30], i.e., the depth can be arbitrary.

Our enumeration task for MSO on trees thus amounts to the enumeration of satisfying
assignments of smooth multivalued DNNFs, following a ranking function which we assume to
be subset-monotone. However, we are not aware of existing results for ranked enumeration on
circuits in the knowledge compilation literature. For this reason, the second contribution of
this paper is to show efficient enumeration algorithms on these smooth multivalued DNNFs.

We first present an algorithm for this task that runs with no preprocessing and polynomial
delay. The algorithm can be seen as an instance of the Lawler-Murty [26, 29] procedure. We
show:

▶ Result 2. For any constant n ∈ N, given a smooth multivalued DNNF circuit C with
domain D and with n variables, given a subset-monotone ranking function w, we can
enumerate the satisfying assignments of C in nonincreasing order of scores according to w

with delay O(|D| × |C|+ log(K + 1)), where K is the number of assignments produced so far.

We then show a second algorithm, which allows for a better delay bound at the expense
of making an additional assumption on the circuit; it is with this algorithm that we prove
Result 1. The additional assumption is that the circuit is deterministic: intuitively, no
partial assignment is captured twice. This corresponds to the class of smooth multivalued
d-DNNF circuits. For our task of enumerating MSO query answers, the determinism property
can intuitively be enforced on circuits when we compute them using an deterministic tree
automaton to represent the query. We then show:

▶ Result 3. For any constant n ∈ N, given a smooth multivalued d-DNNF circuit C with
n variables, given a subset-monotone ranking function w, we can enumerate the satisfying
assignments of C in nonincreasing order of scores according to w with preprocessing time
O(|C|) and delay O(log(K + 1)), where K is the number of assignments produced so far.

Paper structure. We give preliminary definitions in Section 2. We first study in Section 3
the ranked enumeration problem for smooth multivalued DNNF circuits (Result 2). We then
move on to a more efficient algorithm on smooth multivalued d-DNNF circuits (Result 3)

ICDT 2024

25:4 Ranked Enumeration for MSO on Trees via Knowledge Compilation

in Section 4. We show how to apply the second algorithm to ranked enumeration for the
answers to MSO queries (Result 1) in Section 5. We conclude in Section 6. Missing proofs
can be found in the full version [2].

2 Preliminaries

For n ∈ N, we write [n] for the set {1, . . . , n}.

Assignments. For two finite sets D of values and X of variables, an assignment on domain D

and variables X is a mapping from X to D. We write DX the set of such assignments. We
can see assignments as sets of singleton assignments, where a singleton assignment is an
expression of the form [x→ d] with x ∈ X and d ∈ D.

Two assignments τ ∈ DY and σ ∈ DZ are compatible, written τ ≃ σ, if we have
τ(x) = σ(x) for every x ∈ Y ∩ Z. In this case, we denote by τ ▷◁ σ the assignment of DY ∪Z

defined following the natural join, i.e., for y ∈ Y \Z we set (τ ▷◁ σ)(y) := τ(y), for z ∈ Z \ Y

we set (τ ▷◁ σ)(z) := σ(z), and for x ∈ Z ∩ Y , we set (τ ▷◁ σ)(x) to the common value
τ(x) = σ(x). Two assignments τ ∈ DY and σ ∈ DZ are disjoint if Y ∩ Z = ∅: then they are
always compatible and τ ▷◁ σ corresponds to the relational product, which we write τ × σ.

Given R ⊆ DY and S ⊆ DZ , we define R ∧ S = {τ ▷◁ σ | τ ∈ R, σ ∈ S, τ ≃ σ}: this
is a subset of DY ∪Z . Note how, if the domain is D = {0, 1}, then this corresponds to the
usual conjunction for Boolean functions, and in general we can see it as a relational join, or
a relational product whenever Y ∩ Z = ∅. Further, we define R ∨ S = {τ ∈ DY ∪Z | τ |Y ∈
R or τ |Z ∈ S}, which is again a subset of DY ∪Z . Again observe how, when D = {0, 1}, this
corresponds to disjunction; and in general we can see this as relational union except that
assignments over Y and Z are each implicitly completed in all possible ways to assignments
over Y ∪ Z.

Multivalued circuits. A multivalued circuit C on domain D and variables X is a DAG with
labeled vertices which are called gates. The circuit also has a distinguished gate r called the
output gate of C. Gates having no incoming edges are called inputs of C. Moreover, we have:

Every input of D is labeled with a pair of the form ⟨x : d⟩ with x ∈ X and d ∈ D;
Every other gate of D is labeled with either ∨ (a ∨-gate) or ∧ (a ∧-gate).

We denote by |C| the number of edges in C.
Given a gate v of C, the inputs of v are the gates w of C such that there is a directed

edge from w to v. The set of variables below v, denoted by var(v), is then the set of variables
x ∈ X such that there is an input w which is labeled by ⟨x : d⟩ for some d ∈ D and which
has a directed path to v. Equivalently, if v is an input labeled by ⟨x : d⟩ then var(v) := {x},
otherwise var(v) :=

⋃k
i=1 var(vi) where v1, . . . , vk are the inputs of v. We assume that the

set X of variables of the circuit is equal to var(r) for r the output gate of C: this can be
enforced without loss of generality up to removing useless variables from X.

For each gate v of C, the set of assignments rel(v) ⊆ Dvar(v) of v is defined inductively as
follows. If v is an input labeled by ⟨x : d⟩, then rel(v) contains only the assignment [x 7→ d].
Otherwise, if v is an internal gate with inputs v1, . . . , vk then rel(v) := rel(v1) op · · · op rel(vk)
where op ∈ {∨,∧} is the label of v. The set of assignments rel(C) of C is that of its output
gate. Note that, if D = {0, 1}, then the set of assignments of C precisely corresponds to its
satisfying valuations when we see C as a Boolean circuit in the usual sense.

We say that a ∧-gate v is decomposable if all its inputs are on disjoint sets of variables;
formally, for every pair of inputs v1 ̸= v2 of v, we have var(v1) ∩ var(v2) = ∅. A ∨-gate v is
smooth if all its inputs have the same set of variables (so that implicit completion does not

A. Amarilli, P. Bourhis, F. Capelli, and M. Monet 25:5

occur); formally, for every pair of inputs v1, v2 of v, we have var(v1) = var(v2). A ∨-gate v is
deterministic if every assignment of v is computed by only one of its inputs; formally, for every
pair of inputs v1 ̸= v2 of v, if τ ∈ rel(v) then either τ |var(v1) /∈ rel(v1) or τ |var(v2) /∈ rel(v2).

Let v be an internal gate with inputs v1, . . . , vk. Observe that if v is decomposable,
then rel(v) =×k

i=1 rel(vi). If v is smooth then rel(v) =
⋃k

i=1 rel(vi). If moreover v is
deterministic, then rel(v) =

⊎k
i=1 rel(vi), where ⊎ denotes disjoint union. Accordingly, we

denote decomposable ∧-nodes as ×-nodes, denote smooth ∨-nodes as ∪-nodes, and denote
smooth deterministic ∨-nodes as ⊎-nodes.

A multivalued circuit is decomposable (resp., smooth, deterministic) if every ∧-gate is
decomposable (resp., every ∨-gate is smooth, every ∨-gate is deterministic). A multivalued
DNNF on domain D and variables X is then a decomposable multivalued circuit on D and X.
A multivalued d-DNNF on domain D and variables X is a deterministic multivalued DNNF
on D and X. In all this paper, we only work with circuits that are both decomposable and
smooth, i.e., smooth multivalued DNNFs. Note that smoothness can be ensured on Boolean
circuits in quadratic time [34], and the same can be done on multivalued circuits.

