
Range Entropy Queries and Partitioning
Sanjay Krishnan #

Department of Computer Science, University of Chicago, IL, USA

Stavros Sintos #

Department of Computer Science, University of Illinois at Chicago, IL, USA

Abstract
Data partitioning that maximizes or minimizes Shannon entropy is a crucial subroutine in data
compression, columnar storage, and cardinality estimation algorithms. These partition algorithms
can be accelerated if we have a data structure to find the entropy in different subsets of data when
the algorithm needs to decide what block to construct. While it is generally known how to compute
the entropy of a discrete distribution efficiently, we want to efficiently derive the entropy among the
data items that lie in a specific area. We solve this problem in a typical setting when we deal with
real data, where data items are geometric points and each requested area is a query (hyper)rectangle.
More specifically, we consider a set P of n weighted and colored points in Rd. The goal is to
construct a low space data structure, such that given a query (hyper)rectangle R, it computes the
entropy based on the colors of the points in P ∩ R, in sublinear time. We show a conditional lower
bound for this problem proving that we cannot hope for data structures with near-linear space and
near-constant query time. Then, we propose exact data structures for d = 1 and d > 1 with o(n2d)
space and o(n) query time. We also provide a tune parameter t that the user can choose to bound
the asymptotic space and query time of the new data structures. Next, we propose near linear space
data structures for returning either an additive or a multiplicative approximation of the entropy.
Finally, we show how we can use the new data structures to efficiently partition time series and
histograms with respect to entropy.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Shannon entropy, range query, data structure, data partitioning

Digital Object Identifier 10.4230/LIPIcs.ICDT.2024.6

Related Version Full Version: https://arxiv.org/abs/2312.15959 [27]

1 Introduction

Discrete entropy is defined as the expected amount of information needed to represent an
event drawn from a probability distribution. That is, given a probability distribution D over
the set X , the entropy is defined as H(D) = −

∑
x∈X D(x) · logD(x). The entropy has a few

different interpretations in information theory and statistics, such as:
(Compression) Entropy is a lower-bound on data compressibility for datasets generated
from the probability distribution via the Shannon source coding theorem.
(Probability) Entropy measures a probability distribution’s similarity to a uniform distri-
bution over the set X on a scale of [0, log |X |].

Because of these numerous interpretations, entropy is a highly useful optimization objective.
Various algorithms, ranging from columnar compression algorithm to histogram construction
and data cleaning, maximize or minimize (conditional) entropy as a subroutine. These
algorithms try to find high or low entropy data subsets. Such algorithms can be accelerated
if we have a data structure to efficiently calculate the entropy of different subsets of data.
However, while it is known how to compute the entropy of an entire distribution efficiently,
there is a little work on such “range entropy queries”, where we want to derive efficiently
the entropy among the data items that lie in a specific area. To make this problem more
concrete, let us consider a few examples.

© Sanjay Krishnan and Stavros Sintos;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Database Theory (ICDT 2024).
Editors: Graham Cormode and Michael Shekelyan; Article No. 6; pp. 6:1–6:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:skr@uchicago.edu
https://orcid.org/0000-0001-6968-4090
mailto:stavros@uic.edu
https://orcid.org/0000-0002-2114-8886
https://doi.org/10.4230/LIPIcs.ICDT.2024.6
https://arxiv.org/abs/2312.15959
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Range Entropy Queries and Partitioning

▶ Example 1 (Columnar Compression). An Apache Parquet file is a columnar storage
format that first horizontally partitions a table into row groups, and then applies columnar
compression along each column within the row group. A horizontal partitioning that
minimizes the entropy within each partition can allow for more effective columnar
compression.

▶ Example 2 (Histogram Construction). Histogram estimation often uses a uniformity
assumption, where the density within a bucket is modeled as roughly uniform. A partitioning
that maximizes the entropy within each partition can allow for more accurate estimation
under uniformity assumptions.

▶ Example 3 (Data Cleaning). As part of data exploration, a data analyst explores different
subsets of data to find areas with high entropy/uncertainty. Usually, subsets of data or
items in a particular area of the data with high entropy contain dirty data so they are
good candidates for applying data cleaning methods. For example, Chu et al. [16] used an
entropy-based scheduling algorithm to maximize the uncertainty reduction of candidate table
patterns. Table patterns are used to identify errors in data.

The first two problems above have a similar structure, where an outer-algorithm leverages
a subroutine that identifies data partitions that minimize or maximize entropy. In the third
problem we aim to explore areas with high entropy by running arbitrary range entropy
queries. We formulate the problem of range entropy query problem in a typical and realistic
setting when we deal with real data: we assume that each item is represented as a point in
the Euclidean space. More specifically, we consider a set P of n weighted and colored points
in Rd. The goal is to construct a data structure, such that given a query (hyper)rectangle R,
compute the entropy of the points in P ∩R (denoted by H(P ∩R)). The entropy of P ∩R is
defined as the entropy of a discrete distribution DR over the colors in P ∩R: Let UR be the
set of all colors of the points in P ∩R. For each color uj ∈ UR, we define a value (we can
also refer to it as an independent event or outcome) αj with probability wj equal to the sum
of weights of points with color uj in P ∩R divided by the sum of the weights of all points
in P ∩R. Notice that

∑
uj∈UR

wj = 1. Unfortunately, we do not have direct access to this
distribution; we would need Ω(n) time to construct the entire distribution DR in the query
phase. Using the geometry of the points along with key properties from information theory
we propose data structures to find the entropy of DR without constructing DR explicitly.

▶ Definition 4 (Range entropy query problem). Given a set P of n weighted and colored
points in Rd, the goal is to construct a data structure with low space such that given any
query rectangle R, it returns H(P ∩R) in sub-linear time o(|P |).

If the number of colors in P is bounded by a constant then the range entropy query problem
can be easily solved. However, in the worse case the number of different colors is O(n). Our
goal is to construct data structures whose query time is always sublinear with respect to n.

Summary of Results. One of the main challenges with range entropy queries is that entropy
is not a decomposable quantity. Let P1, P2 be two sets of points such that P1 ∪ P2 = P

and P1 ∩ P2 = ∅. If we know H(P1), H(P2) there is no straightforward way to compute
H(P1 ∪ P2). In this paper, we build low space data structures such that given a rectangle R,
we visit points or subsets of points in P ∩R in a particular order and carefully update the
overall entropy. All our results for the range entropy problem can be seen in Table 1.

In Section 2 we introduce some useful notation and we revisit a way to update the entropy
of the union of two sets with no color in common in O(1) time.

S. Krishnan and S. Sintos 6:3

Table 1 New results (lower bound in the first row and data structures with their complexities in
the next rows). t ∈ [0, 1] is a tune parameter. Õ(·) notation hides a logO(1) n factor, where the O(1)
exponent is at most linear on d. Q(n) is any function of n that represents the query time of a data
structure storing n items.

Type Space Query Time Preprocessing

Lower bound Ω̃
((

n
Q(n)

)2
)

Õ(Q(n)) –

d = 1, exact O
(
n2(1−t)) Õ (nt) O

(
n2−t

)
d > 1, exact Õ

(
n(2d−1)t+1)

Õ
(
n1−t

)
Õ

(
n(2d−1)t+1)

d ≥ 1, ∆-additive approx. Õ (n) Õ
(1

∆2

)
Õ (n)

d ≥ 1, (1 + ε)-multiplicative approx. Õ (n) Õ
(1

ε2

)
Õ (n)

d = 1, ε-additive and
Õ

(
n
ε

)
Õ (1) Õ

(
n
ε

)
(1 + ε)-multiplicative approx.

In Section 3, we reduce the set intersection problem to the range entropy query problem in
R2. We prove a conditional lower bound showing that we cannot hope for O(n polylog n)
space and O(polylog n) query time data structures for the range entropy queries.
Exact data structure for d = 1. In Section 4.1, we efficiently partition the input points
with respect to their x coordinates into buckets, where each bucket contains a bounded
number of points. Given a query interval R, we visit the bounded number of points in
buckets that are partially intersected by R and we update the overall entropy of the
buckets that lie completely inside R. For any parameter t chosen by the user, we construct
a data structure in O(n2−t) time, with O(n2(1−t)) space and O(nt log n) query time.
In Section 4.2, instead of partitioning the points with respect to their geometric location,
we partition the input points with respect to their colors. We construct O(n1−t) blocks
where two sequential blocks contain at most one color in common. Given a query rectangle
we visit all blocks and we carefully update the overall entropy. For any tune parameter t

chosen by the user, we construct a data structure in O(n log2d n + n(2d−1)t+1 logd+1 n)
time with O(n log2d−1 n + n(2d−1)t+1) space and O(n1−t log2d n) query time.
Additive approximation. In Subsection 5.1 we use known results for estimating the entropy
of an unknown distribution by sampling in the dual access model. We propose efficient
data structures that apply sampling in a query range in the dual access model. We
construct a data structure in O(n logd n) time, with O(n logd−1 n) space and O

(
logd+3 n

∆2

)
query time. The data structure returns an additive ∆-approximation of the entropy with
high probability. It also supports dynamic updates in O(logd n) time.
Multiplicative approximation. In Subsection 5.2 we propose a multiplicative approxima-
tion of the entropy using the results for estimating the entropy in a streaming setting.
One significant difference with the previous result is that in information theory at least
Ω

