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Preface

The 27th International Conference on Database Theory (ICDT 2024) was held in Paestum,
Italy, from March 25th to March 28th, 2024. The Program Committee has selected 22
research papers out of 74 submissions for publication at the conference.

The PC has further decided to give the best paper award to:

Finding Smallest Witnesses for Conjunctive Queries
Xiao Hu and Stavros Sintos

The ICDT 2024 best newcomer award goes to:

Direct Access for Conjunctive Queries with Negation
Florent Capelli and Oliver Irwin

We congratulate the winners!

Apart from the 22 regular papers, these proceedings include papers accompanying the invited
(shared) EDBT/ICDT keynotes by Sudeepa Roy (Duke University) and the ICDT invited
talk by Andreas Pieris (University of Edinburgh and University of Cyprus).

A committee formed by Nofar Carmeli, Reinhard Pichler and Nicole Schweikardt has decided
to give the Test of Time Award for ICDT 2024 to the ICDT 2014 paper:

Leapfrog Triejoin: A Simple, Worst-Case Optimal Join Algorithm
Todd L. Veldhuizen

We would like to thank all people who contributed to the success of ICDT 2024, including
the authors of all submitted papers, keynote and invited talk speakers, and, of course, all
members of the Program Committee as well as the external reviewers, for the very substantial
work that they have invested over the two submission cycles of ICDT 2024. Their effort and
wisdom were critical to ensure that the final program of the conference satisfies the highest
standards. We would also like to thank the ICDT Council members for their support on a
wide variety of matters; the program chairs of EDBT, Letizia Tanca and Qiong Luo, for their
assistance; and the local organizers of the EDBT/ICDT 2024 conference, led by General
Chairs Giuseppe Polese and Loredana Caruccio, for the great job they did in organizing the
conference and co-located events.

Finally, we wish to acknowledge Dagstuhl Publishing for their support with the publication
of the proceedings in the LIPIcs (Leibniz International Proceedings in Informatics) series.

Graham Cormode and Michael Shekelyan
March 2024
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The ICDT 2024 Test of Time Award

In 2013, the International Conference on Database Theory (ICDT) began awarding the
ICDT Test-of-Time (ToT) award, with the goal of recognizing one paper, or a small number
of papers, presented at earlier ICDT conferences that have best met the “test of time”.
In 2024, the award recognizes a paper selected from the proceedings of the ICDT 2014
conference that has had the highest impact in terms of research, methodology, conceptual
contribution, or transfer to practice over the past decade. The award was presented during
the EDBT/ICDT 2024 Joint Conference, March 25–28, 2024 in Paestum, Italy.

The 2024 ToT Award Committee consists of Nofar Carmeli, Reinhard Pichler, and Nicole
Schweikardt (chair). After careful consideration and soliciting external assessments, the
committee has chosen the following contribution for the 2024 ICDT Test-of-Time Award:

Leapfrog Triejoin: A Simple, Worst-Case Optimal Join Algorithm
Todd L. Veldhuizen

This paper introduced the worst-case optimal join algorithm called Leapfrog Triejoin
(LFTJ). What singles out LFTJ from previously published worst-case optimal join algorithms
is that it is very intuitive, simple to describe and easy to implement. It is based on
backtracking search, and in contrast to many previously used join algorithms it follows the
variable-at-a-time paradigm rather than the classical relation-at-a-time paradigm. Variants
of LFTJ have found their way into open-source and commercial database systems, including
LogicBlox, Umbra, Kùzu, RelationalAI, FreeJoin, EmptyHeaded, FBENCH, etc.

Apart from its impact on systems, the paper also contains an entirely new technique for
proving LFTJ’s worst-case optimality. While earlier proofs for other worst-case optimal join
algorithms used a sophisticated entropy-based machinery, Todd L. Veldhuizen presents a
self-contained and intuitively simple proof technique. This proof shows that for any database
instance on which LFTJ runs in n steps, there exists another database instance with the
same relation sizes, where the query answer has size n. This implies that the running time
is bounded by the query size on some instance, and therefore it is bounded by the general
query size upper bound. Due to its optimality, elegance, and simplicity, the algorithm as
well as the proof method today are taught in university courses on the principles of database
systems.

In the last decade, LFTJ has greatly influenced theoretical as well as practical database
reasearch. For all these reasons, Todd L. Veldhuizen’s ICDT 2014 paper is one of the great
gems of ICDT.

Nofar Carmeli Reinhard Pichler Nicole Schweikardt
Inria and Univ. Montpellier TU Wien HU Berlin

The ICDT Test-of-Time Award Committee for 2024
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Abstract
Back in 1970’s, E. F. Codd worked on a prototype of a natural language question and answer
application that would sit on top of a relational database system. Soon, natural language interfaces
for databases (NLIDBs) became the holy grail for the database community. Different approaches
have been proposed from the database, machine learning and NLP communities. Interest in the
topic has had its peaks and valleys. After a long and adventurous journey of almost 50 years,
there is a rekindled interest in NLIDBs in recent years, fueled by the need for democratizing data
access and by the recent advances in deep learning and natural language processing in particular.
There is a surge of works on natural language interfaces for databases using neural translation, and
suddenly it becomes hard to keep up with advancements in the field. Are we close to finding the holy
grail of data access? What are the lurking challenges that we need to surpass and what research
opportunities arise? Finally, what is the role of the database community?
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1 Introduction

E. F. Codd, the father of relational databases, said that “If we are to satisfy the needs
of casual users of databases, we must break the barriers that presently prevent these users
from freely employing their native language” [11]. Throughout the 1970s, he worked on a
prototype of a natural language question and answer application that would sit on top of a
relational database system, called Rendezvous. Rendezvous allowed a user with no knowledge
of database systems – and even limited knowledge of a given database’s content – to engage
in a dialog with the system. Almost 50 years after, natural language interfaces for databases
(NLIDBs) are into the spotlight.

NLIDBs or natural language data interfaces are appealing for a number of reasons [3].
They are more suitable for occasional users, alleviating the need for the user to spend time
learning the system’s query language to access data. Some questions are easier expressed in
natural language (e.g., questions involving negation, or quantification). Moreover, natural
language (NL) questions can be brief and support anaphoric and elliptical expressions, where
the meaning of each question is complemented by the discourse context.

The first NLIDBs appeared back in the sixties. For instance, LADDER was developed as
a management aid to Navy decision makers [31]. These early systems interfaced application-
specific non-SQL database systems, and they could not be used with different data. Several
approaches have followed over the years focusing on translating NL questions to SQL over
relational data. Industrial systems also made their appearance. For example, in the late
90’s, Microsoft SQL Server shipped with the English Query feature. Some systems enabled
keyword searches. They relied on data indexes to find relations that contained the query
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keywords and on the database schema to join them and return the answer to a query (e.g.,
[32, 51]). Parsing-based approaches parsed the input question to understand its grammatical
structure and then map it to the structure of the desired SQL query (e.g., [47, 77]).

Recently, the use of deep learning techniques, and in particular LLMs, has given a great
boost in the development of NLIDBs [22, 27, 38, 48, 56, 86]. The creation of two large datasets,
WikiSQL [86] and Spider [81], for training NLIDBs has brought several developments in
this field, with new systems popping up like mushrooms. These have popularized the term
Text-to-SQL (or NL-to-SQL) to refer to NLIDBs that focus on translating NL questions
to SQL. For the first time, it seems possible that technological barriers can be broken and
human-like interaction with data can become a reality.

2 The Inherent Challenges of Natural Language

While using natural language as a query language appears very appealing, it also brings
challenges in query understanding and answering that standard database query languages,
such as SQL, are free of, by design. These challenges, however, plague NLIDBs.

Ambiguity. Natural language is ambiguous for human-computer interaction. Ambiguity
allows more than one interpretation. Unfortunately, there are several types of ambiguity that
a NLIDB needs to resolve [25]. For example, “Paris” may refer to the city or a person (lexical
ambiguity). The question “Find all German movie directors” can be parsed into “directors
that have directed German movies” or “directors from Germany that have directed a movie”
(syntactic ambiguity). The question “Are Brad and Angelina married?” is an example of
semantic ambiguity, as it is unsure if it means they are married to each other or separately.
Context-dependent ambiguity refers to a term having different meanings in different contexts.
For example, “top” in “top scorer” means the highest (total) number of goals, while in “top
movies”, it signifies the greatest rating. As a result of ambiguity, there may be multiple
potential interpretations of a natural language query. Generating and processing them takes
a toll on the system efficiency. It also affects the system’s effectiveness, i.e., its ability to find
which interpretation captures the user intent and correctly answer the user query.

Paraphrasing. Completely different words or sentences can have the same meaning. For
instance, “How many people live in Amsterdam?” and “What is the population of Ams-
terdam?”. Dealing with different NL utterances (paraphrasing) is a challenge, as each one
may need different handling. For instance, the second NL query may be easier for a system
because it is likely that a population attribute exists in the database schema.

Inference. A natural language sentence may not contain all information needed for a system
to fully understand it. In elliptical queries, one or more words are omitted but can still be
understood in the context of the sentence. An example is “Who was the president before
Obama”. The fact that the query refers to US presidents needs to be inferred. In follow-up
questions, which are common in conversations between humans, missing information can be
understood in the context of the dialog. We ask a question, receive an answer, and then ask
a follow-up question assuming that the context of the first question is known. For example,
“Q: Which is the capital of Germany?”, “A: Berlin”, “Q: What about France?”. The system
has to infer that the user is asking for the capital of France.
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User mistakes. Spelling, syntactical or grammatical errors can be understood by a human
but are hard to be recognized and ignored by a system. For example, if the user asks for
“movies by Brad Bitt”, can the system recognize that the user refers to Brad Pitt, and make
the necessary correction, and not to a Brad Bitt that the system does not happen to know
based on the underlying data?

3 A trip down Memory Lane

Prototype NLIDBs appeared in the late sixties and early seventies [12, 63]. For example,
Lunar [74] was a natural language interface to a database with chemical analyses of moon
rocks. LADDER [31] used semantic grammars, a technique that interleaves syntactic and
semantic processing. Early eighties witnessed a lot of research on NLIDBS [3]. For instance,
Chat-80 was implemented entirely in Prolog [72]. It transformed English questions into
Prolog expressions, which were evaluated against a Prolog database. A number of commercial
systems, such as IBM’s LanguageAccess [53] and Intellect [28] from Trinzic, appeared.

Some of the early systems relied on pattern-matching techniques to answer the user’s
questions (e.g., [36]). A primitive pattern-matching system could use rules like:

pattern: ... “capital” ... <country>
action : Report Capital of row where Country = <country>

This rule says that if a user’s request contains the word “capital” followed by a country
name (i.e., a name appearing in the Country column), then the system should locate the row
which contains the country name, and print the corresponding capital.

Syntax-based systems used a grammar that described the possible syntactic structures of
the user’s questions (e.g., Lunar [74]). A user question would be first parsed (i.e. analysed
syntactically) resulting in a syntax tree like the one shown in Figure 1. Then, the resulting
parse tree would be directly mapped to a query in some database query language. To perform
this mapping, the system would use specific mapping rules that would specify how each part
of the tree would map to a part of the database query. These syntax-based NLIDBs usually
interfaced to application-specific database systems that provided database query languages
carefully designed to facilitate the mapping from the parse tree to the database query. At
this point, it was usually difficult to devise mapping rules to transform directly the parse
tree into some expression in a real-life database query language (e.g. SQL) [3].

Figure 1 An example syntax tree from Lunar [3].

In semantic-grammar systems (e.g., LADDER [31], EUFID [63]), the question-answering
is still done by parsing the input and mapping the parse tree to a database query. The
difference is that the grammar categories (i.e., the non-leaf nodes that will appear in the
parse tree) would correspond to semantic concepts (e.g., Substance, Radiation, or Specimen)
instead of syntactic constituents (e.g., noun-phrase, noun, sentence). An example tree is

ICDT 2024
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shown in Figure 2. Semantic grammars contain hard-wired knowledge about a specific
knowledge domain, and semantic grammar categories are usually chosen to enforce semantic
constraints. Since the grammar is domain-specific, such systems are very difficult to port to
other knowledge domains.

Figure 2 An example semantic tree [3].

Most recent systems in that period would first transform the natural language question
into an intermediate logical query, that expresses the meaning of the user question in
terms of high-level world concepts, which are independent of the database structure. The
logical query is then translated to an expression in the database query language (e.g.,
CLE [2], TEAM [26]). For example, the Essex system [15] used a principled multi-stage
transformation process: the system first generated a logic query, expressed in a version of
untyped λ-calculus, which was then transformed into a first-order predicate logic expression,
which was subsequently translated into universal-domain relational calculus, domain relational
calculus, tuple relational calculus, and finally SQL.

In many systems, the syntax rules linking non-terminal symbols (non-leaf nodes in the
parse tree) and the corresponding semantic rules are domain-independent; i.e., they could be
used in any application domain. The information, however, describing the possible words (leaf
nodes) and the logic expressions corresponding to the possible words is domain-dependent,
and has to be declared in the lexicon. The logic query does not refer to database objects (e.g.
tables, columns), and it does not specify how to search the database to retrieve the necessary
information. In order to retrieve the information requested by the user, the logic query has
to be transformed into a query expressed in some database query language supported by the
underlying DBMS, using the mapping to database information.

Figure 3 captures the evolution of systems during this period. In early NLIDBs, the
syntax/semantics rules were based on rather ad hoc ideas, and expressed in idiosyncratic
formalisms. In the nineties and later, systems follow some representation-based approach
and adopt advances in the general natural language processing field, for better syntactic and
semantic parsing and interpretation.

4 The Database-Way Era

After 2000, the next 15 years witness the emergence of systems that focus on translating
keyword or NL queries to SQL. They adopt the general architecture shown in Figure 4 [25].

The parser is responsible for gathering linguistic information on the user query. Its output
varies in complexity ranging from a simple set containing meaningful keywords (e.g., movie,
actor, “Brad Pitt”) (e.g., Discover [33]), to a fully structured parse tree (e.g., NaLIR[47]).
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Figure 3 Early NLIDBs system architectures.

The entity mapper is responsible for mapping the terms extracted by the Parser to
database elements. Some systems use inverted indexes to map the query terms to values
in the database (e.g., Discover [33]). Others also search the database metadata, such as
relation and attribute names (e.g., DiscoverIR[32]). NaLIR [47] also identifies the nodes in
the parse tree that can be mapped to SQL elements (select, operator, function, quantifier
and logic nodes) using a knowledge base of phrases – for example, the function node COUNT
corresponds to the phrase “number of”.

The interpretation generator infers the semantics of the query as a whole. Dependencies
between terms and phrases are analyzed in order to extract joins, aggregate functions,
comparisons, etc., depending on the operations that every NLIDB system supports. The
output is an intermediate well-defined structured format that captures the meaning of the
query and the order of the operations to be done. This intermediate representation is an
interpretation of the query from the system’s perspective. Intermediate representations are
useful because they are easier to modify, manipulate, and rank, as opposed to SQL queries.
Ambiguity at the term level can be transferred from the output of the entity mapper, due to
multiple mappings for a term. Ambiguity also exists in the linguistic dependencies between
terms, in the extraction of joins, in the order of the operations, and so forth. As a result, the
output of this step may be multiple candidate interpretations ranked according to how well
the system thinks an interpretation captures the user intent.

Indexes and knowledge bases are used by the entity mapper and interpretation generator.
The database inverted indexes are used to map input terms extracted by the parser to
database values. Knowledge bases are additional sources that a system can exploit to
understand the query, such as dictionaries containing word definitions and context-specific
definitions, synonym lists, grammar rules and syntactic patterns.

The SQL translator & executor translates the intermediate interpretation to SQL. This
task heavily depends on the quality of the highest ranked interpretations, since only a
selected few are executed. Each system has its own set of rules to convert an intermediate
representation into a syntactically correct SQL query. Some systems may rank the results
returned by every query, which means that the tuples returned by one query do not always
adopt the score of that query that produced them, but may have their own ranking.

These approaches bring the following notable novelties (a detailed experimental evaluation
of representative systems sheds light into their capabilities [25]):

ICDT 2024
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Figure 4 Database NLIDBs system architecture.

(1) A database mapping problem. Query translation is viewed as a database mapping
problem: mapping query terms to database elements (tables, columns and values) and
finding the desired interconnections of these data elements that capture the user intent.
For this reason, the entity mapper, which maps the query terms to database elements,
comes right after the parser as a crucial step towards understanding the query from the
perspective of the database. Together, they ensure that the final SQL will be semantically
correct. Note that, in earlier, representation-based, systems, this mapping would happen at
a later stage through the semantic interpreter (using rules and some model of the world).
Discover [33] introduced the concept of generating query interpretations as subgraphs of the
database schema graph, called joining networks or (trees), adopted by several systems (e.g.,
DiscoverIR [32], Spark [51], SODA [4]). The interpretation generator constructs multiple
joining networks that connect the relations that contain the query terms through edges that
are the primary key-foreign key relationships between them. Précis [41, 62] extended the
concept of joining networks and introduced the logical database subset that contains not
only items directly related to the given query keywords but also items implicitly related to
them, with the purpose of providing to the user greater insight into the data. ATHENA [57]
translated the input natural language query (NLQ) into an intermediate query language over
a domain ontology, which was subsequently translated into SQL.

(2) Query disambiguation. Dealing with the ambiguity of natural language is important
for these systems. Query disambiguation is performed at two levels: interpreting a single
term (entity mapper), and interpreting the whole query (interpretation generator). A query
term may have multiple potential mappings to database elements. The entity mapper may
assign a score to each possible mapping – for example, an information retrieval-style score
(e.g., [32]) – in order to distinguish between likely and not likely mappings. On the other
hand, terms may not map directly to any database element due to synonyms and non-exact
matches. The system may attempt to find the closest mappings using a knowledge base with
synonyms (e.g., SODA [4]), or a string similarity algorithm (e.g., NaLIR[47]). To minimize the
chances of ambiguity and properly interpret the query intent, some systems impose stricter
syntactic constraints on their input (e.g., [4], [83]). The position of the keywords, functions
and operators matters and minor changes can alter the semantics or even render the query
incomprehensible. For example, a query could be “count movies actor “Brad Pitt””. Using
this approach, ExpressQ [83] was the first system to accept keyword queries with aggregate
functions and groupBy. The interpretation generator may rank query interpretations using
simple ranking schemes, like the size of the joining network (Discover [33]), the sum of
term scores normalized by the tree size ([32]) or a function of the edge weights [62]. More
elaborated formulas have been used. For example, Spark [51] models a joining tree as a
virtual document, and computes its score as a function of an information retrieval score, a
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Figure 5 Neural NLIDBs system architecture.

completeness factor that quantifies how many different query keywords are included in the
tree, and the tree size. NaLIR [47] ranks query interpretations based on: (i) the number of
parse tree nodes that violate the grammar, (ii) the mappings between the parse tree nodes
and the database elements that can help infer the desired structure of a parse tree, and (iii)
the similarity to the original linguistic parse tree.

(3) Execution-coupled translation. A characteristic of these systems is that they are
responsible not just for translating the query but also for generating the final response to
the query. The SQL translator & executor ensures the syntactic correctness of the generated
SQL queries. The response is ranked according to how well it matches the user query. A lot
of effort has been put into the execution algorithm, aiming to return the top-k results faster.
To achieve this, heuristics are applied to stop the execution without materializing all the
possible joining trees (e.g., DiscoverIR [32]), or accessing fewer parts of the data (Spark [51]).
Précis [41] progressively populates the relations in a logical subset to reduce the number of
database rows fetched to the ones needed in the answer. ⌟

Early systems of this period are keyword-based, adopting the fundamental characteristic
of search engines [1]. NaLIR [47] supported NL queries and used the Stanford Parser [14] to
generate a dependency parse tree, where nodes represent the terms and edges represent the
linguistic relationships between them. Its interpretation generator corrected any possible
flaws in the structure of the parse tree to make it grammatically valid. ATHENA++ [59]
combines linguistic patterns from NL queries with deep domain reasoning using ontologies to
enable nested query detection and generation for specific domains.

5 The Deep Learning Era

If in the end of the nineties, “the development of NLIDBs is no longer as fashionable a
topic within academic research” [3], after 2017, there has been an explosion of works on
NLIDBs [38, 37]. These approaches tackle the text-to-SQL problem as a language translation
problem, and train a neural network on a large amount of {NL query/SQL} pairs [38].

Figure 5 shows the architecture of a neural NLIDB [38]. In its core lies the neural network
that typically follows an encoder-decoder architecture. The encoder takes one or more inputs
of variable shapes and transforms them into one or more internal representations with fixed
shapes that are consumed by the decoder. Additionally, the encoder usually infuses the
representation of each input with information from the rest of the inputs, so as to create
a more informed representation that better captures the instance of the problem at hand,
through a mechanism called neural attention. The decoder uses the representations calculated
by the encoder and makes predictions on the most probable SQL query (or parts of it).

Given that the inputs of an NLIDB are mainly textual, the natural language representation
creates an efficient numerical representation of the input that can be accepted by the encoder.
Early systems used pre-trained word embeddings for NL representation, such as GloVe [54]
(e.g., SQLNet [75], IncSQL [61]). Recent systems rely on Pre-trained Language Models (PLMs)
such as BERT [16] (e.g., HydraNet [52], ValueNet [7]), that provide better representations.
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Apart from the NL question, the inputs to an NLIDB may include table and column
names, values, primary-to-foreign key relationships and relationships between columns and
tables. Input encoding structures the inputs so that the encoder can process them. Options
range from encoding each column with the NL query separately as in HydraNet [52] to
schema graph encoding (e.g., RAT-SQL [68]). Output decoding consists of designing the
structure of the predictions that the network will make, as well as choosing the appropriate
network for making such predictions (e.g., a SQL query can be viewed as a simple string, or
as a structured program which follows a certain grammar).

Neural NLIDBs have the following notable features (see [38] for a detailed survey):

(1) A neural translation problem. Viewing the problem as a language translation one,
neural text-to-SQL systems take as input a NL query and return a SQL query. Depending
on how their decoder generates the output, they can be divided into three categories [10]:
(a) sequence-based, (b) sketch-based slot-filling, and (c) grammar-based approaches.

Sequence-based approaches generate the predicted SQL, or a large part of it, as a sequence
of words (comprising SQL tokens and schema elements) [8, 50, 86]. Seq2SQL [86] was one of
the first neural networks created specifically for the text-to-SQL task and was based on a
previous work focusing on generating logical forms using neural networks [17]. The system
predicts an aggregation function and the column for the SELECT clause as classification
tasks and generates the WHERE condition clause using a seq-to-seq network. The latter
network is burdened with generating parts of the query and can lead to syntactic errors,
which is its major drawback. The network architecture combines LSTM and linear layers,
and its inputs are represented as GloVe embeddings. More recent sequence-based approaches
are more effective thanks to the use of large pre-trained seq-to-seq Transformer [67] models
(e.g., T5 [55], BART [46]) and the use of smarter decoding techniques that constrain the
predictions of the decoder and prevent it from producing invalid queries (e.g., PICARD [58]).

Sketch-based slot-filling approaches (e.g., XSQL [30], SQLOVA [35], HydraNet [52],
SQLNet [75]) consider a query sketch with a number of empty slots that must be filled in,
and use neural networks to predict the most probable elements for each slot, such as the
table columns that appear in the SELECT clause. In this way, the SQL generation task
is transformed into a set of classification tasks. SQLNet [75], one of the first sketch-based
approaches, was based on the observation that the way Seq2SQL [86] chose to generate
the WHERE clause was prone to errors that could be avoided. For this reason, a set of
query sketches were developed and separate neural networks were created to fill each type
of slot. While dividing the text-to-SQL problem into small sub-tasks makes it easier to
generate syntactically correct queries, sketch-based approaches have two drawbacks. Firstly,
the resulting neural network architecture may end up being quite complex since dedicated
networks may be used for each slot or part of the query. Furthermore, it is hard to extend to
complex SQL queries, because generating sketches for any type of SQL query is not trivial.

Grammar-based approaches (e.g., RyanSQL [10], IRNet [27], IncSQL [61], Rat-SQL [68])
produce a sequence of grammar rules instead of simple tokens in their output. These grammar
rules are instructions that, when applied, can create a structured query. The most often used
grammar-based decoders by text-to-SQL systems have been previously proposed for code
generation as an Abstract Syntax Tree (AST) [78, 79]. These models take into account the
grammar of the target code language (in our case, the SQL grammar) and consider the target
program to be an AST, whose nodes are expanded at every tree level using the grammar
rules, until all branches reach a terminal rule. When it reaches a terminal rule, the model
might generate a token, for example, a table name, an operator or a condition value, in the
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case of text-to-SQL. The decoder uses a LSTM-based architecture that predicts a sequence
of actions, where each action is the next rule to apply to the program AST. Because the
available predictions are based both on the given grammar and the current state of the AST,
the possibility of generating a grammatically incorrect query is greatly reduced.

(2) Learning schema linking. Schema linking aims at the discovery of possible mentions
of database elements in the NL question. For this purpose, query candidates are extracted
from the question and are matched to database candidates from the underlying database.
Query candidates may be single words, n-grams (IRNet [27]), or named entities (ValueNet [7],
TypeSQL [80]). Database candidates are tables, columns, and values stored in the database.
To accelerate the search of discovered query candidates in the database values, indexes have
been widely used in earlier, non-neural, text-to-SQL systems [32, 47]. ValueNet [7] also
adopts this approach. The second part of schema linking is the process of mapping the query
candidates to database candidates. Each mapping is called a schema link. These discovered
schema links are fed into the neural network that is responsible for the translation.

The mapping can be performed using exact or partial matching (IRNet [27]) and approx-
imate string matching (ValueNet [7]). Text-to-SQL systems [5, 6] have also used learned word
embeddings from the area of semantic parsing [42]. The system learns word embeddings using
the words of the text-to-SQL training corpus and combines them with additional features
that are calculated using NER, edit distance and indicators for exact token and lemma
match. These embeddings are then used to calculate the similarity of query candidates to
DB candidates. While this approach is expensive, it allows for more flexible and intelligent
matching. Given the complexity of schema linking, it is also possible to train a model to
perform schema linking with better results. For example, a Conditional Random Field (CRF)
model [43] can be trained on a small group of hand-labelled samples to recognize column
links, table links and value links for numerical and textual values [8].

SDSQL [34] follows a very different approach. It is simultaneously trained on two tasks:
(a) the text-to-SQL task, similarly to all systems, and (b) the Schema Dependency Learning
task for discovering schema links using a deep biaffine network [18, 19]. In this case, the
schema links discovered by the system are not directly used for predicting the SQL query;
still, training for both tasks simultaneously has a positive effect on the system performance.

Neural Attention. While attention layers do not directly determine a match, they can
highlight connections between query and DB candidates, which can improve the system’s
internal representation and boost its performance. SQLNet [75] was the first system to
introduce such a mechanism, named Column Attention, that processes the NLQ and column
names and finds relevant columns for each word of the NLQ. PLMs based on the Transformer
neural architecture [67], which encapsulates an attention mechanism, have become very
popular for input encoding, greatly benefiting the accuracy of text-to-SQL systems (e.g., [58]).
RAT-SQL [68] proposed a modified Transformer layer, called Relation-Aware Transformer
(RAT), that biases the attention mechanism of the Transformer towards already-known
relations from the DB schema and discovered schema links.

(3) Output refinement. Output refinement can be applied on a trained model to avoid
producing incorrect SQL queries. Execution-guided decoding [70] can execute partially
complete SQL queries at prediction time and decide to avoid a certain prediction if the
execution fails or if it returns an empty output. Execution-guided decoding is system-
agnostic and can increase the system accuracy. Constrained decoding is a method for
incrementally parsing and constraining auto-regressive decoders, to prevent them from
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producing grammatical or syntactical errors (PICARD [58]). For each token prediction,
PICARD examines the generated sequence so far along with the k most probable next tokens
and discards all tokens that would produce a grammatically incorrect SQL query, use an
attribute that is not present in the DB at hand, or use a table column without having its
table in the query scope. Other systems with sequence-based decoders have proposed similar
decoding techniques to avoid errors (e.g., SeaD [76] and BRIDGE [50]).

(4) Datasets & evaluation. A text-to-SQL dataset (or benchmark) is a set of NL/SQL
query pairs defined over one or more databases, used to train and evaluate neural text-to-SQL
systems. Text-to-SQL datasets become a critical asset due to their integral role in enabling
the development of such systems and serving as a common reference for evaluation. Previous,
non-neural systems did not use common datasets, instead they employed a variety of small
datasets that combined different databases and query sets of varying size and complexity. The
lack of a common dataset to be used by different system evaluations impeded a fair system
comparison and a clear view of the text-to-SQL landscape in previous years. This situation
drastically changes with the emergence of WikiSQL [86] and Spider [81], in 2017 and 2018
respectively. These are the first large-scale, multi-domain benchmarks that made it possible
to train and evaluate neural text-to-SQL systems and provided a common tool to compare
different systems easily. While other benchmarks have followed (e.g., [9, 24, 44, 49, 84]),
these two remain the most popular ones. ⌟

The first neural NLIDBs (e.g., [75, 86]) could generate simple queries over single tables
of the WikiSQL dataset. Recent systems [7, 27, 68] can generate complex SQL queries
over relational databases and achieve high performance scores on Spider. Schema linking
is not always an explicit component of a neural NLIDB. Systems such as Seq2SQL [86],
SQLNet [75], and HydraNet [52] do not perform schema linking, relying mainly on the neural
network to correctly translate the NL question over the underlying data. However, it is
not clear whether pre-trained neural architectures defy the need for schema linking. On
the other hand, there is little evidence on how fast and scalable schema linking approaches
are, especially for very large databases, with the exception of DBTagger [66] that provides
experimental insights into the time and memory requirements of its schema linking approach.

Most systems do not ensure that the generated SQL is syntactically correct (e.g.,
Seq2SQL [86], SQLNet [75], HydraNet [52], IncSQL [61], RyanSQL [10]). Output refinement
can be applied on a trained model to avoid producing incorrect SQL queries. However, it
adds an additional burden to the system and increases the time needed to generate a SQL
query. Its effectiveness versus the incurred overhead are yet to be studied.

The remarkable rise of neural NLIBDs has not been followed by their widespread adoption
in commercial products yet. There are many obstacles on the way to deliver the promise
of truly enabling accessing data using natural language. A significant one is their view of
the text-to-SQL problem as a language translation problem and their focus on translation
accuracy over a specific dataset [29]. This is one side of the coin though, as we explain next.

6 Not (just) a Language Translation Problem: The Role of SQL and
the Database Schema

Even if a system eliminated all linguistic problems and could perfectly understand a NL
query, additional challenges stem from the SQL expressivity and the schema of the data.

The language SQL was developed by IBM, as a human-friendly way to query relational
data. However, SQL is a structured language with a strict grammar, which leads to limited
expressivity when compared to natural language or other programming languages. For
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example, it lacks constructs for iteration and recursion, amongst other things. There are
queries that are easy to express in natural language, but their respective SQL is more complex
and less intuitive. For example, the query “Return the movie with the best rating” may be
mapped to a nested SQL query. While the original NL query is simple, building the complex
SQL query may be challenging for the system. Full natural language is more expressive than
single SQL queries. There are computationally reasonable queries that might be expressed in
NL, but which cannot be answered by a single SQL query. Finally, while a sentence in natural
language may contain mistakes, and still be understood by a human, a SQL query needs to
be syntactically and semantically correct to be executable over the underlying database.

The database schema also poses challenges. As one instance, a query like “Who is the
director of “Beautiful Mind” may hide implicit join operations due to database normalization.
Moreover, similar NL queries may need different processing on two different database schemas.
For example, in a university database, every person is either a Student or a Faculty member,
so these comprise two relations. On the other hand, movies have several genres that cannot
be stored as different tables. They are stored in a Genre relation and are connected with
movies through a many-to-many relationship. As a result, similar queries, such as “comedies
released in 2018” and “students enrolled in 2018” are handled differently. In the former case,
the system maps “comedies” to a value in the Genre table and joins it with the Movie table
whereas it just maps “students” to the Student relation in the latter case.

All these challenges make the text-to-SQL problem challenging. Not only it is difficult to
understand a NL query but it is also difficult to build the correct SQL query. Perhaps even
more critically, similar questions may lead to a different outcome over different databases:
one question may be successfully translated over one database and the other may not, due to
issues such as ambiguity, paraphrasing, and different database schemas. Neural approaches
addressing the problem as purely a language translation one ignore the particularities of the
problem that stem from SQL and the database schema. Not surprisingly though, database
approaches that view the text-to-SQL problem as mainly a database mapping one, also fall
short in appreciating its multi-dimensional nature. Both perspectives, neural and database,
have their merits to consider along their shortcomings in the quest of better NLIDBs.

7 Where we Stand: Limitations and Lessons Learnt

The systems that approach the text-to-SQL as a database mapping problem provide a more
grounded solution that leverages the underlying data and relationships to intrepret the NL
question and build an executable SQL query. They also include explicit methods for dealing
with query ambiguity both at the level of query terms as well as at the level of the query.
However, existing approaches struggle with more complex and diverse NL queries and cannot
easily cope with NL challenges, such as synonyms, paraphrasing and typos [25].

On the other hand, neural NLIDBs, often completely ignoring the underlying data,
promise to be more generalizable both in terms of the different types of NL queries the
methods can understand as well as the different databases they can work on thanks to their
extensive training. However, in practice, existing approaches focus on limited-scope problems
and their accuracy severely degrades with more complex and diverse NL and SQL queries
as well as complex databases [39]. They depend on training data and cannot cope with
unseen databases and queries. For example, Spider [81], which is very popular for training
and evaluating text-to-SQL systems, contains queries over 200 relational databases from
138 different domains. These are toy databases with simple schemas and small sizes not
resembling real-world databases. Moreover, most neural approaches support size-limiting
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input representations that cannot possibly leverage the wealth of a real-world database
comprising hundreds of tables and attributes. These limitations become highly relevant when
applying a text-to-SQL system to an actual database [29] used in a business, research or
any other real-world use case. Such databases can pose difficulties not encountered in the
datasets used to train and evaluate such systems, for example, a large number of tables and
attributes and table and column names that use domain-specific terminology. Last but not
least, models used so far are typically quite large, questioning their practical use 1.

8 The Challenges of NLIDBs

The challenges coming from the NL side and the challenges from the SQL and database side
combined create a set of novel and unique to NLIDBs challenges that haunt current efforts.

Query answerability: How to tell if the NL question can be answered or not and why.
For SQL queries, the answerability question can be answered deterministically based on two
checks: syntactic and semantic correctness. When a database receives a SQL query, the
parser checks whether the query adheres to the SQL syntax (syntactic parsing) and whether
it contains tables and columns that exist in the underlying database (semantic parsing).
Both checks are easy, fast, and conclusive. If the query contains any (syntactic or semantic)
error, the system stops query processing and informs the user of the exact problem that
makes the query unanswerable. The user can correct the query accordingly. In a NLIDB,
the query answerability question is more convoluted: does the NL question map to SQL that
captures the query intent and is executable over the underlying database? It is hard to define
a set of comprehensive checks needed but it is also hard to answer them always successfully.

Two important checks are still (a) semantic correctness, meaning that the concepts
mentioned in the query can be mapped to database columns and tables, and (b) syntactic
correctness of the generated SQL. In database approaches to NLIDBs, the entity mapper
performs the semantic parsing while the interpretation generator is responsible for the
syntactic parsing since it makes sure that syntactically correct SQL queries are generated.
Due to issues such as the language ambiguity, and the linguistic and conceptual gap between
how the user formulates the query and how the system stores the data, NLIDBs may fail to
recognize that a question is answerable. For instance, for the query “How many people live in
Amsterdam?”, a NLIDB may not link the population attribute in the database schema to
“How many people live”. A NLIDB may also fail to recognize that a NL question cannot be
answered, and still try to generate a SQL query. These problems are even more pronounced in
neural NLIDBs. Especially those that do not employ schema linking and output refinement
techniques are more prone to generate non-executable queries.

For NL questions, there have been some attempts to define query answerability devising
categories of unanswerable questions [69, 85]. For example, the calculation unanswerable
category requires mapping the concept mentioned in the user question to composite opera-
tions over existing table columns that are not known SQL operations or even user-defined
functions [69]. The out-of-scope category means that the question is out of SQL’s operation
scope, such as when the user requests for charts [69]. Improper to DB refers to questions
such as small talk or asking-opinion questions that are not proper to any databases [85].

Neural end-to-end parsing models ignore modeling questions in a fine-grained manner,
which results in an inability to precisely detect and locate the specific reasons for unanswerable
questions [69]. Furthermore, most existing text-to-SQL datasets used for training lack

1 The training cost as well as the energy consumption [60] of such big models are important concerns.
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ambiguous and unanswerable questions (e.g. Spider [81]) or if they contain, they are not
marked in a way that the system can recognize them and learn accordingly (e.g., WikiSQL [86]).
A NLIDB parsing system should detect answerable and unanswerable questions, and it should
locate the specific reasons and generate corresponding explanations to guide the user in
rectification. To that end, some recent efforts have emerged [82, 69]. For example, a weakly
supervised DTE (Detecting-Then-Explaining) model for error detection, localization, and
explanation [69] is trained on a dataset called TRIAGESQL [85].

Query coverage: What is the set of NL questions allowed. A NLIDB’s query capabilities
are not obvious to the user [25, 64]. Users find it difficult to understand what kinds of
questions the system can or cannot cope with. It is often not clear to the user whether a
rejected question is outside the system’s query coverage (what types of NL statements it
can recognize as queries that can be mapped to SQL), or whether it is outside the system’s
conceptual coverage (how the data is actually stored). Users are often forced to rephrase their
questions, until a form the system can understand is reached. In other cases, users never try
questions the NLIDB could in principle handle, because they think the questions are outside
the subset of natural language supported by the NLIDB. To frame the query coverage of
the system, some NLIDBs explicitly restrict the set of natural language expressions the user
is allowed to input, so that the limits of this subset are obvious to the user (e.g., the early
PRE [21], SODA [4] and ExpressQ [83]). Clearly, there is a trade-off for an NLIDB between:
(i) the usability and expressivity of natural language, and (ii) the reduction of ambiguity by
imposing a more structured input syntax, which may lead to higher effectiveness.

In order to understand and expand the query coverage of NLIDBs, benchmarks play
a critical role. Existing ones fail to address the question of what type of NL and SQL
queries a system can understand and build, respectively. One important reason for that
is the lack of a query categorization. Spider [81] has four very coarse-grained classes of
queries. The first organized effort to understanding the query coverage of a NLIDB is a
query benchmark [25] consisting of keyword and natural language queries over three datasets,
divided into 17 categories that aim to test the systems on specific linguistic and SQL aspects
of the problem of translating free-form queries to SQL. The authors also provide a full
experimental methodology that studies both the effectiveness (correctness of answers), and
the efficiency (execution time) of the systems.

Other benchmarks focus on testing specific query capabilities. For instance, Spider-
DK [24] extends Spider to explore system capabilities at cross-domain generalization (i.e.,
robustness to domain-specific vocabulary across different domains), while Spider-Syn [23]
focuses on robustness to synonyms and different vocabulary. TRIAGESQL [85] focuses
on the answerability problem and defines four types of unanswerable questions along with
answerable questions. Clearly, more effort is needed in coming up with benchmarks that can
provide clear insights into query coverage.

There are several types of queries that current benchmarks do not cover and neural systems
are not trained to answer. For instance, meta-knowledge questions are questions referring to
knowledge about knowledge (e.g., ASK [65]), such as “What information is in the database?”,
“What is known about ships?” [62] or “What are the possible employee job titles?” In modal
questions, the user asks whether something can or must be the case. For example: “Can a
female employee work in sales?” Furthermore, NLIDBs cannot answer temporal questions [3]
because they cannot cope with the semantics of natural language temporal expressions (e.g.
tenses/aspects, temporal subordinators), and they were designed to interface to “snapshot”
databases, that do not facilitate the manipulation of time-dependent information.
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Domain portability: How to cope with new domain knowledge. Early NLIDBs were each
designed for a particular database application. Lunar [74], for example, was designed to
support English questions, referring to a database of a particular structure, holding data
about moon rocks. Such application-tailored NLIDBs were very difficult to port to different
applications or databases. Different to the built-in formal query language interpreters
that commercial database systems come with, more recent NLIDBs usually require tedious
configuration phases before they can be used for a different database or domain. A knowledge
engineer needs to capture the domain knowledge, such as rules, knowledge bases or ontologies
(e.g., CLE [2], SODA [4], ATHENA [57]). The db administrator needs to create inverted
indexes (e.g., TEAM [26], DISCOVER [33]). Neural systems cannot make good predictions
for unseen NL questions and domains unless trained.

The top neural NLIDBs achieve high accuracy numbers on Spider. However, the majority
of databases in the Spider benchmark are of low complexity, and contain general knowledge.
Furthermore, most queries are simple without complex structures or operations. Neural
machine translation systems pre-trained on common knowledge datasets, like Spider, typically
fail in complex domains due to the large disparity in subject matter [84]. Real-world databases
often store large amounts of data with hundreds of attributes. These attributes may have
non-descriptive names or store numerical measurements (an example is the astrophysics
database called Sloan Digital Sky Survey (SDSS)2). Learning the mapping of a token from
a natural language question to the relevant database attribute may necessitate additional
training as well as ontologies that describe the meaning of attributes and tables. On top of
that, domain-specific queries may be more elaborate containing functions and mathematical
operators between attributes.

Given the difficulties that arise when creating an NL interface for a real-world database,
one approach is to build specialized, domain-specific benchmarks for training and evaluating
such systems. For instance, Spider-DK [24] extends Spider to explore system capabilities at
cross-domain generalization (i.e., robustness to domain-specific vocabulary across different
domains). BIRD [49] is a dataset with questions over large-scale databases that can better
represent real use-case scenarios. ScienceBenchmark [84] focuses on three real-world, highly
domain-specific databases. EHRSQL [45] contains questions over two databases related to
health records. Manually crafting a benchmark for a new domain requires domain-specific
expertise and is challenging due to the volume of data needed. Hence, an alternative approach
is data augmentation, i.e. automatic benchmark generation [84].

Verification: How to tell if the system response matches the NL question. A NLIDB
may generate queries in its output that contain errors and do not match the NL question’s
intent. For example, the output SQL may contain wrong columns or tables, values that are
not found in the data or they are found in a different form, unnecessary or wrong joins, and
so forth. Even when an NLIDB cannot understand a question or the query is not answerable,
the system may still try to generate a SQL query (as most neural systems do). Another
problem is that NL questions often have several readings, and the system may select a
reading of a question that is different from the reading the user had in mind. In these cases,
it may be hard for the user to understand that the system has actually answered a different
question. To avoid such misunderstandings, TQA [13] was a very early system that contained
a module that converted the SQL query back to natural language. Query explanations in
natural language provide a means for users to cross-check their question to the explanations
of the predicted SQL queries and validate the results [20, 40, 71].

2 https://www.sdss.org/

https://www.sdss.org/
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Efficiency. For a NLIDB, focusing on improving its query answering capabilities is only one
side of the coin. Its response time also matters for their adoption. It consists of two parts:
the NL translation time and the SQL execution time.

The NL translation time is an overhead to the overall query execution time that the user
will experience, and hence needs to be optimized. Unfortunately, current systems overlook
the significance of optimized execution, and employ methods that are time-consuming and
do not scale well to large databases. Neural NLIDBs typically rely on very complex models.
While the use of large PLMs usually translates to higher accuracy, it also translates to higher
inference times. Output refinement techniques are also adding extra overhead. For example,
one of the best-performing models on the Spider dataset, T5-3B+PICARD, uses a large PLM
along with a computationally-intensive output refinement technique [58]. Schema linking
also contributes to the overall translation time. These techniques have been shown to be
beneficial for systems working on the Spider dataset, but they have yet to be tested on
large-scale databases, where their overhead may be significant. Even though using indices
and other DB lookup techniques might speed up schema linking, it is still questionable if
looking up multiple words or n-grams for every NLQ, is efficient in a real application.

The SQL execution time is also important. A NL question may be written in SQL in
many equivalent but not equally efficient ways. It is the NLIDB’s responsibility to choose the
most efficient one. Current neural systems only focus on the translation. Early text-to-SQL
systems originating from the database community [32, 33, 47, 51, 83] not only tried to
generate correct SQL queries but also optimal in terms of execution speed. Hence, many of
them contained logic for generating code that would return the desired results fast.

A NLIDB should have a fast response time, even when the question cannot be interpreted.
Ultimately, allowing the user to express questions in natural language should free them from
the technical details of how this query should be expressed in the underlying system language
and how it should be executed efficiently.

Reasoning. Most NLIDBs are direct interfaces to the underlying database, in the sense
that they simply translate user questions to suitable database queries. In some cases, it may
not be possible to answer a natural language question, although all the necessary raw data
are present in the database. Questions involving common sense or domain expertise are
typical examples. In these cases, to produce the answer, the NLIDB must be able to carry
out reasoning based on the data stored in the database [3].

9 Looking Forward: From SQL to NQL

In practice, no modern DBMS comes with an integrated NL query language, nor does exist
a NL client that connects to a database seamlessly like an SQL client and allows a user to
pose queries in NL. Nevertheless, with the galloping progress of deep learning methods, the
emergence of LLMs and vector databases, and several other developments, many researchers
go as far as to envision that NQL (Natural Query Language) will replace SQL. In any
scenario, below, we discuss some requirements for a NQL (Natural Query Language) that
open up several fascinating research directions. Interestingly, such requirements have been
discussed in early systems before the advent of neural NLIDBs (e.g., [63]).

R1. Query expressivity: Using a query language such as SQL, the user knows exactly what
queries are possible. In a similar vein, the set of NL queries that a NLIDB supports
should be clearly defined so that a user is aware of the available query capabilities.
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R2. Data independence: A NLIDB should support the same query expressivity for different
databases. In other words, the same type of NL query should be possible over any
database. For example, if the user could ask “what is the average X of Y” in one database,
then this type of query should be possible in any other database.

R3. Performance: The system should transparently find the most efficient way to answer a
NL query, minimizing both the translation overhead and the query execution cost.

R4. Scalability: A NLIDB should be feasible and scalable over any database.

Requirement R1 is important because up to now almost none of the known text-to-SQL
systems provides a clearly defined query language or specification of its query capabilities. For
the user, it is a trial-and-error process to see what queries can be understood and answered
by the system. Is it possible to come up with a query language specification that systems
can refer to in order to describe their query expressivity?

Towards R1, a query categorization in the spirit of [25] may be a good starting point.
This could enable the creation of appropriate benchmarks for the comparison of the query
capabilities of different systems. Even devising an appropriate query categorization and an
appropriate benchmark raises several challenges: what categories to choose, what queries
should be in each category, which datasets to use. Furthermore, one should take into account
SQL equivalence (different SQL queries that return the same results), and NL ambiguity (a
NL query may have more than one correct translation over the data).

Requirement R2 complements R1 in saying that the same query expressivity should be
supported over any database. This comes naturally with query languages such as SQL. For
instance, SPJ queries can be supported over any data. For a NLIDB, that does not hold.
Going from one database to another, the same type of queries may not be supported. As we
have already pointed out, this is a major concern for neural systems.

One could build specialized, domain-specific benchmarks for training and evaluating text-
to-SQL systems for a new database. Manually crafting such benchmarks is time-consuming.
Data augmentation, i.e., automatic benchmark generation, is an open research direction [73].
However, benchmarks provide a means to demonstrate query expressivity. How does one
ensure data independence is a different beast and finding better training datasets is not the
solution to the problem. Rethinking the system design is needed instead.

Towards this direction, approaches that have been proposed by the database community
have been shown to be more effective from the data independence perspective, since they
rely on the information that the database provides. This potentially points to the need of
re-thinking our approach to the text-to-SQL problem. Some parts of the solution may require
DB methods to ensure data independence and some other parts may use neural models to
generalize system knowledge, for example on the diversity and complexity of NL queries.
How would a system that combines such capabilities look like?

Requirement R3 is about making NQL queries efficient. While the state-of-the-art systems
are still dealing with “getting the answer right”, they are mostly overlooking the “getting
the answer fast”. Improving translation speed by building efficient methods is necessary.
But this may not be enough. Text-to-SQL systems originating from the DB community not
only tried to generate correct SQL queries but also optimal in terms of execution speed.
Improving the overall NQL answering time, i.e., both the translation and the execution,
opens up several research opportunities, from building more efficient models to mapping
translation and execution to operators and building NQL query plans that can be optimized.
In fact, implementing natural language query capabilities closer to the DBMS would open up
several opportunities to leverage both worlds, the database and NLP, from NLQ otpimization
to learning and improving the system’s query capabilities.
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R4 highlights the need for realistic solutions. Deep learning text-to-SQL systems typically
rely on very complex models, which have been trained and evaluated on toy databases
(contained in existing benchmarks). In several cases, it may not be possible to have the
required resources to train such enormous models. Furthermore, since these models require
that the database schema is given as input, they do not scale well to very large databases,
with hundreds of attributes and tables (such as astrophysics and biological data). Instead
of focusing on increasing the model complexity aiming at translation accuracy, we need to
design solutions that also take into account system efficiency, complexity, and scale.

10 Conclusion

Querying data in natural language has been the holy grail of the database community for
several decades. Several efforts ended up in frustrated users with unmet expectations and
disappointed researchers and developers. Commercial products were given up. However,
the landscape has changed. On the one hand, technologies evolve and become increasingly
more powerful. On the other hand, people are becoming accustomed to interacting with
devices and software using natural language. In a few years, the way we interact with data
will probably be very different from what we know nowadays.
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Abstract
Data analytics skills have become an indispensable part of any education that seeks to prepare its
students for the modern workforce. Essential in this skill set is the ability to work with structured
relational data. Relational queries are based on logic and may be declarative in nature, posing
new challenges to novices and students. Manual teaching resources being limited and enrollment
growing rapidly, automated tools that help students debug queries and explain errors are potential
game-changers in database education. We present a suite of tools built on the foundations of
database theory that has been used by over 1600 students in database classes at Duke University,
showcasing a high-impact application of database theory in database education.
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Extended Abstract

In a world where decisions are increasingly driven by data, data analytics skills have become
an indispensable part of any education that seeks to prepare its students for the modern
workforce, in particular, in the multi-billion dollar and rapidly-growing data analytics
industry [7]. Essential in this skill set is the ability to work with structured or relational data
in tabular form – such data can be queried directly to yield useful insights, or transformed into
other representations for additional analysis, model training, or visualization. The standard
“tools of trade” for manipulating structured data include the venerable and ubiquitous
SQL language as well as popular data manipulation libraries, e.g., dplyr for R, DataFrame
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for Python pandas, and Spark. Despite differences in syntax, they are all fundamentally
based on the relational model and rooted in relational query languages such as Relational
Calculus (RC, similar to First Order Logic (FOL)) and Relational Algebra (RA). Learning
and debugging relational queries, however, pose challenges to novices [2]. Even computer
science students with programming background are often not used to thinking in terms of
logic (e.g., when writing SQL queries) or functional programming (e.g., when writing queries
using operators that resemble RA). In stark contrast to the plethora of educational tools for
teaching traditional programming, there is a glaring lack of tools for helping novices learn
and debug relational queries. The problem becomes more critical in a classroom setting,
especially given the rapid growth of enrollment in database classes, and limited availability
of manual help from instructors and teaching assistants in assisting students debug their
queries. This motivates the need to build automated query debugging tools for database
education that can give students succinct but comprehensive information about the mistakes
they have made, and ideally also offer them advice or hints on how to resolve the mistakes
without giving out the entire correct query.

Building tools for verifying, debugging, and fixing relational queries requires foundational
research in database theory. Consider a scenario in a classroom setting where students are
learning to write relational queries and suppose a student has submitted a query Q for
a question they have been asked to solve. Since there are various tools for checking the
correctness of the syntax of a query, we can assume that Q is syntactically correct. Suppose
the instructor has a correct query Q0 as reference for the same question. Since there can
be multiple equivalent ways of writing the same query, ideally we want to check whether Q

and Q0 are equivalent. However, unfortunately, “query equivalence” testing is undecidable in
general, for non-monotone RC or FOL queries involving universal quantifiers (∀), for Datalog
with recursion, and for practical query languages such as SQL with support for even just
integer arithmetic [24, 25, 1, 5]. The problem is decidable but intractable for non-recursive
monotone queries [6, 23], but that does not give a solution for verifying student submissions
for general queries they need to learn in practice. “Eyeballing” errors manually by instructors
and teaching assistants is difficult, especially for subtle mistakes, and does not scale in large
classes. Therefore, the standard practice is to run both the student query Q and the reference
query Q0 on some test database instances D and compare their results, which is often done
by “autograding” tools like GradeScope [11]. If the results differ, i.e., Q(D) ̸= Q0(D), we
know Q is wrong. Note that this does not test query equivalence, i.e., there is no guarantee
that Q is correct if the results agree. For practical purposes, we resort to complex test
instances that attempt to exercise conceivable corner cases in order to increase the chances
of catching wrong queries.

Merely marking Q as wrong, however, does not guide students toward a correct solution.
As a first step, how do we explain to students “why” their query is wrong? One option for the
instructor to explain the errors in the student query Q is to show the test database instance
D for which we know Q(D) ̸= Q0(D) as a “counterexample”, together with Q(D) and Q0(D)
(without revealing Q0 itself). This approach may not work since D tends to be large and
complex by design. For example, in the database courses at Duke University, one assignment
is based on the real DBLP database with millions of rows; another assignment uses synthetic
test databases, and we needed tens of thousands of rows in order to catch most of the errors
that were manually found [17]. Showing millions, thousands, or even just dozens of database
rows can overwhelm the student, especially when the student is learning to think about the
solution logic as well as the query syntax and semantics for the first time. Further, revealing
a test instance D in its entirety encourages the behavior of tweaking one’s query just to pass
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πbeer1,bar1

▷◁beer=beer1

σdrinker LIKE ′Eve%′

Likes

πbar1,beer1

▷◁beer1=beer2 ∧ price1>price2

ρbar1,beer1,price1

Serves

ρbar2,beer2,price2

Serves

Figure 1 Wrong query Q.

each particular test, which is not conducive to learning. Hence, we need to develop solutions
to help students better understand what is wrong, and make it scale for a large number
of students and easily customizable for different exercises across classrooms. The problem
becomes more challenging when we consider different classes of relational queries, as the
solutions for the procedural RA queries and declarative SQL queries may be very different.

At Duke University, we have been working on a project called HNRQ: Helping Novices
Learn and Debug Relational Queries [27], where we are building a suite of tools for debugging
queries. Furthermore, we are using these tools in our large undergraduate and graduate
database classes to provide automated and scalable help to students debug their own queries.
We are evaluating the effectiveness of these tools on learning by running user studies and
surveys employing techniques from CS Education in consultation with the Institutional
Review Board (IRB) at our university. These tools are built upon foundations and techniques
from database theory, whereas they have simple user-friendly interactive graphical interfaces
targeted towards students who are learning to write relational queries. This research direction
showcase a practical application of database theory to help students learn to write relational
queries and has a direct impact on any data science curriculum. Building query debugging
tools has applications beyond the educational setting, e.g., to help debug database queries
that fail regression tests commonly used by the software industry.

In the rest of the paper, we give a brief overview of our query debugging tools, and some
ongoing and future research directions. We skip discussions of related work in this extended
abstract; a detailed discussion of related work can be found in our research papers [17, 10, 16],
in the articles in a Data Engineering Bulletin Special Issue on “Widening the Impact of Data
Engineering through Innovations in Education, Interfaces, and Features” that Roy and Yang
co-edited [22], and in the recent workshops “Data Systems Education (DataEd)” [21].

Explaining Wrong Queries with Small Counterexamples

In our first tool called RATest [17, 18], we focused on explaining wrong RA queries adapting
the idea of using a test instance D where Q(D) ̸= Q0(D). Instead of showing the entire test
database instance D, the key idea behind RATest is to show a small subinstance D′ ⊆ D (still
conforming to all database constraints like keys and foreign keys) such that Q(D′) ̸= Q0(D′),
i.e., D′ is a small counterexample still able to illustrate the difference between Q and Q0.

▶ Example 1. Consider the popular Drinker database with information about bars and
bar-goers as follows (keys are underlined):

Drinker(name, address), Bar(name, address), Beer(name, brewer),
Frequents(drinker, bar, times_a_week), Likes(drinker, beer), Serves(bar, beer, price).
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name addr
Eve Edwards 32767 Magic Way

(a) Drinker.

name brewer
American Pale Ale Sierra Nevada

(b) Beer.

name addr
Restaurant Memory 1276 Evans Estate

Tadim 082 Julia Underpass
Restaurante Raffaele 7357 Dalton Walks

(c) Bar.

drinker beer
Eve Edwards American Pale Ale

(d) Likes.

bar beer price
Restaurant Memory American Pale Ale 2.25
Restaurante Raffaele American Pale Ale 2.75

Tadim American Pale Ale 3.5

(e) Serves.

Figure 2 A small counterexample returned by RATest.

Students are asked to write the following query in RA: “for each beer liked by any
drinker with first name Eve, find the bars that serve this beer at the highest price.” A
common incorrect query Q is shown in Figure 1 that considers not-lowest price instead
of highest price among other errors. The test database instance D for this database used
in our database classes contains thousands of tuples and would not be useful to the stu-
dent. RATest, on the other hand, is able to find a remarkably small counterexample in
Figure 2 automatically to illustrate why Q is wrong. RATest also shows that Q returns
both ⟨American Pale Ale, Restaurante Raffaele⟩ and ⟨American Pale Ale, Tadim⟩ on this
small instance, whereas the correct result should contain only ⟨American Pale Ale, Tadim⟩.
RATest further allows the student to trace the execution of Q over the counterexample along
the RA query plan. The correct query Q0 itself is never revealed.

In the backend, to simplify the problem of finding a small D′ ⊆ D further for efficiency such
that Q(D) ̸= Q0(D), we choose a result tuple t ∈ Q0(D) \ Q(D) (or t ∈ Q(D) \ Q0(D)), and
try to find a small instance D′ ⊆ D such that still t ∈ Q0(D′) \ Q(D′). If Q and Q0 are
monotone, we can solve this problem efficiently in polynomial time in the size of data (i.e.,
data complexity [26]). The problem becomes more interesting and challenging when Q0 or
Q is intrinsically non-monotone, then a non-answer can become an answer in a smaller
database instance. In [17], we discussed both the data complexity and combined complexity
(when both data size and query size are parameters) for different query classes: as soon as
queries involve projection, join, and difference operations, even the data complexity becomes
NP-hard. Nevertheless, in [17] we provided practical solutions for general RA queries with
the difference operation. The intuitive idea is to compute the provenance [13] as a Boolean
formula ϕ = ϕ1 ∧ ¬ϕ2 for the tuple of interest, say t ∈ (Q0 − Q)(D), where ϕ1, ϕ2 denote
its provenance or lineage [12] in Q0(D), Q(D) respectively (joint usage of two tuples by join
▷◁ is captured with ∧, and alternative usage by projection π or union ∪ is captured by ∨).
Then we find a minimum satisfying solution of ϕ by setting the smallest number of variables
to true (min-ones satisfiability problem), which can be tackled by SMT (satisfiability modulo
theories) solvers. We use an automatic rewrite procedure to convert the queries into SQL
that will compute not only their results but also provenance expressions for the results tuples.
We apply optimizations such as pushing down selections for interactive performance.
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Suppose Eve likes beer B,
bar X1 serves beer B at price P1,
bar X2 serves beer B at price P2,
bar X3 serves beer B at price P3,
and P2 < P1 < P3;

then your query would incorrectly return ⟨ beer B, bar X1 ⟩.

Figure 3 Intended generalization of the counterexample in Figure 2.

More challenges arise once we consider extended RA queries with aggregation, grouping,
and HAVING (i.e., a selection after a group-by aggregation), for which the previous approach
may not yield a small counterexample, because its aggregate (say SUM) value generally depends
on all member tuples in the input group corresponding to t, and because of predicates like
HAVING Count(*) > 1000 that seek to output a database with at least 1000 tuples. Our
solution is to parameterize the queries and allow a counterexample to differentiate two queries
on some setting of the parameters (which may be different from the original setting) and
constructing the provenance for aggregates using the approach by Amsterdamer et al. [4].

We built RATest as a web-based teaching tool, deployed it in an undergraduate database
class at Duke university in Fall 2018 with about 170 students, and conducted a detailed
user study with 10 homework problems where RATest was available only for a subset of the
problems. We collected usage patterns on RATest as well as how students eventually scored
on the homework problems. The usage of RATest was high in the class and more for harder
queries, and RATest seemed to have helped students solve harder queries as well as other
similar hard queries. We also collected 134 anonymous responses from the students and the
feedback was largely positive. 69.4% of the respondents agreed or strongly agreed that the
counterexamples helped them understand or fix the bug in their queries, and 93.2% would
like to use similar tools in the future for assignments on querying databases. Open-ended
comments were overwhelmingly positive, e.g.,

“It was incredibly useful debugging edge cases in the larger dataset not provided in our
sample dataset with behavior not explicitly described in the problem set.”
“Overall, very helpful and would like to see similar testers for future assignments.”
“I liked how it gave us a concise example showing what we did wrong.”

Since Fall 2018, we have used RATest regularly in graduate and undergraduate courses at
Duke with continued extensive use and positive feedback from students; till date RATest has
been used by more than 1600 students at Duke University.

Explaining Wrong Queries with Abstract Conditional Instances

Since RATest was successful both in terms of research and practical uses in a classroom setting,
the next step was improving this tool in terms of usability, generality, and deployability.
For instance, in Example 1 and Figure 1, it can be noted that Q makes multiple mistakes.
The counterexample in Figure 2 shows the mistake that for a given beer, Q actually finds
bars that do not serve it at the lowest price (a monotone query), as opposed to bars that
serve it at the highest price (requires a non-monotone query). The other mistake, where
the predicate “LIKE ’Eve%’” may incorrectly pick up a drinker whose first name is Evelyn,
is not illustrated in this counterexample. While this omission might be helpful for some
students who can focus on one mistake at a time, it is also useful to show all the mistakes in
the explanation for why Q is wrong. Further, Figure 2 does not “pinpoint” the mistake that
the error is due to the presence of three distinct price values of the same beer, due to the
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name addr
d1 ∗

(a) Drinker relation.

name addr
x1 ∗
x2 ∗
x3 ∗

(b) Bar.

bar beer price
x1 b1 p1

x2 b1 p2

x3 b1 p3

(c) Serves.

name brewer
b1 ∗

(d) Beer.

drinker beer
d1 b1

(e) Likes.

d1 LIKE ‘Eve␣%’ ∧p1 > p2 ∧ p2 > p3

(f) Global condition.

Figure 4 An abstract conditional instance generated by CINSGEN generalizing the concrete
small instance in Figure 2 and capturing the intuitive explanation in Figure 3.

presence of redundant information in the form of attribute values in several other tuples in
other tables. Ideally, we want an explanation as given in Figure 3, which would explain one
major error why the query Q in Figure 1 is wrong. Moreover, the intrinsic limitation of an
instance-based explanation starting with a test instance D is that it may not detect a wrong
query. Further, in some cases, a good test instance D may be unavailable, especially when
new queries are created on a new database schema.

Our next tool named CINSGEN [10, 15]) focused on addressing these issues. In [10] we
considered queries in the form of Relational Calculus (the prototype [15] provided a procedure
to convert SQL queries without aggregates to RC). The broad goal in CINSGEN was to
understand all possible solutions to a query Q′ by a set of “generic” and “representative”
instances that (1) illustrate different ways the query Q′ can be satisfied, and (2) summarize
all specific instances that would satisfy the query in the same way by abstracting away
unnecessary details. To formalize this, we develop the concept conditional instances or
c-instances by adapting the notion of c-tables by Imilienski and Lipski [14] for incomplete
databases, which are abstract database instances comprising variables (labeled nulls) along
with a condition on those variables. An example c-instance capturing the intuitive condition
in Figure 3 and generalizing the concrete small instance in Figure 2 is shown in Figure 4.
Another c-instance (not shown) will illustrate the second error of the first name being
“Eve” vs. the first name starting with “Eve”. Thus, each c-instance can be considered a
representative of all grounded instances that replace its variables with constants that satisfy
the conditions that they are involved in. Since it may be hard to capture all satisfying
instances with abstract c-instances (e.g., they can be unbounded in size), we use the idea
of coverage from the software validation field [19, 20, 3], covering different ways a query
can be satisfied. Since now we are essentially testing equivalence of two first order logic
queries, the problem of finding such conditional instances in general is undecidable by
a reduction from the finite satisfiability problem and Trakhtenbrot’s Theorem [25]. Hence
we developed practical algorithms inspired by the “chase” procedure by Fagin et al. [8, 9]
with a user-specified input stopping condition (on the number of steps or time) to generate
such instances. Hence, if CINSGEN does not return any c-instances, the query Q may
still be wrong and not equivalent to Q0. Our user study with undergraduate and graduate
students shows that although both RATest [17] and CINSGEN [10] help students detect
errors, conditional instances by CINSGEN help students detect multiple errors in wrong
queries unlike concrete instances provided by RATest.
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Tracing Outputs and Errors in Declarative SQL Queries

Part of convincing a student why a relational query Q is wrong is to help the student
understand the semantics of Q and its behavior of on an input instance D. Even if D is
small, it may not be obvious why Q produces Q(D) as its result, especially for students who
may have misunderstandings about how certain query constructs work. A useful way of
debugging Q would be to “trace” its execution over D. For RA (or other operator-based
relational languages), a straightforward approach, which we have used successfully in [17, 18],
is to show the algebraic query expression tree and the intermediate results produced by each
operator when executed in a bottom-up fashion. However, for the practical “declarative”
language of SQL, which draws inspiration from logic, it is not even clear what “tracing”
means. For instance, for a correlated subquery, we cannot talk about its result without the
context from which it derives its variable bindings. Using the schema in Example 1, the
following simple query has a correlated subquery:

SELECT address
FROM Drinker
WHERE EXISTS
(SELECT * FROM Frequents WHERE drinker = Drinker.name)

Clearly, the result of the subquery depends on the particular Drinker.name value, which
comes from the outer query over Drinker. Hence, tracing intermediate results in a bottom-up
fashion does not work. In practice, with or without correlated subqueries, SQL queries are
almost never executed as the way they were written because of query optimization. Instead,
we must be able to trace SQL at a logical level, in a way consistent with how a query is
originally written, without requiring any additional knowledge of relational algebra or its
mapping from SQL. Toward explaining how answers are generated from a SQL query, we
developed a tracing tool named I-REX [16] that provides a novel interactive interface that
allows users to trace query evaluation in a way faithful to how the query is written originally.
For instance, I-Rex explains how the results are semantically generated (and non-answers are
filtered out) by first computing the cross product of tables in the FROM clause, applying
the predicates in the WHERE clause in a logical tree form, grouping intermediate results
in the GROUP BY clause, applying predicate in the HAVING clause, and executing the
subqueries in a “context” with specific variable bindings provided during the evaluation of
its outer queries. In the backend, I-REX extends provenance support for SQL in non-trivial
ways to work with various query constructs. This tool is currently being deployed in our
classes and evaluations by user studies are being performed.

Ongoing and Future Work

When a student understands that their query is wrong, the next natural step is to provide
some “hints” to fix their queries. While it is possible to quickly suggest students to restructure
their approaches if the wrong queries are too far off from the solution, many wrong queries
contain subtle mistakes which require potentially long time for examining and resolving
errors, and instructors need to come up with good hints for fixing errors without showing
the solution. Further, for wrong queries with smaller mistakes (e.g., missing a predicate in
the WHERE clause), it is important to show the incremental changes that have to be made
on the wrong query instead of suggesting a correct query that is drastically different from
the student query. Toward this goal, we are developing a tool that takes two non-equivalent
SQL queries (a correct query and a wrong query), pinpoints the parts of the wrong query
that causes “semantic” differences between the queries, and also provides hints for direct
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edits to make it equivalent to the correct query. Our approach works for simple single-block
SQL queries (without nested sub-queries, NULLs, constraints, etc.), and it will be interesting
to develop methods for larger classes of SQL queries (e.g., two non-equivalent queries can
become equivalent in the presence of certain integrity constraints).

A much more challenging and open-ended research direction is designing and building
query debugging solutions in the realm of Large language Model (LLM)-based tools such as
ChatGPT. These tools can return queries in standard relational query languages like SQL,
but may produce incorrect solutions for complex queries. While questions like whether and
how such tools should be allowed in database classes are being discussed in the community
in various panels and workshops, the form of query debugging may be very different in the
presence of LLMs, and may lead to a novel direction of research spanning multiple areas
such as database theory, natural language processing, and programming languages.

Another important aspect in building query debugging tools is evaluating their effect
on learning – e.g., whether they help students learn to write a query when such tools are
not available, whether they inspire students to seek help more from instructors, or whether
the students merely use them as a shortcut for getting their class assignments completed
in less time. While we have been conducting extensive user studies and surveys in the
large database classes at our university at different stages of development of these tools,
there are restrictions on how such studies can be performed in classroom settings due to
several compliance and ethical concerns. For instance, the gold standard of inferring causal
conclusions by “Randomized Controlled Trials” to test whether these tools help students
learn to write queries may not be feasible in an active class. Continued discussions and
collaborations across universities will lead to fundamental database research as well as
effective scalable solutions potentially revolutionizing database and data science education.
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Abstract
An ontology specifies an abstract model of a domain of interest via a formal language that is typically
based on logic. Tuple-generating dependencies (tgds) and equality-generating dependencies (egds)
originally introduced as a unifying framework for database integrity constraints, and later on used
in data exchange and integration, are well suited for modeling ontologies that are intended for
data-intensive tasks. The reason is that, unlike other popular formalisms such as description logics,
tgds and egds can easily handle higher-arity relations that naturally occur in relational databases.
In recent years, there has been an extensive study of tgd- and egd-based ontologies and of their
applications to several different data-intensive tasks. In those studies, model theory plays a crucial
role and it typically proceeds from syntax to semantics. In other words, the syntax of an ontology
language is introduced first and then the properties of the mathematical structures that satisfy
ontologies of that language are explored. There is, however, a mature and growing body of research
in the reverse direction, i.e., from semantics to syntax. Here, the starting point is a collection of
model-theoretic properties and the goal is to determine whether or not these properties characterize
some ontology language. Such results are welcome as they pinpoint the expressive power of an
ontology language in terms of insightful model-theoretic properties. The main aim of this tutorial
is to present a comprehensive overview of model-theoretic characterizations of tgd- and egd-based
ontology languages that are encountered in database theory and symbolic artificial intelligence.
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Abstract
We study the fine-grained complexity of conjunctive queries with grouping and aggregation. For some
common aggregate functions (e.g., min, max, count, sum), such a query can be phrased as an ordinary
conjunctive query over a database annotated with a suitable commutative semiring. Specifically, we
investigate the ability to evaluate such queries by constructing in log-linear time a data structure
that provides logarithmic-time direct access to the answers ordered by a given lexicographic order.
This task is nontrivial since the number of answers might be larger than log-linear in the size of the
input, and so, the data structure needs to provide a compact representation of the space of answers.

In the absence of aggregation and annotation, past research provides a sufficient tractability
condition on queries and orders. For queries without self-joins, this condition is not just sufficient,
but also necessary (under conventional lower-bound assumptions in fine-grained complexity). We
show that all past results continue to hold for annotated databases, assuming that the annotation
itself is not part of the lexicographic order. On the other hand, we show infeasibility for the case
of count-distinct that does not have any efficient representation as a commutative semiring. We
then investigate the ability to include the aggregate and annotation outcome in the lexicographic
order. Among the hardness results, standing out as tractable is the case of a semiring with an
idempotent addition, such as those of min and max. Notably, this case captures also count-distinct
over a logarithmic-size domain.
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1 Introduction

Consider a query Q that may have a large number of answers, say cubic in the number of
tuples of the input database D. By answering Q via direct access, we avoid the materialization
of the list of answers, and instead, construct a compact data structure S that supports
random access: given an index i, retrieve the ith answer. Hence, direct access evaluation for
a query Q consists of two algorithms, one for the structure construction (with the input D),
called preprocessing, and one for fast access to the answers (with the input S and i). This
task is nontrivial when S is considerably cheaper to construct than Q(D). Similarly to past
work on direct access [6], we adopt the tractability requirement of linear or quasi-linear time
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to construct S, and logarithmic time per access. Hence, up to a poly-logarithmic factor, the
required construction time is what it takes to read the database (i.e., linear time), and the
access time is constant. The structure S can be viewed as a compact representation of Q(D),
in the general sense of Factorized Databases [17], since its size is necessarily quasi-linear and
it provides fast access.

Direct access solutions have been devised for Conjunctive Queries (CQs), first as a way to
establish algorithms for enumerating the answers with linear preprocessing time and constant
delay [4] (and FO queries with restrictions on the database [2]); the preprocessing phase
constructs S, and the enumeration phase retrieves the answers by accessing S with increasing
indices i. Later, direct access had a more crucial role within the task of enumerating the
answers in a uniformly random order [7]. As a notion of query evaluation, direct access is
interesting in its own right, since we can view S itself as the “result” of the query in the case
where array-like access is sufficient for downstream processing (e.g., to produce a sample of
answers, to return answers by pages, to answer q-quantile queries, etc.). But then S has
the benefit that it is considerably smaller and faster to produce than the materialized set
of answers. Indeed, recent work has studied the complexity of direct access independently
(regardless of any enumeration context) [5], and specifically studied which orders over the
answers allow for such evaluation [6]. In this paper, we continue with the line of work by
Carmeli et al. [6] and investigate the ability to support query evaluation via direct access for
aggregate queries, while focusing on lexicographic orderings of answers.