Ranking functions. Our notion of ranking functions will give a score to each assignment,
but to state their properties we define them on partial assignments. Formally, a partial
assignment is a mapping ν : X → D∪{⊥}, where ⊥ is a fresh symbol representing undefined.
We denote by DX the set of partial assignments on domain D and variables X. The support
supp(ν) of ν is the subset of X on which ν is defined.

We extend the definitions of compatibility, of ▷◁, and of disjointness, to partial assignments
in the following way. Two partial assignments τ ∈ DY and σ ∈ DZ are compatible, again
written τ ≃ σ, when for every x ∈ Y ∩ Z, if τ(x) ̸= ⊥ and σ(x) ̸= ⊥ then τ(x) = σ(x). In
this case, we denote by τ ▷◁ σ the partial assignment of DY ∪Z defined by: for y ∈ Y \ Z

we have (τ ▷◁ σ)(y) := τ(y), for z ∈ Z \ Y we have (τ ▷◁ σ)(z) := σ(z), and for x ∈ Z ∩ Y ,
if τ(x) ̸= ⊥ then (τ ▷◁ σ)(x) = τ(x), otherwise (τ ▷◁ σ)(x) = σ(x). We call τ and σ disjoint
if Y ∩ Z = ∅; then again they are always compatible and we write τ × σ for τ ▷◁ σ.

We then consider ranking functions defined on partial assignments DX , on which we will
impose subset-monotonicity. Formally, a (D, X)-ranking function w is a function1 DX → R
that gives a score to every partial assignment. Such a ranking function induces a weak
ordering2 ⪯ on DX , with µ ⪯ µ′ defined as w(µ) ≤ w(µ′). We always assume that ranking
functions can be computed efficiently, i.e., with running time that only depends on X, not D.

By a slight notational abuse, we define the score w(τ) of partial assignment τ ∈ DY

with Y ⊆ X by seeing τ as a partial assignment on X which is implicitly extended by
assigning ⊥ to every z ∈ X \ Y . Following earlier work [20, 36, 19], we then restrict our
study to ranking functions that are subset-monotone [36]:

▶ Definition 2.1. A (D, X)-ranking function w : DX → R is subset-monotone if for
every Y ⊆ X and partial assignments τ1, τ2 ∈ DY such that w(τ1) ≤ w(τ2), for every partial
assignment σ ∈ DX\Y (so disjoint with τ1 and τ2), we have w(σ × τ1) ≤ w(σ × τ2).

We use in particular the following consequence of subset-monotonicity, where we call τ ∈ DX

maximal (or maximum) for w : DX → R when for every τ ′ ∈ DX we have w(τ ′) ≤ τ(τ):

1 As usual, when we write R, we assume a suitable representation, e.g., as floating-point numbers.
2 Recall that a weak ordering ⪯ on A is a total preorder on A, i.e., ⪯ is transitive and we have either

x ⪯ y or y ⪯ x for every x, y ∈ A. In particular, it can be the case that two distinct elements x and y
are tied, i.e., x ⪯ y and y ⪯ x.

ICDT 2024

25:6 Ranked Enumeration for MSO on Trees via Knowledge Compilation

▶ Lemma 2.2. Let R ⊆ DY and S ⊆ DZ with Y ∩ Z = ∅, and let w : DY ∪Z → R be
subset-monotone. If τ is a maximal element of R and σ is a maximal element of S with
respect to w, then τ × σ is a maximal element of R ∧ S with respect to w.

We give a few examples of subset-monotone ranking functions. Let W : X × D → R
be a function assigning scores to singleton assignments, and define the (D, X)-ranking
function sumW : DX → R by sumW (τ) =

∑
x∈X,τ(x)̸=⊥ W (x, τ(x)). Then sumW is subset-

monotone. Similarly define maxW : DX → R by maxW (τ) = maxx∈X,τ(x)̸=⊥ W (x, τ(x)), or
prodW in a similar manner (with non-negative scores for singletons); then these are again
subset-monotone. In particular, we can use sumW to encode lexicographic orderings on DX .

Enumeration and problem statement. Our goal in this article is to efficiently enumerate
the satisfying assignments of circuits in nonincreasing order according to a ranking function.
We will in particular apply this for the ranked enumeration of the answers to MSO queries
on trees, as we will explain in Section 5. We call this problem RankEnum. Formally, the
input to RankEnum consists of a multivalued circuit C on domain D and variables X, and a
(D, X)-ranking function w that is subset-monotone. The output to enumerate consists of all
of rel(C), without duplicates, in nonincreasing order of scores (with ties broken arbitrarily).

Formally, we work in the RAM model on words of logarithmic size [1], where memory
cells can represent integers of value polynomial in the input length, and on which arithmetic
operations take constant time. We will in particular allocate arrays of polynomial size in
constant time, using lazy initialization [24]. We measure the performance of our algorithms
in the framework of enumeration algorithms, where we distinguish two phases. First, in the
preprocessing phase, the algorithm reads the input and builds internal data structures. We
measure the running time of this phase as a function of the input; in general the best possible
bound is linear preprocessing, e.g., preprocessing in O(|C|). Second, in the enumeration
phase, the algorithm produces the assignments, one after the other, without duplicates, and
in nonincreasing order of scores; the order of assignments that are tied according to the
ranking function is not specified. The delay is the maximal time that the enumeration phase
can take to produce the next assignment, or to conclude that none are left. We measure the
delay as a function of the input, as a function of the produced assignments (which each have
size |X|), and also as a function of the number of results that have been produced so far.
The best delay is output-linear delay, i.e., O(|X|), which can be achieved for (non-ranked)
enumeration of MSO queries on trees [7, 25, 3]. In our results, we will always fix |X| to a
constant (for technical reasons explained in the next section), so the corresponding bound
would be constant delay, but, like [12], we will not be able to achieve it. Also note that
the memory usage of the enumeration phase is not bounded by the delay, but can grow as
enumeration progresses.

Brodal queues. Similar to [12], our algorithms in this paper will use priority queues, in a
specific implementation called a (functional) Brodal queue [15]. Intuitively, Brodal queues
are priority queues which support union operations in O(1), and which are purely functional
in the sense that operations return a queue without destroying the input queue(s). More
precisely, a Brodal queue is a data structure which stores a set of priority-data pairs of
the form (p : foo, d : bar) where foo is a real number and bar an arbitrary piece of data,
supporting operations defined below. Brodal queues are purely functional and persistent, i.e.,
for any operation applied to some input Brodal queues, we obtain as output a new Brodal
queue Q′, such that the input queues can still be used. Note that the structures of Q′ and of

A. Amarilli, P. Bourhis, F. Capelli, and M. Monet 25:7

the input Brodal queues may be sharing locations in memory; this is in fact necessary, e.g.,
to guarantee constant-time bounds. However, this is done transparently, and both Q′ and
the input Brodal queues can be used afterwards3. Brodal queues support the following:

Initialize, in time O(1), which produces an empty queue;
Push, in time O(1), which adds to Q a priority-data pair;
Find-Max, in time O(1), which either indicates that Q is empty or otherwise returns
some pair (p : foo, d : bar) with foo being maximal among the priority-data pairs stored
in Q (ties are broken arbitrarily);
Pop-Max, in time O(log(|Q|)), which either indicates that Q is empty or returns two
values: first the pair p returned by Find-Max, second a queue storing all the pairs of Q

except p;
Union, in time O(1), which takes as input a second Brodal queue Q′ and returns a queue
over the elements of Q and Q′.