(
log n
ε2·H′

)
sampling operations are needed to find get an (1 + ε)-multiplicative approxim-

ation, where H ′ is a lower bound of the entropy. Even if we have efficient data structures
for sampling (as we have in additive approximation) we still do not have an efficient
query time if the real entropy H is extremely small. We overcome this technical issue by
considering two cases: i) there is no color with total weight more than 2/3, and ii) there
exists a color with total weight at most 2/3. While in the latter case the entropy can
by extremely small, an additive approximation is sufficient in order to get a multiplic-
ative approximation. In the former one, the entropy is large so we apply the standard
sampling method to get a multiplicative approximation. We construct a data structure in

ICDT 2024

6:4 Range Entropy Queries and Partitioning

O(n logd n) time, with O(n logd n) space and O
(

logd+3

ε2

)
query time. The data structure

returns a multiplicative (1 + ε)-approximation of the entropy. It also supports dynamic
updates in O(logd n) time.
Additive and multiplicative approximation. In Subsection 5.3, we propose a new data
structure for approximating the entropy in the query range for d = 1. We get the intuition
from data structures counting the number of colors in a query interval. Such a data
structure finds a geometric mapping to a different geometric space, such that if at least a
point with color ui exists in the original P ∩R, then there is a unique point with color ui

in the corresponding query range in the new geometric space. Unfortunately, this property
is not sufficient for finding the entropy. Instead, we need to know more information about
the weights of the points and the entropy in canonical subsets of the new geometric space,
which is challenging to do. We construct a data structure in O

(
n
ε log5 n

)
time, with

O
(

n
ε log2 n

)
space and O

(
log2 n log log n

ε

)
query time. The data structure returns an

(1 + ε)-multiplicative and ε-additive approximation of the entropy.
Partitioning using entropy. In Section 6 we show how our new data structures can be
used to run partitioning algorithms over time series, histograms, and points efficiently.

Related work. Entropy has been used a lot for partitioning to create histograms in databases.
For example, To et al. [38] used entropy to design histograms for selectivity estimation queries.
In particular, they aim to find a partitioning of k buckets in 1d such that the cumulative
entropy is maximized. They consider a special case where they already have a histogram (so
all items of the same color are accumulated to the same location) and the goal is to partition
the histogram into k buckets. They propose a greedy algorithm that finds a local optimum
solution. However there is no guarantee on the overall optimum partitioning. Using our new
data structures, we can find the entropy in arbitrary range queries, which is not supported
in [38]. Our data structures can also be used to accelerate partitioning algorithms with
theoretical guarantees (see Subsection 6) in a more general setting, where points of the same
color have different locations.

In addition, there is a number of papers that use entropy to find a clustering of items.
Cruz et al. [19] used entropy for the community detection problem in augmented social
networks. They describe a greedy algorithm that exchanges two random nodes between
two random clusters if the entropy of the new instance is lower. Barbará et al. [6] used the
expected entropy for categorical clustering. They describe a greedy algorithm that starts with
a set of initial clusters, and for each new item decides to place it in the cluster that has the
lowest entropy. Li et al. [29] also used the expected entropy for categorical clustering but
they extend it to probabilistic clustering models. Finally, Ben-Gal et al. [8] used the expected
entropy to develop an entropy-based clustering measure that measures the homogeneity of
mobility patterns within clusters of users. All these methods do not study the problem
of finding the entropy in a query range efficiently. While these methods perform well in
practice, it is challenging to derive theoretical guarantees. In spatial databases items are
represented as points in Rd, so our new data structures could be used to find faster and
better entropy-based clustering techniques. For example, we could run range entropy queries
with different radii around a center until we find a cluster with small radius and small (or
large) expected entropy.

There is a lot of work on computing an approximation of the entropy in the streaming
setting [11,15,23,28]. For a stream of m distinct values (m colors in our setting) Chakrabarti
et al. [14] compute an (1 + ε)-multiplicative approximation of the entropy in a single pass
using O(ε−2 log(δ−1) log m) words of space, with probability at least 1 − δ. For a stream

S. Krishnan and S. Sintos 6:5

of size n (n points in our setting) Clifford and Cosma [17] propose a single-pass ε-additive
algorithm using O(ε−2 log n log(nε−1)) bits with bounded probability. Harvey et al. [25]
allow deletions in the streaming setting and they propose a single-pass (1 + ε)-multiplicative
algorithm using Õ(ε−2 log2 m) words of space with bounded probability. Furthermore, they
propose a single-pass ε-additive approximation using Õ(ε−2 log m) words of space. While
some techniques from the streaming setting are useful in our query setting, the two problems
are fundamentally different. In the streaming setting, preprocessing is not allowed, all data
are processed one by one and an estimation of the entropy is maintained. In our setting, the
goal is to construct a data structure such that given any query range, the entropy of the
items in the range should be computed in sublinear time, i.e., without processing all items in
the query range during the query phase.

Let D be an unknown discrete distribution over n values. There is an interesting line of
work on approximating the entropy of D by sampling in the dual access model. Batu et al. [7]
give an (1 + ε)-multiplicative approximation of the entropy of D with sample complexity
O((1+ε)2 log2 n

ε2·H′), where H ′ is a lower bound of the actual entropy H(D). Guha et al. [23]
improved the sample complexity to O(log n

ε2·H′), matching the lower bound Ω(log n
(2+ε)ε2·H′) found

in [7]. Canonne and Rubinfeld [13] describe a ∆-additive approximation of the entropy
with sample complexity O(log2 n

∆
∆2). Caferov et al. [12] show that Ω(log2 n

∆2) sample queries
are necessary to get ∆-additive approximation. All these algorithms return the correct
approximations with constant probability. If we want to guarantee the result with high
probability then the sample complexity is multiplied by a log n factor.

A related query to estimating the entropy is the range color query. Given a a set of colored
points in Rd, the goal is to construct a data structure such that given a query rectangle, it
returns the number of colors in the query range.

2 Preliminaries

Let P be a set of n points in Rd and let U be a set of m colors U = {u1, . . . , um}. Each point
p ∈ P is associated with a color from U , i.e., u(p) = ui for ui ∈ U . Furthermore, each point
p ∈ P is associated with a non-negative weight w(p) ≥ 0. For a subset of points P ′ ⊆ P ,
let P ′(ui) = {p ∈ P ′ | u(p) = ui}, for i ≤ m, be the set of points having color ui. Let
u(P ′) = {ui | ∃p ∈ P ′, u(p) = ui} be the set of colors of the points in P ′. Finally, let w(P ′) =∑

p∈P ′ w(p). The entropy of set P ′ is defined as H(P ′) =
∑m

i=1
w(P ′(ui))

w(P ′) log
(

w(P ′)
w(P ′(ui))

)
.

For simplicity, and without loss of generality, we can consider throughout the paper that
w(p) = 1 for each point p ∈ P . All the results, proofs, and properties we show hold for the
weighted case almost verbatim. Hence, from now on, we assume w(p) = 1 and the definition
of entropy becomes

H(P ′) =
m∑

i=1

|P ′(ui)|
|P ′|

log
(
|P ′|
|P ′(ui)|

)
=

∑
ui∈u(P ′)

|P ′(ui)|
|P ′|

log
(
|P ′|
|P ′(ui)|

)
. (1)

If |P ′(ui)| = 0, then we consider that |P ′(ui)|
|P ′| log

(
|P ′|

|P ′(ui)|

)
= 0.

Updating the entropy. Let P1, P2 ⊂ P be two subsets of P such that u(P1) ∩ u(P2) = ∅.
The next formula for the entropy of P1 ∪ P2 is known (see [38])

H(P1 ∪ P2) =
|P1|H(P1) + |P2|H(P2) + |P1| log

(
|P1|+|P2|

|P1|

)
+ |P2| log

(
|P1|+|P2|

|P2|

)
|P1|+ |P2|

. (2)

ICDT 2024

6:6 Range Entropy Queries and Partitioning

If |u(P2)| = 1 then

H(P1∪P2) = |P1|H(P1)
|P1|+ |P2|

+ |P1|
|P1|+ |P2|

log
(
|P1|+ |P2|
|P1|

)
+ |P2|
|P1|+ |P2|

log
(
|P1|+ |P2|
|P2|

)
. (3)

Finally, if P3 ⊂ P1 with |u(P3)| = 1 and u(P1 \ P3) ∩ u(P3) = ∅ then

H(P1 \ P3) = |P1|
|P1| − |P3|

(
H(P1)− |P3|

|P1|
log |P1|
|P3|
− |P1| − |P3|

|P1|
log |P1|
|P1| − |P3|

)
. (4)

We notice that in all cases, if we know H(P1), H(P2) and the cardinality of each subset we
can update the entropy in O(1) time.

Range queries. In some data structures we need to handle range reporting or range counting
problems. Given P , we need to construct a data structure such that given a query rectangle
R, the goal is to return |R ∩ P |, or report R ∩ P . We use range trees [10]. A range tree can
be constructed in O(n logd) time, it has O(n logd−1 n) space and can answer an aggregation
query (such as count, sum, max etc.) in O(logd n) time. A range tree can be used to
report R ∩ P in O(logd n + |R ∩ P |) time. Using fractional cascading the logd n term can
be improved to logd−1 n in the query time. However, for simplicity, we consider the simple
version of a range tree without using fractional cascading. Furthermore, a range tree can be
used to return a uniform sample point from R ∩ P in O(logd n) time. We give more details
about range trees and sampling in the full version of the paper [27]. There is also lot of
work on designing data structures for returning k independent samples in a query range
efficiently [1, 2, 26, 32,37,39, 40]. For example, if the input is a set of points in Rd and the
query range is a query hyper-rectangle, then there exists a data structure [32] with space
O(n logd−1 n) and query time O(logd n + k log n). For our purposes, it is sufficient to run k

independent sampling queries in a (modified) range tree with total query time O(k logd n).