For illustration, consider the following example, inspired by the FIFA World Cup. Suppose
that we have a database of players of teams (countries), sponsors of teams, and goals
scored in different games. Specifically, we have three relations: Teams(player, country),
Sponsors(org, country), and Goals(game, player, time). The following CQ finds times
when sponsors got exposure due to goals of supported teams:

Q1(c, o, p, t) :− Teams(p, c), Sponsors(o, c), Goals(g, p, t)

Suppose also that we would like the answers to be ordered lexicographically by their order in
the head: first by c (country), then by o (organization), then by p (player), and lastly by t

(time). Note that o, c, p and t are free variables and g is an existential variable. Carmeli et
al. [6] studied the ability to evaluate such ordered queries with direct access. In the case of
Q1, the results of Carmeli et al. show that there is an efficient direct access evaluation (since
the query is free-connex and there is no “disruptive trio”).

Now, suppose that we would like to count the goals per sponsorship and player. In
standard CQ notation (e.g., Cohen et al. [9]), we can phrase this query as follows.

Q2(c, o, p, Count()) :− Teams(p, c), Sponsors(o, c), Goals(g, p, t)

Here, the variables p, c, and o are treated as the grouping variables (rather than free variables),
where each combination of values defines a group of tuples over (c, o, p, g, t) and Count()
simply counts the tuples in the group. Again, we would like to answer this query via direct
access. This introduces two challenges. The first challenge is aggregate construction: when
we access a tuple using S, the aggregate value should be quickly produced as well. The
second challenge is ordering by aggregation: how can we incorporate the aggregation in the
lexicographic order of the answers if so desired by the query? As an example, we may wish
to order the answers first by c, then by Count(), and then by o and p; in this case, we would
phrase the head accordingly as Q2(c, Count(), o, p).

As previously done in the context of algorithms for aggregate queries [15, 20], we also
study a semiring alternative to the above formalism of aggregate queries. Specifically, we
can adopt the well-known framework of provenance semiring of Green, Karvounarakis and
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Tannen [13] and phrase the query as an ordinary CQ with the annotation carrying the
aggregate value (e.g., the number of goals in our example). To reason about random-access
evaluation, we found it more elegant, general, and insightful to support CQs over annotated
databases rather than SQL-like aggregate functions. For illustration, we can phrase the
above aggregate query Q2 as the following CQ Q3, but for a database that is annotated
using a specific commutative semiring.

Q3(c, o, p) :− Teams(p, c), Sponsors(o, c), Goals(g, p, t)

In a nutshell (the formal definition is in Section 2), the idea is that each tuple is annotated
with an element of the semiring, the annotation of each tuple in the group is the product of the
participating tuple annotations, and the annotation of the whole group is the sum of all tuple
annotations in the group’s tuples. In the case of our example with Q3, we use the numeric
semiring (Z, +, ·, 0, 1), and each tuple is annotated simply with the number 1. We can use dif-
ferent semirings and annotations to compute different aggregate functions like sum, min, and
max. Here again, we have challenges analogous to the aggregate case: annotation construction
and ordering by annotation. The previous example becomes ordering by c, then by the an-
notation, and then by o and p. Notationally, we specify the annotation position by the symbol
⋆ and phrase the query as Q3(c, ⋆, o, p) :− Teams(p, c), Sponsors(o, c), Goals(g, p, t). We
refer to such a query as a CQ⋆.

In this paper, we study queries in both formalisms – CQs enhanced with aggregate
functions and ordinary CQ⋆s over annotated databases. We usually devise algorithms
and upper bounds on general commutative semirings (possibly with additional conditions),
as positive results carry over to the aggregate formalism, and we prove cases of specific
intractable queries with specific aggregate functions over ordinary (non-annotated) databases.

Our analysis is done in two parts. In Section 4, we study the case where the annotation or
aggregation is not a part of the lexicographic order; we show that under reasonable assump-
tions about the complexity of the semiring operations, all results for ordinary databases [6]
continue to hold in the presence of annotation (that is, we can solve annotation construction).
We conclude the analogous tractability for the common aggregate functions (count, sum, min,
max, average), with the exception of count-distinct which cannot be expressed efficiently
as a semiring annotation. In Section 5, we study the ability to include the annotation or
aggregation in nontrivial positions within the lexicographic order; we show that the picture
is more involved there since we hit hardness very quickly, and we need to carefully state the
conditions that allow for efficient direct access for important cases.

The remainder of the paper is organized as follows. After preliminary concepts and
notation in Section 2, Section 3 defines the challenge of direct access with an underlying
order and recalls the state of affairs for ordinary CQs over ordinary databases. We present
our analysis in Sections 4 and 5 (as explained in the previous paragraph), and conclude in
Section 6. Missing proofs can be found in the full version of the paper [10].

2 Preliminaries

We begin with preliminary notation and terminology that we use throughout the paper.

Databases and conjunctive queries. A schema S is a finite set {R1, . . . , Rk} of relation
symbols. Each relation symbol R is associated with an arity ar(R), which is a natural
number. We assume a countably infinite set Const of constants that appear as values of
databases. A database D over a schema S maps every relation symbol R of S to a finite
relation RD ⊆ Constar(R). If (c1, . . . , ck) is a tuple of RD (where k = ar(R)), then we call
the expression R(c1, . . . , ck) a fact of D.
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A Conjunctive Query (CQ) over the schema S has the form Q(x⃗) :−φ1(x⃗, y⃗), . . . , φℓ(x⃗, y⃗)
where x⃗ and y⃗ are disjoint sequences of variables, and each φi(x⃗, y⃗) is an atomic query
R(z1, . . . , zk) such that R ∈ S with ar(R) = k and each zi is a variable in x⃗ or y⃗. Each
φi(x⃗, y⃗) is an atom of Q, and we denote by atoms(Q) the set of atoms of Q. We call Q(x⃗) the
head of the query and φ1(x⃗, y⃗), . . . , φℓ(x⃗, y⃗) the body of the query. The variables of x⃗ are the
free variables of Q, and those of y⃗ are the existential variables of Q, and every variable occurs
at least once in the body. We use vars(Q) and free(Q) to denote the set of all variables and
all free variables of Q, respectively. If φ ∈ atoms(Q), then vars(φ) is the set of variables in
φ. We say that Q is full if it has no existential variables, that is vars(Q) = free(Q).

We refer to a database D over the schema S of the CQ Q as a database over Q. A
homomorphism from a CQ Q to a database D over Q is a mapping h from the variables of Q

into values of D such that for each atom R(z1, . . . , zk) of Q it holds that R(h(z1), . . . , h(zk))
is a fact of D. We denote by Hom(Q, D) the set of all homomorphisms from Q to D. If
h ∈ Hom(Q, D) then we denote by h(x⃗) the tuple obtained by replacing every variable x

with the constant h(x), and we denote by h(φi(x⃗, y⃗)) the fact that is obtained from the atom
φi(x⃗, y⃗) by replacing every variable z with the constant h(z). An answer to Q over D is
a tuple of the form h(x⃗) where h ∈ Hom(Q, D). The result of Q over D, denoted Q(D), is
Q(D) := {h(x⃗) | h ∈ Hom(Q, D)}.

Consider a CQ Q(x⃗) :−φ1(x⃗, y⃗), . . . , φℓ(x⃗, y⃗). We may refer to Q as Q(x⃗) to specify the
sequence of free variables in the head. In this work, the order of the sequence x⃗ has a crucial
role, since it determines the desired order of answers. Specifically, we will assume that the
desired order of answers is lexicographic in the left-to-right order of x⃗. For example, the CQ
Q(x1, x2) :−R(x1, x2), S(x2, y) differs from the CQ Q′(x2, x1) :−R(x1, x2), S(x2, y) not only
in the order of values within each answer tuple but also in the order over the answers. For
Q(x1, x2) we order the answers first by x1 and then by x2, and for Q′(x2, x1) we order first
by x2 and then by x1,

As usual, we associate a CQ Q with the hypergraph H(Q) = (VQ, EQ) where VQ = vars(Q)
and EQ = {vars(φ)|φ ∈ atoms(Q)}. We say that Q is acyclic if H(Q) is an (α-)acyclic
hypergraph. Recall that a hypergraph H = (V, E) is acyclic if there is a tree T = (E, ET ),
called a join tree of H, with the running intersection property: for each vertex v ∈ V , the
set of hyperedges that contain v induces a connected subtree of T . If H is acyclic and
S ⊆ V , then we say that H is S-connex if H remains acyclic even if we add S to the set of
hyperedges [4]. An acyclic CQ Q is free-connex if H(Q) is acyclic and free(Q)-connex.

A hypergraph H ′ = (V, E′) is an inclusive extension of a hypergraph H = (V, E) if
E ⊆ E′ and for every edge e′ ∈ E′ there is an edge e ∈ E such that e′ ⊆ e. It is known that
H is acyclic S-connex if and only if H has an inclusive extension with a join tree T such
that S is precisely the set of all variables contained in the vertices of some subtree of T [1].
We call such a tree ext-S-connex tree. When S is the set of free variables of the CQ, and the
CQ is clear from the context, we call such a tree ext-free-connex.

The notion of a disruptive trio has been introduced previously in the context of direct
access to the answers of CQs [6]. A disruptive trio of a CQ Q(x⃗) is a set of three distinct
free variables x1, x2, and x3 such that x1 and x2 neighbor x3 but not each other, and x3
succeeds both x1 and x2 in x⃗. By saying that x and y are neighbors we mean that they occur
jointly in at least one of the atoms.

Aggregate queries. By an aggregate function we refer to a function that takes as input a
bag of tuples over Const and returns a single value in Const. We adopt the notation of Cohen
et al. [9] to our setting, as follows. An aggregate query here is an expression of the form

Q(x⃗, α(w⃗), z⃗) :−φ1(x⃗, y⃗, z⃗), . . . , φℓ(x⃗, y⃗, z⃗)
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such that Q′(x⃗, z⃗) :−φ1(x⃗, y⃗, z⃗), . . . , φℓ(x⃗, y⃗, z⃗) is a CQ, α an aggregate function, and w⃗ a
sequence of variables from y⃗. An example is Q(x1, x2, Sum(y2), z) :−R(x1, x2, y1), S(y1, y2, z).
We refer to such a query as an Aggregate CQ or ACQ for short. Given a database D over
Q′, the result Q(D) is defined by Q(D) := {(⃗a, α(B(⃗a, b⃗)), b⃗) | (⃗a, b⃗) ∈ Q′(D)} where B(⃗a, b⃗)
is the bag that is obtained by collecting the tuples h(w⃗) from every h ∈ Hom(Q′, D) with
h(x⃗) = a⃗ and h(z⃗) = b⃗. Note that our database and query model use set semantics, and
we use bag semantics only to define the aggregate functions (in order to capture important
functions such as count and sum).

We say that Q is acyclic if Q′ is acyclic. Similarly, Q is free-connex if Q′ is free-connex.
A disruptive trio of Q is a disruptive trio of Q′; in other words, the definition of a disruptive
trio remains unchanged when introducing aggregates, while we consider only the grouping
variables and not the aggregate function.

▶ Remark 1. We remark on two aspects in our definition of ACQs. First, the reason for using
both x⃗ and z⃗ as sequences of free variables is to determine a position for aggregate value α(w⃗)
and, consequently, define its position in the lexicographic order over the answers. Second,
the reader should note that, in our notation, an ACQ has a single aggregate function. While
this is important for some of our results, other results can be easily extended to multiple
aggregate functions α(w⃗1), . . . , α(w⃗k). We will mention this extension when relevant. ⌟

In this work, we restrict the discussion to the common aggregate functions Count, CountD
(count distinct), Sum, Avg (average), Min and Max. All aggregate functions take a single
column as input (i.e., y⃗i is of length one) except for Count that counts the tuples in the
group and takes no argument. For instance, the query Q2 in the Introduction uses Count()
and it could also use CountD(g) for counting the distinct games with scored goals.

Commutative semirings. A commutative monoid is an algebraic structure (K, ·) over a
domain K, with a binary operation · that satisfies associativity: (a · b) · c = a · (b · c) for
any a, b, c ∈ K, commutativity: a · b = b · a for any a, b ∈ K, and identity element: there
exists an element ∅ ∈ K such that a ·∅ = a for any a ∈ K. A commutative semiring is an
algebraic structure (K,⊕,⊗, 0̄, 1̄) over a domain K, with two binary operations ⊕ and ⊗ and
two distinguished elements 0̄ and 1̄ in K that satisfy the following conditions: (a) (K,⊕) is a
commutative monoid with the identity element 0̄; (b) (K,⊗) is a commutative monoid with
the identity element 1̄; (c) a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) for all a, b, c ∈ K; and (d) a⊗ 0̄ = 0̄
for all a ∈ K.

We refer to ⊕ as the addition operation, ⊗ as the multiplication operation, 0̄ as the
additive identity and 1̄ as the multiplicative identity. We give examples of commutative
semirings at the end of this section.

Annotated databases and query answers. Let S be a schema and (K,⊕,⊗, 0̄, 1̄) a com-
mutative semiring. A K-database (over S) is a pair (D, τ) where D is a database over S
and τ : D → K is function that maps every fact f of D to an element τ(f) of K, called the
annotation of f .

The annotation of a database propagates to the query answers by associating a semiring
operation with each algebraic operation [13]. In the case of CQs, the relevant operations are
joins and projection. For join, the annotation of the result is the product of the annotation
of the operands. For projection, the annotation is the sum of the annotations of the tuples
that give rise to the result. In our terminology, we have the following.

ICDT 2024



4:6 Direct Access for Answers to Aggregate Queries

Let Q(x⃗) :−φ1(x⃗, y⃗), . . . , φℓ(x⃗, y⃗) be a CQ and (D, τ) an annotated database. For a
homomorphism h from Q to D, we denote by ⊗h the product of the annotations of the facts
in the range of h, that is ⊗h := τ(h(φ1(x⃗, y⃗)))⊗ · · · ⊗ τ(h(φℓ(x⃗, y⃗))). An answer to Q over
(D, τ) is a pair (c⃗, a) such that c⃗ ∈ Q(D) and

a = ⊕{⊗h | h ∈ Hom(Q, D) ∧ h(x⃗) = c⃗}

where, for A = {a1, . . . , an} ⊆ K, we define ⊕A = a1 ⊕ · · · ⊕ an. As before, the result of Q

over (D, τ ), denoted Q(D, τ ), is the set of answers (c⃗, a) to Q over (D, τ ). We will make use
of the fact that, over commutative semirings, projections and joins are commutative [13].

In this work, we study the ability to incorporate the annotation in the order over the
answers. More precisely, we will investigate the complexity of involving the annotation in
the lexicographic order over the answers, as if it were another value in the tuple. So, when
we consider a CQ Q(x⃗), we need to specify where the annotation goes inside x⃗. Similarly
to the ACQ notation, we do so by replacing x⃗ with a sequence (x⃗, ⋆, z⃗) where ⋆ represents
the annotation value. We refer to a CQ of this form as a CQ⋆. An example of a CQ⋆ is
Q(x1, x2, ⋆, z) :−R(x1, x2, y1), S(y1, y2, z) where the lexicographic order is by x1, then by x2,
then by the annotation, and then by z.

Let Q be a CQ⋆, and let Q′ be the CQ obtained from Q by removing ⋆ from the head.
As in the case of ACQs, Q is acyclic if Q′ is acyclic, Q is free-connex if Q′ is free-connex,
and a disruptive trio of Q is a disruptive trio of Q′.

Aggregate functions can often be captured by annotations of answers in annotated
databases, where each aggregate function might require a different commutative semiring:

Sum: the numeric semiring (Q, +, ·, 0, 1).
Count: the counting semiring (N, +, ·, 0, 1).
Max: the max tropical semiring (Q ∪ {−∞}, max, +,−∞, 0).
Min: the min tropical semiring (Q ∪ {∞}, min, +,∞, 0).

The translation is straightforward (and known, e.g., [15, 20]), as we illustrate in Figure 1:
the aggregated value becomes the annotation on one of the relations, the annotation outside
of this relation is the multiplicative identity (as we later term “locally annotated”), and the
addition operation captures the aggregate function. Note that in the case of the numeric
and min/max tropical semirings, we are using the domain Q of rational numbers rather than
all real numbers to avoid issues of numerical presentation in the computational model.

Avg can be computed using Sum and Count. CountD (count distinct) cannot be captured
by a semiring, as the result of ⊕ cannot be computed from two intermediary annotations in
the domain. We can, however, capture a semantically similar concept with the set semiring
(P(Ω),∪,∩,∅, Ω) by annotating each fact with the actual set of distinct elements. However,
in such cases, we will need our complexity analysis to be aware of the cost of the operations.

3 The Direct-Access Problem

In this paper, we study CQs with lexicographic orders over the answers. As said earlier, the
lexicographic order for the CQ Q(x⃗) is left to right according to x⃗. We will also investigate
lexicographic orders that involve the annotation or aggregation when the query is a CQ⋆

Q(x⃗, ⋆, z⃗) or an ACQ Q(x⃗, α(u⃗), z⃗), respectively. We refer uniformly to the annotation of an
answer (over an annotated database) and to the aggregate value of the answer’s group (over
an ordinary database) as the computed value.

Let Q be a CQ, CQ⋆, or an ACQ. A direct access solution for Q consists of two algorithms:
one for preprocessing and one for access.
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Teams
p c

1 5
2 5
3 6
4 7
5 8

Goals
g p t

1 1 31
1 3 50
1 3 75
2 4 90
2 4 9

Replays
g t

1 1
1 31
1 50
2 5
1 90

⇒

Team
p c τ+

1 5 1
2 5 1
3 6 1
4 7 1
5 8 1

Goals
g p t τ+

1 1 31 1
1 3 50 1
1 3 75 1
2 4 90 1
2 4 9 1

Replays
g t τ+

1 1 1
1 31 31
1 50 50
2 5 5
1 90 90

Figure 1 An example of a Q-database over the numerical semiring constructed to evaluate the
ACQ Q(c, Sum(t)) :− Teams(p, c), Goals(g, p, t), Replays(g, t).

The preprocessing algorithm takes as input a database D over Q and constructs a data
structure SD.
The access algorithm takes as input SD and an index i, and returns the ith answer of
Q(D) in the lexicographic order. Note that this answer includes the computed value,
when it exists. If i > |Q(D)| then the algorithm should return null.

To define the complexity requirements of efficient direct access, we first describe the
complexity model that we adopt. We use data complexity as a yardstick of tractability.
Hence, complexity is measured in terms of the size of the database, while the size of the
query is fixed (and every query is a separate computational problem). Assuming the input is
of size n, we use the RAM model of computation with O(log n)-bit words and uniform-cost
operations. Notably, this model allows us to assume perfect hash tables can be constructed
in linear time, and they provide access in constant time [12].

Let Tp and Ta be numeric functions. A direct-access algorithm is said to be in ⟨Tp, Ta⟩ if
the preprocessing phase takes O(Tp(|D|)) time and each access takes O(Ta(|D|)) time. For
example, ⟨loglinear, log⟩ states that preprocessing constructs in O(|D| log |D|) time a data
structure that provides O(log |D|)-time access. In this work, a query Q has efficient direct
access (and Q is deemed tractable) if it has a direct access algorithm in ⟨loglinear, log⟩.

Carmeli et al. [6] established a dichotomy in the tractability of the CQs and lexicographic
orders. This dichotomy relies on the following hypotheses.

SparseBMM: two binary matrices An×n and Bn×n represented by lists of their non-zero
entries cannot be multiplied in O(m polylog(m)) time where m is the total number of
non-zero entries in A, B and A×B.
HYPERCLIQUE: for all k ≥ 2, there is no O(m polylog(m))-time algorithm that, given a
hypergraph with m hyperedges, determines whether there exists a set of k + 1 vertices
such that every subset of k vertices among them forms a hyperedge.

▶ Theorem 2 ([6]). Let Q be a CQ.
1. If Q is free-connex with no disruptive trio, then direct access for Q is in ⟨loglinear, log⟩.
2. Otherwise, if Q is also self-join-free, then direct access for Q is not in ⟨loglinear, log⟩, as-

suming the HYPERCLIQUE hypothesis (in case Q is cyclic) and the SparseBMM hypothesis
(in case Q is acyclic).

4 Incorporating Annotation and Aggregation in the Answers

In this section, we discuss the existence of efficient direct access in the case where the order
does not involve the computed value, that is, the annotation (for CQ⋆s) or the aggregate
values (for ACQs). Equivalently, these are queries where the computed value is last in order,
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that is, the vector z⃗ in the head is empty. Hence, we focus on CQ⋆s of the form Q(x⃗, ⋆) and
ACQs of the form Q(x⃗, α(w⃗)). In other words, the problem is similar to the CQ case, except
that the access algorithm should also retrieve the aggregated value from the data structure.
In Section 4.1, we will use annotated databases to identify the cases where this can be done
efficiently for min, max, count, sum, and average. By contrast, in Section 4.2 we will show
that we cannot do the same for count-distinct, even in the case of an extremely simple query,
unless the domain of the elements we count is small (logarithmic-size).

But first, we need to be clear about the complexity of the semiring operations. The
RAM model allows us to assume that the numeric, counting, min tropical, and max tropical
semirings use constant space for representing values and constant time for the operations ⊕
and ⊗. In fact, it suffices for our results to assume that the operations take logarithmic time,
and later we will make use of this relaxed assumption (within a special case of CountD). We
refer to a semiring with this property as a logarithmic-time (commutative) semiring.

In our proofs, we will use the following definition of when two facts f and f ′ agree in
the context of two queries. Intuitively, facts agree if they assign the same variables with the
same values.

▶ Definition 3. Let Q and Q′ be CQs over the schemas S and S′, respectively. Let φ and φ′

be atoms of Q and Q′ over the relation symbols R and R′, respectively. Let f and f ′ be facts
over R and R′, respectively. We say that f and f ′ agree (w.r.t. φ and φ′) if there exists a
homomorphism h : vars(ϕ) ∪ vars(ϕ′)→ Const such that f and f ′ are obtained from φ and
φ′, respectively, by replacing each variable x with the constant h(x).

4.1 Generalized Dichotomies
We now show that Theorem 2 extends to databases with annotations, and so, also to queries
with aggregate functions that can be efficiently simulated by annotations. The first step is to
eliminate the existential variables from the CQ⋆. It is folklore that free-connex CQs (over
non-annotated databases) can be transformed into full acyclic CQs in linear time [14,18]. The
following lemma states that the same holds for free-connex CQ⋆s over annotated databases.

▶ Lemma 4. Let (K,⊕,⊗, 0̄, 1̄) be a logarithmic-time commutative semiring, and let Q(x⃗, ⋆, z⃗)
be a free-connex CQ⋆. There exists a full acyclic CQ⋆ Q′(x⃗, ⋆, z⃗), without self-joins, and an
O(|D| log |D|)-time algorithm that maps K-databases (D, τ) of Q to K-databases (D′, τ ′) of
Q′ such that (a) Q′(D′, τ ′) = Q(D, τ); (b) the variables in every atom of Q′ are contained
in an atom of Q; and (c) Q has a disruptive trio if and only if Q′ has a disruptive trio.

We note that in the case where the semiring operations require only constant time, the
algorithm of Lemma 4 runs in linear time instead of loglinear time. With this lemma, we
can now prove the following generalization of Theorem 2 to annotated databases.

▶ Theorem 5. Let (K,⊕,⊗, 0̄, 1̄) be a logarithmic-time commutative semiring, and let Q(x⃗, ⋆)
be a CQ⋆.
1. If Q is free-connex and with no disruptive trio, then direct access for Q is in ⟨loglinear, log⟩

on K-databases.
2. Otherwise, if Q is also self-join-free, then direct access for Q is not in ⟨loglinear, log⟩, as-

suming the HYPERCLIQUE hypothesis (in case Q is cyclic) and the SparseBMM hypothesis
(in case Q is acyclic).

Proof. For the negative side of the dichotomy, we simply use the negative side of Theorem 2.
This can be done since each answer to a CQ⋆ contains the ordinary (non-annotated) answer
to the CQ obtained by removing ⋆, and the answers have the same order. It is left to prove
the positive side of the dichotomy.
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We can use Lemma 4 to focus on full CQ⋆s without self-joins. We build on the algorithm
that Carmeli et al. [6] presented for proving what we gave here as Theorem 2. This algorithm
uses the concept of a layered join tree, defined for a CQ Q. It can be seen as a particular
kind of join tree of a query Qlay equivalent to Q. That is, the variables of every atom of Q

are contained in an atom of Qlay and vice versa. They showed how to find such a tree when
there is no disruptive trio. They also showed how, given a database D over Q, to construct a
database Dlay over Qlay such that Q(D) = Qlay(Dlay) in O(|D| log |D|) time. Then, they
showed how to use the special structure of the layered join tree to perform access calls in
logarithmic time. In an access call, a fact is selected from each relation of Dlay, and these
facts are joined to form the answer.

We use the same construction and incorporate the annotations as follows. We construct
Qlay and (Dlay, τlay) from Q and (D, τ), respectively. For Qlay and Dlay, we use the same
construction as that of Carmeli et al. [6], and we apply it by ignoring the annotation. Next,
we annotate each fact f of Dlay with the initial value τ ′(f) = 1̄, and then apply the following
operation.

1: for all atoms φ of Q do
2: Select an atom φlay of Qlay such that vars(φ) ⊆ vars(φlay)
3: Let R and Rlay be the relation symbols of φ and φlay, respectively
4: for all facts flay of Rlay do
5: Find a fact f of R such that f and flay agree w.r.t. φ and φlay (see Definition 3)
6: τlay(flay)← τlay(flay) · τ(f)

Note that in line 5, at most one corresponding f exists for every flay since vars(φ) ⊆
vars(φlay). Moreover, from the construction of Carmeli et al. [6] it follows that such an
f necessarily exists (since they apply the full reduction of the Yannakakis [23] algorithm).
Finding each f can be done in constant time by constructing a hash table where each key is
a tuple of values assigned to vars(φ) by f ; then, for each flay, we project out other variables
and search the hash table. In total, this procedure can be done in loglinear time.

The access algorithm extends naturally from before: a fact is selected from each relation
of Dlay, and those are combined to form an answer. The annotation of the answer is the
product of the annotations of the selected facts. Retrieving the answer takes logarithmic
time, and then we compute the annotation in logarithmic time using a constant number
of semiring multiplications. The returned answer is annotated correctly: the annotation is
indeed the product of the annotations of the facts of D that form the answer, and those were
multiplied to form the annotation in Dlay. ◀

From the positive side of Theorem 5, we conclude efficient direct access for ACQs Q,
as long as we can efficiently formulate the aggregate function as an annotation over some
logarithmic-time commutative semiring. This is stated in the following corollary of Theorem 5.

▶ Corollary 6. Consider an ACQ Q(x⃗, α(w⃗)) :−φ1(x⃗, y⃗), . . . , φℓ(x⃗, y⃗) where α is one of Min,
Max, Count, Sum, and Avg.
1. If the CQ Q′(x⃗) :−φ1(x⃗, y⃗), . . . , φℓ(x⃗, y⃗) is free-connex with no disruptive trio, then direct

access for Q is in ⟨loglinear, log⟩.
2. Otherwise, if Q is also self-join-free, then direct access for Q is not in ⟨loglinear, log⟩, as-

suming the HYPERCLIQUE hypothesis (in case Q is cyclic) and the SparseBMM hypothesis
(in case Q is acyclic).

Proof. For the positive side, we simply apply Theorem 5 with the corresponding semiring. In
the case where α is Avg, we compute Sum and Count separately and divide the results. The
negative side carries over from Theorem 2 since a direct access solution for Q in ⟨loglinear, log⟩
is also a direct access solution for Q′ in ⟨loglinear, log⟩ if we ignore the aggregated values. ◀
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▶ Remark 7. Corollary 6 can be easily extended to support multiple aggregate functions
α1(w⃗1), . . . , αk(w⃗k). For that, we can simply solve the problem for each αi(w⃗i) separately,
and extract the aggregate values of an answer from the k data structures that we construct
in the preprocessing phase. (Moreover, a practical implementation can handle all aggregate
values in the same structure.) ⌟

4.2 Hardness of Count Distinct
Can we generalize Corollary 6 beyond the stated aggregate functions? The most notable
missing aggregate function is CountD (count distinct). Next, we show that we cannot have
similar tractability for count distinct, even in the case of a very simple query, under the
small-universe Hitting Set Conjecture (HSC) [22]. In HSC, we are given two sets U and V
of size N , each containing sets over the universe {1, 2, . . . , d}, and the goal is to determine
whether U contains a set that shares an element with (hits) every set in V . HSC states that
the problem takes N2−o(1) time for every function d = ω(log(N)). (In fact, it is conjectured
that even a randomized algorithm for this problem needs N2−o(1) time in expectation [22].)

▶ Theorem 8. Direct access for Q(x, CountD(y)) :−R(x, w), S(y, w) is not in ⟨loglinear, log⟩,
assuming HSC.

Proof. Let U = {U1, U2, . . . , UN} and V = {V1, V2, . . . , VN} be sets of sets of elements of the
universe {1, 2, . . . , d} where d = N c for some 0 < c < 1. Indeed, d = ω(logN), as required
by the conjecture. We construct the database D over R and S with the fact R(i, j) for all
j ∈ Ui and S(i, j) for all j ∈ Vi.

Next, we assume efficient direct access for Q(x, CountD(y)) :−R(x, z), S(y, z), and use
that to solve the hitting-set problem. Each query answer is a pair (i, c) where i is the index
of a set Ui from U and c is the number of sets Vj that Ui hits. By accessing all query answers,
we can check all sets in U , one by one, and see whether any is hitting all N sets. The number
of facts in D is O(dN), and the number of query answers (and so the number of access calls)
is N . Hence, direct access for Q in ⟨loglinear, log⟩ would imply a solution to the hitting-set
problem in better than N2−o(1) time. Indeed, for any d = O(N c), we get a solution in
O(N1+c · log N) time, which contradicts HSC for c < 1. ◀

Importantly, the reduction used in the proof of Theorem 8 does not involve the order, and
hence, the theorem holds true even for direct access without any order requirement.

Despite the above example of intractability, it is important to observe that there are cases
where Theorem 5 can be used to compute count distinct: when the size of the domain Ω
of the distinct elements we count is bounded by a logarithm in the input size |D|. Such an
assumption can be realistic when we count, say, distinct categories from a small ontology
(e.g., item categories in a sales context), distinct countries from a small collection of countries,
and so on. In such cases, we can compute the exact set of distinct elements, and not just
their count, by using the set semiring (P(Ω),∪,∩,∅, Ω) since the operations ∪ and ∩ can be
performed in logarithmic time for logarithmic domains.

5 Incorporating the Annotation and Aggregation in the Order

The results of the previous section apply when the lexicographic order does not include the
computed value, or equivalently when the computed value is last in the head of the query. In
this section, we explore the ability to include the computed value earlier in the lexicographic
order. To this end, we assume that the underlying commutative semiring has an ordered
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domain. When the domain is numerical, we will implicitly assume the natural order without
mentioning it. In terms of the computational model, we assume that we can compare two
given elements of the domain in time logarithmic in the input.

We first discuss the hardness encountered when we desire to incorporate the computed
value in the order. It turns out that this hardness is hit already in extremely simple queries.
This is a contrast to the case of Section 4 when this value is excluded from the order.

Hardness of a CQ⋆. Consider the simplest possible Cartesian-product query: R × S for
unary R and S. We wish to have the annotation first in the order, hence we have the CQ⋆

Q⋆×(⋆, x, y) :−R(x), S(y) . (1)

The next theorem states that under the 3SUM conjecture, direct access for Q⋆× is
impossible over K-database with semirings that gave positive results in the previous section.
The 3SUM conjecture [11,19] states it takes N2−o(1) time to determine whether a given set
of N elements from {−N3, . . . , N3} contains distinct elements a, b, c such that a + b = c.

▶ Theorem 9. Let (K,⊕,⊗, 0̄, 1̄) be one of the counting, numerical, max tropical, or min
tropical semirings. Direct access for the CQ⋆ Q⋆× (of Equation (1)) is not in ⟨loglinear, log⟩
over K-databases, assuming the 3SUM conjecture.

The proof of Theorem 9 shows how to solve 3SUM using an algorithm for Q⋆×. The proof
is nontrivial and is more involved in the case of the counting and numerical semirings, where
we use results from number theory [8] to define a homomorphism, such that the operation ⊗
of the semiring represents the numerical addition of 3SUM.

Hardness of an ACQ. Theorem 9 states the hardness of direct access for R × S by the
order of the annotation. For that, we needed to use the power of the annotation, namely, the
annotation of an answer (a, b) is the product of the annotations of R(a) and S(b). This does
not necessarily imply that we have a similar hardness when the computed value is within an
ACQ, say using Count. For example, direct access for Q(Count(), x, y) :−R(x), S(y) is clearly
in ⟨loglinear, log⟩ since the computed value has no impact (as it is always 1).

Nevertheless, we can show that incorporating the computed value in the order introduces
hardness for another fixed ACQ Qc(Count(), x, y). Moreover, this ACQ is tractable if the
order was x, y, Count(), due to Theorem 5. We prove it using a reduction from Q⋆× with the
counting semiring (N, +, ·, 0, 1).

▶ Theorem 10. There exists a free-connex ACQ Qc(Count(), x, y) such that direct access for
Q is not in ⟨loglinear, log⟩, assuming the 3SUM conjecture.

In Theorem 9, we stated hardness for the specific CQ⋆ Q⋆×(⋆, x, y) :−R(x), S(y), while
in Theorem 10 we only claimed the existence of the hard ACQ Qc(Count(), x, y) since the
latter is more involved (and we construct it in the proof). The reader might wonder whether
we could also phrase Theorem 10 over the Cartesian product Q(Count(), x, y) :−R(x), S(y)
or alike. Clearly, incorporating Count in R(x) × S(y) would be meaningless since every
answer appears exactly once (and has a count of 1). The next theorem shows that the reason
goes deeper: even if we add to Q(Count(), x, y) :−R(x), S(y) existential variables, the query
remains in ⟨loglinear, log⟩. This statement, in contrast to Q(Count(), x, y) :−R(x), S(y), is
nontrivial and requires a proof.

▶ Proposition 11. For Q(Count(), x, y) :−R(x, w), S(y, z), direct access is in ⟨loglinear, log⟩.
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R

x w

a 1
b 1
b 2
c 1
c 2
c 3

R′

x′ w′

a’ 1
b’ 1
c’ 1
c’ 2
d’ 1
d’ 2

−→

L

c c′ Xc X ′
c′

1 1 [a] [a’,b’]
1 2 [a] [c’,d’]
2 1 [b] [a’,b’]
3 1 [c] [a’,b’]
2 2 [b] [c’,d’]
3 2 [c] [c’,d’]

Q(Count(), x, x′) :−R(x, w), R′(x′, w′)

Figure 2 Example of the construction in the proof of Proposition 11: direct access for the ACQ
Q(Count(), x, x′) :− R(x, w), R′(x′, w′).

Proof. For ease of notation, we rename Q as follows:

Q(Count(), x, x′) :−R(x, w), R′(x′, w′)

In the remainder of this proof, we fix an input database D for Q. Note that the answers
are of the form (c · c′, a, a′) where c is the count of the facts R(a, ·) that have a as the first
element, and c′ is the count of the facts R′(a′, ·) that have a′ as the first element.

Let us describe the preprocessing step. First, we compute the number of facts R(a, ·) for
every possible value of a. We use the result to create the set of all counts per possible value
of x, and denote this set by C. For all c ∈ C, we also keep a list Xc with the set of all values
a that appear c times in the left column of R. The list Xc is sorted so that we can easily
locate a given a. We do the same for R′ to obtain C ′ and a sorted list X ′

c′ for every c′ ∈ C ′.
Next, we create a list L, where for every pair of counts (c, c′) ∈ C × C ′ it holds the tuple

(c, c′, Xc, X ′
c′) where Xc and X ′

c′ are represented as pointers to the corresponding lists. See
Figure 2 for an example of the construction of L from an input database. We perform direct
access on L sorted by c · c′ and weighted by |Xc| · |X ′

c′ | using prefix sum, similarly to the
way established by Carmeli et al. [6] for a single relation, as we briefly describe next.

We first sort L by the product of the first two elements of each tuple, c · c′. Notice that L

indeed represents the answers in the order we desire. For example, if the first fact in L is
(c, c, Xc, X ′

c′), then the first |Xc| · |X ′
c′ | answers have the count c · c′ and assign to x and x′

the values that occur in Xc and X ′
c′ , respectively. We then iterate over L, and for a tuple

index i we compute the sum of |Xc| · |X ′
c′ | over all tuples in indices 1, . . . , i − 1 in L. We

denote this sum by li. Note that li+1 > li for all i = 1, . . . , |L|.
We now describe the access procedure. Suppose that we are requested to fetch result

number d. We perform a binary search on L to find the tuple in index i such that li < d ≤ li+1.
Assume that this tuple is (c, c′, Xc, X ′

c′). The count we return is c · c′. Next, we need to
access the (d− li)th element (x, x′) in Xc×X ′

c′ , sorted lexicographically by x and then by x′.
As in multidimensional arrays, we assign to x′ the element with the index (d− li) mod |X ′

c′ |
of X ′

c′ , and we assign to x the element with the index ⌊ d−li

|X′
c′ |⌋ of Xc.
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We now analyze the execution time. Processing each of the a counts and the a′ counts
separately requires only O(|D|) time. The concern is the time it takes to build and sort the
list L, which might be of size |C| · |C ′|. Assume, without loss of generality, that |C| ≥ |C ′|.
We claim that |RD| = Ω(|C|2). If RD has the smallest possible number of facts to result
in |C| distinct counts, then the counts are 1, . . . , |C|. The number of facts in this case is∑|C|

i=1 i = |C|(|C|+1)
2 . So, |L| = |C| · |C ′| ≤ |C|2 = O(|RD|). We conclude that the algorithm

runs in O(|D| log |D|) preprocessing time and O(log |D|) access time. In conclusion, direct
access for Q is in ⟨loglinear, log⟩, as claimed. ◀

5.1 Tractability Condition for General Semirings
So far, we have seen examples where it is intractable to incorporate the computed value in
the order. Not incorporating it is the same as positioning it last in the lexicographic order.
In this section, we show that we can be flexible about the position, to some extent, and pull
the computed value back to an earlier position. For example, we show that direct access for
the following CQ⋆ is in ⟨loglinear, log⟩ over databases annotated with the numerical semiring.

Q(w, x, ⋆, y, z) :−R(w, x), S(x, y, z), T (y, z) (2)

Let (K,⊕,⊗, 0̄, 1̄) be a commutative semiring in a domain K with an underlying order ⪰.
The semiring is said to be ⊗-monotone if the function fc is monotone for every c ∈ K, where
fc : K→ K is defined by fc(y) = c⊗ y. This means that either c⊗ a ⪰ c⊗ b whenever a ⪰ b,
or c ⊗ a ⪰ c ⊗ b whenever b ⪰ a. All specific semirings that we mention in the paper are
⊗-monotone. Computationally, we assume that we can determine efficiently (in logarithmic
time in the input) whether a given c is such that the function fc(x) = c⊗ x is non-decreasing
or non-increasing.

▶ Theorem 12. Let (K,⊕,⊗, 0̄, 1̄) be a ⊗-monotone logarithmic-time commutative semiring,
and Q(x⃗, ⋆, z⃗) a free-connex CQ⋆ with no disruptive trio. If every atom of Q contains either
all variables of z⃗ or none of them, then direct access for Q is in ⟨loglinear, log⟩.

As an example, consider again the CQ⋆ of Equation (2). The variables that follow the
computed value ⋆ are y and z, and indeed, every atom either contains both y and z (as
the second and third atoms) or contains none of them (as the first atom). Hence, direct
access is tractable according to Theorem 12. As another example, recall the intractable CQ⋆

Q⋆×(⋆, x, y) :−R(x), S(y) from Theorem 9. Note that this is not one of the tractable cases
of Theorem 12 since there is an atom that contains x but not y. In contrast, Theorem 12
does indicate that whenever ⋆ is not first, as is the case with (x, ⋆, y), the query is tractable.

Similarly to Corollary 6, we conclude the following corollary for ACQs.

▶ Corollary 13. Let Q(x⃗, α(w⃗), z⃗) :−φ1(x⃗, y⃗), . . . , φℓ(x⃗, y⃗) be a free-connex ACQ with no
disruptive trio. Suppose that α is one of Min, Max, Count, Sum, and Avg. If every atom in Q

contains either all or none of the variables of z⃗, then direct access for Q is in ⟨loglinear, log⟩.

In the next section, we study how additional assumptions on the annotated database can
lead to additional opportunities to efficiently incorporate the computed value in the ordering.

5.2 Locally Annotated Databases
We have seen in Theorem 9 that even the simple CQ⋆ Q⋆×(⋆, x, y) :−R(x), S(y) is intractable.
This hardness does not necessarily apply to ACQs. For illustration, consider the ACQ

Q(Sum(w), x, y) :−R(x, w), S(y) . (3)
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When translating into an annotated database, we obtain the CQ⋆ Q⋆× over Q-databases
annotated by the numerical semiring (Q, +, ·, 0, 1). Hence, we translate the problem into an
intractable one. Nevertheless, direct access for Q by (⋆, x, y) is, in fact, in ⟨loglinear, log⟩,
as we will show in Theorem 17. This discrepancy stems from the fact that the hardness of
Q⋆× (established in the proof of Theorem 9) relies on the annotation of tuples from both
R and S. Yet, in our translation, all S-facts are annotated by 1, and only R-facts have a
nontrivial annotation. The resulting K-database is such that every fact is annotated by 1̄ (the
multiplicative identity), with the exception of one relation. We call such a K-database locally
annotated or R-annotated (when we need to specify R). We now focus on such databases
and show how the assumption of local annotations can be used for efficient access.

In the remainder of this section, we restrict the discussion to queries without self-joins1

and fix a logarithmic-time commutative semiring (K,⊕,⊗, 0̄, 1̄).

Full CQ⋆s. We first discuss full CQ⋆s (i.e., without existential variables). In the next
sections, we also discuss the implications on (non-full) ACQs. We begin with some examples
that demonstrate the results that follow later in this section.

▶ Example 14. In some cases, incorporating the annotation in an otherwise tractable order
may introduce hardness. Let (K,⊕,⊗, 0̄, 1̄) be a logarithmic-time commutative semiring, and
consider the full CQ⋆

Q(x⃗, ⋆, z⃗) :−R(x1, x3), S(x2, x3)

over S-annotated K-databases. Note that Q has a disruptive trio if x3 appears after both x1
and x2 in the order. Let us consider orders where this is not the case. The lexicographic order
(⋆, x2, x3, x1) is not covered by Theorem 12, as x1 appears in R, but x2 does not. However,
we will show in Theorem 17 that, when considering S-annotated K-databases, direct access
for Q by this order is in ⟨loglinear, log⟩, while direct access for Q by (⋆, x1, x3, x2) is not in
⟨loglinear, log⟩. ⌟

▶ Example 15. It may also happen that we incorporate the annotation non-trivially and
the query remains tractable. Consider the full CQ⋆

Q′(x⃗, ⋆, z⃗) :−R(x1, x3), S(x2, x3), T (x3)

over T -annotated K-databases. Note that this case is a slight variation on Example 14. For
any lexicographic order (x⃗, ⋆, z⃗), if x3 appears after x1 and x2, then Q′ has a disruptive trio
and, therefore, direct access for Q′ is not in ⟨loglinear, log⟩. As we show in Theorem 17, for
Q′ over T -annotated K-databases, that lack of a disruptive trio is a sufficient condition for
tractability. That is, if x3 does not appear after x1 and x2, then for any aggregate function
α it holds that direct access for Q′ (and for Q) is in ⟨loglinear, log⟩. ⌟

When dealing with R-annotated databases, we can replace the annotation of the facts
of R with a new extra attribute, added to R, and then reason about orders that involve
the annotation by considering orders that involve the new attribute instead. To do so, we
introduce the following variations of a query and order. Let Q be a full acyclic CQ⋆ without
self-joins. For a relation symbol R of Q, we define the R-deannotation of Q(x⃗, ⋆, z⃗) to be the
CQ QR obtained as follows, where we denote by ϕS the atom of a relation symbol S.

1 In fact, for the algorithm, it suffices that the relation with unrestricted annotations will not appear in
more than one atom.
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In the head, replace ⋆ with a new variable y.
If, in addition, vars(ϕR) contains only variables from x⃗, then in the head of QR, advance
y to be immediately after the last variable of ϕR.
For each relation S of Q, if vars(ϕR) ⊆ vars(ϕS) then concatenate y to the variable
sequence of ϕR.

▶ Example 16. Consider the CQ⋆ Q′ of Example 15. The R-deannotation of Q′ is

QR(x⃗R, y, z⃗R) :−U(x1, x3, y), V (x2, x3, y), R(x3, y)

where x⃗R and z⃗R are adjustments of x⃗ and z⃗: if x3 is in x⃗, the suffix of x⃗ that follows x3 is
moved to the beginning of z⃗. ⌟

When Q is full, we can reduce direct access for Q to direct access for QR. This is stated
in the next theorem. The theorem also says that, whenever the annotation domain contains
the natural numbers, this reduction is optimal in the sense that, if we got an intractable QR,
then direct access for Q was hard to begin with.

▶ Theorem 17. Let (K,⊕,⊗, 0̄, 1̄) be a logarithmic-time commutative semiring. Let Q be a
full CQ⋆ without self-joins and QR the R-deannotation of Q for a relation symbol R of Q.
1. If QR is acyclic and has no disruptive trio, then direct access for Q is in ⟨loglinear, log⟩

on R-annotated K-databases.
2. Otherwise, if N ⊆ K, then direct access for Q is not in ⟨loglinear, log⟩ on R-annotated

K-databases, assuming the HYPERCLIQUE hypothesis (in case QR is cyclic) and the
SparseBMM hypothesis (in case QR is acyclic).

We obtain the positive side of the result by treating the annotation as an extra variable
that depends functionally on the original variables of R. Our definition of the R-deannotation
is exactly the FD-reordered extension [6] of the query with this extra variable, and the
tractability of such an extension is known to imply the tractability of the original query. We
note that the negative side of Theorem 17 applies to any domain other than N, as long as we
can generate infinitely many elements according to the underlying order of the semiring.

▶ Example 18. Theorem 17 gives us a useful tool to analyze the previous examples. Recall
that in Example 16 we showed the R-deannotation of Q′ from Example 15. Since y appears
in every atom, it cannot be part of any disruptive trio. In particular, the disruptive trios of
QR are exactly the disruptive trios of Q. Therefore, given an order (x⃗, α(w), z⃗), checking
whether direct access for Q is in ⟨loglinear, log⟩ boils down to verifying that x1, x2 and x3
do not form a disruptive trio. ⌟

General Queries in the Case of Idempotence. Next, we extend Theorem 17 beyond full
CQ⋆s. In some cases, it is sufficient to assemble the tools we already established. Consider
the following ACQ:

Q(Max(w2), x1, x2, x3) :−R(x1, x3, w3), S(x2, x3), T (x3, w1), U(w1, w2) (4)

We can solve direct access for Q using direct access for the CQ⋆

Q′(⋆, x1, x2, x3) :−R(x1, x3, w3), S(x2, x3), T (x3, w1), U ′(w1)

over U ′-annotated Q-databases and the max tropical semiring. We can then use Lemma 4
to eliminate existential variables and reduce direct access for Q′ to direct access for a full
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CQ⋆ Qfull. As we later prove in Lemma 19, when the input database for Q′ is U ′-annotated
over the max tropical semiring, the suitable database for Qfull is T ′-annotated for a relation
symbol T ′ of Qfull. In our case, we obtain

Qfull(⋆, x1, x2, x3) :−R(x1, x3), S(x2, x3), T ′(x3)

and a T ′-annotated database. From Qfull we define Q0 as the T ′-deannotation of Qfull.

Q0(y, x1, x2, x3) :−R(x1, x3, y), S(x2, x3, y), T ′(x3, y)

Theorem 2 determines that direct access for Q0 is in ⟨loglinear, log⟩, and so we can use
Theorem 17 to deduce that Qfull is in ⟨loglinear, log⟩ on T ′-annotated Q-databases. Therefore,
we know from Theorem 5 that direct access for Q′ on U -annotated Q-databases is in
⟨loglinear, log⟩ and as a consequence so is direct access for Q.

As we explain next, the argument above is specific to Max and not all aggregate functions
since we rely on Max being idempotent. An operation ⊕ is said to be idempotent if for every
a in the domain K we have that a ⊕ a = a. We say that a commutative semiring is an
⊕-idempotent semiring if its addition operation, ⊕, is idempotent.

Let (K,⊕,⊗, 0̄, 1̄) be some logarithmic-time commutative semiring. The process of
existential variable elimination using Lemma 4 takes a free-connex CQ⋆ Q and a K-database
(D, τ) and translates it to a full acyclic CQ⋆ Q′ and a K-database (D′, τ ′). When working
over an ⊕-idempotent semiring, if the input database is locally annotated, then the output
database is also guaranteed to be locally annotated. The semirings used for CountD, Min,
and Max are ⊕-idempotent and therefore provide such a guarantee, while the semirings used
for Sum and Count do not. In the case of the query of Equation (4), if the aggregate function
was Sum instead of Max, once we eliminate existential variables, the database for Qfull is no
longer guaranteed to be locally-annotated since projecting out the existential variable w3
may cause R, in addition to T ′, to be annotated with values other than 1̄.

Using Lemma 4 to eliminate existential variables does not guarantee optimal results, even
over ⊕-idempotent semirings. Consider the following simplified version of Equation (4):

Q(Max(w2), x1, x2, x3) :−U(x1, x3), V (x2, x3), R(x3, w1, w2) (5)

Lemma 4 eliminates existential variables using any ext-free-connex tree and outputs a new
full CQ⋆ Qfull. In this process, the vertex of R is eliminated, and the annotations its relation
contained are reflected in a different relation. Then, if Theorem 17 indicates that direct
access for Qfull is in ⟨loglinear, log⟩, we can use Qfull to provide direct access to Q. Figure 3
describes three ext-free-connex trees for Q. The choice between them for usage in Lemma 4
is important:

If we use the tree T1, the annotations would be reflected in the relation of U . Using
Theorem 17 we get that direct access for Qfull on U -annotated K-databases is not in
⟨loglinear, log⟩. So, this tree cannot be used to obtain direct access for Q in ⟨loglinear, log⟩.
If we use the tree T2, the annotations would be reflected in the relation of V and we get
that direct access for Qfull on V -annotated K-databases is not in ⟨loglinear, log⟩. So, this
tree cannot be used to obtain direct access for Q in ⟨loglinear, log⟩ either.
Only by choosing tree T3 would Lemma 4 admit that direct access to Qfull is in
⟨loglinear, log⟩. In this case, the new relation that corresponds to (x3) would reflect
the annotations, and Theorem 17 would indicate that direct access is in ⟨loglinear, log⟩.

With these examples in mind, we establish an effective classification in the case of locally
annotated databases over an idempotent semiring. This will be given in Theorem 20. To
prove it, we use the next lemma that enables transforming a CQ⋆ with existential variables
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(x3) R(x3, w1, w2)

T1

V (x2, x3)

U(x1, x3)

R(x3, w1, w2)

U(x1, x3)

V (x2, x3)

T2

R(x3, w1, w2)

T3

U(x1, x3)

V (x2, x3)

Figure 3 Possible ext-free-connex trees of Q(x1, x2, x3) :− U(x1, x3), V (x2, x3), R(x3, w1, w2). The
subtree that contains exactly the free variables appears in gray.

into a full CQ⋆. Note that this lemma is different from Lemma 4 in the sense that the
translation preserves intractability in addition to tractability (assuming that the semiring is
⊕-idempotent).

▶ Lemma 19. Let (K,⊕,⊗, 0̄, 1̄) be a logarithmic-time ⊕-idempotent commutative semiring.
There exists a polynomial time algorithm that takes as input a free-connex CQ⋆ Q(x⃗, ⋆, z⃗)
without self-joins and a relation symbol R of Q, and produces a full acyclic CQ⋆ Q′(x⃗, ⋆, z⃗)
without self-joins and a relation symbol R′ of Q′, so that the following are equivalent:
1. Direct access for Q over R-annotated K-databases is in ⟨loglinear, log⟩.
2. Direct access for Q′ over R′-annotated K-databases is in ⟨loglinear, log⟩.

From Lemma 19 we conclude that, to determine the tractability of the CQ⋆ Q, it suffices
to determine the tractability of the CQ⋆ Q′, which has the property of being full. Using
Lemma 19 and Theorem 17, we can now prove our classification of the CQ⋆s without self-joins
over databases locally annotated in the case of an idempotent addition.

▶ Theorem 20. Let (K,⊕,⊗, 0̄, 1̄) be a logarithmic-time ⊕-idempotent commutative semiring.
Let R be a relation symbol of a free-connex CQ⋆ Q without self-joins. Let Q′ and R′ be
the CQ⋆ and relation symbol obtained from Q and R using Lemma 19, and let Q0 be the
R′-deanotation of Q′.
1. If Q0 has no disruptive trio, then direct access for Q over R-annotated K-databases is in
⟨loglinear, log⟩.

2. Otherwise, in the case where N ⊆ K, direct access for Q over R-annotated K-databases is
not in ⟨loglinear, log⟩, assuming the SparseBMM hypothesis.

Proof. The proof argues about three queries:
1. The input CQ⋆ Q(x⃗, ⋆, z⃗);
2. A full acyclic CQ⋆ Q′(x⃗, ⋆, z⃗);
3. A full acyclic CQ Q0.

Given Q and R as described in Theorem 20, we eliminate existential variables using
Lemma 19 and obtain Q′ and a relation symbol R′. The CQ Q0 is the R′-deannotation of
Q′. We can show that Q0 is acyclic since Q′ is acyclic (and for the exact proof, see the full
version of the paper [10]).

From Lemma 19 we conclude that direct access for Q over R-annotated K-databases
is in ⟨loglinear, log⟩ if and only if direct access for Q′ over R′-annotated K-databases is
in ⟨loglinear, log⟩. So, it remains to prove that direct access for Q′ over R′-annotated
K-databases is in ⟨loglinear, log⟩ if and only if Q0 has no disruptive trio.

Suppose first that Q0 has no disruptive trio. Part 1 of Theorem 17 implies that direct
access for Q′ over R′-annotated K-databases is in ⟨loglinear, log⟩, and therefore, so is direct
access for Q over R-annotated K-databases. Conversely, suppose that Q0 has a disruptive
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trio. Suppose also that N ⊆ K, as we assume in Item 2 of Theorem 20. Then Part 2
of Theorem 17 states that direct access for Q′ over R′-annotated K-databases is not in
⟨loglinear, log⟩, assuming SparseBMM. This completes the proof. ◀

Note that it follows from Theorem 20 that, when N ⊆ K, one can determine in polynomial
time whether a given CQ⋆ is in ⟨loglinear, log⟩ or not, assuming the SparseBMM hypothesis.
Also, as in Corollary 6, we can directly reason about ACQs using Theorem 20. Consider
a free-connex ACQ Q(x⃗, α(y⃗), z⃗) :−φ1(x⃗, y⃗), . . . , φℓ(x⃗, y⃗), where α is one of CountD over a
logarithmic domain, Min, or Max. We can transform the ACQ Q into a CQ⋆ Q′, and then
apply Theorem 20 in order to transform Q′ into a CQ Q0. If Q0 has no disruptive trio, then
we get direct access for Q in ⟨loglinear, log⟩. So, at the end of the day, we reduce an ACQ
into a CQ⋆, which is transformed into a full CQ⋆ that, in turn, is transformed into a CQ
that we solve in ⟨loglinear, log⟩.

Section summary. Theorem 12 gives a sufficient condition for tractability of CQ⋆s over
any logarithmic-time commutative semiring. When inspecting the cases not covered by this
sufficient condition, Theorem 9 shows that even simple queries may introduce hardness.
Therefore, we narrow our focus to the form of annotation obtained from ACQs (as defined
here): locally annotated databases. Theorem 17 shows a dichotomy for full CQ⋆s without
self-joins. Beyond full CQ⋆s, we notice that there are cases, like that of Theorem 10, where
the hardness can be attributed to the semiring. We identify the class of ⊕-idempotent
semirings as one that facilitates direct access. In the context of such semirings, Theorem 20
extends the dichotomy of Theorem 17 to support existential variables.

6 Concluding Remarks

Direct access provides an opportunity to efficiently evaluate queries even when the number of
answers is enormous. Past research studied the feasibility of direct access for CQs, and here
we embarked on the exploration of this problem for queries that involve aggregation, either
as standard (SQL) aggregate functions or annotation with commutative semirings, that is,
CQ⋆s and ACQs. We studied the challenges of construction and ordering by the computed
value (aggregation or annotation). We showed that past results carry over to include the
computed value, and particularly, that the past classification holds as long as the computed
value is not involved in the order. For the second challenge, involving the computed value in
the order introduces hardness pretty quickly. We showed a sufficient condition that allows
incorporating the computed value in a nontrivial manner. Moreover, we established a full
classification of the complexity of CQ⋆s without self-joins in the case of databases locally
annotated by a semiring with an idempotent addition.

An important direction for future work is the exploration of queries beyond free-connex
ones; for that, we need to allow for broader yardsticks of efficiency, as done for direct access
for CQs without aggregation [5] and as done for Functional Aggregate Queries (FAQ) for
CQs with aggregation and traditional query evaluation [16]. Moreover, we plan to explore
the extension of our results to queries with self-joins, and we believe that recent results [5]
can be used towards such an extension. It is also left for future work to better understand
the limits of computation and establish lower bounds (and dichotomies) for general classes of
queries, commutative semirings, and aggregate functions. Another important direction is to
explore the ability to efficiently maintain the direct-access structure through updates of the
database, as previously studied in the context of non-aggregate queries [3, 21]. Finally, we
plan to investigate the practical behavior of our algorithms and understand how well the
theoretical acceleration is realized in comparison to existing query engines.
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Abstract
We study the problem of querying different data sources, which we assume out of our control and
that are made available by standard web communication protocols. In this scenario, the time spent
communicating data often dominates the time spent processing local queries in each server. Thus,
our focus is on algorithms that minimize the communication between the query processing server
and the federated servers containing data.

However, any federated query can always be answered with linear communication, simply by
requesting all the data to the federated sources. Further, one can show that certain queries do
require this amount of communication. But sending all the data is definitely not a relevant algorithm
from a practical point of view. This worst-case analysis is, therefore, not useful for our needs. There
is a growing body of work in terms of designing strategies that minimize communication in query
federation, but these strategies are commonly based in heuristics, and we currently miss a formal
analysis providing guidelines for the design of such strategies.

We focus on the communication complexity of federated joins when the problem is parameterized
by a measure commonly referred to as the certificate of the instance: a framework that has been
used before in the context of set intersection and local query processing. We show how to process
any conjunctive query in time given by the certificate of instances. Our algorithm is an adaptation
of Minesweeper, one of the algorithms devised for local query processing, into our federating setting.
When certificates are of the size of the instance, this amount to sending the entire database, but
our strategy provides drastic reductions in the communication needed for queries and instances
with small certificates. We also show matching communication lower bounds for cases where the
certificate is smaller than the size of active domain of the instances.
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1 Introduction

Federated querying services, in which users can use the Web to access data from different
independent sources, are already a part of our current Web architecture. The Semantic
Web initiative provides one way of doing this: assuming the data is represented under
the RDF standard [12], then these repositories can be queried and merged together using
SPARQL, the query language for RDF, by means of the SERVICE operator[4]. Remarkably,
the RDF/SPARQL standard also allows for linking non-RDF data, by virtually masking it
as intermediate answers of SPARQL queries [15, 22]. To illustrate the uses of web query
federation, consider an application in which we recommend city attractions to tourists. Basic
information about a city can be automatically obtained from Wikipedia, by querying its
public wikidata endpoint at (https://query.wikidata.org/). But this information can be
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further filtered, for example, by looking at a weather API (so that recommendations agree
with current weather), by comments in social networks, or by reviews from platforms such as
Yelp or Foursquare. Because we need up-to-date information, queries must be carried out in
real time, and the communication must be performed by http or other similar protocol.

We are thus looking to merge information from several web data repositories, which we
can only access by means of http requests.

In the context of Web query federation, the main bottleneck in processing queries is
not computational power, but web bandwidth usage. Thus, looking for efficiency in the
context of query federation means communicating the fewer number of intermediate results
between the different data repositories. Furthermore, there is usually an economic incentive
for minimizing API requests, as several APIs and endpoints charge for their information.

Consequently, a good deal of research in query federation has been devoted towards
algorithms reducing the amount of communication between servers (see e.g. [8, 19] for a
good introduction). But so far most approaches rely on heuristics and data profiles, much
resembling how traditional DBMS query planning work, and without strict algorithmic
properties, nor tools providing guarantees that one approach works better than others.

We believe that current discussion on query federation would benefit from a formal study
establishing the limits of what can be done in terms of query processing. Two main questions
arising in this context are, first, to understand what are the theoretical limits in terms of
communicating tuples (or bits) in query federation. And second, can we design querying
strategies that work within these bounds?

Our answers to these questions are based on the framework of adaptive algorithms, as
presented in the work of Demaine et al [7]. This framework can be understood as a relaxation
of instance-optimal algorithms, wherein one shows that algorithms are optimal for classes of
instances that are classified by specific parameters. Adaptive join algorithms have already
been studied for traditional (non-federated) query processing in relational databases [16, 10],
and we show that these algorithms are a good starting point for the design of algorithms
with adaptive communication complexity. We also show that these algorithms are optimal in
terms of communication. Up to our best knowledge, our work is the first to introduce the
adaptive framework in terms of communication complexity.

1.1 Problem Definition and Main Results
Let Q(x) be a conjunctive query over a schema with relations R1, . . . , Rn. A federated
instance I for Q is a distributed database instance for R1, . . . , Rn, in which the interpretation
RI

i of each relation Ri resides in a different server. The evaluation Q(I) of Q over a
federated instance I is the standard evaluation of Q over the database instance containing
the interpretation of all relations in I. In web query federation, we wish to materialize all
these answers on a separate client, which we abstract as an additional server in our setting.
More precisely, we focus on the following problem:

Federated Query Evaluation
Input: A conjunctive query Q,

a federated instance I for Q.
Task: Compute Q(I) in a separate server.

As we have mentioned, we assume our servers to be connected only through the Web,
and thus the most important bottleneck for Federated Query Evaluation is the amount
of communication between each server. Our focus is, then, to solve Federated Query
Evaluation using the least amount of communication.
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Efficient algorithms for Federated Query Evaluation. What do we mean by efficient
communication? Naturally, the best algorithm should communicate as few information
as possible. For a query Q and a federated instance I, the bare minimum would be to
communicate only the tuples in each relation that participate in Q(I), that is, each relation
R in Q should send only |R⋉Q(I)| tuples. But this is too demanding: if Q(I) is empty then
we would not be allowed to communicate anything at all. Hence, we settle for algorithms that
communicate |R ⋉ Q(I)| tuples per server, plus an extra (small) amount of communication
that may depend on Q and I.

In traditional join algorithms, the standard is to compute queries in linear time with
respect to the database. But asking for linear communication is pointless, as the trivial
algorithm where we share the entire database already satisfies this bound, even though most
of the time this is not a practical option. Our answer builds from the notion of adaptive
algorithms devised by Demaine et al. [7], and recently used in the context of (single server)
query-processing [16, 10]. Let us first illustrate the idea with an example.

▶ Example 1. Consider query Q(x, y, z, w) ← R(x, y) ∧ S(x, z) ∧ T (x, w). Assuming a
federated instance where R, S and T reside in different servers, computing the answers of
Q using a traditional left-deep plan, or even Yannakakis algorithm [24], would necessarily
involve the pairwise intersection of the first components of R, S and T , in some order. This
operation involves the intersection of several sets of elements, which requires a linear amount
of communication, as per standard communication complexity results [11]. However, if we
intersect all of R, S and T adaptively, there are several instances for which we can compute
the answers of Q with much less communication: in the extreme case where all elements in
(the first components of) R are smaller than those in S or T , we can realize that the answer
is empty simply by asking R for their biggest element, and comparing it to those in S and T .
Ideally, our algorithms should behave much better in these instances.

The adaptive analysis provides a way to measure how complicated are instances for
processing queries such as the one in Example 1. More precisely, adaptive algorithms assign
to each instance I a certificate, whose size is then used to bound the performance of algorithms.
The notion of a certificate for join queries was already defined in [16]: in essence, a certificate
is a set of comparisons between elements of the input relations that serves as a warranty
for the output of the query. We can use the same ideas in our context of communication,
arriving thus at the first goal of our work.

Goal 1. Devise an algorithm that solves Federated Query Evaluation, in which each relation
Ri communicates at most O(|Ri ⋉Q(I)|+ c) tuples, in terms of data complexity1, where c is
the size of the smallest certificate for I, as defined in [16]. In terms of bits of communication,
assuming a shared dictionary, Goal 1 implies communicating O((|Ri ⋉Q(I)|+ c) · log n) bits
in data complexity, where n is the size of active domain (the number of different elements)
in I.

We argue that neither left-deep plans nor Yannakakis’s algorithm (for acyclic queries)
fulfill the requirements of Goal 1, and, up to our best knowledge, neither does any of the
known approaches for solving SPARQL Query Federation (see e.g. [19, 5, 6, 14, 13, 18]).

1 In data complexity the size of query Q is considered to be fixed, and therefore so is the number of
attributes in each relation.
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Our proposal is to use known adaptive algorithms for query processing, which can be
reshaped into well functioning algorithms in the distributed context. More precisely, in
Section 4, we show an algorithm for processing join queries that achieves the communication
established by Goal 1. This algorithm is the adaptation of Minesweeper[16] over the
distributed context.

We remark that our focus is on deterministic algorithms, in which we compute queries
without the need of random inputs and without a probability of error. This is in line with
most database algorithms deployed in practice: a vast majority of them are deterministic.
Still, understanding the communication implications of randomized algorithms for federated
query processing is a very interesting line of research for future work. We do have randomized
algorithms with good guarantees for joining two relations [20] and for intersecting sets [3],
and these can be deployed as a part of a distributed left-deep plan for processing federated
queries. However, this deployment would have the same problem of standard left-deep plan
algorithms, where we may end up doing needless intersections because the results of the query
do not match somewhere else upstream. Finally, we note that our setting is fundamentally
different from the one studied by Beame, Koutris and Suciu [2], where storage is assumed to
be shared amongst a big amount of servers. In fact, if we apply results of Beame et al. to
our federated instances, these would default to requiring a linear amount of communication
between each relation, which, as explained, is not enough for our proposes.

Proving optimal communication. The second goal is to show that our algorithms com-
municate an optimal number of bits. For an instance I with a domain of n elements, we
assume that the encoding of tuples requires O(log n) bits (in data complexity). This is more
that what can be achieved by intricate data compressing techniques, but it is much closer to
the way words are truly stored on database systems. Thus, if one looks for lower bounds
measured in bits, we should focus on lower bounds communicating around c log n bits, plus
the output of queries. This is our second goal.

Goal 2. Prove that any algorithm for Federated Query Evaluation must communicate at
least Ω(|Ri ⋉ Q(I)|+ c) · log n) bits in data complexity, where c is the certificate size for I.
As it is standard in the literature, we plan to show this by establishing lower bounds on
the communication complexity of Federated Query Evaluation. This framework is formally
described in Section 2.

We fulfill Goal 2 for boolean, cyclic queries: given such a query Q, we can show that it
must communicate Ω(c log n) bits, in data complexity, and provide an alternative Ω(log

(
n

c/2
)
)

bound for boolean acyclic queries. Our construction, however, requires that the size of the
certificate is less than the number of elements in the instance, that is, less than the size of the
active domain. It is pointless to show a general lower bound for arbitrary queries and larger
certificates, as certain queries cannot have bigger certificates. However, we can show a lower
bound that applies to infinitely many queries: no matter how large is the certificate and the
number of elements in an instance, there is always a boolean query Q that requires Ω(c log n)
bits to be processed. Naturally, these bounds can be directly transferred to non-boolean
queries.

Assumptions in our model. We assume that instances are made of natural numbers, but
our techniques can be extended if one works instead with elements from any other ordered,
enumerable domain, provided we have a suitable dictionary for these values. We represent
federated instances assuming that every relation resides in a different server, but our scenario
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is general enough to model federated queries involving RDF graphs (which are commonly
modeled as a single tertiary or quaternary relation), and for cases in which the queries issued
to each different server are more complex than just querying a relation, such as with the
SPARQL SERVICE operator. In any of these cases, we just assume that the relations in
our join query represent a view with the results of a more complex query issued at the
particular server. Further, we also assume our queries are connected. When Q has more than
one connected component, then any strategy must involve processing all these components
independently, and then combining them using a cross product.

2 Preliminaries

Database basics and notation. We use [n] as a shorthand for {1, . . . , n}. Conjunctive
queries (CQ) are constructs of the form Q(x) ← R1(y1) ∧ · · · ∧ Rn(yn), where each Ri is
a (not necessarily distinct) relation name, each yi is a tuple of (not necessarily distinct)
variables and/or constants, and x is a tuple of variables also mentioned in y1, . . . , yn. If all
such variables are mentioned in x, then Q is full. Further, a query Q is acyclic if it has a
join tree, see [24]. We use atoms(Q) to refer to the sets of atoms in Q. The evaluation of a
CQ Q over an instance I is the set of tuples σ(x), for each assignment σ from the variables
of Q to elements in I (and that is the identity on constants), and such that for each atom
R(y) in Q, the tuple σ(y) is in RI . For a full query Q without constants, we make use of a
function sQ(·, ·) that receives an atom R(y1, . . . , yk) in Q and an integer i ≤ k, and maps to
the corresponding position in x = x1, . . . , xn such that sQ(R(y1, . . . , yk), i) = j if yi = xj .
Often, both Q and the atom R(y1, . . . , yk) will be understood from context, so we just denote
sQ as a unary function s, as in s(i) = j.

Communication Complexity. Here we just outline the concepts that are necessary for
stating our results. We refer to e.g. [11] for a comprehensive treatment on this subject. The
(two-way) communication complexity of a function f : X × Y → Z is defined in terms of
protocols. Formally, a protocol P over X × Y with range Z is a binary tree where each
internal node v is labeled either with a function av : X → {0, 1} or bv : Y → {0, 1} that
indicates how to walk through the tree (right or left) depending on the input, and each leaf
is labeled with z ∈ Z. The cost of P on input (x, y) is the length of the path taken on input
(x, y) and the cost of P is the height of the tree. The communication complexity of f is the
minimum cost of P, over all protocols that compute f .

The communication complexity captures the minimum amount of bits that need to
be communicated for a protocol to compute f . As we have mentioned, our focus is on
deterministic protocols. For these, the most widely used technique to prove communication
lower bounds are fooling sets, defined next.

▶ Definition 2 (Fooling set). Let f : X × Y → {0, 1}. A set S ⊂ X × Y is called a fooling
set for f if there exists z ∈ {0, 1} such that for every (x, y) ∈ S, f(x, y) = z and for every
distinct pair (x1, y1) and (x2, y2) ∈ S either f(x1, y2) ̸= z or f(x2, y1) ̸= z

The following result connects fooling sets with communication lower bounds.

▶ Lemma 3 ([11]). If f has a fooling set of size t, then the communication complexity of f

is at least log2 t

ICDT 2024
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3 Communication Complexity of set intersection

To illustrate our framework we start with the simplest join query: the intersection of two
unary relations R and S. Recall that in our federated setting, both R and S reside in different
servers, and the answers must be transmitted to a separate master server.

3.1 Adaptive algorithm
Instead of demanding for the full contents of R and S, the master can coordinate a sort-merge
intersection, by iteratively probing R for their next element (from the lowest element to the
biggest), S for their next element bigger than that of R, and so on until all common elements
have been found.

As it turns out, this algorithm is optimal in the following, adaptive, way. Consider, for
every instance I over R and S, the number of changes that we do between R and S when
both relations R and S are sorted onto a single merged list, counting common elements as if
they always induce a change.

For example, take R = {2, 3, 5} and S = {1, 3, 5, 7, 9}. When we sort all elements in R

and S, we start from element 1 (belonging to S), then we change to 2 (belongs to R), then 3,
which belongs to both R and S and thus we also count, then to 5, which is also counted,
then change to 7 (only in S) and advance without changes to 9, since this element is also
only in S. There are thus four changes.

These changes corresponds, informally, to what Demaine et al. coined as the certificate
for the intersection of R and S, and the number of changes corresponds to the size of
the smallest certificate. The intent of Demaine et al. was to study algorithms that would
run in linear time with respect to this size. In our case, we can do the same in terms of
communication: when intersecting R and S using our coordinated sort-merge intersection,
we only communicate θ(c log n) bits, where c is the size of the smallest certificate.

Note that the size of the smallest certificate for R and S ranges from 1 (say, when all
elements in R are smaller than those in S) to 2 min(|R|, |S|) (for example, when R contains
all even numbers up to a given integer N , and S contains all odd numbers up to N). Thus,
asymptotically, this algorithm communicates the same information than just sending R or S

(up to encoding of elements). But, the smaller this number is for these relations, the smaller
the communication issued by our algorithm. This is in concordance with a simple intuitive
analysis of this algorithm: in practice it just sounds much better than sending the complete
relations.

3.2 Lower bounds
We can also use communication complexity to show that our algorithm is optimal when the
certificate size is relatively smaller than the number of elements in R and S.

▶ Proposition 4. The communication complexity of Federated Query Evaluation, on input
Q(x) ← R(x) ∧ S(x) and an instance with n elements and certificate size up to c, is
Ω(log

(
n

c/2
)
).

