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Abstract
When extracting a relation of spans (intervals) from a text document, a common practice is to filter
out tuples of the relation that are deemed dominated by others. The domination rule is defined
as a partial order that varies along different systems and tasks. For example, we may state that a
tuple is dominated by tuples that extend it by assigning additional attributes, or assigning larger
intervals. The result of filtering the relation would then be the skyline according to this partial
order. As this filtering may remove most of the extracted tuples, we study whether we can improve
the performance of the extraction by compiling the domination rule into the extractor.

To this aim, we introduce the skyline operator for declarative information extraction tasks
expressed as document spanners. We show that this operator can be expressed via regular operations
when the domination partial order can itself be expressed as a regular spanner, which covers several
natural domination rules. Yet, we show that the skyline operator incurs a computational cost (under
combined complexity). First, there are cases where the operator requires an exponential blowup
on the number of states needed to represent the spanner as a sequential variable-set automaton.
Second, the evaluation may become computationally hard. Our analysis more precisely identifies
classes of domination rules for which the combined complexity is tractable or intractable.
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1 Introduction

The framework of document spanners [10] is an established formalism to express declarative
information extraction tasks. A spanner specifies the possible ways to assign variables over
a textual document, producing so-called mappings which are the result of the extraction:
each mapping assigns the variables to a factor of the document, called a span. The spanner
formalism has been defined in terms of several operators, in particular regular operations
extended with capture variables (corresponding to so-called regular spanners), operators
from relational algebra (which can sometimes be translated into regular expressions), string
equality (the so-called core spanners), etc.
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7:2 Skyline Operators for Document Spanners

Tuples extracted from text often aim to capture mentions of real-life entities and relation-
ships. In that respect, one of the studied challenges is that different extracted tuples might be
considered as conflicting with each other [11]. A common example is that of overlapping spans;
for instance, a situation where one entity mention is contained within another entity mention
is considered inconsistent. For this reason, traditional declarative systems for information
extraction provide explicit mechanisms for restricting the extracted spans to the maximal
ones according to different comparisons. IBM’s SystemT [17] has the consolidation rules
such as “contained-within” (where a span dominates its subspans) and “left-to-right” (where
a span dominates all shorter spans that begin at the same position). Similarly, the GATE
system [9] features controls such as “Appelt” (which is similar to SystemT’s “left-to-right”).
Alternatively, in the schemaless context of document spanners where we can assign spans to
only a subset of variables [18], we may want to only capture spans that assign a maximal
subset of the variables and cannot be extended by assigning more variables; in the spirit, for
instance, of the relational full disjunction [14] or the OPTIONAL operator of SPARQL [2].

To explore the expressive power of operators such as controls and consolidators, Fagin et
al. [11] proposed a framework that enriches document spanners with a previous concept of
prioritized repairs [26]. There, they defined the notion of a “denial preference-generating
dependency” (denial pgd) that expresses the binary domination relationship using the
underlying spanner language. When this relationship is transitive, the result of applying
the denial pgd is precisely the set of maximal tuples. However, they did not address the
computational complexity of this operator and, consequently, it has been left open. (Moreover,
their study does not apply to the schemaless context.)

The notion of maximal matches has been abundantly studied in other areas of database
research, where it is called the skyline operator [5]. Intuitively, the skyline of a set of results
under a partial order relation is the set of the results that are maximal, i.e., are not dominated
by another result. The complexity of skyline computation has been investigated under many
dimensions, e.g., I/O access [25], parallel computation [1], or noisy comparisons [16]. However,
we are not aware of a study of the complexity of this operator to extract the maximal matches
of document spanners. This is the focus of the present paper.

Contributions. We present our contributions together with the structure of the paper. After
some necessary preliminaries (Section 2), we first introduce in Section 3 the skyline operator.
The operator is defined as extracting the maximal mappings of a spanner on a document
with respect to a partial order on the mappings, which we call a domination relation. In
particular, we define the span inclusion, span length, variable inclusion, and left-to-right
domination relations, which cover the examples presented above.

To allow for a unified study of these operators, and similarly to [11], we propose a general
model where the domination relations are themselves expressed as document spanners. More
precisely, a domination rule is a spanner that defines a domination relation on every document:
it indicates which mappings dominate which other mappings, by intuitively capturing pairs
pm, m1q that indicate that m1 dominates m. We also focus on so-called variable-wise rules,
where the domination relation on mappings can be defined as a product of relations on spans.
In other words, a variable-wise rule is a spanner expressing which spans dominate which
spans, and the domination relation on mappings is obtained in a pointwise fashion across the
variables, like the ceteris paribus semantics for preference handling in artificial intelligence [6]
or Pareto-optimal points for skyline queries on multidimensional data [16]. All examples
introduced earlier can be expressed in this variable-wise way.
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We then begin our study of how to evaluate the skyline operator on document spanners,
and start in Section 4 with the question of expressiveness: does the operator strictly increase
the expressive power of spanner formalisms, or can it be rewritten using existing operators?
We show that regular spanners are closed under the skyline operator, generalizing a result
of [11] to the schemaless context. By contrast, we show that core spanners are not closed
under skylines, even for the fixed variable inclusion or span inclusion domination relations,
again generalizing a result of [11].

Next, we explore the question of whether it is possible to tractably rewrite the skyline
operator into regular spanners, to allow for efficient evaluation like, e.g., the polynomial-time
compilation of the join operator in the schema-based context (see [19], Lemma 4.4.7). We
present in Section 5 a lower bound establishing that this is not the case: even for variable
inclusion domination, applying the skyline operator to a spanner expressed as a sequential
variable-set automaton (VA) incurs a necessary exponential blowup. This result is shown by
identifying a connection between VAs and nondeterministic read-once branching programs
(NROBPs). This general-purpose method can be used outside of the context of skylines, and
in fact we also use it to show a result of independent interest: there are regex-formulas on
which the natural join operator incurs an unavoidable exponential blowup (Theorem 5.5).

We then move in Section 6 from state complexity to the computational complexity of
skyline evaluation for regular spanners. This task is clearly tractable in data complexity, i.e.,
for a fixed spanner and domination rule: we simply compute all captured mappings, and
filter out the non-maximal ones. More interestingly, assuming P ‰ NP, we show that the task
is intractable in combined complexity, i.e., as a function of the input spanner (Theorem 6.3),
already in the case of the variable inclusion relation. Hence, we cannot tractably evaluate
the skyline operator in combined complexity, even without compiling it to an explicit VA.