Expected entropy and monotonicity. Entropy is not monotone because if P1 ⊆ P2, it
does not always hold that H(P1) ≤ H(P2). Using the results in [29], we can show that
H(P1) ≥ |P1|−1

|P1| H(P1 \ {p}), for a point p ∈ P1 ⊂ P . If we multiply with |P1|/n we have
|P1|

n H(P1) ≥ |P1|−1
n H(P1 \ {p}). Hence, we show that, for P1 ⊆ P2 ⊆ P , |P1|

n H(P1) ≤
|P2|

n H(P2). The quantity |P1|
|P | H(P1) is called expected entropy. This monotonicity property

helps us to design efficient partitioning algorithms with respect to expected entropy, for
example, find a partitioning that minimizes the cumulative or maximum expected entropy. t

3 Lower Bound

In this section, we give a lower bound for range entropy queries in the real-RAM model. We
show a reduction from the set intersection problem that suggests that data structures with
near-linear space and polylogarithmic query time are unlikely to exist even for d = 2.

The set intersection problem is defined as follows. Given a family of sets S1, . . . , Sg, with∑g
i=1 |Si| = n, the goal is to construct a data structure such that given a query pair of indices

i, j ,the goal is to decide if Si∩Sj = ∅. It is widely believed that for any positive value Q ∈ R,

any data structure for the set intersection problem with O(Q) query time needs Ω
((

n
Q

)2
)

space [20,35,36], skipping logO(1) n factors. Next, we show that any data structure for solving
the range entropy query can be used to solve the set intersection problem.

S. Krishnan and S. Sintos 6:7

Figure 1 Lower bound construction. Figure 2 Partition P into K buckets in R2. Two
consecutive buckets have at most one color in common.

Let S1, . . . , Sg be an instance of the set intersection problem as we defined above. We
design an instance of the range entropy query constructing a set P of 2n points in R2 and
|U | = |

⋃
i Si|. Let n0 = 0 and ni = ni−1 + |Si| for i = 1, . . . , g. Let si,k be the value of the

k-th item in Si (we consider any arbitrary order of the items in each Si). Let S =
⋃

i Si,
and q = |S|. Let σ1, . . . σq be an arbitrary ordering of S. We set U = {1, . . . , q}. Next, we
create a geometric instance of P in R2: All points lie on two parallel lines L = x + n, and
L′ = x − n. For each si,k we add in P two points, pi,k = (−(k + ni−1),−(k + ni−1) + n)
on L, and p′

i,k = ((k + ni−1), k + ni−1 − n) on L′. If si,k = σj for some j ≤ q, we set the
color/category of both points pi,k, p′

i,k to be j. Let Pi be the set of points corresponding
to Si that lie on L, and P ′

i the set of points corresponding to Si that lie on L′. We set
P =

⋃
i(Pi ∪ P ′

i). We note that for any pair i, j, points Pi ∪ P ′
j have distinct categories if

and only if Si ∩ Sj = ∅. P uses O(n) space and can be constructed in O(n) time.
Let D be a data structure for range entropy queries with space S(n) and query time Q(n)

constructed on n points. Given an instance of the set intersection problem, we construct P

as described above. Then we build D on P and we construct a range tree T on P for range
counting queries. Given a pair of indexes i, j the question is if Si ∩ Sj = ∅. We answer this
question using D and T on P . Geometrically, it is known we can find a rectangle ρi,j in O(1)
time such that ρi,j ∩ P = Pi ∪ P ′

j (see Figure 1). We run the range entropy query D(ρi,j)
and the range counting query T (ρi,j). Let Hi,j be the entropy of Pi ∪P ′

j and ni,j = |Pi ∪Pj |.
If Hi,j = log ni,j we return that Si ∩ Sj = ∅. Otherwise, we return Si ∩ Sj ̸= ∅.

The data structure we construct for answering the set intersection problem has O(S(2n) +
n log n) = Õ(S(2n)) space. The query time is (Q(2n) + log n) or just O(Q(n)) assuming that
Q(n) ≥ log n.

▶ Lemma 5. In the preceding reduction, Si ∩ Sj = ∅ if and only if Hi,j = log ni,j.

Proof. If Si ∩ Sj = ∅ then from the construction of P we have that all colors in Pi ∪ P ′
j are

distinct, so ni,j = |u(Pi ∪ P ′
j)|. Hence, the entropy H(Pi ∪ P ′

j) takes the maximum possible
value which is H(Pi ∪ P ′

j) =
∑

v∈u(Pi∪P ′
j
)

1
ni,j

log ni,j = log ni,j .
If Hi,j ̸= log ni,j we show that Si ∩ Sj ̸= ∅. The maximum value that Hi,j can take is

log ni,j so we have Hi,j < log ni,j . The entropy is a measure of uncertainty of a distribution.
It is known that the discrete distribution with the maximum entropy is unique and it is the
uniform distribution. Any other discrete distribution has entropy less than log ni,j . Hence
the result follows. ◀

ICDT 2024

6:8 Range Entropy Queries and Partitioning

We conclude with the next theorem.

▶ Theorem 6. If there is a data structure for range entropy queries with S(n) space and
Q(n) query time, then for the set intersection problem there exists a data structure with
O(S(2n)) space and O(Q(2n)) query time, skipping log n factors.

4 Exact Data Structures

In this section we describe data structures that return the entropy in a query range, exactly.
First, we provide a data structure for d = 1 and we extend it to any constant dimension
d. Next, we provide a second data structure for any constant dimension d. The first data
structure is better for d = 1, while the second data structure is better for any constant d > 1.

4.1 Efficient data structure for d = 1

Let P be a set of n points in R1. Since the range entropy query problem is not decomposable,
the main idea is to precompute the entropy in some carefully chosen canonical subsets of P .
When we get a query interval R, we find the maximal precomputed canonical subset in R,
and then for each color among the colors of points in R not included in the canonical subset,
we update the overall entropy using Equations 2, 3, and 4. We also describe how we can
precompute the entropy of all canonical subsets efficiently.

Data Structure. Let t ∈ [0, 1] be a parameter. Let Bt = {b1, . . . , bk} be k = n1−t points in
R1 such that |P ∩ [bj , bj+1]| = nt, for any j < n1−t. For any pair bi, bj ∈ Bt let Ii,j = [bi, bj]
be the interval with endpoints bi, bj and let I be the set of all intervals. For any pair bi, bj

we store the interval Ii,j and we precompute Hi,j = H(P ∩ Ii,j), and ni,j = |P ∩ Ii,j |. Next,
we construct an interval tree T on I. Finally, for each color u ∈ u(P) we construct a search
binary tree Tu over P (u).

We have |Bt| = O(n1−t) so |I| = O(n2(1−t)). The interval tree along with all the search
binary trees have O(n) space in total. Hence we need O(n2(1−t)) space for our data structure.
In the full version [27], we show how we can construct the data structure in O(n2−t) time.

Query procedure. Given a query interval R, we find the maximal interval Ii,j ∈ I such
that I ⊆ R using the interval tree. Recall that we have precomputed the entropy Hi,j . Let
H = Hi,j be a variable that we will update throughout the algorithm storing the current
entropy. Let also N = ni,j be the variable that stores the number of items we currently
consider to compute H. Let PR = P ∩ (R \ Ii,j) be the points in P ∩R that are not included
in the maximal interval Ii,j . See also Figure 3.

Figure 3 Instance of the query algorithm given query interval R. Purple points are points in PR.

We visit each point in PR and we identify u(PR). For each u ∈ u(PR), we run a query in Tu
with range Ii,j finding the number of points in P ∩ Ii,j with color u. Let nu be this count.

S. Krishnan and S. Sintos 6:9

If nu = 0 then there is no point in P ∩ Ii,j with color u so we insert |PR(u)| items of
color u in the current entropy using Equation 3. In that formula, |P1| = N , H(P1) = H and
|P2| = |u(PR)|. We update N = N + |u(PR)|, and H with the updated entropy H(P1 ∪ P2).

If nu > 0 then there is at least one point in P ∩ Ii,j with color u. Hence, we update
the entropy H, by first removing the nu points of color u in P ∩ Ii,j and then re-inserting
nu + |u(PR)| points of color u. We use Equation 4 for removing the points with color u with
|P1| = N , H(P1) = H, and |P3| = nu. We update N = N − nu and H with the updated
entropy H(P1 \ P3). Then we use Equation 3 for re-inserting the points with color u, with
|P1| = N , H(P1) = H, and |P2| = nu + |u(PR)|. We update N = N + nu + |u(PR)| and
H with the updated entropy H(P1 ∪ P2). After visiting all colors in u(PR), we return the
updated entropy H. The correctness of the algorithm follows from Equations 3, 4. For each
color u ∈ u(PR) we update the entropy including all points of color u.

For a query interval R we run a query in the interval tree to find Ii,j in O(log n) time.
The endpoints of R intersect two intervals [bh, bh+1] and [bv, bv+1]. Recall that by definition,
such interval contains O(nt) points from P . Hence, |PR| = O(nt) and |u(PR)| = O(nt). For
each u ∈ u(PR), we spend O(log n) time to search Tu and find nu. Then we update the
entropy in O(1) time. Overall, the query procedure takes O(nt log n) time.

▶ Theorem 7. Let P be a set of n points in R1, where each point is associated with a color,
and let t ∈ [0, 1] be a parameter. A data structure of O(n2(1−t)) size can be computed in
O(n2−t) time, such that given a query interval R, H(P ∩R) can be computed in O(nt log n)
time.

In the full version [27], we extend this data structure to any constant d > 1.