When c is smaller that n (say, bounded by nϵ, for a fixed ϵ < 1) then log
(

n
c/2

)
is

Ω(c log n), which is what we are looking for, as it shows that our algorithm is optimal in
terms of communication. While this result does not give the best bounds when certificates
are comparable to n, one important advantage of our sort-merge intersection is that it can
be carried out using standard database technology, whereas more nuanced algorithms may
involve requests that cannot be processed over a web-based database endpoint.
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Proof of Proposition 4. We show that the problem of checking whether the boolean version
of Q is empty already requires said communication. Naturally, this is also a lower bound for
the non-boolean query Q, since one can always use the answers of Q to answer the boolean
version. The proof is by building a fooling set: a collection of instances Ii = (RIi , SIi), in
such a way that Q is empty over any such pair, but nonempty over (RIi , SIj ) for j ̸= i.

Define then, for each set A ⊆ [n] of size |A| = c/2, the instance IA given by RIA = [n] \A

and SIA = A.
The number of different pairs (RIA , SIA) is

(
n

c/2
)
. Further, we verify that RIA ∩ SIA = ∅,

but RIA ∩ SIB ̸= ∅ for A ̸= B, so this collection is indeed a fooling set of size
(

n
c/2

)
.

It remains to show that all such instances have certificate at most c. By construction,
pairs (RIA , SIA) may have up to 2|A| = c changes. Further, (RIA , SIB ) for A ̸= B require 1
change per element in A ∩B, and every other element in B induces at most 2 changes, for a
grand total which is always bounded by c. ◀

The communication bound holds (in data complexity) when intersecting more than two
relations. Indeed, for a query Q(x) ← T1(x) ∧ · · · ∧ Tℓ(x), assume one server contains T1,
and the other contains all remaining relations. We can then reuse the proof above, setting
T IA

1 as RIA and each of T IA
2 , . . . , T IA

ℓ as SIA , to obtain a similar bound2. Moreover, this
lower bound transfers to the federated multiparty case where each Ti resides in a different
server. If there was an algorithm using less communication to evaluate Q in the multiparty
setting, then we can mimic this algorithm on the two-party setting: every time a relation Ti,
i > 2 communicates with the master server, in the two party setting this communication
happens instead between the master and the server containing relations T2, . . . , Tℓ.

4 Communication Complexity of natural joins

In this section, we present algorithms for solving Federated Query Evaluation with low
communication. We will begin by recalling the extension of certificates to relational queries
introduced in [16], and we will follow with the algorithm and its analysis.

4.1 Certificates
As in Section 3, the idea is that certificates play the role of minimal witnesses for the
evaluation of a query over a relational instance.

Let R be a relation of arity k. An index tuple for R is a tuple (a1, . . . , aℓ) of ℓ ≤ k

elements, where each ai is either −1 or a natural number.
We use index tuples to produce atoms of the form R[a1, . . . , aℓ], for (a1, . . . , aℓ) an index

tuple. These atoms represent, in each instance I, an element from a specific tuple in the
instantiation RI of R over I. Specifically, the atom above refers to the tuple in which the
first position contains the a1-th smallest element amongst all elements in the first position of
tuples in RI , the a2-th smallest element in the second position, and so on.

This is formalized as follows. The interpretation RI [a] of R[a] over an instance I, for
a ≥ 0, is the a-th smallest value in the first position of tuples in RI , i.e., the a-th smallest
value retrieved by the evaluation in I of query:

Q(x1)← R(x1, . . . , xk).

Further, RI [−1] represents the largest element in RI retrieved by such query.

2 Technically speaking, the certificate for these instances is slightly bigger. We give more details in the
following section.
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Next, RI [a1, . . . , ai−1, ai], for ai ≥ 0, represents the ai-th smallest element amongst all
tuples in RI whose first i − 1 elements correspond to R[a1], . . . , R[a1, . . . , ai−1]. That is,
RI [a1, . . . , ai] is the ai-th smallest element retrieved by the evaluation over I of query:

Q(xi)← R(RI [a1], RI [a1, a2] . . . , RI [a1, . . . , ai−1], xi, . . . , xk).

Likewise, RI [a1, . . . , ai−1,−1] is the largest element retrieved by such query.
We use the notation tupI(R[a1, . . . , aℓ]), for ℓ ≤ k, to refer to the tuple given by

(RI [a1], RI [a1, a2], . . . , RI [a1, . . . , aℓ]). In our application we will always have that ai, when
positive, is at most the number of elements retrieved by the corresponding query. If, in any
case, there were less elements, then ai will just represent the largest element, as with −1.

▶ Example 5. Consider an instance I where

RI = {(1, 1), (1, 2), (3, 3), (5, 5)}.

Then, interpretation RI [0] of R[0] is element 1, the smallest element in the first position
of a tuple in RI . Next, RI [0, 1] corresponds to element 2: the second smallest element in the
second position of a tuple in RI that starts with 1. Finally, construct RI [−1, 0] is 5: the
smallest element in the second position of a tuple in RI that starts with RI [−1] = 5.

We use tupI(R[0, 1]) to refer to (RI [0], RI [0, 1]) = (1, 2).

Index tuples allow us to pinpoint elements in instances, without referring to the actual
element, only their ordering within a certain relation. The notion of certificate is then based
on comparing two of these atoms.

▶ Definition 6 (Argument [16]). An argument A is a set of comparisons of the form:

R[a] θ R[b],

with a, b index tuples θ ∈ {<, =, >} and R, S atoms of the query. An instance I satisfies an
argument if RI [a] θ SI [b] holds in I for every comparison in A.

We are ready to define the notion of certificate. For a full query Q and an instance I,
a witness for Q(I) is a set consisting of one atom R[a1, . . . , ak] for each atom R(x1, . . . , xk)
in Q, and such that there exists an output tuple t in Q(I) for which tupI(R[a1, . . . , ak]) =
(ts(1), . . . , ts(k)) holds for each atom in Q (here s is the function sQ(·, ·) defined in Section 2).

▶ Definition 7 (Certificate [16]). An argument A is a certificate for an instance I over a
query Q if i) I satisfies A, and ii) for any other instance J satisfying A, the set of witnesses
for Q(I) and Q(J) coincide. The size of a certificate is the number of comparisons in A.

As we are interested in the size of the smallest certificate, we informally refer to the size
of the certificate for I over Q when we really talk about the size of the smallest certificate for
I over Q.

▶ Example 8. Consider a query Q(x, y, z)← R(x, y) ∧ S(x, z) ∧ T (y, z), and an instance I

given by RI = {(1, 1), (1, 2), (3, 3), (5, 5)}, SI = {(1, 1), (2, 2)} and T I = {(1, 1)}.
The tuple (1, 1, 1) is the sole output for this query. A possible certificate for Q consists of

the following 8 arguments:
R[0] = R[0, 0], R[0, 0] = S[0], S[0] = S[0, 0],
S[0, 0] = T [0], T [0] = T [0, 0], S[0,−1] = S[0, 0]
S[−1] < R[1], T [−1] < R[0, 1].
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All these arguments, together, imply that the smallest tuple (in lexicographical order) of
R, T and S on any instance satisfying the certificate is always witness for the query. Further,
because of the argument S[−1] < R[1], the largest element in the first position of S is smaller
than the second element in the first position of R. This rules out any join where x is not the
element RI [0]. Next, argument T [−1] < R[0, 1] indicates that the largest element in the first
position of T is smaller than the element in the second position of a tuple in R starting with
RI [0]. This rules out the possibility of a join in y apart from T [0], conditioned to x = RI [0].
Finally, argument S[0,−1] = S[0, 0] says that there is only one tuple in S whose value in
the first position is S[0]. This means that the only witness for z, conditioned to x = RI [0]
and y = T [0], is S[0, 0]. All of these facts together imply that any instance J satisfying the
certificate cannot have any other answer to Q apart from (RI [0], RI [0, 0], T I [0]).

We remark that the certificate need not be linked to the size of the instance, nor to the
query ouput. In general, the size of certificates range from 1 to the size of the instance [16].

Order of tuples is crucial for certificates. The other important subtlety of certificates is
that the ordering of tuples is crucial for the size of the certificates. To see this, consider query
Q(x1, x2)← R(x1, x2)∧S(x1, x2), and an instance I given by RI = [1]× [n] and SI = [2]× [n].
Then R and S do not match on x1, and the argument R[−1] < S[0] is a certificate for I and
Q. But now, let us assume we have ordered our tuples in the opposite way. Now the query
is R(x2, x1) ∧ S(x2, x1), and the interpretations are RI = [n]× [1] and SI = [n]× [2]. The
certificate must now include all n arguments of the form R[i][−1] < S[i][−1].

Our results in this section are consistent with the size of the certificate, given a particular
ordering of tuples: communication depends on the certificate size, which again may be higher
or lower depending on this ordering.

Khamis et al. have studied notions certificates which do not depend on the ordering
of variables [10]. And indeed, one could adapt our algorithms for this notion of certificate.
We have decided to work with the original proposal of Ngo et al. [16] because this leads to
algorithms that are easily implemented over existing database architectures and systems.
in Section 6 we explore an intermediate solution based on certificates for several different
orderings of tuples, which, again, can be easily implemented on existing architectures, specially
in cases such as RDF, where the arity of relations is low (see e.g. [23, 9, 1]).

4.2 Distributed Minesweeper
Minesweeper [16] is an algorithm to process natural join queries that has been shown to run
with adaptive time guarantees for classes of queries with acyclicity or bounded treewidth
properties. The main idea of Minesweeper consists of repeatedly issuing so-called “probe
points”, or tuples of elements, which are then queried to see if they belong to the output of
the query or not. Then, either the probe point is a valid output tuple, or else we can exhibit
a “gap” around it, indicating that no instance tuple of this relation has elements inside this
gap. These gaps are then stored as constraints, so that the next point to probe is such that it
does not satisfy any constraints. The algorithm runs until there are no new points to probe.

The distributed version. Our distributed version adapts the original algorithm onto the
distributed setting, and is designed to process queries regardless of their treewidth. Further,
we streamline the communication to avoid a factor that is exponential with respect to
the query, that is present in the original Minesweeper. Probe points are now issued in
lexicographical ordering, and the algorithm divides them into a probe for each relation.
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Further, the master now caches all answers from the relations to avoid issuing the same
point two times. We begin by illustrating the algorithm by means of an example, and then
follow to present the most important parts. We will finish with the analysis, which is tailored
specifically towards the communication, and (because of the way we analyze probe points)
requires additional techniques from those in the original Mineswweper [16].

▶ Example 9. Consider again query Q(x, y, z)← R(x, y)∧S(x, z)∧ T (y, z) from Example 8,
and the federated instance I given by the interpretations RI = {(1, 1), (1, 2), (3, 3), (5, 5)},
SI = {(1, 1), (2, 2)} and T I = {(1, 1)}. The sole output in Q(I) is (1, 1, 1).

In the distributed version of Minesweeper, we start with probe point (1, 1, 1). This implies
asking all of R, S and T for pair (1, 1). All three servers will return true, indicating they
contain the pair (1, 1), and the algorithm stores this in the cache. Next is (1, 1, 2), which
implies asking R for (1, 1), S for (1, 2) and T for (1, 2). We will not probe R this time, because
pair (1, 1) is already in the cache. However, pair (1, 2) is not in S, so it returns the constraint
⟨1, (2,∞)⟩, which indicates that there are no tuples of the form (1, a) in S, with a ∈ [2,∞].
As explained in Example 8, this information is captured by the argument S[0,−1] = S[0, 0]
in the certificate for Q and I. Analogously, relation T also returns ⟨1, (2,∞)⟩.

The next pair in lexicographical order is (1, 1, 3), but because of the constraints in S and
T we know that no tuple (1, 1, b), for b > 1 is in the output of the query. Thus, the next
point issued is (1, 2, 1). R has the pair (1, 2) so we store this in the cache for R. S is not
queried because (1, 1) is already cached for S, and T is queried for (2, 1), returning ⟨(2,∞)⟩.
As before, this constraint can be matched to an argument in the certificate, in this case to
T [−1] < R[0, 1]. Continuing the search for the next probe point, in lexicographical order, that
satisfies all constraints, we arrive at (2, 1, 1). Relation R is probed with pair (2, 1), relation S

with (2, 1) and relation T is not probed, because (1, 1) is in the cache of T . Relation R does
not have (2, 2), so it returns the constraints ⟨(2, 2)⟩. Relation S returns ⟨2, (1, 1)⟩. The next
and final point is (3, 1, 1). Here R does return true, but S returns instead the constraint
⟨(3,∞)⟩. The last two rounds can be matched to the argument S[−1] < R[1], we verify that
there are no further matches for variable x, and finish the search for output tuples.

The algorithm. For conciseness, the algorithm is shown for full queries, without self-joins,
and that feature more than one relation. This is without loss of generality. If a query is
not full, then we first compute the answer for the full query, and then project locally at the
master server. We do not consider this a shortcoming of the algorithm, as the lower bounds
in Section 5 are always given for boolean queries. Self-joins are treated by packing together
all atoms of the same relation R in a view, probing instead the server for R for the results of
this view. Finally, queries involving only one relation can be dealt with separately by just
sending the query to the corresponding server.

We assume that the ordering of variables is preserved between the head and the body
of queries: any variable x that appears before a variable y in the head Q(x) of the query,
always appears before y in any of the atoms Ri(yi) in the body. In Section 6 we discuss
alternative algorithms that can deal different orderings in atoms.

Algorithms 1 and 2 contain the main parts of the distributed version of Minesweeper.
Algorithm 1 requires getProbePoint(t) (Algorithm 3 in Appendix A.1), which returns the first
tuple that is both greater than t (in lexicographical order) and that satisfies the constraints.
Once this tuple is generated, the algorithm builds the projection of t to the variables of each
relation R of the query, and sends this to probeR(). In turn, probeR(t) checks whether such
tuple belongs to R, and outputs either true, if it does, or a constraint if it does not. The
algorithm generates the constraints that relate to the most significant position in t; this is
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important since we are searching for new probe points in lexicographical ordering3. Finally,
distributed Minesweeper terminates when there are no more tuples to generate. The final
answer is constructed by evaluating Q over the cached data.

Algorithm 1 Distributed Minesweeper - Master server, query Q.

1: t = (0, . . . , 0)
2: while t =getProbePoint(t) ̸= NULL do
3: for R(x1, . . . , xk) ∈ atoms(Q) do
4: tR ← (ts(1), . . . , ts(k))
5: if (tR, R) is not in the cache then
6: returnR ← probeR(tR)
7: if returnR = true then
8: store (tR, R) in the cache
9: else(returnR is a constraint)

10: store (returnR, R) as a constraint
11: return evaluation of Q over the cache.

Algorithm 2 probeR(t) - server storing R.

1: k ← arity(R)
2: for i = 1 to k do
3: if R(t1, . . . , ti, xi+1, . . . , xk) is empty then
4: if R(t1, . . . , ti−1, xi, . . . , xk) ∧ xi > ti is empty then
5: return ⟨t1, . . . , ti−1, (ti,∞)⟩
6: else
7: e← smallest element such that R(t1, . . . , ti−1, e, xi+1, . . . , xk) ∧ e > ti is not

empty
8: return ⟨t1. . . . , ti−1, (ti, e− 1)⟩
9: return true

Analysis. To bound the communication of distributed Minesweeper, we focus on the number
of probe points generated by getProbePoint() and the communication associated with each
one of them. We divide probe points t into three types: (1) probe points t that are part of
the output, (2) probe points t for which some R returns a constraint that can be associated
with a comparison in the certificate, and (3) probe points t such that all relations either
return true or a constraint over private attributes (i.e. attributes that appear only in one
atom of the query). The following proposition bounds the communication of Distributed
Minesweeper. In order to abstract from encoding issues, we give bounds in terms of the
number of tuples (or constraints) communicated by the algorithm.

▶ Proposition 10. The number of tuples communicated by Distributed Minesweeper to each
server R ∈ atoms(Q) is in O(c + |R ⋉ Q(I)|), in data complexity, where c is the certificate
size for I over Q.

3 In contrast, the original Minesweeper performs a search in the vicinity of t. We avoid this search because
it may lead to more communication.
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Assuming servers use a dictionary for their values, the communication outlined above
can be written as O((c + |R ⋉ Q(I)|) · log n) if we assume the query processing server also
has access to the dictionary, or O(c log n + ||R ⋉ Q(I)||) if we do not assume this, where
||R ⋉ Q(I)|| is the amount of bits required to encode R ⋉ Q(I).4

The proof, as we explained before, follows by showing that the number of iterations of the
algorithm (i.e. the number of probe points) is at most 2v(2c + |Q(I)|), where c is the size of
the certificate for Q and I and v is the number of variables in Q. This number comes up by
directly counting probe points of type (1) and (2) and charging probe points of type (3) to
the priors. Unlike the original Minesweeper, our probe points are generated in lexicographical
order. Although this allows us to simplify the constraints that are returned while roughly
keeping the number of probe points, it also changes the way we count such probe points, and
especially how we deal with case (3). Finally, when addressing the communication between a
relation R and the master, we only count the first time tR is probed into R, since the result
will either be discarded by the constraint returned to this first call, or will be already in our
cache.

A natural question at this point is whether the communication bounds exhibited are a
property of Minesweeper only, or if they are shared by other worst-case algorithms such as
Yannakakis or Leapfrog Trie Join (LFTJ)[21], and what communication guarantees we can
achieve (if any) when they are adapted to the federated scenario. Ngo. et al [16] tackled
a similar question: whether those worst-case optimal algorithms could run in an instance
optimal runtime and the answer was negative for both. Following similar arguments, we can
prove that there are instances for which both, Yannakakis and LFTJ need to communicate
significantly more tuples, compared to distributed Minesweeper (see Appendix A.2). Let us
end this section with a few additional remarks from the point of view of database practice.

A note on implementation via database queries. In the context of Web federation, we
cannot impose servers to adhere to a protocol of our choosing. In this case, most probably
we will only have the ability to issue SQL or SPARQL queries remotely, to the endpoint.
One of the advantages of our build is that it can be easily simulated with database queries
(lines 3, 4 and 7 in Algorithm 2), and we only pay the cost of issuing (at most) k + 1 queries
instead of one call to probeR, and this can be further alleviated with more caching.

Certificate sizes in real life. Another important question is what happens for certificates
in real life queries. A thorough analysis is out of the scope of this paper, but certificates
tend to be much smaller for queries with high selectivity. For example, recall query R(x, y)∧
S(x, z) ∧ T (x, w) from the introduction. This query abstracts high-selectivity SPARQL
queries that are typical in benchmarks (see e.g. the LUBM benchmark http://swat.cse.
lehigh.edu/projects/lubm/), such as retrieve name and address of all professors working
in a university. Here relation R abstracts the professor-works-in relation, and the other
relations abstract personal information from every type of person in the database, and are
therefore much bigger. The certificate for this query is of size comparable to the number of
elements in the first position of R (the number of professors). This adequately captures the
fact that R is the relation inducing high-selectivity, and we remark our algorithm achieves
this without the need of any heuristics.

4 If the dictionary is not known to the master server, then one needs to retrieve final tuples from the
server containing R with an extra |R ⋉ Q(I)| requests, which require (|R ⋉ Q(I)| log n + ||R ⋉ Q(I)||)
bits of communication.

http://swat.cse.lehigh.edu/projects/lubm/
http://swat.cse.lehigh.edu/projects/lubm/
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5 Lower Bounds

In this section we show lower bounds for the communication complexity of the Federated
Query Evaluation problem, for arbitrary conjunctive queries. Recall that our goal is to show
a Ω(c log n) lower bound, where n is the number of elements in the instance, and c is the
certificate size. We begin with communication bounds that are applicable to any conjunctive
query. For acyclic queries, we cannot do much more than Proposition 4, but cyclic queries
allow for a tighter bound that does satisfy our goal.

However, this first result requires that the certificate is at most the size of the number of
elements in the instance. It is not possible push forward a general result applicable to any
query, because certain queries cannot have bigger certificates. But for queries of a specific
form, we can go much further: we finish this section showing that, no matter the instance
and the certificate sizes, there are always queries for which Federated Query Evaluation
needs to communicate around c log n bits.

For obvious reasons, queries in this section are assumed to contain more than one relation,
as otherwise we can always process them locally.

▶ Proposition 11. The communication complexity of Federated Query evaluation, on input
a query Q (using more than one relation) and an instance I with at most n elements and
certificate size c at most n

2 (i.e. c ≤ n
2 ) is, in data complexity:

Ω(log
(

n
c/2

)
) bits, if Q is acyclic, and

Ω(c log n) bits if Q is cyclic.

Proof. For both cases, the proof follows by constructing a fooling set of adequate size. We
show the proof for a simpler class of cyclic queries. We leave the general case, as well as the
acyclic case, for the full version.

Our class of queries use only binary relations, and we assume that in the cycle of the
graph of Q there is a variable x that participates in exactly two different atoms, one using
relation R and the other using relation S. Without loss of generality, we also assume this
variable is in the rightmost position in both R and S. If this is not the case, one can always
reorder all attributes in relations before processing the query in the master server.

As in the proof of Proposition 3, our lower bounds are for two-party communication
(R and S), assuming they already know the rest of the database, and this transfers to our
multiparty framework without any added communication, in data complexity.

Fix an integer k > 0 for a tuple b = b1, . . . , bk, consider relations Rb1,...,bk
and Sb1,...,bk

,
defined as follows.

Rb1,...,bk
is the union of sets of tuples {(i, a) | a ̸= bi}, for 1 ≤ i ≤ k, and

Sb1,...,bk
contains all tuples (i, bi), for 1 ≤ i ≤ k.

Our fooling set is constructed by instances Ib1,...,bk
in which the interpretation of R and

S correspond to one of the nk pairs of instances (Rb1,...,bk
, Sb1,...,bk

), and the interpretation
of all other relations in the query contains all k pairs (1, 1), . . . , (k, k)

The following claim establishes that the set {Ib1,...,bk
, bj ∈ [n]} is indeed a fooling set for

the federated evaluation problem, on input Q. In turns, this entails that the (deterministic)
communication complexity of this problem is at least log nk = k log n.

▷ Claim 12. The evaluation of Q over any instance Ib1,...,bk
is empty. The evaluation of Q

over any instance whose interpretation are relations Rb1,...,bk
and Sb′

1,...,b′
k
, where at least one

bi is different to b′
i, is not empty.
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To finish the proof we need to count the size of the certificates we may form out of our
instances, and ensure they satisfy the necessary bounds.

Let us first analyze the certificate for some instance Ib1,...,bk
. For a given i ≤ k, we need

arguments R[i, bi − 1] < S[i, 0] and S[i,−1] < R[i, bi], plus a series of extra arguments that
depend on the query: if the rest of the query uses (binary) relations T1, . . . , Tℓ, then we need
arguments Tj [i] = Tj [i, 0], Tj [i, 0] = Tj [i,−1], for each 1 ≤ j ≤ ℓ, and then Tj [i] = Tj+1[i]
for 1 ≤ j ≤ ℓ − 1. Finally, we also need arguments R[i] = T1[i] and S[i] = T1[i]. The
last two arguments ensure that relations contains no more values in its first components:
R[−1] = R[k], S[−1] = S[k], T1[−1] = T1[k]. This gives us 4 + 3ℓ arguments for each
1 ≤ i ≤ k, plus three additional ones, for a grand total that is less than 4k(ℓ + 2).

We also need to review the instances obtained by combining two instances from the
fooling set. Let us thus build the certificate for the instance grouping Rb1,...,bk

, Sb′
1,...,b′

k
and

the remaining instances as in any Ib1,...,bk
. Any i ≤ k for which bi = b′

i functions exactly
like the case above. If bi ̸= b′

i, then the tuple tup(S[i, 0]) matches with the corresponding
tuple in R. Let us assume that bi > b′

i. Then we cover this using arguments S[i, 0] = R[i, b′
i]

and S[i,−1] < R[i, b′
i + 1]. If bi < b′

i, this means that we have a gap in R before reaching
b′

i, so we use instead arguments S[i, 0] = R[i, b′
i − 1] and S[i,−1] < R[i, b′

i]. The rest of the
certificate is as before, and thus the certificate for this instance is of the same size.

Summing up, the communication complexity is k log n, when given input instances of
certificate size at most 4k(ℓ + 2). Choosing k = c/(4(2 + ℓ)), we obtain the required
complexity bound: the communication complexity on instances of certificate size at most c is
c/(4(2 + ℓ)) log n, which is Ω(c log n) in data complexity. ◀

A second lower bound. Our next result offers a lower bound for arbitrary certificate sizes,
albeit not for any query: the larger the certificate size, the larger the relations must be, as the
certificate is bounded by the number of tuples in each relation. The proof of this proposition
follows from boosting the number of available tuples used for the proof of Proposition 11.

▶ Proposition 13. For every n, c > 1 there is a query Q for which the communication
complexity of Federated Query Evaluation on input Q and instances I with at most n

elements and certificate size at most c must communicate Ω(c log n) bits.

6 Moving beyond certificates based on ordering of tuples

There is a close relationship between the way certificates are built and the constraints
returned by Minesweeper. At the same time, distributed Minesweeper is modular enough
so that any other notions of certificates and constraints can be plugged into our algorithm,
without any essential modifications. Khamis et al., joining the team that proposed the
original Minesweeper algorithm, studied certificates–and constraints–defined as gap boxes, or
multidimensional cubes over the space given by all variables participating in a query[10]. Gap
boxes make up for a very elegant notion of certificate, which tend to be much smaller than
the one we defined in this paper, and would therefore lead to much smaller communication
in the distributed version. Unfortunately, working with gap boxes takes us a bit too far away
from what can be expected from federated servers; we are mostly stuck with probe algorithms
that can easily be expressed in common database query languages. For this reason, and
inspired by the Triple Pattern Fragment SPARQL Federation infrastructure [23], we study a
milder improvement based on incorporating different orders for probing relations.



T. Cucumides and J. Reutter 5:15

Pattern Fragment Certificates. Let R be a relation of arity k, and o be a permutation
of [k]. Then o(RI) is the permutation of each tuple in RI according to o, that is, the set
of all tuples (to(1), . . . , to(k)), for (t1, . . . , tk) in RI . Further, for an index tuple [a1, . . . , ak],
the construct o(RI)[a1, . . . , ak] represent the instantiation of [a1, . . . , ak], but using o(RI)
instead of RI .

A pattern fragment (PF)-argument T is a set of comparisons RoR [a] θ SoS [b], where R

and S are relations of arities kR and kS , a, b are index tuples, θ ∈ {<, =, >} and oR and
oS are permutations of [kR] and [kS ], respectively. An instance I satisfies a TPF-argument
of the form above if oR(RI)[a] θ oS(SI)[b] holds in I for each such comparison in T .
The definition of certificate transfers verbatim: a PF-argument T is a PF-certificate for an
instance I over a query Q if I satisfies T and for any other instance J satisfying T , the set
of witnesses for Q(I) and Q(J) coincide.

▶ Example 14. PF-certificates can be much smaller. For example, recall the query
Q(x1, x2)← R(x2, x1) ∧ S(x2, x1) and instance I given by RI = [n]× [1] and SI = [n]× [2],
as defined in Section 4, which had a certificate with n arguments. The PF-certificate
now consists only of the comparison Ro[−1] < So[0], where o is the permutation defining
o(1) = 2, o(2) = 1. This argument state that, when R and S are inverted, the largest element
in the first position of the inversion of R is smaller than the smallest element in the first
position of the inversion of S.

PF-Minesweeper. In order to adapt our algorithm, we assume that each federated server
storing a relation R of arity k has made available some of the possible k! permutations for
R. Triple Pattern Fragments, for example, mandates that all 6 permutations must be made
available for RDF graphs, which are stored as triples. Then, instead of issuing probeR on
line 7 of Algorithm 1, the master issues a version probeo

R(o(t)) for each permutation o made
available by the server of R. All of these probes are of course answered by the server storing
R, and the response is the expected response for a server storing o(RI) receiving (o(t)). With
a little care, all the constraints returned by such algorithms can be combined together, and
getProbePoint() can be made to work just as before. The resulting communication is similar
to what we had before, except we replicate the whole probing process for each available
permutation. Since the number of permutations ultimately depend on the atoms used in the
query, we arrive at the same data complexity communication bounds.

▶ Proposition 15. The number of tuples communicated by PF-Minesweeper to each server
R ∈ atoms(Q) is in O(c + |R ⋉ Q(I)|), in data complexity.

What have we gained? In terms of combined complexity, we can now reduce the number
of calls to depend only on the size of the relations, and not on the total number of variables
in the query; this is because we can now deal with self-joins directly instead of packing
them into views. Further, as more permutations are made available, certificates can only
be smaller, and thus the communication in this respect diminishes. However, more orders
require more communication in each step, as each relation must be probed once per each
permutation available. We believe that this trade-off is worthy of future study, as it may
provide practical guidelines for future implementation of web query federation strategies.
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7 Conclusions and future work

Query federation systems have already been implemented for a few years now, but our work
is the first to provide a formal framework in which one can analyze federation strategies
without resorting to heuristics or probabilistic distributions. Naturally, our work would best
be deployed in a context where certificates can be small. Yet, highlighting the theoretical
importance of certificates in the context of web federation is already an important contribution,
and our work can guide the design of federated strategies even in context where certificates
sizes are comparable to the size of instances.

As for distributed minesweeper, we expect it to shine the most on contexts where queries
involve several joins, such as in graphs. The reason we expect this is partly because this has
been the case for worst-case optimal algorithms in general [17], and partly because we expect
that a distributed version of Yannakakis (using sort-merge join for pointwise semijoins) would
probably perform reasonably in practice, even if we know of pathological cases where the
communication is much worse. We are looking forward to a prototype implementation of our
algorithms, to help us understand how much do these theoretical results transfer to practice.

Lastly, we would like to incorporate randomized protocols into our framework, in which
actions can be dictated by a random string. Most communication protocols can be improved
when randomization is allowed, so it may be the case that we can do this for database queries
as well. Proving lower bounds in this case would involve orchestrating distributions and
certificates of instances, an interesting problem for future research.
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A Appendix

A.1 Details from Section 4.2
For an atom R(y1, . . . , yk), and a constraint α = ⟨a1, . . . , aℓ, (l, h)⟩, the pair (α, R) dominates
a tuple t if ai = ts(i) for each 1 ≤ i ≤ ℓ − 1, and l ≤ ts(ℓ) ≤ h. A dominating constraint-
relation pair is infinite when h =∞. Algorithm 3 now presents how we compute the next
probe point.

Algorithm 3 getProbePoint(t).

1: n ← arity(t)
2: if t = −1n then
3: return 1n

4: t← (t1, . . . , tn−1, tn + 1)
5: while true do
6: if t is not dominated by any stored constraint-relation pair then
7: return t
8: i← the smallest position of a pair (l, h) in a constraint dominating t
9: if h =∞ then

10: if i = 1 then
11: return NULL
12: tj = 1 for each j ≥ i

13: ti−1 = ti−1 + 1
14: else
15: e← The highest element h in pairs (l, h) in every constraint ⟨t1, . . . , ti−1, (l, h)⟩.
16: ti = e + 1
17: tj = 1 for each j > i

A.2 Counterexample for distributed Yannakakis and LFTJ
The following instance is presented in [16] to show that both Yannakakis and LFTJ cannot
achieve instance-optimal runtime: this instance also provides an example where LFTJ
communication is non-optimal.

Consider the query

Q← R1(a1, a2) ∧R2(a2, a3) . . . ∧Rm(am, am+1).

and the instance Im,M with m ≥ 5 and M an integer, in which each RI
i consists in exactly

m blocks where the j-th block will be defined as follows
for j = i the block is just the tuple {((j − 1)M + 1, (j − 1)M + 1)}
for j = i− 1 (or m when i = 1) the block is empty
for j ∈ [k]− {i, i− 1} the j-th block is

[(j − 1)M + 2, jM ]× [(j − 1)M + 2, jM ]

The output of this instance is empty and it was shown in [16] that this instance has a
certificate of size O(mM) that consists on the following comparisons:

R1[1, 1] < R2[1]
R1[i, 1] > R2[1], for i > 1
R2[i, 1] > R3[M + 1], for i > 1...

Rm−1[i, 1] > Rm[(m− 2)M + 1], for i > 1
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As per Proposition 10 distributed minesweeper will need to communicate O(mM) tuples
with each R to compute the answer. Let’s see now how can we solve this query with (a
distributed version of the) LFTJ. Take an arbitrary attribute ordering Ai1 , . . . , Ain+1 and
focus on the first two attributes Ai1 and Ai2 :

In order to be able to compare the communication complexity of both our distributed
Minesweeper and a federated version of LFTJ we will endow the latter with a cache and
communication-free semi-join reductions and let’s consider two cases:
1. The first one is when |i1 − i2| = 1. In this case, the algorithm will compute the reduction

of the corresponding relation R(Ai1 , Ai2) on Ai1 and Ai2 which we assume involves no
communication. But after that it needs to go through (and communicate) all tuples in
the reduced relation that is of size Ω(mM2)

2. On the other hand, when |i1 − i2| > 1 then the first thing is to compute the intersections
on both attributes Ai1 and Ai2 and perform a cross-product. Both intersections are of
size Ω(mM) and even though communicating the tuples to compute the cross-product
itself is not an issue, in the next step we will necessarily communicate Ω(mM2)

Now let’s move into the Yannakakis algorithm: the idea here is to exploit the fact that
Yannakakis needs to perform semi-joins. Consider for example the following acyclic query Q

Q← S(x) ∧R(x, y) ∧ U(y, w) ∧ T (x, z) ∧ V (z, p).

And, for each integer m, the instance Im in which SIm = [m], T Im = [1]x[m], RIm = [2]x[n],
and U Im = V Im = [m]x[a]. Notice that the certificate of Im is always of size 1, comprising
the sole argument T [−1] < R[0].

While there are several version of the Yannakakis algorithm, all versions we are aware of
involve a bottom-up reduction of the database. This implies computing the semijoin between
R and U and T and V . However, computing R ⋊U or U ⋊R involves the intersection of the
second component of R with the first component of U , which requires the communication of
n bits, as per standard communication complexity results (see e.g. [11]).

The results above can be summarized into the following observations:

▶ Observation 16. There is an acyclic query Q and a family (Im), m > 1 of instances
whose certificate for Q is of size O(mM), but for which the Leapfrog trie join algorithm must
necessarily communicate O(mM2) bits.

▶ Observation 17. There is an acyclic query Q and a family (Im), m > 1 of instances
whose certificate for Q is of size 1, but for which the Yannakakis algorithm must necessarily
communicate m bits.
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Abstract
Data partitioning that maximizes or minimizes Shannon entropy is a crucial subroutine in data
compression, columnar storage, and cardinality estimation algorithms. These partition algorithms
can be accelerated if we have a data structure to find the entropy in different subsets of data when
the algorithm needs to decide what block to construct. While it is generally known how to compute
the entropy of a discrete distribution efficiently, we want to efficiently derive the entropy among the
data items that lie in a specific area. We solve this problem in a typical setting when we deal with
real data, where data items are geometric points and each requested area is a query (hyper)rectangle.
More specifically, we consider a set P of n weighted and colored points in Rd. The goal is to
construct a low space data structure, such that given a query (hyper)rectangle R, it computes the
entropy based on the colors of the points in P ∩ R, in sublinear time. We show a conditional lower
bound for this problem proving that we cannot hope for data structures with near-linear space and
near-constant query time. Then, we propose exact data structures for d = 1 and d > 1 with o(n2d)
space and o(n) query time. We also provide a tune parameter t that the user can choose to bound
the asymptotic space and query time of the new data structures. Next, we propose near linear space
data structures for returning either an additive or a multiplicative approximation of the entropy.
Finally, we show how we can use the new data structures to efficiently partition time series and
histograms with respect to entropy.
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1 Introduction

Discrete entropy is defined as the expected amount of information needed to represent an
event drawn from a probability distribution. That is, given a probability distribution D over
the set X , the entropy is defined as H(D) = −

∑
x∈X D(x) · logD(x). The entropy has a few

different interpretations in information theory and statistics, such as:
(Compression) Entropy is a lower-bound on data compressibility for datasets generated
from the probability distribution via the Shannon source coding theorem.
(Probability) Entropy measures a probability distribution’s similarity to a uniform distri-
bution over the set X on a scale of [0, log |X |].

Because of these numerous interpretations, entropy is a highly useful optimization objective.
Various algorithms, ranging from columnar compression algorithm to histogram construction
and data cleaning, maximize or minimize (conditional) entropy as a subroutine. These
algorithms try to find high or low entropy data subsets. Such algorithms can be accelerated
if we have a data structure to efficiently calculate the entropy of different subsets of data.
However, while it is known how to compute the entropy of an entire distribution efficiently,
there is a little work on such “range entropy queries”, where we want to derive efficiently
the entropy among the data items that lie in a specific area. To make this problem more
concrete, let us consider a few examples.
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▶ Example 1 (Columnar Compression). An Apache Parquet file is a columnar storage
format that first horizontally partitions a table into row groups, and then applies columnar
compression along each column within the row group. A horizontal partitioning that
minimizes the entropy within each partition can allow for more effective columnar
compression.

▶ Example 2 (Histogram Construction). Histogram estimation often uses a uniformity
assumption, where the density within a bucket is modeled as roughly uniform. A partitioning
that maximizes the entropy within each partition can allow for more accurate estimation
under uniformity assumptions.

▶ Example 3 (Data Cleaning). As part of data exploration, a data analyst explores different
subsets of data to find areas with high entropy/uncertainty. Usually, subsets of data or
items in a particular area of the data with high entropy contain dirty data so they are
good candidates for applying data cleaning methods. For example, Chu et al. [16] used an
entropy-based scheduling algorithm to maximize the uncertainty reduction of candidate table
patterns. Table patterns are used to identify errors in data.

The first two problems above have a similar structure, where an outer-algorithm leverages
a subroutine that identifies data partitions that minimize or maximize entropy. In the third
problem we aim to explore areas with high entropy by running arbitrary range entropy
queries. We formulate the problem of range entropy query problem in a typical and realistic
setting when we deal with real data: we assume that each item is represented as a point in
the Euclidean space. More specifically, we consider a set P of n weighted and colored points
in Rd. The goal is to construct a data structure, such that given a query (hyper)rectangle R,
compute the entropy of the points in P ∩R (denoted by H(P ∩R)). The entropy of P ∩R is
defined as the entropy of a discrete distribution DR over the colors in P ∩R: Let UR be the
set of all colors of the points in P ∩R. For each color uj ∈ UR, we define a value (we can
also refer to it as an independent event or outcome) αj with probability wj equal to the sum
of weights of points with color uj in P ∩R divided by the sum of the weights of all points
in P ∩R. Notice that

∑
uj∈UR

wj = 1. Unfortunately, we do not have direct access to this
distribution; we would need Ω(n) time to construct the entire distribution DR in the query
phase. Using the geometry of the points along with key properties from information theory
we propose data structures to find the entropy of DR without constructing DR explicitly.

▶ Definition 4 (Range entropy query problem). Given a set P of n weighted and colored
points in Rd, the goal is to construct a data structure with low space such that given any
query rectangle R, it returns H(P ∩R) in sub-linear time o(|P |).

If the number of colors in P is bounded by a constant then the range entropy query problem
can be easily solved. However, in the worse case the number of different colors is O(n). Our
goal is to construct data structures whose query time is always sublinear with respect to n.

Summary of Results. One of the main challenges with range entropy queries is that entropy
is not a decomposable quantity. Let P1, P2 be two sets of points such that P1 ∪ P2 = P

and P1 ∩ P2 = ∅. If we know H(P1), H(P2) there is no straightforward way to compute
H(P1 ∪ P2). In this paper, we build low space data structures such that given a rectangle R,
we visit points or subsets of points in P ∩R in a particular order and carefully update the
overall entropy. All our results for the range entropy problem can be seen in Table 1.

In Section 2 we introduce some useful notation and we revisit a way to update the entropy
of the union of two sets with no color in common in O(1) time.
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Table 1 New results (lower bound in the first row and data structures with their complexities in
the next rows). t ∈ [0, 1] is a tune parameter. Õ(·) notation hides a logO(1) n factor, where the O(1)
exponent is at most linear on d. Q(n) is any function of n that represents the query time of a data
structure storing n items.

Type Space Query Time Preprocessing

Lower bound Ω̃
((

n
Q(n)

)2
)

Õ(Q(n)) –

d = 1, exact O
(
n2(1−t)) Õ (nt) O

(
n2−t

)
d > 1, exact Õ

(
n(2d−1)t+1)

Õ
(
n1−t

)
Õ

(
n(2d−1)t+1)

d ≥ 1, ∆-additive approx. Õ (n) Õ
( 1

∆2

)
Õ (n)

d ≥ 1, (1 + ε)-multiplicative approx. Õ (n) Õ
( 1

ε2

)
Õ (n)

d = 1, ε-additive and
Õ

(
n
ε

)
Õ (1) Õ

(
n
ε

)
(1 + ε)-multiplicative approx.

In Section 3, we reduce the set intersection problem to the range entropy query problem in
R2. We prove a conditional lower bound showing that we cannot hope for O(n polylog n)
space and O(polylog n) query time data structures for the range entropy queries.
Exact data structure for d = 1. In Section 4.1, we efficiently partition the input points
with respect to their x coordinates into buckets, where each bucket contains a bounded
number of points. Given a query interval R, we visit the bounded number of points in
buckets that are partially intersected by R and we update the overall entropy of the
buckets that lie completely inside R. For any parameter t chosen by the user, we construct
a data structure in O(n2−t) time, with O(n2(1−t)) space and O(nt log n) query time.
In Section 4.2, instead of partitioning the points with respect to their geometric location,
we partition the input points with respect to their colors. We construct O(n1−t) blocks
where two sequential blocks contain at most one color in common. Given a query rectangle
we visit all blocks and we carefully update the overall entropy. For any tune parameter t

chosen by the user, we construct a data structure in O(n log2d n + n(2d−1)t+1 logd+1 n)
time with O(n log2d−1 n + n(2d−1)t+1) space and O(n1−t log2d n) query time.
Additive approximation. In Subsection 5.1 we use known results for estimating the entropy
of an unknown distribution by sampling in the dual access model. We propose efficient
data structures that apply sampling in a query range in the dual access model. We
construct a data structure in O(n logd n) time, with O(n logd−1 n) space and O

(
logd+3 n

∆2

)
query time. The data structure returns an additive ∆-approximation of the entropy with
high probability. It also supports dynamic updates in O(logd n) time.
Multiplicative approximation. In Subsection 5.2 we propose a multiplicative approxima-
tion of the entropy using the results for estimating the entropy in a streaming setting.
One significant difference with the previous result is that in information theory at least
Ω

(
log n
ε2·H′

)
sampling operations are needed to find get an (1 + ε)-multiplicative approxim-

ation, where H ′ is a lower bound of the entropy. Even if we have efficient data structures
for sampling (as we have in additive approximation) we still do not have an efficient
query time if the real entropy H is extremely small. We overcome this technical issue by
considering two cases: i) there is no color with total weight more than 2/3, and ii) there
exists a color with total weight at most 2/3. While in the latter case the entropy can
by extremely small, an additive approximation is sufficient in order to get a multiplic-
ative approximation. In the former one, the entropy is large so we apply the standard
sampling method to get a multiplicative approximation. We construct a data structure in
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O(n logd n) time, with O(n logd n) space and O
(

logd+3

ε2

)
query time. The data structure

returns a multiplicative (1 + ε)-approximation of the entropy. It also supports dynamic
updates in O(logd n) time.
Additive and multiplicative approximation. In Subsection 5.3, we propose a new data
structure for approximating the entropy in the query range for d = 1. We get the intuition
from data structures counting the number of colors in a query interval. Such a data
structure finds a geometric mapping to a different geometric space, such that if at least a
point with color ui exists in the original P ∩R, then there is a unique point with color ui

in the corresponding query range in the new geometric space. Unfortunately, this property
is not sufficient for finding the entropy. Instead, we need to know more information about
the weights of the points and the entropy in canonical subsets of the new geometric space,
which is challenging to do. We construct a data structure in O

(
n
ε log5 n

)
time, with

O
(

n
ε log2 n

)
space and O

(
log2 n log log n

ε

)
query time. The data structure returns an

(1 + ε)-multiplicative and ε-additive approximation of the entropy.
Partitioning using entropy. In Section 6 we show how our new data structures can be
used to run partitioning algorithms over time series, histograms, and points efficiently.

Related work. Entropy has been used a lot for partitioning to create histograms in databases.
For example, To et al. [38] used entropy to design histograms for selectivity estimation queries.
In particular, they aim to find a partitioning of k buckets in 1d such that the cumulative
entropy is maximized. They consider a special case where they already have a histogram (so
all items of the same color are accumulated to the same location) and the goal is to partition
the histogram into k buckets. They propose a greedy algorithm that finds a local optimum
solution. However there is no guarantee on the overall optimum partitioning. Using our new
data structures, we can find the entropy in arbitrary range queries, which is not supported
in [38]. Our data structures can also be used to accelerate partitioning algorithms with
theoretical guarantees (see Subsection 6) in a more general setting, where points of the same
color have different locations.

In addition, there is a number of papers that use entropy to find a clustering of items.
Cruz et al. [19] used entropy for the community detection problem in augmented social
networks. They describe a greedy algorithm that exchanges two random nodes between
two random clusters if the entropy of the new instance is lower. Barbará et al. [6] used the
expected entropy for categorical clustering. They describe a greedy algorithm that starts with
a set of initial clusters, and for each new item decides to place it in the cluster that has the
lowest entropy. Li et al. [29] also used the expected entropy for categorical clustering but
they extend it to probabilistic clustering models. Finally, Ben-Gal et al. [8] used the expected
entropy to develop an entropy-based clustering measure that measures the homogeneity of
mobility patterns within clusters of users. All these methods do not study the problem
of finding the entropy in a query range efficiently. While these methods perform well in
practice, it is challenging to derive theoretical guarantees. In spatial databases items are
represented as points in Rd, so our new data structures could be used to find faster and
better entropy-based clustering techniques. For example, we could run range entropy queries
with different radii around a center until we find a cluster with small radius and small (or
large) expected entropy.

There is a lot of work on computing an approximation of the entropy in the streaming
setting [11,15,23,28]. For a stream of m distinct values (m colors in our setting) Chakrabarti
et al. [14] compute an (1 + ε)-multiplicative approximation of the entropy in a single pass
using O(ε−2 log(δ−1) log m) words of space, with probability at least 1 − δ. For a stream



S. Krishnan and S. Sintos 6:5

of size n (n points in our setting) Clifford and Cosma [17] propose a single-pass ε-additive
algorithm using O(ε−2 log n log(nε−1)) bits with bounded probability. Harvey et al. [25]
allow deletions in the streaming setting and they propose a single-pass (1 + ε)-multiplicative
algorithm using Õ(ε−2 log2 m) words of space with bounded probability. Furthermore, they
propose a single-pass ε-additive approximation using Õ(ε−2 log m) words of space. While
some techniques from the streaming setting are useful in our query setting, the two problems
are fundamentally different. In the streaming setting, preprocessing is not allowed, all data
are processed one by one and an estimation of the entropy is maintained. In our setting, the
goal is to construct a data structure such that given any query range, the entropy of the
items in the range should be computed in sublinear time, i.e., without processing all items in
the query range during the query phase.

Let D be an unknown discrete distribution over n values. There is an interesting line of
work on approximating the entropy of D by sampling in the dual access model. Batu et al. [7]
give an (1 + ε)-multiplicative approximation of the entropy of D with sample complexity
O( (1+ε)2 log2 n

ε2·H′ ), where H ′ is a lower bound of the actual entropy H(D). Guha et al. [23]
improved the sample complexity to O( log n

ε2·H′ ), matching the lower bound Ω( log n
(2+ε)ε2·H′ ) found

in [7]. Canonne and Rubinfeld [13] describe a ∆-additive approximation of the entropy
with sample complexity O( log2 n

∆
∆2 ). Caferov et al. [12] show that Ω( log2 n

∆2 ) sample queries
are necessary to get ∆-additive approximation. All these algorithms return the correct
approximations with constant probability. If we want to guarantee the result with high
probability then the sample complexity is multiplied by a log n factor.

A related query to estimating the entropy is the range color query. Given a a set of colored
points in Rd, the goal is to construct a data structure such that given a query rectangle, it
returns the number of colors in the query range.

2 Preliminaries

Let P be a set of n points in Rd and let U be a set of m colors U = {u1, . . . , um}. Each point
p ∈ P is associated with a color from U , i.e., u(p) = ui for ui ∈ U . Furthermore, each point
p ∈ P is associated with a non-negative weight w(p) ≥ 0. For a subset of points P ′ ⊆ P ,
let P ′(ui) = {p ∈ P ′ | u(p) = ui}, for i ≤ m, be the set of points having color ui. Let
u(P ′) = {ui | ∃p ∈ P ′, u(p) = ui} be the set of colors of the points in P ′. Finally, let w(P ′) =∑

p∈P ′ w(p). The entropy of set P ′ is defined as H(P ′) =
∑m

i=1
w(P ′(ui))

w(P ′) log
(

w(P ′)
w(P ′(ui))

)
.

For simplicity, and without loss of generality, we can consider throughout the paper that
w(p) = 1 for each point p ∈ P . All the results, proofs, and properties we show hold for the
weighted case almost verbatim. Hence, from now on, we assume w(p) = 1 and the definition
of entropy becomes

H(P ′) =
m∑

i=1

|P ′(ui)|
|P ′|

log
(
|P ′|
|P ′(ui)|

)
=

∑
ui∈u(P ′)

|P ′(ui)|
|P ′|

log
(
|P ′|
|P ′(ui)|

)
. (1)

If |P ′(ui)| = 0, then we consider that |P ′(ui)|
|P ′| log

(
|P ′|

|P ′(ui)|

)
= 0.

Updating the entropy. Let P1, P2 ⊂ P be two subsets of P such that u(P1) ∩ u(P2) = ∅.
The next formula for the entropy of P1 ∪ P2 is known (see [38])

H(P1 ∪ P2) =
|P1|H(P1) + |P2|H(P2) + |P1| log

(
|P1|+|P2|

|P1|

)
+ |P2| log

(
|P1|+|P2|

|P2|

)
|P1|+ |P2|

. (2)
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6:6 Range Entropy Queries and Partitioning

If |u(P2)| = 1 then

H(P1∪P2) = |P1|H(P1)
|P1|+ |P2|

+ |P1|
|P1|+ |P2|

log
(
|P1|+ |P2|
|P1|

)
+ |P2|
|P1|+ |P2|

log
(
|P1|+ |P2|
|P2|

)
. (3)

Finally, if P3 ⊂ P1 with |u(P3)| = 1 and u(P1 \ P3) ∩ u(P3) = ∅ then

H(P1 \ P3) = |P1|
|P1| − |P3|

(
H(P1)− |P3|

|P1|
log |P1|
|P3|
− |P1| − |P3|

|P1|
log |P1|
|P1| − |P3|

)
. (4)

We notice that in all cases, if we know H(P1), H(P2) and the cardinality of each subset we
can update the entropy in O(1) time.

Range queries. In some data structures we need to handle range reporting or range counting
problems. Given P , we need to construct a data structure such that given a query rectangle
R, the goal is to return |R ∩ P |, or report R ∩ P . We use range trees [10]. A range tree can
be constructed in O(n logd) time, it has O(n logd−1 n) space and can answer an aggregation
query (such as count, sum, max etc.) in O(logd n) time. A range tree can be used to
report R ∩ P in O(logd n + |R ∩ P |) time. Using fractional cascading the logd n term can
be improved to logd−1 n in the query time. However, for simplicity, we consider the simple
version of a range tree without using fractional cascading. Furthermore, a range tree can be
used to return a uniform sample point from R ∩ P in O(logd n) time. We give more details
about range trees and sampling in the full version of the paper [27]. There is also lot of
work on designing data structures for returning k independent samples in a query range
efficiently [1, 2, 26, 32,37,39, 40]. For example, if the input is a set of points in Rd and the
query range is a query hyper-rectangle, then there exists a data structure [32] with space
O(n logd−1 n) and query time O(logd n + k log n). For our purposes, it is sufficient to run k

independent sampling queries in a (modified) range tree with total query time O(k logd n).

Expected entropy and monotonicity. Entropy is not monotone because if P1 ⊆ P2, it
does not always hold that H(P1) ≤ H(P2). Using the results in [29], we can show that
H(P1) ≥ |P1|−1

|P1| H(P1 \ {p}), for a point p ∈ P1 ⊂ P . If we multiply with |P1|/n we have
|P1|

n H(P1) ≥ |P1|−1
n H(P1 \ {p}). Hence, we show that, for P1 ⊆ P2 ⊆ P , |P1|

n H(P1) ≤
|P2|

n H(P2). The quantity |P1|
|P | H(P1) is called expected entropy. This monotonicity property

helps us to design efficient partitioning algorithms with respect to expected entropy, for
example, find a partitioning that minimizes the cumulative or maximum expected entropy. t

3 Lower Bound

In this section, we give a lower bound for range entropy queries in the real-RAM model. We
show a reduction from the set intersection problem that suggests that data structures with
near-linear space and polylogarithmic query time are unlikely to exist even for d = 2.

The set intersection problem is defined as follows. Given a family of sets S1, . . . , Sg, with∑g
i=1 |Si| = n, the goal is to construct a data structure such that given a query pair of indices

i, j ,the goal is to decide if Si∩Sj = ∅. It is widely believed that for any positive value Q ∈ R,

any data structure for the set intersection problem with O(Q) query time needs Ω
((

n
Q

)2
)

space [20,35,36], skipping logO(1) n factors. Next, we show that any data structure for solving
the range entropy query can be used to solve the set intersection problem.
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Figure 1 Lower bound construction. Figure 2 Partition P into K buckets in R2. Two
consecutive buckets have at most one color in common.

Let S1, . . . , Sg be an instance of the set intersection problem as we defined above. We
design an instance of the range entropy query constructing a set P of 2n points in R2 and
|U | = |

⋃
i Si|. Let n0 = 0 and ni = ni−1 + |Si| for i = 1, . . . , g. Let si,k be the value of the

k-th item in Si (we consider any arbitrary order of the items in each Si). Let S =
⋃

i Si,
and q = |S|. Let σ1, . . . σq be an arbitrary ordering of S. We set U = {1, . . . , q}. Next, we
create a geometric instance of P in R2: All points lie on two parallel lines L = x + n, and
L′ = x − n. For each si,k we add in P two points, pi,k = (−(k + ni−1),−(k + ni−1) + n)
on L, and p′

i,k = ((k + ni−1), k + ni−1 − n) on L′. If si,k = σj for some j ≤ q, we set the
color/category of both points pi,k, p′

i,k to be j. Let Pi be the set of points corresponding
to Si that lie on L, and P ′

i the set of points corresponding to Si that lie on L′. We set
P =

⋃
i(Pi ∪ P ′

i ). We note that for any pair i, j, points Pi ∪ P ′
j have distinct categories if

and only if Si ∩ Sj = ∅. P uses O(n) space and can be constructed in O(n) time.
Let D be a data structure for range entropy queries with space S(n) and query time Q(n)

constructed on n points. Given an instance of the set intersection problem, we construct P

as described above. Then we build D on P and we construct a range tree T on P for range
counting queries. Given a pair of indexes i, j the question is if Si ∩ Sj = ∅. We answer this
question using D and T on P . Geometrically, it is known we can find a rectangle ρi,j in O(1)
time such that ρi,j ∩ P = Pi ∪ P ′

j (see Figure 1). We run the range entropy query D(ρi,j)
and the range counting query T (ρi,j). Let Hi,j be the entropy of Pi ∪P ′

j and ni,j = |Pi ∪Pj |.
If Hi,j = log ni,j we return that Si ∩ Sj = ∅. Otherwise, we return Si ∩ Sj ̸= ∅.

The data structure we construct for answering the set intersection problem has O(S(2n) +
n log n) = Õ(S(2n)) space. The query time is (Q(2n) + log n) or just O(Q(n)) assuming that
Q(n) ≥ log n.

▶ Lemma 5. In the preceding reduction, Si ∩ Sj = ∅ if and only if Hi,j = log ni,j.

Proof. If Si ∩ Sj = ∅ then from the construction of P we have that all colors in Pi ∪ P ′
j are

distinct, so ni,j = |u(Pi ∪ P ′
j)|. Hence, the entropy H(Pi ∪ P ′

j) takes the maximum possible
value which is H(Pi ∪ P ′

j) =
∑

v∈u(Pi∪P ′
j
)

1
ni,j

log ni,j = log ni,j .
If Hi,j ̸= log ni,j we show that Si ∩ Sj ̸= ∅. The maximum value that Hi,j can take is

log ni,j so we have Hi,j < log ni,j . The entropy is a measure of uncertainty of a distribution.
It is known that the discrete distribution with the maximum entropy is unique and it is the
uniform distribution. Any other discrete distribution has entropy less than log ni,j . Hence
the result follows. ◀
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6:8 Range Entropy Queries and Partitioning

We conclude with the next theorem.

▶ Theorem 6. If there is a data structure for range entropy queries with S(n) space and
Q(n) query time, then for the set intersection problem there exists a data structure with
O(S(2n)) space and O(Q(2n)) query time, skipping log n factors.

4 Exact Data Structures

In this section we describe data structures that return the entropy in a query range, exactly.
First, we provide a data structure for d = 1 and we extend it to any constant dimension
d. Next, we provide a second data structure for any constant dimension d. The first data
structure is better for d = 1, while the second data structure is better for any constant d > 1.

4.1 Efficient data structure for d = 1

Let P be a set of n points in R1. Since the range entropy query problem is not decomposable,
the main idea is to precompute the entropy in some carefully chosen canonical subsets of P .
When we get a query interval R, we find the maximal precomputed canonical subset in R,
and then for each color among the colors of points in R not included in the canonical subset,
we update the overall entropy using Equations 2, 3, and 4. We also describe how we can
precompute the entropy of all canonical subsets efficiently.

Data Structure. Let t ∈ [0, 1] be a parameter. Let Bt = {b1, . . . , bk} be k = n1−t points in
R1 such that |P ∩ [bj , bj+1]| = nt, for any j < n1−t. For any pair bi, bj ∈ Bt let Ii,j = [bi, bj ]
be the interval with endpoints bi, bj and let I be the set of all intervals. For any pair bi, bj

we store the interval Ii,j and we precompute Hi,j = H(P ∩ Ii,j), and ni,j = |P ∩ Ii,j |. Next,
we construct an interval tree T on I. Finally, for each color u ∈ u(P ) we construct a search
binary tree Tu over P (u).

We have |Bt| = O(n1−t) so |I| = O(n2(1−t)). The interval tree along with all the search
binary trees have O(n) space in total. Hence we need O(n2(1−t)) space for our data structure.
In the full version [27], we show how we can construct the data structure in O(n2−t) time.

Query procedure. Given a query interval R, we find the maximal interval Ii,j ∈ I such
that I ⊆ R using the interval tree. Recall that we have precomputed the entropy Hi,j . Let
H = Hi,j be a variable that we will update throughout the algorithm storing the current
entropy. Let also N = ni,j be the variable that stores the number of items we currently
consider to compute H . Let PR = P ∩ (R \ Ii,j) be the points in P ∩R that are not included
in the maximal interval Ii,j . See also Figure 3.

Figure 3 Instance of the query algorithm given query interval R. Purple points are points in PR.

We visit each point in PR and we identify u(PR). For each u ∈ u(PR), we run a query in Tu
with range Ii,j finding the number of points in P ∩ Ii,j with color u. Let nu be this count.
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If nu = 0 then there is no point in P ∩ Ii,j with color u so we insert |PR(u)| items of
color u in the current entropy using Equation 3. In that formula, |P1| = N , H(P1) = H and
|P2| = |u(PR)|. We update N = N + |u(PR)|, and H with the updated entropy H(P1 ∪ P2).

If nu > 0 then there is at least one point in P ∩ Ii,j with color u. Hence, we update
the entropy H, by first removing the nu points of color u in P ∩ Ii,j and then re-inserting
nu + |u(PR)| points of color u. We use Equation 4 for removing the points with color u with
|P1| = N , H(P1) = H, and |P3| = nu. We update N = N − nu and H with the updated
entropy H(P1 \ P3). Then we use Equation 3 for re-inserting the points with color u, with
|P1| = N , H(P1) = H, and |P2| = nu + |u(PR)|. We update N = N + nu + |u(PR)| and
H with the updated entropy H(P1 ∪ P2). After visiting all colors in u(PR), we return the
updated entropy H. The correctness of the algorithm follows from Equations 3, 4. For each
color u ∈ u(PR) we update the entropy including all points of color u.

For a query interval R we run a query in the interval tree to find Ii,j in O(log n) time.
The endpoints of R intersect two intervals [bh, bh+1] and [bv, bv+1]. Recall that by definition,
such interval contains O(nt) points from P . Hence, |PR| = O(nt) and |u(PR)| = O(nt). For
each u ∈ u(PR), we spend O(log n) time to search Tu and find nu. Then we update the
entropy in O(1) time. Overall, the query procedure takes O(nt log n) time.

▶ Theorem 7. Let P be a set of n points in R1, where each point is associated with a color,
and let t ∈ [0, 1] be a parameter. A data structure of O(n2(1−t)) size can be computed in
O(n2−t) time, such that given a query interval R, H(P ∩R) can be computed in O(nt log n)
time.

In the full version [27], we extend this data structure to any constant d > 1.

4.2 Efficient data structure for d > 1
While the previous data structure can be extended to higher dimensions, here we propose a
more efficient data structure for d > 1. In this data structure we split the points with respect
to their colors. The data structure has some similarities with the data structure presented
in [3, 4] for the max query under uncertainty, however the two problems are different and
there are key differences on the way we construct the data structure and the way we compute
the result of the query.

Data Structure. We first consider an arbitrary permutation of the colors in U , i.e.
u1, . . . , um. The order used to partition the items is induced from the permutation over the
colors. Without loss of generality we set uj = j for each j ≤ m. We split P into K = O(n1−t)
buckets P1, . . . , PK such that i) each bucket contains O(nt) points, and ii) for every point
p ∈ Pi and q ∈ Pi+1, u(p) ≥ u(q). We notice that for any pair of buckets Pi, Pi+1 it holds
|u(Pi)∩u(Pi+1)| ≤ 1, see Figure 2. We slightly abuse the notation and we use Pi to represent
both the i-th bucket and the set of points in the i-th bucket.

For each bucket Pi, we take all combinatorially different (hyper)rectangles Ri defined by
the points Pi. For each such rectangle r, we precompute and store the entropy H(Pi∩r) along
with the number of points n(Pi∩ r) = |Pi∩ r|. In addition, we store u+(r), the color with the
maximum value (with respect to the permutation of the colors)in r∩Pi. Furthermore, we store
u−(r), the color with the minimum value in r∩Pi. Let n+(r) = |{p ∈ r∩Pi | u(p) = u+(r)}|
and n−(r) = |{p ∈ r ∩ Pi | u(p) = u−(r)}|. Finally, for each bucket Pi we construct a
modified range tree T ′

i over all Ri, such that given a query rectangle R it returns the maximal
rectangle r ∈ Ri that lies completely inside R. We note that r ∩ Pi = R ∩ Pi. This can be
done by representing the d-dimensional hyper-rectangles as 2d-dimensional points merging
the coordinates of two of their corners.
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6:10 Range Entropy Queries and Partitioning

Overall, we need O(n log2d−1 n) space for the modified range trees T ′
i , and O(n1−t ·

n2dt) = O(n(2d−1)t+1) space to store all additional information (entropy, counts, max/min
color) in each rectangle. This is because there are O(n1−t) buckets, and in each bucket
there are O(n2dt) combinatorially different rectangles. Overall, our data structure has
O

(
n log2d−1 n + n(2d−1)t+1

)
space.

Query Procedure. We are given a query (hyper)rectangle R. We visit the buckets P1, . . . PK

in order and compute the entropy for R ∩ (P1 ∪ . . . ∪ Pi). Let H be the overall entropy we
have computed so far. For each bucket Pi we do the following: First we run a query using T ′

i

to find ri ∈ Ri that lies completely inside R. Then we update the entropy H considering the
items in Pi ∩ ri. If u−(ri−1) = u+(ri) then we update the entropy H by removing n−(ri−1)
points with color u−(ri−1) using Equation 4. Then we insert n−(ri−1) + n+(ri) points of
color u+(ri) in H using Equation 3. Finally, we remove n+(ri) points of color u+(ri) from the
precomputed H(Pi∩ri) using Equation 4 and we merge the updated H with H(Pi∩ri) using
Equation 2. We note that in the last step we can merge the updated H with the updated
H(Pi ∩ ri) because no color from the points used to compute the current H is appeared in
the points used to compute the current H(Pi ∩ ri). On the other hand, if u−(ri−1) ̸= u+(ri),
then we merge the entropies H and H(Pi ∩ ri) using directly Equation 2.

In each bucket Pi we need O(log2d n) to identify the maximal rectangle ri inside R. Then
we need O(1) time to update the current entropy H. Overall, we need O(n1−t log2d n) time.

Fast Construction. All range trees can be computed in O(n log2d n) time. Next, we focus
on computing H(Pi ∩ r) for all rectangles r ∈ Ri. We compute the other quantities n(Pi ∩ r),
u−(r), and u+(r) with a similar way. A straightforward way is to consider every possible
rectangle r and compute independently the entropy in linear time. There are O(n2dt)
rectangles so the running time is O(n2dt+1). We propose a faster construction algorithm.

The main idea is to compute the entropy for rectangles in a specific order. In particular,
we compute the entropy of rectangles that contain c points after we compute the entropies
for rectangles that contain c− 1 points. Then we use Equations 3, 4 to update the entropy
of the new rectangle without computing it from scratch. Overall, we construct the data
structure in O(n(2d−1)t+1 logd+1 n) time. We describe the missing details in the full version
of the paper [27].

▶ Theorem 8. Let P be a set of n points in Rd, where each point is associated with a color,
and let t ∈ [0, 1] be a parameter. A data structure of O(n log2d−1 n + n(2d−1)t+1) size can be
computed in O(n log2d n + n(2d−1)t+1 logd+1 n) time, such that given a query hyper-rectangle
R, H(P ∩R) can be computed in O(n1−t log2d n) time.

5 Approximate Data Structures

In this section we describe data structures that return the entropy in a query range, approx-
imately. First, we provide a data structure that returns an additive approximation of the
entropy and next we provide a data structure that returns a multiplicative approximation
efficiently. Finally, for d = 1, we design a deterministic and more efficient data structure that
returns an additive and multiplicative approximation of the entropy.
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5.1 Additive approximation
In this Subsection, we construct a data structure on P such that given a query rectangle R

and a parameter ∆, it returns a value h such that H(P ∩R)−∆ ≤ h ≤ H(P ∩R) + ∆. The
intuition comes from the area of finding an additive approximation of the the entropy of an
unknown distribution in the dual access model [13].

Let D be a fixed distribution over a set of values α1, . . . , αN . Each value αi has a
probability D(αi) which is not known, such that

∑N
i=1 D(αi) = 1. The authors in [13] show

that if we ask O
(

log2 N
∆ log N

∆2

)
sample queries in the dual access model, then we can get a ∆

additive-approximation of the entropy of D with high probability in O
(

log2 N
∆ log N

∆2 S
)

time,
where S is the running time to get a sample. In the dual access model, we consider that
we have a dual oracle for D which is a pair of oracles (SAMPD, EVALD). When required,
the sampling oracle SAMPD returns a value αi with probability D(αi), independently of all
previous calls to any oracle. Furthermore, the evaluation oracle EVALD takes as input a
query element αi and returns the probability weight D(αi).

Next, we describe how the result above can be used in our setting. The goal in our
setting is to find the entropy H(P ′), where P ′ = P ∩R, for a query rectangle R. The colors
in u(P ′) define the distinct values in distribution D. By definition, the number of colors
is bounded by |P ′| = O(n). The probability weight is defined as |P ′(ui)|

|P ′| . We note that
in [13] they assume that they know N , i.e., the number of values in distribution D. In our
case, we cannot compute the number of colors |u(P ′)| efficiently. Even though we can easily
compute an O(logd n) approximation of |u(P ′)|, it is sufficient to use the loose upper bound
|u(P ′)| ≤ n. This is because, without loss of generality, we can assume that there exist
n− |u(P ′)| values/colors with probability (arbitrarily close to) 0. All the results still hold.
Next we present our data structure to simulate the dual oracle.

Data structure. For each color ui ∈ U we construct a range tree Ti on P (ui) for range
counting queries. We also construct another range tree T on P for range counting queries,
which is independent of the color. Next, we construct a range tree S on P for range sampling
queries. In particular, by pre-computing the number of points stored in the subtree of each
node of the range tree, we can return a sample in a query region efficiently. For more details
the reader can check the full version of the paper [27], and [1,2, 26,32,37,39,40] where the
authors propose a data structure for finding k samples in a query region efficiently1. We need
O(n logd n) time to construct all the range trees, while the overall space is O(n logd−1 n).

Query procedure. The query procedure involves the algorithm for estimating the entropy
of an unknown distribution in the dual access model [13]. Here, we only need to describe
how to execute the oracles SAMPD and EVALD in P ′ = P ∩R using the data structure.

SAMPD: Recall that SAMPD returns αi with probability D(αi). In our setting, values
α1, . . . , αn correspond to colors. So, the goal is to return a color ui with probability
proportional to the number of points with color ui in P ′. Indeed, S returns a point p

uniformly at random in P ′. Hence, the probability that a point with color ui is found is
|P ′(ui)|

|P ′| .

1 While it is known how to get k independent weighted samples in a query hyper-rectangle in O(logd n +
k log n) time [32], the overall asymptotic query time of our problem remains the same if we use a range
tree as described in [27] with O(k logd n) query time.
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EVALD: Recall that given a value αi, EVALD returns the probability weightD(αi).
Equivalently, in our setting, given a color ui, the goal is to return |P ′(ui)|

|P ′| . Using Ti we
run a counting query in the query rectangle R and find |P ′(ui)|. Then using T , we run a
counting query in R and we get |P ′|. We divide the two quantities and return the result.

In each iteration, every oracle call SAMPD and EVALD executes a constant number of range
tree queries, so the running time is O(logd n). The algorithm presented in [13] calls the
oracles O( log2 n

∆ log n

∆2 ) times to guarantee the result with probability at least 1 − 1/n, so
the overall query time is O

(
logd+1 n·log2 n

∆
∆2

)
. We note that if ∆ < 1√

n
then the query time

is Ω(n log n). However, it is trivial to compute the entropy in P ∩ R in O(n log n) time
by traversing all points in P ∩ R. Hence, the additive approximation is non-trivial when
∆ ≥ 1√

n
. In this case, log2 n

∆2 = O(log2 n). We conclude that the query time is bounded by

O
(

logd+3 n
∆2

)
. We conclude with the next theorem.

▶ Theorem 9. Let P be a set of n points in Rd, where each point is associated with a color.
A data structure of O(n logd−1 n) size can be computed in O(n logd n) time, such that given a
query hyper-rectangle R and a real parameter ∆, a value h can be computed in O

(
logd+3 n

∆2

)
time, such that H(P ∩R)−∆ ≤ h ≤ H(P ∩R) + ∆, with high probability.

This data structure can be made dynamic under arbitrary insertions and deletions of points
using well known techniques [9, 21,33,34]. The update time is O(logd n).

5.2 Multiplicative approximation
In this Subsection, we construct a data structure such that given a query rectangle R and
a parameter ε, it returns a value h such that 1

1+ε H(P ∩ R) ≤ h ≤ (1 + ε)H(P ∩ R). The
intuition comes for the area of finding a multiplicative approximation of the the entropy
of an unknown distribution in the dual access model [23] and the streaming algorithms for
finding a multiplicative approximation of the the entropy [14]. In particular, in this section
we extend the streaming algorithm proposed in [14] to work in the query setting.

We use the notation from the previous Subsection where D is an unknown distribution
over a set of values α1, . . . , αN . It is known [23] that if we ask O

(
log N
ε2·H′

)
queries in the

dual access model, where H ′ is a lower bound of the actual entropy of D, i.e., H(D) ≥ H ′,
then we can get an (1 + ε)-multiplicative approximation of the entropy of D with high
probability, in O

(
log N
ε2·H′S

)
time, where S is the time to get a sample. We consider that we

have a dual oracle for D which is a pair of oracles (SAMPD, EVALD), as we had in additive
approximation. Similarly to the additive approximation, in our setting we do not know the
number of colors in P ′ = P ∩R or equivalently the number of values N in distribution D.
However it is sufficient to use the upper bound |u(P ′)| ≤ n considering n − |u(P ′)| colors
with probability (arbitrarily close to) 0. If we use the same data structure constructed for
the additive approximation, we could solve the multiplicative-approximation, as well. While
this is partially true, there is a big difference between the two problems. What if the actual
entropy is very small so H ′ is also extremely small? In this case, the factor 1

H′ will be very
large making the query procedure slow.

We overcome this technical difficulty by considering two cases. If H ′ is large, say H ′ ≥ 0.9,
then we can compute a multiplicative approximation of the entropy efficiently applying [23].
On the other hand, if H ′ is small, say H ′ < 0.9, then we use the ideas from [14] to design an
efficient data structure. In particular, we check if there exists a value aM with D(aM ) > 2/3.
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If it does not exist then H ′ is large so it is easy to handle. If aM exists, we write H(D) as a
function of H(D \ {aM}) using Equation 4. In the end, if we get an additive approximation
of H(D \ {aM}) we argue that this is sufficient to get a multiplicative approximation of H ′.