Lastly, we study in more detail how the complexity of skyline computation depends
on the fixed domination relation: are there non-trivial domination rules for which skyline
computation is tractable in combined complexity? We show in Section 7 a sufficient condition
on domination rules which is satisfied by all example rules that we mentioned and which implies
(conditional) intractability (Theorem 7.5). We then show that, for a class of domination rules
called variable-inclusion-like rules, a variant of this condition can be used for a dichotomy to
classify which of these rules enjoy tractable skyline computation (Theorem 7.7). We finish
with examples of tractable and intractable rules in the general case.

We conclude in Section 8. For reasons of space, most proofs are deferred to the full
version [4].

2 Preliminaries

Languages, spans, mappings, and spanners. We fix an alphabet Σ which is a finite set
of letters. A word w is a finite sequence of letters of Σ: we write Σ˚ for the set of all
words. We write |w| for the length of w and denote the empty word by ε, with |ε| “ 0.
A language L Ď Σ˚ is a set of words. The concatenation of two languages L1 and L2 is
the language L1 ¨ L2 “ tw1w2 | w1 P L1, w2 P L2u. The Kleene star of a language L is the
language L˚ “

Ť

iPN Li, where we define inductively L0 “ tεu and Li`1 “ L ¨ Li for all i ą 0.
As usual in the context of document spanners, a document is simply a word of Σ˚.

A span ri, jy is an interval s “ ri, jy with 0 ď i ď j. Its length is j ´ i. We denote by
Spans the set of all spans. The spans of a document d are the spans ri, jy of Spans with
j ď |d|. We write dri,jy to mean the contiguous subword of d at a span ri, jy, for example
“qwertyqwerty”r2,5y “ “qwertyqwerty”r8,11y “ “ert”. Note that we have dri,iy “ ε for all
0 ď i ď |d|. A span ri, jy is included in a span ri1, j1y if i1 ď i and j1 ě j. Two spans overlap
if there is a non-empty span included in both of them; otherwise we call them disjoint.

ICDT 2024
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We fix an infinite set Variables of variable names. A mapping m of a document d P Σ˚ is
a function from a finite set of variables X Ď Variables, called the domain dompmq of m, to
the set of spans of d; the variables of dompmq are said to be assigned by m. We denote the
set of all mappings on variables of Variables by Maps, and denote by Mapspdq the set of all
mappings on a document d, i.e., the mappings of Maps such that all spans in the image are
spans of d. A mapping m is called compatible with a mapping m1, in symbols m „ m1, if for
all x P dompmq X dompm1q we have mpxq “ m1pxq.

A spanner is a function mapping every document d to a finite set of mappings whose
spans are over d, i.e., are included in r0, |d|y. For a spanner P , we denote by SVarspP q the
variables appearing in the domain of at least one of its mappings, formally SVarspP q :“ tx P

Variables | Dd P Σ˚, Dm P P pdq, x P dompmqu. A spanner P is schema-based if all its output
mappings assign exactly the variables of SVarspP q, i.e., for every d P Σ˚ and m P P pdq, we
have dompmq “ SVarspP q. Otherwise, P is called schemaless [21], or incomplete [18]. We say
a spanner P accepts or captures a mapping m P Maps on a document d P Σ˚ if m P P pdq.

Variable-set automata. We focus mostly on the regular spanners, that can be expressed
using variable-set automata (or VAs). These are intuitively nondeterministic automata where
each transition is labeled either by a letter or by a marker indicating which variable is opened
or closed. Formally, for a set X of variables, we denote by markerspXq the set of markers
over X: it contains for each variable x P X the opening marker x$ and the closing marker %x.
Then, a VA on alphabet Σ is an automaton A “ pQ, q0, F, δq where Q is a finite set of states,
q0 P Q is the initial state, F Ď Q are the final states, and δ Ď Q ˆ pΣ Y markerspXqq ˆ Q is
the transition relation: we write the transitions q Ñσ q1 to mean that pq, σ, q1q P δ. Note that
the transitions contain both letter transitions, labeled by letters of Σ, and marker transitions,
labeled by markers of markerspXq.

A run of A on a document d P Σ˚ is a sequence ρ : q0 Ñσ1 q1 ¨ ¨ ¨ qn´1 Ñσn qn such that
the restriction of σ1 . . . σn to the letters of Σ is exactly d; it is accepting if we have qn P F .
We say that ρ is valid if, for each variable x P X, either the markers x$ and %x do not occur
in σ1 ¨ ¨ ¨ σn, or they occur exactly once and x$ occurs before %x. We say that A is sequential
if all its accepting runs are valid. In this paper, we always assume that VAs are sequential,
and only speak of VAs to mean sequential VAs. The run ρ then defines a mapping m on d by
intuitively assigning the variables for which markers are read to the span delimited by these
markers. Formally, we associate to each index 0 ď k ď n of the run a position πpkq in d by
initializing πp0q :“ 0 and setting πpk ` 1q :“ πpkq if the transition qk Ñσk`1 qk`1 reads a
marker, and πpk ` 1q :“ πpkq ` 1 if it reads a letter; note that πpnq “ |d|. Then, for each
variable x whose markers are read in ρ, letting σi “ x$ and σj “ %x with i ă j because the
run is valid, we set mpxq :“ rπpiq, πpjqy.

A sequential VA A thus defines a spanner PA that maps each document d to the set
PApdq of mappings obtained from its accepting runs as we explained. Note that different
accepting runs may yield the same mapping. We sometimes abuse notation and identify VAs
with the spanners that they define. The regular spanners are those that can be defined by
VAs, or, equivalently [18], by sequential VAs. A sequential VA is functional if it defines a
schema-based spanner, i.e., every mapping assigns every variable that occurs in the transitions
of the VA.

Regex formulas. Our examples of spanners in this paper will be given not as VAs but in the
more human-readable formalism of regex formulas. The regex formulas over an alphabet Σ
are the expressions defined inductively from the empty set H, empty word ε, and single
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letters a P Σ, using the three regular operators of disjunction (e1 _ e2), concatenation (e1e2),
and Kleene star (e˚), along with variable captures of the form xte1u where x is a variable.
A regex-formula r on a document d P Σ˚ defines a spanner on the variables occurring in r.
Intuitively, every match of r on d yields a mapping where the variables are assigned to
well-nested spans following the captures; see [10] for details. We require of regex-formulas
that, on every document d P Σ˚, they assign each variable at most once; but we allow them
to define schemaless spanners, i.e., they may only assign a subset of the variables.

It is known that regex formulas capture a strict subset of the regular spanners; see [10] in
the case of schema-based spanners and [18] for the case of schemaless spanners.