4.2 Efficient data structure for d > 1
While the previous data structure can be extended to higher dimensions, here we propose a
more efficient data structure for d > 1. In this data structure we split the points with respect
to their colors. The data structure has some similarities with the data structure presented
in [3, 4] for the max query under uncertainty, however the two problems are different and
there are key differences on the way we construct the data structure and the way we compute
the result of the query.

Data Structure. We first consider an arbitrary permutation of the colors in U , i.e.
u1, . . . , um. The order used to partition the items is induced from the permutation over the
colors. Without loss of generality we set uj = j for each j ≤ m. We split P into K = O(n1−t)
buckets P1, . . . , PK such that i) each bucket contains O(nt) points, and ii) for every point
p ∈ Pi and q ∈ Pi+1, u(p) ≥ u(q). We notice that for any pair of buckets Pi, Pi+1 it holds
|u(Pi)∩u(Pi+1)| ≤ 1, see Figure 2. We slightly abuse the notation and we use Pi to represent
both the i-th bucket and the set of points in the i-th bucket.

For each bucket Pi, we take all combinatorially different (hyper)rectangles Ri defined by
the points Pi. For each such rectangle r, we precompute and store the entropy H(Pi∩r) along
with the number of points n(Pi∩ r) = |Pi∩ r|. In addition, we store u+(r), the color with the
maximum value (with respect to the permutation of the colors)in r∩Pi. Furthermore, we store
u−(r), the color with the minimum value in r∩Pi. Let n+(r) = |{p ∈ r∩Pi | u(p) = u+(r)}|
and n−(r) = |{p ∈ r ∩ Pi | u(p) = u−(r)}|. Finally, for each bucket Pi we construct a
modified range tree T ′

i over all Ri, such that given a query rectangle R it returns the maximal
rectangle r ∈ Ri that lies completely inside R. We note that r ∩ Pi = R ∩ Pi. This can be
done by representing the d-dimensional hyper-rectangles as 2d-dimensional points merging
the coordinates of two of their corners.

ICDT 2024

6:10 Range Entropy Queries and Partitioning

Overall, we need O(n log2d−1 n) space for the modified range trees T ′
i , and O(n1−t ·

n2dt) = O(n(2d−1)t+1) space to store all additional information (entropy, counts, max/min
color) in each rectangle. This is because there are O(n1−t) buckets, and in each bucket
there are O(n2dt) combinatorially different rectangles. Overall, our data structure has
O

(
n log2d−1 n + n(2d−1)t+1

)
space.

Query Procedure. We are given a query (hyper)rectangle R. We visit the buckets P1, . . . PK

in order and compute the entropy for R ∩ (P1 ∪ . . . ∪ Pi). Let H be the overall entropy we
have computed so far. For each bucket Pi we do the following: First we run a query using T ′

i

to find ri ∈ Ri that lies completely inside R. Then we update the entropy H considering the
items in Pi ∩ ri. If u−(ri−1) = u+(ri) then we update the entropy H by removing n−(ri−1)
points with color u−(ri−1) using Equation 4. Then we insert n−(ri−1) + n+(ri) points of
color u+(ri) in H using Equation 3. Finally, we remove n+(ri) points of color u+(ri) from the
precomputed H(Pi∩ri) using Equation 4 and we merge the updated H with H(Pi∩ri) using
Equation 2. We note that in the last step we can merge the updated H with the updated
H(Pi ∩ ri) because no color from the points used to compute the current H is appeared in
the points used to compute the current H(Pi ∩ ri). On the other hand, if u−(ri−1) ̸= u+(ri),
then we merge the entropies H and H(Pi ∩ ri) using directly Equation 2.

In each bucket Pi we need O(log2d n) to identify the maximal rectangle ri inside R. Then
we need O(1) time to update the current entropy H. Overall, we need O(n1−t log2d n) time.

Fast Construction. All range trees can be computed in O(n log2d n) time. Next, we focus
on computing H(Pi ∩ r) for all rectangles r ∈ Ri. We compute the other quantities n(Pi ∩ r),
u−(r), and u+(r) with a similar way. A straightforward way is to consider every possible
rectangle r and compute independently the entropy in linear time. There are O(n2dt)
rectangles so the running time is O(n2dt+1). We propose a faster construction algorithm.

The main idea is to compute the entropy for rectangles in a specific order. In particular,
we compute the entropy of rectangles that contain c points after we compute the entropies
for rectangles that contain c− 1 points. Then we use Equations 3, 4 to update the entropy
of the new rectangle without computing it from scratch. Overall, we construct the data
structure in O(n(2d−1)t+1 logd+1 n) time. We describe the missing details in the full version
of the paper [27].

▶ Theorem 8. Let P be a set of n points in Rd, where each point is associated with a color,
and let t ∈ [0, 1] be a parameter. A data structure of O(n log2d−1 n + n(2d−1)t+1) size can be
computed in O(n log2d n + n(2d−1)t+1 logd+1 n) time, such that given a query hyper-rectangle
R, H(P ∩R) can be computed in O(n1−t log2d n) time.

5 Approximate Data Structures

In this section we describe data structures that return the entropy in a query range, approx-
imately. First, we provide a data structure that returns an additive approximation of the
entropy and next we provide a data structure that returns a multiplicative approximation
efficiently. Finally, for d = 1, we design a deterministic and more efficient data structure that
returns an additive and multiplicative approximation of the entropy.

S. Krishnan and S. Sintos 6:11

5.1 Additive approximation
In this Subsection, we construct a data structure on P such that given a query rectangle R

and a parameter ∆, it returns a value h such that H(P ∩R)−∆ ≤ h ≤ H(P ∩R) + ∆. The
intuition comes from the area of finding an additive approximation of the the entropy of an
unknown distribution in the dual access model [13].

Let D be a fixed distribution over a set of values α1, . . . , αN . Each value αi has a
probability D(αi) which is not known, such that

∑N
i=1 D(αi) = 1. The authors in [13] show

that if we ask O
(

log2 N
∆ log N

∆2

)
sample queries in the dual access model, then we can get a ∆

additive-approximation of the entropy of D with high probability in O
(

log2 N
∆ log N

∆2 S
)

time,
where S is the running time to get a sample. In the dual access model, we consider that
we have a dual oracle for D which is a pair of oracles (SAMPD, EVALD). When required,
the sampling oracle SAMPD returns a value αi with probability D(αi), independently of all
previous calls to any oracle. Furthermore, the evaluation oracle EVALD takes as input a
query element αi and returns the probability weight D(αi).

Next, we describe how the result above can be used in our setting. The goal in our
setting is to find the entropy H(P ′), where P ′ = P ∩R, for a query rectangle R. The colors
in u(P ′) define the distinct values in distribution D. By definition, the number of colors
is bounded by |P ′| = O(n). The probability weight is defined as |P ′(ui)|

|P ′| . We note that
in [13] they assume that they know N , i.e., the number of values in distribution D. In our
case, we cannot compute the number of colors |u(P ′)| efficiently. Even though we can easily
compute an O(logd n) approximation of |u(P ′)|, it is sufficient to use the loose upper bound
|u(P ′)| ≤ n. This is because, without loss of generality, we can assume that there exist
n− |u(P ′)| values/colors with probability (arbitrarily close to) 0. All the results still hold.
Next we present our data structure to simulate the dual oracle.

Data structure. For each color ui ∈ U we construct a range tree Ti on P (ui) for range
counting queries. We also construct another range tree T on P for range counting queries,
which is independent of the color. Next, we construct a range tree S on P for range sampling
queries. In particular, by pre-computing the number of points stored in the subtree of each
node of the range tree, we can return a sample in a query region efficiently. For more details
the reader can check the full version of the paper [27], and [1,2, 26,32,37,39,40] where the
authors propose a data structure for finding k samples in a query region efficiently1. We need
O(n logd n) time to construct all the range trees, while the overall space is O(n logd−1 n).

Query procedure. The query procedure involves the algorithm for estimating the entropy
of an unknown distribution in the dual access model [13]. Here, we only need to describe
how to execute the oracles SAMPD and EVALD in P ′ = P ∩R using the data structure.

SAMPD: Recall that SAMPD returns αi with probability D(αi). In our setting, values
α1, . . . , αn correspond to colors. So, the goal is to return a color ui with probability
proportional to the number of points with color ui in P ′. Indeed, S returns a point p

uniformly at random in P ′. Hence, the probability that a point with color ui is found is
|P ′(ui)|

|P ′| .

1 While it is known how to get k independent weighted samples in a query hyper-rectangle in O(logd n +
k log n) time [32], the overall asymptotic query time of our problem remains the same if we use a range
tree as described in [27] with O(k logd n) query time.

ICDT 2024

6:12 Range Entropy Queries and Partitioning

EVALD: Recall that given a value αi, EVALD returns the probability weightD(αi).
Equivalently, in our setting, given a color ui, the goal is to return |P ′(ui)|

|P ′| . Using Ti we
run a counting query in the query rectangle R and find |P ′(ui)|. Then using T , we run a
counting query in R and we get |P ′|. We divide the two quantities and return the result.

In each iteration, every oracle call SAMPD and EVALD executes a constant number of range
tree queries, so the running time is O(logd n). The algorithm presented in [13] calls the
oracles O(log2 n

∆ log n

∆2) times to guarantee the result with probability at least 1 − 1/n, so
the overall query time is O

(
logd+1 n·log2 n

∆
∆2

)
. We note that if ∆ < 1√

n
then the query time

is Ω(n log n). However, it is trivial to compute the entropy in P ∩ R in O(n log n) time
by traversing all points in P ∩ R. Hence, the additive approximation is non-trivial when
∆ ≥ 1√

n
. In this case, log2 n

∆2 = O(log2 n). We conclude that the query time is bounded by

O
(

logd+3 n
∆2

)
. We conclude with the next theorem.