Data Structure. For each color ci we construct a range tree Ti over P (ui) as in the previous
Subsection. Similarly, we construct a range tree T over P for counting queries. We also
construct the range tree S for returning unifroms samples in a query rectangle. In addition
to S, we also construct a variation of this range tree, denoted by S̄. Given a query rectangle
R and a color ci, S̄ returns a point from {p ∈ R ∩ P | u(p) ̸= ci} uniformly at random. In
other words, S̄ is a data structure over P that is used to return a point in a query rectangle
uniformly at random excluding points of color ci. While S̄ is an extension of S, the low level
details are more tedious. We describe S̄ in the full version of the paper [27].

The complexity of the proposed data structure is dominated by the complexity of S̄.
Overall, it can be computed in O(n logd n) time and it has O(n logd n) space.

Query procedure. First, using T we get N = |P ∩R|. Using S we get log(2n)
log 3 independent

random samples from P ∩R. Let PS be the set of returned samples. For each p ∈ PS with
u(p) = ui, we run a counting query in Ti to get Ni = |P (ui) ∩R|. Finally, we check whether
Ni

N > 2/3. If we do not find a point p ∈ PS (assuming u(p) = ui) with Ni

N > 2/3 then we
run the algorithm from [23]. In particular, we set H ′ = 0.9 and we run O

(
log n
ε2·H′

)
oracle

queries SAMPD or EVALD, as described in [23]. In the end we return the estimate h. Next,
we assume that the algorithm found a point with color ui satisfying Ni

N > 2/3. Using S̄
(instead of S) we run the query procedure of the previous Subsection and we get an ε-additive
approximation of H((P \ P (ui)) ∩ R), i.e., the entropy of the points in P ∩ R excluding
points of color ci. Let h′ be the ε-additive approximation we get. In the end, we return the
estimate h = N−Ni

N · h′ + Ni

N log N
Ni

+ N−Ni

N log N
N−Ni

.

Correctness. It is straightforward to see that if there exists a color ui containing more
than 2/3’s of all points in P ∩R then ui ∈ u(PS) with high probability. For completeness,
in [27] we prove that this is the case with probability at least 1− 1/(2n). Hence, with high
probability, we make the correct decision.

If there is not such color, then in the full version [27] we show that the entropy in this
case should be H(P ∩R) > 0.9. Hence, O

(
log n

ε2

)
oracle queries are sufficient to derive an

(1 + ε)-multiplicative approximation of the correct entropy.
The interesting case is when we find a color ui such that Ni

N > 2/3 and Ni

N < 1 (if Ni

N = 1
then H(P ∩R) = 0). Using the results of the previous Subsection along with the new data
structure S̄, we get h′ ∈ [H((P \ P (ui)) ∩R)− ε, H((P \ P (ui)) ∩R) + ε] with probability
at least 1 − 1/(2n). We finally show that the estimate h we return is a multiplicative
approximation of H(P ∩R). From Equation 4, we have H(P ∩R) = N−Ni

N H((P \ P (ui)) +
Ni

N log N
Ni

+ N−Ni

N log N
N−Ni

. Since h′ ∈ [H((P \P (ui))∩R)−ε, H((P \P (ui))∩R)+ε], we get
h ∈ [H(P∩R)−ε N−Ni

Ni
, H(P∩R)+ε N−Ni

Ni
]. If we show that N−Ni

Ni
≤ H(P∩R) then the result

follows. By the definition of entropy we observe that H(P ∩R) ≥ Ni

N log N
Ni

+ N−Ni

N log N
N−Ni

.
In the full version of the paper [27] we show that N−Ni

Ni
≤ Ni

N log N
Ni

+ N−Ni

N log N
N−Ni

, if
1 > Ni

N > 2/3. We conclude that h ∈ [(1− ε)H(P ∩R), (1 + ε)H(P ∩R)].

Analysis. We first run a counting query on T in O(logd n) time. Then the set PS is
constructed in O(logd+1 n) time, running O(log n) queries in S̄. In the first case of the query
procedure (no point p with Ni

N > 2/3) we run O( log n
ε2 ) oracle queries so in total it runs in
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O( logd+1

ε2 ) time. In the second case of the query procedure (point p with Ni

N > 2/3) we run
the query procedure of the previous Subsection using S̄ instead of S, so it takes O( logd+3

ε2 )
time. Overall, the query procedure takes O( logd+3

ε2 ) time.

▶ Theorem 10. Let P be a set of n points in Rd, where each point is associated with a color.
A data structure of O(n logd n) size can be computed in O(n logd n) time, such that given a
query hyper-rectangle R and a parameter ε ∈ (0, 1), a value h can be computed in O

(
logd+3 n

ε2

)
time, such that 1

1+ε H(P ∩R)≤h≤(1 + ε)H(P∩R), with high probability.

This structure can be made dynamic under arbitrary insertions and deletions of points using
well known techniques [9, 21,33,34]. The update time is O(logd n).

5.3 Efficient additive and multiplicative approximation for d = 1

Next, for d = 1, we propose a deterministic, faster approximate data structure with query
time O(polylog n) that returns an additive and multiplicative approximation of the entropy
H(P ∩R), given a query rectangle R.

Instead of using the machinery for entropy estimation on unknown distributions, we
get the intuition from data structures that count the number of colors in a query region R.
In [24], the authors presented a data structure to count/report colors in a query interval for
d = 1. In particular, they map the range color counting/reporting problem for d = 1 to the
standard range counting/reporting problem in R2. Let P be the set of n colored points in R1.
Let P̄ = ∅ be the corresponding points in R2 they construct. For every color ui ∈ U , without
loss of generality, let P (ui) = {p1, p2, . . . , pk} such that if j < ℓ then the x-coordinate of point
pj is smaller than the x-coordinate of point pℓ. For each point pj ∈ P (ui), they construct
the 2-d point p̄j = (pj , pj−1) and they add it in P̄ . If pj = p1, then p̄1 = (p1,−∞). Given a
query interval R = [l, r] in 1-d, they map it to the query rectangle R̄ = [l, r]× (−∞, l). It is
straightforward to see that a point of color ui exists in R if and only if R̄ contains exactly
one transformed point of color ui. Hence, using a range tree T̄ on P̄ they can count (or
report) the number of colors in P ∩R efficiently. While this is more than enough to count
or report the colors in P ∩ R, for the entropy we also need to know (in fact precompute)
the number of points of each color ui in P ′, along with the actual entropy in each canonical
subset. Notice that a canonical subset/node in T̄ might belong to many different query
rectangles R̄ that correspond to different query intervals R. Even though a point of color
ui appears only once in R̄ ∩ P̄ , there can be multiple points with color ui in R ∩ P . Hence,
there is no way to know in the preprocessing phase the exact number of points of each color
presented in a canonical node of T̄ . We overcome this technical difficulty by pre-computing
for each canonical node v in T̄ , monotone pairs with approximate values of (interval, number
of points), and (interval, entropy) over a sufficiently large number of intervals. Another issue
is that entropy is not monotone, so we split it into two monotone functions and we handle
each of them separately until we merge them in the end to get the final estimation.

Before we start describing the data structure we prove some useful properties that we
need later. For a set of colored points P ′ ⊆ P , with N = |P ′|, let F (P ′) = N · H(P ′) =∑

ui∈u(P ′) Ni · log N
Ni

, where Ni is the number of points in P ′ with color ui. We prove the
next lemma in the full version [27].

▶ Lemma 11. The function F (·) is monotonically increasing. Furthermore, F (P ′) =
O(N log N), and the smallest non-zero value that F (·) can take is at least log N .
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Data structure. We apply the same mapping from P to P̄ as described above [24] and
construct a range tree T̄ on P̄ . Then we visit each canonical node v of T̄ . If node v contains
two points with the same color then we can skip it because this node will not be returned
as a canonical node for any query R̄. Let v be a node such that P̄v does not contain two
points with the same color. Let also xv be the smallest x-coordinate of a point in P̄v. Finally,
let Uv = u(P̄v), and P (Uv) = {p ∈ P | u(p) ∈ Uv}. Notice that P (Uv) is a subset of P and
not of P̄ . We initialize an empty array Sv of size O( log n

ε ). Each element Sv[i] stores the
maximum x coordinate such that (1 + ε)i ≥ |P (Uv) ∩ [xv, x]|. Furthermore, we initialize an
empty array Hv of size O( log n

ε ). Each element Hv[i] stores the maximum x coordinate such
that (1 + ε)i ≥ F (P (Uv) ∩ [xv, x]). We notice that both functions F (·), and cardinality of
points are monotonically increasing. For every node of T̄ we use O( log n

ε ) space, so in total,
the space of our data structure is O( n

ε log2 n). In the full version of the paper [27] we show
how we can construct the data structure T̄ in O( n

ε log5 n) time.

Query procedure. Given a query interval R = [a, b], we run a query in T̄ using the query
range R̄. Let V = {v1, . . . , vk} be the set of k = O(log2 n) returned canonical nodes. For
each node v ∈ V we run a binary search in array Sv and a binary search in Hv with key b.
Let ℓS

v be the minimum index such that b ≤ Sv[ℓS
v ] and ℓH

v be the minimum index such that
b ≤ Hv[ℓH

v ]. From their definitions, it holds that |P (Uv)∩R| ≤ (1+ε)ℓS
v ≤ (1+ε)|P (Uv)∩R|,

and F (P (Uv) ∩ R) ≤ (1 + ε)ℓH
v ≤ (1 + ε)F (P (Uv) ∩ R). Hence, we can approximate the

entropy of P (Uv) ∩R, defining Hv = (1+ε)ℓH
v

(1+ε)ℓS
v −1 . The next Lemma shows that Hv is a good

approximation of H(P (Uv) ∩R).

▶ Lemma 12. It holds that H(P (Uv) ∩R) ≤ Hv ≤ (1 + ε)2H(P (Uv) ∩R).

Proof. We have Hv = (1+ε)ℓH
v

(1+ε)ℓS
v −1 . From their definitions, we have that |P (Uv) ∩ R| ≤

(1+ε)ℓS
v ≤ (1+ε)|P (Uv)∩R|, and F (P (Uv)∩R) ≤ (1+ε)ℓH

v ≤ (1+ε)F (P (Uv)∩R). It also holds
that (1 + ε)ℓS

v −1 ≤ |P (Uv)∩R| and (1 + ε)ℓS
v −1 ≥ |P (Uv)∩R|

(1+ε) . Hence Hv ≤ (1+ε)F (P (Uv)∩R)
|P (Uv)∩R|/(1+ε) ≤

(1 + ε)2H(P (Uv) ∩R). Furthermore, Hv ≥ F (P (Uv)∩R)
|P (Uv)∩R| = H(P (Uv) ∩R). ◀

We find the overall entropy by merging together pairs of canonical nodes. Notice that we
can do it easily using Equation 2 because all colors are different between any pair of nodes
in V . For example, we apply Equation 2 for two nodes v, w ∈ V as follows:

(1+ε)ℓS
v Hv+(1+ε)ℓS

w Hw+(1+ε)ℓS
v log

(
(1+ε)ℓS

v +(1+ε)ℓS
w

(1+ε)ℓS
v −1

)
+(1+ε)ℓS

w log
(

(1+ε)ℓS
v +(1+ε)ℓS

w

(1+ε)ℓS
w−1

)
(1+ε)ℓS

v −1+(1+ε)ℓS
w−1 .

In the end we compute the overall entropy H. The next Lemma shows the correctness of our
procedure.

▶ Lemma 13. If we set ε← ε
4·c·log log n , it holds that H(P ∩R) ≤ H ≤ (1 + ε)H(P ∩R) + ε,

for a constant c > 0.

Proof. We assume that we take the union of two nodes v, w ∈ V using Equation 2. We
can use this equation because nodes v, w do not contain points with similar colors. Let
H1 = H(P (Uv) ∩ R), H2 = H(P (Uw) ∩ R), N1 = |P (Uv) ∩ R|, and N2 = |P (U2) ∩ R|. We
have

Hv,w =
(1+ε)ℓS

v Hv+(1+ε)ℓS
w Hw+(1+ε)ℓS

v log
(

(1+ε)ℓS
v +(1+ε)ℓS

w

(1+ε)ℓS
v −1

)
+(1+ε)ℓS

w log
(

(1+ε)ℓS
v +(1+ε)ℓS

w

(1+ε)ℓS
w−1

)
(1+ε)ℓS

v −1+(1+ε)ℓS
w−1 .
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Using Lemma 12, we get

Hv,w ≤
(1+ε)4N1H1+(1+ε)4N2H2+(1+ε)2N1 log

(
(1+ε)2 N1+N2

N1

)
+(1+ε)2N2 log

(
(1+ε)2 N1+N2

N2

)
N1+N2

and we conclude that

Hv,w ≤ (1 + ε)4H((P (Uv) ∪ P (Uw)) ∩R) + (1 + ε)2 log(1 + ε)2.

Similarly if we have computed Hx,y for two other nodes x, y ∈ V , then

Hx,y ≤ (1 + ε)4H((P (Ux) ∪ P (Uy)) ∩R) + (1 + ε)2 log(1 + ε)2.

If we compute their union, we get

Hv,w,x,y ≤ (1+ε)6H((P (Uv)∪P (Uw)∪P (Ux)∪P (Uy))∩R)+[(1+ε)4 +(1+ε)2] log(1+ε)2.

In the end of this process we have

H ≥ H(P ∩R)

because all intermediate estimations of entropy are larger than the actual entropy. For a
constant c, it also holds that

H ≤ (1 + ε)c log(log n)H(P ∩R) +
c log(log n)/2∑

j=1
(1 + ε)2j log(1 + ε)2.

This quantity can be bounded by

H ≤ (1 + ε)c log(log n)H(P ∩R) + c log(log n)(1 + ε)c log(log n) log(1 + ε).

We have the factor log(log n) because |V | = O(log2 n) so the number of levels of recurrence
is O(log(log n)).

Next, we show that if we set ε← ε
4·c log(log n) , then H ≤ (1 + ε)H(P ∩R) + ε.

We have(
1 + ε/4

c log(log n)

)c log(log n)
≤ eε/4 ≤ 1 + ε.

The first inequality holds because of the well known inequality (1 + x/n)n ≤ ex. The second
inequality is always true for ε ∈ (0, 1). Then we have

(1 + ε)c log(log n) log
(

1 + ε

4 · c log(log n)

)
≤ 2c log(log n) log

(
1 + ε

4 · c log(log n)

)
.

Next, we show that this quantity is at most ε. Let L = c log(log n) and let

f(x) = x− 2L log
(

1 + x

4L

)
be a real function for x ∈ [0, 1]. We have

f ′(x) = 1− 2L

L ln(16) + x ln(2) .

We observe that ln(16) ≈ 2.77 and x ln(2) ≥ 0 so f ′(x) ≥ 0 and f is monotonically increasing.
So f(x) ≥ f(0) = 0. Hence, for any ε ∈ [0, 1] we have

ε− 2L log
(

1 + ε

4L

)
≥ 0.

We conclude with

H ≤ (1 + ε)H(P ∩R) + ε. ◀
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We need O(log2 n) time to get V from T̄ . Then, we run binary search for each node
v ∈ V so we spend O(log2 n log log n log log n

ε ) = O(log2 n log log n
ε ) time. We merge and update

the overall entropy in time O(|V |), so in total the query time is O(log2 n log log n
ε ).

▶ Theorem 14. Let P be a set of n points in R1, where each point is associated with a color,
and let ε ∈ (0, 1) be a parameter. A data structure of O( n

ε log2 n) size can be computed in
O( n

ε log5 n) time, such that given a query hyper-rectangle R, a value h can be computed in
O

(
log2 n log log n

ε

)
time, such that H(P ∩R) ≤ h ≤ (1 + ε)H(P ∩R) + ε.

6 Partitioning

The new data structures can be used to accelerate some partitioning algorithms with respect
to the (expected) entropy. Let DS be one of our new data structures over n items that can
be constructed in O(P (n)) time, has O(S(n)) space, and given a query range R, returns a
value h in O(Q(n)) time such that 1

α H − β ≤ h ≤ α ·H + β, where H is the entropy of the
items in R, and α ≥ 1, β ≥ 0 two error thresholds. On the other hand, the straightforward
way to compute the (expected) entropy without using any data structure has preprocessing
time O(1), query time O(n) and it returns the exact entropy in a query range.

In most cases we consider the expected entropy to partition the dataset as this is mostly
the case in entropy-based partitioning and clustering algorithms. Except of being a useful
quantity bounding both the uncertainty and the size of a bucket, it is also monotone. All
our data structures can work for both the entropy and expected entropy quantity almost
verbatim. We define two optimization problems. Let MaxPart be the problem of constructing
a partitioning with k buckets that maximizes/minimizes the maximum (expected) entropy in
a bucket. Let SumPart be the problem of constructing a partitioning with k buckets that
maximizes/minimizes the sum of (expected) entropies over the buckets. For simplicity, in
order to compare the running times, we skip the log(n) factors from the running times.

Partitioning for d = 1. We can easily solve MaxPart using dynamic programming: DP[i, j] =
minℓ<i max{DP[i− ℓ, j − 1], Error[i− ℓ + 1, i])}, where DP[i, j] is the minimum max entropy
of the first i items using j buckets, and Error[i, j] is the expected entropy among the items
i and j. Since Error is monotone, we can find the the optimum DP[i, j] running a binary
search on ℓ, i.e., we do not need to visit all indexes ℓ < i one by one to find the optimum.
Without using any data structure the running time to find DP[n, k] is O(kn2). Using DS,
the running time for partitioning is O(P (n) + knQ(n)). If we use the data structure from
Section 4.1 for t = 0.5, then the running time is O (kn

√
n) = o(kn2).

Next we consider approximation algorithms for the MaxPart and SumPart problems.
It is easy to observe that the maximum value and the minimum non-zero value of the

optimum solution of MaxPart are bounded polynomially on n. Let [lM , rM ] be the range
of the optimum values. We discretize the range [lM , rM ] by a multiplicative factor (1 + ε).
We run a binary search on the discrete values. For each value e ∈ [lM , rM ] we consider, we
construct a new bucket by running another binary search on the input items, trying to expand
the bucket until its expected entropy is at most e. We repeat the same for all buckets and
we decide if we should increase or decrease the error e in the next iteration. In the end the
solution we find is within an (1 + ε) factor far from the max expected entropy in the optimum
partitioning. Without using any data structure, we need O(n log 1

ε ) time to construct the
partitioning. If we use DS we need time O

(
P (n) + kQ(n) log 1

ε

)
. If we use the data structure
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in Subsection 5.2 we have partition time O
(
n + k

ε2 log 1
ε

)
= o

(
n log 1

ε

)
. If we allow a ∆

additive approximation in addition to the (1 + ε) multiplicative approximation, we can use
the data structure in Subsection 5.1 having partition time O

(
n + k

∆2 log 1
ε

)
= o

(
n log 1

ε

)
.

Next, we focus on the SumPart problem. It is known from [22] (Theorems 5, 6) that if the
error function is monotone (such as the expected entropy) then we can get a partitioning with
(1 + ε)-multiplicative approximation in O

(
P (n) + k3

ε2 Q(n)
)

time. Hence, the straightforward
solution without using a data structure returns an (1 + ε)-approximation of the optimum
partitioning in O

(
k3

ε2 n
)

time. If we use the data structure from Subsection 5.2 we have

running time O
(

n + k3

ε4

)
, which is o

(
k3

ε2 n
)

and multiplicative error (1 + ε)2. If we set
ε← ε/3 then in the same asymptotic running time we have error (1 + ε). If we also allow
∆ · n additive approximation, we can use the additive approximation DS from Subsection 5.1.
The running time will be O

(
n + k3

ε2∆2

)
= o

(
k3

ε2 n
)

.

Partitioning for d > 1. Partitioning and constructing histograms in high dimensions is
usually a very challenging task, since most of the known algorithms with theoretical guarantees
are very expensive [18]. However, there is a practical method with some conditional error
guarantees, that works very well in any constant dimension d and it has been used in a few
papers [5,30,31]. The idea is to construct a tree having a rectangle containing all points in the
root. In each iteration of the algorithm, we choose to split (on the median in each coordinate
or find the best split) the (leaf) node with the minimum/maximum (expected) entropy. As
stated in previous papers, let make the assumption that an optimum algorithm for either
MaxPart or SumPart is an algorithm that always chooses to split the leaf node with the
smallest/largest expected entropy. Using the straightforward solution without data structures,
we can construct an “optimum” partitioning in O(kn) time by visiting all points in every new
generated rectangle. Using DS, the running time of the algorithm is O(P (n) + kQ(n)). In
order to get an optimum solution we use DS from Subsection 4.2. The overall running time is
O(n(2d−1)t+1 + kn1−t). This is minimized for n(2d−1)t+1 = kn1−t ⇔ t = t∗ = log k

2d log n , so the
overall running time is O(kn1−t∗) = o(kn). If we allow (1 + ε)-multiplicative approximation
we can use the DS from Subsection 5.2. The running time will be O

(
n + k

ε2

)
= o(kn). If we

allow a ∆-additive approximation, then we can use the DS from Subsection 5.1 with running
time O

(
n + k

∆2

)
= o(kn).

7 Conclusion

In this work, we presented efficient data structures for computing (exactly and approximately)
the entropy of the points in a rectangular query in sub-linear time. Using our new data
structures we can accelerate partitioning algorithms for columnar compression (Example 1)
and histogram construction (Example 2). Furthermore, we can accelerate the exploration of
high uncertainty regions for data cleaning (Example 3).

There are multiple interesting open problems derived from this work. i) Our approximate
data structures are dynamic but our exact data structures are static. Is it possible to have
dynamic data structure for returning the exact entropy? ii) We showed a lower bound for
designing exact data structures when P ∈ Rd for d ≥ 2. Does the lower bound extend
for d = 1? iii) There is still a gap between the proposed lower bound and upper bound.
An interesting problem is to close that gap. iv) Can we extend the faster deterministic
approximation data structure from Subsection 5.3 in higher dimensions?
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Abstract
When extracting a relation of spans (intervals) from a text document, a common practice is to filter
out tuples of the relation that are deemed dominated by others. The domination rule is defined
as a partial order that varies along different systems and tasks. For example, we may state that a
tuple is dominated by tuples that extend it by assigning additional attributes, or assigning larger
intervals. The result of filtering the relation would then be the skyline according to this partial
order. As this filtering may remove most of the extracted tuples, we study whether we can improve
the performance of the extraction by compiling the domination rule into the extractor.

To this aim, we introduce the skyline operator for declarative information extraction tasks
expressed as document spanners. We show that this operator can be expressed via regular operations
when the domination partial order can itself be expressed as a regular spanner, which covers several
natural domination rules. Yet, we show that the skyline operator incurs a computational cost (under
combined complexity). First, there are cases where the operator requires an exponential blowup
on the number of states needed to represent the spanner as a sequential variable-set automaton.
Second, the evaluation may become computationally hard. Our analysis more precisely identifies
classes of domination rules for which the combined complexity is tractable or intractable.
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1 Introduction

The framework of document spanners [10] is an established formalism to express declarative
information extraction tasks. A spanner specifies the possible ways to assign variables over
a textual document, producing so-called mappings which are the result of the extraction:
each mapping assigns the variables to a factor of the document, called a span. The spanner
formalism has been defined in terms of several operators, in particular regular operations
extended with capture variables (corresponding to so-called regular spanners), operators
from relational algebra (which can sometimes be translated into regular expressions), string
equality (the so-called core spanners), etc.

© Antoine Amarilli, Benny Kimelfeld, Sébastien Labbé, and Stefan Mengel;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Database Theory (ICDT 2024).
Editors: Graham Cormode and Michael Shekelyan; Article No. 7; pp. 7:1–7:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antoine.amarilli@telecom-paris.fr
https://a3nm.net/
https://orcid.org/0000-0002-7977-4441
mailto:bennyk@cs.technion.ac.il
https://orcid.org/0000-0002-7156-1572
https://doi.org/10.4230/LIPIcs.ICDT.2024.7
https://arxiv.org/abs/2304.06155
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 Skyline Operators for Document Spanners

Tuples extracted from text often aim to capture mentions of real-life entities and relation-
ships. In that respect, one of the studied challenges is that different extracted tuples might be
considered as conflicting with each other [11]. A common example is that of overlapping spans;
for instance, a situation where one entity mention is contained within another entity mention
is considered inconsistent. For this reason, traditional declarative systems for information
extraction provide explicit mechanisms for restricting the extracted spans to the maximal
ones according to different comparisons. IBM’s SystemT [17] has the consolidation rules
such as “contained-within” (where a span dominates its subspans) and “left-to-right” (where
a span dominates all shorter spans that begin at the same position). Similarly, the GATE
system [9] features controls such as “Appelt” (which is similar to SystemT’s “left-to-right”).
Alternatively, in the schemaless context of document spanners where we can assign spans to
only a subset of variables [18], we may want to only capture spans that assign a maximal
subset of the variables and cannot be extended by assigning more variables; in the spirit, for
instance, of the relational full disjunction [14] or the OPTIONAL operator of SPARQL [2].

To explore the expressive power of operators such as controls and consolidators, Fagin et
al. [11] proposed a framework that enriches document spanners with a previous concept of
prioritized repairs [26]. There, they defined the notion of a “denial preference-generating
dependency” (denial pgd) that expresses the binary domination relationship using the
underlying spanner language. When this relationship is transitive, the result of applying
the denial pgd is precisely the set of maximal tuples. However, they did not address the
computational complexity of this operator and, consequently, it has been left open. (Moreover,
their study does not apply to the schemaless context.)

The notion of maximal matches has been abundantly studied in other areas of database
research, where it is called the skyline operator [5]. Intuitively, the skyline of a set of results
under a partial order relation is the set of the results that are maximal, i.e., are not dominated
by another result. The complexity of skyline computation has been investigated under many
dimensions, e.g., I/O access [25], parallel computation [1], or noisy comparisons [16]. However,
we are not aware of a study of the complexity of this operator to extract the maximal matches
of document spanners. This is the focus of the present paper.

Contributions. We present our contributions together with the structure of the paper. After
some necessary preliminaries (Section 2), we first introduce in Section 3 the skyline operator.
The operator is defined as extracting the maximal mappings of a spanner on a document
with respect to a partial order on the mappings, which we call a domination relation. In
particular, we define the span inclusion, span length, variable inclusion, and left-to-right
domination relations, which cover the examples presented above.

To allow for a unified study of these operators, and similarly to [11], we propose a general
model where the domination relations are themselves expressed as document spanners. More
precisely, a domination rule is a spanner that defines a domination relation on every document:
it indicates which mappings dominate which other mappings, by intuitively capturing pairs
pm, m1q that indicate that m1 dominates m. We also focus on so-called variable-wise rules,
where the domination relation on mappings can be defined as a product of relations on spans.
In other words, a variable-wise rule is a spanner expressing which spans dominate which
spans, and the domination relation on mappings is obtained in a pointwise fashion across the
variables, like the ceteris paribus semantics for preference handling in artificial intelligence [6]
or Pareto-optimal points for skyline queries on multidimensional data [16]. All examples
introduced earlier can be expressed in this variable-wise way.
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We then begin our study of how to evaluate the skyline operator on document spanners,
and start in Section 4 with the question of expressiveness: does the operator strictly increase
the expressive power of spanner formalisms, or can it be rewritten using existing operators?
We show that regular spanners are closed under the skyline operator, generalizing a result
of [11] to the schemaless context. By contrast, we show that core spanners are not closed
under skylines, even for the fixed variable inclusion or span inclusion domination relations,
again generalizing a result of [11].

Next, we explore the question of whether it is possible to tractably rewrite the skyline
operator into regular spanners, to allow for efficient evaluation like, e.g., the polynomial-time
compilation of the join operator in the schema-based context (see [19], Lemma 4.4.7). We
present in Section 5 a lower bound establishing that this is not the case: even for variable
inclusion domination, applying the skyline operator to a spanner expressed as a sequential
variable-set automaton (VA) incurs a necessary exponential blowup. This result is shown by
identifying a connection between VAs and nondeterministic read-once branching programs
(NROBPs). This general-purpose method can be used outside of the context of skylines, and
in fact we also use it to show a result of independent interest: there are regex-formulas on
which the natural join operator incurs an unavoidable exponential blowup (Theorem 5.5).

We then move in Section 6 from state complexity to the computational complexity of
skyline evaluation for regular spanners. This task is clearly tractable in data complexity, i.e.,
for a fixed spanner and domination rule: we simply compute all captured mappings, and
filter out the non-maximal ones. More interestingly, assuming P ‰ NP, we show that the task
is intractable in combined complexity, i.e., as a function of the input spanner (Theorem 6.3),
already in the case of the variable inclusion relation. Hence, we cannot tractably evaluate
the skyline operator in combined complexity, even without compiling it to an explicit VA.

Lastly, we study in more detail how the complexity of skyline computation depends
on the fixed domination relation: are there non-trivial domination rules for which skyline
computation is tractable in combined complexity? We show in Section 7 a sufficient condition
on domination rules which is satisfied by all example rules that we mentioned and which implies
(conditional) intractability (Theorem 7.5). We then show that, for a class of domination rules
called variable-inclusion-like rules, a variant of this condition can be used for a dichotomy to
classify which of these rules enjoy tractable skyline computation (Theorem 7.7). We finish
with examples of tractable and intractable rules in the general case.

We conclude in Section 8. For reasons of space, most proofs are deferred to the full
version [4].

2 Preliminaries

Languages, spans, mappings, and spanners. We fix an alphabet Σ which is a finite set
of letters. A word w is a finite sequence of letters of Σ: we write Σ˚ for the set of all
words. We write |w| for the length of w and denote the empty word by ε, with |ε| “ 0.
A language L Ď Σ˚ is a set of words. The concatenation of two languages L1 and L2 is
the language L1 ¨ L2 “ tw1w2 | w1 P L1, w2 P L2u. The Kleene star of a language L is the
language L˚ “

Ť

iPN Li, where we define inductively L0 “ tεu and Li`1 “ L ¨ Li for all i ą 0.
As usual in the context of document spanners, a document is simply a word of Σ˚.

A span ri, jy is an interval s “ ri, jy with 0 ď i ď j. Its length is j ´ i. We denote by
Spans the set of all spans. The spans of a document d are the spans ri, jy of Spans with
j ď |d|. We write dri,jy to mean the contiguous subword of d at a span ri, jy, for example
“qwertyqwerty”r2,5y “ “qwertyqwerty”r8,11y “ “ert”. Note that we have dri,iy “ ε for all
0 ď i ď |d|. A span ri, jy is included in a span ri1, j1y if i1 ď i and j1 ě j. Two spans overlap
if there is a non-empty span included in both of them; otherwise we call them disjoint.
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We fix an infinite set Variables of variable names. A mapping m of a document d P Σ˚ is
a function from a finite set of variables X Ď Variables, called the domain dompmq of m, to
the set of spans of d; the variables of dompmq are said to be assigned by m. We denote the
set of all mappings on variables of Variables by Maps, and denote by Mapspdq the set of all
mappings on a document d, i.e., the mappings of Maps such that all spans in the image are
spans of d. A mapping m is called compatible with a mapping m1, in symbols m „ m1, if for
all x P dompmq X dompm1q we have mpxq “ m1pxq.

A spanner is a function mapping every document d to a finite set of mappings whose
spans are over d, i.e., are included in r0, |d|y. For a spanner P , we denote by SVarspP q the
variables appearing in the domain of at least one of its mappings, formally SVarspP q :“ tx P

Variables | Dd P Σ˚, Dm P P pdq, x P dompmqu. A spanner P is schema-based if all its output
mappings assign exactly the variables of SVarspP q, i.e., for every d P Σ˚ and m P P pdq, we
have dompmq “ SVarspP q. Otherwise, P is called schemaless [21], or incomplete [18]. We say
a spanner P accepts or captures a mapping m P Maps on a document d P Σ˚ if m P P pdq.

Variable-set automata. We focus mostly on the regular spanners, that can be expressed
using variable-set automata (or VAs). These are intuitively nondeterministic automata where
each transition is labeled either by a letter or by a marker indicating which variable is opened
or closed. Formally, for a set X of variables, we denote by markerspXq the set of markers
over X: it contains for each variable x P X the opening marker x$ and the closing marker %x.
Then, a VA on alphabet Σ is an automaton A “ pQ, q0, F, δq where Q is a finite set of states,
q0 P Q is the initial state, F Ď Q are the final states, and δ Ď Q ˆ pΣ Y markerspXqq ˆ Q is
the transition relation: we write the transitions q Ñσ q1 to mean that pq, σ, q1q P δ. Note that
the transitions contain both letter transitions, labeled by letters of Σ, and marker transitions,
labeled by markers of markerspXq.

A run of A on a document d P Σ˚ is a sequence ρ : q0 Ñσ1 q1 ¨ ¨ ¨ qn´1 Ñσn qn such that
the restriction of σ1 . . . σn to the letters of Σ is exactly d; it is accepting if we have qn P F .
We say that ρ is valid if, for each variable x P X, either the markers x$ and %x do not occur
in σ1 ¨ ¨ ¨σn, or they occur exactly once and x$ occurs before %x. We say that A is sequential
if all its accepting runs are valid. In this paper, we always assume that VAs are sequential,
and only speak of VAs to mean sequential VAs. The run ρ then defines a mapping m on d by
intuitively assigning the variables for which markers are read to the span delimited by these
markers. Formally, we associate to each index 0 ď k ď n of the run a position πpkq in d by
initializing πp0q :“ 0 and setting πpk ` 1q :“ πpkq if the transition qk Ñσk`1 qk`1 reads a
marker, and πpk ` 1q :“ πpkq ` 1 if it reads a letter; note that πpnq “ |d|. Then, for each
variable x whose markers are read in ρ, letting σi “ x$ and σj “ %x with i ă j because the
run is valid, we set mpxq :“ rπpiq, πpjqy.

A sequential VA A thus defines a spanner PA that maps each document d to the set
PApdq of mappings obtained from its accepting runs as we explained. Note that different
accepting runs may yield the same mapping. We sometimes abuse notation and identify VAs
with the spanners that they define. The regular spanners are those that can be defined by
VAs, or, equivalently [18], by sequential VAs. A sequential VA is functional if it defines a
schema-based spanner, i.e., every mapping assigns every variable that occurs in the transitions
of the VA.

Regex formulas. Our examples of spanners in this paper will be given not as VAs but in the
more human-readable formalism of regex formulas. The regex formulas over an alphabet Σ
are the expressions defined inductively from the empty set H, empty word ε, and single
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letters a P Σ, using the three regular operators of disjunction (e1 _ e2), concatenation (e1e2),
and Kleene star (e˚), along with variable captures of the form xte1u where x is a variable.
A regex-formula r on a document d P Σ˚ defines a spanner on the variables occurring in r.
Intuitively, every match of r on d yields a mapping where the variables are assigned to
well-nested spans following the captures; see [10] for details. We require of regex-formulas
that, on every document d P Σ˚, they assign each variable at most once; but we allow them
to define schemaless spanners, i.e., they may only assign a subset of the variables.

It is known that regex formulas capture a strict subset of the regular spanners; see [10] in
the case of schema-based spanners and [18] for the case of schemaless spanners.

Cartesian Products. Given two spanners P1 and P2 where X1 “ SVarspP1q and X2 “

SVarspP2q are disjoint, the Cartesian product P1ˆP2 of P1 and P2 is the spanner on variables
X1 Y X2 which on every document d captures the mappings pP1 ˆ P2qpdq :“ P1pdq ˆ P2pdq.
Here, we interpret a pair pm1, m2q P P1pdqˆP2pdq as the merge of the two mappings, i.e., the
mapping defined according to m1 on X1 and according to m2 on X2. If P1 and P2 are given
as sequential VAs, then one can compute in polynomial time a sequential VA for P1 ˆ P2.

3 The Skyline Operator

In this paper, we define and study a new operator called the skyline operator. Its goal is to
only extract mappings that contain the maximum amount of information in a certain sense.

Domination relations. We begin by defining domination relations which describe how to
compare the information given by two mappings on a given document d.

▶ Definition 3.1. A pre-domination relation ď is a binary relation on the set of mappings
Mapspdq of d. We say that it is a domination relation if it is a (non-strict) partial order, i.e.,
it is reflexive, transitive, and antisymmetric. For m1, m2 P Maps, we say that m2 dominates
m1 if m1 ď m2, and write m1 ď m2 otherwise.

The goal of the domination relation is to define which mappings are preferred to others,
intuitively because they contain more information; it may depend on the document, though
we will present many examples where it does not.

We introduce several domination relations that, as discussed in the introduction, are part
of practical systems and which we consider throughout this paper:

▶ Definition 3.2. The simplest relation is the trivial self domination relation ďself where
every mapping only dominates itself, i.e., the pairs in the relation are pm, mq for m P Maps.

▶ Definition 3.3. The variable inclusion relation ďvarInc contains the pairs pm1, m2q such that
for all x P Variables, if m1pxq is defined, then m2pxq is defined as well and m1pxq “ m2pxq.
Thus, we have m1 ďvarInc m2 whenever dompm1q Ď dompm2q and m1 „ m2, i.e., when m2
is an extension of m1 that potentially assigns more variables than m1.

▶ Definition 3.4. The span inclusion relation ďspanInc contains the pairs pm1, m2q of
mappings with the same domain (dompm1q “ dompm2q) such that for every x P dompm1q the
span m1pxq is included in m2pxq. Intuitively, m1 and m2 match the same variables in the
same parts of a document, but the matches of variables in m1 are subwords of their matches
in m2.
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7:6 Skyline Operators for Document Spanners

▶ Definition 3.5. The left-to-right relation ďltr contains the pairs pm1, m2q of mappings
with the same domain such that, for every variable x on which m1 and m2 are defined, the
spans m1pxq and m2pxq start at the same position but m2pxq is no shorter than m1pxq.

▶ Definition 3.6. The span length relation ďspanLen contains the pairs pm1, m2q of mappings
with the same domain where for every x P dompm1q the span m2pxq is no shorter than m1pxq.
Intuitively, ďspanLen prefers longer spans over shorter ones, anywhere in the document.

Domination rules. We now introduce domination rules which associate to each document d

a domination relation over d. In this paper, we express domination rules as spanners on
specific domains. To this end, given a set of variables X, we write X: to mean a set of
annotated copies of the variables of X, formally X: :“ tx: | x P Xu. We extend the
notation to mappings by defining m: for a mapping m to be the mapping with domain
dompm:q “ dompmq: such that for all x P dompmq we have m:px:q :“ mpxq. We then define:

▶ Definition 3.7. A pre-domination rule D on a set of variables X Ď Variables is a
(schemaless) spanner with SVarspDq Ď XYX:. For every document d P Σ˚, we see Dpdq as a
pre-domination relation ď on d defined by the mappings captured by D on d, the left-hand-side
and right-hand-side of the comparability pairs being the restrictions of the mappings to X and
to X: respectively. Formally, the relation ď is: R :“ tpm|X , m1q | m P Dpdq, pm1q: “ m|X:uu.

We say that D is a domination rule if, on every document d P Σ˚, the pre-domination
relation R defined above is a domination relation, i.e., it correctly defines a partial order.

Intuitively, for every document d, the domination rule D defines the domination relation ď

where each mapping m P Dpdq denotes a pair, i.e., the restriction of m to X is dominated by
the restriction of m to X: (renaming the variables from X: to X). Note that pre-domination
rules and pre-domination relations are just an intermediary notion; in the sequel, we only
consider domination rules and domination relations.

▶ Example 3.8. For any set X of variables, each of the domination relations introduced in
Definitions 3.2–3.5 can be defined by a domination rule expressed by a regular spanner on X

(for the span length domination relation of Definition 3.6, see Lemma 3.13). At the end of
the section, we explain how to express them in a more concise variable-wise way that does
not depend on X: see Example 3.12.

The skyline operator. We have introduced domination rules as a way to define domination
relations over arbitrary documents. We can now introduce the skyline operator to extract
maximal mappings, i.e., mappings that are not dominated in the domination relation:

▶ Definition 3.9. Given a domination rule D, the skyline operator ηD of D applies to a
spanner P and defines a spanner ηDP in the following way: given a document d, writing
ď to denote the domination relation Dpdq given by D on d, the result of ηDP on d is the
set of maximal mappings of P pdq under the domination relation ď. Formally, we have:
pηDP qpdq :“ tm P P pdq | @m1 P P pdqztmu : m ď m1u.

Intuitively, the operator filters out the mappings that are dominated by another mapping
according to the domination relation defined by the domination rule over the input document.

▶ Example 3.10. In Figure 1 we show the effect of the skyline operator with respect to some
of our example domination relations. Assume that we are given a spanner P in variables
tx, yu that on a given document d extracts the mappings given in Figure 1a (here a dash “´”
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mpxq mpyq

r1, 2y r2, 3y

´ r2, 3y

r0, 2y r2, 3y

r4, 6y r4, 10y

(a) The extracted
mappings P pdq.

mpxq mpyq

r1, 2y r2, 3y

r0, 2y r2, 3y

r4, 6y r4, 10y

(b) Skyline under the vari-
able inclusion relation.

mpxq mpyq

´ r2, 3y

r0, 2y r2, 3y

r4, 6y r4, 10y

(c) Skyline under the
span inclusion relation.

mpxq mpyq

´ r2, 3y

r4, 6y r4, 10y

(d) Skyline under the
span length relation.

Figure 1 Extracted mappings before and applying different skyline operators; see Example 3.10.

means that the variable is not assigned by a mapping). We show the result of applying the
skyline operators with (possibly non-regular) domination rules defining the variable inclusion
domination relation ďvarInc (Figure 1b), the span inclusion domination relation ďspanInc
(Figure 1c), and the span length domination relation ďspanLen (Figure 1d). Note that, for
the variable inclusion domination rule, the skyline only makes sense for schemaless spanners,
as two distinct mappings that assign the same variables are always incomparable.

Variable-wise rules. We have defined our skyline operator relative to domination rules
expressed as spanners on explicit sets of variables. However, it will often be convenient to
define the rules as products of rules on a single variable by applying the product operator.
This ensures that the rule is “symmetric” in the sense that all variables behave the same:

▶ Definition 3.11. Let D be a domination rule in a single variable x, i.e., a spanner using
variables of tx, x:u, which we call a single-variable domination rule. For y P Variables, we let
Dy be the domination rule where we replace x and x: by y and y:, i.e., on every document
d, the set of mappings Dypdq consists of one mapping my for each mapping m P Dypdq with
mypyq and mypy:q defined like mpxq and mpx:q.

The variable-wise domination rule defined by D on a variable set X is then simply
Ś

yPX Dy. A domination rule is said to be variable-wise if it can be expressed in this way.

We will often leave the set of variables X implicit, and may abuse notation to identify
single-variable domination rules with the variable-wise domination rule that they can define
on an arbitrary variable set.

▶ Example 3.12. The self domination rule (Definition 3.2) is variable-wise, because it can
be obtained from the following trivial single-variable domination rule:

Dself “ Σ˚x:txtΣ˚uuΣ˚ _ Σ˚.

The Σ˚ term above is used to ensure reflexivity and express the vacuous domination relation
between the mapping where x is not assigned and the mapping where x: is not assigned.

The span inclusion domination rule, left-to-right domination rule, and variable inclusion
domination rule (Definitions 3.3–3.5) are also variable-wise with the single-variable rules:

DspanInc “ Σ˚x:tΣ˚xtΣ˚uΣ˚uΣ˚ _ Σ˚.

Dltr “ Σ˚x:txtΣ˚uΣ˚uΣ˚ _ Σ˚.

DvarInc “ Σ˚x:tΣ˚uΣ˚ _ Dself .

Here, Σ˚x:tΣ˚uΣ˚ expresses that assigning a variable is better than not assigning it.

As for the span length domination rule (Definition 3.6), it is also variable-wise, but a
standard pumping argument shows that it cannot be defined by a regular spanner:

▶ Lemma 3.13. The single-variable span length domination rule DspanLen is not expressible
as a regular spanner.
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7:8 Skyline Operators for Document Spanners

4 Closure under the Skyline Operator

We have defined the skyline operator relative to domination rules expressed by regular
spanners. One natural question is then to understand whether the skyline operator under
such rules extends the expressive power of spanner formalisms, or whether it can be defined
in existing models. This is what we investigate in this section.

Regular spanners. We first focus on regular spanners, and show that they are closed under
the skyline operator for domination rules expressed as regular spanners. We do so by showing
how the skyline operator can be expressed with operations under which regular spanners are
closed, namely join, intersection and difference (see Appendix A for definitions).

▶ Theorem 4.1. There is an algorithm that, given a sequential VA defining a regular spanner
P and a sequential VA defining a domination rule D, computes a sequential VA for ηDP .

Theorem 4.1 generalizes a result of Fagin et al. [11, Theorem 5.3] on the expressiveness of
transitive “denial pgds.” In our terminology, their theorem states that the class of complete
regular spanners is closed under the restriction to maximal answers defined by a regular
domination rule. Theorem 4.1 thus extends their result to schemaless regular spanners.

Theorem 4.1 implies that taking the skyline relative to regular domination rules does not
increase the expressivity of regular spanners. However, like the result of [11], our construction
may compute VAs that are exponentially bigger than the input VA. In Section 5, we will see
that this is unavoidable for any sequential VA expressing the skyline.

As an application of Theorem 4.1 we get in particular that regular spanners are closed
under the skyline operator for most of the examples presented earlier, i.e., Definitions 3.2–3.5.

▶ Corollary 4.2. There are algorithms that, given a sequential VA P , compute sequential
VAs for ηself P , ηvarIncP , ηltrP , and ηspanIncP , respectively.

By contrast, Theorem 4.1 does not apply to the span-length domination rule, as it is not
expressible as a regular spanner (Lemma 3.13). In fact, we can show that taking the skyline
under this domination rule is generally not expressible as a regular spanner:

▶ Proposition 4.3. There is a sequential VA P such that ηspanLenP is not regular.

Other spanner formalisms. It is natural to ask whether closure results such as Theorem 4.1
also hold for other spanner formalisms. In particular, we can ask this for the language of
core spanners, which extend regular spanners with string equalities; see [10] for the precise
definitions and [24] for the schemaless case. We can show that core spanners, contrary to
regular spanners, are not closed under the skyline operator:

▶ Theorem 4.4. The core spanners are not closed under the skyline operator with respect
to the span inclusion domination rule DspanInc, even on schema-based spanners: there is a
schema-based core spanner P such that ηspanIncP cannot be expressed as a core spanner. The
same is true of the skyline ηvarInc with the variable inclusion domination rule.

This result was already shown in [11] for the span inclusion domination rule, but that
result only showed inexpressibility as a schema-based core spanner. Our result extends to
the schemaless setting, and also establishes the result for the variable inclusion domination
rule. See the full version [4] for the formal definitions and the proof.

We leave open the question of extending other formalisms with the skyline operator, e.g.,
the generalized core spanners which extend core spanners with the difference operator [22], or
the context-free spanners [20] that define spanners via context-free grammars. Note that, by
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contrast, closure is easily seen to hold in the formalism of RGXlog programs, where spanners
are defined using Datalog rules [22]. Indeed, this class consists of precisely the polynomial-
time spanners (under data complexity). Thus, for any domination rule D for which the
maximal answers can be computed in polynomial time data complexity (in particular, for
domination rules expressed as regular spanners), the result of the skyline operator for D on
an RGXlog program can be expressed as an RGXlog program.

In the rest of this paper, we focus on applying the skyline operators to regular spanners,
with domination relations also defined via regular domination rules.

5 State Complexity of the Skyline Operator

We have seen how the skyline operator does not increase the expressive power of regular
spanners, in the sense that it could be expressed using regular operations. However, this does
not account for the price of this transformation. In this section, we show that the size of
sequential VAs for some domination rules increases exponentially when applying the skyline
operator. Hence, we essentially study the state complexity of VAs under the skyline operator,
similarly to traditional studies of the state complexity for regular languages (e.g., [15]).
Specifically, we show the following lower bound, for the variable inclusion domination rule:

▶ Theorem 5.1. For every n P N, there is a sequential VA A with Opnq states such that,
letting PA be the regular spanner that it defines, any sequential VA representing the regular
spanner ηvarIncPA must have 2Ωpnq states.

We will show in later sections how this lower bound on the state complexity of the skyline
operation can be complemented with computational complexity lower bounds.

Proof technique: Representing Boolean functions as VAs. We show Theorem 5.1 using
representations of Boolean functions as sequential VAs, as we now explain. Let SVars Ď

Variables be a finite set of variables (which will be used to define spanners), and let Varsb :“
txb | x P SVarsu be a set of Boolean variables. For every mapping m assigning spans to
some of the variables in SVars (i.e., dompmq Ď SVars), we define a Boolean assignment
mb : Varsb Ñ t0, 1u by setting mbpxbq :“ 1 if and only if x P dompmq, i.e., x gets assigned a
span by m. Let P be a document spanner with variables SVars and let d be an input document.
Then we denote by BoolpP, dq the Boolean function whose models are tmb | m P P pdqu.

Our intuitive idea is that, if the function BoolpP, dq is hard to represent, then the same
should be true of the spanner P . To make this precise, let us introduce the representations
of Boolean functions that we work with:

▶ Definition 5.2. A nondeterministic read-once branching program1 (NROBP) over the
variable set Varsb is a tuple Π “ pG, s, t, µq where G “ pV, Eq is a directed acyclic graph,
s P V and t P V are respectively the source and sink nodes, and the function µ labels some of
the edges with literals of variables in Varsb, i.e., variables and their negations; formally µ is a
partial function from E to the literals over Varsb. We require that, for every source-sink path
s “ v0, . . . , vn “ t, every variable appears at most once in the literals labeling the edges of the
path, i.e., there are no two indices 0 ď i ă j ď n´ 1 such that µppvi, vi`1qq and µppvj , vj`1qq

are both defined and map to literals of the same variable.

1 We remark that what we introduce here are sometimes called acyclic read-once switching and rectifier
networks, but theses are known to be equivalent to the more common definition of NROBPs up to
constant factors [23], so we do not make the difference here.
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7:10 Skyline Operators for Document Spanners

An NROBP Π computes a Boolean function over Varsb whose models are defined in the
following way. An assignment mb : Varsb Ñ t0, 1u is a model of Π if there is a source-sink
path in G such that all literal labels on the path are satisfied by mb, i.e., there is a sequence
s “ v0, . . . , vn “ t such that, for each 0 ď i ă n for which ℓ :“ µppvi, vi`1qq is defined, then
the literal ℓ evaluates to true according to mb.

NROBPs are intuitively similar to automata. To formalize this connection, we show how,
given a sequential VA and document, we can efficiently compute an NROBP describing which
subsets of the variables can be assigned in captured mappings:

▶ Lemma 5.3. Let P be a regular spanner on variable set SVars represented by a sequential
VA A with n states. Then, for every document d, there is an NROBP G representing
BoolpP, dq with Op|d| ˆ n ˆ |SVars|q nodes.

Proof sketch. We compute the product of the VA with the input document, to obtain a
directed acyclic graph representing the runs of the VA on the document. We obtain the
NROBP by relabeling the marker transitions and performing some other modifications. ◀

We will now use the fact that NROBPs are exponentially less concise than other Boolean
function representations. Namely, we define a read-3 monotone 2-CNF formula on a set of
variables X as a conjunction of clauses which are disjunctions of 2 variables from X, where
each variable appears at most 3 times overall. We use the fact that converting such formulas
to NROBPs can incur an exponential blowup. This result is known (see, e.g., [7]) but we
give a proof in the full version [4] for convenience:

▶ Proposition 5.4 ([7]). For any n P N, there is a read-3 monotone 2-CNF formula Φ on n

variables having size Opnq such that every representation of Φ as an NROBP has size 2Ωpnq.

We now conclude the proof of Theorem 5.1, sketched below (see the full version [4] for
details):

Proof sketch. Given a read-3 monotone 2-CNF formula Φ, we show how to construct a
regular spanner on which the skyline operator captures mappings corresponding precisely to
the satisfying assignments of Φ. As a sequential VA expressing this spanner can be efficiently
converted to an NROBP by Lemma 5.3, we can conclude that, when applied to the family of
formulas from Proposition 5.4, all sequential VA representations have exponential size. ◀

An independent result: Lower bound on the state complexity of schema-less joins.
We believe that the connection to Boolean functions used to show Theorem 5.1 can be of
independent interest as a general technique to show lower bounds on the state complexity of
document spanners. Indeed, independently from the skyline operator, we can also use this
connection to show a lower bound on the size of sequential VAs representing the natural join
of two regex-formulas. The natural join operator is a standard operator on spanners that
merges together compatible mappings: see Appendix A for the formal definition. We have:

▶ Theorem 5.5. For every n P N, there are regex-formulas en and e1n of size Opnq such that
every sequential VA equivalent to en ’ e1n has 2Ωpnq states.

This result is the counterpart for state complexity of the NP-hardness of evaluating
the join of two regex-formulas [21]. It only holds in the schemaless case; indeed in the
schema-based case it is known that the join of two functional VAs can be computed as a
functional VA in polynomial time [13].
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6 Complexity of the Skyline Operator

We have shown that the skyline operator applied to regular spanners cannot be expressed
as a regular spanner without an exponential blowup in the size, even for domination rules
expressed as regular spanners (namely, for the variable inclusion domination rule). We now
study whether we can efficiently evaluate the skyline operator without compiling it into the
automaton. Formally, we study its computational complexity of skyline extraction:

▶ Definition 6.1. The skyline extraction problem is the following: given a document d, a
sequential VA A capturing a regular spanner PA, and a domination rule D expressed as a
sequential VA, compute the set of mappings in the results of the skyline operator pηDPAqpdq.

Data complexity. We start by observing that skyline extraction is clearly tractable in the
data complexity perspective in which d is the only input:

▶ Proposition 6.2. For any fixed sequential VA A and domination rule expressed as a
sequential VA D, the skyline extraction problem for PA and D can be solved in polynomial
time data complexity, i.e., in polynomial time in the input d.

Proof. We use Theorem 4.1 to compute a sequential VA for pηDPAqpdq, which is independent
from the input document d. We can then produce the mappings captured by this fixed
sequential VA on d in polynomial data complexity.

Alternatively, without using the theorem, note that we can simply materialize the set of
all captured mappings pPAqpdq, in polynomial time because A is fixed. Then, for any pair of
mappings, we can check if the domination relation holds using the domination rule D; this
is again in polynomial time. We then return the set of maximal mappings in polynomial
time. ◀

Note that this result would easily extend to fixed expressions using multiple skyline
operators together with regular spanner operators, as all these operators are polynomial-time.

Combined complexity. We now turn to combined complexity settings in which the domina-
tion rule D and the spanner P are considered as part of the input. In fact, we will mostly
consider the problem variant in which we fix a single-variable domination rule (e.g., variable
inclusion), we take the skyline relative to the corresponding variable-wise domination rule,
and only the spanner P is part of the input. Remember that we focus on regular spanners
represented as sequential VAs, since for those it is known that the combined complexity of
spanner evaluation is output polynomial [18].

As we have seen in Section 4, in terms of expressiveness, the regular spanners are
closed under all domination rules expressible as regular spanners, in particular those of
Definitions 3.2–3.5. However, we have seen in Section 5 that compiling the skyline into the
VA may generally incur an exponential blowup, already for fixed domination rules. This
bars any hope of showing tractability of the skyline extraction problem by applying known
evaluation algorithms on the result of this transformation (e.g., those from [13, 12, 3]),

This leads to the question if there are other approaches to solve the skyline extraction
problem with efficient combined complexity, without materializing an equivalent VA. In this
section, we show that this is not the case, assuming P ‰ NP. Our lower bound already holds
for a fixed domination rule, namely, the variable inclusion domination rule; and in fact it
even holds in query complexity, i.e., when the document is fixed.
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▶ Theorem 6.3. There is a fixed document d such that the following problem is NP-hard:
given a sequential VA A encoding a regular spanner PA and a number n P N which is at most
the size of A, decide whether pηvarIncPAqpdq contains more than n mappings.

This will imply that, conditionally, the skyline extraction problem is intractable in
combined complexity. Intuitively, if it is intractable to decide whether the skyline extracts
a large number of mappings, then producing the mappings is also intractable. To make
this formal, we use the framework of output-polynomial algorithms, where an algorithm
for a problem f : Σ˚ Ñ Σ˚ runs in output-polynomial time if, given an input x, it runs in
time polynomial in |x| ` |fpxq|. Namely, we use the following folklore connection between
output-polynomial time and decision problems, see e.g. [8] for a similar construction:

▶ Lemma 6.4. Let f : Σ˚ Ñ Σ˚ and let p be a polynomial. Assume that it is NP-hard, given
an input x and integer k ď pp|x|q, to decide if |fpxq| ă k. Then there is no output polynomial
time algorithm for f , unless P “ NP.

From Theorem 6.3 and Lemma 6.4, we directly get our intractability result:

▶ Corollary 6.5. Unless P “ NP, there is no algorithm for the skyline extraction problem
with respect to the variable inclusion domination rule that is output-polynomial in combined
complexity (i.e., in the input sequential VA), even when the input document is fixed.

Note that this result is incomparable to Theorem 5.1: lower bounds on the size of equivalent
VAs generally do not preclude the existence of other algorithms that are tractable in combined
complexity, and conversely it could in principle be the case that evaluation is intractable in
combined complexity but that there are small equivalent VAs that are intractable to compute.
Besides, the proofs are also different. Namely, the proof of Theorem 5.1 used monotone
2-CNF formulas, for which we could compute spanners giving an exact representation of the
satisfying assignments, but for which the satisfiability problem is tractable. As we will see,
the proof of Theorem 6.3 uses the intractability of SAT on CNF formulas, but does not use
an exact representation of the satisfying assignments.

Proving Theorem 6.3. We give the proof of Theorem 6.3 in the rest of this section, together
with an additional observation at the end. In the next section, we will study how hardness
can be generalized to other domination rules (in particular all domination rules introduced
in Section 3 except the trivial self-domination rule), and will investigate the existence of
tractable cases.

Proof of Theorem 6.3. We reduce from the satisfiability problem SAT. Let F be a CNF
formula with nx Boolean variables xi with i P rnxs and nc clauses Cj with j P rncs.
For convenience, define the set Ti “ tj | xi appears positively in Cju, and define the set
Fi “ tj | xi appears negatively in Cju. We will build a regular spanner on variables vi,j for
i P rnxs and j P rncs, together with a special variable a.

We will define two spanners rvalid and rmask, both as regex formulas, and will evaluate
them on the empty document d “ ε. Let us first sketch the idea: the spanner rvalid will
extract one mapping for each possible assignment to the variables of F . Each such mapping
will encode which clauses get satisfied by which variable in the assignment, by assigning
spans to the corresponding spanner variables vi,j . The second spanner rmask will capture nc

additional mappings which will be maximal (thanks to the additional variable a) and will
each dominate the mappings captured by rvalid for which the corresponding assignment does
not satisfy a specific clause of F . This will ensure that F is satisfiable if and only if there are
strictly more than nc mappings in the skyline of rvalid _ rmask on d.
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Formally, we define the spanners as regex-formulas, where the dots denote concatenation:

rvalid “ ¨iPrnxspp¨jPTi
vi,jtεuq _ p¨jPFi

vi,jtεuqq rmask “ atεu ¨
ł

kPrncs

¨iPrnxs,jPrncsztkuvi,jtεu.

This definition is in polynomial time in the input CNF F .
Note that the mappings captured by rmask are never dominated. First, they do not

dominate each other: each of them assigns no vi,k for some k. Further, all mappings of rmask
assign a and all mappings of rvalid do not, so the latter cannot dominate the former.

To construct a CNF variable assignment from a mapping m captured by rvalid, we use
the following encoding: if the mapping m assigns the span r0, 0y to the spanner variable vi,j

then this encodes that the variable xi appears in the clause Cj and xi is assigned in a way
that satisfies Cj . The definition of rvalid ensures that all variables appearing at least once
will be assigned exactly one truth value among true or false.

We claim that on d “ ε, the skyline pηvarIncprvalid _ rmaskqqpdq contains at least nc ` 1
mappings if and only if F is satisfiable. Assume first that F is satisfiable, and let v be a
satisfying assignment. Then there is a corresponding mapping m captured by rvalid encoding v.
Indeed, as v satisfies all clauses, for every clause index j P rncs there is a variable xi assigned
by v in a way that makes Cj true, i.e., vi,j is assigned. Hence m will not be dominated
by any mapping captured by rmask. Thus, the skyline of rvalid _ rmask must contain some
mapping captured by rvalid, namely, either m or some other mapping captured by rvalid
which dominates m. In all cases, the skyline must have at least nc ` 1 mappings.

Now assume the skyline of rvalid _ rmask has at least nc ` 1 mappings. By construction,
rmask captures exactly nc maximal mappings, so there is at least one mapping m in the
skyline which is captured by rvalid. This mapping m encodes an assignment v of the variables
of F . As m is not dominated by any mapping captured by rmask, for each clause index
j P rncs there must exist a variable index i P rnxs such that vi,j is assigned. Therefore v

is a satisfying assignment of F . Overall, we have shown that F is satisfiable if and only if
ηvarIncprvalid _ rmaskq has at least nc ` 1 satisfying mappings, which concludes the proof. ◀

We last notice that we can modify Corollary 6.5 slightly: instead of applying to a fixed
variable-wise domination rule (defined by fixing a single-variable domination rule), the result
also applies when the domination rule is specified explicitly on the entire domain as a regular
spanner:

▶ Corollary 6.6. Assuming P ‰ NP, there is no algorithm for the skyline extraction problem
which is output polynomial in combined complexity even if the domination rule is given as
one sequential VA (not by implicitly taking the product of single-variable sequential VAs).

7 Intractable and Tractable Domination Rules

We have shown that the skyline extraction problem is intractable in combined complexity
for regular spanners, and this intractability already holds in the case of a fixed variable-wise
domination rule, namely, the variable inclusion rule. However, this leaves open the same
question for other domination rules, e.g., for the span inclusion rule – in particular if we
restrict our attention to schema-based spanners, which are typically better-behaved (e.g., for
the complexity of the join and difference operators [10]).
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In this section, we show that, unfortunately, hardness still holds in that context. Specifi-
cally, we introduce a condition on domination rules, called having unboundedly many disjoint
strict domination pairs (UMDSDP). This condition is clearly satisfied by our example domi-
nation rules (except self-domination). We then show that UMDSDP is a sufficient condition
for intractability: this result re-captures the hardness of variable inclusion (Theorem 6.3) and
also shows hardness for the span inclusion, left-to-right, and span length domination rules.

We then introduce a restricted class of domination rules, called variable inclusion-like,
and show that on this class a variant of the UMDSDP condition in fact characterizes the
intractable cases. In particular, all such domination rules without the condition enjoy
tractable skyline extraction. Last, we study additional examples for general domination rules,
and show that among rules not covered by UMDSDP, some are easy and some are hard.

The UMDSDP condition. To introduce our sufficient condition for intractability of skyline
extraction, we first define disjoint strict domination pairs.

▶ Definition 7.1. Fixing a variable x, a single-variable mapping is a mapping m using only
the variable x: the mapping m may map x to a span mpxq, or it may not map x to anything,
which is represented by the special symbol “´”.

For a domination relation ď on a document d, a domination pair of ď on d is a pair
pm1, m2q of single-variable mappings with m1 ď m2. The domination pair is strict if
m1 ‰ m2.

Two strict domination pairs pm1, m2q and pm1
1, m1

2q are disjoint if, letting s be the smallest
span containing the spans m1pxq and m2pxq if defined, and letting s1 be the smallest span
containing the spans m1

1pxq and m1
2pxq if defined, then s and s1 are disjoint spans. Otherwise,

the two strict domination pairs overlap.

Note that, in a strict domination pair pm1, m2q, at least one of m1 and m2 has to assign x

to a span; and if one of them does not, then the resulting unassigned span (“´”) is not taken
into account. In what follows, we abuse notation and identify single-variable mappings with
the span to which they map x, or identify them to “´” if they do not map x to anything.

▶ Example 7.2. The pairs pr1, 3y, r2, 4yq and pr9, 10y, r6, 8yq are disjoint. The pairs
pr1, 3y, r7, 9yq and pr4, 6y, r10, 12yq overlap (even though all of the constituent spans are
disjoint). Finally, p´, r1, 3yq and pr4, 6y, r10, 12yq are also disjoint.

We can now define the UMDSDP condition, which will be sufficient to show hardness:

▶ Definition 7.3. A single-variable domination rule D has unboundedly many disjoint strict
domination pairs (UMDSDP) if, given n P N, we can compute in time polynomial in n a
document d P Σ˚ and n strict domination pairs S1, . . . , Sn of Dpdq that are pairwise disjoint.

▶ Example 7.4. Dself does not satisfy UMDSDP as it has no strict domination pairs.
The span length domination rule satisfies UMDSDP. Indeed, for n P N, we can take the

word an and the disjoint strict domination pairs tpri, iy, ri, i ` 1yq | i P r0, n ´ 1su. The same
pairs show that UMDSDP holds for the span inclusion rule and for the left-to-right rule.

Finally, the variable inclusion domination rule satisfies UMDSDP with the set of pairs
tp´, ri, i ` 1yq | i P r0, n ´ 1su.

Consider the domination rule Dstart defining the domination relation ďstart that contains
the pairs tpr1, iy, r1, jyq | i, j P N, i ď ju plus the trivial pair p´,´q for reflexivity. Then
ďstart has unboundedly many strict domination pairs, but no two of them are disjoint, so the
UMDSDP condition is not respected. (However, we will still be able to show intractability
for this rule; see Proposition 7.9.)



A. Amarilli, B. Kimelfeld, S. Labbé, and S. Mengel 7:15

We remark that, for single-variable domination rules that are regular, the UMDSDP
condition holds whenever there exist arbitrarily many pairwise disjoint strict domination
pairs (i.e., in this case we can always efficiently compute them); see the full version [4] for
details.

UMDSDP implies hardness. We now show that the UMDSDP condition implies that
skyline extraction is hard. The proof is a variant of the one for variable inclusion:

▶ Theorem 7.5. Let D be a single-variable domination rule satisfying UMDSDP. The
skyline extraction problem for D, given a sequential VA A and a document d P Σ˚, is not
output-polynomial unless P “ NP.

This implies the hardness of the other variable-wise domination rules presented earlier,
completing Corollary 6.5. Note that these rules are schema-based spanners, and we can also
notice that hardness already holds if the input spanner is functional, i.e., schema-based:

▶ Corollary 7.6. There is no algorithm for the skyline extraction problem with respect to
the span inclusion domination rule or the left-to-right domination rule or the span length
domination rule which is output-polynomial in combined complexity, unless P “ NP. This
holds even if the input VA is required to be functional.

Variable inclusion-like rules. We have seen that the UMDSDP condition is a sufficient
condition for skyline extraction to be hard, but this leaves open the question of whether it
is necessary. We will now focus on a fragment of domination rules which we call variable
inclusion-like domination rules, where this is the case. Formally, we say that a domination
relation ď is variable inclusion-like if for all strict domination pairs pm1, m2q we have for all
x P Variables that if m1pxq is defined, then m2pxq is defined as well and m1pxq “ m2pxq.

In contrast with the variable inclusion rule that contains all such pairs pm1, m2q, we only
require that a subset of them hold in ď. We will define variable inclusion-like domination
rules in a variable-wise fashion: for single-variable variable inclusion-like rules, the strict
domination pairs are necessarily of the form p´, sq for a span s. In other words, a variable-wise
inclusion-like domination rule is defined by indicating, on each document, which spans s can
appear as the right-hand-side of such a pair. Further, for variable inclusion-like rules, two
strict domination pairs are disjoint if and only if their right-hand-sides are.

We can show that, on variable inclusion-like domination rules, we have a dichotomy on a
variant of the UMDSDP condition:

▶ Theorem 7.7. Let D be a single-variable domination rule which is variable inclusion-
like. If D satisfies the UMDSDP condition or accepts a pair of the form p´, ri, iyq on some
document, then the skyline extraction problem for D, given a sequential VA and document,
is not output-polynomial in combined complexity unless P “ NP. Otherwise, the skyline
extraction problem for D is output-polynomial in combined complexity.

The lower bound of the dichotomy follows from Theorem 7.5, plus the observation that a
single pair of the form p´, ri, iyq is sufficient to show hardness:

▶ Lemma 7.8. Let D be a single-variable domination rule that accepts on some document
a pair p´, ri, iyq. Then the skyline extraction problem for D, given a sequential VA and
document, is not output-polynomial in combined complexity unless P “ NP.

Hence, the interesting result in Theorem 7.7 is the upper bound. We show it in the full
version [4] by observing that the set of right-hand-sides of strict domination pairs for variable
inclusion-like rules that do not satisfy UMDSDP have bounded hitting set number, and
showing that this implies tractability.
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Other cases. Theorems 7.5 and 7.7 do not settle the complexity of non-UMDSDP domination
rules which are not variable inclusion-like. We conclude with some examples of rules that
can be shown to be intractable. We first show it for the rule ďstart introduced earlier:

▶ Proposition 7.9. Refer back to the variable-wise domination rule Dstart from Example 7.4.
There is no output-polynomial combined complexity algorithm for the skyline extraction
problem for that rule, assuming P ‰ NP.

We show hardness for another rule that fails the UMDSDP, where all strict domination
pairs share the same right-hand-side:

▶ Proposition 7.10. Consider the variable-wise domination rule expressed by the regular ex-
pression xta˚ua˚x:tbu_Dself . There is no output-polynomial combined complexity algorithm
for the skyline extraction problem for that rule, assuming P ‰ NP.

We note, however, that the reverse of that rule, where all strict domination pairs share
the same left-hand-side, is in fact tractable (and also fails the UMDSDP). This illustrates
that, counter-intuitively, a complexity classification on variable-wise domination rules would
not be symmetric between the left-hand-side and right-hand-side:

▶ Proposition 7.11. The skyline extraction problem for the variable-wise domination rule
x:ta˚ua˚xtbu _ Dself is output-polynomial in combined complexity.

8 Conclusions

We have introduced the general framework of domination rules to express the skyline operator
for document spanners, with rules that are themselves expressed as a spanner. We have
shown that this operator (with regular rules) does not increase the expressiveness of regular
spanners, but that it incurs an unavoidable exponential blowup in the state complexity and
is intractable to evaluate in combined complexity for many natural fixed rules.

Our work leaves several questions open for future investigation. The most immediate
question is whether the skyline extraction problem admits a dichotomy on the variable-wise
regular domination rule in the general case, i.e., extending Theorem 7.5 to arbitrary such
rules. However, this seems challenging. Another question is whether the hardness results of
Section 7 also give state complexity lower bounds of the kind shown in Section 5, in particular
in the schema-based context; and whether there is a dichotomy on state complexity.

Last, an intriguing question is whether the top-k problem of computing a constant
number k of mappings from the skyline is always tractable in combined complexity. None of
our hardness results precludes it, but we are not aware of an algorithm for that problem.
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A Spanner Algebra

In this appendix, we introduce some operators on spanners that are used in the main text.
For every spanner P and every subset Y Ď SVarspP q, we define the projection operator

πY by saying that πY P is the spanner that extracts on every document d the set pπY P qpdq :“
tm|Y | m P P pdqu where m|Y is the restriction of m to Y .

The natural join P1 ’ P2 of two spanners P1 and P2 is a spanner which accepts all
the mappings m which are the union of two compatible mappings m1 accepted by P1 and
m2 accepted by P2. Said differently, pP1 ’ P2qpdq :“ tm P Maps | Dm1 P P1pdq, Dm2 P

P2pdq, m1 „ m ^ m2 „ m ^ dompm1q Y dompm2q “ dompmqu.
We remark that if SVarspP1q X SVarspP2q “ H then the join operator is the Cartesian

product defined before.
The intersection operator X is defined to compute the spanner P1 X P2 which on every

document computes the set pP1 XP2qpdq :“ P1pdq XP2pdq. Observe that that if SVarspP1q “

SVarspP2q and both spanners are schema-based, then the join operator is the intersection:
pP1 ’ P2qpdq “ P1pdq X P2pdq.

The union P1 Y P2 is defined to as the spanner which on every document computes the
set pP1 Y P2qpdq :“ P1pdq Y P2pdq.

The difference, P1 ´ P2 is a binary operator which accepts all mappings accepted by P1
which are not accepted by P2. Said differently, pP1 ´ P2qpdq :“ P1pdqzP2pdq. Note that this
is the usual difference operator on sets, and not the difference operator defined in [19] which
accepts mappings of P1 for which no compatible mapping is accepted by P2.

It is known that the projection, natural join operator and union operators do not increase
the expressive power of regular spanners, see [10] for the case of schema-based spanners
and [18] for schemaless spanners. It follows that the same is true for the Cartesian product
operator. We show in the full version [4] that intersection does not increase the expressivity,
either. As for the difference operator, the same result is proven in [10] for schema-based
regular spanners, but we are not aware of the same result for schemaless spanners and for
our semantics of difference, so we prove it in the full version [4].
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Abstract
A query algorithm based on homomorphism counts is a procedure for determining whether a
given instance satisfies a property by counting homomorphisms between the given instance and
finitely many predetermined instances. In a left query algorithm, we count homomorphisms from
the predetermined instances to the given instance, while in a right query algorithm we count
homomorphisms from the given instance to the predetermined instances. Homomorphisms are
usually counted over the semiring N of non-negative integers; it is also meaningful, however, to count
homomorphisms over the Boolean semiring B, in which case the homomorphism count indicates
whether or not a homomorphism exists. We first characterize the properties that admit a left query
algorithm over B by showing that these are precisely the properties that are both first-order definable
and closed under homomorphic equivalence. After this, we turn attention to a comparison between
left query algorithms over B and left query algorithms over N. In general, there are properties that
admit a left query algorithm over N but not over B. The main result of this paper asserts that if a
property is closed under homomorphic equivalence, then that property admits a left query algorithm
over B if and only if it admits a left query algorithm over N. In other words and rather surprisingly,
homomorphism counts over N do not help as regards properties that are closed under homomorphic
equivalence. Finally, we characterize the properties that admit both a left query algorithm over B
and a right query algorithm over B.
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1 Introduction

Consider a scenario in which we are interested in a certain property of database instances
and we wish to find out whether or not a given instance A satisfies that property by asking
finitely many predetermined queries against A. Naturally, which properties can be checked
in this way depends on what kind of queries we are allowed to ask. For example, if we are
restricted to using Boolean conjunctive queries and evaluating them under set semantics,
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then only properties that are invariant under homomorphic equivalence stand a chance to
be checked in this way. In particular, this means that we cannot test in this way whether a
relation in a given instance contains precisely 5 tuples. In contrast, if we are also allowed to
ask for the number of homomorphisms from a given conjunctive query to A (a feature that is
supported by actual database management systems), then we can find out much more about
the instance A, including whether it satisfies the aforementioned property.