Cartesian Products. Given two spanners P1 and P2 where X1 “ SVarspP1q and X2 “

SVarspP2q are disjoint, the Cartesian product P1 ˆP2 of P1 and P2 is the spanner on variables
X1 Y X2 which on every document d captures the mappings pP1 ˆ P2qpdq :“ P1pdq ˆ P2pdq.
Here, we interpret a pair pm1, m2q P P1pdq ˆP2pdq as the merge of the two mappings, i.e., the
mapping defined according to m1 on X1 and according to m2 on X2. If P1 and P2 are given
as sequential VAs, then one can compute in polynomial time a sequential VA for P1 ˆ P2.

3 The Skyline Operator

In this paper, we define and study a new operator called the skyline operator. Its goal is to
only extract mappings that contain the maximum amount of information in a certain sense.

Domination relations. We begin by defining domination relations which describe how to
compare the information given by two mappings on a given document d.

▶ Definition 3.1. A pre-domination relation ď is a binary relation on the set of mappings
Mapspdq of d. We say that it is a domination relation if it is a (non-strict) partial order, i.e.,
it is reflexive, transitive, and antisymmetric. For m1, m2 P Maps, we say that m2 dominates
m1 if m1 ď m2, and write m1 ď m2 otherwise.

The goal of the domination relation is to define which mappings are preferred to others,
intuitively because they contain more information; it may depend on the document, though
we will present many examples where it does not.

We introduce several domination relations that, as discussed in the introduction, are part
of practical systems and which we consider throughout this paper:

▶ Definition 3.2. The simplest relation is the trivial self domination relation ďself where
every mapping only dominates itself, i.e., the pairs in the relation are pm, mq for m P Maps.

▶ Definition 3.3. The variable inclusion relation ďvarInc contains the pairs pm1, m2q such that
for all x P Variables, if m1pxq is defined, then m2pxq is defined as well and m1pxq “ m2pxq.
Thus, we have m1 ďvarInc m2 whenever dompm1q Ď dompm2q and m1 „ m2, i.e., when m2
is an extension of m1 that potentially assigns more variables than m1.

▶ Definition 3.4. The span inclusion relation ďspanInc contains the pairs pm1, m2q of
mappings with the same domain (dompm1q “ dompm2q) such that for every x P dompm1q the
span m1pxq is included in m2pxq. Intuitively, m1 and m2 match the same variables in the
same parts of a document, but the matches of variables in m1 are subwords of their matches
in m2.

ICDT 2024



7:6 Skyline Operators for Document Spanners

▶ Definition 3.5. The left-to-right relation ďltr contains the pairs pm1, m2q of mappings
with the same domain such that, for every variable x on which m1 and m2 are defined, the
spans m1pxq and m2pxq start at the same position but m2pxq is no shorter than m1pxq.

▶ Definition 3.6. The span length relation ďspanLen contains the pairs pm1, m2q of mappings
with the same domain where for every x P dompm1q the span m2pxq is no shorter than m1pxq.
Intuitively, ďspanLen prefers longer spans over shorter ones, anywhere in the document.

Domination rules. We now introduce domination rules which associate to each document d

a domination relation over d. In this paper, we express domination rules as spanners on
specific domains. To this end, given a set of variables X, we write X: to mean a set of
annotated copies of the variables of X, formally X: :“ tx: | x P Xu. We extend the
notation to mappings by defining m: for a mapping m to be the mapping with domain
dompm:q “ dompmq: such that for all x P dompmq we have m:px:q :“ mpxq. We then define:

▶ Definition 3.7. A pre-domination rule D on a set of variables X Ď Variables is a
(schemaless) spanner with SVarspDq Ď X YX:. For every document d P Σ˚, we see Dpdq as a
pre-domination relation ď on d defined by the mappings captured by D on d, the left-hand-side
and right-hand-side of the comparability pairs being the restrictions of the mappings to X and
to X: respectively. Formally, the relation ď is: R :“ tpm|X , m1q | m P Dpdq, pm1q: “ m|X: uu.

We say that D is a domination rule if, on every document d P Σ˚, the pre-domination
relation R defined above is a domination relation, i.e., it correctly defines a partial order.

Intuitively, for every document d, the domination rule D defines the domination relation ď

where each mapping m P Dpdq denotes a pair, i.e., the restriction of m to X is dominated by
the restriction of m to X: (renaming the variables from X: to X). Note that pre-domination
rules and pre-domination relations are just an intermediary notion; in the sequel, we only
consider domination rules and domination relations.

▶ Example 3.8. For any set X of variables, each of the domination relations introduced in
Definitions 3.2–3.5 can be defined by a domination rule expressed by a regular spanner on X

(for the span length domination relation of Definition 3.6, see Lemma 3.13). At the end of
the section, we explain how to express them in a more concise variable-wise way that does
not depend on X: see Example 3.12.

The skyline operator. We have introduced domination rules as a way to define domination
relations over arbitrary documents. We can now introduce the skyline operator to extract
maximal mappings, i.e., mappings that are not dominated in the domination relation:

▶ Definition 3.9. Given a domination rule D, the skyline operator ηD of D applies to a
spanner P and defines a spanner ηDP in the following way: given a document d, writing
ď to denote the domination relation Dpdq given by D on d, the result of ηDP on d is the
set of maximal mappings of P pdq under the domination relation ď. Formally, we have:
pηDP qpdq :“ tm P P pdq | @m1 P P pdqztmu : m ď m1u.

Intuitively, the operator filters out the mappings that are dominated by another mapping
according to the domination relation defined by the domination rule over the input document.

▶ Example 3.10. In Figure 1 we show the effect of the skyline operator with respect to some
of our example domination relations. Assume that we are given a spanner P in variables
tx, yu that on a given document d extracts the mappings given in Figure 1a (here a dash “´”
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mpxq mpyq

r1, 2y r2, 3y

´ r2, 3y

r0, 2y r2, 3y

r4, 6y r4, 10y

(a) The extracted
mappings P pdq.

mpxq mpyq

r1, 2y r2, 3y

r0, 2y r2, 3y

r4, 6y r4, 10y

(b) Skyline under the vari-
able inclusion relation.

mpxq mpyq

´ r2, 3y

r0, 2y r2, 3y

r4, 6y r4, 10y

(c) Skyline under the
span inclusion relation.

mpxq mpyq

´ r2, 3y

r4, 6y r4, 10y

(d) Skyline under the
span length relation.