3 Ranked Enumeration for Smooth Multivalued DNNFs

In this section, we start the presentation of our technical results by giving our algorithm to
solve the ranked enumeration problem for DNNFs under subset-monotone orders. This is
Result 2 from the introduction, which we restate below:

▶ Theorem 3.1. For any constant n ∈ N, we can solve the RankEnum problem on an
input smooth multivalued DNNF circuit C on domain D and variables X with |X| =
n and a subset-monotone (D, X)-ranking function with no preprocessing and with delay
O(|D| × |C|+ log(K + 1)), where K is the number of assignments produced so far.

Note how the number n of variables is assumed to be constant in the result statement. This
is for a technical reason: we will need to store partial assignments in memory, but in the
RAM model we can only index polynomially many memory locations [24, page 3], so we must
ensure that the total number of assignments is polynomial. The circuit itself and the domain
can however be arbitrarily large, following the application to MSO queries over trees studied
in Section 5: the variables of the circuit will be the variables of the MSO query (which is
fixed because we will work in data complexity), and the size of the circuit and that of the
domain will be linear in the size of the tree (which represents the data).

Our algorithm can be seen as an instance of the Lawler-Murty [26, 29] procedure, that
has been previously used to enumerate paths in DAGs in decreasing order of weight in [36].
Interestingly, the result does not require that the input circuit is deterministic. However, it
is less efficient than the method presented in Section 4 where determinism is exploited.

We prove Theorem 3.1 in the rest of this section. Let us fix a smooth multivalued DNNF C

on domain D and variables X, and a subset-monotone ranking function w : DX → R. For
a partial assignment τ , we denote by wC(τ) = max{w(τ × σ) | σ ∈ DX\supp(τ) and τ × σ ∈
rel(C)} the score of the maximal completion of τ to a satisfying assignment of C if it exists
and wC(τ) = ⊥ if no such completion exists. Our algorithm relies on the following folklore
observation:

▶ Lemma 3.2. Given a partial assignment τ , one can compute wC(τ) in time O(|C|).

3 This is similar to how persistent linked lists can be modified by removing the head element or concate-
nating with a new head element. Such operations can run in constant time and return the modified
version of the list without invalidating the original list; with both lists sharing some memory locations
in a transparent fashion.

ICDT 2024

25:8 Ranked Enumeration for MSO on Trees via Knowledge Compilation

Algorithm 1 Algorithm for Theorem 3.1.

Data: Smooth multivalued DNNF C with n variables, subset-monotone ranking
function w.

Result: Enumeration of the satisfying assignments of C in nonincreasing order of
scores by w.

1 Q← empty priority queue;
2 Push the empty assignment [] into Q with priority wC([]);
3 while Q is not empty do
4 Pop into γ the assignment with maximum wC-score from Q;
5 for j ← |supp(γ)|+ 1 to n do
6 foreach d ∈ D do
7 Construct αd = γ × ⟨xj : d⟩;
8 Compute wC(αd) using Lemma 3.2;
9 end

10 γ ← αd0 such that wC(αd0) is not ⊥ and is maximal;
11 Push into Q all αd′ for d′ ̸= d0 where wC(αd′) ̸= ⊥, with priority wC(αd′);
12 end
13 Output γ;
14 end

Proof. Let X be the variables of C. It is enough to show that we can compute, given a smooth
multivalued DNNF C ′ and monotone ranking function w′, some σ′ ∈ rel(C ′) that maximizes
w′(σ′), in O(|C ′|). Indeed, if this is the case we can first compute the conditioning4 C ′ of
C on τ in time O(|C ′|): specifically, C ′ is a multivalued circuit on domain D and variables
X \ supp(τ) such that, for σ′ ∈ DX\supp(τ) we have that σ′ ∈ rel(C ′) iff τ ×σ′ ∈ rel(C). Then,
letting w′ be the ranking function on DX\supp(τ) defined by w′(σ′) := w(σ′ × τ) (which is
subset-monotone), find one such σ′ ∈ rel(C ′) in time O(|C|), and then return w(σ′× τ). This
is correct thanks to subset-monotonicity of w, more precisely, by Lemma 2.2.

Now the algorithm to do this proceeds by bottom-up induction as follows: for each gate
v of C ′, we compute σv ∈ rel(v) such that w′(σv) = max{w′(σ) | σ ∈ rel(v)}. If v is an
input then rel(v) is a singleton assignment, and we let σv be this assignment. Now, if v is a
×-gate with inputs v1, . . . , vk, we let σv = σv1 × · · · × σvk

. By Lemma 2.2, σv is maximal
for rel(v) if each σvi is maximal for rel(vi) which is the case by induction. Finally, if v is a
∪-gate with input v1, . . . , vk, we define σv = arg maxk

i=1 w′(σvi
), which is clearly maximal in

rel(v) =
⋃k

i=1 rel(vi) if σvi is maximal in rel(vi) for each i because v is smooth, which is the
case by induction. ◀

With this in place, we are ready to describe the algorithm. Notice that our definition
of multivalued circuits implies that rel(C) can never be empty, because all gates except
input gates have inputs, and the circuit is decomposable. We fix an arbitrary order on
X = {x1, . . . , xn} and, for i ∈ {1, . . . , n + 1}, we denote by X<i the set {x1, . . . , xi−1}
(which is empty for i = 1). A partial assignment τ ∈ DX is called a prefix assignment if
supp(τ) = X<i for some i ∈ {1, . . . , n + 1}.

4 See [18, Definition 5.4] for the definition of conditioning on Boolean circuits, which easily adapts to
multivalued circuits.

A. Amarilli, P. Bourhis, F. Capelli, and M. Monet 25:9

The enumeration algorithm is then illustrated as Algorithm 1, which we paraphrase in
text below. The algorithm uses a variable γ holding a prefix assignment and a priority
queue Q containing prefix assignments. The priorities in the queue are the wC-score, i.e.,
the priority of each prefix assignment is the score returned by wC on this assignment. We
initialize Q to contain only the empty partial assignment (i.e., the assignment that maps
every variable to ⊥, denoted [] in Algorithm 1): note that the wC -score of [] is not ⊥ because
rel(C) ̸= ∅. We then do the following until the queue is empty. We pop (i.e., call Pop-Max)
from the queue a prefix assignment (of maximal wC-score) that we assign to γ; we will
inductively see that γ is a prefix assignment of D<i for some i ∈ {1, . . . , n + 1} and that its
wC-score is not ⊥. We then do the following for j := i to n (i.e., potentially zero times, in
case i = n + 1 already). For every possible choice of domain element d ∈ D, we let αd be the
prefix assignment that extends γ by assigning xi to d, and we compute the value wC(αd)
using Lemma 3.2. Among these values, the definition of wC ensures that one has a wC -score
which is not ⊥, because this is true of γ. We thus pick a value d0 ∈ D such that wC(αd0)
is maximal (in particular non-⊥). We set γ to αd0 , and we push into Q all other prefix
assignments αd′ for d′ ̸= d0 for which we have wC(αd′) ̸= ⊥. Once we have run this for all
values of j, we have i = n + 1, hence γ is a total assignment, and we output it. We then
continue processing the remaining contents of the queue.