In this paper, we embark on a systematic study of this scenario. As usual, by a property
of instances we mean a class C of instances closed under isomorphisms. We write B for the
Boolean semiring with ∨ and ∧ as its operations, while we write N for the semiring of the
non-negative integers with + and × as its operations. Formally, we say that a class C of
instances admits a left query algorithm over B if there exists a finite set F = {F1, . . . , Fk} of
instances such that the membership in C of an arbitrary instance A is completely determined
by homB(F , A), where homB(F , A) is the k-tuple of Boolean values indicating for each i ≤ k

whether or not there is a homomorphism Fi → A. Similarly, we say that a class C of instances
admits a left query algorithm over N if there exists a finite set F = {F1, . . . , Fk} of instances
such that the membership in C of an arbitrary instance A is completely determined by
homN(F , A), where homN(F , A) is the k-tuple of non-negative integers indicating for each
i ≤ k how many homomorphisms from Fi to A there are. Right query algorithms over B and
over N are defined similarly, except that we now count the homomorphisms from A to each
Fi instead of the homomorphisms from each Fi to A.

Assume that the class C of instances under consideration admits a left query algorithm
over B or over N using the set F = {F1, . . . , Fk}. Let qFi be the canonical conjunctive query
associated with the instance Fi, 1 ≤ i ≤ k. Then homB(F , A) is the k-tuple of Boolean values
denoting whether qFi(A) = 1 or qFi(A) = 0, i.e., whether qFi is true or false on A under
set semantics. Similarly, homN(F , A) is the k-tuple of non-negative integers that are the
answers to qFi on A under bag-set semantics. Thus, intuitively, a class C admits a left query
algorithm over B or over N if membership in C is answerable by evaluating finitely many
Boolean conjunctive queries under set semantics or under bag-set semantics, respectively.
Observe that these are data complexity notions because the queries qF1 , . . . , qFk are fixed
while the instance A varies. Observe also that these two notions differ in expressive power:
for example, if C is the class of instances in which a particular relation R has precisely 5
tuples, then C admits a left query algorithm over N, but not over B.

There are two pieces of earlier work (each with different motivation and results) where
the notion of a left query algorithm or variants of this notion have been explored. First,
Bielecki and Van den Bussche [4] defined what it means for a query p to be derivable through
interrogation with a query language L using a database independent strategy, where the
interrogation consists of asking the cardinality |q(A)| for finitely many queries q ∈ L. When
L is the language of conjunctive queries with no existential quantifiers, such strategies
correspond to left-query algorithms over N; whereas, when L is the language of Boolean
conjunctive queries, they correspond to left-query algorithms over B. Second, when the
instances are unordered graphs, the concept of a left query algorithm over N was studied
by Chen et al. [9] under the name non-adaptive query algorithm; note that Chen et al. [9]
were apparently unaware of the work by Bielecki and Van den Bussche [4]. The term “non-
adaptive” is apt as it conveys that the instances Fi (or the associated conjunctive queries
qFi), 1 ≤ i ≤ k, in the set F depend only on the class C and do not change during a run
of the query algorithm. It is also natural to consider adaptive query algorithms, where the
instances Fi, 1 ≤ i ≤ k, are not required to be fixed up front. In fact, such adaptive notions
were explored in both [4] and [9]. In particular, Chen et al. [9] showed that adaptive left
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query algorithms over N are more powerful than non-adaptive ones over N. It is easy to see,
however, that the existence of an adaptive left query algorithm over B implies the existence of
a non-adaptive one over B. In this sense, adaptive left query algorithms over B are not more
powerful than non-adaptive ones over B. Also, since in this paper we study non-adaptive
algorithms only (but over both B and N), we will not use the adjective “non-adaptive” here.

Our investigation begins by focusing on left query algorithms over B. It is easy to see
that a class of instances admits a left query algorithm over B if and only if it is definable
by a Boolean combination of conjunctive queries. Using tools developed by Rossman [27]
to prove the preservation-under-homomorphisms theorem in the finite, we obtain a deeper
characterization of such classes by showing that a class of instances admits a left query
algorithm over B if and only if it is both first-order definable and closed under homomorphic
equivalence. Clearly, if a class of instances is closed under homomorphic equivalence, then it
is a (possibly infinite) union of homomorphic equivalence classes. We show that if C is a finite
union of homomorphic-equivalence classes, then C admits a left query algorithm over B if
and only if every homomorphic-equivalence class in that union admits a left query algorithm
over B. In contrast, a similar result does not hold for arbitrary infinite unions.

After this, we turn attention to a comparison between left query algorithms over B
and left query algorithms over N. As discussed earlier, left query algorithms over N are
more powerful than left query algorithms over B. The intuitive reason is that left query
algorithms over B do not differentiate between homomorphically equivalent instances, while
those over N do. The main (and technically more challenging) result of this paper reveals
that, in a precise sense, this is the only reason why left query algorithms over N are more
powerful than left query algorithms over B. More precisely, our main theorem asserts that if
a class C is closed under homomorphic equivalence, then C admits a left query algorithm
over B if and only if C admits a left query algorithm over N. In other words and rather
surprisingly, homomorphism counts over N do not help as regards properties that are closed
under homomorphic equivalence. As an immediate consequence, a constraint satisfaction
problem has a left query algorithm over N if and only if this problem is first-order definable.

Finally, we characterize the properties that admit both a left query algorithm over B and
a right query algorithm over B. In particular, we show that a class C of instances admits
both a left query algorithm over B and a right query algorithm over B if and only if C is
definable by a Boolean combination of Berge-acyclic conjunctive queries. To see the point of
this result, recall that if a class admits a left query algorithm over B, then it is definable by
a Boolean combination of conjunctive queries. Thus, if the class admits also a right query
algorithm over B, then these conjunctive queries can be taken to be Berge-acyclic.

Related work. A classical result by Lovász [25] characterizes graph isomorphism in terms
of “left” homomorphism counts: two graphs G and H are isomorphic if and only if for
every graph F , the number of homomorphisms from F to G is equal to the number of
homomorphisms from F to H. In more recent years, there has been a study of relaxations
of isomorphisms obtained by requiring that the number of homomorphisms from F to G
is equal to the number of homomorphisms from F to H, where F ranges over a restricted
class of graphs [12, 11, 6]. Furthermore, a study of relaxations of isomorphism obtained by
counting the number of “right” homomorphisms to a restricted class was carried out in [3].

There has been an extensive body of research on answering queries under various types
of access restrictions. Closer in spirit to the work reported here is view determinacy, which
is the question of whether the answers to a query can be inferred when given access only
to a certain view of the database instance [26]. We note that view determinacy is typically
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concerned with non-Boolean queries and non-Boolean views; in contrast, the question of
whether a class admits a left query algorithm over B can be interpreted as the question of
whether there is a finite set of Boolean conjunctive queries that determine a given Boolean
query. A study of view determinacy under bag-set semantics was recently initiated in [24].
Section 7 contains additional commentary on the relationship between left query algorithms
over N and view determinacy under bag-set semantics.

2 Basic Notions

Relational database instances. A relational database schema or, simply, a schema is a
finite set σ = {R1, . . . , Rm} of relation symbols Ri, each of which has a positive integer
ri as its associated arity. A relational database instance or, simply, an instance is a tuple
A = (RA

1 , . . . , R
A
m), where each RA

i is a relation of arity ri. The facts of the instance A are
the tuples in the relations RA

i , 1 ≤ i ≤ m. The active domain of A, denoted adom(A), is the
set of all entries occurring in the facts of A. All instances A considered are assumed to be
finite, i.e., adom(A) is finite. A graph is an instance A over a schema consisting of a binary
relation symbol E and such that EA is a binary relation that is symmetric and irreflexive.

The incidence multigraph inc(A) of an instance A is the bipartite multigraph whose parts
are the sets adom(A) and block(A) = {(R, t) : R ∈ σ and t ∈ RA}, and whose edges are the
pairs (a, (R, t)) such that a is one of the entries of t. A path of length n in A is a sequence
a0, a1, . . . , an of elements in adom(A) for which there are elements b1, . . . , bn in block(A) such
that the sequence a0, b1, a1, . . . , bn, an is a path in inc(A) in the standard graph-theoretic
sense (disallowing traversing an edge twice in succession in opposite directions). Two elements
a and a′ in adom(A) are connected if a = a′ or there is a path a0, a1, . . . , an in A with a = a0
and a′ = an. We say that A is connected if every two elements a and a′ in adom(A) are
connected. A cycle of length n in A is a path of length n in A with an = a0. We say A is
acyclic if it contains no cycles. The girth of A is the shortest length of a cycle in A or ∞ if
A is acyclic.

An instance A is a subinstance of an instance B if RA ⊆ RB , for every R ∈ σ.
A class C of instances is a collection of instances over the same schema that is closed

under isomorphism (i.e., if A ∈ C and B is isomorphic to A, then B ∈ C). Every decision
problem P about instances can be identified with the class of all “yes” instances of P .

Homomorphisms, conjunctive queries, and canonical instances. A homomorphism from
an instance A to an instance B is a function h : adom(A) → adom(B) such that for
every relation symbol R ∈ σ with arity r and for all elements a1, . . . , ar in adom(A) with
(a1, . . . , ar) ∈ RA, we have (h(a1), . . . , h(ar)) ∈ RB . We write h : A → B to denote that h is
a homomorphism from A to B; we also write A → B to denote that there is a homomorphism
from A to B. We say that A and B are homomorphically equivalent, denoted A ↔ B, if
A → B and B → A. Clearly, ↔ is an equivalence relation on instances. We write [A]↔ to
denote the equivalence class of A with respect to ↔, i.e., [A]↔ = {B : B ↔ A}.

Let C be a class of instances. We say that C is closed under homomorphic equivalence if
whenever A ∈ C and A ↔ B, we have that B ∈ C. As an example, for every instance A, we
have that the equivalence class [A]↔ is closed under homomorphic equivalence. For a different
example, the class of all 3-colorable graphs is closed under homomorphic equivalence.

We assume familiarity with the syntax and the semantics of first-order logic (FO). For a
FO-sentence φ, we denote by Mod(φ) the set {A : A |= φ} of instances A that satisfy φ under
the active domain semantics (i.e., the quantifiers range over elements of the active domain of
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the instance at hand). A Boolean conjunctive query (Boolean CQ) is a FO-sentence of the
form ∃x1 . . . xn(α1 ∧ · · · ∧ αk), where each αj is an atomic formula of the form R(y1, . . . , yr),
each variable yi is among the variables x1, . . . , xn, and each variable xi occurs in at least
one of the atomic formulas α1, . . . , αk.

The canonical instance of a conjunctive query q, denoted Aq, is the instance whose active
domain consists of the variables of q, and whose facts are the conjuncts of q. Conversely,
the canonical conjunctive query of an instance A, denoted qA, has, for each a in adom(A),
an existentially quantified variable xa and, for each fact (a1, . . . , ar) ∈ RA, a conjunct
R(xa1 , . . . , xar

). An immediate consequence of the semantics of FO is that, for every two
instances A and D, we have that D |= qA if and only if A → D.

A conjunctive query is Berge-acyclic if its canonical instance is acyclic, as defined earlier.
The notion of Berge-acyclicity is stronger than the more standard notion of acyclicity in
databse theory, which requires that the conjunctive query has a join tree (see, e.g., [1]).

Homomorphism counts, left and right profiles. Let N = (N,+,×, 0, 1) be the semiring of
the non-negative integers and let B = ({0, 1},∨,∧, 0, 1) be the Boolean semiring. If A and B
are two instances, then we write homN(A,B) for the number of homomorphisms from A to
B. For example, if A is a graph and K3 is the 3-clique, then homN(A,K3) is the number of
3-colorings of A. We extend this notion to homB(A,B), where homB(A,B) = 1 if there is a
homomorphism from A to B, and homB(A,B) = 0 otherwise. For example, homB(A,K3) = 1
if A is 3-colorable, and homB(A,K3) = 0 if A is not 3-colorable.

Let F = {F1, . . . , Fk} be a finite non-empty set of instances and let A be an instance.
The left profile of A in F over N is the tuple

homN(F , A) = (homN(F1, A), . . . , homN(Fk, A)).

The left profile of A in F over B is the tuple

homB(F , A) = (homB(F1, A), . . . , homB(Fk, A)).

The right profile of A in F over N is the tuple

homN(A,F) = (homN(A,F1), . . . , homN(A,Fk)).

The right profile of A in F over B is the tuple

homB(A,F) = (homB(A,F1), . . . , homB(A,Fk)).

Let A1, . . . , An be instances whose active domains are pairwise disjoint.
The direct sum A1 ⊕ · · · ⊕ An of A1, . . . , An is the instance such that RA1⊕···⊕An =
RA1 ∪ · · · ∪RAn , for every R ∈ σ.
The direct product A1 ⊗ · · · ⊗ An of A1, . . . , An is the instance such that the relation
RA1⊗···⊗An consists of all tuples (a1, . . . , ar) with (a1(i), . . . , ar(i)) ∈ RAi , for 1 ≤ i ≤ n

and for every R ∈ σ of arity r.

The next proposition is well known and has a straightforward proof.

▶ Proposition 2.1. Let A,B1, B2 be instances, and let K ∈ {B,N}. Then the following
statements are true.
1. homK(A,B1 ⊕B2) = homK(A,B1) +K homK(A,B2), provided that A is connected;
2. homK(A,B1 ⊗B2) = homK(A,B1) ·K homK(A,B2);
3. homK(B1 ⊕B2, A) = homK(B1, A) ·K homK(B2, A),
where +N and ·N stand for addition + and multiplication × of non-negative integers, while
+B and ·B stand for disjunction ∨ and conjunction ∧ of the Boolean values 0 and 1.
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3 Left Query Algorithms and Right Query Algorithms

In [9], Chen et al. focused on classes of graphs and introduced the notions of a left query
algorithm and a right query algorithm over the semiring N of the non-negative integers.
Here, we extend their framework in two ways: first, we consider classes of instances over
some arbitrary, but fixed, schema; second, we consider left query algorithms and right query
algorithms over the Boolean semiring B.

▶ Definition 3.1. Let C be a class of instances and let K be the semiring B or N.
Assume that k is a positive integer.

A left k-query algorithm over K for C is a pair (F , X), where F = {F1, . . . , Fk} is a
set of instances and X is a set of k-tuples over K, such that for all instances D, we
have that D ∈ C if and only if homK(F , D) ∈ X.
A right k-query algorithm over K for C is a pair (F , X), where F = {F1, . . . , Fk} is a
set of instances and X is a set of k-tuples over K, such that for all instances D, we
have that D ∈ C if and only if homK(D,F) ∈ X.

We say that C admits a left query algorithm over K if for some k > 0, there is a left
k-query algorithm over K for C. Similarly, we say that C admits a right query algorithm
over K if for some k > 0, there is a right k-query algorithm over K for C.

The term “query algorithm” is natural because we can think of a query algorithm
as a procedure for determining if a given instance belongs to the class C: we compute
the left homomorphism-count vector (in the case of a left query algorithm) or the right
homomorphism-count vector (in the case of a right query algorithm) and test whether it
belongs to X. When the semiring N is considered, this is a somewhat abstract notion of an
algorithm because it makes no requirements on the effectiveness of the set X. Not requiring
X to be a decidable set makes our results regarding the non-existence of left query algorithms
over N stronger. Moreover, in all cases where we establish the existence of a left query
algorithm over N or a right query algorithm over N, the set X will happen to be decidable
(for the semiring B, the set X is always finite, hence decidable).

Let K be the semiring B or N. It is clear that if two classes of instances admit a left
query algorithm over K, then so do their complements, their union, and their intersection.
Consequently, the classes of instances that admit a left query algorithm over K are closed
under Boolean combinations. Furthermore, the same holds true for right query algorithms.

By Part 3 of Proposition 2.1, we have that if K is the semiring B or the semiring N,
then homK is multiplicative on the left, i.e., for all instances A1, . . . , An and B, we have
homK(A1 ⊕ · · · ⊕An, B) = homK(A1, B) ·K · · · ·K homK(An, B). It follows that, as regards
the existence of left query algorithms, we may assume that all instances in the finite set F
of a left query algorithm over B or over N are connected. We state this observation as a
proposition that will be used repeatedly in the sequel.

▶ Proposition 3.2. Let C be a class of instances and let K be the semiring B or N. Then
the following statements are equivalent.
1. C admits a left query algorithm (F , X) over K.
2. C admits a left query algorithm (F , X) over K, where every instance in the set F is

connected.

Left profiles over N contain more information than left profiles over B. Therefore, if
membership in a class C can be determined using left profiles over B, then it ought to be
also determined using left profiles over N. Similar considerations hold for right profiles. The
next proposition makes these assertions precise.



B. ten Cate, V. Dalmau, P. G. Kolaitis, and W.-L. Wu 8:7

▶ Proposition 3.3. Let C be a class of instances and let F be a finite set of instances.
If C admits a left query algorithm over B of the form (F , X) for some set X, then C

admits a left query algorithm over N of the form (F , X ′) for some set X ′. In particular, if C
admits a left query algorithm over B, then it also admits a left query algorithm over N.

Furthermore, the same holds true for right query algorithms.

Proof. Assume that C admits a left query algorithm (F , X) over B, where F = {F1, . . . , Fk}
and X ⊆ {0, 1}k, for some k > 0. For every t = (t1, . . . , tk) ∈ {0, 1}k, we let Xt be the set

Xt = {(s1, · · · , sk) ∈ Nk : si = 0 if and only if ti = 0, for 1 ≤ i ≤ k}.

Consider the set X ′ =
⋃

t∈X Xt. It is easy to verify that the pair (F , X ′) is a left k-query
algorithm for C over N. The argument for right query algorithms is entirely analogous. ◀

As pointed out in the Introduction, the converse of Proposition 3.3 is not true, in general.
We now give several examples illustrating left and right query algorithms.

▶ Example 3.4. Let C be the class of all triangle-free graphs, i.e., the graphs G for which
there is no homomorphism from K3 to G. Clearly, C admits a left 1-query algorithm (F , X)
over B, where F = {K3} and X = {0} (recall that K3 is the 3-clique).1 Therefore, by
Proposition 3.3, C admits a left 1-query algorithm over N. In contrast, Chen et al. [9,
Proposition 8.2] showed that (the complement of) C does not admit a right query algorithm
over N, hence (again by Proposition 3.3) it does not admit a right query algorithm over B.

We now recall the definition of constraint satisfaction problems.

▶ Definition 3.5. If B is an instance, then the constraint satisfaction problem CSP(B) is
the following decision problem: given an instance A, is there a homomorphism from A to B?

For k ≥ 2, let Kk denote the k-clique. Then CSP(Kk) is the k-colorability problem: given
a graph G, is G k-colorable? During the past three decades, there has been an extensive study
of complexity of constraint satisfaction problems, motivated by the Feder-Vardi Conjecture
that for every instance B, either CSP(B) is NP-complete or CSP(B) is solvable in polynomial
time. This conjecture was eventually confirmed independently by Bulatov [7] and Zhuk [29].

Every constraint satisfaction problem will be identified with the class of its “yes” instances,
that is, for every instance B, we have that CSP(B) = {A : A → B}.

▶ Example 3.6. Let B be an instance. Clearly, CSP(B) admits a right 1-query algorithm
(F , X) over B, where F = {B} and X = {1}. Therefore, by Proposition 3.3, CSP(B) admits
a right 1-query algorithm (F , X ′) over N. In particular, the 3-colorability problem
CSP(K3) admits a right query algorithm over both B and N. In contrast, it will follow from
results in Section 4 and Section 5 that CSP(K3) does not admit a left query algorithm over
B or over N (see Remark 4.5).

▶ Example 3.7. Consider the homomorphic equivalence class [K3]↔. Note that [K3]↔ is the
class of all graphs that are 3-colorable and also contain a triangle. From results in Section
4, it will follow that [K3]↔ does not admit a left query algorithm over B (see Remark 4.5).
Furthermore, from results in Section 6, it will follow that [K3]↔ does not admit a right query
algorithm over B (see Remark 6.7).

1 This example, and several other examples in this paper, involve graphs. Here, the word “graph” may be
read as “structure over a schema with one binary relation”. Alternatively, it may be read as “structure
over a schema with one binary relation that is symmetric and irreflexive”, but, in the latter case, we
only require the query algorithm to behave correctly on such graphs, and we do not require the query
algorithm to distinguish such graphs from structures whose relation is not symmetric and irreflexive.
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4 Left Query Algorithms over B

In this section, we investigate which classes admit a left query algorithm over B. It is easy
to see that every class of instances that admits a left query algorithm over B is closed under
homomorphic equivalence. In other words, closure under homomorphic equivalence is a
necessary condition for the existence of a left query algorithm over B. The next result gives
an exact characterization of the classes of instances that admit a left query algorithm over B.

▶ Theorem 4.1. Let C be a class of instances. Then the following statements are equivalent.
1. C admits a left query algorithm over B.
2. C is definable by a Boolean combination of CQs.
3. C is FO-definable and closed under homomorphic equivalence.

Proof. We will first show the equivalence between statements (1) and (2), and then the
equivalence between statements (2) and (3).
(1) =⇒ (2): Let a left query algorithm over B for C consist of F = {F1, . . . , Fk} and X ⊆
{0, 1}k, and let qF1 , . . . , qFk be the canonical conjunctive queries of F1, . . . , Fk, respectively.
For every tuple t = (t1, . . . , tk) ∈ X, define

φt :=
∧

ti=1
qFi ∧

∧
ti=0

¬qFi .

Take φ :=
∨

t∈X φt. Then C = Mod(φ).
(2) =⇒ (1): Every class C defined by a conjunctive query q admits a left 1-query algorithm
over B. Indeed, we can pick F to consist of the canonical instance Aq of q, and X = {1}.
It follows by closure under Boolean combinations that every class defined by a Boolean
combination of conjunctive queries also admits a left query algorithm over B.
(2) =⇒ (3): This implication is immediate because CQs are first-order formulas whose truth
is preserved by homomorphisms.
(3) =⇒ (2): We will use two results from [27] about the homomorphism preservation theorem
in the finite. For instances A and B, we write A ↔n B to mean that A and B satisfy the
same existential positive FO-sentences of quantifier rank at most n, and write A ≡n B to
mean that A and B satisfy the same FO-sentences of quantifier rank at most n. The two
results from [27] in our concerns are
(a) Theorem 1.9: For every n, there is some m that depends on n such that for every

instances A and B with A ↔m B, there are instances A′ and B′ such that A ↔ A′,
B ↔ B′, and A′ ≡n B′.

(b) Lemma 3.9: For every m, the equivalence relation A ↔m B has finitely many equivalence
classes over the class of all instances.

Now, let C be a class definable by a FO-sentence φ and closed under homomorphic
equivalence ↔. Let n be the quantifier rank of φ, and let m be the integer in the statement
of (a). Note that m depends on n only.

We claim that Mod(φ) = C is closed under ↔m. Indeed, assume that A and B are two
instances such that A |= φ and A ↔m B. By (a), there are instances A′ and B′ such that
A ↔ A′, B ↔ B′, and A′ ≡n B′. It follows, successively, that

A′ |= φ (since A |= φ, A ↔ A′, and C is closed under ↔),
B′ |= φ (since φ has quantifier rank n and A′ ≡n B′),
B |= φ (since B ↔ B′ and C is closed under ↔).
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By (b), the equivalence relation ↔m has finitely many equivalence classes. Let A1, . . . , Ak

be representatives from each of these equivalence classes (one per equivalence class). For
different i, j in {1, . . . , k}, let ψi,j be an existential positive FO-sentence of quantifier rank
at most m such that Ai |= ψi,j but not Aj |= ψi,j , and let ψ(Ai) be the conjunction of all
ψi,j . Each ψ(Ai) is a Boolean combination of conjunctive queries and it holds for every
instance B that B ↔m Ai if and only if B |= ψ(Ai). Then φ is equivalent to the disjunction∨

Ai|=φ ψ(Ai) since Mod(φ) is closed under ↔m. Indeed, if B |= φ, then B ↔m Ai for some
Ai that satisfies φ, hence B |= ψ(Ai). Conversely, if B |=

∨
Ai|=φ ψ(Ai), then B |= ψ(Ai) for

some Ai that satisfies φ; it follows that B ↔m Ai, hence B |= φ. ◀

▶ Corollary 4.2. A class C of instances that is closed under homomorphic equivalence admits
a left query algorithm over B if and only if C is FO-definable.

Corollary 4.2, in particular, applies to classes of the form CSP(A), since such classes are
closed under homomorphic equivalence. It was shown in [28] that testing, for a given instance
A, whether CSP(A) is FO-definable, is NP-complete (and in fact, in polynomial time when
A is a core, i.e. when there is no homomorphism from A to a proper subinstance of A). It
follows that testing if a given CSP(A) admits a left query algorithm over B is NP-complete.
This extends to finite unions of CSPs:

▶ Proposition 4.3. The following problem is NP-complete: given instances A1, . . . , An, does⋃
1≤i≤n CSP(Ai) admit a left query algorithm over B?

Proof. Without loss of generality, assume that the instances A1, . . . , An are pairwise homo-
morphically incomparable (because, if Aj → Ak, then Aj can be removed without affecting
the class defined by

⋃
1≤i≤n CSP(Ai)). It is known that, in this case,

⋃
1≤i≤n CSP(Ai) is FO-

definable if and only if for each 1 ≤ i ≤ n, CSP(Ai) is FO-definable (this may be considered
folklore, see [5, Lemma 5.13] for an explicit proof). The result follows, by Corollary 4.2. ◀

Corollary 4.2 also applies to classes of the form [A]↔, and we can derive a similar
complexity bound. This will be obtained using the following proposition.

▶ Proposition 4.4. Let A be an instance and K ∈ {B,N}. Then the following statements
are equivalent.
1. [A]↔ has a left query algorithm over K .
2. CSP(A) has a left query algorithm over K .

Proof. Let K ∈ {B,N} throughout the proof.
(2) =⇒ (1): Clearly, [A]↔ = CSP(A) ∩ {B : A → B}. Also, {B : A → B} admits an obvious
left query algorithm over K . The result follows by closure under Boolean combinations.
(1) =⇒ (2): Assume CSP(A) has no left query algorithm over K . Let F be an arbitrary finite
set of connected instances (think: candidate left query algorithm for [A]↔). Since CSP(A) has
no left query algorithm over K , there are instances P ∈ CSP(A) and Q /∈ CSP(A) such that
homK(F , P ) = homK(F , Q). Let P ′ = P ⊕ A and let Q′ = Q⊕ A. Then, by construction,
P ′ ∈ [A]↔ and Q′ /∈ [A]↔ but homK (F , P ′) = homK (F , Q′) (cf. Proposition 2.1). Therefore,
by Proposition 3.2, [A]↔ has no left query algorithm over K . ◀

Consequently, the following problem is also NP-complete: given an instance A, does [A]↔
admit a left query algorithm over B?

▶ Remark 4.5. In Example 3.6, we asserted that the class CSP(K3) of 3-colorable graphs
admits no left query algorithm over B. Furthermore, in Example 3.7, we asserted that [K3]↔
(i.e., the class of graphs that are 3-colorable and also contain a triangle) admits no left query
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algorithm over B. Corollary 4.2 and Proposition 4.4, now account for the non-existence
of a left query algorithm over B for these classes: the reason is these two classes are not
FO-definable. In the next section (see Corollary 5.6), we will see that the same explanation
accounts for the fact that these classes admit no left query algorithm over N either.

Proposition 4.4 extends to finite unions of homomorphic equivalence classes.

▶ Theorem 4.6. For all instances A1, . . . , An, the following statements are equivalent.
1.

⋃
1≤i≤n [Ai]↔ admits a left query algorithm over B (equivalently, is FO-definable).

2. Each [Ai]↔, for i = 1, . . . , n, admits a left query algorithm over B (equivalently, is
FO-definable).

Proof. It is clear that the second statement implies the first. We will prove by induction on
n that the first statement implies the second. The base case (n = 1) is immediate since (i)
and (ii) coincide. Next, let n > 1 and C :=

⋃
1≤i≤n [Ai]↔. We proceed by contraposition:

suppose that [Ai]↔ does not admit a left query algorithm over B, for some i ≤ n. We
may assume without loss of generality that A1, . . . , An are pairwise not homomorphically
equivalent. Note that → induces a preorder among A1, . . . , An and, since n is finite, there is
a maximal. Without loss of generality, assume that An is a maximal, that is, An ̸→ Ai for
all i < n. We distinguish two cases.

(1) [An]↔ admits a left query algorithm over B. Then, for some i ≤ n− 1, [Ai]↔ does not
admit a left query algorithm over B. By induction hypothesis, we have C′ :=

⋃
1≤i≤n−1 [Ai]↔

does not admit a left query algorithm over B. Then it follows that C does not admit a
left query algorithm over B either, for otherwise C′ = C \ [An]↔ would admit a left query
algorithm over B.

(2) [An]↔ does not admit a left query algorithm over B. By Proposition 4.4, CSP(An)
does not admit a left query algorithm over B either. Let F be an arbitrary finite non-empty
set of connected instances. Since CSP(An) does not admit a left query algorithm over B,
there are P ∈ CSP(An) and Q /∈ CSP(An) such that homB(F , P ) = homB(F , Q). It follows
that

(P ⊕An) ∈ [An]↔, because both P,An ∈ CSP(An),
(Q⊕An) /∈ [An]↔, because Q /∈ CSP(An),
for all i < n, (Q⊕An) /∈ [Ai]↔, because An ̸→ Ai, and
homB(F , P ⊕An) = homB(F , Q⊕An), because the instances in F are all connected.

The first three points above give (P⊕An) ∈ C and (Q⊕An) /∈ C. Therefore, by Proposition 3.2,
C has no left query algorithm over B. ◀

Note that Theorem 4.6 only applies to finite unions of homomorphic-equivalence classes.
It may fail for infinite unions. Specifically, the class of all instances trivially admits a left
query algorithm over B, and it is the union of all equivalence classes [A]↔, as A varies over
all instances; however, as seen earlier, [K3]↔ does not admit any left query algorithm over B.

▶ Corollary 4.7. The following problem is NP-complete: given instance A1, . . . , An, does⋃
1≤i≤n [Ai]↔ admit a left query algorithm over B?

Each class C that is closed under homomorphic equivalence can trivially be represented
as a possibly-infinite union of classes of the form [A]↔. The algorithmic problem of testing
for the existence of a left query algorithm, of course, makes sense only for finitely presented
inputs. This motivates the above corollary.

As a last case study, consider Boolean Datalog programs, i.e., Datalog programs with
a zero-ary goal predicate. We omit a detailed definition of the syntax and semantics of
Datalog, which can be found, e.g., in [1]. Each Datalog program P naturally defines a class
of instances CP . It is well known that the class CP is closed under homomorphic equivalence.
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Furthermore, CP is FO-definable if and only if P is “bounded” (meaning that there is a fixed
number n, depending only on P and not on the input instance, such that P reaches its fixed
point after at most n iterations), as was first shown by [2] and also follows from [27]. The
boundedness problem for Boolean Datalog programs is undecidable [14]. Therefore, we have
the following result.

▶ Corollary 4.8. The following problem is undecidable: given a Boolean Datalog program P ,
does CP admit a left query algorithm over B.

5 Existence vs. Counting: When Does Counting Not Help?

Left query algorithms over N are more powerful than left query algorithms over B. This is
trivially so because query algorithms over B cannot distinguish homomorphically equivalent
instances.

▶ Example 5.1. Let C be the isomorphism class of the instance A consisting of the fact
R(a, a) (in other words, the single-node reflexive digraph). Since C is not closed under
homomorphism equivalence, it does not admit a left query algorithm (nor a right query
algorithm) over B. On the other hand, it admits a left query algorithm over N: by counting
the number of homomorphisms from A to a given input instance B, we can verify that B
contains a reflexive node; and by counting the number of homomorphisms from the instance
A′ consisting of a single edge R(a, b), we can verify that the total number of edges in the
graph is equal to 1. More precisely, let F = {A,A′} and let X = {(1, 1)}. Then (F , X) is a
left query algorithm over N for C.

As it turns out, in a precise sense, this is the only reason why left query algorithms over
N are more powerful than left query algorithms over B: the ability to count does not give
more power when it comes to classes that are closed under homomorphic equivalence. This
follows from the next theorem.

▶ Theorem 5.2. Let C be a class of instances closed under homomorphic equivalence. For
every finite set F of connected instances, the following statements are equivalent.
1. C admits a left query algorithm over N of the form (F , X) for some set X.
2. C admits a left query algorithm over B of the form (F , X ′) for some set X ′.

Proof. The case C = ∅ is trivial, so we will assume that C is non-empty. The implication
(2) =⇒ (1) is given by Proposition 3.3. Let us prove the implication (1) =⇒ (2).

Let (F , X) be a left query algorithm over N for C where F = {F1, . . . , Fk} of pairwise
non-isomorphic instances and X ⊆ Nk. It is enough to focus on simple sets X, where a set
X is simple if for every 1 ≤ i ≤ k and every t, t′ ∈ X, t(i) = 0 iff t′(i) = 0. Indeed, assume
that (1) ⇒ (2) holds whenever X is simple. Then, if X is not simple, partition X into
maximal simple subsets X1, . . . , Xr and, for every 1 ≤ i ≤ r, let Ci be the class of instances
that admits the left query algorithm (F , Xi). It is easy to verify that Ci is closed under
homomorphic equivalence and, hence, by assumption, admits a left query algorithm over B
of the form (F , X ′

i) for some set X ′
i. Then (F ,

⋃
1≤i≤r X

′
i) is a left query algorithm over B

for C.
Let us assume that X is simple and non-empty (otherwise C = ∅, contradicting our

assumption) and let t ∈ X. We can assume, by reordering the instances in F if necessary,
that there exists s ≥ 0, such that t(i) > 0 for every i ≤ s and t(i) = 0 for every i > s.
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Consider the FO-sentence defined as:

φ =
∧
i≤s

qFi ∧
∧
i>s

¬qFi

We shall prove that Mod(φ) = C, and therefore C admits a left query algorithm over B
(namely, the left query algorithm (F , {t′}) where t′(i) = 1 for i ≤ s and t′(i) = 0 for i > s).
Since Mod(φ) = C already holds when s = 0, we assume s > 0 in the sequel.

To this end we shall need the following two technical lemmas.

▶ Lemma 5.3. Let t1, . . . , tr ∈ Ns satisfying the following conditions:
1. For every 1 ≤ i ≤ s, there exists 1 ≤ j ≤ r such that tj(i) ̸= 0.
2. For every different i, i′ ∈ {1, . . . , s}, there exists 1 ≤ j ≤ r such that tj(i) ̸= tj(i′).

Then there exists some integer c > 0 such that for every b ∈ Zs whose entries are integers
divisible by c, there is a multivariate polynomial with integer coefficients p(x1, . . . , xr) of
degree s satisfying p(0, . . . , 0) = 0 (that is, such that the independent term is zero) and such
that, for each 1 ≤ i ≤ s, p(t1(i), . . . , tr(i)) = b(i).

Proof. Most likely this follows from known results but, in any case, we provide a self-
contained proof. Let G be the set of all linear combinations a1t1 + · · · artr where each ai

is a non-negative integer. It follows from condition (1) that G contains a tuple where all
entries are positive. Moreover it follows from (2) that G contains a tuple where all entries
are different and positive. Indeed, if t,u ∈ G and v = dt + u for d ∈ N large enough, then
for every different i, i′ ∈ {1, . . . , s}, we have

(t(i) ̸= t(i′) or u(i) ̸= u(i′)) implies v(i) ̸= v(i′).
Now, let u = a1t1 + · · · + artr be any tuple where all entries are different and positive. It is
easy to see that the (s× s)-matrix M whose rows are u1,u2, . . . ,us is non-singular. Indeed,
if u = (u1, . . . , us), then det(M) = u1 · · ·us · det(N), where N is the (s × s)-matrix with
rows u0,u1, . . . ,us−1 which is Vandermonde. It is well known that Vandermonde matrices
are non-singular whenever u has no repeated elements (see [18] for example).

To finish the proof we choose c to be |det(M)|. By assumption all entries of b are
divisible by c which implies that all entries of M−1b are integers, that is, b can be expressed
as e1u1 + · · · + esus for some e1, . . . , es ∈ Z. Hence, the polynomial p(x1, . . . , xr) =
e1y

1 + · · · + esy
s where y = a1x1 + · · · + arxr satisfies the claim. ◀

▶ Lemma 5.4. Let F, F ′ be instances such that there is no surjective homomorphism from F

onto F ′. Then there exists some subinstance H of F ′ such that homN(F,H) ̸= homN(F ′, H).

Proof. This is a natural adaptation of the Lovász’s proof that two instances are isomorphic
if and only if they have the same left homomorphism-count vector.

For every instance G, we write surN(G,F ′) for the number of surjective homomorphisms
from G onto F ′; moreover, for every subset S ⊆ adom(F ′), we write homS

N(G,F ′) for the
number of homomorphisms h : G → F ′ whose range is contained in S. Let n := |adom(F ′)|.
By the Inclusion-Exclusion Principle, then

surN(G,F ′) =
∑

S⊆adom(F ′)

(−1)n−|S| homS
N(G,F ′).

Since surN(F, F ′) = 0 and surN(F ′, F ′) > 0, we have surN(F, F ′) ̸= surN(F ′, F ′) and it
follows by the above discussion that there is a subset S ⊆ adom(F ′) such that homS

N(F, F ′) ̸=
homS

N(F ′, F ′). Let H be the maximum subinstance of F ′ with adom(H) ⊆ S, then we have
homN(F,H) = homS

N(F, F ′) ̸= homS
N(F ′, F ′) = homN(F ′, H). ◀
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Let us now continue with the proof that Mod(φ) = C. The direction ⊇ is immediate. For
the converse, we must prove that every B ∈ Mod(φ) belongs also to C. Let B ∈ Mod(φ),
and choose an arbitrary A ∈ C (by the assumption that C ̸= ∅). Let tA = homN(F , A) and
tB = homN(F , B). Note that tA(i) = tB(i) = 0 for every i > s and tA(i) and tB(i) are
strictly positive for every i ≤ s.

Let H = {H1, . . . ,Hr} be the non-empty set of instances constructed as follows:
(i) For every 1 ≤ i ≤ s, Fi is contained in H.
(ii) For every i, i′ ∈ {1, . . . , s} such that there is no surjective homomorphism Fi → Fi′ , H

contains the instance H given by Lemma 5.4.

For each 1 ≤ i ≤ r, let ti = homN({F1, . . . , Fs}, Hi). It can be readily verified that
t1, . . . , tr satisfy the conditions of Lemma 5.3. Condition (1) is guaranteed due to step
(i) in the construction of H. For condition (2), let i, i′ be any pair of different integers in
{1, . . . , s}. Since Fi and Fi′ are not isomorphic, it must be the case that there is no surjective
homomorphism Fi → Fi′ or there is no surjective homomorphism Fi′ → Fi. Hence, due to
step (ii), H contains some instance Hj witnessing tj(i) ̸= tj(i′).

Let c > 0 be given by Lemma 5.3, let b ∈ Zs where b(i) = c(tB(i) − tA(i)) for every
1 ≤ i ≤ s, and let p(x1, . . . , xr) be the polynomial given by Lemma 5.3 for b. We can express
p(x1, . . . , xr) as pA(x1, . . . , xr) − pB(x1, . . . , xr) where all the coefficients in pA and pB are
positive.

For every polynomial q(x1, . . . , xr) where the independent term is zero, consider the
instance Hq defined inductively as follows:

If q = xj , then Hq is Hj .
If q = u+ v, then Hq is Hu ⊕Hv.
If q = u · v, then Hq = Hu ⊗Hv.

▶ Lemma 5.5. Let Hq be constructed as above. Then:
1. Hq → F1 ⊕ · · · ⊕ Fs.
2. Let F be a connected instance and let t = homN(F,H). Then homN(F,Hq) = q(t).

This lemma directly follows from the definition of Hq. More precisely, the first item
follows from the fact that Hj → F1 ⊕ · · · ⊕ Fs for every Hj ∈ H (as can be shown by a
straightforward induction argument). The second item follows from the definition of Hq and
Proposition 2.1.

Let A′ = A1 ⊕ · · · ⊕ Ac ⊕ HpA
where A1, . . . , Ac are disjoint copies of A. Similarly,

define B′ = B1 ⊕ · · · ⊕Bc ⊕HpB
where B1, . . . , Bc are disjoint copies of B. We claim that

tA′ = homN(F , A′) and tB′ = homN(F , B′) coincide.
Let 1 ≤ i ≤ k and consider first the case i > s. It follows from Lemma 5.5(1) that Fi ̸→

HpA
. Indeed, if Fi → HpA

, then Fi → Fi′ for some i′ ≤ s implying that C = ∅, contradicting
our assumption. Similarly Fi ̸→ HpB

. Consequently, tA′(i) = c ·tA(i) = 0 = c ·tB(i) = tB′(i).
For the other case, namely i ≤ s, we have

tB′
(i) − tA′

(i) = homN(Fi, B
′) − homN(Fi, A

′)
= c · homN(Fi, B) − c · homN(Fi, A

′)) + homN(Fi, HpB
) − homN(Fi, HpA

)
= c · (tB(i) − tA(i)) + homN(Fi, HpB

) − homN(Fi, HpA
)

= c · (tB(i) − tA(i)) + pB(t1(i), . . . , tr(i)) − pA(t1(i), . . . , tr(i))
= c · (tB(i) − tA(i)) − p(t1(i), . . . , tr(i))
= c · (tB(i) − tA(i)) − b(i) = 0,

where homN(Fi, HpA
) = pA(t1(i), . . . , tr(i)) and homN(Fi, HpB

) = pB(t1(i), . . . , tr(i)) hold
by Lemma 5.5(2).

ICDT 2024



8:14 When Do Homomorphism Counts Help in Query Algorithms?

To finish the proof, note that since tA(i) > 0 for every 1 ≤ i ≤ s it follows by Lemma
5.5(1) that A′ → A, and, hence A ↔ A′. Similarly we have B′ ↔ B. Since C is closed under
homomorphic equivalence we have that A′ ∈ C. Since tA′ = tB′ it follows that B′ and, hence,
B belong to C as well. ◀

▶ Corollary 5.6. Let C be a class of instances closed under homomorphic equivalence. Then
the following statements are equivalent.
1. C admits a left query algorithm over N.
2. C admits a left query algorithm over B.
3. C is FO-definable.

The equivalence of statements (1) and (2) follows from Theorem 5.2 together with
Proposition 3.2. The equivalence of statements (2) and (3) was already established in
Corollary 4.2.

We would like to point out some interesting special cases of Theorem 5.2. The first
pertains to CSPs. Let us say that a constraint satisfaction problem CSP(B) is “determined
by homK(F , ·)” for some K ∈ {B,N} and some class F of instances, if the following holds for
all instances A and A′: if homK(F , A) = homK(F , A′) then A ∈ CSP(B) iff A′ ∈ CSP(B).
Then Theorem 5.2 can be rephrased as follows: for every finite set of connected instances F ,
every CSP determined by homN(F , ·) is determined by homB(F , ·). In contrast, for T the
infinite class of all trees, the CSPs determined by homB(T , ·) form a proper subclass of those
determined by homN(T , ·).2 This follows from results in [8], because the former are precisely
the CSPs that can be solved using arc-consistency, while the latter are precisely the CSPs
that can be solved using basic linear programming relaxation (BLP). See [23, Example 99]
for an example of a CSP that can be solved using BLP but not using arc-consistency.

The second special case pertains to homomorphic-equivalence classes. Given the im-
portance of homomorphic equivalence as a notion of equivalence in database theory, it is
natural to ask when a database instance A can be uniquely identified up to homomorphic
equivalence by means of a left query algorithm. As we saw earlier, in Section 4, for left query
algorithm over B, this is the case if and only if CSP(A) is FO-definable (a condition that
can be tested effectively, and, in fact, is NP-complete to test). It follows from Corollary 5.6
that the same criterion determines whether A can be uniquely identified up to homomorphic
equivalence by means of a left query algorithm over N. This extends naturally to finite
unions of homomorphic equivalence classes.

Finally, let us consider again classes C defined by a Boolean Datalog program P . It
follows from the results we mentioned in Section 4 that such a class of instances C admits a
left query algorithm over N if and only if P is bounded, and that testing for the existence of
a left query algorithm over N is undecidable.

6 Right Query Algorithms

Just as for left query algorithms, we have that every class of instances that admits a right
query algorithm over B is closed under homomorphic equivalence. However, unlike left query
algorithms, a class of instances that admits a right query algorithm over B is not necessarily
FO-definable. Concretely, as we saw in Example 3.6, the class of 3-colorable graphs admits a
right query algorithm over B, but is not FO-definable. In fact, every constraint satisfaction
problem CSP(A) admits a right query algorithm over B, and the FO-definable ones are
precisely those that admit a left query algorithm over B. The next result is straightforward.

2 Note that the definitions of homN(F , ·) and homB(F , ·) extend naturally to infinite classes F .
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▶ Proposition 6.1. Let C be a class of instances. Then C admits a right query algorithm
over B if and only if C is definable by a Boolean combination of CSPs.

We also saw in Section 3 that not every homomorphic-equivalence closed FO-definable
class admits a right query algorithm over B. For example, the class of triangle-free graphs
does not admit a right query algorithm over B (or even over N). This raises the question
which homomorphic-equivalence closed FO-definable classes admit a right query algorithm
over B. Equivalently, which classes C that admit a left query algorithm over B, admit a right
query algorithm over B? We will address this question next by making use of two known
results.

▶ Theorem 6.2 (Sparse Incomparability Lemma, [22]). Let m,n ≥ 0. For every instance B
there is an instance B∗ of girth at least m such that, for all instances D with |adom(D)| ≤ n,
we have B ∈ CSP(D) if and only if B∗ ∈ CSP(D).

A finite homomorphism duality is a pair of finite sets (F ,D) such that, for every instance
A, the following are equivalent: (i) F → A for some F ∈ F ; (ii) A ̸→ D for all D ∈ D. We
make use of the following known characterization of this notion.

▶ Theorem 6.3 ([13]). Let A be an instance. Then the following statements are equivalent.
1. A is homomorphically equivalent to an acyclic instance.
2. There is a finite homomorphism duality (F ,D) with F = {A}.
3. There is a finite homomorphism duality (F ,D) with F = {A} and where D consists of

instances D for which CSP(D) is FO-definable.

To see the implication (2) =⇒ (3), note that, if (F ,D) is a finite homomorphism duality,
then

⋃
D∈D CSP(D) is a FO-definable class (because it is defined by the negation of the

UCQ
∨

F ∈F q
F ). It follows, by the same reasoning as in the proof of Proposition 4.3, that

exists D′ ⊆ D such that (F ,D′) is a finite homomorphism duality and such that, for each
D ∈ D′, we have that CSP(D) is FO-definable.

Our next result characterizes the classes that admit both a left query algorithm and a
right query algorithm over B.

▶ Theorem 6.4. Let C be a class of instances. Then the following statements are equivalent.
1. C admits both a left query algorithm and a right query algorithm over B.
2. C admits a left query algorithm over N and a right query algorithm over B.
3. C is definable by a Boolean combination of Berge-acyclic CQs.
4. C is definable by a Boolean combination of FO-definable CSPs.

Proof. The equivalence of statements (1) and (2) follows from Corollary 5.6. The proof of
the remaining equivalences is as follows.
(1) =⇒ (3) By Theorem 4.1 and Proposition 6.1, C is definable by a Boolean combination
φ of CQs, as well as by a Boolean combination ψ of CSPs. Let φ′ be obtained from φ by
replacing each conjunctive query q by the disjunction of all homomorphic images of q that
are Berge-acyclic. We claim that φ′ defines C.

By Theorem 6.3, we know that φ′ is also equivalent to a Boolean combination of CSPs,
which we may call ψ′. Let n be the maximum size of a CSP occurring in ψ and ψ′. Also, let
m be greater than the maximum size of the CQs in φ. Let B be any instance, and let B∗

now be the instance given by Theorem 6.2 (for m,n as chosen above). By construction, B
and B∗ agree with each other on their membership in CSPs of size at most n, which include
all CSPs occurring in ψ as well as ψ′, and therefore, B and B∗ agree on ψ and ψ′. Since ψ
is equivalent to φ and ψ′ is equivalent to φ′, this means that B and B∗ agree on φ and φ′.
Furthermore, by construction, φ′ is equivalent to φ on instances of girth at least m (because
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every homomorphic image of a CQ of size less than m in such an instance must be acyclic).
In particular, It follows that B∗ |= φ iff B∗ |= φ′. Putting everything together, we have that
B |= φ iff B∗ |= φ iff B∗ |= φ′ iff B |= φ′.
(3) =⇒ (4) This follows from Theorem 6.3 (for A the canonical instance of q): we simply
replace each Berge-acyclic conjunctive query q by the conjunction

∧
D∈D ¬CSP(D).

(4) =⇒ (1) This follows from Theorem 4.1 and Proposition 6.1. ◀

Let C be a class that admits a left query algorithm over B or, equivalently, let C be
definable by a Boolean combination of CQs. It follows that C admits a right query algorithm
over B if and only if C is definable by a Boolean combination of Berge-acyclic CQs. Similarly,
let C be a class that admits a right query algorithm over B or, equivalently, let C be definable
by a Boolean combination of CSPs. It follows that C admits a left query algorithm over B if
and only if C is definable by a Boolean combination of FO-definable CSPs.

Finally, we will consider the question when a class of the form [A]↔ admits a right query
algorithm over B.

▶ Theorem 6.5. Let A be an instance. Then the following statements are equivalent.
1. [A]↔ has a right query algorithm over B.
2. {B : A → B} has a right query algorithm over B.
3. A is homomorphically equivalent to an acyclic instance.
Moreover, testing whether this holds (for a given instance A) is NP-complete.

Proof. We will close a cycle of implications.
(1) =⇒ (2): For this, we use the exponentiation operation XY [17]. This operation has the
property that X → Y Z if and only if X ⊗ Z → Y . Assume {B : A → B} does not admit a
right query algorithm over B. Consider an arbitrary finite set of instances F = {F1, . . . , Fk}
(think: candidate right query algorithm for [A]↔). Since {B : A → B} does not admit
a right query algorithm over B, for the set FA := {FA

1 , . . . , F
A
k } there are instances P

and Q with A → P and A ̸→ Q such that homB(P,FA) = homB(Q,FA) or, equivalently,
homB(P ⊗ A,F) = homB(Q ⊗ A,F). Let P ′ := P ⊗ A and let Q′ := Q ⊗ A. Then, by
Proposition 2.1, P ′ ∈ [A]↔ and Q′ /∈ [A]↔ but homB(P ′,F) = homB(Q′,F). Therefore [A]↔
has no right query algorithm over B.
(2) =⇒ (3): Assume that {B | A → B} admits a right query algorithm for B. We
will construct a finite homomorphism duality (F ,D) with F = {A}. It then follows by
Theorem 6.3 that A is homomorphically equivalent to an acyclic instance. Let B1, . . . Bn

be all those instances Bi used by the right query algorithm for which it holds that A ̸→ Bi.
We claim that ({A}, {B1, . . . , Bn}) is a finite homomorphism duality. Let C be any instance.
If C → Bi for some i ≤ n, then A ̸→ C (otherwise, by transitivity, we would have that
A → Bi). Conversely, if A ̸→ C, then the algorithm must answer “no” on input C while it
answers “yes” on input C ⊕A. Therefore, one of the right-queries made by the algorithm
must differentiate C from C ⊕ A. It is easy to see that the right-query in question must
consist of an instance into which C maps but A does not. This instance must then be among
the Bi, and C → Bi.
(3) =⇒ (1): By Theorem 6.3, there is a finite homomorphism duality ({A},D). In particular,
for all instances C, we have that C ∈ [A]↔ if and only if C → A and C ̸→ D for all D ∈ D.

To test if a given instance is homomorphically equivalent to an acyclic instance, it suffices
to test that its core is acyclic (equivalently, that it has an acyclic retract). This can clearly
be done in NP. The NP-hardness follows directly from Theorem 6 in [10]. ◀

The preceding Theorem 6.5 can be thought of as an analogue of Proposition 4.4 for right
query algorithms. Again, this result extends to finite unions of homomorphic-equivalence
classes.
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▶ Theorem 6.6. For all instances A1, . . . , An, the following statements are equivalent.
1.

⋃
1≤i≤n [Ai]↔ admits a right query algorithm over B.

2. Each [Ai]↔, for i = 1, . . . , n, admits a right query algorithm over B.
In particular, testing whether this holds (for given instances A1, . . . , An) is NP-complete.

Proof. It is clear that the second statement implies the first. We will prove by induction
on n that the first statement implies the second. The base case (n = 1) is immediate since
then statements (1) and (2) coincide. Next, let n > 1 and C :=

⋃
1≤i≤n [Ai]↔. We proceed

by contraposition, assuming that [Ai]↔ does not admit a right query algorithm over B for
some i ≤ n. We may assume without loss of generality that A1, . . . , An are pairwise not
homomorphically equivalent. Note that → induces a preorder among A1, . . . , An and, since
n is finite, there is a minimal. Without loss of generality, assume that An is a minimal, that
is, Ai ̸→ An for all i < n. We distinguish two cases.

(1) [An]↔ admits a right query algorithm over B. Then, for some i ≤ n − 1, [Ai]↔
does not admit any right query algorithm over B. By induction hypothesis, we have
C′ :=

⋃
1≤i≤n−1 [Ai]↔ does not admit any right query algorithm over B. Then C does not

admit a right query algorithm over B either, since C′ = C \ [An]↔.
(2) [An]↔ does not admit any right query algorithm over B. By Theorem 6.5, the class

{B : A → B} does not admit any right query algorithm over B, either. Consider an arbitrary
finite non-empty set of instances F = {F1, . . . , Fk}. Since {B : A → B} does not admit any
right query algorithm over B, for the set FAn = {FAn

1 , . . . , FAn

k } there are instances P and
Q with An → P and An ̸→ Q such that homB(P,FAn) = homB(Q,FAn), which implies that
homB(P ⊗An,F) = homB(Q⊗An,F). It follows by Proposition 2.1 that

(P ⊗An) ∈ [An]↔ because An → P ,
(Q⊗An) /∈ [An]↔ because An ̸→ Q,
for all i < n, (Q⊗An) /∈ [Ai]↔ because Ai ̸→ An.

Let P ′ := P ⊗An and let Q′ := Q⊗An. Then the above discussion yields that P ′ ∈ C and
Q′ /∈ C while homB(P ′,F) = homB(Q′,F). Therefore, C does not admit any right query
algorithm over B. ◀

▶ Remark 6.7. We saw in Example 3.4 that the class of triangle-free graphs, which clearly
has a left query algorithm over B, does not admit a right query algorithm over B or over
N. Observe that this class is defined by the negation of the “triangle” conjunctive query
∃xyz(R(x, y) ∧R(y, z) ∧R(z, x)). In light of Theorem 6.4, the lack of a right query algorithm
over B for this class can be “explained” by the fact that this conjunctive query is not
Berge-acyclic. Furthermore, in Example 3.7 we mentioned that the class [K3]↔, that is, the
class of graphs that are 3-colorable and also contain a triangle, does not admit a right query
algorithm over B. This follows from Theorem 6.5.

We conclude this section with an open problem.

▶ Question 6.8. Does a suitable analogue of Theorem 5.2 hold for right query algorithms?

7 Summary and Discussion of Related Topics

Inspired by the work of Chen et al. [9], we extended their framework and studied various
types of query algorithms, where a query algorithm for a class C of instances determines
whether a given input instance belongs to C by making a finite number of (predetermined)
queries that ask for the existence of certain homomorphisms or for the number of certain
homomorphisms. Specifically, we introduced and studied left query algorithms and right

ICDT 2024
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query algorithms over B, as well as over N. Our results delineate the differences in expressive
power between these four types of query algorithms. In particular, they pinpoint when the
ability to count homomorphisms is essential for the existence of left query algorithms.

Relationship to view determinacy. Recently, Kwiecien et al. [24] studied view determinacy
under bag semantics. In particular, they obtained a decidability result for determinacy with
respect to Boolean views under bag-set semantics. We will briefly describe their framework
and relate it to ours. At the most abstract level, a view is simply a function f that takes as
input a database instance. Specifically, under set semantics, every Boolean CQ specifies a
view that is a function from database instances to {0, 1}, while, under bag-set semantics,
every Boolean CQ specifies a view that is a function from database instances to N. We say
that a finite collection of views f1, . . . , fk determines a view g, if for all database instances A
and B, if fi(A) = fi(B) for all i ≤ k, then g(A) = g(B). The aforementioned result from [24]
asserts that the following problem is decidable: given views f1, . . . , fk and g specified by
Boolean CQs under bag-set semantics, is g is determined by f1, . . . , fk?

We now describe the relationship between the above notion of view determinacy and our
framework. Let C be a class of instances and let F = {F1, . . . , Fk} be a finite set of instances.
Then the following are equivalent:
1. There exists a set X such that (F , X) is a left query algorithm over N for C,
2. f1, . . . , fk determine gC where fi(A) = homN(Fi, A) and gC is the indicator function of C

(i.e., gC(A) = 1 if A ∈ C and gC(A) = 0 otherwise).
This tells that there are some important differences between our framework and the one
in [24]: (i) when we study the existence of left query algorithms, the set F is not fixed,
whereas, in the view determinacy problem, the views are given as part of the input; (ii) in
the view determinacy problem studied in [24], the view g is specified by a CQ with bag-set
semantics, whereas in our case g is a Boolean-valued function since it is the indicator function
of a class of instances, (iii) we do not assume that the class C is specified by a Boolean CQ.
Indeed, if C were specified by a Boolean CQ q, then a left query algorithm would trivially
exist, where F simply consists of (the canonical instance of) q itself.

Other semirings. Query algorithm over B and query algorithm over N can be viewed as
special cases of a more general setting, namely that of a query algorithm over a semiring.
There is a body of research in the interface of databases and semirings, including the study of
provenance of database queries using semirings [16, 19], the study of the query containment
problem under semiring semantics [15, 21], and, more recently, the study of Datalog under
semiring semantics [20]. In these studies, the semirings considered are positive, which means
that they are commutative semirings with no zero divisors and with the property that the sum
of any two non-zero elements is non-zero. It is perfectly meaningful to define homomorphism
counts over positive semirings and then investigate query algorithms over such semirings. In
particular, it may be interesting to investigate query algorithms over the tropical semiring
R = (R∪{∞},min,+), where R is the set of real numbers, since it is well known that various
shortest-distance problems can be naturally captured using this semiring.

Adaptive query algorithms. The query algorithms (F , X) studied in this paper are non-
adaptive, in the sense that the set F = {F1, . . . , Fk} is fixed up-front. In contrast, an
adaptive query algorithm may decide the set of instances F at run-time, that is to say,
the choice of Fi may depend on the homomorphism-count vector for F1, . . . , Fi−1. As
pointed out in the Introduction, whenever a class C admits an adaptive left (right) query
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algorithm over B, then it also admits a non-adaptive left (right) query algorithm over B.
Note that the most “economical” (as regards the number of instances used) non-adaptive
algorithm for a class C may use a larger set F of instances than the adaptive one, but
the number of instances used by the non-adaptive algorithm is still finite. Thus, adaptive
query algorithms over B do not offer higher expressive power than adaptive ones. The
situation for N is quite different: it was shown in [9] that every isomorphism-closed class of
instances (in particular, every homomorphic-equivalence closed class) admits an adaptive left
k-query algorithm over N already for k = 3; therefore, adaptive left query algorithms over
N have higher expressive power than adaptive left query algorithms over B, even when it
comes to homomorphic-equivalence closed classes. Switching sides, note that the class of
triangle-free graphs (Example 3.4) does not admit an adaptive right query algorithm over
N, as was shown in [9, Proposition 8.2]; hence it is a meaningful question to ask: which
homomorphic-equivalence closed classes admit an adaptive right query algorithm over N?
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Abstract
Personalized PageRank (PPR) is an extensively studied and applied node proximity measure in
graphs. For a pair of nodes s and t on a graph G = (V, E), the PPR value π(s, t) is defined as the
probability that an α-discounted random walk from s terminates at t, where the walk terminates
with probability α at each step. We study the classic Single-Source PPR query, which asks for
PPR approximations from a given source node s to all nodes in the graph. Specifically, we aim to
provide approximations with absolute error guarantees, ensuring that the resultant PPR estimates
π̂(s, t) satisfy maxt∈V

∣∣π̂(s, t) − π(s, t)
∣∣ ≤ ε for a given error bound ε. We propose an algorithm that

achieves this with high probability, with an expected running time of
Õ
(√

m/ε
)

for directed graphs2, where m = |E|;
Õ
(√

dmax/ε
)

for undirected graphs, where dmax is the maximum node degree in the graph;
Õ
(
nγ−1/2/ε

)
for power-law graphs, where n = |V | and γ ∈

(
1
2 , 1
)

is the extent of the power law.
These sublinear bounds improve upon existing results. We also study the case when degree-normalized
absolute error guarantees are desired, requiring maxt∈V

∣∣π̂(s, t)/d(t) − π(s, t)/d(t)
∣∣ ≤ εd for a given

error bound εd, where the graph is undirected and d(t) is the degree of node t. We give an algorithm
that provides this error guarantee with high probability, achieving an expected complexity of
Õ
(√∑

t∈V
π(s, t)/d(t)

/
εd

)
. This improves over the previously known O(1/εd) complexity.
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9:2 Approximating Single-Source PPR with Absolute Error Guarantees

1 Introduction

In graph mining, computing node proximity values efficiently is a fundamental problem
with broad applications, as they provide quantitative amounts to measure the closeness
or relatedness between the nodes. A basic and extensively used proximity measure is
Personalized PageRank (PPR) [14], which is a direct variant of Google’s renowned PageRank
centrality [14]. PPR has found multifaced applications for local graph partitioning [4, 53, 17],
node embedding [37, 40, 54], and graph neural networks [27, 12, 42], among many others [21].

We study the classic problem of approximating Single-Source PPR (SSPPR), where we
are given a source node s in the graph, and our goal is to approximate the PPR values of
all nodes in the graph w.r.t. s. Particularly, we concentrate on the complexity bounds for
approximating SSPPR with absolute error or degree-normalized absolute error guarantees.
After examining the existing bounds for the problem, we present novel algorithms with
improved complexities to narrow the margin between the previous upper bounds and the
known lower bounds.

In the remainder of this section, we formally state the problem, discuss the existing
bounds, and introduce our motivations and contributions.

1.1 Problem Formulation
We consider a directed or undirected graph G = (V, E), where |V | = n and |E| = m. For
undirected graphs, we conceptually view each undirected edge as two opposing directed edges.
We assume that every node in V has a nonzero out-degree.

A random walk on G starts from some source node s ∈ V and, at each step, transitions
to an out-neighbor of the current node chosen uniformly at random. For a constant decay
factor α ∈ (0, 1), an α-discounted random walk proceeds in the same way as a random walk,
except that it terminates with probability α before each step. The Personalized PageRank
(PPR) value for a pair of nodes s and t in V , denoted by π(s, t), is defined as the probability
that an α-discounted random walk from s terminates at t.

We study the problem of estimating Single-Source PPR (SSPPR), that is, deriving π̂(s, t)
as estimates for PPR values π(s, t) from a given source node s to all t ∈ V . We focus on
the complexities of approximating SSPPR with absolute error or degree-normalized absolute
error guarantees. The corresponding two types of queries, dubbed as the SSPPR-A query
and the SSPPR-D query, are formally defined below.

▶ Definition 1 (SSPPR-A Query: Approximate SSPPR Query with Absolute Error Bounds).
Given a source node s ∈ V and an error parameter ε, the query requires PPR estimates
π̂(s, t) for all t ∈ V , such that

∣∣π̂(s, t)− π(s, t)
∣∣ ≤ ε holds for all t ∈ V .

▶ Definition 2 (SSPPR-D Query: Approximate SSPPR Query with Degree-Normalized Absolute
Error Bounds). On an undirected graph, given a source node s ∈ V and an error parameter εd,
the query requires PPR estimates π̂(s, t) for all t ∈ V , such that

∣∣π̂(s, t)/d(t)−π(s, t)/d(t)
∣∣ ≤

εd holds for all t ∈ V . Here, d(t) denotes the degree of node t.

In a word, the SSPPR-A query requires the maximum absolute error to be bounded above
by ε, while the SSPPR-D query considers the absolute errors normalized (i.e., divided) by
the degree of each node. Note that we restrict the SSPPR-D query to undirected graphs.

This paper aims to develop sublinear algorithms for the SSPPR-A and SSPPR-D queries
with improved complexities over existing methods. By “sublinear algorithms,” we refer to
algorithms whose complexity bounds are sublinear in the size of the graph (but they can
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simultaneously depend on the error parameter, e.g., O
(√

n/ε
)

is considered sublinear). We
allow the algorithms to return the results as a sparse vector, which enables the output size
to be o(n). Also, we regard the algorithms as acceptable if they answer the queries with high
probability (w.h.p.), defined as “with probability at least 1− 1/n.”

1.2 Prior Complexity Bounds

Lower Bounds

To our knowledge, only trivial lower bounds are known for the SSPPR-A and SSPPR-D
queries. More precisely, for the SSPPR-A query, since the algorithm needs to return nonzero
estimates for those nodes t with π(s, t) > ε, and there may exist Θ

(
min(1/ε, n)

)
such

nodes (note that
∑

t∈V π(s, t) = 1), the trivial lower bound for answering the query is
Ω
(

min(1/ε, n)
)
. As we are considering sublinear bounds, we write this as Ω(1/ε).

Similarly, for the SSPPR-D query, the algorithm needs to return nonzero estimates for
nodes t with π(s, t)/d(t) > εd, so the lower bound is Ω

(
1/εd ·

∑
t∈V π(s, t)/d(t)

)
. Note

that
∑

t∈V π(s, t)/d(t) <
∑

t∈V π(s, t) = 1 for nontrivial graphs. Additionally, in the full
version of this paper [50], we show that if each source node s ∈ V is chosen with probability
proportional to its degree (i.e., with probability d(s)/(2m)), the average lower bound becomes
Ω(1/εd · n/m).

Upper Bounds

From a theoretical point of view, we summarize the best bounds to date for the SSPPR-A
query as follows.

The Monte Carlo method [16] straightforwardly simulates a number of α-discounted
random walks from s, and computes the fraction of random walks that terminate at t as
the estimate π̂(s, t) for each t ∈ V . By standard Chernoff bound arguments, it requires
expected Õ

(
1/ε2) time to achieve the guarantees w.h.p.

Forward Push [4, 5] is a celebrated “local-push” algorithm for the SSPPR query, which
takes as input a parameter rmax and runs in O(1/rmax) time. However, it only guarantees
that the degree-normalized absolute error (i.e., maxv∈V

∣∣π̂(s, v)/d(v)− π(s, v)/d(v)
∣∣) is

bounded by rmax on undirected graphs, and that the ℓ1-error (i.e.,
∑

v∈V

∣∣π̂(s, v)−π(s, v)
∣∣)

is bounded by m · rmax on directed graphs. Thus, if we apply Forward Push to answer
the SSPPR-A query: on undirected graphs, we need to set rmax = ε/dmax, where dmax is
the maximum node degree in G; on directed graphs, we need to set rmax = ε/m. These
settings lead to pessimistic bounds of O(dmax/ε) and O(m/ε), respectively. Note that
dmax can reach Θ(n) in the worst case, and the O(m/ε) bound is not sublinear.
Backward Push [1, 2] is a “local-push” algorithm for approximating π(v, t) from all v ∈ V

to a given target node t ∈ V , known as the Single-Target PPR (STPPR) query. It takes
as input a parameter rmax and cleanly returns estimates with an absolute error bound of
rmax. However, if we enforce Backward Push to answer the SSPPR-A query, we need to
perform it with rmax = ε for each t ∈ V , resulting in a complexity of O(m/ε) again. This
bound is inferior, but we mention it here since it enlightens our algorithms.

In conclusion, the currently best sublinear bounds for the SSPPR-A query are Õ
(
1/ε2)

provided by Monte Carlo and O(dmax/ε) on undirected graphs by Forward Push.
As for the SSPPR-D query, Forward Push [5] provides an elegant O(1/εd) bound. To our

knowledge, no other prior methods are explicitly tailored to the SSPPR-D query.
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1.3 Motivations
Motivations for the SSPPR-A Query

Although approximating SSPPR with absolute error guarantees is a natural problem, sur-
prisingly, it has not been studied in depth in the literature. We believe that this is partly
because of its inherent hardness. In particular, a line of recent research for approximating
SSPPR [46, 30, 51, 29, 28] mainly focuses on providing relative error guarantees for PPR
values above a specified threshold. We note that absolute error guarantees are harder to
achieve than relative or degree-normalized absolute error guarantees, as the latter ones allow
larger actual errors for nodes with larger PPR values or degrees. Specifically, an SSPPR
algorithm with absolute error guarantees can be directly modified to obtain relative or
degree-normalized absolute error guarantees.

In contrast, an interesting fact is that, for the relatively less-studied STPPR query, a
simple Backward Push is sufficient and efficient for absolute error guarantees. As a result,
when PPR values with absolute error guarantees are desired in some applications, STPPR
methods are employed instead of SSPPR methods [54, 43].

These facts stimulate us to derive better bounds for the SSPPR-A query. As discussed,
a large gap exists between the existing upper bounds and the lower bound of Ω(1/ε). The
previous upper bounds, namely Õ

(
1/ε2), O(m/ε), and O(dmax/ε) on undirected graphs,

motivate us to devise a new algorithm that:
runs in linear time w.r.t. 1/ε;
runs in sublinear time w.r.t. m;
beats the O(dmax/ε) bound on undirected graphs.

Motivations for the SSPPR-D Query

Our study of the SSPPR-D query is motivated by a classic approach of using approximate
SSPPR to perform local graph partitioning [5, 3, 53, 17]. This task aims to detect a cut
with provably small conductance near a specified seed node without scanning the whole
graph. To this end, this classic approach computes approximate PPR values π̂(s, v) from
the seed node s, sorts the nodes in decreasing order of π̂(s, v)/d(v), and then finds a desired
cut based on this order. As the quality of this approach relies heavily on the approximation
errors of the values π̂(s, v)/d(v), it is natural to consider the SSPPR-D query. Notably, in
carrying out this framework, the seminal and celebrated PageRank-Nibble algorithm [5]
employs Forward Push as a subroutine for approximating PPR values. As it turns out, the
error bounds of Forward Push match the requirements of the SSPPR-D query, and its cost
dominates the overall complexity of PageRank-Nibble. Therefore, an improved upper bound
for the SSPPR-D query can potentially lead to faster local graph partitioning algorithms.

However, the SSPPR-D query is rarely studied afterward despite its significance. To
our knowledge, no existing method overcomes the O(1/εd) bound of Forward Push, nor has
any previous work pointed out the gap between this bound and the aforementioned lower
bound. Motivated by this, we formulate this problem and propose an algorithm that beats
the known O(1/εd) bound.

1.4 Our Results
We propose algorithms for the SSPPR-A and SSPPR-D queries under a unified framework,
melding Monte Carlo and Backward Push in a novel and nontrivial way. Roughly speaking,
we use Backward Push to reduce the variances of the Monte Carlo estimators, and we propose
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a novel technique called Adaptive Backward Push to control the cost of Backward Push for
each node and balance its total cost with that of Monte Carlo. We summarize the improved
bounds achieved by our algorithms as follows.

Improved Upper Bounds for the SSPPR-A Query

We present an algorithm that answers the SSPPR-A query w.h.p., with a complexity of:
expected Õ

(√
m/ε

)
for directed graphs;

expected Õ
(√

dmax/ε
)

for undirected graphs.
These bounds are strictly sublinear in m and linear in 1/ε. Also, the Õ

(√
dmax/ε

)
bound

improves over the previous O(dmax/ε) bound by up to a factor of Θ
(√

n
)
.

Additionally, we study the special case that the underlying graph is a power-law graph
(a.k.a. scale-free graph). This is a renowned and widely used model for describing large real-
world graphs [10, 13]. Under power-law assumptions (see Assumption 3 in Subsection 3.3),
we prove that the complexity of our algorithm diminishes to Õ

(
nγ−1/2/ε

)
for both directed

and undirected graphs, where γ ∈
( 1

2 , 1
)

is the extent of the power law. Notably, as γ < 1, we
have γ− 1

2 < 1
2 , so this bound is strictly o

(√
n/ε
)
. Also, when γ → 1

2 , this bound approaches
Õ(1/ε), matching the lower bound of Θ(1/ε) up to logarithmic factors. We summarize the
complexity bounds of answering the SSPPR-A query in Table 1.
▶ Remark. Our algorithm for the SSPPR-A query can be adapted to approximate a more
generalized form of Personalized PageRank [14], where the source node is randomly chosen
from a given probability distribution vector. We only need to construct an alias structure [41]
for the distribution (this can be done in asymptotically the same time as inputting the
vector) so that we can sample a source node in O(1) time when performing Monte Carlo.
This modification does not change our algorithm’s error guarantees and complexity bounds.
Particularly, this allows us to estimate the PageRank [14] values, in which case we can sample
the source nodes uniformly at random from V without using the alias method.