Figure 1 Extracted mappings before and applying different skyline operators; see Example 3.10.

means that the variable is not assigned by a mapping). We show the result of applying the
skyline operators with (possibly non-regular) domination rules defining the variable inclusion
domination relation ďvarInc (Figure 1b), the span inclusion domination relation ďspanInc
(Figure 1c), and the span length domination relation ďspanLen (Figure 1d). Note that, for
the variable inclusion domination rule, the skyline only makes sense for schemaless spanners,
as two distinct mappings that assign the same variables are always incomparable.

Variable-wise rules. We have defined our skyline operator relative to domination rules
expressed as spanners on explicit sets of variables. However, it will often be convenient to
define the rules as products of rules on a single variable by applying the product operator.
This ensures that the rule is “symmetric” in the sense that all variables behave the same:

▶ Definition 3.11. Let D be a domination rule in a single variable x, i.e., a spanner using
variables of tx, x:u, which we call a single-variable domination rule. For y P Variables, we let
Dy be the domination rule where we replace x and x: by y and y:, i.e., on every document
d, the set of mappings Dypdq consists of one mapping my for each mapping m P Dypdq with
mypyq and mypy:q defined like mpxq and mpx:q.

The variable-wise domination rule defined by D on a variable set X is then simply
Ś

yPX Dy. A domination rule is said to be variable-wise if it can be expressed in this way.

We will often leave the set of variables X implicit, and may abuse notation to identify
single-variable domination rules with the variable-wise domination rule that they can define
on an arbitrary variable set.

▶ Example 3.12. The self domination rule (Definition 3.2) is variable-wise, because it can
be obtained from the following trivial single-variable domination rule:

Dself “ Σ˚x:txtΣ˚uuΣ˚ _ Σ˚.

The Σ˚ term above is used to ensure reflexivity and express the vacuous domination relation
between the mapping where x is not assigned and the mapping where x: is not assigned.

The span inclusion domination rule, left-to-right domination rule, and variable inclusion
domination rule (Definitions 3.3–3.5) are also variable-wise with the single-variable rules:

DspanInc “ Σ˚x:tΣ˚xtΣ˚uΣ˚uΣ˚ _ Σ˚.

Dltr “ Σ˚x:txtΣ˚uΣ˚uΣ˚ _ Σ˚.

DvarInc “ Σ˚x:tΣ˚uΣ˚ _ Dself .

Here, Σ˚x:tΣ˚uΣ˚ expresses that assigning a variable is better than not assigning it.

As for the span length domination rule (Definition 3.6), it is also variable-wise, but a
standard pumping argument shows that it cannot be defined by a regular spanner:

▶ Lemma 3.13. The single-variable span length domination rule DspanLen is not expressible
as a regular spanner.

ICDT 2024



7:8 Skyline Operators for Document Spanners

4 Closure under the Skyline Operator

We have defined the skyline operator relative to domination rules expressed by regular
spanners. One natural question is then to understand whether the skyline operator under
such rules extends the expressive power of spanner formalisms, or whether it can be defined
in existing models. This is what we investigate in this section.

Regular spanners. We first focus on regular spanners, and show that they are closed under
the skyline operator for domination rules expressed as regular spanners. We do so by showing
how the skyline operator can be expressed with operations under which regular spanners are
closed, namely join, intersection and difference (see Appendix A for definitions).

▶ Theorem 4.1. There is an algorithm that, given a sequential VA defining a regular spanner
P and a sequential VA defining a domination rule D, computes a sequential VA for ηDP .

Theorem 4.1 generalizes a result of Fagin et al. [11, Theorem 5.3] on the expressiveness of
transitive “denial pgds.” In our terminology, their theorem states that the class of complete
regular spanners is closed under the restriction to maximal answers defined by a regular
domination rule. Theorem 4.1 thus extends their result to schemaless regular spanners.

Theorem 4.1 implies that taking the skyline relative to regular domination rules does not
increase the expressivity of regular spanners. However, like the result of [11], our construction
may compute VAs that are exponentially bigger than the input VA. In Section 5, we will see
that this is unavoidable for any sequential VA expressing the skyline.

As an application of Theorem 4.1 we get in particular that regular spanners are closed
under the skyline operator for most of the examples presented earlier, i.e., Definitions 3.2–3.5.

▶ Corollary 4.2. There are algorithms that, given a sequential VA P , compute sequential
VAs for ηself P , ηvarIncP , ηltrP , and ηspanIncP , respectively.

By contrast, Theorem 4.1 does not apply to the span-length domination rule, as it is not
expressible as a regular spanner (Lemma 3.13). In fact, we can show that taking the skyline
under this domination rule is generally not expressible as a regular spanner:

▶ Proposition 4.3. There is a sequential VA P such that ηspanLenP is not regular.

Other spanner formalisms. It is natural to ask whether closure results such as Theorem 4.1
also hold for other spanner formalisms. In particular, we can ask this for the language of
core spanners, which extend regular spanners with string equalities; see [10] for the precise
definitions and [24] for the schemaless case. We can show that core spanners, contrary to
regular spanners, are not closed under the skyline operator:

▶ Theorem 4.4. The core spanners are not closed under the skyline operator with respect
to the span inclusion domination rule DspanInc, even on schema-based spanners: there is a
schema-based core spanner P such that ηspanIncP cannot be expressed as a core spanner. The
same is true of the skyline ηvarInc with the variable inclusion domination rule.

This result was already shown in [11] for the span inclusion domination rule, but that
result only showed inexpressibility as a schema-based core spanner. Our result extends to
the schemaless setting, and also establishes the result for the variable inclusion domination
rule. See the full version [4] for the formal definitions and the proof.

We leave open the question of extending other formalisms with the skyline operator, e.g.,
the generalized core spanners which extend core spanners with the difference operator [22], or
the context-free spanners [20] that define spanners via context-free grammars. Note that, by
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contrast, closure is easily seen to hold in the formalism of RGXlog programs, where spanners
are defined using Datalog rules [22]. Indeed, this class consists of precisely the polynomial-
time spanners (under data complexity). Thus, for any domination rule D for which the
maximal answers can be computed in polynomial time data complexity (in particular, for
domination rules expressed as regular spanners), the result of the skyline operator for D on
an RGXlog program can be expressed as an RGXlog program.

In the rest of this paper, we focus on applying the skyline operators to regular spanners,
with domination relations also defined via regular domination rules.

5 State Complexity of the Skyline Operator

We have seen how the skyline operator does not increase the expressive power of regular
spanners, in the sense that it could be expressed using regular operations. However, this does
not account for the price of this transformation. In this section, we show that the size of
sequential VAs for some domination rules increases exponentially when applying the skyline
operator. Hence, we essentially study the state complexity of VAs under the skyline operator,
similarly to traditional studies of the state complexity for regular languages (e.g., [15]).
Specifically, we show the following lower bound, for the variable inclusion domination rule:

▶ Theorem 5.1. For every n P N, there is a sequential VA A with Opnq states such that,
letting PA be the regular spanner that it defines, any sequential VA representing the regular
spanner ηvarIncPA must have 2Ωpnq states.