Correctness of the algorithm. We can show (see the full version [2]) that the following
invariants hold at the beginning and end of every while loop iteration:
1. For every τ ∈ Q, no satisfying assignment of C compatible with τ has been outputted

so far;
2. For every τ, τ ′ ∈ Q, if τ ̸= τ ′ then τ ̸≃ τ ′;
3. For every σ ∈ rel(C) that has not yet been outputted by the algorithm, there exists some

i ∈ {1, . . . , n + 1} such that σ|X<i
∈ Q (in fact, the previous point then implies there is

at most one such i);
4. The number of elements in Q is at most n× |D| × (K + 1), where K is the number of

assignments produced so far.
We explain next why they imply correctness.

▷ Claim 3.3. Algorithm 1 terminates, enumerates rel(C) without duplicates and in non-
increasing order, and runs with delay O(|D| × |C| + log(K + 1)) with K the number of
assignments produced so far.

Proof. We first show that the algorithm terminates. Indeed, notice that we pop a prefix
assignment from the queue at the beginning of every while loop iteration. Let us show that,
once a prefix assignment τ has been popped from Q, it cannot be pushed again into Q for
the rest of the algorithm’s execution. Indeed, observe that once we pop τ from Q, we will
first push to Q assignments that are strict extensions of τ (hence different from τ), and then
output a satisfying assignment τ ′ of C that is compatible with τ , after which the current
iteration of the while loop ends. Now, by invariant (1), no partial assignment compatible
with τ ′ can ever be added to Q, and in particular it is the case that τ cannot ever be added
to Q. Thus the queue becomes empty and the algorithm terminates.

Since the queue eventually becomes empty, by invariant (3), the algorithm outputs at least
all of rel(C). The fact that there are no duplicates follows from invariant (1), using a similar
reasoning to how we proved termination. Furthermore, it is clear that only assignments
of rel(C) are ever outputted. Therefore the algorithm indeed enumerates exactly all of rel(C)
with no duplicates.

ICDT 2024

25:10 Ranked Enumeration for MSO on Trees via Knowledge Compilation

To check that assignments are enumerated in nonincreasing order, consider an iteration
of the while loop where we output τ ∈ rel(C). Let σ ∈ rel(C) be an assignment that has not
yet been outputted, and assume by contradiction that w(τ) < w(σ). Consider the prefix
assignment γ that was popped from the queue Q at the beginning of that iteration; clearly by
construction we have wC(γ) = w(τ). But by invariant (3), there exists a prefix assignment γ′

in Q of which σ is a completion, hence for this γ′ we have wC(γ′) ≥ w(σ) by definition of wC ,
and this is strictly bigger than w(γ), contradicting the fact that γ had maximal priority.

Last, we check that the delay between any two consecutive outputs is indeed O(|D| ×
|C|+ log(K + 1)). The O(|D| × |C|) term corresponds to the at most n× |D| applications of
Lemma 3.2 during a for loop until we produce the next satisfying assignment (remember
that n is constant so it is not reflected in the delay). The O(log(K + 1)) term corresponds
to the unique pop operation performed on the priority queue during a while loop iteration.
Indeed, by invariant (4) the queue contains less than n× |D| × (K + 1) prefix assignments
and the complexity of a pop operation is logarithmic in this. Since n is constant we
obtain O(log |D|+ log(K + 1)), and the O(log |D|) gets absorbed in the O(|D| × |C|) term.

◁

Thus, up to showing that the invariants hold (see the full version [2]), we have concluded the
proof of Theorem 3.1.

4 Ranked Enumeration for Smooth Multivalued d-DNNFs

Having shown our polynomial-delay ranked enumeration algorithm for DNNF circuits,
we move on in this section to our main technical contribution. Specifically, we present an
algorithm for smooth multivalued DNNF circuits that are further assumed to be deterministic,
but which achieves linear-time preprocessing and delay O(log(K + 1)), where K denotes the
number of satisfying assignments produced so far. This proves Result 3, which we restate
below:

▶ Theorem 4.1. For any constant n ∈ N, we can solve the RankEnum problem on an input
smooth multivalued d-DNNF circuit C with n variables and a subset-monotone ranking
function, with preprocessing O(|C|) and delay O(log(K + 1)), where K is the number of
assignments produced so far.

Let us fix for this section the set X of variables of C (with |X| = n) and the domain D.
The rest of this section is devoted to proving Theorem 4.1. It is structured in three

subsections, corresponding to the three main technical difficulties to overcome. First, we
explain in Section 4.1 the preprocessing phase of the algorithm, where in particular we
use Brodal queues to quickly “jump” over ⊎-gates. Second, in Section 4.2, we present a
simple algorithm, that we call the A⊙B ranked enumeration algorithm, which conveys in a
self-contained fashion the idea of how we handle ×-gate during the enumeration phase of the
main algorithm. Last, we present the enumeration phase in Section 4.3.

4.1 Preprocessing Phase
The preprocessing phase is itself subdivided in four steps, described next.

Preprocessing: first step. We preprocess C in O(|C|) to ensure that the ×-gates of the
circuit always have exactly two inputs. This can easily be done as follows. Remember that
our definition of multivalued circuits does not allow ×-gates with no inputs, so this case does
not occur. We can then eliminate ×-gates with one input by replacing them by their single

A. Amarilli, P. Bourhis, F. Capelli, and M. Monet 25:11

input. Next, we can rewrite ×-gates with more than two inputs to replace them by a tree of
×-gates with two inputs. For simplicity, let us call C again the resulting smooth multivalued
d-DNNF circuit in which ×-gates always have exactly two inputs.

Preprocessing: second step. We compute, for every gate g of C the value #g := |rel(g)|.
This can clearly be done in linear time again, by a bottom-up traversal of C and using
decomposability, determinism and smoothness. Note that #g has value at most |D|n, which
is polynomial (as n is a constant), so this fits into one memory cell.

Preprocessing: third step. The third step begins by initializing for every gate g of C

an empty Brodal queue Bg. We then populate those queues by a (linear-time) bottom-up
traversal of the circuit, described next. This traversal will add to each queue Bg some
priority-data pairs of the form (p : w(τ), d : (g′, 1, τ)) where g′ has a (possibly empty)
directed path to g and τ ∈ rel(g). We will shortly explain what is the exact content of
these queues at the end of this third preprocessing step, but we already point out one
invariant: once we are done processing a gate g in the traversal, then Bg contains at least
one priority-data pair of this form, i.e., it is non-empty.

The traversal proceeds as follows:
If g is an input gate labeled with ⟨x : d⟩ corresponding to the singleton assignment α =
[x 7→ d], then we push into Bg the priority-data pair corresponding to this assignment:
(p : w(α), d : (g, 1, α)).
If g is a ×-gate with inputs g1 and g2 then we call Find-Max on the Brodal queues Bg1

and Bg2 of the inputs. These gates g1 and g2 have already been processed, so the queues
Bg1 and Bg2 are non-empty, and we obtain priority-data pairs (p : w(τ1), d : (g′

1, 1, τ1))
and (p : w(τ2), d : (g′

2, 1, τ2)), where τ1 ∈ rel(g1) and τ2 ∈ rel(g2). We push into Bg the
pair (p : w(τ1 × τ2), d : (g, 1, τ1 × τ2)).
If g is a ⊎-gate with input gates g1, . . . , gm then we set Bg to be the union of Bg1 , . . . , Bgm ;
recall that the union operation on two Brodal queues can be done in O(1), so that this
union is linear in m.