▶ Theorem 9. Let P be a set of n points in Rd, where each point is associated with a color.
A data structure of O(n logd−1 n) size can be computed in O(n logd n) time, such that given a
query hyper-rectangle R and a real parameter ∆, a value h can be computed in O

(
logd+3 n

∆2

)
time, such that H(P ∩R)−∆ ≤ h ≤ H(P ∩R) + ∆, with high probability.

This data structure can be made dynamic under arbitrary insertions and deletions of points
using well known techniques [9, 21,33,34]. The update time is O(logd n).

5.2 Multiplicative approximation
In this Subsection, we construct a data structure such that given a query rectangle R and
a parameter ε, it returns a value h such that 1

1+ε H(P ∩ R) ≤ h ≤ (1 + ε)H(P ∩ R). The
intuition comes for the area of finding a multiplicative approximation of the the entropy
of an unknown distribution in the dual access model [23] and the streaming algorithms for
finding a multiplicative approximation of the the entropy [14]. In particular, in this section
we extend the streaming algorithm proposed in [14] to work in the query setting.

We use the notation from the previous Subsection where D is an unknown distribution
over a set of values α1, . . . , αN . It is known [23] that if we ask O

(
log N
ε2·H′

)
queries in the

dual access model, where H ′ is a lower bound of the actual entropy of D, i.e., H(D) ≥ H ′,
then we can get an (1 + ε)-multiplicative approximation of the entropy of D with high
probability, in O

(
log N
ε2·H′S

)
time, where S is the time to get a sample. We consider that we

have a dual oracle for D which is a pair of oracles (SAMPD, EVALD), as we had in additive
approximation. Similarly to the additive approximation, in our setting we do not know the
number of colors in P ′ = P ∩R or equivalently the number of values N in distribution D.
However it is sufficient to use the upper bound |u(P ′)| ≤ n considering n − |u(P ′)| colors
with probability (arbitrarily close to) 0. If we use the same data structure constructed for
the additive approximation, we could solve the multiplicative-approximation, as well. While
this is partially true, there is a big difference between the two problems. What if the actual
entropy is very small so H ′ is also extremely small? In this case, the factor 1

H′ will be very
large making the query procedure slow.

We overcome this technical difficulty by considering two cases. If H ′ is large, say H ′ ≥ 0.9,
then we can compute a multiplicative approximation of the entropy efficiently applying [23].
On the other hand, if H ′ is small, say H ′ < 0.9, then we use the ideas from [14] to design an
efficient data structure. In particular, we check if there exists a value aM with D(aM) > 2/3.

S. Krishnan and S. Sintos 6:13

If it does not exist then H ′ is large so it is easy to handle. If aM exists, we write H(D) as a
function of H(D \ {aM}) using Equation 4. In the end, if we get an additive approximation
of H(D \ {aM}) we argue that this is sufficient to get a multiplicative approximation of H ′.

Data Structure. For each color ci we construct a range tree Ti over P (ui) as in the previous
Subsection. Similarly, we construct a range tree T over P for counting queries. We also
construct the range tree S for returning unifroms samples in a query rectangle. In addition
to S, we also construct a variation of this range tree, denoted by S̄. Given a query rectangle
R and a color ci, S̄ returns a point from {p ∈ R ∩ P | u(p) ̸= ci} uniformly at random. In
other words, S̄ is a data structure over P that is used to return a point in a query rectangle
uniformly at random excluding points of color ci. While S̄ is an extension of S, the low level
details are more tedious. We describe S̄ in the full version of the paper [27].

The complexity of the proposed data structure is dominated by the complexity of S̄.
Overall, it can be computed in O(n logd n) time and it has O(n logd n) space.

Query procedure. First, using T we get N = |P ∩R|. Using S we get log(2n)
log 3 independent

random samples from P ∩R. Let PS be the set of returned samples. For each p ∈ PS with
u(p) = ui, we run a counting query in Ti to get Ni = |P (ui) ∩R|. Finally, we check whether
Ni

N > 2/3. If we do not find a point p ∈ PS (assuming u(p) = ui) with Ni

N > 2/3 then we
run the algorithm from [23]. In particular, we set H ′ = 0.9 and we run O

(
log n
ε2·H′

)
oracle

queries SAMPD or EVALD, as described in [23]. In the end we return the estimate h. Next,
we assume that the algorithm found a point with color ui satisfying Ni

N > 2/3. Using S̄
(instead of S) we run the query procedure of the previous Subsection and we get an ε-additive
approximation of H((P \ P (ui)) ∩ R), i.e., the entropy of the points in P ∩ R excluding
points of color ci. Let h′ be the ε-additive approximation we get. In the end, we return the
estimate h = N−Ni

N · h′ + Ni

N log N
Ni

+ N−Ni

N log N
N−Ni

.

Correctness. It is straightforward to see that if there exists a color ui containing more
than 2/3’s of all points in P ∩R then ui ∈ u(PS) with high probability. For completeness,
in [27] we prove that this is the case with probability at least 1− 1/(2n). Hence, with high
probability, we make the correct decision.

If there is not such color, then in the full version [27] we show that the entropy in this
case should be H(P ∩R) > 0.9. Hence, O

(
log n

ε2

)
oracle queries are sufficient to derive an

(1 + ε)-multiplicative approximation of the correct entropy.
The interesting case is when we find a color ui such that Ni

N > 2/3 and Ni

N < 1 (if Ni

N = 1
then H(P ∩R) = 0). Using the results of the previous Subsection along with the new data
structure S̄, we get h′ ∈ [H((P \ P (ui)) ∩R)− ε, H((P \ P (ui)) ∩R) + ε] with probability
at least 1 − 1/(2n). We finally show that the estimate h we return is a multiplicative
approximation of H(P ∩R). From Equation 4, we have H(P ∩R) = N−Ni

N H((P \ P (ui)) +
Ni

N log N
Ni

+ N−Ni

N log N
N−Ni

. Since h′ ∈ [H((P \P (ui))∩R)−ε, H((P \P (ui))∩R)+ε], we get
h ∈ [H(P∩R)−ε N−Ni

Ni
, H(P∩R)+ε N−Ni

Ni
]. If we show that N−Ni

Ni
≤ H(P∩R) then the result

follows. By the definition of entropy we observe that H(P ∩R) ≥ Ni

N log N
Ni

+ N−Ni

N log N
N−Ni

.
In the full version of the paper [27] we show that N−Ni

Ni
≤ Ni

N log N
Ni

+ N−Ni

N log N
N−Ni

, if
1 > Ni

N > 2/3. We conclude that h ∈ [(1− ε)H(P ∩R), (1 + ε)H(P ∩R)].

Analysis. We first run a counting query on T in O(logd n) time. Then the set PS is
constructed in O(logd+1 n) time, running O(log n) queries in S̄. In the first case of the query
procedure (no point p with Ni

N > 2/3) we run O(log n
ε2) oracle queries so in total it runs in

ICDT 2024

6:14 Range Entropy Queries and Partitioning

O(logd+1

ε2) time. In the second case of the query procedure (point p with Ni

N > 2/3) we run
the query procedure of the previous Subsection using S̄ instead of S, so it takes O(logd+3

ε2)
time. Overall, the query procedure takes O(logd+3

ε2) time.

▶ Theorem 10. Let P be a set of n points in Rd, where each point is associated with a color.
A data structure of O(n logd n) size can be computed in O(n logd n) time, such that given a
query hyper-rectangle R and a parameter ε ∈ (0, 1), a value h can be computed in O

(
logd+3 n

ε2

)
time, such that 1

1+ε H(P ∩R)≤h≤(1 + ε)H(P∩R), with high probability.

This structure can be made dynamic under arbitrary insertions and deletions of points using
well known techniques [9, 21,33,34]. The update time is O(logd n).

5.3 Efficient additive and multiplicative approximation for d = 1

Next, for d = 1, we propose a deterministic, faster approximate data structure with query
time O(polylog n) that returns an additive and multiplicative approximation of the entropy
H(P ∩R), given a query rectangle R.

Instead of using the machinery for entropy estimation on unknown distributions, we
get the intuition from data structures that count the number of colors in a query region R.
In [24], the authors presented a data structure to count/report colors in a query interval for
d = 1. In particular, they map the range color counting/reporting problem for d = 1 to the
standard range counting/reporting problem in R2. Let P be the set of n colored points in R1.
Let P̄ = ∅ be the corresponding points in R2 they construct. For every color ui ∈ U , without
loss of generality, let P (ui) = {p1, p2, . . . , pk} such that if j < ℓ then the x-coordinate of point
pj is smaller than the x-coordinate of point pℓ. For each point pj ∈ P (ui), they construct
the 2-d point p̄j = (pj , pj−1) and they add it in P̄ . If pj = p1, then p̄1 = (p1,−∞). Given a
query interval R = [l, r] in 1-d, they map it to the query rectangle R̄ = [l, r]× (−∞, l). It is
straightforward to see that a point of color ui exists in R if and only if R̄ contains exactly
one transformed point of color ui. Hence, using a range tree T̄ on P̄ they can count (or
report) the number of colors in P ∩R efficiently. While this is more than enough to count
or report the colors in P ∩ R, for the entropy we also need to know (in fact precompute)
the number of points of each color ui in P ′, along with the actual entropy in each canonical
subset. Notice that a canonical subset/node in T̄ might belong to many different query
rectangles R̄ that correspond to different query intervals R. Even though a point of color
ui appears only once in R̄ ∩ P̄ , there can be multiple points with color ui in R ∩ P . Hence,
there is no way to know in the preprocessing phase the exact number of points of each color
presented in a canonical node of T̄ . We overcome this technical difficulty by pre-computing
for each canonical node v in T̄ , monotone pairs with approximate values of (interval, number
of points), and (interval, entropy) over a sufficiently large number of intervals. Another issue
is that entropy is not monotone, so we split it into two monotone functions and we handle
each of them separately until we merge them in the end to get the final estimation.