Improved Upper Bounds for the SSPPR-D Query

We present an algorithm that answers the SSPPR-D query w.h.p., with an expected complexity
of Õ

(
1/εd ·

√∑
t∈V π(s, t)/d(t)

)
. This improves upon the previous O(1/εd) bound of Forward

Push towards the lower bound of Ω
(
1/εd ·

∑
t∈V π(s, t)/d(t)

)
. To see the superiority of our

bound, let us consider the case when each node s ∈ V is chosen as the source node with
probability d(s)/(2m). This setting corresponds to the practical scenario where a node with
larger importance is more likely to be chosen as the source node. We show that under
this setting, our bound becomes Õ

(
1/εd ·

√
n/m

)
, which is lower than O(1/εd) by up to a

factor of Θ
(√

n
)
. Recall that under this setting, the lower bound becomes Ω(1/εd · n/m). In

Table 2, we summarize the complexity bounds of answering the SSPPR-D query.
▶ Remark. If we treat α as a variable (as is the case in the context of local graph partitioning),
the complexity bounds of our algorithms for these two queries both exhibit a linear dependence
on 1/α, which is the same as existing upper bounds. For the sake of simplicity, we treat α as
a constant and omit this term in this work.

Paper Organization. The remainder of this paper is organized as follows. Section 2 discusses
some related work for PPR computation, and Section 3 offers the preliminaries. Section 4
presents the ideas and the main procedure of our proposed algorithm for the SSPPR-A
query. In Section 5, we prove our results for the SSPPR-A query by analyzing our proposed
algorithm. Some deferred proofs and our algorithm and analyses for the SSPPR-D query
can be found in the full version of this paper [50].
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9:6 Approximating Single-Source PPR with Absolute Error Guarantees

Table 1 Complexity bounds of answering the SSPPR-A query on different types of graphs.
For power-law graphs, the graph can be either directed or undirected, and γ ∈

(
1
2 , 1
)

denotes the
exponent of the power law. We plug in m = Õ(n) for power-law graphs.

Directed
Graphs

Undirected
Graphs

Power-Law
Graphs

Monte Carlo [16] Õ

(
1
ε2

)
Õ

(
1
ε2

)
Õ

(
1
ε2

)
Forward Push [4] O

(m

ε

)
O

(
dmax

ε

)
Õ
(n

ε

)

Ours Õ

(√
m

ε

)
Õ

(√
dmax

ε

) Õ

(
nγ−1/2

ε

)
= o

(√
n

ε

)
,

approaching Õ

(
1
ε

)
when

γ → 1
2

Table 2 Complexity bounds of answering the SSPPR-D query on undirected graphs.

Parameterized complexity
for a given s

Average complexity
when each s ∈ V is chosen
with probability d(s)/(2m)

Forward Push [4] O

(
1
εd

)
O

(
1
εd

)
Lower Bound Ω

(
1
εd

∑
t∈V

π(s, t)
d(t)

)
Ω
(

1
εd
· n

m

)
Ours Õ

(
1
εd

√∑
t∈V

π(s, t)
d(t)

)
Õ

(
1
εd

√
n

m

)

2 Other Related Work

As a classic task in graph mining, PPR computation has been extensively studied in the
past decades, and numerous efficient approaches have been proposed. Many recent methods
combine the basic techniques of Monte Carlo, Forward Push, and Backward Push to achieve
improved efficiency [32, 45, 49, 46, 30, 51, 29, 28]. A key ingredient in integrating these
techniques is the invariant equation provided by Forward Push or Backward Push. While
our algorithms also leverage the invariant of Backward Push to unify it with Monte Carlo, we
adopt a novel approach based on Adaptive Backward Push and conduct different analyses.

For SSPPR approximation, FORA [47, 46] is a representative sublinear algorithm among a
recent line of research [46, 30, 51, 29, 28]. FORA uses Forward Push and Monte Carlo to provide
relative error guarantees for PPR values above a specified threshold w.h.p., and the subsequent
work proposes numerous optimizations for it. However, this method cannot be directly
applied to the SSPPR-A query. A notable extension of FORA is SpeedPPR [51], which further
incorporates Power Method [14] to achieve higher efficiency. Nevertheless, the complexity of
SpeedPPR is no longer sublinear. Among other studies for SSPPR [11, 59, 35, 39, 15, 26, 56],
BEAR [39] and BEPI [26] are two representative approaches based on matrix manipulation.
However, they incur inferior complexities due to the large overhead of matrix computation.
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Algorithm 1 BackwardPush.

Input: graph G, decay factor α, target node t, threshold rmax
Output: backward reserves q(v, t) and residues r(v, t) for all v ∈ V

1 q(v, t)← 0 for all v ∈ V

2 r(t, t)← 1 and r(v, t)← 0 for all v ∈ V \ {t}
3 while ∃v ∈ V such that r(v, t) > rmax do
4 pick an arbitrary v ∈ V with r(v, t) > rmax
5 for each u ∈ Nin(v) do
6 r(u, t)← r(u, t) + (1− α) · r(v, t)/dout(u)
7 q(v, t)← q(v, t) + α · r(v, t)
8 r(v, t)← 0
9 return q(v, t) and r(v, t) for all v ∈ V

There also exist many studies for other PPR queries, such as Single-Pair query [20, 33,
32, 45], Single-Target query [43], and top-k query [7, 18, 20, 19, 52, 49]. Some recent work
further considers computing PPR on dynamic graphs [57, 36, 58, 55] or in parallel/dis-
tributed settings [8, 22, 23, 38, 31, 44, 24]. These methods often utilize specifically designed
methodologies and techniques, hence they are orthogonal to our work.

To sum up, despite the large body of studies devoted to PPR computation, the SSPPR-A
and SSPPR-D queries are still not explored in depth. This is because the relevant approaches
either are unsuitable for these two queries or exhibit at least linear complexities. We also
note that many related studies optimize PPR computation from an engineering viewpoint
instead of a theoretical one, and thus they do not provide better complexity bounds.

3 Notations and Tools

3.1 Notations
We use din(v) and dout(v) to denote the in-degree and out-degree of a node v ∈ V , respectively.
Additionally, Nin(v) andNout(v) denote the in-neighbor and out-neighbor set of v, respectively.
In the case of undirected graphs, we use d(v) to represent the degree of v, and we define
dmax = maxv∈V d(v) to indicate the maximum degree in G.

3.2 Backward Push
Backward Push [2, 34] is a simple and classic algorithm for approximating STPPR, that
is, estimating π(v, t) from all v ∈ V to a given target node t ∈ V . It works by repeatedly
performing reverse pushes, which conceptually simulate random walks from the backward
direction deterministically. It takes as input a parameter rmax to control the depth of
performing the pushes: a smaller rmax leads to deeper pushes.

Specifically, Backward Push maintains reserves q(v, t) and residues r(v, t) for all v ∈ V ,
where q(v, t) is an underestimate of π(v, t) and r(v, t) is the probability mass to be propagated.
A reverse push operation for a node v transfers α portion of r(v, t) to q(v, t) and propagates
the remaining probability mass to the in-neighbors of v, as per the probability that a random
walk at the in-neighbors proceeds to v. As shown in Algorithm 1, Backward Push initially
sets all reserves and residues to be 0 except that r(t, t) = 1, and then repeatedly performs
reverse pushes to nodes v with r(v, t) > rmax. After that, it returns q(v, t)’s as the estimates.
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9:8 Approximating Single-Source PPR with Absolute Error Guarantees

In this paper, we use the following properties of Backward Push [34]:
The results of Backward Push satisfy r(v, t) ≤ rmax and

∣∣q(v, t)−π(v, t)
∣∣ ≤ rmax, ∀v ∈ V .

The results of Backward Push satisfy the following invariant:

π(v, t) = q(v, t) +
∑
u∈V

π(v, u)r(u, t), ∀v ∈ V. (1)

The complexity of Backward Push is

O

(
1

rmax

∑
v∈V

π(v, t)din(v)
)

. (2)

Running Backward Push with parameter rmax for each t ∈ V takes O(m/rmax) time.

3.3 Power-Law Assumption
Power-law graphs are an extensively used model for describing real-world graphs [10, 13].
Regarding PPR computation, it is observed in [9] that the PPR values on power-law graphs
also follow a power-law distribution. Formally, in our analyses for power-law graphs, we
use the following assumption, which has been adopted in several relevant works for graph
analysis [9, 32, 48]:

▶ Assumption 3 (Power-Law Graph). In a power-law graph, for any source node v ∈ V , the
i-th largest PPR value w.r.t. v equals Θ

(
i−γ

n1−γ

)
, where 1 ≤ i ≤ n and γ ∈

( 1
2 , 1
)

is the
exponent of the power law.

4 Our Algorithm for the SSPPR-A Query

This section presents our algorithm for answering the SSPPR-A query with improved
complexity bounds. Our algorithm for the SSPPR-D query is given in the full version of
this paper [50]. Before diving into the details, we give high-level ideas and introduce key
techniques for devising and analyzing the algorithm.

4.1 High-Level Ideas
Recall that for the SSPPR-A query, a fixed absolute error bound is required for each node
t ∈ V . We find it hard to achieve this using Forward Push and Monte Carlo, as they
inherently incur larger errors for nodes with larger degrees or PPR values (for Monte Carlo,
this can be seen when analyzing it using Chernoff bounds). Thus, to answer the SSPPR-A
query, it is crucial to reduce the errors for these hard-case nodes efficiently. A straightforward
idea is to run Backward Push from these nodes, although using an STPPR algorithm to
answer the SSPPR query seems counterintuitive. As performing Backward Push alone for all
nodes requires O(m/ε) time, we combine it with Monte Carlo to achieve a lower complexity.

In a word, our proposed algorithms employ Backward Push to reduce the number of
random walks needed in Monte Carlo. Intuitively, by running Backward Push for a node t,
we simulate random walks backward from t. Consequently, when performing forward random
walks in Monte Carlo, our objective shifts from reaching node t to reaching the intermediate
nodes touched by Backward Push. This method significantly reduces the variances of the
Monte Carlo estimators since the random walks can increment the estimated values even if
they fail to reach t. However, a major difficulty is that we cannot afford to perform deep
Backward Push for each t ∈ V , which is both expensive and unnecessary. To address this
issue, we propose the following central technique: Adaptive Backward Push.
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Adaptive Backward Push. A crucial insight behind our algorithms is that performing deep
Backward Push for each t ∈ V is wasteful. This is because doing so yields accurate estimates
for π(v, t) for all v ∈ V , but for SSPPR queries, only π(s, t) is required to be estimated.
Thus, instead of performing Backward Push deeply to propagate enough probability mass to
each node, we only need to ensure that the probability mass pushed backward from t to s is
sufficient to yield an accurate estimate for π(s, t). This motivates us to perform Backward
Push adaptively. More precisely, we wish to set smaller rmax(t) for t with larger π(s, t),
rendering the Backward Push process for them deeper. An intuitive explanation is that,
for larger π(s, t), the minimally acceptable estimates π(s, t) − ε are larger, so we need to
perform Backward Push deeper to push more probability mass to s. As an extreme example,
if we know that π(s, t) ≤ ε for some t, then we can simply return π̂(s, t) = 0 as its PPR
approximation, so we do not need to perform Backward Push for these nodes with small
PPR values. On the other hand, our technique also adaptively balances the cost of Backward
Push and Monte Carlo, which will be introduced in the next subsection.

To implement Adaptive Backward Push, a natural idea would be directly setting rmax(t)
to be inversely proportional to π(s, t). At first glance, this idea seems paradoxical since
the π(s, t) values are exactly what we aim to estimate. However, it turns out that rough
estimates of them suffice for our purpose. In fact, Monte Carlo offers a simple and elegant
way to roughly approximate π(s, t) with relatively low overheads. Thus, we need to run
Monte Carlo to obtain rough PPR estimates before performing Adaptive Backward Push.
Despite the simplicity of the ideas, the detailed procedure of the algorithm and its analyses
are nontrivial, as we elaborate below.

4.2 Techniques
Now, we introduce several additional techniques used in our algorithms.

Three-Phase Framework. As discussed above, before performing Adaptive Backward Push,
we need to perform Monte Carlo to obtain rough PPR estimates. Also, the results of
Backward Push and Monte Carlo are combined to derive the final results. For ease of
analysis, we conduct Monte Carlo twice, yielding two independent sets of approximations.
This leads to our three-phase framework:

(I) running Monte Carlo to obtain rough PPR estimates;
(II) performing Adaptive Backward Push to obtain backward reserves and residues;

(III) running Monte Carlo and combining the results with those of Backward Push to yield
the final estimates.

However, there are some difficulties in carrying out this framework. We discuss them in
detail below and provide a more accurate description of our algorithm in Subsection 4.3.

Identifying Candidate Nodes. As mentioned earlier, if we know that π(s, t) ≤ ε for some
t, then we can safely return π̂(s, t) = 0. This means that we only need to consider nodes t

with π(s, t) > ε. Fortunately, when running Monte Carlo to obtain rough estimates, we can
also identify these nodes (w.h.p.), thus avoiding the unnecessary cost of performing Adaptive
Backward Push for other nodes. We use C to denote the candidate set that consists of
these identified candidate nodes. In light of this, Phase I serves two purposes: determining
the candidate nodes t ∈ C and obtaining rough estimates for their PPR values, denoted as
π′(s, t)’s. Subsequently, in Phase II, we perform Adaptive Backward Push for these candidate
nodes t ∈ C, where the thresholds are set to be inversely proportional to π′(s, t).
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Estimation Formula. Let us take a closer look at the results of Backward Push for a
candidate node t ∈ C. From the invariant of Backward Push (Equation 1), we have

π(s, t) = q(s, t) +
∑
v∈V

π(s, v)r(v, t).

This essentially expresses the desired PPR value π(s, t) as q(s, t) plus a linear combination
of π(s, v)’s with coefficients r(v, t)’s. Now, we can obtain an estimate π̂(s, t) by substituting
π(s, v)’s by their Monte Carlo estimates obtained in Phase III, denoted by π′′(s, v)’s:

π̂(s, t) = q(s, t) +
∑
v∈V

π′′(s, v)r(v, t). (3)

As Backward Push guarantees that r(v, t) ≤ rmax for all v ∈ V , the coefficients of these
Monte Carlo estimates are small, making the variance of π̂(s, t) small. Thus, by carefully
setting the parameters of Backward Push and Monte Carlo, we can bound this variance
and apply Chebyshev’s inequality to obtain the desired absolute error bound on π̂(s, t) with
constant success probability. Then, we leverage the median trick [25] (see Appendix A)
to amplify this probability while only introducing an additional logarithmic factor to the
complexity. Therefore, in Phase III, we run Monte Carlo several times to obtain independent
samples of π̂(s, t), denoted as π̂i(s, t). After that, we compute their median values as the
final estimates.

Balancing Phases II and III. Finally, to optimize the overall complexity of the algorithm,
it is essential to strike a balance between the cost of Phases II and III. In fact, the following
balancing strategy is another manifestation of the adaptiveness of our algorithm. In particular,
performing more Adaptive Backward Push in Phase II results in fewer random walks needed
in Phase III. In our analysis part (Section 5), we find that the complexity bound of Adaptive
Backward Push is inversely proportional to the number of random walk samplings in Phase III
(denoted as nr), and the cost of Monte Carlo in Phase III is proportional to nr. The problem
is that we do not know a priori the optimal setting of nr in terms of balancing Phases II and
III. As a workaround, we propose to try running Adaptive Backward Push with exponentially
decreasing nr, and terminate this process once its paid cost exceeds the expected cost of
simulating nr random walks. Intuitively, in this way, our algorithm achieves the same
asymptotic complexity as if it knew the optimal nr. We will describe the detailed process
and formally state this claim below.

4.3 Main Algorithm
Algorithm 2 outlines the pseudocode of our proposed algorithm for the SSPPR-A query. It
consists of three phases: Phase I (line 2 to line 3), Phase II (line 5 to line 14), and Phase III
(line 16 to line 19). We recap the purposes of the three phases as follows:

(I) running Monte Carlo to obtain estimates π′(s, v) and derive the candidate set C;
(II) performing Adaptive Backward Push to obtain reserves q(s, t) and residues r(v, t) for

candidate nodes t ∈ C, where the associated nr (the number of random walk samplings
in Phase III) is exponentially decreased and the stopping rule is designed to balance
Phases II and III;

(III) running Monte Carlo several times, combining their results π′′(s, v) with those of
Adaptive Backward Push, and finally taking the median values as the results π̂(s, t).
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Algorithm 2 Our algorithm for the SSPPR-A query.

Input: graph G = (V, E), decay factor α, source node s, error parameter ε

Output: estimates π̂(s, t) for all t ∈ V

1 // Phase I
2 π′(s, v) for all v ∈ V ← Monte Carlo estimates with

⌈
12 ln

(
2n3) /ε

⌉
random walks

3 C ←
{

t ∈ V : π′(s, t) > 1
2 ε
}

4 // Phase II
5 nr ← ⌈n/ε⌉, nt ←

⌈
18 ln

(
2n2)⌉

6 rmax(t)← ε2nr

6π′(s,t) for all t ∈ C

7 while True do
8 // the process in this loop is called an iteration
9 // in this iteration, try running Backward Push with 1

2 rmax(t)’s
10 for each t ∈ C do
11 run BackwardPush

(
G, α, t, 1

2 rmax(t)
)
, but once the total cost of Backward

Push in this iteration exceeds the expected cost of simulating nt · 1
2 nr

random walks, terminate and break the outer loop (i.e., jump to line 14)
12 nr ←

⌊ 1
2 nr

⌋
13 rmax(t)← 1

2 rmax(t) for all t ∈ C

14 q(v, t), r(v, t) for v ∈ V ← BackwardPush
(
G, α, t, rmax(t)

)
15 // Phase III
16 for i from 1 to nt do
17 π′′(s, v) for all v ∈ V ← Monte Carlo estimates with nr random walks
18 π̂i(s, t)← q(s, t) +

∑
v∈V π′′(s, v)r(v, t) for all t ∈ C

19 π̂(s, t)← mediannt
i=1
{

π̂i(s, t)
}

for all t ∈ C

20 return π̂(s, t) for all t ∈ V

Concretely, in Phase I, the algorithm runs Monte Carlo (as introduced in Subsection 1.2)
with

⌈
12 ln

(
2n3) /ε

⌉
random walks (line 2), obtain estimates π′(s, v), and sets the candidate

set C to be
{

t ∈ V : π′(s, t) > 1
2 ε
}

(line 3). Next, Phase II implements Adaptive Backward
Push. It first initializes nr, the number of random walk samplings in Phase III, to be ⌈n/ε⌉,
and sets nt, the number of trials for the median trick, to be

⌈
18 ln

(
2n2)⌉ (line 5). Also,

rmax(t) is initialized to be ε2nr

6π′(s,t) for each candidate node t ∈ C (line 6). In the subsequent
loop (line 7 to line 13), the algorithm repeatedly tries to run Backward Push (Algorithm 1)
for each candidate node t ∈ C with parameter 1

2 rmax(t), and iteratively halves nr as well as
rmax until the cost of Backward Push exceeds the expected cost of simulating random walks
in Phase III. In that case, the algorithm immediately terminates Backward Push and jumps
to line 14 (without halving nr and rmax(t)), where Backward Push is invoked again with the
current rmax(t) to obtain the reserves and residues. Finally, in Phase III, the algorithm runs
Monte Carlo with nr random walks (line 17) and computes estimates π̂i(s, t) according to
Equation 3 (line 18). This process is repeated nt times (line 16), and the final approximations
π̂(s, t) are computed as mediannt

i=1
{

π̂i(s, t)
}

(line 19).
Note that in line 18, for each t ∈ C, we only need to iterate through nodes v with

a nonzero residue r(v, t) to compute the summation. Thus, we can implement line 18 in
asymptotically the same time as running Backward Push in Phase II.

In the following section, we demonstrate the correctness and efficiency of Algorithm 2.
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5 Analyses for the SSPPR-A Query

We give correctness and complexity analyses of our Algorithm 2 for the SSPPR-A query.
The analyses for the SSPPR-D query are given in the full version of this paper [50].

First, we give error bounds for the Monte Carlo estimates in Phase I. These are typical
results for the Monte Carlo method, and we give a proof in the full version of this paper [50]
for completeness.

▶ Lemma 4. Let π′(s, v) denote the estimate for π(s, v) obtained in Phase I of Algorithm 2.
With probability at least 1− 1/n2, we have 1

2 π(s, v) ≤ π′(s, v) ≤ 3
2 π(s, v) for all v ∈ V with

π(s, v) ≥ 1
4 ε, and π′(s, v) ≤ π(s, v) + 1

4 ε for all v ∈ V with π(s, v) < 1
4 ε.

We say that Phase I succeeds if the properties in Lemma 4 are satisfied. Our following
discussions are implicitly conditioned on the success of Phase I, and we shall not specify this
explicitly for ease of presentation. We only take this condition into account when considering
the overall success probability of the algorithm. Also, we regard π′(s, v) as fixed values when
analyzing the remaining phases. Next, we show that Phase I prunes non-candidate nodes
properly and guarantees constant relative error bounds for candidate nodes.

▶ Lemma 5. All non-candidate nodes t′ /∈ C satisfy π(s, t′) ≤ ε, and all candidate nodes
t ∈ C satisfy 1

2 π(s, t) ≤ π′(s, t) ≤ 3
2 π(s, t).

The proof of Lemma 5 can be found in the full version of this paper [50]. Based on Lemma 5,
we prove the correctness and complexity bounds of Algorithm 2 separately.

Correctness Analysis

Primarily, the following lemma justifies the unbiasedness of the estimators π̂i(s, t):

▶ Lemma 6. For all the candidate nodes t ∈ C, π̂i(s, t) are unbiased estimators for π(s, t),
i.e., E

[
π̂i(s, t)

]
= π(s, t).

The proof of Lemma 6 can be found in the full version of this paper [50]. Next, we prove the
following key lemma, which bounds the variances of the estimators π̂i(s, t) in terms of nr,
rmax(t), and π(s, t):

▶ Lemma 7. The variances Var
[
π̂i(s, t)

]
are bounded above by 1/nr · rmax(t)π(s, t), for all

t ∈ C. Here, nr is the number of random walks in Phase III. This leads to Var
[
π̂i(s, t)

]
≤ 1

3 ε2.

Proof. We first calculate

Var
[
π̂i(s, t)

]
= Var

[
q(s, t) +

∑
v∈V

π′′(s, v)r(v, t)
]

= Var
[∑

v∈V

π′′(s, v)r(v, t)
]

.

To bound this variance, we use the fact that the Monte Carlo estimators π′(s, v)’s are
negatively correlated, so the variance of their weighted sum is bounded by the sum of their
weighted variances:

Var
[
π̂i(s, t)

]
≤
∑
v∈V

Var
[
π′′(s, v)r(v, t)

]
=
∑
v∈V

(
r(v, t)

)2 Var
[
π′′(s, v)

]
.
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Next, we plug in Var
[
π′′(s, v)

]
= π(s, v)

(
1− π(s, v)

)/
nr, the variances of binomial random

variables divided by nr, to obtain

Var
[
π̂i(s, t)

]
≤
∑
v∈V

(
r(v, t)

)2 ·
π(s, v)

(
1− π(s, v)

)
nr

= 1
nr

∑
v∈V

r(v, t)
(
π(s, v)r(v, t)

)(
1− π(s, v)

)
≤ 1

nr

∑
v∈V

r(v, t)
(
π(s, v)r(v, t)

)
.

Using the properties of Backward Push (see Subsection 3.2) that r(v, t) ≤ rmax(t) for all
v ∈ V and

∑
v∈V π(s, v)r(v, t) = π(s, t)− q(s, t) ≤ π(s, t), we have

Var
[
π̂i(s, t)

]
≤ 1

nr
· rmax(t)

∑
v∈V

π(s, v)r(v, t) ≤ 1
nr
· rmax(t)π(s, t).

This proves the first part of the lemma. Finally, by the setting of rmax(t) = ε2nr

6π′(s,t) and the
result in Lemma 5 that π′(s, t) ≥ 1

2 π(s, t) for candidate nodes t ∈ C, we obtain

Var
[
π̂i(s, t)

]
≤ 1

nr
· ε2nr

6π′(s, t) · π(s, t) ≤ 1
nr
· ε2nr

3π(s, t) · π(s, t) = 1
3ε2.

We conclude that Var
[
π̂i(s, t)

]
≤ 1

3 ε2, as claimed. ◀

Now, we prove the following theorem, which verifies the correctness of Algorithm 2:

▶ Theorem 8. Algorithm 2 answers the SSPPR-A query (defined in Definition 1) correctly
with probability at least 1− 1/n.

Proof. First, for non-candidate nodes t′ /∈ C, Lemma 5 guarantees that π(s, t′) ≤ ε, so it
is acceptable that Algorithm 2 returns π̂(s, t′) = 0 as their PPR estimates. For candidate
nodes t ∈ C, Lemma 6 together with Chebyshev’s inequality guarantees that

Pr
[∣∣π̂i(s, t)− π(s, t)

∣∣ ≥ ε
]
≤

Var
[
π̂i(s, t)

]
ε2 ≤ 1

3 .

Recall that Algorithm 2 sets the final estimates π̂(s, t) to be mediannt
i=1
{

π̂i(s, t)
}

, where
nt =

⌈
18 ln

(
2n2)⌉, and that π̂i(s, t) for 1 ≤ i ≤ nt are obtained from independent trials of

nr random walk samplings. Thus, by applying the median trick (Theorem 15), we know that
for any t ∈ C, the probability that

∣∣π̂(s, t)− π(s, t)
∣∣ ≥ ε is at most 1

/ (
2n2). Since |C| ≤ n,

by applying union bound for all t ∈ C, we prove that with probability at least 1− 1/(2n),∣∣π̂(s, t)− π(s, t)
∣∣ ≤ ε holds for all t ∈ C, matching the error bound required in Definition 1.

Lastly, recall that this probability is conditioned on the success of Phase I, whose probability
is at least 1− 1/n2 by Lemma 4. Thus, we conclude that the overall success probability is at
least

(
1− 1/n2) (1− 1/(2n)

)
> 1− 1/n. ◀

Complexity Analysis

First, we formalize the claim given in Subsection 4.2 regarding the balance between Phases II
and III, as follows. We prove the claim in the full version of this paper [50].

▷ Claim 9. Algorithm 2 achieves the asymptotic complexity as if the optimal nr (in terms of
balancing the complexities of Phases II and III) is previously known and Adaptive Backward
Push is only performed once with this nr.
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Based on Claim 9, we can derive the complexity of Algorithm 2 on general directed graphs:

▶ Theorem 10. The expected time complexity of Algorithm 2 on directed graphs is

Õ

1
ε

√∑
t∈V

π(s, t)
∑
v∈V

π(v, t)din(v)

 .

Furthermore, this complexity is upper bounded by Õ
(√

m/ε
)
.

Proof. First, the expected complexity of Phase I is Õ(1/ε), which is negligible in the overall
complexity. In Phase II, Backward Push is invoked with parameter rmax(t) = ε2nr

6π′(s,t) for
each t ∈ C, where π′(s, t) satisfies π′(s, t) ≤ 3

2 π(s, t) by Lemma 5. Therefore, using the
complexity of Backward Push (Equation 2), the complexity of Phase II is bounded by

O

(∑
t∈C

∑
v∈V π(v, t)din(v)

rmax(t)

)
= O

(∑
t∈C

∑
v∈V

π′(s, t)π(v, t)din(v)
ε2nr

)

≤O

(∑
t∈C

∑
v∈V

π(s, t)π(v, t)din(v)
ε2nr

)
≤ O

(∑
t∈V

∑
v∈V

π(s, t)π(v, t)din(v)
ε2nr

)

=O

(
1

ε2nr

∑
t∈V

π(s, t)
∑
v∈V

π(v, t)din(v)
)

. (4)

On the other hand, Phase III performs nt·nr =
⌈
18 ln

(
2n2)⌉·nr = Õ(nr) random walks, so the

total complexity of Phases II and III is Õ
(
1/
(
ε2nr

)
·
∑

t∈V π(s, t)
∑

v∈V π(v, t)din(v) + nr

)
.

By the AM–GM inequality, the optimal setting of nr minimizes this bound to be

Õ

√nr ·
1

ε2nr

∑
t∈V

π(s, t)
∑
v∈V

π(v, t)din(v)

 = Õ

1
ε

√∑
t∈V

π(s, t)
∑
v∈V

π(v, t)din(v)

 .

By Claim 9, Algorithm 2 achieves this complexity.
In order for a simple upper bound, we use π(v, t) ≤ 1 for all v, t ∈ V to obtain

Õ

1
ε

√∑
t∈V

π(s, t)
∑
v∈V

π(v, t)din(v)

 ≤ Õ

1
ε

√∑
t∈V

π(s, t)
∑
v∈V

din(v)


=Õ

1
ε

√∑
t∈V

π(s, t) ·m

 = Õ

(√
m

ε

)
,

as claimed.
A subtle technicality here is that these complexity bounds are conditioned on the success

of Phase I, and the expected complexity of Phase II may be unbounded if Phase I fails. To
resolve this technical issue, we can switch to using naïve Power Method [14] once the actual
cost of the algorithm reaches Θ

(
n2). In this way, even if Phase I fails, the algorithm will solve

the query in Õ
(
n2) time. As the failure probability of Phase I is at most 1/n2 (Lemma 4),

this merely adds a term of 1/n2 · Õ
(
n2) = Õ(1) to the overall expected complexity, and thus

does not affect the resultant bounds. We will omit this technicality in later proofs. ◀

Next, we analyze the complexity of Algorithm 2 on general undirected graphs. To this end,
the following previously known symmetry theorem will be helpful.
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▶ Theorem 11 (Symmetry of PPR on Undirected Graphs [6, Lemma 1]). For all nodes u, v ∈ V ,
we have π(u, v)d(u) = π(v, u)d(v).

Now, we can derive a better complexity bound of Algorithm 2 on undirected graphs.

▶ Theorem 12. The expected time complexity of Algorithm 2 on undirected graphs is

Õ

1
ε

√∑
t∈V

π(s, t)d(t)

 .

Furthermore, this complexity is upper bounded by Õ
(√

dmax/ε
)
.

Proof. Using Theorem 11, we can simplify the first complexity in Theorem 10 as follows:

Õ

1
ε

√∑
t∈V

π(s, t)
∑
v∈V

π(v, t)d(v)

 = Õ

1
ε

√∑
t∈V

π(s, t)
∑
v∈V

π(t, v)d(t)


=Õ

1
ε

√∑
t∈V

π(s, t)d(t)
∑
v∈V

π(t, v)

 = Õ

1
ε

√∑
t∈V

π(s, t)d(t)

 .

To prove the upper bound of Õ
(√

dmax/ε
)
, we use d(t) ≤ dmax for all t ∈ V to obtain

Õ

1
ε

√∑
t∈V

π(s, t)d(t)

 ≤ Õ

√dmax

ε
·
√∑

t∈V

π(s, t)

 = Õ

(√
dmax

ε

)
. ◀

We note that the bounds Õ
(√

m/ε
)

and Õ
(√

dmax/ε
)

above are for worst-case graphs, and
for power-law graphs (Assumption 3), we can derive better bounds. In the full version of
this paper [50], we prove the following lemma, which bounds

∑
t∈V

(
π(v, t)

)2 for any v ∈ V :

▶ Lemma 13. On a power-law graph,
∑

t∈V

(
π(v, t)

)2 = O
(
n2γ−2) holds for any v ∈ V .

Now, we can bound the complexity on power-law graphs as follows:

▶ Theorem 14. The expected complexity of Algorithm 2 on power-law graphs is Õ
(
nγ−1/2/ε

)
.

Proof. We prove the theorem using Cauchy–Schwarz inequality and power-law assumptions
to simplify the first complexity given in Theorem 10. First, reordering the summations yields

Õ

1
ε

√∑
t∈V

π(s, t)
∑
v∈V

π(v, t)din(v)

 = Õ

1
ε

√∑
v∈V

din(v)
∑
t∈V

π(s, t)π(v, t)

 ,

where

∑
t∈V

π(s, t)π(v, t) ≤

√√√√(∑
t∈V

(
π(s, t)

)2
)(∑

t∈V

(
π(v, t)

)2
)

by Cauchy–Schwarz inequality. By Lemma 13, both
∑

t∈V

(
π(s, t)

)2 and
∑

t∈V

(
π(v, t)

)2 are
bounded by O

(
n2γ−2). Consequently,

∑
t∈V π(s, t)π(v, t) ≤ O

(
n2γ−2), and the expression

in question can be bounded by

Õ

1
ε

√∑
v∈V

din(v) · n2γ−2

 = Õ

(
1
ε

√
m · n2γ−2

)
= Õ

(
nγ−1/2

ε

)
,

where we used the fact that m = Õ(n) on power-law graphs. ◀
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▶ Theorem 15 (Median Trick [25]). Let X1, X2, . . . , Xnt
be nt i.i.d. random variables

such that Pr
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]
≤ 1

3 for any 1 ≤ i ≤ nt, where µ = E[Xi], and let X =
median1≤i≤nt{Xi}. For a given probability pf , if nt ≥ 18 ln(1/pf ) = Θ

(
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)
, then

Pr
[∣∣X − µ

∣∣ ≥ λ
]
≤ pf . Here, median1≤i≤nt
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⌈

nt

2
⌉
-th smallest element

in X1, X2, . . . , Xnt
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1 Introduction

Datalog is a rule-based language for specifying mappings from database instances over an
input schema Sin, to database instances over an output schema Sout.

▶ Example 1.1. Consider the Datalog program defined by the following rules:

Path(x, y) :− Edge(x, y).
Path(x, y) :− Edge(x, z), Path(z, y).
Ans(x, y) :− Path(x, y).

This Datalog program takes as input an instance over an input schema {Edge}, and produces
as output an instance over the schema {Ans}, where Ans is the transitive closure of Edge.

We study the existence of right-adjoints and generalized right-adjoints for Datalog
programs, where a right-adjoint for a Datalog program P is a function Ω from Sout-instances
to Sin-instances, such that for all Sin-instances I and Sout-instances J , P (I) → J iff
I → Ω(J), where “→” denotes the existence of a homomorphism. Generalized right-adjoints
are defined similarly, loosely speaking, except that we allow Ω to map each Sout-instance
to a finite set of Sin-instances, such that, P (I) → J iff I → J ′ for some J ′ ∈ Ω(J). We
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identify large classes of Datalog programs for which a right-adjoint, respectively, a generalized
right-adjoint, exists. For instance, it will follow from our results that the Datalog program
from Example 1.1 has a right-adjoint.

Our motivation for studying (generalized) right-adjoints for Datalog programs comes
from the fact that they provide us with a means of constructing homomorphism dualities.
A homomorphism duality is a pair (F,D) where F and D are sets of instances, such that
an arbitrary instance A admits a homomorphism from an instance in F if and only if A
does not admit a homomorphism to any instance in D. In other words, homomorphism
dualities equate the existence of a homomorphism of one kind to the non-existence of a
homomorphism of another kind. Homomorphism dualities have been studied extensively in
the literature on constraint satisfaction problems, and have also found several applications
in database theory (e.g., for schema mapping design [2], ontology-mediated data access [6],
and query inference from data examples [9, 10]). In particular, in [2, 9], homomorphism
dualities were used as a tool for studying the unique characterizability, and exact learnability,
of schema mappings and of conjunctive queries. Using the same approach, we can use our
results on right-adjoints to derive new results on unique characterizations for (unions of)
conjunctive queries in the presence of integrity constraints. In the process, we also obtain a
new technique for constructing homomorphism dualities within restricted classes of structures,
e.g., transitive digraphs.

▶ Contribution 1 (Section 3). We introduce a new fragment of Datalog called TAM Datalog
(Tree-Shaped Almost-Monadic Datalog). We characterize TAM Datalog as a fragment of
Monadic Second-Order Logic, and we prove that TAM Datalog is closed under composition.

▶ Contribution 2 (Section 4). We show that every connected TAM Datalog program has
a right-adjoint, and that every TAM Datalog program has a generalized right-adjoint. We
show by means of counterexamples that each of the syntactic conditions imposed by TAM
Datalog is necessary for the existence of generalized right-adjoints.

▶ Contribution 3 (Section 5). We investigate the relationship between generalized right-
adjoints and homomorphism dualities. Generalized right-adjoints can be used for constructing
homomorphism dualities. We show that all tree dualities can be accounted for in this way.

▶ Contribution 4 (Section 6). Following the approach in [2, 9], we derive new results on
unique characterizations for (unions of) conjunctive queries in the presence of integrity
constraints. In the process, we obtain a new technique for constructing homomorphism
dualities within restricted classes of structures, e.g., transitive digraphs.

Some proofs are omitted and can be found in an appendix of the full version of this paper.

Related Work. Foniok and Tardif [17] studied the existence of right adjoints to Pultr
functors which are themselves right adjoints [22] in the special case of digraphs. Translating
into our terms a Pultr functor is an interpretation (of digraphs in digraphs) (ϕV , ϕE) where
ϕV and ϕE are conjunctive queries (with k and 2k free variables, respectively, for some k ≥ 1)
defining the output node-set and edge-set respectively. For the special case where ϕV just
returns the input node-set, it was shown in [17] that the functor defined by (ϕV , ϕE) has a
right adjoint if ϕE is connected and acyclic. The setup and characterization were generalized
in [13] to arbitrary relational structures. We extensively build on the framework and concepts
in [13], but we permit the interpretation to be specified by an arbitrary Datalog program, so
that our setup is able to encompass common types of database dependencies.
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To our knowledge, this is the first time that adjoints for functors defined by Datalog
programs have been studied. Also, it is the first application of functors with right adjoints in
the context of unique characterization of database queries. In a different setting, namely
approximate graph coloring, the “arc graph” functor was used in [21] where it is additionally
argued that functors with a right adjoint, more generally, can play a role in the design and
analysis of reductions between (promise) constraint satisfaction problems. The use of Datalog
programs for reductions between such problems, although without reference to adjoints, is
discussed in [14].

2 Preliminaries

Schemas, Instances, Homomorphisms. A schema S is a finite collection of relation symbols
R with specified arity arity(R) ≥ 0. An S-instance I is a finite set of facts, where a fact
is an expression of the form R(a1, . . . , an) with R ∈ S and n = arity(R). Unless specified
otherwise, instances are always assumed to be finite. The active domain adom(I) of I is the
set of all values ai occurring in the facts of I. A homomorphism h : I → J , where I and J

are instances over the same schema S, is a function from adom(I) to adom(J) such that the
h-image of every fact of I is a fact of J . We will denote by Inst[S] the set of all S-instances.

A k-ary pointed S-instance (for k ≥ 0) is a pair (I,a) where I is an S-instance and a a
k-tuple of elements of adom(I), called distinguished elements. A homomorphism h : (I, a) →
(J,b) is a homomorphism h : I → J such that h(a) = b.

Incidence Graph, Connectedness, C-Acyclicity. The incidence graph of an instance I is
the bipartite multi-graph whose nodes are the elements and the facts of I, and where there is
a distinct (undirected) edge (a, f) for every occurrence of the element a in the fact f . We say
that an instance is connected if its incidence graph is connected, and an instance is acyclic
if its incidence graph is acyclic. A pointed instance (I,a) is c-acyclic if every cycle in the
incidence graph of I contains at least one element from the tuple a.

Conjunctive Queries and Unions of Conjunctive Queries. For S a schema and k ≥ 0, a
k-ary conjunctive query (CQ) over S is an expression of the form

q(y1, . . . , yk) :− ∃x(ϕ1 ∧ · · · ∧ ϕn) (Eq. 1)

where each ϕi is a relational atomic formula, and such that each variable yi occurs in at least
one conjunct ϕj . A k-ary union of conjunctive queries (UCQ) over S is a finite disjunction
of k-ary CQs over S. We denote by q(I) the set of tuples a for which it holds that I |= q(a).

The canonical instance of a CQ of the form (Eq. 1) is the pointed instance (I,y)
where I is the instance with active domain {y1, . . . , yk,x} whose facts are the conjuncts
of ϕ, and y = y1 . . . yk. Conversely, the canonical CQ of a pointed instance (I,a) with
a = a1 . . . ak, is obtained by associating a unique variable ya to each a ∈ adom(I), letting
x be an enumeration of all variables ya for a ∈ adom(I) \ {a1, . . . , ak}, and taking the
query q(ya1 , . . . , yak

) :− ∃x
∧

R(b1,...,bn)∈I R(yb1 , . . . , ybn). By the well-known Chandra-Merlin
theorem, a tuple a belongs to q(I) if and only if the canonical instance of q homomorphically
maps to (I, a).

We call a UCQ q c-acyclic if the (pointed) canonical instance of each CQ in q is c-acyclic.

Datalog. A Datalog program is specified by a collection of rules, and it defines a mapping
from instances over a schema Sin (traditionally known as the EDB schema) to instances over
a schema Sout (traditionally known as the IDB schema). The presentation we will give here
also allows for auxiliary IDB relations that are not exposed in the output schema.
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▶ Definition 2.1 (Datalog Program). A Datalog program is a tuple P = (Sin,Sout,Saux,Σ)
where Sin,Sout,Saux are mutually disjoint schemas, and Σ is a set of rules of the form

S(x) :− R1(y1), . . . , Rn(yn)

where S ∈ Sout ∪ Saux, each Ri ∈ Sin ∪ Saux, and each variable in x occurs in yi for some i.

If P is a Datalog program, then we will use often use the notation SP
in, SP

out, SP
aux, and

ΣP to refer to the constituents of the tuple P .
The head of a rule is the part to the left of the :− sign, and the body is the part to the

right. The canonical instance of a Datalog rule R0(x0) :− R1(x1), . . . , Rn(xn) is the pointed
instance whose active domain is {x1, . . . ,xn}, whose facts are the conjuncts Ri(xi) of the
rule body, and whose sequence of distinguished elements is the tuple x0. We say that a
Datalog program P is connected if the canonical instance of each rule is connected. We say
that a Datalog program P is non-recursive if SP

aux = ∅.
If P is a Datalog program and I an SP

in-instance, then a solution for I with respect
to P is an instance J over the schema Sin ∪ Sout ∪ Saux such that I ⊆ J , and such that
all the rules of P are satisfied in J (i.e., whenever the body of a rule is satisfied under
a variable assignment, then so is the head). The well-known chase procedure provides a
method for constructing a solution: given a Datalog program P and an SP

in-instance I, we
denote by chaseP (I) the SP

in ∪SP
out ∪SP

aux-instance obtained from I by applying all rules until
convergence. More precisely, chaseP (I) can be defined as the infinite union

⋃
i≥0 chasei

P (I),
where chase0

P (I) = I, and where chasei+1
P (I) extends chasei

P (I) with all facts that can be
derived from facts in chasei

P (I) using a rule in ΣP . We refer to [1] for more details.

▶ Lemma 2.2. For all Datalog programs P and SP
in-instances I, chaseP (I) is a solution for

I with respect to P . Moreover, it is the intersection of all solutions for I with respect to P .

We denote the SP
out-reduct of chaseP (I) by P (I). We say that two Datalog programs

P, P ′ with SP
in = SP ′

in and SP
out = SP ′

out are equivalent if, for all SP
in-instances I, P (I) = P ′(I).

By a Boolean Datalog program, we mean a Datalog program P where SP
out consists of a

single zero-ary relation symbol, which is customarily denoted as Ans. In such cases, write
P (I) = true if P (I) = {Ans()} and P (I) = false otherwise (i.e., if P (I) = ∅).

It is well-known that Datalog programs are monotone with respect to homomorphisms:

▶ Lemma 2.3. Let P be any Datalog program, and let I, I ′ be SP
in-instances. Every homo-

morphism h : I → I ′ yields, when restricted to adom(P (I)), a homomorphism from P (I) to
P (I ′).

We can think of the above definition of P (I), in terms of the chase, as a bottom-up
account of the semantics of a Datalog program. Unfoldings (a.k.a. expansions) provide a
complementary, top-down account. Given a Datalog program P , the set of derivable rules
of P is the smallest set of rules that (i) contains all rules of P , and (ii) is closed under
the operation of substituting occurrences of rule heads by the corresponding rule bodies
(renaming variables as necessary). Given a Datalog program P and a relation R ∈ SP

out,
Unfoldings(P,R) is the set of canonical instances of derivable rules that have R in the rule
head and that only have Sin-relations in the body. Note that this set is in general infinite.

▶ Example 2.4. Let P be the Datalog program consisting of the three rules

R(x, y) :− S(x, y) R(x, x) :− T (x, y) T (x, y) :− U(x, y), U(y, z)
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where Sin = {U, S}, Sout = {R}, and Saux = {T}. Then the derivable rules of P are the
rules of P together with the rule R(x, x) :− U(x, y), U(y, x), and Unfoldings(P,R) consists
(up to isomorphism) of the pointed instances ({U(a, b), U(b, c)}, ⟨a, a⟩) and ({S(a, b)}, ⟨a, b⟩).

▶ Lemma 2.5 (Cf. [12]). For all Datalog programs P , instances I ∈ Inst[SP
in], and SP

out-facts
R(a) over adom(I), R(a) ∈ P (I) iff, for some (J,b) ∈ Unfoldings(P,R), (J,b) → (I, a).

3 TAM Datalog

TAM Datalog is a fragment of Datalog defined by two requirements: “tree-shaped” and
“almost-monadic”. We introduce each in isolation first.

Almost-Monadic Datalog. Recall that a Datalog program is monadic if all relations in Saux

are unary. It is well known that monadic Datalog programs can be expressed in Monadic
Second-Order logic (MSO). Formally, by a k-ary MSO query over a schema S, we will mean an
MSO formula ϕ(x1, . . . , xk) over S. We say that a Datalog program P = (Sin,Sout,Saux,Σ)
together with a designated k-ary relation R ∈ Sout, defines an MSO query ϕR(x) over Sin, if
for all Sin-instances I and a ∈ adom(I), R(a) ∈ P (I) iff I |= ϕR(a). The following is folklore
in the database literature (cf. [19] for an explicit proof):

▶ Theorem 3.1. Let P be a monadic Datalog program and R ∈ SP
out. Then (P,R) defines

an MSO query.

We will now define a weaker restriction, namely that of almost-monadic Datalog programs,
for which the same holds. These are programs in which every k-ary auxiliary relation has,
among its k argument positions, (at most) one specified “articulation position”, and the
syntax of the rules is constrained in such a way that variables occurring in non-articulation
positions can only be used to carry information forward, and not to “perform joins”. Formally:

▶ Definition 3.2 (Almost-Monadic Datalog). An articulation function, for a Datalog program
P , is a partial function f mapping relations R ∈ SP

aux to a number f(R) ∈ {1, . . . , arity(R)},
which we will call the articulation position of R. Each i ∈ {1, . . . , arity(R)} other than
f(R) is called a non-articulation position of R. A Datalog program is almost-monadic if
there exists an articulation function such that, in every rule, each variable occurring in a
non-articulation position of an auxiliary relation in a rule body occurs only once in that rule
body, and does not occur in the articulation position of an auxiliary relation in the head.

Note: the articulation conditions pertain to auxiliary relations and not to output relations.

▶ Example 3.3. The Datalog program from Example 1.1 (which outputs all pairs (a, b) for
which there is a directed path from a to b) is not monadic but is almost-monadic. The
witnessing articulation function assigns to the auxiliary relation Path its first position as
articulation position. Even if we extend the program with an additional rule Ans(x, y) :−
Path(y, x) (so that it computes all pairs (a, b) for which there is a directed path from a

to b or from b to a), the resulting program is still almost-monadic. This is because the
requirements on the articulation function only pertain to auxiliary relations, not to output
relations. On the other hand, if we were to change the rule Path(x, y) :− Edge(x, z), Path(z, y)
to Path(x, y) :− Path(x, z), Path(z, y), the program would no longer be almost-monadic
(cf. also Example 6.2).

For an example of a Datalog program that is not almost-monadic, see Example 3.11
below.
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▶ Proposition 3.4. The almost-monadic Datalog program from Example 1.1 is not equivalent
to a monadic Datalog program.

The following result justifies the terminology almost-monadic. It shows that almost-
monadic Datalog programs can be simulated, in a precise sense, by monadic Datalog programs.

▶ Theorem 3.5. For each almost-monadic Datalog program P and k-ary relation symbol
R ∈ SP

out, there is a Boolean monadic Datalog program P ′ where SP ′

in = SP
in ∪ {Q1, . . . , Qk},

such that the following are equivalent, for all SP
in-instances I and a1, . . . , ak ∈ adom(I):

1. R(a1, . . . , ak) ∈ P (I),
2. P ′(I ∪ {Q1(a1), . . . , Qk(ak)}) = true.

▶ Example 3.6. Let P be the Datalog program from Example 1.1. To satisfy the statement
of Theorem 3.5, it suffices to define P ′ as:

Path’(x) :− Edge(x, y), Q2(y).
Path’(x) :− Edge(x, y), Path’(y).

Ans() :− Path’(x), Q1(x).

Informally, Path’(x) holds if there is a path starting at x that ends at a node satisfying Q2.

It follows that almost-monadic Datalog is contained in MSO. That is, we have the
following analogue of Thm. 3.1 for almost-monadic Datalog programs:

▶ Corollary 3.7. Let P be an almost-monadic Datalog program and R ∈ SP
out. Then (P,R)

defines an MSO query.

In summary, we have that almost-monadic Datalog forms a strict extension of monadic
Datalog that is still contained in MSO. One may be tempted to conjecture that almost-
monadic Datalog is expressively complete for the intersection of Datalog and MSO. However,
this is not the case. The easiest way to show this, is using the following Lemma, which is
interesting in its own right, as it shows that, when the output schema contains only unary
relations, almost-monadic Datalog is no more expressive than monadic Datalog:

▶ Lemma 3.8. Let P be any almost-monadic Datalog such that every R ∈ SP
out is unary.

Then P is equivalent to a monadic Datalog program.

Using this lemma, we can show:

▶ Proposition 3.9. The unary MSO query “x lies on a directed R-cycle” is not definable by
an almost-monadic Datalog program.

▶ Remark 3.10. Prop. 3.9 also shows that almost-monadic Datalog is not closed under
composition, because the same query can be expressed as the composition of two almost-
monadic Datalog programs, where the first computes the transitive closure R∗ of the relation
R, and the second program consists of the single non-recursive rule Ans(x) :− R∗(x, x). It
also shows that almost-monadic Datalog is strictly included in MODEQ (also known as Flag-
and-Check), which is another language contained in the intersection of Datalog and MSO [23].
See also [7] for a characterization of the intersection of MSO and Datalog in terms of infinite
domain constraint satisfaction problems. As we will soon see, the intersection of tree-shaped
Datalog and MSO is (up to logical equivalence) precisely tree-shaped almost-monadic Datalog.
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Tree-shapedness. We say that a Datalog program P is tree-shaped if the incidence graph of
the canonical instance of each rule is acyclic. In particular, since we defined incidence graphs
as multigraphs, this implies that no variable occurs twice in the same conjunct in the rule
body (but the rule head may contain repeated occurrences of variables). Note that we do not
require the incidence graph of the rules to be connected, nor do we make any requirements
(say, in the case of binary relations) on the direction of edges. Thus, in tree-shaped Datalog
programs, rules such as T (x) :− R(x, y), S(x, y) or T (x) :− R(x, x) are forbidden.

▶ Example 3.11. Consider the tree-shaped Datalog program P given by the following two
rules (where SP

in consists of two binary relations, E,F ):

R(x, y) :− E(x, u), F (u, y) R(x, y) :− E(x, u), R(u, v), F (v, y) Ans(x, y) :− R(x, y)

Then AnsP (I) contains all pairs (a, b), such that there is a directed path from a to b in I

consisting of a number of E-edges followed by an equal number of F -edges.
Observe that P is not TAM Datalog because neither the first position of the relation R

qualifies as an articulation position (since v occurs twice in the second rule body) nor the
second position (since u occurs twice in the same rule body).

It follows from known facts about MSO (viz. the fact that MSO on words captures the
regular languages) that (P, Ans) does not define an MSO query. In particular, P is not
equivalent to a monadic Datalog program, or even an almost-monadic Datalog program.

▶ Lemma 3.12. Let P be any tree-shaped Datalog program. Then, for each R ∈ SP
out,

Unfoldings(P,R) consists of acyclic pointed instances.

TAM Datalog. A TAM Datalog program is a tree-shaped, almost-monadic Datalog program.
We will give a precise model-theoretic characterization of TAM Datalog in terms of MSO.

We say that an MSO query ϕ(x) is tree-determined if for each pointed instance (I,a),
we have that I |= ϕ(a) if and only if there is an acyclic pointed instance (J,b) such that
J |= ϕ(b) and (J,b) → (I,a). Note that J must be finite and that J is not required to be
connected.

▶ Theorem 3.13. Let ϕ(x1, . . . , xn) be an MSO formula. The following are equivalent:
1. ϕ is definable by a TAM Datalog program,
2. ϕ is definable by a tree-shaped Datalog program,
3. ϕ is tree-determined.
▶ Remark 3.14. It is worth comparing this to the result in [19] that states that monadic
Datalog and MSO have the same expressive power on finite trees. Besides the fact that
Thm. 3.13 is a characterization on arbitrary (finite) instances while the result in [19] is
restricted to trees, there are a few other important differences: in [19], it is assumed that
trees are represented as structures in which the children of each node are ordered; that the
signature includes predicates marking the root, leafs, the first child of each node, and the
last child of each node; and that each node of the tree is labeled by precisely one of the
(other) unary predicates in the signature. These assumptions together imply that every
homomorphism between such trees is necessarily an isomorphism, which makes the two
results incomparable.

▶ Corollary 3.15 (TAM Datalog is closed under composition). For all TAM Datalog programs
P1 and P2 with SP2

in = SP1
out, there is a TAM Datalog program P3 = (SP1

in ,S
P2
out,S′

aux,Σ′) such
that, for all SP1

in -instances I, P3(I) = P2(P1(I)).
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10:8 Right-Adjoints for Datalog Programs

We also provide a syntactic normal form for TAM Datalog programs. A TAM Datalog
program is simple if every rule body contains precisely one occurrence of a relation from Sin.
For instance the program given in Example 1.1 is a simple TAM Datalog program.

▶ Theorem 3.16. Every (connected) TAM Datalog program can be transformed in polynomial-
time into an equivalent (connected) simple TAM Datalog program.

We make use of this normal form in some of our proofs.

4 Right-Adjoints for TAM Datalog

The notion of adjunction comes from category theory. Although for the most part, we do
not assume that the reader has a background in category theory, in order to motivate our
definition of generalized right-adjoints for Datalog programs, it is helpful to briefly discuss
Datalog programs from a categorical perspective.

Recall that each Datalog program P defines a mapping from Inst[SP
in] to Inst[SP

out], where
Inst[S] denotes the set of all S-instances. Recall also that this mapping is monotone with
respect to homomorphisms (cf. Lemma 2.3). We view Inst[SP

in] and Inst[SP
out] as partial

(pre)orders, which can consequently be viewed as thin categories where the objects are the
S-instances and there is an arrow from I to J if there exists a homomorphism h : I → J .
The categorical notion of a functor is then simply a monotone mapping. In particular, each
Datalog program P defines a functor. For functors F : X → Y and G : Y → X, where X
and Y are arbitrary thin categories, it is said that G is a right-adjoint for F , and that F is a
left-adjoint of G, if it holds that F (I) → J iff I → G(J).1

In this section, we study the existence of right-adjoints for Datalog programs.

▶ Example 4.1. Consider the Datalog program P = (Sin,Sout, ∅,Σ), where Sin = {R},
Sout = {S}, and Σ consists of the rules S(x, y) :− R(x, y) and S(x, y) :− R(y, x). If we
think of an input instance I as a directed graph, P (I) is its symmetric closure. For every
SP

out-instance J , let Ω(J) be the SP
in-instance that is the maximal symmetric sub-instance of

J , that is, Ω(J) consists of all facts R(x, y) for which it holds that J contains both S(x, y)
and S(y, x). It is not hard to see that P (I) → J iff I → Ω(J). Hence, Ω is a right-adjoint of
P .

▶ Example 4.2. Consider the TAM Datalog program P = (Sin,Sout, ∅,Σ), where Sin =
{Q1, Q2}, Sout = {Q3}, and Σ consists of the rule Q3() :− Q1(x), Q2(y). This Datalog
program does not have a right-adjoint in the above sense. Indeed, let J be the empty
instance. Then P (I) → J holds if and only if either I has no Q1-facts or I has no Q2-facts,
a condition that cannot be equivalently characterized by the existence of a homomorphism
from I to any fixed single instance J ′. However, it can be shown that P (I) → J if and only
if either I → J ′

1 or I → J ′
2, where J ′

1 = {Q1(a)} and J ′
2 = {Q2(a)}. If we generalize the

notion of right-adjoint by allowing Ω(J) to be a finite set of instances, then, as we will see
later (Thm. 4.5), P does admit such a right-adjoint, and the fact that Ω(J) needs to consist
of multiple instances is related to the fact that the program is not connected.

Motivated by the above examples and other considerations that will become clear soon,
the precise notion of right-adjoints that we will adopt here is a little more refined:

1 Note that this coincides with the usual definition of adjoint functors as long as both categories are thin.
It is also precisely the notion of right-adjoints for Galois connections over preordered sets. See also
Remark 4.11 for why we adopt this “thin” definition of adjoints.
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▶ Definition 4.3 (Generalized Right-Adjoints). A generalized right-adjoint for a Datalog
program P is a function ΩP that maps each J ∈ Inst[SP

out] to a finite set of pairs (J ′, ι)
where J ′ ∈ Inst[SP

in] and ι : J ′ ⇀ J is a partial function, such that the following holds:
for all I ∈ Inst[SP

in], there is a homomorphism h : P (I) → J iff there is a homomorphism
h′ : I → J ′ for some (J ′, ι) ∈ ΩP (J), and, furthermore, the homomorphism h′, respectively
h, can be chosen such that the following diagram commutes.2

adom(P (I)) adom(J)

adom(I) adom(J ′)

h

h′

id ι

Here, the “→” arrow refers to homomorphisms, and “⇀” is used to refer to a partial
function. The partial functions ι are needed later on to reason about pointed instances
(cf. for instance the proof of Theorem 5.4).

This notion of generalized right-adjoint behaves as one would expect. In particular, if
two Datalog programs have generalized right-adjoints, then so does their composition.

▶ Example 4.4. Let P be the Datalog program with input schema {R1, R2} and output
schema {Q1, Q2} and consisting of the rules

Q1(x) :− R1(x) Q1(x) :− R2(x) Q2(x) :− R1(x), R2(x)

This Datalog program indeed has a generalized right-adjoint ΩP . In fact it has a regular
right-adjoint, in the sense that ΩP (J) is a singleton for all J ∈ Inst[SP

out], as will follow
from Theorem 4.5 below. We will illustrate this with an example. Let J be the SP

out-
instance consisting of the single fact Q1(a). Then a suitable choice for ΩP (J) is the
singleton set consisting of the pair (J ′, ι), where J ′ consists of the facts R1(a1), R2(a2) and
ι(a1) = ι(a2) = a. Indeed, for each SP

in-instance I, P (I) → J iff I → J ′ via homomorphisms
that make the diagram in Definition 4.3 commute. Note that, to make the diagram commute,
J ′ must indeed contain facts of the form R1(a1) and R2(a2) for distinct values a1, a2 that
are both mapped to a by ι.

Our main result in this section is:

▶ Theorem 4.5. Every TAM Datalog program P has a generalized right-adjoint ΩP . If P is
connected, then ΩP (J) is a singleton for all J ∈ Inst[SP

out]. Moreover, ΩP (J) is computable
from J and P in 2Exptime, and in ExpTime whenever the arity of P is bounded.

Proof. We first consider the special case of connected programs. We may assume without
loss of generality that P is simple. This means that every rule is of the following form:

R0(x0) :− E(y), R1(x1), . . . , Rm(xm) (Eq. 2)
R(x) :− E(y), R1(x1), . . . , Rm(xm) (Eq. 3)

where E is an input relation, each Ri is an auxiliary relation, and R is an output relation.
To simplify the exposition below, we introduce some further notation. For each atom

Ri(xi) as in the above rule types, we will denote by pi ∈ {1, . . . , n} (with n = arity(E)) the
unique number such that ypi

is equal to the articulated variable in Ri(xi). It indeed follows
from the definition of TAM Datalog and the assumed connectedness and simplicity of P that
such an index exists and is unique.

2 By this we, we mean that, for all a ∈ adom(I), either h(a) = ι(h′(a)) or both are undefined.
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10:10 Right-Adjoints for Datalog Programs

We construct an Sin-instance J ′ consisting of all facts E((b1, X1), . . . , (bn, Xn)) where
1. Each bi is an element of adom(J) ∪ {⊥} and Xi is a set of Saux-facts over adom(J) ∪ {⊥}

(not necessarily facts of J) in which bi occurs in articulation position;
2. For each rule of the form (1) above and for each map g : {y,x1, . . . ,xm} → adom(J)∪{⊥},

if for each 1 ≤ i ≤ m, Ri(g(xi)) ∈ Xpi
then R0(g(x0)) ∈ Xp0 ; and

3. For each rule of the form (2) above and for each map g : {y,x1, . . . ,xm} → adom(J)∪{⊥},
if for each 1 ≤ i ≤ m, Ri(g(xi)) ∈ Xpi

then R(g(x)) is a fact of J .
Note that the total number of possible facts E((b1, X1), . . . , (bn, Xn)) in J ′ is double ex-
ponential in the combined size of P and J , and is exponential in J if the arity of P is
bounded.

Let ι be the natural projection from J ′ to J , mapping all elements of the form (a,X) to
a (and undefined on elements of the form (⊥, X)).

▷ Claim. For all Sin-instances I, P (I) → J iff I → J ′. Moreover, the witnessing homo-
morphisms can be constructed so that the following diagram commutes:

P (I) J

I J ′

id ι

Proof. [⇒] Let h : P (I) → J . Recall that we denote by chaseP (I) the Sin ∪ Sout ∪ Saux-
instance that is the chase of I (and of which I and P (I) are the Sin-reduct and Sout-reduct,
respectively). We extend h to the entire active domain of chaseP (I) by sending every element
a that is not in adom(P (I)) to a fresh value ⊥. With a slight abuse of notation, in what
follows, we denote by h the extended map from adom(chaseP (I)) to adom(J) ∪ {⊥}. For
each a ∈ adom(chaseP (I)), let Fa be the set of all Saux-facts of chaseP (I) in which a occurs
in articulation position. We define h′(a) = (h(a), h(Fa)).

We claim that h′ is a homomorphism from I to J ′. Let E(a1, . . . , an) be any fact of I.
We must show that the fact E((h(a1), h(Fa1)), . . . , (h(an), h(Fan))) belongs to J ′. That is,
we must show that conditions 1–3 hold.

Clearly, the first requirement is satisfied, namely, h(Xai
) consists of facts in which h(ai)

occurs in articulation position.
To see that the second requirement holds, consider a rule of form (1) and any map

g : {y,x1, . . . ,xm} → adom(J), such that, for each 1 ≤ i ≤ m, Ri(g(xi)) ∈ Xpi . By
construction, this means that each fact Ri(g(xi)) is the h-image of a fact Ri(bi) in chaseP (I).
Now consider the map g̃ : {y,x1, . . . ,xm} → adom(I) defined by g̃(y) = (a1 . . . , an) and
g̃(xi) = bi for i ≤ i ≤ m. Note that g̃ is a well-defined function. Indeed, for every i ≤ i ≤ m

and every z ∈ R(xi), if z occurs more than once in the rule, then z must necessarily be the
variable that appears in the articulation position pi of R(xi). It follows that z occurs in y at
position pi, and, hence, necessarily, Ri(g(xi)) belongs to the h-image of Xapi

, and, hence,
g̃(z) = api .

Since chaseP (I) is closed under the rules of P , we may conclude that R0(g̃(x0)) belongs
to chaseP (I). Let z be the variable occurring in articulation position in R0(x0). Recall that
z occurs in y at position p0, and g̃(z) = ap0 . Then R0(g̃(x0)) ∈ Fap0

, and hence, h(Fap0
)

contains R0(h ◦ g̃(x0)). Note that by definition, h ◦ g̃ = g. In particular, R0(h ◦ g̃(x0)) =
R0(g(x0)). Therefore we have that R0(g(x0)) ∈ h(Fap0

), and we are done.
To see that the third requirement holds, consider a rule of form (2) and any map

g : {y,x1, . . . ,xm} → adom(J), such that, for each 1 ≤ i ≤ m, Ri(g(xi)) ∈ Xpi . By exactly
the same reasoning as before, an h-preimage of the rule head R(g(x)) belongs to chaseP (I).
Hence, it belongs to P (I), therefore, R(g(x)) is a fact of J .
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It is also clear from the construction that h ◦ id = ι ◦ h′, where id is the identity function
on adom(I) ∩ adom(P (I)). That is, the diagram commutes.

[⇐] Conversely, let h : I → J ′. Note that adom(chaseP (I)) = adom(I), and hence we
h(a) is well-defined for all a ∈ adom(chaseP (I)). Let h′ : adom(I) → adom(J) be the map
such that h′(a) = b whenever h(a) = (b,X).

▷ Subclaim 1. For all a ∈ adom(chaseP (I)), if h(a) = (b,X), then the h′-image of every
Saux-fact of chaseP (I) in which a occurs in articulation position belongs to X.

▷ Subclaim 2. h′ is a homomorphism from P (I) to J .

Subclaim 1 can be proved by induction on the derivation length of the fact in question.
To prove subclaim 2, let R(a) be an Sout-fact belonging to P (I). Its derivation must

use a rule of the form (2) above, using an assignment g (where g(x) = a). By Subclaim 1,
we have that that Ri(h′(g(xi))) belongs to h(g(ypi

))2, for ypi
the articulated variable in xi.

Furthermore, E(g(y)) holds in I, and hence E(h(g(y))) holds in J ′. By construction of J ′,
this means that the R(h′(g(x))), that is, R(h′(a)), belongs to J . This concludes the proof
for the case of connected TAM Datalog programs.

It is also clear from the construction that ι ◦ h = h′ ◦ id, where id is the identity function
on adom(I) ∩ adom(P (I)). That is, the diagram commutes. ◁

Finally, we show how to handle non-connected TAM Datalog programs. Let P be
a non-connected TAM Datalog program. Let P ′ be obtained from P by adding a fresh
binary input-relation S, and using this relation to make every every rule connected in some
arbitrary way (more precisely, whenever the incidence graph of a rule body has multiple
connected component, we add S-atoms to the body connecting these components while
preserving tree-shapedness and almost-monadicity. For every input instance I, we denote
by Î the Sin ∪ {S}-instance extending I with all facts of the form S(a, b) for a, b ∈ adom(I).
Furthermore, given an instance J ′ over the schema Sin ∪ {S}, by an “S-component” of J ′

we will mean the Sin-retract of a fully S-connected sub-instance of J ′. Clearly, if J is an
Sin-instance and J ′ is a Sin ∪ {S}-instance, then Ĵ → J ′ iff J → J ′′ for some S-component
J ′′ of J ′. Now we simply define ΩP (J) to be the set of all S-components of instance in ΩP ′(J).
Then we have: P (I) → J iff P ′(Î) → J iff Î → ΩP ′(J) iff I → J ′ for some J ′ ∈ ΩP (J).

As a side remark, we mention that there is another way present the final argument where
we lift the connected case to the general case: we can view the function that sends I to Î as a
functor that itself has a generalized right-adjoint (sending I to its S-connected components).
Thus, we can argue by composition of adjoints. ◀

We note that the proof of thm:tam-adjoint makes crucial use of both the tree-shapedness
and the almost-monadicity of the Datalog program. Indeed, both properties are important
for the existence of generalized right-adjoints as the following two propositions show:

▶ Proposition 4.6. The tree-shaped Datalog program P in Example 3.11 (which is not
almost-monadic) does not admit a generalized right-adjoint.

Proof. Assume towards a contradiction that P has a generalized right-adjoint ΩP . Let J be
the two-element {R}-instance consisting of the facts R(0, 1) and R(1, 0).

For n ≥ 1, let Cn be the {E,F}-instance consisting of the facts E(v0, v1), . . . , E(vn−1, vn),
E(vn, v0), that is, the directed E-cycle of length n. Trivially, P (Cn) → J for all n ≥ 1.
Therefore, for each n ≥ 1, we have Cn → J ′ for some J ′ ∈ ΩP (J). For every J ′ ∈ ΩP (J)
and for each element b of J ′, let us define nJ′,b to be an arbitrarily chosen value such that

ICDT 2024



10:12 Right-Adjoints for Datalog Programs

(Cn, v0) → (J ′, b), or undefined, if no such value exists. It follows from our earlier observation
that nJ′,b is defined for at least one pair (J ′, b) with J ′ ∈ ΩP (J). Let m be a common
multiple of all defined nJ′,b’s.

For each pair of positive integers e ≤ f , let Ie,f be the {E,F}-instance depicted as follows:

u0
E−→ v0

F−→ u1
E−→ v1

F−→ u2

sequence of
e E-edges−−−−−−−→ z

sequence of
f F -edges−−−−−−−→ u0

▷ Claim 1. For all 1 ≤ e ≤ f , the following are equivalent:
1. Ie,f → J ′ for some J ′ ∈ ΩP (J)
2. e ̸= f .

Proof. If e = f then P (Ie,f ) contains an R-cycle of odd length, viz. u0
R−→ u1

R−→ u2
R−→ u0,

and therefore P (Ie,f ) ̸→ J . Hence, Ie,f ̸→ J ′ for all J ′ ∈ ΩP (J). On the other hand, if e < f ,
then P (Ie,f ) is a disjoint union of R-paths, and, clearly, P (Ie,f ) → J . Therefore, Ie,f → J ′

for some J ′ ∈ ΩP (J). ◁

Now, let e be larger than the universe of all instances in ΩP (J) and let f = e+m. By
Claim 1, there is a homomorphism h : Ie,f → J ′ for some J ′ ∈ ΩP (J). We will show that h
can be extended to a homomorphism h′ : If,f → J ′, which contradicts Claim 1. Let

u2 = x0
E−→ x1 · · · E−→ xe = z

be the sub-instance of Ie,f consisting of the E-edges joining u2 and z. Similarly, let

u2 = x0
E−→ x1 · · · E−→ xe

E−→ xe+1 . . .
E−→ xf = z

be the sub-instance of If,f consisting of the E-edges joining u2 and z. Recall that f = e+m.
Since e is larger than the domain size of J ′, it must be the case that h(xi) = h(xj) = b

for some i < j ≤ e, and for some element b of J ′. This means that b lies on a directed
E-cycle in J ′, and hence, in particular, it lies on a directed E-cycle of length m, say,
b = b0

E−→ b1 · · · E−→ bm = b. The mapping h′ : If,f → J ′ can be constructed simply by
extending h and mapping xe+i to bi for 1 ≤ i ≤ m. ◀

▶ Proposition 4.7. The monadic Datalog program given by the single rule Ans(x) :− E(x, x)
does not admit a generalized right-adjoint.

Proof. Let P be the Boolean Datalog program in question. Note that Unfoldings(P, Ans)
consists of a pointed structure that is c-acyclic but not acyclic. It does not admit a generalized
right-adjoint: let J be the empty SP

out-instance, and suppose for the sake of contradiction
that there is a finite set {J1, . . . , Jn} such that, for all SP

in-instances I, P (I) → J iff I → Ji

for some i ≤ n. Let Ic be the instance consisting of a single reflexive Ans-edge of the form
Ans(a, a). Clearly, P (Ic) ̸→ J , and therefore, Ic ̸→ Ji. That is, J1, . . . , Jn do not contain a
reflexive Ans-edge. Next, let In be the instance that is an (irreflexive) Ans-clique of size n,
where n is any number greater than the size of each Ji. Then, In ̸→ Ji (because if there was
a homomorphism, Ji would contain a reflexive Ans-edge), but, trivially, P (In) → J . ◀

In the special case of Boolean non-recursive programs, there is a converse to Thm. 4.5:

▶ Theorem 4.8. A Boolean non-recursive Datalog programs has a generalized right-adjoint
iff it is equivalent to a TAM Datalog program.
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This follows from results that we will prove in Section 5 (specifically, Thm. 5.4 together
with Thm. 5.3). It also follows from a known result about Pultr functors, namely [17,
Theorem 2.5], since Boolean non-recursive Datalog programs define Pultr functors.
▶ Remark 4.9. Thm. 4.8 does not hold for recursive Boolean Datalog programs. Indeed,
consider the Boolean Datalog program with input schema {R} consisting of the rules

Ans() :− OddLengthPath(x, x)
OddLengthPath(x, y) :− R(x, y)
OddLengthPath(x, y) :− R(x, z), R(z, u), OddLengthPath(u, y)

It follows from well-known results in the CSP literature, (combined with Thm. 5.7 below),
that P admits a generalized right-adjoint and that P is not equivalent to a monadic Datalog
program. It follows by Lem. 3.8 that P is not equivalent to a TAM Datalog program.
▶ Remark 4.10. We note that the right adjoint ΩP (·) of a TAM Datalog program P is in
general not definable by a Datalog program. This follows trivially from the fact that ΩP (J)
might consist of more than one structure if P is non connected and, in addition, It is not
definable by a Datalog program even when P is connected as, in general, the domains of J
and ΩP (J) do not need to be related. For instance, Example 4.4 contains an example where
the domain of ΩP (J) is necessarily larger than that of J .
▶ Remark 4.11. Our definition of right-adjoints treats Datalog programs as functors in a flat
category, while Lemma 2.3 naturally allows us to view Datalog programs as functors even in
the non-flat category of instances and homomorphisms. This natually raises a question of
which functors between the “non-flat” categories allow right adjoints. This question has been
answered by Pultr [22] up to some technical details, who described pairs of adjoint functors
between categories of relational structures. Using either Pultr’s description, or by simple
categorical methods, it can be seen that a Datalog program will rarely allow a proper right
adjoint.
▶ Remark 4.12. While we are specifically interested in right-adjoints in this paper, one may
also wonder what it means for a Datalog program to admit a (generalized) left-adjoint.
Generalized left-adjoints for Datalog programs are closely related to query rewritings, as
studied in the literature on data integration and data exchange. A Datalog program P has a
generalized left-adjoint iff P is equivalent to a non-recursive Datalog program. Indeed, if P has
a generalized left-adjoint Θ, then, for each R ∈ SP

out, the SP
in-instances in Θ({R(a1, . . . , an)})

correspond to the members of Unfoldings(P,R) (cf. [17, 13]).