It is clear that this third preprocessing step takes time O(|C|). To describe what the queues
contain at the end of this step, we need to define the notion of exit gate of a ⊎-gate:

▶ Definition 4.2. For a ⊎-gate g of C, an exit gate of g is a gate g′ which is not a ⊎-gate
(i.e., a ×-gate or an input of the circuit) such that there is a path from g′ to g where every
gate except g′ on this path is a ⊎-gate. We denote by exit(g) the set of exit gates for g.

We can then characterize what the queues contain:

▷ Claim 4.3. When the third preprocessing step finishes, the queues Bg are as follows:
If g is an input gate corresponding to the singleton assignment α = [x 7→ d] then Bg

contains only the pair (p : w(α), d : (g, 1, α)).
If g is a ×-gate then Bg contains only one pair, which is of the form (p : w(τ), d : (g, 1, τ))
where τ is some satisfying assignment of g of maximal score (i.e., maximal among rel(g)).
If g is a ⊎-gate then Bg contains exactly the following: for every exit gate g′ of g, the
queue Bg contains one pair of the form (p : w(τ), d : (g′, 1, τ)) where τ is some satisfying
assignment of g′ of maximal score (i.e., maximal among rel(g′)).

This implies, in particular, that for every g ∈ C the queue Bg contains a pair (p : w(τ), d :
(g′, 1, τ)) (possibly g′ = g) where τ is a satisfying assignment of g of maximal score among
rel(g).

Proof of Claim 4.3. It is routine to prove this by bottom-up induction, in particular using
Lemma 2.2 for the case of ×-gates. ◁

ICDT 2024

25:12 Ranked Enumeration for MSO on Trees via Knowledge Compilation

This concludes the third preprocessing step. Intuitively, the Brodal queues computed at this
step will allow us to jump directly to the exits of ⊎-gates, without spending time traversing
potentially long paths of ⊎-gates. Thanks to the constant-time union operation on Brodal
queues, this third step takes linear time, and in fact this is the only part of the proof where
we need this bound on the union operation. More precisely, in the remainder of the algorithm,
we will only use on priority queues Q the operations Initialize, Push and Find-Max (in O(1))
and Pop-Max (in O(log |Q|)).

Preprocessing: fourth step. In the fourth and last preprocessing step, we define some more
data structures on every gate g of C.

First, we define for every gate g a priority queue Qg. For all input gates and ⊎-gates,
we simply set Qg := Bg, but for ×-gates we will define Qg to be new priority queues. Once
this is done, we will only use the priority queues Qg, and can forget about the priority
queues Bg. We construct Qg for each ×-gate g separately, in O(1) time, as follows. Letting
g1 and g2 be the inputs to g, we call Find-Max on Bg. By Claim 4.3, we obtain a pair
(p : w(τ), d : (g, 1, τ)) where τ is some satisfying assignment of g of maximal score. We split
τ into τ1× τ2 where τi ∈ rel(gi) for i ∈ {1, 2}, and we define the priority queue Qg to contain
one priority-data pair, namely, (p : w(τ), d : (1, 1, τ1, τ2)).

Second, we allocate for every gate g a table Tg of size #g (indexed starting from 1),
that will later hold satisfying assignments of g in nonincreasing order of scores, stored into
contiguous memory cells starting at the beginning of Tg. We do not bother initializing these
tables, but we initialize integers ig to 0, that will store the current number of assignments
stored in Tg.

Last, we also initialize to 0 a bidimensional bit table Rg for every×-gate g, of size #g1×#g2
with g1, g2 the two inputs of g. This can be done in O(1) with the technique of lazy
initialization, see e.g., [24, Section 2.5]. The role of these tables will be explained later.

This concludes the description of the preprocessing phase of our algorithm. In what
follows, we will rely on the priority queues Qg, the tables Tg, the integers ig storing their
size, and the tables Rg, The following should then be clear:

▷ Claim 4.4. Once we finish the fourth preprocessing step (concluding the preprocessing),
all integers ig are 0, all tables Tg and Rg are empty, and the queues Qg contain the following:

If g is an input gate corresponding to the singleton assignment α = [x 7→ d], then Qg

contains only the pair (p : w(α), d : (g, 1, α)).
If g is a ×-gate with inputs g1, g2, then Qg contains only one priority-data pair which is
of the form (p : w(τ1 × τ2), d : (1, 1, τ1, τ2)), where τ1 × τ2 is some satisfying assignment
of g of maximal score (among rel(g)).
If g is a ⊎-gate, then Qg contains, for every exit gate g′ of g, one pair of the form
(p : w(τ), d : (g′, 1, τ)) where τ is some satisfying assignment of g′ of maximal score
(among rel(g′)).

Again, this in particular implies that each Qg stores a satisfying assignment of g of maximal
score (but the way in which it is represented depends on the type of g).

4.2 A ⊙ B Ranked Enumeration Algorithm
Having described the preprocessing phase, we present in this section a component of the
enumeration phase of our algorithm, called the A⊙B ranked enumeration algorithm. This
simple algorithm will be used at every ×-gate g during the enumeration phase to enumerate
all ways to combine the assignments of the two inputs of g.

A. Amarilli, P. Bourhis, F. Capelli, and M. Monet 25:13

Algorithm 2 Algorithm for A ⊙ B ranked enumeration.

Data: Two arrays A, B of real numbers of size n1, n2 (indexed from 1), sorted in
nonincreasing order; An operation ⊙ as described in the main text.

Result: An enumeration of the pairs {(i, j) | (i, j) ∈ {1, . . . , n1} × {1, . . . , n2}} in
nonincreasing order of the score A[i]⊙B[j]

1 R← bidimensional array of size n1 × n2 lazily initialized to 0;
2 Q← empty priority queue;
3 Push (1, 1) into Q with priority A[1]⊙B[1];
4 R[1, 1]← true;
5 while Q is not empty do
6 Pop into (i, j) the pair with maximal priority from Q;
7 Output (i, j);
8 for (p, q) ∈ {(i + 1, j), (i, j + 1)} do
9 if p ≤ n1 and q ≤ n2 and R[p][q] = 0 then

10 Push (p, q) into Q with priority A[p]⊙B[q];
11 R[p][q]← true;
12 end
13 end
14 end

Let ⊙ : R × R → R be an operation which is computable in O(1) and such that, for
all a ≤ a′ and b ≤ b′ we have a⊙ b ≤ a′ ⊙ b′ (this is similar to subset-monotonicity, and is
in fact equivalent; cf. the full version [2]). We explain in this section how, given as input
two tables (indexed starting from 1) A, B of reals of size n1, n2 sorted in nonincreasing
order, we can enumerate the set of integer pairs {(i, j) | (i, j) ∈ {1, . . . , n1}× {1, . . . , n2}}, in
nonincreasing order of the score A[i]⊙B[j], with O(1) preprocessing and a delay O(log K)
where K is the number of pairs outputted so far.

Intuitively, this will be applied at every ×-gate g, with [n1] (resp., [n2]) representing the
satisfying valuations of the first (resp., second) input of g sorted in a nonincreasing order, as
in the table A (resp., B).