We will show in later sections how this lower bound on the state complexity of the skyline
operation can be complemented with computational complexity lower bounds.

Proof technique: Representing Boolean functions as VAs. We show Theorem 5.1 using
representations of Boolean functions as sequential VAs, as we now explain. Let SVars Ď

Variables be a finite set of variables (which will be used to define spanners), and let Varsb :“
txb | x P SVarsu be a set of Boolean variables. For every mapping m assigning spans to
some of the variables in SVars (i.e., dompmq Ď SVars), we define a Boolean assignment
mb : Varsb Ñ t0, 1u by setting mbpxbq :“ 1 if and only if x P dompmq, i.e., x gets assigned a
span by m. Let P be a document spanner with variables SVars and let d be an input document.
Then we denote by BoolpP, dq the Boolean function whose models are tmb | m P P pdqu.

Our intuitive idea is that, if the function BoolpP, dq is hard to represent, then the same
should be true of the spanner P . To make this precise, let us introduce the representations
of Boolean functions that we work with:

▶ Definition 5.2. A nondeterministic read-once branching program1 (NROBP) over the
variable set Varsb is a tuple Π “ pG, s, t, µq where G “ pV, Eq is a directed acyclic graph,
s P V and t P V are respectively the source and sink nodes, and the function µ labels some of
the edges with literals of variables in Varsb, i.e., variables and their negations; formally µ is a
partial function from E to the literals over Varsb. We require that, for every source-sink path
s “ v0, . . . , vn “ t, every variable appears at most once in the literals labeling the edges of the
path, i.e., there are no two indices 0 ď i ă j ď n ´ 1 such that µppvi, vi`1qq and µppvj , vj`1qq

are both defined and map to literals of the same variable.

1 We remark that what we introduce here are sometimes called acyclic read-once switching and rectifier
networks, but theses are known to be equivalent to the more common definition of NROBPs up to
constant factors [23], so we do not make the difference here.
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7:10 Skyline Operators for Document Spanners

An NROBP Π computes a Boolean function over Varsb whose models are defined in the
following way. An assignment mb : Varsb Ñ t0, 1u is a model of Π if there is a source-sink
path in G such that all literal labels on the path are satisfied by mb, i.e., there is a sequence
s “ v0, . . . , vn “ t such that, for each 0 ď i ă n for which ℓ :“ µppvi, vi`1qq is defined, then
the literal ℓ evaluates to true according to mb.

NROBPs are intuitively similar to automata. To formalize this connection, we show how,
given a sequential VA and document, we can efficiently compute an NROBP describing which
subsets of the variables can be assigned in captured mappings:

▶ Lemma 5.3. Let P be a regular spanner on variable set SVars represented by a sequential
VA A with n states. Then, for every document d, there is an NROBP G representing
BoolpP, dq with Op|d| ˆ n ˆ |SVars|q nodes.

Proof sketch. We compute the product of the VA with the input document, to obtain a
directed acyclic graph representing the runs of the VA on the document. We obtain the
NROBP by relabeling the marker transitions and performing some other modifications. ◀

We will now use the fact that NROBPs are exponentially less concise than other Boolean
function representations. Namely, we define a read-3 monotone 2-CNF formula on a set of
variables X as a conjunction of clauses which are disjunctions of 2 variables from X, where
each variable appears at most 3 times overall. We use the fact that converting such formulas
to NROBPs can incur an exponential blowup. This result is known (see, e.g., [7]) but we
give a proof in the full version [4] for convenience:

▶ Proposition 5.4 ([7]). For any n P N, there is a read-3 monotone 2-CNF formula Φ on n

variables having size Opnq such that every representation of Φ as an NROBP has size 2Ωpnq.

We now conclude the proof of Theorem 5.1, sketched below (see the full version [4] for
details):

Proof sketch. Given a read-3 monotone 2-CNF formula Φ, we show how to construct a
regular spanner on which the skyline operator captures mappings corresponding precisely to
the satisfying assignments of Φ. As a sequential VA expressing this spanner can be efficiently
converted to an NROBP by Lemma 5.3, we can conclude that, when applied to the family of
formulas from Proposition 5.4, all sequential VA representations have exponential size. ◀

An independent result: Lower bound on the state complexity of schema-less joins.
We believe that the connection to Boolean functions used to show Theorem 5.1 can be of
independent interest as a general technique to show lower bounds on the state complexity of
document spanners. Indeed, independently from the skyline operator, we can also use this
connection to show a lower bound on the size of sequential VAs representing the natural join
of two regex-formulas. The natural join operator is a standard operator on spanners that
merges together compatible mappings: see Appendix A for the formal definition. We have:

▶ Theorem 5.5. For every n P N, there are regex-formulas en and e1
n of size Opnq such that

every sequential VA equivalent to en ’ e1
n has 2Ωpnq states.

This result is the counterpart for state complexity of the NP-hardness of evaluating
the join of two regex-formulas [21]. It only holds in the schemaless case; indeed in the
schema-based case it is known that the join of two functional VAs can be computed as a
functional VA in polynomial time [13].
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6 Complexity of the Skyline Operator

We have shown that the skyline operator applied to regular spanners cannot be expressed
as a regular spanner without an exponential blowup in the size, even for domination rules
expressed as regular spanners (namely, for the variable inclusion domination rule). We now
study whether we can efficiently evaluate the skyline operator without compiling it into the
automaton. Formally, we study its computational complexity of skyline extraction:

▶ Definition 6.1. The skyline extraction problem is the following: given a document d, a
sequential VA A capturing a regular spanner PA, and a domination rule D expressed as a
sequential VA, compute the set of mappings in the results of the skyline operator pηDPAqpdq.

Data complexity. We start by observing that skyline extraction is clearly tractable in the
data complexity perspective in which d is the only input:

▶ Proposition 6.2. For any fixed sequential VA A and domination rule expressed as a
sequential VA D, the skyline extraction problem for PA and D can be solved in polynomial
time data complexity, i.e., in polynomial time in the input d.

Proof. We use Theorem 4.1 to compute a sequential VA for pηDPAqpdq, which is independent
from the input document d. We can then produce the mappings captured by this fixed
sequential VA on d in polynomial data complexity.