Before we start describing the data structure we prove some useful properties that we
need later. For a set of colored points P ′ ⊆ P , with N = |P ′|, let F (P ′) = N · H(P ′) =∑

ui∈u(P ′) Ni · log N
Ni

, where Ni is the number of points in P ′ with color ui. We prove the
next lemma in the full version [27].

▶ Lemma 11. The function F (·) is monotonically increasing. Furthermore, F (P ′) =
O(N log N), and the smallest non-zero value that F (·) can take is at least log N .

S. Krishnan and S. Sintos 6:15

Data structure. We apply the same mapping from P to P̄ as described above [24] and
construct a range tree T̄ on P̄ . Then we visit each canonical node v of T̄ . If node v contains
two points with the same color then we can skip it because this node will not be returned
as a canonical node for any query R̄. Let v be a node such that P̄v does not contain two
points with the same color. Let also xv be the smallest x-coordinate of a point in P̄v. Finally,
let Uv = u(P̄v), and P (Uv) = {p ∈ P | u(p) ∈ Uv}. Notice that P (Uv) is a subset of P and
not of P̄ . We initialize an empty array Sv of size O(log n

ε). Each element Sv[i] stores the
maximum x coordinate such that (1 + ε)i ≥ |P (Uv) ∩ [xv, x]|. Furthermore, we initialize an
empty array Hv of size O(log n

ε). Each element Hv[i] stores the maximum x coordinate such
that (1 + ε)i ≥ F (P (Uv) ∩ [xv, x]). We notice that both functions F (·), and cardinality of
points are monotonically increasing. For every node of T̄ we use O(log n

ε) space, so in total,
the space of our data structure is O(n

ε log2 n). In the full version of the paper [27] we show
how we can construct the data structure T̄ in O(n

ε log5 n) time.

Query procedure. Given a query interval R = [a, b], we run a query in T̄ using the query
range R̄. Let V = {v1, . . . , vk} be the set of k = O(log2 n) returned canonical nodes. For
each node v ∈ V we run a binary search in array Sv and a binary search in Hv with key b.
Let ℓS

v be the minimum index such that b ≤ Sv[ℓS
v] and ℓH

v be the minimum index such that
b ≤ Hv[ℓH

v]. From their definitions, it holds that |P (Uv)∩R| ≤ (1+ε)ℓS
v ≤ (1+ε)|P (Uv)∩R|,

and F (P (Uv) ∩ R) ≤ (1 + ε)ℓH
v ≤ (1 + ε)F (P (Uv) ∩ R). Hence, we can approximate the

entropy of P (Uv) ∩R, defining Hv = (1+ε)ℓH
v

(1+ε)ℓS
v −1 . The next Lemma shows that Hv is a good

approximation of H(P (Uv) ∩R).

▶ Lemma 12. It holds that H(P (Uv) ∩R) ≤ Hv ≤ (1 + ε)2H(P (Uv) ∩R).

Proof. We have Hv = (1+ε)ℓH
v

(1+ε)ℓS
v −1 . From their definitions, we have that |P (Uv) ∩ R| ≤

(1+ε)ℓS
v ≤ (1+ε)|P (Uv)∩R|, and F (P (Uv)∩R) ≤ (1+ε)ℓH

v ≤ (1+ε)F (P (Uv)∩R). It also holds
that (1 + ε)ℓS

v −1 ≤ |P (Uv)∩R| and (1 + ε)ℓS
v −1 ≥ |P (Uv)∩R|

(1+ε) . Hence Hv ≤ (1+ε)F (P (Uv)∩R)
|P (Uv)∩R|/(1+ε) ≤

(1 + ε)2H(P (Uv) ∩R). Furthermore, Hv ≥ F (P (Uv)∩R)
|P (Uv)∩R| = H(P (Uv) ∩R). ◀

We find the overall entropy by merging together pairs of canonical nodes. Notice that we
can do it easily using Equation 2 because all colors are different between any pair of nodes
in V . For example, we apply Equation 2 for two nodes v, w ∈ V as follows:

(1+ε)ℓS
v Hv+(1+ε)ℓS

w Hw+(1+ε)ℓS
v log

(
(1+ε)ℓS

v +(1+ε)ℓS
w

(1+ε)ℓS
v −1

)
+(1+ε)ℓS

w log
(

(1+ε)ℓS
v +(1+ε)ℓS

w

(1+ε)ℓS
w−1

)
(1+ε)ℓS

v −1+(1+ε)ℓS
w−1 .

In the end we compute the overall entropy H. The next Lemma shows the correctness of our
procedure.

▶ Lemma 13. If we set ε← ε
4·c·log log n , it holds that H(P ∩R) ≤ H ≤ (1 + ε)H(P ∩R) + ε,

for a constant c > 0.

Proof. We assume that we take the union of two nodes v, w ∈ V using Equation 2. We
can use this equation because nodes v, w do not contain points with similar colors. Let
H1 = H(P (Uv) ∩ R), H2 = H(P (Uw) ∩ R), N1 = |P (Uv) ∩ R|, and N2 = |P (U2) ∩ R|. We
have

Hv,w =
(1+ε)ℓS

v Hv+(1+ε)ℓS
w Hw+(1+ε)ℓS

v log
(

(1+ε)ℓS
v +(1+ε)ℓS

w

(1+ε)ℓS
v −1

)
+(1+ε)ℓS

w log
(

(1+ε)ℓS
v +(1+ε)ℓS

w

(1+ε)ℓS
w−1

)
(1+ε)ℓS

v −1+(1+ε)ℓS
w−1 .

ICDT 2024

6:16 Range Entropy Queries and Partitioning

Using Lemma 12, we get

Hv,w ≤
(1+ε)4N1H1+(1+ε)4N2H2+(1+ε)2N1 log

(
(1+ε)2 N1+N2

N1

)
+(1+ε)2N2 log

(
(1+ε)2 N1+N2

N2

)
N1+N2

and we conclude that

Hv,w ≤ (1 + ε)4H((P (Uv) ∪ P (Uw)) ∩R) + (1 + ε)2 log(1 + ε)2.

Similarly if we have computed Hx,y for two other nodes x, y ∈ V , then

Hx,y ≤ (1 + ε)4H((P (Ux) ∪ P (Uy)) ∩R) + (1 + ε)2 log(1 + ε)2.

If we compute their union, we get

Hv,w,x,y ≤ (1+ε)6H((P (Uv)∪P (Uw)∪P (Ux)∪P (Uy))∩R)+[(1+ε)4 +(1+ε)2] log(1+ε)2.

In the end of this process we have

H ≥ H(P ∩R)

because all intermediate estimations of entropy are larger than the actual entropy. For a
constant c, it also holds that

H ≤ (1 + ε)c log(log n)H(P ∩R) +
c log(log n)/2∑

j=1
(1 + ε)2j log(1 + ε)2.

This quantity can be bounded by

H ≤ (1 + ε)c log(log n)H(P ∩R) + c log(log n)(1 + ε)c log(log n) log(1 + ε).

We have the factor log(log n) because |V | = O(log2 n) so the number of levels of recurrence
is O(log(log n)).

Next, we show that if we set ε← ε
4·c log(log n) , then H ≤ (1 + ε)H(P ∩R) + ε.

We have(
1 + ε/4

c log(log n)

)c log(log n)
≤ eε/4 ≤ 1 + ε.

The first inequality holds because of the well known inequality (1 + x/n)n ≤ ex. The second
inequality is always true for ε ∈ (0, 1). Then we have

(1 + ε)c log(log n) log
(

1 + ε

4 · c log(log n)

)
≤ 2c log(log n) log

(
1 + ε

4 · c log(log n)

)
.

Next, we show that this quantity is at most ε. Let L = c log(log n) and let

f(x) = x− 2L log
(

1 + x

4L

)
be a real function for x ∈ [0, 1]. We have

f ′(x) = 1− 2L

L ln(16) + x ln(2) .

We observe that ln(16) ≈ 2.77 and x ln(2) ≥ 0 so f ′(x) ≥ 0 and f is monotonically increasing.
So f(x) ≥ f(0) = 0. Hence, for any ε ∈ [0, 1] we have

ε− 2L log
(

1 + ε

4L

)
≥ 0.

We conclude with

H ≤ (1 + ε)H(P ∩R) + ε. ◀

S. Krishnan and S. Sintos 6:17

We need O(log2 n) time to get V from T̄ . Then, we run binary search for each node
v ∈ V so we spend O(log2 n log log n log log n

ε) = O(log2 n log log n
ε) time. We merge and update

the overall entropy in time O(|V |), so in total the query time is O(log2 n log log n
ε).

▶ Theorem 14. Let P be a set of n points in R1, where each point is associated with a color,
and let ε ∈ (0, 1) be a parameter. A data structure of O(n

ε log2 n) size can be computed in
O(n

ε log5 n) time, such that given a query hyper-rectangle R, a value h can be computed in
O

(
log2 n log log n

ε

)
time, such that H(P ∩R) ≤ h ≤ (1 + ε)H(P ∩R) + ε.