The algorithm is shown in Algorithm 2, but we also paraphrase it in text with more
explanations. We initialize a two-dimensional bit table R of size n1 × n2 to contain only
zeroes (again using lazy initialization [24, Section 2.5]), whose role will be to remember
which pairs have been seen so far, and a priority queue Q containing only the pair (p :
A[1]⊙ B[1], d : (1, 1)); we set R[1, 1] to true because the pair (1, 1) has been seen. Then,
while the queue is not empty, we do the following. We pop (call Pop-Max) from Q, obtaining
a priority-data pair of the form (p : A[i]⊙B[j], d : (i, j)). We output the pair (i, j). Then,
for each (p, q) ∈ {(i + 1, j), (i, j + 1)} that is in the [n1]× [n2] grid, if the pair (p, q) has not
been seen before, then we push into Q the pair (p : A[p]⊙B[q], d : (p, q)) and mark (p, q)
as seen in R. We show the following in the full version [2].

▷ Claim 4.5. This A⊙B ranked enumeration algorithm is correct and runs with the stated
complexity.

Proof sketch. The proof is simple and hinges on the following two invariants:
1. For any pair (i, j) not enumerated so far, there exists a pair (i′, j′) (possibly (i, j) = (i′, j′))

such that (i′, j′) is in Q, and a simple path in the [n1] × [n2] grid from (i′, j′) to (i, j)
with nondecreasing first and second coordinates such that none of the pairs in that path
have been outputted yet.

2. The queue contains at most K + 1 pairs for K the number of pairs outputted so far. ◁

ICDT 2024

25:14 Ranked Enumeration for MSO on Trees via Knowledge Compilation

4.3 Enumeration Phase
We last move on to the enumeration phase. We first give a high-level description of how the
enumeration phase works, before presenting the details.

The operation Get(g, j). We will define a recursive operation Get, running in complex-
ity O(log(K + 1)), that applies to a gate g and integer 1 ≤ j ≤ ig + 1 and does the following.
If j ≤ ig then Get(g, j) simply returns the satisfying assignment of g that is stored in Tg[j]
(i.e., this assignment has already been computed). Otherwise, if j = ig + 1, then Get(g, j)
finds the next assignment to be enumerated, inserts it into Tg, and returns that assignment.
Note that, in this case, calling Get(g, j) modifies the memory for g and some other gates g′.
Specifically, it modifies the tables Tg′ and Rg′ , the queues Qg′ , and the integers ig′ for various
gates g′ having a directed path to g (i.e., including g′ = g).

When we are not executing an operation Get, the memory will satisfy the following
invariants, for every g of C:

The table Tg contains assignments τ ∈ rel(g), ordered by nonincreasing score and with no
duplicates; and ig is the current size of Tg;
For any assignment τ ∈ rel(g) that does not occur in Tg, it is no larger than the last
assignment in Tg, i.e., we have w(τ) ≤ w(Tg[ig]).
The queues Qg will also satisfy some invariants, which will be presented later.
The tables Rg for the ×-gates record whether we have already seen pairs of satisfying
assignments of the two children, similarly to how this is done in the A⊙B algorithm.

The tables Tg store the assignments in the order in which we find them, which is compatible
with the ranking function. This allows us, in particular, to obtain in constant time the j-th
satisfying assignment of rel(g) if it has already been computed, i.e., if j ≤ ig. The reason
why we keep the assignments in the tables Tg is because we may reach the gate g via many
different paths throughout the enumeration, and these paths may be at many different stages
of the enumeration on g.

At the top level, if we can implement Get while satisfying the invariants above, then the
enumeration phase of the algorithm is simple to describe: for j ranging from 1 to #r, we
output Get(r, j), where r is the output gate of C.

Implementing Get. We first explain the intended semantics of data values in the queues Qb:
If g is a ⊎-gate then Qb will always contain pairs of the form (p : w(τ), d : (g′, j, τ))
where g′ ∈ exit(g) and j ∈ {1, . . . , ig′ + 1} and τ ∈ rel(g′), and the idea is that at the end
of the enumeration τ will be stored at position j in Tg′ .
If g is a ×-gate, letting g′

1 and g′
2 be the input gates, then Qb will always contain pairs

of the form (p : w(τ1 × τ2), d : (j1, j2, τ1, τ2)) with τi ∈ rel(gi) and at the end of the
enumeration τi will be at position ji in Tgi with ji ∈ {1, . . . , ig′

i
+ 1} for all i ∈ {1, 2}.

If g is an input gate, then Qb initially contains the only assignment captured by g,
becomes empty the first time we call Get(g, 1), and remains empty thereafter.

The implementation of Get is given in Algorithm 3. Intuitively, the algorithm for ⊎-gates
simply consists of interleaving the maximal assignments of its exit gates, similarly to how
one builds a sorted list for the union of two or more sorted lists. Here, determinism ensures
that we do not get duplicates. The algorithm for ×-gates proceeds similarly to the A⊙B

algorithm, as explained in the previous section.
This concludes the presentation of the function Get, and with it that of the enumeration

phase of the algorithm. The discussion of the delay bound can be found in the full version [2].

A. Amarilli, P. Bourhis, F. Capelli, and M. Monet 25:15

Algorithm 3 Implementation of Get(g, j) for the enumeration phase.

Data: The tables Tg, Rg, queues Qg, integers #g, ig, ranking function w, a gate g,
and integer j ∈ {1, . . . ig + 1}.

Result: The j-th satisfying assignment of g.
1 if j ≤ ig then return Tg[j] ;

// From now on, we have j = ig + 1
2 if g is an input gate then
3 (p : δ, d : (g, 1, τ ′))← Pop from Qj ;
4 τ ← τ ′;
5 end
6 else if g is a ⊎-gate then
7 (p : δ, d : (g′, j′, τ ′))← Pop from Qj ;
8 τ ← τ ′;
9 if j′ + 1 ≤ #g′ then

10 τ ′′ ← Get(g′, j′ + 1);
11 Push into Qg the priority-data pair (p : w(τ ′′), d : (g′, j′ + 1, τ ′′));
12 end
13 end
14 else if g is a × gate then
15 (p : δ, d : (j1, j2, τ1, τ2))← Pop from Qj ;
16 τ ← τ1 × τ2;
17 for (p, q) ∈ {(j1 + 1, j2), (j1, j2 + 1)} do
18 if p ≤ #g1 and q ≤ #g2 and Rg[p][q] = false then
19 τ ′

1 ← Get(g1, p);
20 τ ′

2 ← Get(g2, q);
21 τ ′ ← τ ′

1 × τ ′
2;

22 Push into Qg the priority-data pair (p : w(τ ′), d : (p, q, τ ′));
23 Rg[p][q]← true;
24 end
25 end
26 end
27 Tg[ig + 1]← τ ;
28 ig ← ig + 1;
29 return τ

5 Application to Monadic Second-Order Queries

Having presented our results on ranked enumeration for smooth multivalued DNNFs and
d-DNNFs, we present their consequences in this section for the problem of ranked enumeration
of MSO query answers on trees. We first present some preliminaries on trees and MSO,
formally define the evaluation problem, and explain how to reduce it to our results on circuits.

Trees and MSO on trees. We fix a finite set Λ of tree labels. A Λ-tree is then a tree T

whose nodes carry a label from Λ, and which is rooted, ordered, binary, and full, i.e., every
node has either no children (a leaf) or exactly one left child and one right child (an internal
node). We often abuse notation and write T to refer to its set of nodes.