Alternatively, without using the theorem, note that we can simply materialize the set of
all captured mappings pPAqpdq, in polynomial time because A is fixed. Then, for any pair of
mappings, we can check if the domination relation holds using the domination rule D; this
is again in polynomial time. We then return the set of maximal mappings in polynomial
time. ◀

Note that this result would easily extend to fixed expressions using multiple skyline
operators together with regular spanner operators, as all these operators are polynomial-time.

Combined complexity. We now turn to combined complexity settings in which the domina-
tion rule D and the spanner P are considered as part of the input. In fact, we will mostly
consider the problem variant in which we fix a single-variable domination rule (e.g., variable
inclusion), we take the skyline relative to the corresponding variable-wise domination rule,
and only the spanner P is part of the input. Remember that we focus on regular spanners
represented as sequential VAs, since for those it is known that the combined complexity of
spanner evaluation is output polynomial [18].

As we have seen in Section 4, in terms of expressiveness, the regular spanners are
closed under all domination rules expressible as regular spanners, in particular those of
Definitions 3.2–3.5. However, we have seen in Section 5 that compiling the skyline into the
VA may generally incur an exponential blowup, already for fixed domination rules. This
bars any hope of showing tractability of the skyline extraction problem by applying known
evaluation algorithms on the result of this transformation (e.g., those from [13, 12, 3]),

This leads to the question if there are other approaches to solve the skyline extraction
problem with efficient combined complexity, without materializing an equivalent VA. In this
section, we show that this is not the case, assuming P ‰ NP. Our lower bound already holds
for a fixed domination rule, namely, the variable inclusion domination rule; and in fact it
even holds in query complexity, i.e., when the document is fixed.
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▶ Theorem 6.3. There is a fixed document d such that the following problem is NP-hard:
given a sequential VA A encoding a regular spanner PA and a number n P N which is at most
the size of A, decide whether pηvarIncPAqpdq contains more than n mappings.

This will imply that, conditionally, the skyline extraction problem is intractable in
combined complexity. Intuitively, if it is intractable to decide whether the skyline extracts
a large number of mappings, then producing the mappings is also intractable. To make
this formal, we use the framework of output-polynomial algorithms, where an algorithm
for a problem f : Σ˚ Ñ Σ˚ runs in output-polynomial time if, given an input x, it runs in
time polynomial in |x| ` |fpxq|. Namely, we use the following folklore connection between
output-polynomial time and decision problems, see e.g. [8] for a similar construction:

▶ Lemma 6.4. Let f : Σ˚ Ñ Σ˚ and let p be a polynomial. Assume that it is NP-hard, given
an input x and integer k ď pp|x|q, to decide if |fpxq| ă k. Then there is no output polynomial
time algorithm for f , unless P “ NP.

From Theorem 6.3 and Lemma 6.4, we directly get our intractability result:

▶ Corollary 6.5. Unless P “ NP, there is no algorithm for the skyline extraction problem
with respect to the variable inclusion domination rule that is output-polynomial in combined
complexity (i.e., in the input sequential VA), even when the input document is fixed.

Note that this result is incomparable to Theorem 5.1: lower bounds on the size of equivalent
VAs generally do not preclude the existence of other algorithms that are tractable in combined
complexity, and conversely it could in principle be the case that evaluation is intractable in
combined complexity but that there are small equivalent VAs that are intractable to compute.
Besides, the proofs are also different. Namely, the proof of Theorem 5.1 used monotone
2-CNF formulas, for which we could compute spanners giving an exact representation of the
satisfying assignments, but for which the satisfiability problem is tractable. As we will see,
the proof of Theorem 6.3 uses the intractability of SAT on CNF formulas, but does not use
an exact representation of the satisfying assignments.

Proving Theorem 6.3. We give the proof of Theorem 6.3 in the rest of this section, together
with an additional observation at the end. In the next section, we will study how hardness
can be generalized to other domination rules (in particular all domination rules introduced
in Section 3 except the trivial self-domination rule), and will investigate the existence of
tractable cases.

Proof of Theorem 6.3. We reduce from the satisfiability problem SAT. Let F be a CNF
formula with nx Boolean variables xi with i P rnxs and nc clauses Cj with j P rncs.
For convenience, define the set Ti “ tj | xi appears positively in Cju, and define the set
Fi “ tj | xi appears negatively in Cju. We will build a regular spanner on variables vi,j for
i P rnxs and j P rncs, together with a special variable a.

We will define two spanners rvalid and rmask, both as regex formulas, and will evaluate
them on the empty document d “ ε. Let us first sketch the idea: the spanner rvalid will
extract one mapping for each possible assignment to the variables of F . Each such mapping
will encode which clauses get satisfied by which variable in the assignment, by assigning
spans to the corresponding spanner variables vi,j . The second spanner rmask will capture nc

additional mappings which will be maximal (thanks to the additional variable a) and will
each dominate the mappings captured by rvalid for which the corresponding assignment does
not satisfy a specific clause of F . This will ensure that F is satisfiable if and only if there are
strictly more than nc mappings in the skyline of rvalid _ rmask on d.
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Formally, we define the spanners as regex-formulas, where the dots denote concatenation:

rvalid “ ¨iPrnxspp¨jPTi
vi,jtεuq _ p¨jPFi

vi,jtεuqq rmask “ atεu ¨
ł

kPrncs

¨iPrnxs,jPrncsztkuvi,jtεu.

This definition is in polynomial time in the input CNF F .
Note that the mappings captured by rmask are never dominated. First, they do not

dominate each other: each of them assigns no vi,k for some k. Further, all mappings of rmask
assign a and all mappings of rvalid do not, so the latter cannot dominate the former.

To construct a CNF variable assignment from a mapping m captured by rvalid, we use
the following encoding: if the mapping m assigns the span r0, 0y to the spanner variable vi,j

then this encodes that the variable xi appears in the clause Cj and xi is assigned in a way
that satisfies Cj . The definition of rvalid ensures that all variables appearing at least once
will be assigned exactly one truth value among true or false.

We claim that on d “ ε, the skyline pηvarIncprvalid _ rmaskqqpdq contains at least nc ` 1
mappings if and only if F is satisfiable. Assume first that F is satisfiable, and let v be a
satisfying assignment. Then there is a corresponding mapping m captured by rvalid encoding v.
Indeed, as v satisfies all clauses, for every clause index j P rncs there is a variable xi assigned
by v in a way that makes Cj true, i.e., vi,j is assigned. Hence m will not be dominated
by any mapping captured by rmask. Thus, the skyline of rvalid _ rmask must contain some
mapping captured by rvalid, namely, either m or some other mapping captured by rvalid
which dominates m. In all cases, the skyline must have at least nc ` 1 mappings.