6 Partitioning

The new data structures can be used to accelerate some partitioning algorithms with respect
to the (expected) entropy. Let DS be one of our new data structures over n items that can
be constructed in O(P (n)) time, has O(S(n)) space, and given a query range R, returns a
value h in O(Q(n)) time such that 1

α H − β ≤ h ≤ α ·H + β, where H is the entropy of the
items in R, and α ≥ 1, β ≥ 0 two error thresholds. On the other hand, the straightforward
way to compute the (expected) entropy without using any data structure has preprocessing
time O(1), query time O(n) and it returns the exact entropy in a query range.

In most cases we consider the expected entropy to partition the dataset as this is mostly
the case in entropy-based partitioning and clustering algorithms. Except of being a useful
quantity bounding both the uncertainty and the size of a bucket, it is also monotone. All
our data structures can work for both the entropy and expected entropy quantity almost
verbatim. We define two optimization problems. Let MaxPart be the problem of constructing
a partitioning with k buckets that maximizes/minimizes the maximum (expected) entropy in
a bucket. Let SumPart be the problem of constructing a partitioning with k buckets that
maximizes/minimizes the sum of (expected) entropies over the buckets. For simplicity, in
order to compare the running times, we skip the log(n) factors from the running times.

Partitioning for d = 1. We can easily solve MaxPart using dynamic programming: DP[i, j] =
minℓ<i max{DP[i− ℓ, j − 1], Error[i− ℓ + 1, i])}, where DP[i, j] is the minimum max entropy
of the first i items using j buckets, and Error[i, j] is the expected entropy among the items
i and j. Since Error is monotone, we can find the the optimum DP[i, j] running a binary
search on ℓ, i.e., we do not need to visit all indexes ℓ < i one by one to find the optimum.
Without using any data structure the running time to find DP[n, k] is O(kn2). Using DS,
the running time for partitioning is O(P (n) + knQ(n)). If we use the data structure from
Section 4.1 for t = 0.5, then the running time is O (kn

√
n) = o(kn2).

Next we consider approximation algorithms for the MaxPart and SumPart problems.
It is easy to observe that the maximum value and the minimum non-zero value of the

optimum solution of MaxPart are bounded polynomially on n. Let [lM , rM] be the range
of the optimum values. We discretize the range [lM , rM] by a multiplicative factor (1 + ε).
We run a binary search on the discrete values. For each value e ∈ [lM , rM] we consider, we
construct a new bucket by running another binary search on the input items, trying to expand
the bucket until its expected entropy is at most e. We repeat the same for all buckets and
we decide if we should increase or decrease the error e in the next iteration. In the end the
solution we find is within an (1 + ε) factor far from the max expected entropy in the optimum
partitioning. Without using any data structure, we need O(n log 1

ε) time to construct the
partitioning. If we use DS we need time O

(
P (n) + kQ(n) log 1

ε

)
. If we use the data structure

ICDT 2024

6:18 Range Entropy Queries and Partitioning

in Subsection 5.2 we have partition time O
(
n + k

ε2 log 1
ε

)
= o

(
n log 1

ε

)
. If we allow a ∆

additive approximation in addition to the (1 + ε) multiplicative approximation, we can use
the data structure in Subsection 5.1 having partition time O

(
n + k

∆2 log 1
ε

)
= o

(
n log 1

ε

)
.

Next, we focus on the SumPart problem. It is known from [22] (Theorems 5, 6) that if the
error function is monotone (such as the expected entropy) then we can get a partitioning with
(1 + ε)-multiplicative approximation in O

(
P (n) + k3

ε2 Q(n)
)

time. Hence, the straightforward
solution without using a data structure returns an (1 + ε)-approximation of the optimum
partitioning in O

(
k3

ε2 n
)

time. If we use the data structure from Subsection 5.2 we have

running time O
(

n + k3

ε4

)
, which is o

(
k3

ε2 n
)

and multiplicative error (1 + ε)2. If we set
ε← ε/3 then in the same asymptotic running time we have error (1 + ε). If we also allow
∆ · n additive approximation, we can use the additive approximation DS from Subsection 5.1.
The running time will be O

(
n + k3

ε2∆2

)
= o

(
k3

ε2 n
)

.

Partitioning for d > 1. Partitioning and constructing histograms in high dimensions is
usually a very challenging task, since most of the known algorithms with theoretical guarantees
are very expensive [18]. However, there is a practical method with some conditional error
guarantees, that works very well in any constant dimension d and it has been used in a few
papers [5,30,31]. The idea is to construct a tree having a rectangle containing all points in the
root. In each iteration of the algorithm, we choose to split (on the median in each coordinate
or find the best split) the (leaf) node with the minimum/maximum (expected) entropy. As
stated in previous papers, let make the assumption that an optimum algorithm for either
MaxPart or SumPart is an algorithm that always chooses to split the leaf node with the
smallest/largest expected entropy. Using the straightforward solution without data structures,
we can construct an “optimum” partitioning in O(kn) time by visiting all points in every new
generated rectangle. Using DS, the running time of the algorithm is O(P (n) + kQ(n)). In
order to get an optimum solution we use DS from Subsection 4.2. The overall running time is
O(n(2d−1)t+1 + kn1−t). This is minimized for n(2d−1)t+1 = kn1−t ⇔ t = t∗ = log k

2d log n , so the
overall running time is O(kn1−t∗) = o(kn). If we allow (1 + ε)-multiplicative approximation
we can use the DS from Subsection 5.2. The running time will be O

(
n + k

ε2

)
= o(kn). If we

allow a ∆-additive approximation, then we can use the DS from Subsection 5.1 with running
time O

(
n + k

∆2

)
= o(kn).

7 Conclusion

In this work, we presented efficient data structures for computing (exactly and approximately)
the entropy of the points in a rectangular query in sub-linear time. Using our new data
structures we can accelerate partitioning algorithms for columnar compression (Example 1)
and histogram construction (Example 2). Furthermore, we can accelerate the exploration of
high uncertainty regions for data cleaning (Example 3).

There are multiple interesting open problems derived from this work. i) Our approximate
data structures are dynamic but our exact data structures are static. Is it possible to have
dynamic data structure for returning the exact entropy? ii) We showed a lower bound for
designing exact data structures when P ∈ Rd for d ≥ 2. Does the lower bound extend
for d = 1? iii) There is still a gap between the proposed lower bound and upper bound.
An interesting problem is to close that gap. iv) Can we extend the faster deterministic
approximation data structure from Subsection 5.3 in higher dimensions?

S. Krishnan and S. Sintos 6:19

References
1 Peyman Afshani and Jeff M Phillips. Independent range sampling, revisited again. In 35th

International Symposium on Computational Geometry (SoCG 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2019. doi:10.4230/LIPIcs.SoCG.2019.4.

2 Peyman Afshani and Zhewei Wei. Independent range sampling, revisited. In 25th Annual
European Symposium on Algorithms (ESA 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.3.

3 Pankaj K Agarwal, Nirman Kumar, Stavros Sintos, and Subhash Suri. Range-max queries on
uncertain data. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, pages 465–476, 2016. doi:10.1145/2902251.2902281.

4 Pankaj K Agarwal, Nirman Kumar, Stavros Sintos, and Subhash Suri. Range-max queries
on uncertain data. Journal of Computer and System Sciences, 94:118–134, 2018. doi:
10.1016/j.jcss.2017.09.006.

5 Linas Baltrunas, Arturas Mazeika, and Michael Bohlen. Multi-dimensional histograms with
tight bounds for the error. In 2006 10th International Database Engineering and Applications
Symposium (IDEAS’06), pages 105–112. IEEE, 2006. doi:10.1109/IDEAS.2006.31.

6 Daniel Barbará, Yi Li, and Julia Couto. Coolcat: an entropy-based algorithm for categorical
clustering. In Proceedings of the eleventh international conference on Information and knowledge
management, pages 582–589, 2002. doi:10.1145/584792.584888.

7 Tuǧkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt Rubinfeld. The complexity of
approximating entropy. In Proceedings of the thiry-fourth annual ACM symposium on Theory
of computing, pages 678–687, 2002. doi:10.1145/509907.510005.

8 Irad Ben-Gal, Shahar Weinstock, Gonen Singer, and Nicholas Bambos. Clustering users by
their mobility behavioral patterns. ACM Transactions on Knowledge Discovery from Data
(TKDD), 13(4):1–28, 2019. doi:10.1145/3322126.

9 Jon Louis Bentley and James B Saxe. Decomposable searching problems i. static-to-dynamic
transformation. Journal of Algorithms, 1(4):301–358, 1980. doi:10.1016/0196-6774(80)
90015-2.

10 Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational
geometry. In Computational geometry, pages 1–17. Springer, 1997.

11 Lakshminath Bhuvanagiri and Sumit Ganguly. Estimating entropy over data streams. In
Algorithms–ESA 2006: 14th Annual European Symposium, Zurich, Switzerland, September
11-13, 2006. Proceedings 14, pages 148–159. Springer, 2006. doi:10.1007/11841036_16.

12 Cafer Caferov, Barış Kaya, Ryan O’Donnell, and AC Say. Optimal bounds for estimating
entropy with pmf queries. In International Symposium on Mathematical Foundations of
Computer Science, pages 187–198. Springer, 2015. doi:10.1007/978-3-662-48054-0_16.

13 Clément Canonne and Ronitt Rubinfeld. Testing probability distributions underlying aggreg-
ated data. In International Colloquium on Automata, Languages, and Programming, pages
283–295. Springer, 2014. doi:10.1007/978-3-662-43948-7_24.