ICDT 2024

25:16 Ranked Enumeration for MSO on Trees via Knowledge Compilation

We consider monadic second-order logic (MSO) on trees, which extends first-order logic
with quantification over sets. The signature of MSO on Λ-trees allows us to refer to the left
child and right child relationships along with unary predicates referring to the node labels;
and it can express, e.g., the set of descendants of a node. We only consider MSO queries
where the free variables are first-order. We omit the precise semantics of MSO; see, e.g., [27].

Fixing an MSO query Φ(x1, . . . , xn) on Λ-trees, given a Λ-tree T , the answers of Φ on T

are the assignments α on variables X = {x1, . . . , xn} and domain T such that Φ(α) holds
on T in the usual sense. It is known that, for any such query Φ, given T and an assignment α

from X to T , we can check whether Φ(α(X)) holds in linear time. What is more, given T , we
can enumerate the answers of Φ on T with linear preprocessing and constant delay [7, 25, 3].

We now define ranked enumeration. For a tree T and variables X = {x1, . . . , xn}, a (T, X)-
ranking function is simply a ranking function as in Section 2, whose domain is the set of nodes
of T . We still assume that ranking functions are subset-monotone. The ranked enumeration
problem for a fixed MSO query Φ with variables X, also denoted RankEnum, takes an input
a tree T and a subset-monotone (T, X)-ranking function w, and must enumerate all answers
of Φ on T , without duplicates, in nonincreasing order of scores (with ties broken arbitrarily).

Ranked enumeration for MSO. We are now ready to restate Result 1 from the introduction:

▶ Theorem 5.1. For any fixed tree signature Λ and MSO query Φ on variables X on Λ-
trees, given a Λ-tree T and a subset-monotone (T, X)-ranking function w, we can solve the
RankEnum problem for Φ on T and w with preprocessing time O(|T |) and delay O(log(K +1))
where K is the number of answers produced so far.

Recall that, as the total number of answers is at most |T ||X| and |X| is constant, then this
implies a delay bound of O(log |T |). The result is simply shown by constructing a smooth
multivalued d-DNNF representing the query answers. This can be done in linear time with
existing techniques (we provide a self-contained proof in the full version [2]):

▶ Proposition 5.2 ([3, 5]). For any fixed tree signature Λ and MSO query Φ on variables
X on Λ-trees, given a Λ-tree T , we can check in time O(|T |) if Φ has some answers on T ,
and if yes we can build in time O(|T |) a smooth multivalued d-DNNF C on domain T and
variables X such that rel(C) is precisely the set of answers of Φ on T .

Note that we exclude the case where Φ has no answer on T , because our definition of
multivalued circuits does not allow them to capture an empty set of assignments; of course
we can do this check in the preprocessing, and if there are no answers then enumeration is
trivial.

These results are intuitively shown by translating the MSO query to a tree automaton, and
then computing a provenance circuit of this automaton by a kind of product construction [6].
The resulting circuit is a smooth multivalued DNNF, and is additionally a d-DNNF if
the automaton is deterministic. We can then show Theorem 5.1 simply by performing the
compilation (Proposition 5.2) as part of the preprocessing, and then invoking the enumeration
algorithm of Section 4 (Theorem 4.1). Notice that we could also use the algorithm of Section 3
(Theorem 3.1), in particular if it is easier to obtain a nondeterministic tree automaton for
the query, as its provenance circuit would then be a non-deterministic DNNF [5].

6 Conclusion

We have studied the problem of ranked enumeration for tractable circuit classes from
knowledge compilation, namely, DNNFs and d-DNNFs, in the setting of multivalued circuits
so as to apply these results to ranked enumeration for MSO query answers on trees. We have

A. Amarilli, P. Bourhis, F. Capelli, and M. Monet 25:17

shown that the latter task can be solved with linear-time preprocessing and delay logarithmic
in the number of answers produced so far, in particular logarithmic delay in the input tree
in data complexity. This result on trees is the analogue of a previous result on words [12],
achieving the same bounds but for a different notion of ranking functions.

We leave several questions open for future work. For instance, our efficient algorithms
always assume that the input circuits are smooth: although this can be ensured “for free”
in the setting of MSO on trees, it is generally quadratic to enforce on an arbitrary input
circuit [34]. It may be possible to perform enumeration directly on non-smooth circuits, or
on implicitly smoothed circuits, e.g., with special gates as in [3]. It would also be natural
to study this problem in combined complexity, or for free second-order variables, though
our algorithms cannot work on the RAM model if we need to store a superpolynomial
number of assignments in memory. Last, it may be possible to extend our algorithms to more
general ranking functions than the one we study, for instance by leveraging the framework
of MSO cost functions used in [12], or using weighted logics [22], or possibly replacing
subset-monotonicity by a weaker guarantee.

Last, it would be interesting to study whether our results can extend to the support of
updates, e.g., reweighting updates to the ranking functions, or updates on the underlying
circuits or (for MSO queries) on the tree, as in [28] or [5]. However, this is more difficult
than the case of updates for non-ranked enumeration, because our algorithms use larger
intermediate structures which are more challenging to maintain.

References
1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and analysis of computer

algorithms. Addison-Wesley, 1974.
2 Antoine Amarilli, Pierre Bourhis, Florent Capelli, and Mikaël Monet. Ranked enumeration

for MSO on trees via knowledge compilation. CoRR, abs/2310.00731, 2023. Full version of
this article with all proofs. doi:10.48550/arXiv.2310.00731.

3 Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A circuit-based approach
to efficient enumeration. In ICALP, 2017. doi:10.4230/LIPIcs.ICALP.2017.111.

4 Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Constant-delay
enumeration for nondeterministic document spanners. In ICDT, 2019. doi:10.4230/LIPIcs.
ICDT.2019.22.

5 Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Enumeration
on trees with tractable combined complexity and efficient updates. In PODS, 2019. doi:
10.1145/3294052.3319702.

6 Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Provenance circuits for trees and
treelike instances. In ICALP, 2015. doi:10.1007/978-3-662-47666-6_5.

7 Guillaume Bagan. MSO queries on tree decomposable structures are computable with linear
delay. In CSL, 2006. doi:10.1007/11874683_11.

8 Guillaume Bagan, Arnaud Durand, and Étienne Grandjean. On acyclic conjunctive queries
and constant delay enumeration. In CSL, 2007. doi:10.1007/978-3-540-74915-8_18.

9 Nurzhan Bakibayev, Tomáš Kociskỳ, Dan Olteanu, and Jakub Závodnỳ. Aggregation and
ordering in factorised databases. PVLDB, 6(14), 2013. doi:10.14778/2556549.2556579.

10 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering UCQs under updates
and in the presence of integrity constraints. In ICDT, 2018. doi:10.4230/LIPIcs.ICDT.2018.
8.

11 Pierre Bourhis, Laurence Duchien, Jérémie Dusart, Emmanuel Lonca, Pierre Marquis, and
Clément Quinton. Pseudo polynomial-time top-k algorithms for d-dnnf circuits. CoRR, 2022.
doi:10.48550/arXiv.2202.05938.

12 Pierre Bourhis, Alejandro Grez, Louis Jachiet, and Cristian Riveros. Ranked enumeration of
MSO logic on words. In ICDT, 2021. doi:10.4230/LIPIcs.ICDT.2021.20.