Now assume the skyline of rvalid _ rmask has at least nc ` 1 mappings. By construction,
rmask captures exactly nc maximal mappings, so there is at least one mapping m in the
skyline which is captured by rvalid. This mapping m encodes an assignment v of the variables
of F . As m is not dominated by any mapping captured by rmask, for each clause index
j P rncs there must exist a variable index i P rnxs such that vi,j is assigned. Therefore v

is a satisfying assignment of F . Overall, we have shown that F is satisfiable if and only if
ηvarIncprvalid _ rmaskq has at least nc ` 1 satisfying mappings, which concludes the proof. ◀

We last notice that we can modify Corollary 6.5 slightly: instead of applying to a fixed
variable-wise domination rule (defined by fixing a single-variable domination rule), the result
also applies when the domination rule is specified explicitly on the entire domain as a regular
spanner:

▶ Corollary 6.6. Assuming P ‰ NP, there is no algorithm for the skyline extraction problem
which is output polynomial in combined complexity even if the domination rule is given as
one sequential VA (not by implicitly taking the product of single-variable sequential VAs).

7 Intractable and Tractable Domination Rules

We have shown that the skyline extraction problem is intractable in combined complexity
for regular spanners, and this intractability already holds in the case of a fixed variable-wise
domination rule, namely, the variable inclusion rule. However, this leaves open the same
question for other domination rules, e.g., for the span inclusion rule – in particular if we
restrict our attention to schema-based spanners, which are typically better-behaved (e.g., for
the complexity of the join and difference operators [10]).
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In this section, we show that, unfortunately, hardness still holds in that context. Specifi-
cally, we introduce a condition on domination rules, called having unboundedly many disjoint
strict domination pairs (UMDSDP). This condition is clearly satisfied by our example domi-
nation rules (except self-domination). We then show that UMDSDP is a sufficient condition
for intractability: this result re-captures the hardness of variable inclusion (Theorem 6.3) and
also shows hardness for the span inclusion, left-to-right, and span length domination rules.

We then introduce a restricted class of domination rules, called variable inclusion-like,
and show that on this class a variant of the UMDSDP condition in fact characterizes the
intractable cases. In particular, all such domination rules without the condition enjoy
tractable skyline extraction. Last, we study additional examples for general domination rules,
and show that among rules not covered by UMDSDP, some are easy and some are hard.

The UMDSDP condition. To introduce our sufficient condition for intractability of skyline
extraction, we first define disjoint strict domination pairs.

▶ Definition 7.1. Fixing a variable x, a single-variable mapping is a mapping m using only
the variable x: the mapping m may map x to a span mpxq, or it may not map x to anything,
which is represented by the special symbol “´”.

For a domination relation ď on a document d, a domination pair of ď on d is a pair
pm1, m2q of single-variable mappings with m1 ď m2. The domination pair is strict if
m1 ‰ m2.

Two strict domination pairs pm1, m2q and pm1
1, m1

2q are disjoint if, letting s be the smallest
span containing the spans m1pxq and m2pxq if defined, and letting s1 be the smallest span
containing the spans m1

1pxq and m1
2pxq if defined, then s and s1 are disjoint spans. Otherwise,

the two strict domination pairs overlap.

Note that, in a strict domination pair pm1, m2q, at least one of m1 and m2 has to assign x

to a span; and if one of them does not, then the resulting unassigned span (“´”) is not taken
into account. In what follows, we abuse notation and identify single-variable mappings with
the span to which they map x, or identify them to “´” if they do not map x to anything.

▶ Example 7.2. The pairs pr1, 3y, r2, 4yq and pr9, 10y, r6, 8yq are disjoint. The pairs
pr1, 3y, r7, 9yq and pr4, 6y, r10, 12yq overlap (even though all of the constituent spans are
disjoint). Finally, p´, r1, 3yq and pr4, 6y, r10, 12yq are also disjoint.

We can now define the UMDSDP condition, which will be sufficient to show hardness:

▶ Definition 7.3. A single-variable domination rule D has unboundedly many disjoint strict
domination pairs (UMDSDP) if, given n P N, we can compute in time polynomial in n a
document d P Σ˚ and n strict domination pairs S1, . . . , Sn of Dpdq that are pairwise disjoint.

▶ Example 7.4. Dself does not satisfy UMDSDP as it has no strict domination pairs.
The span length domination rule satisfies UMDSDP. Indeed, for n P N, we can take the

word an and the disjoint strict domination pairs tpri, iy, ri, i ` 1yq | i P r0, n ´ 1su. The same
pairs show that UMDSDP holds for the span inclusion rule and for the left-to-right rule.

Finally, the variable inclusion domination rule satisfies UMDSDP with the set of pairs
tp´, ri, i ` 1yq | i P r0, n ´ 1su.

Consider the domination rule Dstart defining the domination relation ďstart that contains
the pairs tpr1, iy, r1, jyq | i, j P N, i ď ju plus the trivial pair p´, ´q for reflexivity. Then
ďstart has unboundedly many strict domination pairs, but no two of them are disjoint, so the
UMDSDP condition is not respected. (However, we will still be able to show intractability
for this rule; see Proposition 7.9.)
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We remark that, for single-variable domination rules that are regular, the UMDSDP
condition holds whenever there exist arbitrarily many pairwise disjoint strict domination
pairs (i.e., in this case we can always efficiently compute them); see the full version [4] for
details.

UMDSDP implies hardness. We now show that the UMDSDP condition implies that
skyline extraction is hard. The proof is a variant of the one for variable inclusion:

▶ Theorem 7.5. Let D be a single-variable domination rule satisfying UMDSDP. The
skyline extraction problem for D, given a sequential VA A and a document d P Σ˚, is not
output-polynomial unless P “ NP.

This implies the hardness of the other variable-wise domination rules presented earlier,
completing Corollary 6.5. Note that these rules are schema-based spanners, and we can also
notice that hardness already holds if the input spanner is functional, i.e., schema-based:

▶ Corollary 7.6. There is no algorithm for the skyline extraction problem with respect to
the span inclusion domination rule or the left-to-right domination rule or the span length
domination rule which is output-polynomial in combined complexity, unless P “ NP. This
holds even if the input VA is required to be functional.

Variable inclusion-like rules. We have seen that the UMDSDP condition is a sufficient
condition for skyline extraction to be hard, but this leaves open the question of whether it
is necessary. We will now focus on a fragment of domination rules which we call variable
inclusion-like domination rules, where this is the case. Formally, we say that a domination
relation ď is variable inclusion-like if for all strict domination pairs pm1, m2q we have for all
x P Variables that if m1pxq is defined, then m2pxq is defined as well and m1pxq “ m2pxq.