14 Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-optimal algorithm for
computing the entropy of a stream. In SODA, volume 7, pages 328–335. Citeseer, 2007. URL:
http://dl.acm.org/citation.cfm?id=1283383.1283418.

15 Amit Chakrabarti, Khanh Do Ba, and S Muthukrishnan. Estimating entropy and entropy
norm on data streams. Internet Mathematics, 3(1):63–78, 2006. doi:10.1080/15427951.2006.
10129117.

16 Xu Chu, John Morcos, Ihab F Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang, and Yin
Ye. Katara: A data cleaning system powered by knowledge bases and crowdsourcing. In
Proceedings of the 2015 ACM SIGMOD international conference on management of data,
pages 1247–1261, 2015. doi:10.1145/2723372.2749431.

17 Peter Clifford and Ioana Cosma. A simple sketching algorithm for entropy estimation over
streaming data. In Artificial Intelligence and Statistics, pages 196–206. PMLR, 2013. URL:
http://proceedings.mlr.press/v31/clifford13a.html.

ICDT 2024

https://doi.org/10.4230/LIPIcs.SoCG.2019.4
https://doi.org/10.4230/LIPIcs.ESA.2017.3
https://doi.org/10.1145/2902251.2902281
https://doi.org/10.1016/j.jcss.2017.09.006
https://doi.org/10.1016/j.jcss.2017.09.006
https://doi.org/10.1109/IDEAS.2006.31
https://doi.org/10.1145/584792.584888
https://doi.org/10.1145/509907.510005
https://doi.org/10.1145/3322126
https://doi.org/10.1016/0196-6774(80)90015-2
https://doi.org/10.1016/0196-6774(80)90015-2
https://doi.org/10.1007/11841036_16
https://doi.org/10.1007/978-3-662-48054-0_16
https://doi.org/10.1007/978-3-662-43948-7_24
http://dl.acm.org/citation.cfm?id=1283383.1283418
https://doi.org/10.1080/15427951.2006.10129117
https://doi.org/10.1080/15427951.2006.10129117
https://doi.org/10.1145/2723372.2749431
http://proceedings.mlr.press/v31/clifford13a.html

6:20 Range Entropy Queries and Partitioning

18 Graham Cormode, Minos Garofalakis, Peter J Haas, Chris Jermaine, et al. Synopses for
massive data: Samples, histograms, wavelets, sketches. Foundations and Trends® in Databases,
4(1–3):1–294, 2011. doi:10.1561/1900000004.

19 Juan David Cruz, Cécile Bothorel, and François Poulet. Entropy based community detection
in augmented social networks. In 2011 International Conference on computational aspects of
social networks (CASoN), pages 163–168. IEEE, 2011. doi:10.1109/CASON.2011.6085937.

20 Pooya Davoodi, Michiel Smid, and Freek van Walderveen. Two-dimensional range diameter
queries. In Latin American Symposium on Theoretical Informatics, pages 219–230. Springer,
2012. doi:10.1007/978-3-642-29344-3_19.

21 J. Erickson. Static-to-dynamic transformations. http://jeffe.cs.illinois.edu/teaching/
datastructures/notes/01-statictodynamic.pdf.

22 Sudipto Guha, Nick Koudas, and Kyuseok Shim. Approximation and streaming algorithms
for histogram construction problems. ACM Transactions on Database Systems (TODS),
31(1):396–438, 2006. doi:10.1145/1132863.1132873.

23 Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian. Streaming and sublinear
approximation of entropy and information distances. In Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm, pages 733–742, 2006. URL: http:
//dl.acm.org/citation.cfm?id=1109557.1109637.

24 Prosenjit Gupta, Ravi Janardan, and Michiel Smid. Further results on generalized intersection
searching problems: counting, reporting, and dynamization. Journal of Algorithms, 19(2):282–
317, 1995. doi:10.1006/jagm.1995.1038.

25 Nicholas JA Harvey, Jelani Nelson, and Krzysztof Onak. Sketching and streaming entropy via
approximation theory. In 2008 49th Annual IEEE Symposium on Foundations of Computer
Science, pages 489–498. IEEE, 2008. doi:10.1109/FOCS.2008.76.

26 Xiaocheng Hu, Miao Qiao, and Yufei Tao. Independent range sampling. In Proceedings of the
33rd ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
246–255, 2014. doi:10.1145/2594538.2594545.

27 Sanjay Krishnan and Stavros Sintos. Range entropy queries and partitioning. CoRR,
abs/2312.15959, 2023. doi:10.48550/arXiv.2312.15959.

28 Ping Li and Cun-Hui Zhang. A new algorithm for compressed counting with applications in
shannon entropy estimation in dynamic data. In Proceedings of the 24th Annual Conference on
Learning Theory, pages 477–496. JMLR Workshop and Conference Proceedings, 2011. URL:
http://proceedings.mlr.press/v19/li11a/li11a.pdf.

29 Tao Li, Sheng Ma, and Mitsunori Ogihara. Entropy-based criterion in categorical clustering.
In Proceedings of the twenty-first international conference on Machine learning, page 68, 2004.
doi:10.1145/1015330.1015404.

30 Xi Liang, Stavros Sintos, and Sanjay Krishnan. JanusAQP: Efficient partition tree maintenance
for dynamic approximate query processing. In 2023 IEEE 39th International Conference on
Data Engineering (ICDE), pages 572–584. IEEE, 2023. doi:10.1109/ICDE55515.2023.00050.

31 Xi Liang, Stavros Sintos, Zechao Shang, and Sanjay Krishnan. Combining aggregation and
sampling (nearly) optimally for approximate query processing. In Proceedings of the 2021
International Conference on Management of Data, pages 1129–1141, 2021. doi:10.1145/
3448016.3457277.

32 Andres Lopez Martinez. Parallel minimum cuts: An improved crew pram algorithm. Master’s
thesis. KTH, School of Electrical Engineering and Computer Science (EECS), 2020.

33 Mark H Overmars. The design of dynamic data structures, volume 156. Springer Science &
Business Media, 1983. doi:10.1007/BFb0014927.

34 Mark H Overmars and Jan van Leeuwen. Worst-case optimal insertion and deletion methods
for decomposable searching problems. Information Processing Letters, 12(4):168–173, 1981.
doi:10.1016/0020-0190(81)90093-4.

https://doi.org/10.1561/1900000004
https://doi.org/10.1109/CASON.2011.6085937
https://doi.org/10.1007/978-3-642-29344-3_19
http://jeffe.cs.illinois.edu/teaching/datastructures/notes/01-statictodynamic.pdf
http://jeffe.cs.illinois.edu/teaching/datastructures/notes/01-statictodynamic.pdf
https://doi.org/10.1145/1132863.1132873
http://dl.acm.org/citation.cfm?id=1109557.1109637
http://dl.acm.org/citation.cfm?id=1109557.1109637
https://doi.org/10.1006/jagm.1995.1038
https://doi.org/10.1109/FOCS.2008.76
https://doi.org/10.1145/2594538.2594545
https://doi.org/10.48550/arXiv.2312.15959
http://proceedings.mlr.press/v19/li11a/li11a.pdf
https://doi.org/10.1145/1015330.1015404
https://doi.org/10.1109/ICDE55515.2023.00050
https://doi.org/10.1145/3448016.3457277
https://doi.org/10.1145/3448016.3457277
https://doi.org/10.1007/BFb0014927
https://doi.org/10.1016/0020-0190(81)90093-4

S. Krishnan and S. Sintos 6:21

35 Mihai Patrascu and Liam Roditty. Distance oracles beyond the thorup-zwick bound. In 2010
IEEE 51st Annual Symposium on Foundations of Computer Science, pages 815–823. IEEE,
2010. doi:10.1109/FOCS.2010.83.

36 Saladi Rahul and Ravi Janardan. Algorithms for range-skyline queries. In Proceedings of the
20th International Conference on Advances in Geographic Information Systems, pages 526–529,
2012. doi:10.1145/2424321.2424406.

37 Yufei Tao. Algorithmic techniques for independent query sampling. In Proceedings of the
41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages
129–138, 2022. doi:10.1145/3517804.3526068.

38 Hien To, Kuorong Chiang, and Cyrus Shahabi. Entropy-based histograms for selectivity
estimation. In Proceedings of the 22nd ACM international conference on Information &
Knowledge Management, pages 1939–1948, 2013. doi:10.1145/2505515.2505756.

39 Lu Wang, Robert Christensen, Feifei Li, and Ke Yi. Spatial online sampling and aggregation.
Proceedings of the VLDB Endowment, 9(3):84–95, 2015. doi:10.14778/2850583.2850584.

40 Dong Xie, Jeff M Phillips, Michael Matheny, and Feifei Li. Spatial independent range sampling.
In Proceedings of the 2021 International Conference on Management of Data, pages 2023–2035,
2021. doi:10.1145/3448016.3452806.

ICDT 2024

https://doi.org/10.1109/FOCS.2010.83
https://doi.org/10.1145/2424321.2424406
https://doi.org/10.1145/3517804.3526068
https://doi.org/10.1145/2505515.2505756
https://doi.org/10.14778/2850583.2850584
https://doi.org/10.1145/3448016.3452806

	1 Introduction
	2 Preliminaries
	3 Lower Bound
	4 Exact Data Structures
	4.1 Efficient data structure for d = 1
	4.2 Efficient data structure for d > 1

	5 Approximate Data Structures
	5.1 Additive approximation
	5.2 Multiplicative approximation
	5.3 Efficient additive and multiplicative approximation for d = 1

	6 Partitioning
	7 Conclusion