5 Right Adjoints and Homomorphism Dualities

For any set of instances X, let X↑ = {A | B → A for some B ∈ X}, and let X↓ = {A | A → B

for some B ∈ X}. A homomorphism duality is a pair of sets of instances (F,D), such that
F ↑ is the complement of D↓. The same definition extends naturally to pointed instances.
By a finite homomorphism duality, we mean a homomorphism duality (F,D) where F and
D are finite sets. By a tree duality, we mean a homomorphism duality (F,D) where F is a
(possibly infinite) set of (not-necessarily-connected) acyclic instances, and D is finite.

The study of such dualities originated in combinatorics (see [20]) motivated by its links to
the structure of the homomorphism partial order, and the complexity of deciding the existence
of homomorphism between graphs and, more generally, relational structures (a.k.a. constraint
satisfaction problems or CSPs). Indeed, dualities have played an important role in the study
of CSPs. In particular, it was shown [3] that the CSPs definable in FO are precisely those
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10:14 Right-Adjoints for Datalog Programs

whose template is the right-hand side of a finite duality. In a similar vein, the CSPs solvable
by the well-known arc-consistency algorithm are precisely those whose template is the right-
hand side of a tree duality. More generally, the CSPs solvable by local consistency methods
are those whose template is the right-hand side of a homomorphism duality whose left-hand
side consists of instances of bounded treewidth. See [8] for a survey on the connections
between duality and consistency algorithms. In database theory, homomorphism dualities are
used in the study of the unique characterizability and exact learnability of schema mappings
and database queries [2, 9], closed-world rewritings of open-world queries [6], and extremal
fitting algorithms [10].

▶ Example 5.1. Let S = {R}, where R is a binary relation symbol, and let n ≥ 1. Let Ln

be the finite linear order of length n, and let Pn+1 be the directed path of length n+ 1. Then
({Pn+1}, {Ln}) is a finite homomorphism duality.

▶ Example 5.2. Let S = {P0, P1, E}, where P0 and P1 are unary and E is binary, and con-
sider the two-element S-instance I = {P0(0), P1(1), E(0, 0), E(1, 1)} (without distinguished
elements). For all S-instances J , J → I holds if and only if no connected component of J
contains both a P0-fact and a P1-fact. This can be expressed in the form of a tree duality:
let F be the set of all (acyclic) instances consisting of an oriented path that connects a
P0-node to a P1-node (where, by an oriented path we mean a path a1, a2, . . . , an where, for
each 1 ≤ i < n, either E(ai, ai+1) or E(ai+1, ai)). Then (F, {I}) is a homomorphism duality.

▶ Theorem 5.3 ([16, 9]). Fix a schema S and k ≥ 0. Let F be any finite set of pairwise
homomorphically incomparable k-ary pointed instances over S. The following are equivalent:
1. There is a finite set of k-ary pointed instances D over S such that (F,D) is a homomorph-

ism duality.
2. Each pointed instance in F is homomorphically equivalent to a c-acyclic pointed instance.
Moreover (for fixed S and k), given a set F of c-acyclic pointed instances, such a set D can
be computed in ExpTime.3

The following theorem establishes a close relationship between generalized right-adjoints
and homomorphism dualities:4

▶ Theorem 5.4. Let P be any Datalog program that has a generalized right-adjoint. Then, for
each R ∈ SP

out, there is a finite set of pointed Sin-instances D such that (Unfoldings(P,R), D)
is a homomorphism duality.

Proof. We may assume without loss of generality that SP
out = {R}. Let J be the SP

out-instance
with adom(J) = {b1, . . . , bk, c} (for k = arity(R)) containing all R-facts over adom(J) except
R(b1, . . . , bk). Let D = {(J ′,b′) | (J ′, ι) ∈ ΩP (J),b′ ∈ adom(J ′)k, ι(b′) = b}, where
b = b1, . . . , bk. We claim that (Unfoldings(P,R), D) is a homomorphism duality. Let (C, c)
be any Sin-instance with k distinguished elements. Then an instance in Unfoldings(P,R)
homomorphically maps to (C, c) iff R(c) ∈ P (C) iff (P (C), c) ̸→ (J,b) iff (by the adjoint
property) (C, c) ̸→ (J ′,b′) for all (J ′, ι) ∈ ΩP (J) and b′ with ι(b′) = b. ◀

Thm. 5.4 shows that generalized right-adjoints can be used to construct duals. This
approach was first used in [17] and [13], where right-adjoints of Pultr functors are applied
to derive the dual of a tree. Thm. 5.4 can be viewed as extending results in [13] to a more
general class of functors defined by recursive Datalog programs.

3 The ExpTime bound is not explicitly stated in [9] but follows from results in that paper.
4 Recall that Unfoldings(P, R) can be viewed as an infinite union of (canonical instances of) conjunctive

queries that defines the output relation R (cf. Lemma 2.5).
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For TAM Datalog programs P , the proof of Thm. 5.4 yields a ExpTime algorithm
to compute D from (P,R) provided the arity of the relations in P is bounded. Since
Unfoldings(P,R) consists of acyclic instances whenever P is a TAM Datalog program, this
gives us a systematic way of constructing tree-dualities. In fact, every tree-duality can be
obtained in this way:

▶ Corollary 5.5. Let F be any set of acyclic pointed instances. The following are equivalent:
1. There is a finite set of pointed instances D such that (F,D) is a homomorphism duality
2. F ↑ = Unfoldings(P,R)↑ for some TAM Datalog program P and R ∈ SP

out.

Proof. From 1 to 2: It is well known that, for any finite set of pointed instances D, there is
an MSO formula ϕ that defines D↓. Hence, by duality, ¬ϕ defines F ↑. Furthermore, the fact
that F consists of acyclic pointed instances implies that ¬ϕ is tree-determined. Therefore, the
direction 1 to 2 follows from Thm. 3.13. The direction from 2 to 1 follows from Thm. 5.4. ◀

It is possible to strengthen Corollary 5.5 by showing that the above conditions (1) and
(2) are, in turn, equivalent to the fact that F ↑ = G↑ for some regular set G of acyclic queries
(where “regular” needs to be defined in a suitable way, as in [15]). This follows from the fact
that Thm. 3.13 uses tree-automata as an intermediate step in the proof. We note that the
special case of this equivalence for Boolean CQs over digraphs was proven in [15].

Thm. 5.4 also implies that every finite set of acyclic pointed instances F is the left-hand
side of a finite homomorphism duality: it suffices to let P be the TAM Datalog program
containing a single non-recursive rule for each (I, a) ∈ F , whose canonical instance is (I, a).
Then, the unfoldings of P are, up to isomorphism, precisely the pointed instances in F . It
follows from Thm. 5.4 that there is a finite set D such that (F,D) is a homomorphism duality.
This provides an alternative proof of the characterization of left-hand sides of finite dualities
given in [16] (i.e., the special case of Thm. 5.3 for structures without distinguished elements).
▶ Remark 5.6. In light of Thm. 5.3, it is natural to ask whether the above “dualities through
adjoints” technique can be used to construct a finite homomorphism duality for any c-acyclic
pointed instance. Prop. 4.7 shows that this is not possible. Note that the canonical instance
of the rule of the program in Prop. 4.7 is ({E(a, a)}, a), which is c-acyclic (but not acyclic).

For Boolean Datalog programs, the relationship between adjoints and dualities is tighter:

▶ Theorem 5.7. For Boolean Datalog programs P , the following are equivalent:
1. P admits a generalized right-adjoint,
2. There is a finite set of pointed SP

in-instances D such that (Unfoldings(P, Ans), D) is a
homomorphism duality.

Proof. For every SP
in-instance I, P (I) is either the empty instance, which we may denote

as J0 or the instance consisting of the zero-ary fact Ans(), which we may denote as J1. Let
ΩP (J0) be the set of all pairs (J ′, ι) with J ′ ∈ D and ι the empty partial function; and let
ΩP (J1) = {(J ′, ι)} where J ′ is a single-element fully-connected SP

in-instance and ι is the
empty partial function. It is easy to see that ΩP is then a generalized right-adjoint for P . ◀

6 An Application: Generating Data Examples for Database Queries

We will now show-case one application of our results, which is concerned with the problem
of generating data examples for database queries. A data example for a database query,
informally, consists of a database instance I together with information about the output of
the query when evaluated on I. Data examples can be a helpful tool in query debugging,
query refinement, interactive query specification, and query learning. In each of these settings,
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10:16 Right-Adjoints for Datalog Programs

the question naturally comes up as to whether, for a given database query q, there exists a
finite collection of data examples, such that, modulo logical equivalence, q is the only query
(within some given class of queries) that fits the data examples. When this happens, we say
that the collection of data examples in question uniquely characterizes the query q.

It was shown in [16, 9] that every “c-acyclic” union of conjunctive queries (UCQ) is indeed
uniquely characterized by a finite collection of data examples. In fact, a UCQ is uniquely
characterizable by a finite collection of data examples, if and only if it is equivalent to a
c-acyclic UCQ. While this gives a precise answer to the question of unique characterizability,
it can be cumbersome to use in practice. One of the reasons for this is that the data examples
in question tend to look unnatural to a user. In particular, the existing algorithms for
constructing data examples do not take integrity constraints into consideration. We will
show here that the aforementioned results from [16, 9] can be adapted to the setting with
integrity constraints, in such a way that all generated data examples satisfy the integrity
constraints, provided that the integrity constraints are from a suitable, well-behaved class.

We will do this in three steps. First, we propose a suitable class of integrity constraints.
Second, we study the existence of homomorphism dualities relative to a set of integrity
constraints. Finally, we use this to construct uniquely characterizing examples for c-acyclic
UCQs.

6.1 Tame sets of full TGDs
One of the most important classes of integrity constraints in databases is the class of tuple-
generating dependencies (TGDs). The results we will present will be concerned with a
subclass of TGDs called full TGDs. A full TGD is a TGD without existential quantifiers.
More precisely, a full TGD is a first-order sentence of the form ∀x(ϕ(x) → ψ(x)), where ϕ(x)
and ψ(x) are conjunctions of relational atomic formulas, and each variable in x occurs in ϕ.

Every finite set of full TGDs naturally gives rise to a Datalog program. More precisely,
for any set Σ of full TGDs over a schema S, we will denote by PΣ the Datalog program with
SP

in = {Rin | R ∈ S}, SP
out = {Rout | R ∈ S}, and SP

aux = S, consisting of the full TGDs in Σ
as Datalog rules (where ∀x(ϕ(x) → ψ(x)) becomes ψ(x) :− ϕ(x)), plus the “copy constraints”
R(x) :− Rin(x) and Rout(x) :− R(x) for each R ∈ S.

Although the input and output schemas of PΣ are renamings of S, we will write PΣ(I)
even when I is an S-instance instead of an Sin, with the understanding that relation symbols
are renamed in the obvious way; and similarly, we will freely treat the Sout-instance PΣ(I)
as an S-instance. The Datalog program PΣ then “captures” Σ in the following sense:

▶ Lemma 6.1. Let Σ be any finite set of full TGDs. For all instances I, PΣ(I) is the unique
minimal instance J with I ⊆ J such that J |= Σ. In particular, PΣ(I) = I when I |= Σ.

We say that a finite set Σ of full TGDs is tame (or, TAM-equivalent) if PΣ is equivalent
to a TAM Datalog program. A full TGD is monadic (tree-shaped) if the associated Datalog
program PΣ (where Σ consists of the full TGD in question) is monadic (resp. tree shaped).

▶ Example 6.2. The following sets of full TGDs are tame:
Σ1 = {∀xyz(R(x, y)∧R(y, z) → R(x, z))}. To see that PΣ1 has a generalized right-adjoint,
observe that it consists of the rules depicted on the left:

R(x, y) :− Rin(x, y)
R(x, z) :− R(x, y), R(y, z)
Rout(x, y) :− R(x, y)

R(x, y) :− Rin(x, y)
R(x, z) :− R(x, y), Rin(y, z)
Rout(x, y) :− R(x, y)
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PΣ1 is not a TAM Datalog program. However, it is equivalent to the program P ′ consisting
of the rules depicted on the right. Note how we have replaced one occurrence of R by
Rin. The equivalence of PΣ1 and P ′ is easy to show. Furthermore, P ′ is a TAM Datalog
program (where the articulation position of R is the second position).
Σ2 = {∀xyzu(R(x, y) ∧R(y, z) ∧R(z, u) → R(x, u)), ∀xy(R(x, y) → R(y, x))}. Although
PΣ4 is not a TAM Datalog program, it can be rewritten as one, using the same strategy
as for Σ1. We will return to this example later, in Remark 6.6.
Every finite set Σ of monadic tree-shaped TGDs. Indeed, PΣ is a TAM Datalog program.

▶ Remark 6.3. The above example involves adhoc arguments. We leave it as an open problem
to define a large syntactic class of (sets of) TGDs that have a generalized right-adjoint, which
includes Σ1. Thm. 4.5 with Thm. 3.13 does imply that, for finite sets of tree-shaped TGDs
Σ, if PΣ is MSO-definable then Σ has a generalized right-adjoint.

Our main result in this section, namely Thm. 6.4, will apply to tame sets of full TGDs.
The general strategy we develop here, however, can be extended to a larger class of integrity
constraints that includes inclusion dependencies, as we will discuss in the conclusion section.
This is beyond the scope of the present paper as it requires considering ∃Datalog programs
(i.e., Datalog programs where existential quantifiers are allowed in rule heads).

6.2 Homomorphism dualities within restricted categories
Let C be a class of instances over some schema (e.g., the class of transitive digraphs). We
say that a pair (F,D), with F,D ⊆ C, is a homomorphism duality within C if F ↑ ∩ C is the
complement of D↓ ∩ C relative to C. In what follows we will also speak of homomorpism
dualities with respect to a theory Σ. By this, we mean homomorphism dualities w.r.t. the
class of instances defined by Σ. The next result shows how to obtain finite homomorphism
dualities within C, for classes C that are definable by a tame set of full TGDs.

▶ Theorem 6.4. Let Σ be a tame set of full TGDs. Let F be any finite set of pointed
instances. If each member of F is of the form (PΣ(A), a) for some c-acyclic pointed instance
(A,a), then F is the left-hand side of a finite duality w.r.t. Σ.

Proof. Let F ′ be the finite set of c-acyclic pointed instances such that F = {(PΣ(I),a) |
(I, a) ∈ F ′}. Let D be the finite set such that (F ′, D) is a homomorphism duality, given by
Thm. 5.3. Let D′ = {(PΣ(B′),b′) | (B,b) ∈ D, (B′, ι) ∈ ΩPΣ(B), ι(b′) = b}. Note that D′

consists of pointed instances satisfying Σ. We will show that (F,D′) is a homomorphism
duality w.r.t. Σ. Let (C, c) be a pointed instance with C |= Σ. Then:

(C, c) ∈ F ↑ ⇔ (C, c) ∈ F ′↑ ⇔ (C, c) ̸∈ D↓ ⇔ (C, c) ̸∈ D′↓

The first equivalence holds by Lem. 2.3 and the fact that PΣ(C) = C. The second equivalence
holds by the duality assumption. It remains to prove the third equivalence.

From left to right: By contraposition. Suppose that (C, c) → (PΣ(B′),b′) for some
(B,b) ∈ D, (B′, ι) ∈ ΩPΣ(B), and ι(b′) = b. Trivially, we have id : (B′,b′) → (B′,b′). It
follows by the generalized adjoint property that (PΣ(B′),b′) → (B, ι(b′)). Therefore, by
transitivity, and since ι(b′) = b, we have (C, c) → (B,b) and therefore (C, c) ∈ D↓.

From right to left: Again, by contraposition. Assume (C, c) ∈ D↑. Since PΣ(C) = C, it
follows that (PΣ(C), c) → (B,b) for some (B,b) ∈ D. It follows by the adjoint property
that (C, c) → (B′,b′) for some (B,b) ∈ D, (B′, ι) ∈ ΩPΣ(B), and b′ ∈ ι−1(b). Then also
(C, c) → (PΣ(B′),b′). This means that (C, c) ∈ D′↓. ◀
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Regarding complexity, consider the case where Σ is a fixed tame set of full TGDs (not
treated as part of the input). Then the proof of Thm. 6.4 yields a 2ExpTime algorithm
for computing the dual set D from F , assuming F is specified by the underlying set of
c-acyclic instances (A,a). Thus, for instance, for the class of transitive digraphs (which, as
we saw earlier, is captured by a TAM Datalog program), we have a 2ExpTime-algorithm
for constructing duals for digraphs that are specified as the transitive closure of an acyclic
digraph.

The only prior results regarding homomorphism dualities for restricted classes of structures
that we are aware of, are for undirected graphs and for finite algebras. An undirected graph
can be viewed as an instance over a schema S consisting of a single binary relation symbol
E, satisfying the integrity constraints ∀xy(E(x, y) → E(y, x)) and ∀x¬E(x, x). It is known
that the category of undirected graphs and homomorphisms has no finite dualities, up to
homomorphic equivalence, other than the trivial duality ({K2}, {K1}), where K1 and K2 are
the 2-element clique and the empty graph, respectively (cf. [20]). Similarly, a finite algebra
of a similarity type σ can be viewed as an S-instance, with S = {Rf | f ∈ σ} satisfying
Σ = {∀x∃yRf (x, y), ∀xyz(Rf (x, y) ∧ Rf (x, z) → y = z) | f ∈ σ}, and, again, it is known
that, in the category of finite algebras, no non-trivial finite dualities exist [4]. Note that both
in the case of undirected graphs (viewed as symmetric and irreflexive relational structures)
and in the case of finite algebras, all non-trivial structures in question are cyclic.

For the special case of monadic tree-shaped TGDs, we can prove a converse to Thm. 6.4:

▶ Theorem 6.5. Let Σ be any set of monadic tree-shaped TGDs. Let F be any finite set
of pairwise homomorphically-incomparable pointed instances (A,a) with A |= Σ. Then, the
following are equivalent:
1. F is the left hand side of a finite duality w.r.t. Σ,
2. Each (A, a) ∈ F is homomorphically equivalent to (PΣ(A′), a) for some c-acyclic (A′, a).

▶ Remark 6.6. Thm. 6.5 cannot be lifted to arbitrary tame sets of full TGDs. Consider again
the tame set of full TGDs Σ = {∀xyzu(R(x, y) ∧R(y, z) ∧R(z, u) → R(x, u)), ∀xy(R(x, y) →
R(y, x))} from Example 6.2. Let A be the instance (without distinguished elements) {R(a, a)},
and let B be the instance {R(a, b), R(b, a)}. Then ({A}, {B}) is a homomorphism duality
w.r.t. Σ. Indeed, let C be an instance satisfying Σ and assume that A ̸→ C (i,e, C has no
loop). Since C satisfies Σ it follows that C has no odd cycle and, hence, is homomorphic to
B. However, it is easy to see that every instance A′ satisfying PΣ(A′) = A must have a cycle.

6.3 Uniquely Characterizing Examples for Database Queries
By a collection of labeled examples for a k-ary query, we mean a pair (E+, E−) of finite sets
of pointed instances with k distinguished elements.5 A UCQ q fits such (E+, E−) if a ∈ q(A)
for all (A, a) ∈ E+, and a ̸∈ q(A) for all (A, a) ∈ E−. We say that two UCQs q, q′ (over the
same schema S) are equivalent w.r.t. Σ, where Σ is a first-order theory, if for all I ∈ Inst[S]
with I |= Σ, q(I) = q′(I). A collection of labeled examples (E+, E−) uniquely characterizes
a UCQ q w.r.t. Σ, if q fits (E+, E−), and every UCQ that fits (E+, E−) is equivalent to q
w.r.t. Σ.

5 Data examples can also be defined as pairs (I, q(I)) of an input instance and the complete query output.
This would not change our results. Note that such a data example (I, q(I)) can be equivalently represented
by all positive examples (I, a) for a ∈ q(I) and negative examples (I, a) for a ∈ adom(I)k \ q(I).
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▶ Lemma 6.7. Let S be any schema and Σ a FO theory over S. Let q be a UCQ over S, and
let E+, E− be finite sets of pointed instances (I, a) with I |= Σ. The following are equivalent:
1. The collection of labeled examples (E+, E−) uniquely characterizes q w.r.t. Σ
2. q fits (E+, E−) and (E+, E−) is a finite homomorphism duality w.r.t. Σ.

▶ Theorem 6.8. Let Σ a tame set of full TGDs over a schema S. Every c-acyclic UCQ q

over S is uniquely characterized w.r.t. Σ by a collection of labeled examples satisfying Σ.

Proof. Let E+ be the set of pointed instances (PΣ(I),a), for (I,a) a (c-acyclic) canonical
instance of a CQ in q. By Thm. 6.4, there is a finite set E− such that (E+, E−) is a
homomorphism duality w.r.t. Σ. By Lem. 6.7, (E+, E−) uniquely characterizes q w.r.t. Σ. ◀

The proof of Thm. 6.8 yields a 2ExpTime upper bound for computing uniquely char-
acterizing examples for a given c-acyclic UCQ, relative to a fixed tame set of full TGDs.
It is not known whether this is optimal. In the absence of integrity constraints, uniquely
characterizing examples for a c-acyclic UCQ can be constructed in ExpTime and this is
known to be optimal since they are in general exponential in size. In the case of c-acyclic
CQs, uniquely characterizing examples can be constructed in polynomial time [9].

7 Conclusion

We introduced a new fragment of Datalog, TAM Datalog, that is semantically well-behaved
(closed under composition and having a natural semantic characterization) and admits
generalized right-adjoints. We used this result to obtain a method for constructing uniquely
characterizing data examples for c-acyclic UCQs in the presence of integrity constraints
(where the data examples are required to satisfy the integrity constraints). Generalized
right-adjoints for Datalog programs seem potentially useful in other contexts as well, such
as in tasks involving reasoning about a hidden database instance based on an exposed view
(cf. [5]).

In a companion paper (cf. [11]), we further extend our study to ∃Datalog (the extension
of Datalog where existential quantifiers are allowed in rule heads), and we show that linear
∃Datalog programs have right-adjoints. This is then used to extend our results on uniquely
characterizing data examples to the case with (a weakly acyclic set of) inclusion dependencies.

We leave as open problems for future research: (i) obtaining tight complexity bounds for
the task of constructing uniquely characterizing data examples for CQs and UCQs in the
presence of a tame set of full TGDs; (ii) identifying better syntactic criteria that guarantees
that a given finite set of full TGDs is tame; (iii) extending our results to the case with
functional dependencies6; and (iv) studying which logic (or, more generally, formalism) is
necessary to define the right adjoint ΣP (·) (see also Remark 4.10).
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Abstract
Datalog◦ is an extension of Datalog, where instead of a program being a collection of union of
conjunctive queries over the standard Boolean semiring, a program may now be a collection of
sum-product queries over an arbitrary commutative partially ordered pre-semiring. Datalog◦ is more
powerful than Datalog in that its additional algebraic structure alows for supporting recursion with
aggregation. At the same time, Datalog◦ retains the syntactic and semantic simplicity of Datalog:
Datalog◦ has declarative least fixpoint semantics. The least fixpoint can be found via the naïve
evaluation algorithm that repeatedly applies the immediate consequence operator until no further
change is possible.

It was shown in [10] that, when the underlying semiring is p-stable, then the naïve evaluation of
any Datalog◦ program over the semiring converges in a finite number of steps. However, the upper
bounds on the rate of convergence were exponential in the number n of ground IDB atoms.

This paper establishes polynomial upper bounds on the convergence rate of the naïve algorithm
on linear Datalog◦ programs, which is quite common in practice. In particular, the main result
of this paper is that the convergence rate of linear Datalog◦ programs under any p-stable semiring
is O(pn3). Furthermore, we show a matching lower bound by constructing a p-stable semiring
and a linear Datalog◦ program that requires Ω(pn3) iterations for the naïve iteration algorithm to
converge. Next, we study the convergence rate in terms of the number of elements in the semiring
for linear Datalog◦ programs. When L is the number of elements, the convergence rate is bounded
by O(pn log L). This significantly improves the convergence rate for small L. We show a nearly
matching lower bound as well.
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1 Introduction

In order to express common recursive computations with aggregates in modern data analytics
while retaining the syntactic and semantic simplicity of Datalog, [10] introduced Datalog◦, an
extension of Datalog that allows for aggregation and recursion over an arbitrary commutative
partially ordered pre-semiring (POPS). Datalog is exactly Datalog◦ over the Boolean semiring.
Like Datalog, Datalog◦ has a declarative least fixpoint semantics, and the least fixpoint can

© Sungjin Im, Benjamin Moseley, Hung Ngo, and Kirk Pruhs;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Database Theory (ICDT 2024).
Editors: Graham Cormode and Michael Shekelyan; Article No. 11; pp. 11:1–11:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICDT.2024.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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be found via the naïve iteration algorithm that repeatedly applies the immediate consequence
operator until no further change is possible. Moreover, its additional algebraic structure
allows for common recursions with aggregations.

However unlike Datalog, the naïve evaluation of a Datalog◦ program may not always
converge in a finite number of steps. The convergence of a Datalog◦ program over a given
POPS can be studied through its “core semiring”, which is where we focus our attention on
in this paper. This paper will only study Datalog◦ programs over commutative semirings,
referring the readers to [10] for the generality of POPS.

It is known that the commutative semirings for which the iterative evaluation of Datalog◦

programs is guaranteed to converge are exactly those semirings that are stable [10]. A
semiring is p-stable if the number of iterations required for any one-variable recursive linear
Datalog◦ program to reach a fixed point is at most p, and a semiring is stable if there exists
a p for which it is p-stable. Further, every non-stable semiring has a simple (linear) Datalog◦

program with one variable with the property that the iterative evaluation of this program
over that semiring will not converge. Thus it is natural to concentrate on Datalog◦ programs
over stable semirings. Previously, the best known upper bound on the convergence rate,
which is the number of iterations until convergence, is

∑n
i=1(p + 2)i = Θ(pn) steps, where n

is the number of ground atoms for the IDB’s that ever have a nonzero value at some point in
the iterative evaluation of the Datalog◦ program, and the underlying semiring is p-stable. In
contrast there are no known lower bounds that show that iterative evaluation requires an
exponential (in the parameter n) number of steps to reach convergence.

The exact general upper bound on the convergence rate of Datalog◦ programs over p-stable
semirings is open, even for the special case of linear Datalog◦ programs. Linear Datalog◦

programs are quite common in practice.1 Thus, in this paper we focus on this “easiest” case
where the exact convergence rate is not known.

Currently, the best known upper bound on the convergence rate of linear Datalog◦

programs over p-stable semirings is
∑n

i=1(p + 1)i steps. This bound is unsatisfactory in the
following sense. The prototypical example of a p-stable semiring is the tropical semiring
Trop+

p , (see Section 2 for a definition of Trop+
p ); in this case, it is known that the naïve

algorithm converges in O(pn) steps for linear Datalog◦ programs [10]. These results leave open
the possibility that the convergence rate of the naïve algorithm on linear Datalog◦ programs
over p-stable semirings could be exponentially smaller than the best known guarantee.

This paper seeks to obtain tighter bounds on the convergence rate of naïve evaluation of
linear Datalog◦ programs. As the iterative evaluation of Datalog◦ programs is a reasonably
natural and important algorithm/process, bounding the running time of this process is of
both theoretical interests and practical interests. In practice, a known upper bound on the
convergence rate allows the database system to determine before hand an upper bound on
the number of iterations that will be required to evaluation a particular Datalog◦ program.

1.1 Background
Before stating our main results, we need to back up to set the stage a bit. A (traditional)
Datalog program Π consists of a set of rules of the form:

R0(X0) :- R1(X1) ∧ · · · ∧Rm(Xm) (1)

1 For example, we can express transitive closure, all-pairs-shortest-paths, or weakly connected components
in linear Datalog◦.
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where R0, . . . , Rm are predicate names (not necessarily distinct) and each Xi is a tuple
of variables and/or constants. The atom R0(X0) is called the head, and the conjunction
R1(X1) ∧ · · · ∧Rm(Xm) is called the body of the rule. Multiple rules with the same head
are interpreted as a disjunction. A predicate that occurs in the head of some rule in Π is
called an intensional database predicate or IDB, otherwise it is called an extensional database
predicate or EDB. The EDBs form the input database, and the IDBs represent the output
instance computed by Π. The finite set of all constants occurring in an EDB is called the
active domain, and denoted ADom. A Datalog program is linear if every rule has at most
one IDB predicate in the body.

There is an implicit existential quantifier over the body for all variables that appear in
the body but not in the head, where the domain of the existential quantifier is ADom. In a
linear Datalog program every conjunction has at most one IDB.

▶ Example 1. The textbook example of a linear Datalog program is the following one, which
computes the transitive closure of a directed graph, defined by the edge relation E(X, Y ):

T (X, Y ) :- E(X, Y )
T (X, Y ) :- T (X, Z) ∧ E(Z, Y )

Here E is an EDB predicate, T is an IDB predicate, and ADom consists of the vertices in the
graph. The other way to write this program is to write it as a union of conjunctive queries
(UCQs), where the quantifications are explicit:

T (X, Y ) :- E(X, Y ) ∨ ∃Z (T (X, Z) ∧ E(Z, Y )) (2)

A Datalog program can be thought of as a function (called the immediate consequence
operator, or ICO) that maps a set of ground IDB atoms to a set of ground IDB atoms. Every
rule in the program is an inference rule that can be used to infer new ground IDB atoms
from old ones. For a particular EDB instance, this function has a unique least fixpoint which
can be obtained via repeatedly applying the ICO until a fixpoint is reached [1]. This least
fixpoint is the semantics of the given Datalog program. The algorithm is called the naïve
evaluation algorithm, which converges in a polynomial number of steps in the size of the
input database, given that the program is of fixed size.

Like Datalog programs, a Datalog◦ program consists of a set of rules, where the unions of
conjunctive queries are now replaced with sum-product queries over a commutative semiring
S = (S,⊕,⊗, 0, 1); see Section 2. Each rule has the form:

R0(X0) :-
⊕

R1(X1)⊗ · · · ⊗Rm(Xm) (3)

where sum ranges over the active ADom of the variables not in X0. Further each ground
atom in an EDB predicate or IDB predicate is associated with an element of the semiring S,
and the element associated with a tuple in an EDB predicate is specified in the input. The
EDBs form the input database, and the ground atoms in the IDB’s that have an associated
semiring value that is nonzero represent the output instance computed by the Datalog◦

program. Note that in a Datalog program the ground atom present in the input or output
databases can be thought of as those that are associated with the element 1 in the standard
Boolean semiring. A Datalog program is a Datalog◦ program over the Boolean semiring
S = ({true, false},∨,∧, false, true). Again a Datalog◦ program is linear if every rule has no
more than one IDB prediciate in its body.

ICDT 2024
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▶ Example 2. A simple example of a linear Datalog◦ program is the following,

T (X, Y ) :- E(X, Y )⊕
⊕

Z

T (X, Z)⊗ E(Z, Y ), (4)

which is (2) with (∨,∧, ∃Z) replaced by (⊕,⊗,
⊕

Z).
When interpreted over the Boolean semiring, we obtain the transitive closure program from

Example 1. When interpreted over the tropical semiring Trop+ = (R+ ∪ {∞}, min, +,∞, 0),
we have the All-Pairs-Shortest-Path (APSP) program, which computes the shortest path
length T (X, Y ) between all pairs X, Y of vertices in a directed graph specified by an edge
relation E(X, Y ), where the semiring element associated with E(X, Y ) is the length of the
directed edge (X, Y ) in the graph:

T (X, Y ) :- min
(

E(X, Y ), min
Z

(T (X, Z) + E(Z, Y ))
)

(5)

A Datalog◦ program can be thought of as an immediate consequence operator (ICO).
To understand how the ICO works in Datalog◦, consider a rule with head R and let A be
a ground atom for R with associated semiring value y, and assume that for A the body
of this rule evaluates to the semiring element x. As a result of this, the ICO associates
A with x ⊕ y. Note that the functioning of the Datalog◦ ICO, when the semiring is the
standard Boolean semiring, is identical to how the Datalog ICO functions. The iterative
evaluation of a Datalog◦ program works in rounds/steps, where initially the semiring element
0 is associated with each possible ground atom in an IDB, and on each round the ICO is
applied to the current state. So in the context of the Datalog◦ program in Example 1, if
(a, b) was a ground atom in T with associated semiring element x, meaning that the shortest
known directed path from vertex a to vertex b has length x, and (b, c) was a ground atom in
E with associated semiring element y, meaning that there is a directed edge from b to c with
length y, then the ICO would make the semiring element associated with A the minimum
(as minimum is the addition operation in the tropical semiring) of its current value and x + y

(as normal additional is the multiplication operation in the tropical semiring).
Since the final associated semiring values of the ground atoms in an IDB are not initially

known, it is natural to think of them as (IDB) variables. Then the grounded version of the
ICO of a Datalog◦program is a map f : Sn → Sn, where n is the number of ground atoms
for the IDB’s that ever have a nonzero value at some point in the iterative evaluation of the
Datalog◦ program. For instance, in (5), there would be one variable for each pair (x, y) of
vertices where there is a directed path from x to y in the graph. So the grounded version of
the ICO of a Datalog◦ program has the following form:

X1 :- f1(X1, . . . , Xn)
. . . (6)

Xn :- fn(X1, . . . , Xn)

where the Xi’s are the IDB variables, and fi is the component of f corresponding to the
IDB variable Xi. Note that each component function fi is a multivariate polynomial in
the IBD variables of degree at most the maximum number of terms in any product in the
body of some rule in the Datalog◦ program. After q iterations of the iterative evaluation of a
Datalog◦ program, the semiring value associated with the ground atom corresponding to Xi

will be:

f
(q)
i (0) (7)
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▶ Definition 1 (p-stability). Given a semiring S = (S,⊕,⊗, 0, 1) and u ∈ S, let u(p) :=
1 ⊕ u ⊕ u2 ⊕ · · · ⊕ up, where ui := u ⊗ u ⊗ · · · ⊗ u (i times). Then u ∈ S is p-stable if
u(p) = u(p+1), and semiring S is p-stable if every element u ∈ S is p-stable.

▶ Definition 2 (Stability index and convergence rate). A function f : Sn → Sn is p-stable if
f (p+1)(0) = f (p)(0), where f (k) is the k-fold composition of f with itself. The stability index
of f is the smallest p such that f is p-stable. The convergence rate of a Datalog◦ program is
the stability index of its ICO.

The following bounds on the rate of convergence of a general (multivariate) polynomial
function f : Sn → Sn, where S is p-stable; this result naturally infers bounds on the
convergence rate of Datalog◦ programs over p-stable semirings.

▶ Theorem 3 ([10]). The convergence rate of a Datalog◦ program over a p-stable commutative
semiring is at most

∑n
i=1(p + 2)i. Further, the convergence rate is at most

∑n
i=1(p + 1)i if

the Datalog◦ program is linear. Finally, the convergence rate of a Datalog◦ program is at
most n if p = 0.

Thus the natural question left open by [10] was whether these upper bounds on the rate of
convergence are (approximately) tight, and thus convergence can be exponential, or whether
significantly better bounds are achievable.

1.2 Our Results
When a Datalog◦ program over a semiring S is linear, its ICO f : Sn → Sn is a linear
function of the form f(x) = A⊗ x⊕ b, where A is an n by n matrix with entries from S, b

is an n× 1 column vector with entries from S, and the scalar multiplication and addition
are from S. To simplify notations, we will use + and · to denote the operations ⊕ and ⊗
respectively. Further, following the convention, we may omit ⊗ if it is clear from the context.
Then, we have

f(x) = Ax + b

▶ Example 3. For the APSP Datalog◦ program, n is the number of edges in the graph, b(u,v)
is E(u, v), and the matrix A would be:

A(u,v),(u,w) =
{

E(v, w) if u ̸= v

0 otherwise
(8)

The stability index of f can easily be expressed in terms of the matrix A and vector b.
Letting A0 = I where I is the identity matrix, we have

f (k)(x) = Akx + A(k−1)b where A(k) :=
k−1∑
h=0

Ah.

Thus, the linear function f = Ax + b is p-stable if and only if A(p)b = A(p+1)b. Using the
simple form of f for the linear case, we can rewrite Definition 2 into the following simpler
form.

▶ Observation 4 (Convergence Rate of a Linear Datalog◦ Program).
The convergence rate for a particular linear Datalog◦ program, with associated matrix A

and vector b, is the minimum natural number p such that A(p)b = A(p+1)b.
The convergence rate for general linear Datalog◦ programs over a semiring S is then the
maximum over all choices of A and b, of the convergence rate for that particular A and b.

ICDT 2024
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Our first result is an asymptotically tight bound of Θ(pn3) on the rate of convergence for
linear Datalog◦ programs.

▶ Theorem 5. Every linear Datalog◦ program over a p-stable commutative semiring S

converges in O(pn3) steps, where n is the total number of ground IDB atoms.

The proof Theorem 5 can be found in Section 3, but we will give a brief overview of the
main ideas of the proof here. Consider the complete n-vertex loop-digraph G where the edge
from i to j is labeled with entry Ai,j . Then note that row i column j of A(h) is the sum –
over all walks W from i to j of length ≤ h – of the product of the edge labels on the walk.
We show that the summand corresponding to a walk W with more than h = Ω(pn3) hops
doesn’t change the sum A

(h)
i,j . We accomplish this by rewriting the summand corresponding

to W , using the commutativity of multiplication in S, as the product of a simple path and of
multiple copies of at most n2−n distinct closed walks. We then note that, by the pigeon hole
principle, one of these closed walks, say C, must have mulitplicity greater than p. We then
conclude that the summand corresponding to W will not change the sum A

(h)
i,j by appealing

to the stability of the semiring element that is the product of the edges in C.
In section 4 we establish a matching lower bound by finding a graph G and a commutative

semiring S where the calculations in the upper bound are tight.

▶ Theorem 6. For any p, n ≥ 1, there is a linear Datalog◦ program over a p-stable semiring
S that requires Ω(pn3) steps to converge.

In the lower bound instance that establishes Theorem 6 the size of the ground set S of S

is of size Θ((p + 1)n2), so exponential in n. Thus one natural question is whether Datalog◦

programs over semirings with subexponentially sized ground sets will converge more quickly.
In section 5 we answer this question in the affirmative by showing that the rate of convergence
of a Datalog◦ program over a p-stable commutative semiring with L elements is O(pn log L).

▶ Theorem 7. Every linear Datalog◦ program over a p-stable commutative semiring that
contains L elements in its ground set converges in O(pn log L) steps.

Let us explain the high level idea of the proof, with some simplifying assumptions, starting
with the assumption that the stability of S is p = 1. Again we think of A

(k)
i,j as the sum of

products over walks W from i to j with at most k hops. Now consider a walk W from i to j

consisting of Ω(n log L) hops. Since there are n vertices, there exists a vertex v such that
there are at least Ω(log L) prefixes P1, P2, . . . , Pq of W ending at v. Let Ci be the closed
walk starting and ending at v such that appending Ci to Pi produces Pi+1. Let us make the
simplifying assumption that all of these closed walks Ci are distinct. The key observation is
that if we delete any subset C of these Ω(log L) closed walks from W , the result will still be
a walk from i to j. Thus there are at least 2Ω(log L) walks from i to j that can be formed by
deleting a subset C of these closed walk. Since there are at most L distinct elements, by the
pigeon hole principle, there must be some element e of S such that that are two subsets C, C′

where the product of the edges in them are the same. We then conclude by the stability of e

that the summand corresponding to W does not change the sum A
(k)
i,j .

Finally in section 6 we establish a nearly matching lower bound by finding a graph G

and a commutative semiring where the calculations in the upper bound are nearly tight.

▶ Theorem 8. There are linear Datalog◦ programs over a p-stable commutative semiring
that contains L elements that require Ω(pn log L

log p ) steps to converge.

Finally in the appendix we consider a special case from [10], in which the commutative
semiring S is naturally ordered.
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2 Preliminaries

In this section, we introduce the notation and terminology used throughout the paper.

▶ Definition 9 (Semiring). A semiring [7] is a tuple S = (S,⊕,⊗, 0, 1) where
⊕ and ⊗ are binary operators on S,
(S,⊕, 0) is a commutative monoid, meaning ⊕ is commutative and associative, and 0 is
the identity for ⊕,
(S,⊗, 1) is a monoid, meaning ⊗ is associative, and 0 is the identity for ⊕,
0 annilates every element a ∈ S, that is a⊗ 0 = 0⊗ a = 0, and
⊗ distributes over ⊕.

A commutative semiring S = (S,⊕,⊗, 0, 1) is a semiring where additionally ⊗ is commutative.

If A is a set and p ≥ 0 a natural number, then we denote by Bp(A) the set of bags
(multiset) of A of size p, and Bfin(A) :=

⋃
p≥0 Bp(A). We denote bags as in {{a, a, a, b, c, c}}.

Given x, y ∈ Bfin(R+ ∪∞), define

x ⊎ y := bag union of x, y x + y := {{u + v | u ∈ x, v ∈ y}}

▶ Example 4. For any multiset x = {{x0, x1, . . . , xn}}, where x0 ≤ x1 ≤ . . . ≤ xn, and any
p ≥ 0, define:

minp(x) := {{x0, x1, . . . , xmin(p,n)}}

In other words, minp returns the smallest p + 1 elements of the bag x. Then, for any p ≥ 0,
the following is a semiring:

Trop+
p := (Bp+1(R+ ∪ {∞}),⊕p,⊗p, 0p, 1p)

where:

x⊕p y
def= minp(x ⊎ y) 0p

def={∞,∞, . . . ,∞}

x⊗p y
def= minp(x + y) 1p

def={0,∞, . . . ,∞}

For example, if p = 2 then {{3, 7, 9}} ⊕2 {{3, 7, 7}} = {{3, 3, 7}} and {{3, 7, 9}} ⊗2 {{3, 7, 7}} =
{{6, 10, 10}}. The following identities are easily checked, for any two finite bags x, y:

minp(minp(x) ⊎minp(y)) =minp(x ⊎ y) minp(minp(x) + minp(y)) =minp(x + y) (9)

Note that Trop+
0 is the natural “min-plus” semiring that we used in Example 2.

In the following fact about p-stable commutative semiring will be useful.

▶ Proposition 10. Given a p-stable commutative semiring S = (S,⊕,⊗, 0, 1), for any u ∈ S,
we have pu = (p + 1)u, where pu here is shorthand for ⊕p

i=1u.

Proof. This follows directly from the p-stability of 1, and the fact that 12 = 1. ◀

Let us now explain the general procedure for creating a matrix A and a vector b from
a linear Datalog◦ program Q. Each ground tuple for each IDB predicate R can be viewed
as a variable, and ground tuples of EDB predicates can be viewed as constants. Then a
Datalog◦ rule, where the head is IDB predicate R, can be converted into a collection of linear
equations, one for each ground tuble of R. Since all rules that share IDB R as a the head can
be combined via ⊕, we can compactly rewrite the entire set of Datalog◦ rules as a collection
of linear equations of the following form:
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11:8 On the Convergence Rate of Linear Datalog◦ over Stable Semirings

Ti ←
n⊕

j=1
(Aij ⊗ Tj)⊕ bi

where T1, T2, . . . , Tn are the variables corresponding to ground tuples of IDB predicates. By
using more familiar notation +, · in the lieu of ⊗,⊕, we can model a linear Datalog◦ program
Q by a linear function f : Sn → Sn of the form:

f(x) = Ax + b

where n is the total number of ground tuples across all IDB predicates, x is an n-dimensional
vector with entries from S, A is an n by n matrix with entries from the S, and b is a
dimensional column vector with entries from S. For some more examples of converting linear
Datalog◦ programs into linear equations see [10].

3 Upper bounding the Convergence as a Function of the Matrix
Dimension and the Semiring Stability

This section is devoted to proving Theorem 5, the main theorem of the paper. More
specifically, we will show the following lemma. This lemma upper bounds the convergence of
a p-stable semiring and implies Theorem 5.

▶ Lemma 11. Let A be an n× n matrix over a p-stable semiring S. Then A(k+1) = A(k),
where k = n(n2 − n)(p + 2) + n− 1.

Consider the complete n-vertex loop-digraph G where the edge from i to j is labeled with
entry Ai,j . Then

Ah
i,j =

∑
W ∈Wh

i,j

Φ(W )

where Wh
i,j is the collection of all h-hop walks from i to j in G, and

Φ(W ) =
∏

(a,b)∈W

Aa,b

is the product off all the labels on all the directed edges in W . That is, row i column j of
Ah is the sum over all h-hop walks W from i to j of the product of the labels on the walk.
Similarly then,

A
(h)
i,j =

h∑
g=0

Ag
i,j =

h∑
g=0

∑
W ∈Wg

i,j

Φ(W )

That is, row i column j of A(h) the sum over all walks W from i to j with at most h hops of
the product of the labels on the walk. Further,

A
(h+1)
i,j = A

(h)
i,j + Ah+1

i,j = A
(h)
i,j +

∑
W ∈Wh+1

i,j

Φ(W )

Our proof technique is to show that, by the p-stability of S, it must be the case that for
each W ∈ Wp+1

i,j it is the case that

A
(k)
i,j + Φ(W ) = A

(k)
i,j
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The proof that A
(k)
i,j = A

(k+1)
i,j then immediately follows by applying this fact to each

W ∈ Wk+1
i,j .

Fix W = i, . . . , j to be an arbitrary walk in Wk+1
i,j . Our next intermediate goal is to

rewrite Φ(W ) using the commutativity of multiplication in S as the product of a simple path
and at most n2 − n multicycles. That is,

Φ(W ) = Φ(P )
ℓ∏

h=1
Φ(Czh

h )

where P is a simple path from i to j in G, each Ch is a simple cycle in W that is repeated zh

times, and ℓ ≤ n2 − n. We accomplish this goal via the following tail-recursive construction.
The recursion is passed a collection of edges, and a parameter h. Initially, the edges are
those in W and h is set to zero.

Recursive Construction. The base case is if W is a simple path. In the base case the path
P is set to W and ℓ is set to 0. Otherwise:

h is incremented
Ch is set to be an arbitrary simple cycle in W .
Let zh be the minimum over all edges e ∈ Ch of the number of times that e is traversed
in W .
Let W ′ be the collection of edges in W except that zh copies of every edge in Ch are
removed.
The construction then recurses on W ′ and h.

In Lemma 13 we show that a particular statement about W is invariant through the
recursive construction. A proof Lemma 13 requires the following lemma. The proof of
the following lemma (or at least, the techniques needed for a proof) can be found in most
introductory graph theory texts, e.g. [20] Theorem 23.1.

▶ Lemma 12.
A loop digraph G has a Eulerian walk from from a vertex i to a vertex j, where i ̸= j, if
and only if vertex i has out-degree one greater than its in-degree, vertex j has out-degree
one less than its in-degree, every other vertex has equal in-degree and out-degree, and
all of the vertices with nonzero degree belong to a single connected component of the
underlying undirected graph.
A loop digraph has an Eulerian cycle that includes a vertex i if and only if every vertex
has equal in-degree and out-degree, vertex i has non-zero in-degree, and all of the vertices
with nonzero degree belong to a single connected component of the underlying undirected
graph.

▶ Lemma 13. Let W be a collection of edges that is passed at some point in the recursive
construction. Let D1, . . . , Dh be a partition of the edges of W with the property that if the
edges in W were viewed as undirected, then the connected components would be D1, . . . , Dh.

If i ∈ Df then Df is a walk from i to j.
If i /∈ Df then Df is a Eulearian circuit.

Proof. The proof is by induction on the number of steps of the recursive construction. The
statement is obviously true for the initial walk W , which is the base case. Now consider one
step of the recursive construction. Removing copies of a cycle from W does not change the
difference between the in-degree and out-degree of any vertex. Thus by Lemma 12 the only
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issue we need to consider is vertex i and vertex j possibly ending up in different connected
components of W ′. Let Df be the connected component of W that contains i (which also
contains j by the induction hypothesis), let D′

a be the connected component of W ′ that
contains i, and let D′

b be the connected component of W ′ that contains j, where a ̸= b. Then
the walk in Df from i to j must cross the cut (in either direction) formed by the vertices in
D′

a an odd number of times. But the edges in Ch must cross the cut (in either direction)
formed by the vertices in D′

a an even number of times. Thus there must be an edge in Df

minus zh copies of Ch that must cross the cut (in either direction) formed by the vertices in
D′

a. However, then this is a contradiction to D′
a be a connected component in W ′. ◀

We now make a sequence of observations, that will eventually lead us to our proof of
Lemma 11.

▶ Observation 14.
1 ≤ ℓ ≤ n2 − n.
The recursive construction terminates.
Φ(W ) = Φ(P )

∏ℓ
h=1 Φ(Czh

h ).

Proof. As W contains k +1 = n(n2−n)(p+2)+n edges, then it must contain a simple cycle,
which implies ℓ ≥ 1. Consider one iteration of our recursive construction. There must be a
directed edge e ∈ Ch that appears exactly zh times in W . Thus there are no occurrences of
e in W ′. Thus e can not appear in any future cycles, that is e /∈ Cg for any g > h. The first
observation then follows because there are at most n2 − n different edges in G. The second
observation is then an immediate consequence of the first observation, and the invariant
established in Lemma 13 . The third observation follows because no edges are ever lost or
created in the recursive construction. ◀

▶ Observation 15. There is a cycle Cs, 1 ≤ s ≤ ℓ, such that zs is at least p + 2.

Proof. Since P is a simple path it contains at most n− 1 edges. Thus W − P contains at
least n(n2−n)(p+2) edges. As any simple cycle contains at most n edges, and as there are at
most ℓ ≤ n2−n cycles, then by applying the pigeon hole principle to the cycle decomposition
of W we can conclude that there must be a cycle Cs that has multiplicity at least p + 2, that
is zs ≥ p + 2. ◀

For convenience, consider renumbering the cycles so that s = 1 where zs ≥ p + 1, which
exists by Observation 15. For each h such that 1 ≤ h ≤ p + 1, let define Wh be the collection
of edges in W minus h copies of every edge in C1.

▶ Observation 16. The edges in each Wh, 1 ≤ h ≤ p + 1 form a walk from i to j.

Proof. As z1 ≥ p + 2 and h ≤ p + 1, every edge that appears in W also appears in Wh. So
Wh has the same connectivity properties as W , and Wh has the same vertices with positive
in-degree as does W . Also as C1 is a simple cycle, the difference between in-degree and
out-degree for each vertex is the same in Wh as in W . Thus the result follows by appealing
to Lemma 12. ◀

▶ Observation 17. For each h such that 1 ≤ h ≤ p + 1 it is the case that

Φ(Wh) = Φ(P )Φ(Cz1−h
1 )

ℓ∏
f=2

Φ(Czf

f )

Proof. This follows directly from the defintion of Wh. ◀
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▶ Observation 18. For all h such that 1 ≤ h ≤ p + 1, we have Wh ∈
⋃k

f=0W
f
i,j. That is

Φ(Wh) appears as a term in A
(k)
i,j .

Proof. This follows because W has k + 1 edges and C1 is non-empty, so removing edges in
Ci strictly decreases the number of edges. ◀

We are now ready to prove Lemma 11. By Observation 18 we know that each Φ(Wh) is
included in A(k), and thus there exists an element r in the semiring S such that

A
(k)
i,j = r +

p+1∑
h=1

Φ(Wh)

Thus

A
(k)
i,j + Φ(W ) = r +

p+1∑
h=1

Φ(Wh) + Φ(W )

= r +
p+1∑
h=1

Φ(P )Φ(Cz1−h
1 )

ℓ∏
f=2

Φ(Czf

f )

+ Φ(P )
ℓ∏

f=1
Φ(Czf

f )

= r +

Φ(P )
ℓ∏

f=2
Φ(Czf

f )

(p+1∑
h=1

Φ(Cz1−h
1 ) + Φ(Cz1

1 )
)

(10)

= r +

Φ(P )
ℓ∏

f=2
Φ(Czf

f )

(Φ(Cz1−(p+1)
1 )

p+1∑
h=0

Φ(Ch
1 )
)

= r +

Φ(P )
ℓ∏

f=2
Φ(Czf

f )

(Φ(Cz1−(p+1)
1 )

p+1∑
h=0

[Φ(C1)]h
)

(11)

= r +

Φ(P )
ℓ∏

f=2
Φ(Czf

f )

(Φ(Cz1−(p+1)
1 )

p∑
h=0

[Φ(C1)]h
)

(12)

= r +

Φ(P )
ℓ∏

f=2
Φ(Czf

f )

(Φ(Cz1−(p+1)
1 )

p∑
h=0

Φ(Ch
1 )
)

= r +

Φ(P )
ℓ∏

f=2
Φ(Czf

f )

(p+1∑
h=1

Φ(Cz1−h
1 )

)

= r +
p+1∑
h=1

Φ(P )Φ(Cz1−h
1 )

ℓ∏
f=2

Φ(Czf

f )


= r +

p+1∑
h=1

Φ(Wh) = A
(k)
i,j

The equality in line (10) follows from Observation 17. The equality in line (11) follows from
the defintion of Φ. The key step in this line of equations is the equality in line (12), which
follows from the stability of Φ(C1). The rest of the equalities follow from basic algebraic
properties of semirings, or by definition of the relavent term.
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4 A Lower Bound for Convergence Rate of Linear Datalog◦ Programs

This section lower bounds the convergence rate of linear Datalog◦ programs using naive
evaluation and establishes Theorem 6. In particular, this section will construct a semiring and
a datalog program that requires Ω(pn3) iterations to converge. The section first constructs a
semiring then defines a matrix A and finally the converge rate is bounded. We remark that
we only show this lower bound holds for this specific semiring and matrix.

4.1 Constructing the Semiring
The ground set S consists of multi-sets of {1, . . . m}; later we will set m = Θ(n2). To avoid
confusion, we will refer to 1, 2, . . . m as items, which will be distinguished from the elements
of S. An element in S can have up to p ≥ 1 copies of each item i ∈ [m]. Additionally, there
is a special element O in the semiring. Thus, the ground set S has (p + 1)m + 1 elements.

For a multiset A we denote the number of copies of item i in A as Ai. We now define the
semiring operations. Consider two distinct elements (multisets) A and B in S \ {O}. Define
C = A + B, where Ci = max{Ai, Bi} for all i ∈ [m]. Further, O + A = A +O = A for all
A ∈ S. Multiplication C = A ·B is defined as follows: Ci = min{Ai + Bi, p} for all i ∈ [m].
Further O ·A = A · O = O for all A ∈ S.

We establish that this is a semiring where O is the additive identity and the empty
multi-set ∅ is the multiplicative identity (i.e. 1). By definition, O is the annihilator element.
We show in Appendix B that this is a commutative semiring. The proof easily follows from
the definition of the semiring.

4.2 Defining the Matrix A

B C D

This section defines the matrix A. To do so, we first define a graph G. Let G be a
directed graph where the vertex set is the integers from 1 to n inclusive. For simplicity
assume n is divisible by 3. The vertices are partitioned into 3 parts, B = {1, . . . , n/3},
C = {n/3 + 1, . . . , 2n/3} and D = {2n/3 + 1, . . . n}. There is a directed edge from each
vertex in B to vertex n/3 + 1, there is a directed edge from vertex 2n/3 to each vertex in D,
and there is a directed edge from each vertex in D to each vertex in B. Finally, all vertices
in C are sequentially connected from n/3 + 1 to 2n/3, i.e., there is a directed edge from τ to
τ + 1 for all τ ∈ [n/3 + 1, 2n/3− 1].

Index the edges by 1 through m and assign distinct labels (items) to them. So, m is
exactly equal to the number of distinct items. Notice that m is Θ(n2). If there is a directed
edge (i, j) with label k in G then Ai,j = {k}. This is the element corresponding to the
multiset with one copy of k. If there is no directed edge (i, j) in G then Ai,j = O.

▶ Lemma 19. The number of steps until convergence is Ω(pn3).

Proof. Note that there are |B| · |D| = n2/9 edges from D to B. Consider a long walk, say
from i := n/3+1 to j := n/3+2. Observe that the walk must visit all edges within C (and the
edge from 2n/3 to 2n/3+1) before visiting exactly one edge from D to B. Thus, to visit each
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edge from D to B at least p times, the walk must have length at least p|B| · |D| · |C| = pn3/27.
Similarly, there is such a walk of length at most p|B| · |D|(|C|+ 2) + 1 ≤ 4pn3. Thus, we
have shown that A(k) includes the multiset Q that has p copies of each item when k ≥ 4pn3.
Further, we have shown that A(k) doesn’t include Q when k < p(n/3)3. This proves the
lower bound on the convergence rate. ◀

5 Bounding Convergence in Terms of the Semiring Ground Set Size

This section investigates the convergence rate with the assumption that the semiring has a
ground set of size at most L. With this assumption, we can prove significantly better upper
bounds. This section’s goal is to prove Theorem 7. We prove the following lemma, which
will immediately imply Theorem 7. As before, we let Φ(W ) =

∏
e∈W e for a walk W .

▶ Lemma 20. Let A be an n by n matrix both a p-stable semiring S with a ground set
consisting of L elements. Then A(k+1) = A(k), where k = ⌈8p(lg L + 1)n⌉+ 1 = O(np lg L).

Proof. Fix i, j ∈ [n]. Consider any W ∈ Wk+1
i,j for the value of k stated in the lemma. To

show the lemma it suffices to show Φ(W ) + A
(k)
i,j = A

(k)
i,j . By the pigeon hole principle, there

must exist a vertex v visited at least 8p(lg L + 1) + 1 times. We now conceptually cut W at
visits to v to form a cycle decomposition of W . That is, we can write W as TC1, . . . , ChT ′

where T is a walk from i to v such that the only time it visits vertex v is on the last step,
each Ci is a closed walk that includes vertex v exactly once, and T ′ is a walk from v to j

that doesn’t visit v again after initially leaving v. Note by the definition of vertex v it must
be the case that h ≥ 8p(lg L + 1). Let C = {Cf | 1 ≤ f ≤ h} be the collection of cycles in
this cycle decomposition.

We now partition C into parts C1, . . . , Cℓ,J where for each closed walk C that has
multiplicity m in C there are 2f copies of C in Cf and m − 2f copies of C in J where
f = ⌊lg m⌋. For a collection D of cycles, it will be convenient to use Φ(D) to denote Φ(

⋃
D).

Thus it then immediate that Φ(W ) = Φ(T )Φ(C)Φ(T ′)Φ(J ). Note that the cardinality of the
multiset

⋃ℓ
f=1 Cf is at least 4p(lg L + 1).

We change C repeatedly without changing Φ(C). When changing C into C′, we satisfy:
1. Φ(C) = Φ(C′).
2. N(C) = N(C′), where N(C) denotes the size of multi-set C. So, a cycle C contributes to

N(C) by the number of times it appears in C. Further, C′ has no more edges in total than
C when we count 1 for each edge in one cycle appearance, i.e.,

∑
C′∈C′ |C ′| ≤

∑
C∈C |C|.

3. Consider ⟨. . . , N3(C′), N2(C′), N1(C′)⟩ and ⟨. . . , N3(C), N2(C), N1(C)⟩. The first vector
dominates the second lexicographically. Here Nℓ(C) denotes the number of cycles in C of
exponent 2ℓ.

4. When we terminate, Nℓ(C) ≤ 2⌊lg L + 1⌋ for all ℓ ≤ ⌊lg p⌋.
5. Every cycle in C′ also appears in C.

We now describe the transformation from C into C′. Consider the smallest ℓ such that
Nℓ > 2⌊lg L + 1⌋. Consider every subset of cardinality ⌊lg L + 1⌋, that consists of cycles of
exponent 2ℓ; so they are in Cℓ. The number of such subsets is at least

(2⌊lg L+1⌋
⌊lg L+1⌋

)
> 2lg L = L.

Since the semiring has at most L distinct elements, there must exist distinct subsets A and
B of cycles of exponent 2ℓ such that |A| = |B| and Φ(A) = Φ(B). Assume wlog that B’s
cycles have no more edges in total than A’s cycles. Then, we replace A with B in C and let
C′ be C after this change.

It is easy to see that Φ(C) = Φ(C′). This is because we replaced A with B such
that Φ(A) = Φ(B). More formally, Φ(C) =

∏
ℓ′ Φ(Cℓ′) = (Φ(Cℓ \ A)Φ(A))

∏
ℓ′ ̸=ℓ Φ(Cℓ′) =

(Φ(Cℓ \ A)Φ(B))
∏

ℓ′ ̸=ℓ Φ(Cℓ′) = Φ(C′). The second property is also obvious because when
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we replace A with B in the change, we ensured |A| = |B|, which implies that the multiset
size remains unchanged. Also, it is immediate that the total number of edges don’t increase
as B has no more edges in total than A. The forth property, the termination condition, is
immediate. The fifth property is also immediate since we do not create a new cycle when
replacing A with B.

To see the third property, before replacing A with B, we had A ∪ B in Cℓ, and their
exponent was 2ℓ. After the replacement, all cycles in B\A come to have exponent 2·2ℓ = 2ℓ+1,
the cycles in A \ B disappear from Cℓ, and those in A ∩ B remain unchanged. Note that
every cycle remains to have an exponent that is a power of two. Therefore, we have
Nℓ+1(C′) > Nℓ+1(C), and Nℓ′(C′) = Nℓ′(C) for all ℓ′ ≥ ℓ + 2.

Observe that due to the second property and the third, the process must terminate. Thus,
starting from C, at the termination we have C′ that satisfies the first, second, and fourth
properties. We know N(C′) = N(C) > 4p(lg L + 1). Further, we know that cycles of exponent
at most p contribute to N(C′) by at most 2(lg L + 1)(1 + 2 + 4 + . . . + 2⌊lg p⌋) < 4p(lg L + 1).
Thus, there must exist a cycle in C′ of exponent greater than p. Let C denote the cycle. So,
we have shown that

Φ(W ) = Φ(T )Φ(C′)Φ(T ′) = Φ(T )Φ(C)qΦ(C′ \ Cq)Φ(T ′),

where q ≥ p + 1. Here C′ \ Cq implies the resulting collection of cycles we obtain after
removing q copies of C from C′. Now consider walk Wq′ that concatenates T , q′ copies
of C, C′ \ Cq′ , and T ′. Here, the walk starts with T and ends with T ′, and the cycles
can be placed in an arbitrary order. This is because T is a walk from i to v, and all the
cycles in C′ start from v and end at v – due to the fifth property – and T ′ is a walk from
v to j Further, they are all shorter than W because Wq is no longer than W due to the
second property. Therefore, W0, W1, . . . Wq−1 ∈ W(k)

i,j . Thus, thanks to p-stability, we have
Φ(W ) + A

(k)
i,j = A

(k)
i,j as desired. ◀

Although we gave the full proof of Theorem 7, to convey intuition better, we also give
some warm-up analyses in Appendix C by giving a looser bound for the general case and
subsequently by considering a special case of p = 1.

6 Lower Bounds on Convergence in Terms of the Semiring Ground
Set Size

This section constructs a lower bound of the convergence rate in terms of the size of the
ground set. The goal is to show Theorem 8, which is implied by the following lemma.

▶ Lemma 21. There exists an idempotent semiring on L elements and a matrix A of size n

by n that requires Ω(nL) steps to converge to a fixed point.

Proof. Consider a semiring that whose all powers of 2 from 1 to 2L and the value 0. The
value of 2L is the largest value. Summation A and B in the semiring is min{A · B, 2L},
where · is standard multiplication. Addition is standard maximum. By definition, addition
is idempotent ensuring the semiring is idempotent.

The matrix A corresponds to a computation graph with a cycle of length n. All edges
that are not in cycles are labeled 0. All edges of the cycle are labeled 1, the identity in
standard multiplication, except for one edge, which is 2. Notice that multiplying all edges of
the cycle i times results in the symbol 2i.

The cycle needs to be traversed L times to reach 2L. The walk is of length Θ(nL). ◀
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▶ Lemma 22. There exists a matrix A of size n by n which requires Ω(np log L
log p ) steps to find

a fixed point over a semiring of L elements that is p-stable.

Proof. Consider the following semiring. The L elements are over vectors of ℓ dimensions.
Each position can be 0, 1, 2, . . . , p. Consider any two elements x and y. Let xi and yi be the
ith dimension of x and y, respectfully. The addition operation on x and y returns whichever
among x and y are lexicographically larger. Multiplication of x and y produces the vector z

where zi = min{xi + yi, p}.
We first claim that this is a semiring. Notice that the all 0 vector is a monoid for

multiplication. The vector of all p’s is the multiplicative identity. The only case that is
non-obvious is that multiplication distributes over addition. Consider three vectors a, b and c.
Consider the expression c · (a + b). We aim to show that this is equal to c · a + c · b. Without
loss of generality say a is lexicographically bigger than b. Then we have that c · (a + b) = c · a
because a + b = a using that a is lexiographically bigger than c. Similarly, c · a + c · b = c · a
because multiplication is standard addition and a is lexicographically bigger than b.

The matrix A corresponds to the following graph. There are two special nodes a and b.
They are connected by ℓ one-hop path using two edges from a to b. The kth path goes via a
node ck. The edge from a to ck is labeled with the 0 vector. The edge from ck to b is labeled
with a vector of all 0s except a 1 in dimension k. Additionally, b is connected to a via a
directed path of length n− ℓ− 2. The edges of this path are all labeled with the all 0 vector.

To collect the vector consisting of p in each dimension, one needs to walk a cycle starting
at a at least pℓ times. To see why, notice multiplication of the edges corresponding to a
single time-around cycle increases a single dimension by at most one. Moreover, addition’s
definition ensures the final output is the vector that is lexicographically the biggest among
each walk. Each cycle is of length Ω(n). The length of the walk required is Ω(pℓn). Setting
ℓ = log L

log p gives the lemma by noting that L = pℓ is the number of elements. ◀

7 Related Work

If the semiring is naturally ordered2, then the least fixpoint of a Datalog◦ program is the
least fixed point of f under the same partial order extended to Sn componentwise. This
is the least fixpoint semantics of a Datalog◦ program. The naïve evaluation algorithm for
evaluating Datalog programs extends naturally to evaluating Datalog◦ programs: starting
from x = 0n, we repeatedly apply f to x until a fixpoint is reached x = f(x). The core
semiring of a POPS is naturally ordered. Thus, we can find the least fixpoint of a Datalog◦

program by applying the naïve evaluation algorithm [10].
Computing the least fixpoint solution to a recursive Datalog◦ program boils down to solving

fixpoint equations over semirings. In particular, we are given a multi-valued polynomial
function f : Sn → Sn over a commutative semiring, and the problem is to compute a (pre-)
fixpoint of f , i.e. a point x ∈ Sn where x = f(x). As surveyed in in [10], this problem
was studied in a very wide range of communities, such as in automata theory [12], program
analysis [4, 16], and graph algorithms [3, 14, 15] since the 1970s. (See [7, 8, 13, 17, 21] and
references thereof).

When f = Ax + b is linear, as shown in the paper f (k)(x) = A(k−1)b and thus at
fixpoint the solution is A(ω)b = limk→∞ A(k−1)b, interpreted as a formal power series over
the semiring. If there is a finite k for which A(k) = A(k+1), then it is easy to see that

2 S is naturally ordered if the relation x ⪯S y defined as ∃z : x ⊕ z = y is a partial order.
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11:16 On the Convergence Rate of Linear Datalog◦ over Stable Semirings

A(ω) = A(k). The problem of computing A(ω) is called the algebraic path problem [17], which
unifies many problems such as transitive closure [19], shortest paths [5], Kleene’s theorem
on finite automata and regular languages [11], and continuous dataflow [4,9]. If A is a real
matrix, then A(ω) = I + A + A2 + · · · is exactly (I −A)−1, if it exists [2, 6, 18].

There are several classes of solutions to the algebraic path problem, which have pros and
cons depending on what we can assume about the underlying semiring (whether or not there
is a closure operator, idempotency, natural orderability, etc.). We refer the reader to [7, 17]
for more detailed discussions.
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A Convergence of Naturally Ordered Semirings

▶ Definition 23 (Natural Order). In any (pre-)semiring S, the relation x ⪯S y defined as
∃z : x ⊕ z = y, is a preorder, which means that it is reflexive and transitive, but it is not
anti-symmetric in general. When ⪯S is anti-symmetric, then it is a partial order, and is
called the natural order on S; in that case we say that S is naturally ordered.

For simplicity, we may use ≤ in lieu of ⪯. We naturally extend the ordering to vectors
and matrices: for two vectors v, w ∈ Sn, we have v ≤ w iff vi ≤ wi for all i ∈ [n]. Similarly,
for two matrices A and B (which includes vectors) A ≤ B means that componentwise each
entry in A is at most the entry in B, that is for all i and j it is the case that Ai,j ≤ Bi,j .

Here we take k to be the longest chain in the natural order.

▶ Theorem 24. Every linear Datalog◦ program over a p-stable naturally-ordered commutative
semiring with maximum chain size k converges in O(kn) steps.

▶ Theorem 25. There are linear Datalog◦ programs over a p-stable naturally-ordered com-
mutative semiring with maximum chain size k that require in Ω(kn) steps to converge.

This section considers bounds in terms of the longest chain in the partial order of a
naturally ordered semiring. Recall that natural ordering means the following: for two
elements a and b a ≤ b if and only if there exists a c such that a + c = b. Let L be the length
of the longest chain in this partial order. We seek to bound the convergence rate in terms of
n and L.

▶ Lemma 26. Consider a naturally ordered semiring where L is the length of the longest
chain in the partial order. Let A be an n × n matrix. Convergence must occur within nL

steps.

Proof. Consider A(k)x as k increases for any fixed x. If there is a k ≤ nL such that
A(k)x = A(k+1)x then convergence has been reached within the desired number of steps.
Otherwise when A(k)x ̸= A(k+1)x there exists an i such that dimension i in A(k+1)x is strictly
greater than dimension i in A(k)x. This can only occur L times for each i by definition of the
partial order. Knowing that there are at most n dimensions in A(k)x, the lemma follows. ◀

▶ Lemma 27. There exists a naturally ordered semiring where L is the length of the longest
chain in the partial order and a n by n matrix where convergence requires Ω(nL) steps.

Proof. Consider the following semiring. The semiring is on the set of integers 0, 1, 2, . . . , L

and a special element O. Here, the additive identity is O and the multiplicative identity is 0.
Consider two elements a and b that are not O. Define the addition and multiplication of a

and b to be equal to min{a + b, L}. Define a multiplied by O to be O for any a and a added
to O to be a for any a. Intuitively, addition and multiplication act as standard addition
capped at L, except for the special O element.

ICDT 2024

https://doi.org/10.1007/978-3-7091-9076-0_9
https://doi.org/10.1145/321105.321107
https://doi.org/10.1145/321105.321107
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Consider the following graph corresponding to a n× n matrix A. There is a cycle on n

nodes. Order the edges from 1 to n. Each edge is labeled 0 except the edge from 1 to 2,
which is labeled as 1. Traversing the cycle k times and multiplying the labels of the edges
returns min{k, L}. It takes a walk of length Ω(nL) to reach the element L. ◀

B Missing Proof from Section 4.1

We show that the semiring we defined in Section 4.1 is indeed a (commutative) semiring.
Monoid (S, +) with identity O:

A +O = O + A = A. This follows from the definition.
(A + B) + C = A + (B + C). When A, B, C ̸= O, this is equivalent to showing
max{max{Ai, Bi}, Ci} = max{Ai, max{Bi, Ci}} for all i ∈ [m], which follows from max
being commutative. If A, B, or C is O, then it is easy to check that it holds true.

Monoid (S, ·) with identity ∅:
A · ∅ = ∅ · A = A. If A ̸= O, this is immediate from the definition. If A = O, again by
definition, O · ∅ = O · ∅ = O.
(A ·B) ·C = A · (B ·C). When A, B, C ̸= O, it is an easy exercise to see ((A ·B) ·C)i =
(A · (B · C))i = min{Ai + Bi + Ci, p}. If A, B or C is O, both sides become O.

Commutative:
A + B = B + A. If A, B ̸= O, we have (A + B)i = max{Ai, Bi} = (B + A)i. Otherwise,
it is immediate from the definition of O.
A ·B = B ·A. We also show that the multiplication is also commutative. If A, B ̸= O, we
have (A·B)i = min{Ai +Bi, p} = min{Bi +Ai, p} = (B ·A)i. Otherwise A·B = B ·A = O
from the definition.