In contrast with the variable inclusion rule that contains all such pairs pm1, m2q, we only
require that a subset of them hold in ď. We will define variable inclusion-like domination
rules in a variable-wise fashion: for single-variable variable inclusion-like rules, the strict
domination pairs are necessarily of the form p´, sq for a span s. In other words, a variable-wise
inclusion-like domination rule is defined by indicating, on each document, which spans s can
appear as the right-hand-side of such a pair. Further, for variable inclusion-like rules, two
strict domination pairs are disjoint if and only if their right-hand-sides are.

We can show that, on variable inclusion-like domination rules, we have a dichotomy on a
variant of the UMDSDP condition:

▶ Theorem 7.7. Let D be a single-variable domination rule which is variable inclusion-
like. If D satisfies the UMDSDP condition or accepts a pair of the form p´, ri, iyq on some
document, then the skyline extraction problem for D, given a sequential VA and document,
is not output-polynomial in combined complexity unless P “ NP. Otherwise, the skyline
extraction problem for D is output-polynomial in combined complexity.

The lower bound of the dichotomy follows from Theorem 7.5, plus the observation that a
single pair of the form p´, ri, iyq is sufficient to show hardness:

▶ Lemma 7.8. Let D be a single-variable domination rule that accepts on some document
a pair p´, ri, iyq. Then the skyline extraction problem for D, given a sequential VA and
document, is not output-polynomial in combined complexity unless P “ NP.

Hence, the interesting result in Theorem 7.7 is the upper bound. We show it in the full
version [4] by observing that the set of right-hand-sides of strict domination pairs for variable
inclusion-like rules that do not satisfy UMDSDP have bounded hitting set number, and
showing that this implies tractability.
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Other cases. Theorems 7.5 and 7.7 do not settle the complexity of non-UMDSDP domination
rules which are not variable inclusion-like. We conclude with some examples of rules that
can be shown to be intractable. We first show it for the rule ďstart introduced earlier:

▶ Proposition 7.9. Refer back to the variable-wise domination rule Dstart from Example 7.4.
There is no output-polynomial combined complexity algorithm for the skyline extraction
problem for that rule, assuming P ‰ NP.

We show hardness for another rule that fails the UMDSDP, where all strict domination
pairs share the same right-hand-side:

▶ Proposition 7.10. Consider the variable-wise domination rule expressed by the regular ex-
pression xta˚ua˚x:tbu _ Dself . There is no output-polynomial combined complexity algorithm
for the skyline extraction problem for that rule, assuming P ‰ NP.

We note, however, that the reverse of that rule, where all strict domination pairs share
the same left-hand-side, is in fact tractable (and also fails the UMDSDP). This illustrates
that, counter-intuitively, a complexity classification on variable-wise domination rules would
not be symmetric between the left-hand-side and right-hand-side:

▶ Proposition 7.11. The skyline extraction problem for the variable-wise domination rule
x:ta˚ua˚xtbu _ Dself is output-polynomial in combined complexity.

8 Conclusions

We have introduced the general framework of domination rules to express the skyline operator
for document spanners, with rules that are themselves expressed as a spanner. We have
shown that this operator (with regular rules) does not increase the expressiveness of regular
spanners, but that it incurs an unavoidable exponential blowup in the state complexity and
is intractable to evaluate in combined complexity for many natural fixed rules.

Our work leaves several questions open for future investigation. The most immediate
question is whether the skyline extraction problem admits a dichotomy on the variable-wise
regular domination rule in the general case, i.e., extending Theorem 7.5 to arbitrary such
rules. However, this seems challenging. Another question is whether the hardness results of
Section 7 also give state complexity lower bounds of the kind shown in Section 5, in particular
in the schema-based context; and whether there is a dichotomy on state complexity.

Last, an intriguing question is whether the top-k problem of computing a constant
number k of mappings from the skyline is always tractable in combined complexity. None of
our hardness results precludes it, but we are not aware of an algorithm for that problem.
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7:18 Skyline Operators for Document Spanners

A Spanner Algebra

In this appendix, we introduce some operators on spanners that are used in the main text.
For every spanner P and every subset Y Ď SVarspP q, we define the projection operator

πY by saying that πY P is the spanner that extracts on every document d the set pπY P qpdq :“
tm|Y | m P P pdqu where m|Y is the restriction of m to Y .

The natural join P1 ’ P2 of two spanners P1 and P2 is a spanner which accepts all
the mappings m which are the union of two compatible mappings m1 accepted by P1 and
m2 accepted by P2. Said differently, pP1 ’ P2qpdq :“ tm P Maps | Dm1 P P1pdq, Dm2 P

P2pdq, m1 „ m ^ m2 „ m ^ dompm1q Y dompm2q “ dompmqu.
We remark that if SVarspP1q X SVarspP2q “ H then the join operator is the Cartesian

product defined before.
The intersection operator X is defined to compute the spanner P1 X P2 which on every

document computes the set pP1 X P2qpdq :“ P1pdq X P2pdq. Observe that that if SVarspP1q “

SVarspP2q and both spanners are schema-based, then the join operator is the intersection:
pP1 ’ P2qpdq “ P1pdq X P2pdq.

The union P1 Y P2 is defined to as the spanner which on every document computes the
set pP1 Y P2qpdq :“ P1pdq Y P2pdq.

The difference, P1 ´ P2 is a binary operator which accepts all mappings accepted by P1
which are not accepted by P2. Said differently, pP1 ´ P2qpdq :“ P1pdqzP2pdq. Note that this
is the usual difference operator on sets, and not the difference operator defined in [19] which
accepts mappings of P1 for which no compatible mapping is accepted by P2.

It is known that the projection, natural join operator and union operators do not increase
the expressive power of regular spanners, see [10] for the case of schema-based spanners
and [18] for schemaless spanners. It follows that the same is true for the Cartesian product
operator. We show in the full version [4] that intersection does not increase the expressivity,
either. As for the difference operator, the same result is proven in [10] for schema-based
regular spanners, but we are not aware of the same result for schemaless spanners and for
our semantics of difference, so we prove it in the full version [4].


	1 Introduction
	2 Preliminaries
	3 The Skyline Operator
	4 Closure under the Skyline Operator
	5 State Complexity of the Skyline Operator
	6 Complexity of the Skyline Operator
	7 Intractable and Tractable Domination Rules
	8 Conclusions
	A Spanner Algebra