13 Karl Bringmann, Nofar Carmeli, and Stefan Mengel. Tight fine-grained bounds for direct
access on join queries. In PODS, 2022. doi:10.1145/3517804.3526234.

ICDT 2024

https://doi.org/10.48550/arXiv.2310.00731
https://doi.org/10.4230/LIPIcs.ICALP.2017.111
https://doi.org/10.4230/LIPIcs.ICDT.2019.22
https://doi.org/10.4230/LIPIcs.ICDT.2019.22
https://doi.org/10.1145/3294052.3319702
https://doi.org/10.1145/3294052.3319702
https://doi.org/10.1007/978-3-662-47666-6_5
https://doi.org/10.1007/11874683_11
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.14778/2556549.2556579
https://doi.org/10.4230/LIPIcs.ICDT.2018.8
https://doi.org/10.4230/LIPIcs.ICDT.2018.8
https://doi.org/10.48550/arXiv.2202.05938
https://doi.org/10.4230/LIPIcs.ICDT.2021.20
https://doi.org/10.1145/3517804.3526234

25:18 Ranked Enumeration for MSO on Trees via Knowledge Compilation

14 Karl Bringmann, Nofar Carmeli, and Stefan Mengel. Tight fine-grained bounds for direct
access on join queries. CoRR, abs/2201.02401, 2022. doi:10.48550/arXiv.2201.02401.

15 Gerth Stølting Brodal and Chris Okasaki. Optimal purely functional priority queues. Journal
of Functional Programming, 6(6), 1996. doi:10.1017/S095679680000201X.

16 Nofar Carmeli and Markus Kröll. On the enumeration complexity of unions of conjunctive
queries. TODS, 46(2), 2021. doi:10.1145/3450263.

17 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riede-
wald. Tractable orders for direct access to ranked answers of conjunctive queries. TODS, 48(1),
2023. doi:10.1145/3578517.

18 Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of Artificial
Intelligence Research, 17, 2002. doi:10.1613/jair.989.

19 Shaleen Deep, Xiao Hu, and Paraschos Koutris. Ranked enumeration of join queries with
projections. arXiv preprint, 2022. doi:10.48550/arXiv.2201.05566.

20 Shaleen Deep and Paraschos Koutris. Ranked enumeration of conjunctive query results. arXiv
preprint, 2019. doi:10.48550/arXiv.1902.02698.

21 Johannes Doleschal, Benny Kimelfeld, Wim Martens, and Liat Peterfreund. Weight annotation
in information extraction. Logical Methods in Computer Science, 18, 2022. doi:10.46298/
lmcs-18(1:21)2022.

22 Manfred Droste and Paul Gastin. Weighted automata and weighted logics. In ICALP. Springer,
2005. doi:10.1007/11523468_42.

23 Arnaud Durand and Étienne Grandjean. First-order queries on structures of bounded degree
are computable with constant delay. TOCL, 8(4), 2007. doi:10.1145/1276920.1276923.

24 Étienne Grandjean and Louis Jachiet. Which arithmetic operations can be performed in
constant time in the RAM model with addition? arXiv preprint, 2022. doi:10.48550/arXiv.
2206.13851.

25 Wojciech Kazana and Luc Segoufin. Enumeration of monadic second-order queries on trees.
TOCL, 14(4), 2013. doi:10.1145/2528928.

26 Eugene L Lawler. A procedure for computing the k best solutions to discrete optimization
problems and its application to the shortest path problem. Management science, 18(7), 1972.

27 Leonid Libkin. Elements of finite model theory. Springer, 2004. doi:10.1007/
978-3-662-07003-1.

28 Katja Losemann and Wim Martens. MSO queries on trees: Enumerating answers under
updates. In CSL–LICS, 2014. doi:10.1145/2603088.2603137.

29 Katta G Murty. An algorithm for ranking all the assignments in order of increasing cost.
Operations research, 16(3), 1968. doi:10.1287/opre.16.3.682.

30 Dan Olteanu and Jakub Závodnỳ. Size bounds for factorised representations of query results.
TODS, 40(1), 2015. doi:10.1145/2656335.

31 Nicole Schweikardt, Luc Segoufin, and Alexandre Vigny. Enumeration for FO queries over
nowhere dense graphs. JACM, 69(3), 2022. doi:10.1145/3517035.

32 Luc Segoufin. A glimpse on constant delay enumeration (invited talk). In STACS, 2014. URL:
https://hal.inria.fr/hal-01070893/document, doi:10.4230/LIPIcs.STACS.2014.13.

33 Luc Segoufin and Alexandre Vigny. Constant delay enumeration for FO queries over databases
with local bounded expansion. In ICDT, 2017. doi:10.4230/LIPIcs.ICDT.2017.20.

34 Andy Shih, Guy Van den Broeck, Paul Beame, and Antoine Amarilli. Smoothing structured
decomposable circuits. In NeurIPS, 2019. URL: https://proceedings.neurips.cc/paper/
2019/hash/940392f5f32a7ade1cc201767cf83e31-Abstract.html.

35 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng
Yang. Optimal algorithms for ranked enumeration of answers to full conjunctive queries.
PVLDB, 13(9), 2020. doi:10.14778/3397230.3397250.

36 Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. Any-k algorithms for
enumerating ranked answers to conjunctive queries. arXiv preprint, 2022. doi:10.48550/
arXiv.2205.05649.

37 Kunihiro Wasa. Enumeration of enumeration algorithms. CoRR, 2016. doi:10.48550/arXiv.
1605.05102.

https://doi.org/10.48550/arXiv.2201.02401
https://doi.org/10.1017/S095679680000201X
https://doi.org/10.1145/3450263
https://doi.org/10.1145/3578517
https://doi.org/10.1613/jair.989
https://doi.org/10.48550/arXiv.2201.05566
https://doi.org/10.48550/arXiv.1902.02698
https://doi.org/10.46298/lmcs-18(1:21)2022
https://doi.org/10.46298/lmcs-18(1:21)2022
https://doi.org/10.1007/11523468_42
https://doi.org/10.1145/1276920.1276923
https://doi.org/10.48550/arXiv.2206.13851
https://doi.org/10.48550/arXiv.2206.13851
https://doi.org/10.1145/2528928
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1145/2603088.2603137
https://doi.org/10.1287/opre.16.3.682
https://doi.org/10.1145/2656335
https://doi.org/10.1145/3517035
https://hal.inria.fr/hal-01070893/document
https://doi.org/10.4230/LIPIcs.STACS.2014.13
https://doi.org/10.4230/LIPIcs.ICDT.2017.20
https://proceedings.neurips.cc/paper/2019/hash/940392f5f32a7ade1cc201767cf83e31-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/940392f5f32a7ade1cc201767cf83e31-Abstract.html
https://doi.org/10.14778/3397230.3397250
https://doi.org/10.48550/arXiv.2205.05649
https://doi.org/10.48550/arXiv.2205.05649
https://doi.org/10.48550/arXiv.1605.05102
https://doi.org/10.48550/arXiv.1605.05102

	1 Introduction
	2 Preliminaries
	3 Ranked Enumeration for Smooth Multivalued DNNFs
	4 Ranked Enumeration for Smooth Multivalued d-DNNFs
	4.1 Preprocessing Phase
	4.2 A odot B Ranked Enumeration Algorithm
	4.3 Enumeration Phase

	5 Application to Monadic Second-Order Queries
	6 Conclusion