O is an multiplicative annihilator: We have O ·A = A · O = O for all A ∈ S from the
definition.
Distributive:

A · (B +C) = A ·B +A ·C. Assume that A, B, C ≠ O since otherwise it is straightforward
to see that it holds true. We then have,

(A · (B + C))i = min{Ai + max{Bi, Ci}, p} = min{max{Ai + Bi, Ai + Ci}, p}
= max{min{Ai + Bi, p}, min{Ai + Ci, p}} = max{(A ·B)i, (A · C)i}
= (A ·B + A · C)i

(B + C) ·A = B ·A + C ·A. The proof is symmetric.

C Warm-up for Proof of Theorem 7

In Section 5 we gave the full proof of Theorem 7, which gives an upper bound of O(np log L)
on the convergence rate when the underlying semiring has a ground set of size at most L.

To convey intuition better of the analysis, we give two warm-up proofs. Our first warm-up
is giving a looser bound on the convergence rate. The proof makes use of the fact that a
sufficiently long walk must visit the same vertex many times with the same product value.
Here, we think of a prefix of the walk as a product of edges on the prefix. This prefex
evaluates to an element of the semiring.

▶ Lemma 28. Let A be an n by n matrix over a p-stable semiring on a ground set S

consisting of L elements. Then A(k+1) = A(k), where k = npL.
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Proof. Fix i, j ∈ [n]. Consider any W ∈ Wk+1
i,j . To show the lemma it suffices to show

Φ(W ) + A
(k)
i,j = A

(k)
i,j . Let Wh be the prefix of W of length h. Let v(Wh) denote the ending

point of Wh. Consider all pairs (Φ(Wh), v(Wh)), h ∈ [k + 1]. Since these tuples are subsets
of S × [n] and |S| = L, due to the pigeonhole principle, there must exist H ⊆ [k + 1] of
size p + 1 such that (Φ(Wh), v(Wh)) is the same tuple for all h ∈ H. By renaming we can
represent the prefixes as X1, X1X2, X1X2X3, . . ., X1X2X3 . . . Xp+1.

For some T (possibly empty), we have W = X1X2X3 . . . Xp+1T . By definition Φ(X1) =
Φ(X1X2) = . . . = Φ(X1X2 . . . Xp+1).

Thus, Φ(W ) = Φ(X1X2X3 . . . Xp+1T ) = Φ(X1X2X3 . . . XpT ) . . . = Φ(X1T ), This uses
the fact that X1T , X1X2T , . . ., X1X2X3 . . . XpT all are walks from i to j since X1, X1X2, . . . ,
X1X2 . . . Xp+1 all end where T starts. Further, all walks X1T , X1X2T , . . ., X1X2X3 . . . XpT

are strictly shorter than W . This implies that Φ(W ) appears at least p times in A
(k)
i,j . Using

Proposition 10, we conclude Φ(W ) + A
(k)
i,j = A

(k)
i,j as desired. ◀

Next we consider the special case of p = 1. In this case we give an exponential improvement
over what we showed in the previous lemma. The key idea is the following. Previously
we identified p disjoint cycles X2, X3, . . . , Xp+1 that share the same starting and ending
vertex from a long walk W in Wk+1

i,j . Then, by removing them sequentially we were able to
obtain p copies of the same element that have already appeared; thus adding W (or more
precisely Φ(W )) doesn’t change A

(k)
i,j . Now we would like to make the same argument with

an exponentially smaller number of cycles. Roughly speaking, we will identify Θ(lg L) such
cycles and find 2Θ(lg L) walks by combining subsets of them. That is, the key idea is that we
find more walks with the same product from far fewer cycles.

▶ Lemma 29. Let A be an n by n matrix both over a 1-stable semiring S with a ground set
consisting of L elements. Then A(k+1) = A(k), where k = O(n lg L).

Proof. As before, fix i, j ∈ [n]. Consider any k ≥ ⌈2 lg L⌉n. For any W ∈ Wk+1
i,j we show

Φ(W ) + A
(k)
i,j = A

(k)
i,j . Since there are n vertices, the walk must visit some vertex at least

⌈2 lg L⌉+ 1 times. Formally, we can decompose W into

W = TC1C2 . . . CHT ′ (13)

where T , TC1, TC1C2, . . . , TC1C2 . . . CH all end at the same vertex v, and H = ⌈2 lg L⌉.
Note that all the cycles (or closed walks) C1, C2, . . . CH start from v and end at the same
vertex v. It is plausible that some of them are identical.

For a subset A of [H] we let Φ̂(A) :=
∏

h∈A Φ(Ch). Since there are 2|H| subsets of [H]
and 2H > L, there must exist A, B ⊆ [H] such that A ̸= B and Φ̂(A) = Φ̂(B). Assume wlog
that B \A ̸= ∅. Thus we know

Φ̂(A ∩B)Φ̂(A \B) = Φ̂(A ∩B)Φ̂(B \A) (14)

We can then show,

Φ(W ) = Φ(T )Φ̂([H])Φ(T ′) [Eqn. 13]

= Φ(T )Φ̂(A ∩B)Φ̂(A \B)Φ̂(B \A)Φ̂([H] \ (A ∪B))Φ(T ′)

= Φ(T )Φ̂(A ∩B)(Φ̂(B \A))2Φ̂([H] \ (A ∪B))Φ(T ′) [Eqn. 14]

Consider a walk W ′ that starts with T , has Ch for each h ∈ (A∩B)∪(B\A)∪([H ]\(A∪B)) =
[H] \ (A \B) and ends with T ′. Similarly, consider a walk W ′′ that starts with T , has Ch

for each h ∈ (A ∩B) ∪ ([H] \ (A ∪B)) and ends with T ′. Note that W and W ′ are different
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since B \ A ̸= ∅. Further they are walks from i to j since every cycle Ch, h ∈ [H] starts
from and ends at the same vertex v. Further, both walks are shorter than W , and therefore
are in W(k)

i,j . Since we have Φ(W ′) = Φ(T )Φ̂(A ∩ B)Φ̂(B \ A)Φ̂([H] \ (A ∪ B))Φ(T ′) and
Φ(W ′′) = Φ(T )Φ̂(A∩B)Φ̂([H]\ (A∪B))Φ(T ′). We will show using 1-stability of the semiring
that Φ(W ′) + Φ(W ′′) + Φ(W ) = Φ(W ′) + Φ(W ′′), implying Φ(W ) + A

(k)
i,j = A

(k)
i,j as desired.

Thus, it suffices to show Φ(W ′) + Φ(W ′′) + Φ(W ) = Φ(W ′) + Φ(W ′′). To see this:

Φ(W ′) + Φ(W ′′) + Φ(W )

= Φ(T )Φ̂(A ∩ B)Φ̂(B \ A)Φ̂([H] \ (A ∪ B))Φ(T ′) + Φ(T )Φ̂(A ∩ B)Φ̂([H] \ (A ∪ B))Φ(T ′)

+ Φ(T )Φ̂(A ∩ B)(Φ̂(B \ A))2Φ̂([H] \ (A ∪ B))Φ(T ′)

= Φ(T )Φ̂(A ∩ B)Φ([H] \ (A ∪ B))Φ(T ′)(1 + Φ(B \ A) + Φ(B \ A)2)
[associative and 1 is the multiplicative identiy]

= Φ(T )Φ̂(A ∩ B)Φ([H] \ (A ∪ B))Φ(T ′)(1 + Φ(B \ A)) [1-stable]
= Φ(W ′) + Φ(W ′′) ◀
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Abstract
Due to the importance of linear algebra and matrix operations in data analytics, there is significant
interest in using relational query optimization and processing techniques for evaluating (sparse) linear
algebra programs. In particular, in recent years close connections have been established between
linear algebra programs and relational algebra that allow transferring optimization techniques of the
latter to the former. In this paper, we ask ourselves which linear algebra programs in MATLANG
correspond to the free-connex and q-hierarchical fragments of conjunctive first-order logic. Both
fragments have desirable query processing properties: free-connex conjunctive queries support
constant-delay enumeration after a linear-time preprocessing phase, and q-hierarchical conjunctive
queries further allow constant-time updates. By characterizing the corresponding fragments of
MATLANG, we hence identify the fragments of linear algebra programs that one can evaluate with
constant-delay enumeration after linear-time preprocessing and with constant-time updates. To
derive our results, we improve and generalize previous correspondences between MATLANG and
relational algebra evaluated over semiring-annotated relations. In addition, we identify properties
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1 Introduction

Linear algebra forms the backbone of modern data analytics, as most machine learning
algorithms are coded as sequences of matrix operations [1,4, 19,20,42]. In practice, linear
algebra programs operate over matrices with millions of entries. Therefore, efficient evaluation
of linear algebra programs is a relevant challenge for data management systems which has
attracted research attention with several proposals in the area [30,33,34,37,41].

To optimize and evaluate linear algebra programs, we must first agree on the language in
which such programs are expressed. There has been a renewed interest in recent years for
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expressive power [6,12,13,23,40]. One such proposal is MATLANG [12], a formal matrix query
language that consists of only the basic linear algebra operations and whose extensions (e.g.,
for-MATLANG) achieve the expressive power of most linear algebra operations [23]. Although
MATLANG is a theoretical query language, it includes the core of any linear algebra program
and, thus, the optimization and efficient evaluation of MATLANG could have a crucial impact
on today’s machine learning systems.

In this work, we study the efficient evaluation of MATLANG programs over sparse matrices
whose entries are taken from a general semiring. We consider MATLANG evaluation in both
the static and dynamic setting. For static evaluation, we want to identify the fragment that
one can evaluate by preprocessing the input in linear time to build a data structure for
enumerating the output entries with constant-delay. For dynamic evaluation, we assume that
matrix entries are updated regularly and we want to maintain the output of a MATLANG
query without recomputing it. For this dynamic setting, we aim to identify the MATLANG
fragment that one can evaluate by taking linear time in the size of the update to refresh the
aforementioned data structure so that it supports constant-delay enumeration of the modified
output entries. These guarantees for both scenarios have become the holy grail for algorithmic
query processing since, arguably, it is the best that one can achieve complexity-wise in terms
of the input, the output, and the cost of an update [5, 8, 11,16,17,31,35,36,39].

To identify the MATLANG fragments with these guarantees, our approach is straightfor-
ward but effective. Instead of developing evaluation algorithms from scratch, we establish
a direct correspondence between linear algebra and relational algebra to take advantage
of the query evaluation results for conjunctive queries. Indeed, prior work has precisely
characterized which subfragments of conjunctive queries can be evaluated and updated
efficiently [5, 8, 9, 31]. Our main strategy, then, is to link these conjunctive query fragments
to corresponding linear algebra fragments. More specifically, our contributions are as follows.
1. We start by understanding the deep connection between positive first-order logic (FO+)

over binary relations and sum-MATLANG [23], an extension of MATLANG. We formalize
this connection by introducing schema encodings, which specify how relations simulate
matrices and vice-versa, forcing a lossless relationship between both. Using this machinery,
we show that sum-MATLANG and positive first-order logic are equally expressive over any
relation, matrix, and matrix dimension (including non-rectangular matrices). Moreover,
we show that conjunctive queries (CQ) coincide with sum-MATLANG without matrix ad-
dition, which we call conj-MATLANG. This result forms the basis for linking both settings
and translating the algorithmic results from CQ to subfragments of conj-MATLANG.

2. We propose free-connex MATLANG (fc-MATLANG) for static evaluation, a natural
MATLANG subfragment that we show to be equally expressive as free-connex CQ [5], a
subfragment of CQ that allows linear time preprocessing and constant-delay enumera-
tion. To obtain our expressiveness result, we show that free-connex CQs over binary
relations are equally expressive as the two-variable fragment of conjunctive FO+, a logical
characterization of this class that could be of independent interest.

3. For the dynamic setting we introduce the language qh-MATLANG, a MATLANG fragment
that we show equally expressive to q-hierarchical CQ [9,31], a fragment of CQ that allows
constant update time and constant-delay enumeration.

4. Both free-connex and q-hierarchical CQ are known to characterize the class of CQs
that one can evaluate efficiently on Boolean databases. We are interested, however, in
evaluating MATLANG queries on matrices featuring entries in a general semiring. To
obtain the complexity bounds for fc-MATLANG and qh-MATLANG on general semirings,
therefore, we show that the upper and lower bounds for free-connex and q-hierarchical
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CQs generalize from Boolean annotations to classes of semirings which includes most
semirings used in practice, like the reals. The tight expressiveness connections established
in this paper then prove that for such semirings fc-MATLANG and qh-MATLANG can
be evaluated with the same guarantees as their CQ counterparts and that they are
optimal: one cannot evaluate any other conj-MATLANG query outside this fragment
under complexity-theoretic assumptions [9].

An extended version of this paper that includes full proofs of formal statements is available
online [38].

Related work. In addition to the work that has already been cited above, the following
work is relevant. Brijder et al. [13] have shown equivalence between MATLANG and FO+

3 ,
the 3-variable fragment of positive first order logic. By contrast, we show equivalence
between sum-MATLANG and FO+, and study the relationship between the free-connex and
q-hierarchical fragments of MATLANG and FO∧, the conjunctive fragment of positive first
order logic.

Geerts et al. [23] previously established a correspondence between sum-MATLANG and
FO+. However, as we illustrate in [38] their correspondence is (1) restricted to square
matrices, (2) asymmetric between the two settings, and (3) encodes matrix instances as
databases of more than linear size, making it unsuitable to derive the complexity bounds.

Eldar et al. [18] have recently also generalized complexity bounds for free-connex CQs
from Boolean annotations to general semirings. Nevertheless, this generalization is with
respect to direct access, not enumeration. In their work the focus is to compute aggregate
queries, which is achieved by providing direct access to the answers of a query even if the
annotated value (aggregation result) is zero. By contrast, in our setting, zero-annotated
values must not be reported during the enumeration of query answers. This difference in
the treatment of zero leads to a substantial difference in the properties that a semiring must
have in order to generalize the existing complexity bounds.

There are deep connections known between the treewidth and the number of variables of a
conjunctive FO+ formula (FO∧). For example, Kolaitis and Vardi established the equivalence
of boolean queries in FO∧

k , the k-variable fragment of FO∧, and boolean queries in FO∧ of
treewidth less than k. Because they focus on boolean queries (i.e., without free variables),
this result does not imply our result that for binary queries free-connex FO∧ equals FO∧

2 .
Similarly, Geerts and Reutter [24] introduce a tensor logic TL over binary relations and
show that conjunctive expressions in this language that have treewidth k can be expressed
in TLk+1, the k-variable fragment of TL. While they do take free variables into account,
we show in [38] that there are free-connex conjunctive queries with 2 free variables with
treewidth 2 in their formalism – for which their result hence only implies expressibility in
FO∧

3 , not FO∧
2 as we show here.

Several proposals [30,33,34,37,41] have been made regarding the efficient evaluation of
linear algebra programs in the last few years. All these works focused on query optimization
without formal guarantees regarding the preprocessing, updates, or enumeration in query
evaluation. To the best of our knowledge, this is the first work on finding subfragments of a
linear algebra query language (i.e., MATLANG) with such efficient guarantees.

2 Preliminaries

In this section we recall the main definitions of MATLANG, a query language on matrices,
and first order logic (FO), a query language on relations.
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12:4 Enumeration and Updates for Conjunctive Linear Algebra Queries

Semirings. We evaluate both languages over arbitrary commutative and non-trivial semir-
ings. A (commutative and non-trivial) semiring (K,⊕,⊙, 0, 1) is an algebraic structure
where K is a non-empty set, ⊕ and ⊙ are binary operations over K, and 0, 1 ∈ K with 0 ̸= 1.
Furthermore, ⊕ and ⊙ are associative operations, 0 and 1 are the identities of ⊕ and ⊙,
respectively, ⊕ and ⊙ are commutative operations, ⊙ distributes over ⊕, and 0 annihilates
K (i.e. 0⊙ k = k ⊙ 0 = 0). We use

⊕
L and

⊙
L to denote the ⊕ and ⊙ operation over all

elements in L ⊆ K, respectively. Typical examples of semirings are the reals (R, +,×, 0, 1),
the natural numbers (N, +,×, 0, 1), and the boolean semiring B = ({t, f},∨,∧, f, t).

Henceforth, when we say “semiring” we mean “commutative and non-trivial” semiring.
We fix such an arbitrary semiring K throughout the document. We denote by N>0 the set of
non-zero natural numbers.

Matrices and size symbols. A K-matrix (or just matrix) of dimension m× n is a m× n

matrix with elements in K as its entries. We write Aij to denote the (i, j)-entry of A.
Matrices of dimension m× 1 are column vectors and those of dimension 1×n are row vectors.
We also refer to matrices of dimension 1× 1 as scalars.

We assume a collection of size symbols denoted with greek letters α, β, . . . and assume
that the natural number 1 is a valid size symbol. A type is a pair (α, β) of size symbols.
Intuitively, types represent sets of matrix dimensions. In particular, we obtain dimensions
from types by replacing size symbols by elements from N>0, where the size symbol 1 is always
replaced by the natural number 1. So, (α, β) with α ̸= 1 ̸= β represents the set of dimensions
{(m, n) | m, n ∈ N>0}, while (α, α) represents the dimensions {(m, m) | m ∈ N>0} of square
matrices; and (α, 1) represents the dimensions {(m, 1) | m ∈ N>0} of column vectors and
(1, 1) represents the dimension (1, 1) of scalars.

Schemas and instances. We assume a setM = {A, B, C, V, . . .} of matrix symbols, disjoint
with the size symbols and denoted by bold uppercase letters. Each matrix symbol A has a
fixed associated type. We write A : (α, β) to denote that A has type (α, β).

A matrix schema S is a finite set of matrix and size symbols. We require that the special
size symbol 1 is always in S, and that all size symbols occurring in the type of any matrix
symbol A ∈ S are also in S. A matrix instance I over a matrix schema S is a function
that maps each size symbol α in S to a non-zero natural number αI ∈ N>0, and maps each
matrix symbol A : (α, β) in S to a K-matrix AI of dimension αI × βI . We assume that for
the size symbol 1, we have 1I = 1, for every instance I.

Sum-Matlang. Let S be a matrix schema. Before defining the syntax of sum-MATLANG,
we assume a set V = {u, v, w, x, . . . } of vector variables over S, which is disjoint with matrix
and size symbols in S. Each such variable v has a fixed associated type, which must be a
vector type (γ, 1) for some size symbol γ ∈ S. We also write v : (γ, 1) in that case.

The syntax of sum-MATLANG expressions [23] over S is defined by the following grammar:

e ::= A ∈ S (matrix symbol) | v ∈ V (vector variable)
| eT (transpose) | e1 · e2 (matrix multiplication)
| e1 + e2 (matrix addition) | e1 × e2 (scalar multiplication)
| e1 ⊙ e2 (pointwise multiplication) | Σv.e (sum-iteration).
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In addition, we require that expressions e are well-typed, in the sense that its type type(e) is
correctly defined as follows:

type(A) := (α, β) for a matrix symbol A : (α, β)
type(v) := (γ, 1) for vector variable v : (γ, 1)

type(eT ) := (β, α) if type(e) = (α, β)
type(e1 · e2) := (α, γ) if type(e1) = (α, β) and type(e2) = (β, γ)

type(e1 + e2) := (α, β) if type(e1) = type(e2) = (α, β)
type(e1 × e2) := (α, β) if type(e1) = (1, 1) and type(e2) = (α, β)
type(e1 ⊙ e2) := (α, β) if type(e1) = type(e2) = (α, β)

type(Σv.e) := (α, β) if e : (α, β) and type(v) = (γ, 1).

In what follows, we always consider well-typed expressions and write e : (α, β) to denote that
e is well typed, and its type is (α, β).

For an expression e, we say that a vector variable v is bound if it is under a sum-iteration
Σv, and free otherwise. To evaluate expressions with free vector variables, we require the
following notion of a valuation. Fix a matrix instance I over S. A vector valuation over I is
a function µ that maps each vector symbol v : (γ, 1) to a column vector of dimension γI × 1.
Further, if b is a vector of dimension γI × 1, then let µ[v := b] denote the extended vector
valuation over I that coincides with µ, except that v : (γ, 1) is mapped to b.

Let e : (α, β) be a sum-MATLANG expression over S. When one evaluates e over a matrix
instance I and a matrix valuation µ over I, it produces a matrix JeK(I, µ) of dimension
αI × βI such that each entry i, j satisfies:

JAK(I, µ)ij := AI
ij for A ∈ S

JvK(I, µ)ij := µ(v)ij for v ∈ V
JeT K(I, µ)ij := JeK(I, µ)ji

Je1 + e2K(I, µ)ij := Je1K(I, µ)ij ⊕ Je2K(I, µ)ij

Je1 ⊙ e2K(I, µ)ij := Je1K(I, µ)ij ⊙ Je2K(I, µ)ij

JΣv. e K(I, µ)ij :=
⊕γI

k=1JeK(I, µ[v := bγI

k ])ij

Je1 · e2K(I, µ)ij :=
⊕

kJe1K(I, µ)ik ⊙ Je2K(I, µ)kj

Je1 × e2K(I, µ)ij := a⊙ Je2K(I, µ)ij with Je1K(I, µ) = [a]

where v : (γ, 1) and bn
1 , bn

2 , . . . , bn
n are the n-dimension canonical vectors, namely, the vectors

[1 0 . . . 0]T , [0 1 . . . 0]T, . . ., [0 0 . . . 1]T , respectively.

▶ Example 1. Let S = {A} where A : (α, α). Let I be an instance over S such that

αI = 3 and AI =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 . Let v ∈ V where v : (α, 1). The expression Σv.A · v is

well-typed and

JΣv.A · vK(I, ∅) = A · b3
1 + A · b3

2 + A · b3
3 =

a11
a21
a31

 +

a12
a22
a32

 +

a13
a23
a33

 .

▶ Example 2. Let S and I be as in Example 1. Let v ∈ V where v : (γ, 1). The expression
Σv.A is well-typed and

JΣv.AK(I, ∅) = A + · · ·+ A︸ ︷︷ ︸
γI times

.
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Matlang. MATLANG is a linear algebra query language that is a fragment of sum-MATLANG.
Specifically, define the syntax of MATLANG expressions over S by the following grammar:

e ::= A ∈ S | eT | e1 · e2 | e1 + e2 | e1 × e2 | e1 ⊙ e2 | 1α | Iα

for every size symbol α ∈ S. Here, 1α and Iα denote the ones-vector and identity-matrix,
respectively, of type type(1α) = (α, 1) and type(Iα) = (α, α). Their semantics can be
defined by using sum-MATLANG as:

J1αK(I, µ) := JΣv.vK(I, µ) JIαK(I, µ) := JΣv.v · vT K(I, µ)

Note that the original MATLANG version introduced in [12] included an operator for the
diagonalization of a vector. This operator can be simulated by using the Iα-operator and
vice versa. Furthermore, we have included the pointwise multiplication ⊙ in MATLANG, also
known as the Hadamard product. This operation will be essential for our characterization
results. In [12,23], the syntax of MATLANG was more generally parameterized by a family
of n-ary functions that could be pointwise applied. Similarly to [13,22] we do not include
such functions here, but leave their detailed study to future work.

Sum-Matlang queries. A sum-MATLANG query Q over a matrix schema S is an expression
of the form H := e where e is a well-typed sum-MATLANG expression without free vector
variables, H is a “fresh” matrix symbol that does not occur in S, and type(e) = type(H).
When evaluated on a matrix instance I over schema S, Q returns a matrix instance E over
the extended schema S ∪{H}: E coincides with I for every matrix and size symbol in S
and additionally maps HE = JeK(I, ∅) with ∅ denoting the empty vector valuation. We
denote the instance resulting from evaluating Q by JQK(I). If S is a matrix schema and Q a
sum-MATLANG query over S then we use S(Q) to denote the extended schema S ∪{H}.

K-relations. A K-relation over a domain of data values D is a function f : Da → K such
that f(d) ̸= 0 for finitely many d ∈ Da. Here, “a” is the arity of R. Since we want to compare
relational queries with sum-MATLANG queries, we will restrict our attention in what follows
to K-relations where the domain D of data values is the set N>0. In this context, we may
naturally view a K-matrix of dimensions n×m as a K-relation such that the entry (i, j) of
the matrix is encoded by the K-value of the tuple (i, j) in the relation (see also Section 3).

Vocabularies and databases. We assume an infinite set of relation symbols together with
an infinite and disjoint set of constant symbols. Every relation symbol R is associated with a
number, its arity, which we denote by ar(R) ∈ N. A vocabulary σ is a finite set of relation and
constant symbols. A database over σ is a function db that maps every constant symbol c ∈ σ

to a value cdb in N>0; and every relation symbol R ∈ σ to a K-relation Rdb of arity ar(R).

Positive first order logic. As our relational query language, we will work with the positive
fragment of first order logic (FO+). In contrast to the standard setting in database theory,
where the only atomic formulas are relational atoms of the form R(x), we also allow the
ability to compare variables with constant symbols. To this end, the following definitions
are in order. We assume an infinite set of variables, which we usually denote by x, y, z. We
denote tuples of variables by x, y, and so on. A relational atom is expression of the form
R(x1, . . . , xk) with R a relation symbol of arity k. A comparison atom is of the form x ≤ c

with x a variable and c a constant symbol. A positive first order logic formula (FO+ formula)
over a vocabulary σ is an expression generated by the following grammar:
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φ ::= R(x) | x ≤ c | ∃y. φ | φ ∧ φ | φ ∨ φ

where R and c range over relations and constants in σ, respectively. We restrict ourselves to
safe formulas, in the sense that in a disjunction φ1 ∨ φ2, we require that φ1 and φ2 have the
same set of free variables [2]. The notions of free and bound variables are defined as usual
in FO. We denote the set of free variables of φ by free(φ) and its multiset of atoms by at(φ).

We evaluate formulas over K-relations as follows using the well-known semiring se-
mantics [26]. A valuation over a set of variables X is a function ν : X → N>0 that assigns a
value in N>0 to each variable in X (recall that D = N>0). We denote by ν : X that ν is a
valuation on X and by ν|Y the restriction of ν to X ∩ Y . As usual, valuations are extended
point-wise to tuples of variables, i.e., ν(x1, . . . , xn) = (ν(x1), . . . , ν(xn)). Let φ be an FO+

formula over vocabulary σ. When evaluated on a database db over vocabulary σ, it defines a
mapping VφUdb from valuations over free(φ) to K inductively defined as:

VR(x1, . . . , xk)Udb(ν) := Rdb(ν(x1), . . . , ν(xn))

Vx ≤ cUdb(ν) :=
{
1 if ν(x) ≤ cdb

0 otherwise
Vφ1 ∧ φ2Udb(ν) := Vφ1Udb(ν|free(φ1))⊙ Vφ2Udb(ν|free(φ2))
Vφ1 ∨ φ2Udb(ν) := Vφ1Udb(ν)⊕ Vφ2Udb(ν)

V∃y.φUdb(ν) :=
⊕

µ : free(φ)s.t.µ|free(φ)\{y}=νVφUdb(µ)

FO queries. An FO+ query Q over vocabulary σ is an expression of the form H(x)← φ

where φ is an FO+ formula over σ, x = (x1, . . . , xk) is a sequence of (not necessarily distinct)
free variables of φ, such that every free variable of φ occurs in x, and H is a “fresh” relation
symbol not in σ with ar(H) = k. The formula φ is called the body of Q, and H(x) its head.

When evaluated over a database db over σ, Q returns a database JQKdb over the extended
vocabulary σ ∪{H}. This database JQKdb coincides with db for every relation and constant
symbol in σ, and maps the relation symbol H to the K-relation of arity k defined as follows.
For a sequence of domain values d = (d1, . . . , dk), we write d |= x if, for all i ̸= j with
xi = xj we also have di = dj . Clearly, if d |= x then the mapping {x1 → d1, . . . , xk 7→ dk} is
well-defined. Denote this mapping by x 7→ d in this case. Then

JQKdb(H) := d 7→

{
VφUdb(x 7→ d) if d |= x

0 otherwise

In what follows, if Q is a query, then we will often use the notation Q(x) to denote that the
sequence of the variables in the head of Q is x. If Q is a query over σ and H(x) its head,
then we write σ(Q) for the extended vocabulary σ ∪{H}.

We denote by FO∧ the fragment of FO+ formulas in which disjunction is disallowed. A
query Q = H(x)← φ is an FO∧ query if φ is in FO∧. If additionally φ is in prenex normal
form, i.e., Q : H(x) ← ∃y.a1 ∧ · · · ∧ an with a1, . . . , an (relational or comparison) atoms,
then Q is a conjunctive query (CQ). Note that, while the classes of conjunctive queries and
FO∧ queries are equally expressive, for our purposes conjunctive queries are hence formally a
syntactic fragment of FO∧ queries.

An FO+ query is binary if every relational atom occurring in it (body and head) has
arity at most two. Because in sum-MATLANG both the input and output are matrices, our
correspondences between sum-MATLANG and FO+ will focus on binary queries.
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12:8 Enumeration and Updates for Conjunctive Linear Algebra Queries

Discussion. We have added comparison atoms to FO+ in order to establish its correspond-
ence with sum-MATLANG. To illustrate why we will need comparison atoms, consider the
sum-MATLANG expression Iα of type (α, α) that computes the identity matrix. This can
be expressed by means of the following CQ Q : I(x, x)← x ≤ α. We hence use comparison
atoms to align the dimension of the matrices with the domain size of relations.

To make the correspondence hold, we note that in MATLANG there is a special size
symbol, 1, which is always interpreted as the constant 1 ∈ N. This size symbol is used in
particular to represent column and row vectors, which have type (α, 1) and (1, α) respectively.
We endow CQs with the same property in the sense that we will assume in what follows that
1 is a valid constant symbol and that 1db = 1 for every database db.

3 From matrices to relations and back

Geerts et al. [23] previously established a correspondence between sum-MATLANG and FO+.
However, as we illustrate in the full version [38] their correspondence is (1) for square matrices,
(2) asymmetric, and (3) encodes matrix instances as databases of more than linear size,
making it unsuitable to derive the complexity bounds that we are interested in here. In
this section, we revisit and generalize the connection between sum-MATLANG and FO+ by
providing translations between the two query languages that works for any matrix schema,
are symmetric, and ensure that matrices are encoded as databases of linear size. Towards
this goal, we introduce next all the formal machinery to link both settings. We start by
determining precisely in what sense relations can encode matrices, or matrices can represent
relations, and how this correspondence transfers to queries. Then we show how to generalize
the expressibility results in [23] for any matrix sizes and every encoding between schemas.

How we relate objects. Let A be a matrix of dimension m × n. There exist multiple
natural ways to encode A as a relation, depending on the dimension m× n.

We can always encode A, whatever the values of m and n, as the binary K-relation R

such that (1) Ai,j = R(i, j) for every i ≤ m, j ≤ n and (2) R(i, j) = 0 if i > m or j > n.
If A is a column vector (n = 1) then we can also encode it as the unary K-relation R

such that Ai,1 = R(i) for every i ≤ m and R(i) = 0 if i > m.
Similarly, if A is a row vector (m = 1) then we can encode it as the unary K-relation R

with A1,j = R(j) for every j ≤ n and R(i) = 0 if j > n.
If A is a scalar (m = n = 1), we can encode it as a nullary K-relation R with A1,1 = R().

Note that if A is scalar then we can hence encode it by means of a binary relation, a unary
relation, or a nullary relation; and if it is a vector we can encode it by a binary or unary
relation. In what follows, we write A ≃ R to denote that R encodes A.

Conversely, given a (nullary, unary, or binary) K-relation R we may interpret this as
a matrix of appropriate dimension. Specifically, we say that relation R is consistent with
dimension m× n if there exists a matrix A of dimension m× n such that A ≃ R. This is
equivalent to requiring that relation is 0 on entries outside of m × n. Note that, given R

that is consistent with m× n there is exactly one matrix A : m× n such that A ≃ R.

How we relate schemas. A matrix-to-relational schema encoding from a matrix schema S
to a relational vocabulary σ is a function Rel : S → σ that maps every matrix symbol A in S
to a unary or binary relation symbol Rel(A) in σ, and every size symbol α in S to a constant
symbol Rel(α) in σ. Here, Rel(A) can be unary only if A is of vector type, and nullary only
if A is of scalar type. Intuitively, Rel specifies which relation symbols will be used to store
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the encodings of which matrix symbols. In addition, we require that Rel(1) = 1 and that
Rel is a bijection between S and σ. This makes sure that we can always invert Rel. In what
follows, we will only specify that Rel is a matrix-to-relational schema encoding on S, leaving
the vocabulary σ unspecified. In that case, we write Rel(S) for the relational vocabulary σ.

Conversely, we define a relational-to-matrix schema encoding from σ into S as a function
Mat : σ → S that maps every relation symbol R to a matrix symbol Mat(R) and every
constant symbol c to a size symbol Mat(c). We require that all unary relations are mapped
to matrix symbols of vector type, either row or column, and that all nullary relations are
mapped to matrix symbols of scalar type. Furthermore, Mat must map 1 7→ 1 and be
bijective. Similarly, we denote by Mat(σ) the matrix schema S mapped by Mat.

Note that the bijection assumption over Mat imposes some requirements over σ to encode
it as matrices. For example, Mat requires the existence of at least one constant symbol in σ

for encoding matrices dimensions, since every matrix symbol has at least one size symbol in
its type, and that size symbol is by definition in S. The bijection between constant and size
symbols is necessary in order to have lossless encoding between both settings.

Given that Rel and Mat are bijections between S and σ, their inverses Rel−1 and Mat−1

are well defined. Furthermore, by definition we have that Rel−1 and Mat−1 are relational-to-
matrix and matrix-to-relational schema encodings, respectively.

How we relate instances. We start by specifying how to encode matrix instances as
database instances. Fix a matrix-to-relational schema encoding Rel between S and Rel(S).
Let I be a matrix instance over S and db a database over Rel(S). We say that db is a
relational encoding of I w.r.t. Rel, denoted by I ≃Rel db, if

AI ≃ Rel(A)db for every matrix symbol A in S, and
Rel(α)db = αI for every size symbol α in S.

Note that, given I and Rel, the relational encoding db is uniquely defined. As such, we also
denote this database by Rel(I).

We now focus on interpreting database instances as matrix instances, which is more subtle.
Fix a relational-to-matrix schema encoding Mat from σ to Mat(σ). We need to first leverage
the consistency requirement from relations to databases. Formally, we say that a database
db over σ is consistent with Mat if for every relation symbol R in σ, Rdb is consistent with
dimension cdb × ddb where Mat(R) : (Mat(c), Mat(d)). In other words, a consistent database
specifies the value of each dimension, and the relations are themselves consistent with them.

Let db be a database over σ, consistent with Mat and let I be a matrix instance of Mat(σ).
We say that I is a matrix encoding of db w.r.t. Mat, denoted db ≃Mat I, if

Mat(R)I ≃ Rdb for every relation symbol R ∈ σ; and
cdb = Mat(c)I for every constant symbol c ∈ σ.

Given Mat and a consistent database db, the matrix encoding I is uniquely defined. As such,
we also denote this instance by Mat(db).

From the previous definitions, one notes an asymmetry between both directions. Although
an encoding always holds from matrices to relations, we require that the relations are consistent
with the sizes (i.e., constants) from relations to matrices. Nevertheless, this asymmetry does
not impose a problem when we want to go back and forth, as the next result shows.

▶ Proposition 3. Let Rel and Mat be matrix-to-relational and relational-to-matrix schema
encodings from S to σ and from σ to S, respectively, such that Mat = Rel−1. Then

Rel−1(Rel(S)) = S and Mat−1(Mat(σ)) = σ;
Rel(I) is consistent with Rel−1, for every instance I over S;
Rel−1(Rel(I)) = I, for every instance I over S; and
Mat−1(Mat(db)) = db, for every db consistent with Mat.
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The previous proposition is a direct consequence of the definitions; however, it shows that
the consistency requirement and schema encodings provide a lossless encoding between the
relational and matrix settings. This fact is crucial to formalize the expressiveness equivalence
between sum-MATLANG and FO+, and their subfragments in the following sections.

From sum-Matlang to positive-FO. We first aim to simulate every sum-MATLANG query
with an FO+ query w.r.t. some matrix-to-relational schema encoding. This was already
proven in [23] for a different but related setting, and only for Rel encodings that map matrix
symbols with vector types into unary relations. Here we generalize it to arbitrary encodings.

In what follows, fix a matrix schema S. Let Q be a sum-MATLANG query over S, and
Rel be a matrix-to-relational schema encoding on S(Q). We say that FO+ query Q simulates
Q w.r.t. Rel if Rel(JQK(I)) = JQKRel(I) for every matrix instance I over S. Note that the
definition implies that the output matrix symbol of Q must be mapped to the output relation
symbol of Q by Rel, since Rel is a bijection and the condition must hold for every matrix
instance. Indeed, it is equivalent to JQK(I) = Rel−1(JQKRel(I)), namely, that one can evaluate
Q by first evaluating JQKRel(I) and then mapping the results back.

Next, we show that we can simulate every sum-MATLANG query in the relational setting.

▶ Proposition 4. For every sum-MATLANG query Q over S and every matrix-to-relational
schema encoding Rel on S(Q), there exists an FO+ query Q that simulates Q w.r.t. Rel.

From positive-FO to sum-Matlang. We now aim to simulate every FO+ query with a
sum-MATLANG query. Contrary to the previous direction, the expressiveness result here is
more subtle and requires more discussion and additional notions.

Fix a vocabulary σ. Let Q be a FO+ query over σ and let Mat be relational-to-matrix
schema encoding on σ(Q). We say that a matrix query Q simulates Q w.r.t. Mat if
Mat(JQKdb) = JQK(Mat(db)) for every database db consistent with Mat. We note again that
this definition implies that the input vocabulary and output relation symbol of Q coincides
with the input schema and output matrix symbol of Q, respectively. Further, it is equivalent
that JQKdb = Mat−1(JQK(Mat(db))).

Before stating how to connect FO+ with sum-MATLANG, we need to overcome the
following problem: a FO+ query can use the same variable within different relational atoms,
which can be mapped to matrix symbols of different types. For an illustrative example of
this problem, consider the query

Q : H(x, y)← R(x, y), S(y, z)

and a relational-to-matrix schema encoding such that Mat maps R and S to symbols of type
(α, β), H to a symbol of type (β, β), and c and d to α and β, respectively. For a consistent
database db w.r.t. Mat, we could have that R and S are consistent with cdb × ddb, but H is
not consistent with ddb × ddb if ddb < cdb. Moreover, Mat bounds variable y with different
sizes cdb and ddb. It is then problematic to simulate Q under Mat in sum-MATLANG because
sum-MATLANG expressions need to be well-typed.

Given the previous discussion, the well-typedness definition of a FO+ formula is necessary.
Let Mat be a relational-to-matrix schema encoding on σ. Given a FO+ formula φ over σ and
a function τ from free(φ) to size symbols in Mat(σ), define the rule Mat ⊢ φ : τ inductively as
shown in Figure 1, where τ1 ∼ τ2 if and only if τ1(x) = τ2(x) for every x ∈ dom(τ1)∩dom(τ2).
We say that φ over σ is well-typed w.r.t. Mat if there exists such a function τ such that
Mat ⊢ φ : τ . Note that if φ is well-typed, then there is a unique τ such that Mat ⊢ φ : τ .
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type(Mat(R)) = (α, β)
Mat ⊢ R(x1, x2) : {x1 7→ α, x2 7→ β}

type(Mat(R)) = (α, 1) or (1, α)
Mat ⊢ R(x) : {x 7→ α}

type(Mat(R)) = (1, 1)
Mat ⊢ R() : {} Mat ⊢ x ≤ c : {x 7→ Mat(c)}

Mat ⊢ φ : τ

Mat ⊢ ∃y.φ : τ |free(φ)\y

Mat ⊢ φ1 : τ1, Mat ⊢ φ2 : τ2 and τ1 ∼ τ2

Mat ⊢ φ1 ∧ φ2 : τ1 ∪ τ2

Mat ⊢ φ1 : τ1, Mat ⊢ φ2 : τ2 and τ1 ∼ τ2

Mat ⊢ φ1 ∨ φ2 : τ1 ∪ τ2

Figure 1 Well-typedness of FO+ formulas under relational-to-matrix mapping Mat.

Now, let Q : H(x) ← φ be a binary FO+ query over σ and Mat be a matrix encoding
specification on σ(Q). We say that Q is well-typed w.r.t. Mat if φ is well-typed w.r.t. Mat
and for τ such that Mat ⊢ φ : τ , we have:

if x = (x1, x2), then type(Mat(H)) = (τ(x1), τ(x2)); or
if x = (x), then type(Mat(H)) is either (τ(x), 1) or (1, τ(x)).

We write Mat ⊢ Q : τ to indicate that Q is well-typed w.r.t. Mat, and τ is the unique function
testifying to well-typedness of FO+ formula of Q. We note that that we can show that the
query obtained by Proposition 4 is always well-typed.

The next proposition connects well-typedness with consistency.

▶ Proposition 5. For binary FO+ query Q : H(x)← φ over a vocabulary σ, if Mat ⊢ Q : τ

then for any db consistent with Mat we have:
If x = (x1, x2) then JQKdb(H) is consistent with dimension τ(x1)db × τ(x2)db.
If x = (x) then JQKdb(H) is consistent with both dimension τ(x)db × 1 and 1× τ(x)db.

We have now all the formal machinery to state how to simulate every FO+ query over
relations with a sum-MATLANG query over matrices.

▶ Proposition 6. For every binary FO+ query Q over a vocabulary σ and every relational-
to-matrix schema encoding Mat on σ(Q) such that Q is well typed w.r.t. Mat there exists a
sum-MATLANG query Q that simulates Q w.r.t. Mat.

Conjunctive Matlang. Taking into account the correspondence between sum-MATLANG
and FO+ established by Propositions 5 and 6, in what follows we say that matrix query
language LM ⊆ sum-MATLANG and relational language LR ⊆ FO+ are equivalent or equally
expressive if (1) for every matrix query Q ∈ LM over a matrix schema S and every matrix-to-
relational schema encoding Rel on S(Q) there exists a query Q ∈ LR that simulates Q w.r.t.
Rel and is well-typed w.r.t. Rel−1; and (2) for every binary query Q ∈ LR over a vocabulary
σ and every relational-to-matrix schema encoding Mat such that Q is well-typed w.r.t. Mat
there exists Q ∈ LM that simulates Q w.r.t Mat.

Let conj-MATLANG be the sum-MATLANG fragment that includes all operations except
matrix addition (+). Then we can derive the following characterization of CQs.

▶ Corollary 7. conj-MATLANG and conjunctive queries are equally expressive.

While this result is a consequence of the connection between sum-MATLANG and FO+, it
provides the basis to explore the fragments of conj-MATLANG that correspond to fragments of
CQ, like free-connex or q-hierarchical CQ. We determine these fragments in the next sections.
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4 The fragment of free-connex queries

In this section, we specialize the correspondence of Corollary 7 between conj-MATLANG and
CQs to free-connex CQs [5]. Free-connex CQs are a subset of acyclic CQs that allow efficient
enumeration-based query evaluation: in the Boolean semiring and under data complexity they
allow to enumerate the query result JQKdb(H) of free-connex CQ Q : H(x)← φ with constant
delay after a preprocessing phase that is linear in db. In fact, under complexity-theoretic
assumptions, the class of CQs that admits constant delay enumeration after linear time
preprocessing is precisely the class of free-connex CQs [5].

Acyclic and free-connex CQs. A CQ Q : H(x)← ∃y.a1 ∧ · · · ∧ an is called acyclic [7,10,21]
if it has a join-tree, i.e. an undirected tree T = (V, E) with V the set {a1, . . . , an} of atoms
in the body and where for each variable z occurring in Q the set {ai ∈ V | z ∈ vars(ai)}
induces a connected subtree of T . Note that we consider inequality predicates as unary.
Furthermore, Q is free-connex [5, 11] if it is acyclic and the query Q′ obtained by adding
the head atom H(x) to the body of Q is also acyclic. The second condition forbids queries
like H(x, y) ← ∃z.A(x, z) ∧ B(z, y) since when we adjoin the head to the body we get
∃z.A(x, z) ∧ B(z, y) ∧ H(x, y), which is cyclic. We will usually refer to free-connex CQs
simply as fc-CQs in what follows.

To identify the sum-MATLANG fragment that corresponds to fc-CQs, we find it convenient
to first observe the following correspondence between fc-CQs and FO∧

2 , the two-variable
fragment of FO∧. Here, a formula φ in FO∧ is said to be in FO∧

2 if the set of all variables
used in φ (free or bound) is of cardinality at most two. So, ∃y∃z.A(x, y) ∧ B(y, z) is not
in FO∧

2 , but the equivalent formula ∃y. (A(x, y) ∧ ∃x.B(y, x)) is. An FO∧
2 query is a binary

query whose body is an FO∧
2 formula. Recall that a query is binary if every relational atom

occurring in its body and head have arity at most two.

▶ Theorem 8. Binary free-connex CQs and FO∧
2 queries are equally expressive.

We find this a remarkable characterization of the fc-CQs on binary relations that, to the
best of our knowledge, it is new. Moreover, this result motivates the fragment of MATLANG
that characterizes fc-CQs.

Free-connex MATLANG. Define fc-MATLANG to be the class of all MATLANG expressions
generated by the grammar:

e ::= A | 1α | Iα | eT | e1 × e2 | e1 ⊙ e2 | e1 · v2 | v1 · e2

where v1 and v2 are fc-MATLANG expressions with type (α, 1) or (1, α). In other words,
matrix multiplication e1 · e2 is only allowed when at least one of e1 or e2 has a row or column
vector type.

Interestingly, we are able to show that FO∧
2 and fc-MATLANG are equally expressive.

▶ Theorem 9. fc-MATLANG and FO∧
2 are equally expressive.

From Theorem 8 and Theorem 9 we obtain:

▶ Corollary 10. fc-MATLANG and binary free-connex CQs are equally expressive.
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5 The fragment of q-hierarchical queries

We next specialize the correspondence between conj-MATLANG and CQs to q-hierarchical
CQs [5]. The q-hierarchical CQs form a fragment of the free-connex CQs that, in addition to
supporting constant delay enumeration after linear time preprocessing, have the property
that every single-tuple update (insertion or deletion) to the input database can be processed
in constant time, after which the enumeration of the updated query result can again proceed
with constant delay [9].

Q-hierarchical CQs. Let Q : H(x)← ∃y.a1 ∧ . . . ∧ an be a CQ. For every variable x, define
at(x) to be the set {ai | x ∈ var(ai)} of relational atoms that mention x. Note that, contrary
to acyclic queries, here we make the distinction between relational atoms and inequalities.
Then Q is q-hierarchical if for any two variables x, y the following is satisfied:
1. at(x) ⊆ at(y) or at(x) ⊇ at(y) or at(x) ∩ at(y) = ∅, and
2. if x ∈ x and at(x) ⊊ at(y) then y ∈ x.
For example, H(x)← ∃y.A(x, y) ∧ U(x) is q-hierarchical. By contrast, the variant H(x)←
∃y.A(x, y) ∧ U(y) is not q-hierarchical, as it violates the second condition. Furthermore,
H(x, y)← A(x, y) ∧ U(x) ∧ V (y) violates the first condition, and is also not q-hierarchical.
Note that all these examples are free-connex. We refer to q-hierarchical CQs simply as qh-CQs.

Q-hierarchical Matlang. The fragment of sum-MATLANG that is equivalent to qh-CQs is a
two-layered language where expressions in a higher layer can only be built from the lower
layer. This lower layer, called simple-MATLANG, is a fragment of fc-MATLANG defined as:

e ::= A | 1α | Iα | eT | e1 × e2 | e1 ⊙ e2 | e · 1α.

Note that in simple-MATLANG matrix multiplication is further restricted to matrix-vector
multiplication with the ones vector. Intuitively, all simple-MATLANG expressions can already
define q-hierarchical CQs like H(x)← ∃y.A(x, y)∧U(x), but it cannot define cross-products
like H(x, y)← A(x) ∧B(y), which are q-hierarchical. For this reason, we need to enhance
simple-MATLANG with the higher layer. Specifically, we define qh-MATLANG as follows:

e ::= e1 | e1 ⊙
(
e2 · (1α)T

)
|

(
1α · e1

)
⊙ e2 |

(
1α · e1

)
⊙

(
e2 · (1α)T

)
where e1 and e2 are simple-MATLANG expressions. Note that the subexpressions 1α · e1 and
e2 · (1α)T are valid if e1 and e2 have a row and column vector type, respectively. Then, both
subexpressions are useful for expanding vector-type expressions into a matrix-type expression.

The qh-MATLANG syntax does not allow expressions like, for example, 1α · e1 where e1 is
a simple-MATLANG expression. Nevertheless, one can define this expression alternatively as
(1α · e1)⊙ (1α · (1α)T ). For presentational purposes, we decided to define qh-MATLANG as
simple as possible, leaving out some expressions in fc-MATLANG that are not in qh-MATLANG,
although an equivalent qh-MATLANG expression defines it.

▶ Theorem 11. qh-MATLANG and binary q-hierarchical CQs are equally expressive.

6 Efficient evaluation of free-connex and q-hierarchical queries

Now that we have precise connections between subfragments of MATLANG and subfragments
of CQ, we can use these connections to derive efficient evaluation algorithms for MATLANG.
Unfortunately, to apply the algorithms for CQ, we must first face two problems: (1) the
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evaluation algorithms for fc-CQs and qh-CQs are usually restricted to the Boolean semiring,
and (2) these algorithms are for CQ without inequalities (comparison atoms). To overcome
these problems, we need to revisit the fc-CQs and qh-CQs evaluation problem, generalize the
algorithmic results to other semirings (e.g., R), and extend the results when queries have also
inequalities. Only then can we derive efficient algorithms for the fragments of fc-MATLANG
and qh-MATLANG.

The evaluation setting. In our setting, we consider query evaluation as an enumeration
problem. Specifically, let Q be a CQ over vocabulary σ, H its relation symbol in the head,
and K a semiring. We define the evaluation problem Eval(Q, σ,K) as follows:

Problem: Eval(Q, σ, K)
Input: A K-database db over σ

Output: Enumerate {(d, JQKdb(H)(d)) | JQKdb(H)(d) ̸= 0}.

In other words, the evaluation problems ask to retrieve the set of all tuples output by Q

on db, together with their non-zero annotations. Similarly, we can define the evaluation
problem Eval(Q,S,K) for a conj-MATLANG query Q over a matrix schema S where we
aim to enumerate the non-zero entries of JQK(I) given as input a matrix instance I over S,
represented sparsely as the set of its non-zero entries.

As it is standard in the area, we consider enumeration algorithms on the Random Access
Machine (RAM) with uniform cost measure [3]. We assume that semiring values can be
represented in O(1) space and that the semiring operations ⊕ and ⊙ can be evaluated
in O(1) time. We say that Eval(Q,S,K) can be evaluated with linear-time preprocessing
and constant-delay, if there exists an enumeration algorithm that takes O (∥db∥) time to
preprocess the input database db, and then retrieves each output (d, JQKdb(H)(d)) one by
one, without repetitions, and with constant-delay per output. Here, the size of database
db is defined to be the number of non-zero entries. The same extends to Eval(Q,S,K) as
expected. Note that we measure the time and delay in data complexity as is standard in the
literature [5, 8, 9, 32].

Evaluation of free-connex queries. We are ready to state the algorithmic results for fc-CQ
and fc-MATLANG. A semiring (K,⊕,⊙, 0, 1) is zero-divisor free if, for all a, b ∈ K, a⊙ b = 0

implies a = 0 or b = 0. A zero-divisor free semiring is called a semi-integral domain [25].
Note that semirings used in practice, like B, N, and R, are semi-integral domains.

▶ Theorem 12. Let K be a semi-integral domain. For every free-connex query Q over σ,
Eval(Q, σ,K) can be evaluated with linear-time preprocessing and constant-delay. In particu-
lar, Eval(Q,S,K) can also be evaluated with linear-time preprocessing and constant-delay
for every fc-MATLANG Q over S.

The semi-integral condition is necessary to ensure that zero outputs could only be
produced by some zero entries. For instance, consider a semiring (K,⊕,⊙, 0, 1) such that
there exist a, b ∈ K where a ̸= 0, b ̸= 0 and a ⊙ b = 0. Further, consider the query
Q : H(x, y) ← R(x) ∧ S(y) over the previous semiring. Let R and S be relation symbols
with arity one and db a database over σ = {R, S} such that R(1) = a; R(2) = a; S(1) = b

and S(2) = b. Then, the output of Eval(Q, σ,K) with input db is empty, although the body
can be instantiated in four different ways, all of them producing 0 values.
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We derive the enumeration algorithm for Eval(Q, σ,K) by extending the algorithms in [5]
for any semi-integral domain K and taking care of the inequalities in Q. We derive the
enumeration algorithm for Eval(Q,S,K) by reducing to Eval(Q, σ,K), using Corollary 10.

To illustrate the utility of Theorem 12, consider the fc-MATLANG query A⊙ (U ·VT )
where U, V are column vectors. When this query is evaluated in a bottom-up fashion, the
subexpression (U ·VT ) will generate partial results of size ∥U ∥∥V ∥, causing the entire
evaluation to be of complexity Ω(∥A∥ + ∥U∥∥V∥). By contrast, Theorem 12 tells us that
we may evaluate the query in time O(∥A∥ + ∥U∥ + ∥V∥).

For lower bounds, we can also extend the results in [5] and [8] for the relational setting
under standard complexity assumptions. As in previous work, our lower bounds are for
CQ without self-joins and we need some additional restrictions for inequalities. Specifically,
we say that an inequality x ≤ c in Q is covered, if there exists a relational atom in Q that
mention x. We say that Q is constant-disjoint if (i) for all covered inequalities x ≤ c we have
c ̸= 1, and (ii) for all pairs (x ≤ c, y ≤ d) in Q of covered inequality x ≤ c and non-covered
inequality y ≤ d if c = d then y ̸∈ free(Q). In other words, if a constant symbol other than 1
occurs in both a covered and non-covered inequality in Q, then it occurs with a bound
variable in the non-covered inequality.

A semiring K = (K,⊕,⊙, 0, 1) is zero-sum free [27, 28] if for all a, b ∈ K it holds that
a⊕ b = 0 implies a = b = 0. We are ready to extend the lower bound in [5, 8] as follows.

▶ Theorem 13. Let Q be a CQ over σ without self-joins and constant-disjoint. Let K
be a semiring such that the subsemiring generated by 0K and 1K is zero-sum free. If
Eval(Q, σ,K) can be evaluated with linear-time preprocessing and constant-delay, then Q is
free-connex, unless either the Sparse Boolean Matrix Multiplication, the Triangle Detection,
or the (k, k + 1)-Hyperclique conjecture is false.

It is important to note that most semirings used in practice, like B, N, and R, are such that
the subsemiring generated by 0K and 1K is zero-sum free. Furthermore, the Sparse Boolean
Matrix Multiplication conjecture, the Triangle Detection conjecture, and the (k, k + 1)-
Hyperclique conjecture are standard complexity assumptions used by previous works [5,8]
(see the formal statements in the full version [38]).

Unfortunately, given the asymmetry between the relational and matrix settings, the lower
bounds do not immediately transfer from the relational to the matrix setting. Specifically,
we need a syntactical restriction for conj-MATLANG that implies the constant-disjointedness
restriction in the translation of Theorem 8. Intuitively, this happens when both dimensions
of a conj-MATLANG query H := e are fixed by matrix symbols in S. For example, the
expressions A⊙ (U ·VT ) and Σv. A · v have both dimensions (i.e., row and column) fixed
by A where U, V are column vectors. Instead, the expression U · (1α)T does not, since its
column dimension depends on the value assigned for α and is not necessarily fixed by U.
Formally, FixDim(e) is the set of fixed dimensions of a conj-MATLANG expression e and it is
inductively defined as follows:

FixDim(A) := {0, 1}
FixDim(v) := {1}

FixDim(eT ) := {(i + 1) mod 2 | i ∈ FixDim(e)}
FixDim(e1 · e2) := (FixDim(e1) \ {1}) ∪ (FixDim(e2) \ {0})

FixDim(e1 × e2) := FixDim(e2)
FixDim(e1 ⊙ e2) := FixDim(e1) ∪ FixDim(e2)

FixDim(Σv.e) := FixDim(e).

An expression e has guarded dimensions if FixDim(e) = {0, 1}.
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The former is straightforwardly extended to a conj-MATLANG query Q, where FixDim(Q)
stands for FixDim(e). The following lower bound is now attainable.

▶ Corollary 14. Let Q be a conj-MATLANG query over S such that Q does not repeat matrix
symbols and Q has guarded dimensions. Let K be a semiring such that the subsemiring
generated by 0K and 1K is zero-sum free. If Eval(Q,S,K) can be evaluated with linear-time
preprocessing and constant-delay, then Q is equivalent to a fc-MATLANG query, unless either
the Sparse Boolean Matrix Multiplication, the Triangle Detection, or the (k, k +1)-Hyperclique
conjecture is false.

The dynamic evaluation setting. We move now to the dynamic query evaluation both in
the relational and matrix scenarios. Specifically, we consider the following set of updates.
Recall that K = (K,⊕,⊙, 0, 1) is a semiring and σ a vocabulary.

A single-tuple insertion (over K and σ) is an operation u = insert(R, d, k) with R ∈ σ, d

a tuple of arity ar(R), and k ∈ K. When applied to a database db it induces the database
db + u that is identical to db, but Rdb+u(d) = Rdb(d)⊕ k.
A single-tuple deletion (over K and σ) is an expression u = delete(R, d) with R ∈ σ and
d a tuple of arity ar(R). When applied to a database db it induces the database db + u

that is identical to db, but Rdb+u(d) = 0.
Notice that if every element in K has an additive inverse (i.e., K is a ring), one can simulate
a deletion with an insertion. However, if this is not the case (e.g., B or N), then a single-tuple
deletion is a necessary operation.

We define the dynamic query evaluation problem DynEval(Q, σ,K) as the extension of
Eval(Q, σ,K) under the set of updates U of all single-tuple insertions and deletions over
K and σ. We say that DynEval(Q, σ,K) can be evaluated dynamically with constant-time
update and constant-delay, if Eval(Q, σ,K) can be evaluated with linear-time preprocessing
and constant delay, and, moreover, for every update u ∈ U , it takes constant-time to update
the state of the algorithm from db to db + u so that, immediately after, we can retrieve
each output (d, JQKdb+u(H)(d)) one by one, without repetitions, and with constant-delay
per output. Similarly, we define the dynamic query evaluation problem DynEval(Q,S,K) of
Eval(Q,S,K) for the matrix setting, requiring the same dynamic guarantees.

Note that updates allow to modify the contents of relations, but not of constant symbols.
Similarly, in the linear algebra setting updates only affect matrix entry values, not matrix
dimensions. An interesting line of future work is to consider dimension updates, which
correspond to allow updates of constant symbols in CQs.

Evaluation of q-hierarchical queries. Similar than for free-connex queries, we can provide
dynamic evaluation algorithms for qh-CQ and qh-MATLANG queries. However, for this
dynamic setting, we require some additional algorithmic assumptions over the semiring. Let
K = (K,⊕,⊙, 0, 1) be a semiring and M be the set of all multisets of K. For any k ∈ K

and m ∈M , define ins(k, m) and del(k, m) to be the multisets resulting from inserting or
deleting k from m, respectively. Then we say that K is sum-maintainable if there exists a data
structure D to represent multisets of K such that the empty set ∅ can be built in constant
time, and if D represents m ∈M then: (1) the value

⊕
k∈m k can always be computed from

D in constant time; (2) a data structure that represents ins(k, m) can be obtained from D
in constant time; and (3) a data structure that represents del(k, m) can be obtained from
D in constant time. One can easily notice that if each element of K has an additive inverse
(i.e., K is a ring), then K is sum-maintainable, like R. Other examples of sum-maintainable
semirings (without additive inverses) are B and N.
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▶ Theorem 15. Let K be a sum-maintainable semi-integral domain. For every q-hierarchical
CQ Q, DynEval(Q, σ,K) can be evaluated dynamically with constant-time update and constant-
delay. In particular, DynEval(Q,S,K) can also be evaluated dynamically with constant-time
update and constant-delay for every qh-MATLANG Q over S.

Similar than for free-connex CQ, we can extend the lower bound in [9] when the subsemir-
ing generated by 0K and 1K is zero-sum free, by assuming the Online Boolean Matrix-Vector
Multiplication (OMv) conjecture [29].

▶ Theorem 16. Let Q be a CQ over σ without self-joins and constant-disjoint. Let K
be a semiring such that the subsemiring generated by 0K and 1K is zero-sum free. If
DynEval(Q, σ,K) can be evaluated dynamically with constant-time update and constant-delay,
then Q is q-hierarchical, unless the OMv conjecture is false.

This transfers to conj-MATLANG, similarly to the lower bound in the free-connex case.

▶ Corollary 17. Let Q be a conj-MATLANG query over S such that Q does not repeat matrix
symbols and Q has guarded dimensions. Let K be a semiring such that the subsemiring
generated by 0K and 1K is zero-sum free. If DynEval(Q,S,K) can be evaluated dynamically
with constant-time update and constant-delay, then Q is equivalent to a qh-MATLANG query,
unless the OMv conjecture is false.

7 Conclusions and future work

In this work, we isolated the subfragments of conj-MATLANG that admit efficient evaluation in
both static and dynamic scenarios. We found these algorithms by making the correspondence
between CQ and MATLANG, extending the evaluation algorithms for free-connex and q-
hierarchical CQ, and then translating these algorithms to the corresponding subfragments,
namely, fc-MATLANG and qh-MATLANG. To the best of our knowledge, this is the first
work that characterizes subfragments of linear algebra query languages that admit efficient
evaluation. Moreover, this correspondence improves our understanding of its expressibility.

Regarding future work, a relevant direction is to extend fc-MATLANG and qh-MATLANG
with disjunction, namely, matrix summation. This direction is still an open problem even for
CQ with union [14]. Another natural extension is to add point-wise functions and understand
how they affect expressibility and efficient evaluation. Finally, improving the lower bounds to
queries without self-join would be interesting, which is also an open problem for CQ [8,15].
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Abstract
Given a conjunctive query Q and a database D, a direct access to the answers of Q over D is the
operation of returning, given an index j, the jth answer for some order on its answers. While this
problem is #P-hard in general with respect to combined complexity, many conjunctive queries have an
underlying structure that allows for a direct access to their answers for some lexicographical ordering
that takes polylogarithmic time in the size of the database after a polynomial time precomputation.
Previous work has precisely characterised the tractable classes and given fine-grained lower bounds
on the precomputation time needed depending on the structure of the query. In this paper, we
generalise these tractability results to the case of signed conjunctive queries, that is, conjunctive
queries that may contain negative atoms. Our technique is based on a class of circuits that can
represent relational data. We first show that this class supports tractable direct access after a
polynomial time preprocessing. We then give bounds on the size of the circuit needed to represent
the answer set of signed conjunctive queries depending on their structure. Both results combined
together allow us to prove the tractability of direct access for a large class of conjunctive queries.
On the one hand, we recover the known tractable classes from the literature in the case of positive
conjunctive queries. On the other hand, we generalise and unify known tractability results about
negative conjunctive queries – that is, queries having only negated atoms. In particular, we show
that the class of β-acyclic negative conjunctive queries and the class of bounded nest set width
negative conjunctive queries admit tractable direct access.
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1 Introduction

The direct access (DA for short) task is the problem of outputing, given k, the k-th answer
of a query Q over a database D. An error is returned if k is greater than the number of
answers of Q. An order on JQKD, the answers of Q over D, is assumed. This task has been
introduced by Bagan, Durand, Grandjean and Olive in [2] and is very natural in the context
of databases. It can be used as a building block for many other interesting tasks such as
counting, enumerating [2] or sampling without repetition [13, 22] the answers of Q. Of course,
if one has access to an ordered array containing JQKD, answering DA tasks simply consists
in reading the right entry of the array. However, building such an array is often expensive,
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especially when the number of answers of Q is large. Hence, a natural approach for solving
this problem is to simulate this method by using a data structure to represent JQKD that still
allows for efficient DA tasks to be solved but that is cheaper to compute than the complete
answer set. Moreover, one is rarely interested in accessing exactly one tuple of the answer
set but one is usually interested in having a data structure allowing to solve efficiently DA
tasks for any input k. Hence the time needed to solve exactly one DA task is not the best
measure of complexity. To compare algorithms for DA tasks, it is then relevant to allow a
preprocessing phase to construct a data structure that can be used later during the access
phase where one needs to efficiently answer any DA task. Hence, we say that a method
solves the DA problem if it consists in two algorithms P and A such that: on input Q and
D, P construct a data structure S and A(S, k) returns the k-th answer of Q for any k. To
measure the quality of such an algorithm, we hence separate the preprocessing time – that is
the time needed for executing P (Q, D) – and the access time, that is, the time needed to
execute A(S, k). For example, the method consisting in building an indexed array for JQKD

solves DA with preprocessing time at least equal to the size of JQKD (and much higher in
practice) and constant access time. While the access time is optimal in this case, the cost of
preprocessing is often too high to pay in practice.

Previous work has consequently focused on devising methods with better preprocessing
time while offering reasonable access time. In their seminal work [2], Bagan, Durand,
Grandjean and Olive give a method for solving the DA problem with linear precomputation
time and constant access time on a that works on the class of first order logic formulas
and bounded degree databases. Bagan [1] later studied the problem for monadic second
order formulas over bounded treewidth databases. Another line of research has focused on
classes of conjunctive queries that admit efficient method for solving the DA problem. In [13],
Carmeli, Zeevi, Berkholz, Kimelfeld, and Schweikardt give a method solving the DA problem
for acyclic conjunctive queries with linear preprocessing time and polylogarithmic access
time for a well-chosen lexicographical order. The results also hold for bounded fractional
hypertree width queries, a number measuring how far a conjunctive query is from being
acyclic. It generalises many results from the seminal paper by Yannakakis establishing the
tractability of testing non-emptiness of acyclic conjunctive queries [33] to the tractability of
counting the number of answers of conjunctive queries [30] having bounded hypertree width.
later improved this result by precisely characterising the lexicographical ordering allowing
for this kind of complexity guarantees. Fine-grained characterisation of the complexity of
solving the DA problem on conjunctive queries, whose answers are assumed to be ordered by
some lexicographical order, has been given by Carmeli, Tziavelis, Gatterbauer, Kimelfeld and
Riedewald in [12] for the case of acyclic queries and by Bringmann, Carmeli and Mengel in [7]
for the general case. Recently, Eldar, Carmeli and Kimelfeld [15] studied the complexity of
solving the DA problem for conjunctive queries with aggregation.

In this paper, we devise new methods for solving the DA problem for signed conjunctive
queries, that is, conjunctive queries that may contain negated atoms. This is particularly
challenging because only a few tractability results are known on signed conjunctive queries.
The problem of testing non-emptiness of signed conjunctive queries being NP-hard on acyclic
conjunctive queries with respect to combined complexity, it is not possible to directly build
on the work cited in the last paragraph. Two classes of negative conjunctive queries (that
is, conjunctive queries where every atom is negated) have been shown so far to support
efficient non-emptiness testing: the class of β-acyclic queries [29, 4] and the class of bounded
nested-set width queries [25]. The former has been shown to also support efficient (weighted)
counting [6, 9]. Our main contribution is a generalisation of these results to DA. More
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precisely, we give a method that efficiently solves the DA problem on a large class of signed
conjunctive queries, which contains in particular β-acyclic negative conjunctive queries,
bounded nest-width negative conjunctive queries and bounded fractional hypertree width
positive conjunctive queries. For the latter case, the complexity we obtain is similar to the
one presented in [7] and we also get complexity guarantees depending on a lexicographical
ordering that can be specified by the user. Hence our result both improves the understanding
of the tractability of signed conjunctive queries and unifies the existing results with the
positive case. In a nutshell, we prove that the complexity of solving the DA problem for a
lexicographical order of a signed conjunctive query Q roughly matches the complexity proven
in [7] for the worst positive query we could construct by removing some negative atoms of Q

and turning the remaining ones to positive atoms. It is not surprising that the complexity of
solving the DA problem on signed conjunctive queries depends on the complexity of solving
the DA problem for subqueries since one could simulate direct access to such a subquery by
choosing a database where the removed negated atoms are associated with empty relations,
hence, making them virtually useless in the query. However, proving the actual combined
complexity upper bound is not trivial to obtain and necessitates introducing new tools to
handle negated atoms.

As a byproduct, we introduce a new notion of hypergraph width based on elimination
order, the β-hyperorder width, that is hereditary – in the sense that the width of every
subhypergraph does not exceed the width of the original hypergraph – which makes it
particularly well tailored for studying the tractability of negative conjunctive queries. We
show that this notion sits between nest-set width and β-hypertree width [18], but do not
suffer from one important drawback of working with β-hypertree width: our width notion is
based on a decomposition that works for every subhypergraph.

Our method is based on a two-step preprocessing. Given a signed conjunctive query
Q, a database D and an order ≺ on its variables, we start by constructing a circuit which
computes JQKD in a factorised way enjoying interesting syntactical properties. The size of
this circuit depends on the complexity of the order ≺ chosen on the variables of Q. We then
show that, with a second light preprocessing on the circuit itself, we can answer DA tasks
for the lexicographical order induced by ≺ on the circuit in time poly(n)polylog(D) where
n is the number of variables of Q and D is the domain of D. This approach is akin to the
approach used in factorised databases introduced by Olteanu and Závodný [27], a fruitful
approach allowing efficient management of the answer set of a query by working directly on a
factorised representation of the answer set instead of working on the query itself [26, 32, 3, 28].
However, the restrictions that we are considering in this paper are different from the one
used in previous work since we need somehow to account for the variable ordering in the
circuit itself. The syntactic restrictions we use have already been considered in [9] where
they are useful to deal with β-acyclic CNF formulas.

The paper is organised as follows: Section 2 introduces the notations and concepts
necessary to understand the paper. We then present the family of circuits we use to represent
database relations and the DA method for circuits in Section 3. Section 4 presents the
algorithm used to construct a circuit representing JQKD from a join query Q (that is a
conjunctive query without existential quantifiers) and a database D. Upper bounds on
the size of the circuits are given in Section 4.3 using hypergraph decompositions defined
in Section 4.2. Finally Section 5 explicitly states the results we obtain by combining both
techniques together, explains how one can go from join query to conjunctive query by
existentially projecting variables directly in the circuit and makes connections with the
existing literature. We conclude with interesting research directions in Section 6.
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Due to space restriction, full proofs have been omitted from the paper. Proofs of theorems
and lemmas tagged with a star symbol ⋆ can be found in the full version of this paper [10].

2 Preliminaries

Given n ∈ N, we denote by [n] the set {0, . . . , n}. When writing down complexity, we use
the notation poly(n) to denote that the complexity is polynomial in n, polyk(n) to denote
that the complexity is polynomial in n when k is considered a constant (in other words, the
coefficients and the degree of the polynomial may depend on k) and polylog(n) to denote
that the complexity is polynomial in log(n).

Tuples and relations. Let D and X be finite sets. A (named) tuple on domain D and
variables X is a mapping from X to D. We denote by DX the set of all tuples on domain D

and variables X. A relation R on domain D and variables X is a subset of tuples, that is,
R ⊆ DX . Given a tuple τ ∈ DX and Y ⊆ X, we denote by τ |Y the tuple on domain D and
variable Y such that τ |Y (y) = τ(y) for every y ∈ Y . Given a variable x ∈ X and d ∈ D, we
denote by [x← d] the tuple on variables {x} that assigns the value d ∈ D to x. We denote
by ⟨⟩ the empty tuple, that is, the only element of D∅. Given two tuples τ1 ∈ DX1 and
τ2 ∈ DX2 , we say that τ1 and τ2 are compatible, denoted by τ1 ≃ τ2, if τ1|X1∩X2 = τ2|X1∩X2 .
In this case, we write τ1 ▷◁ τ2 the tuple on domain D and variables X1 ∪ X2 defined as
(τ1 ▷◁ τ2)(x) to be τ1(x) if x ∈ X1 and τ2(x) otherwise. If X1 ∩X2 = ∅, we write τ1 × τ2.
The join R1 ▷◁ R2 of R1 and R2, for two relations R1, R2 on domain D and variables X1, X2
respectively, is defined as {τ1 ▷◁ τ2 | τ1 ∈ R1, τ2 ∈ R2, τ1 ≃ τ2}. Observe that if X1 ∩X2 = ∅,
R1 ▷◁ R2 is simply the Cartesian product of R1 and R2. Then, we denote it by R1 ×R2.

Let R ⊆ DX be a relation from a set of variables X to a domain D. We denote σF (R) as
the subset of R where the formula F is true. Throughout the paper, we will assume that
both the domain D and the variable set X are ordered. The order on D will be denoted as
< and the order on X as ≺ and we will often write D = {d1, . . . , dp} with d1 < · · · < dp and
X = {x1, . . . , xn} with x1 ≺ · · · ≺ xn. Given d ∈ D, we denote by rank(d) the number of
elements of D that are smaller or equal to d. Both < and ≺ induce a lexicographical order
≺lex on DX defined as τ ≺lex σ if there exists x ∈ X such that for every y ≺ x, τ(y) = σ(y)
and τ(x) < σ(x). Given an integer k ⩽ #R, we denote by R[k] the kth tuple in R for the
≺lex-order. The following observation will prove useful to design a DA algorithm:

▶ Lemma 1 (⋆). Let τ = R[k] and x = min(var(R)). Then τ(x) = min{d | #σx⩽d(R) ⩾ k}.
Moreover, τ = R′[k′], where R′ = σx=d(R) and k′ = k −#σx<d(R).

Figure 1 gives an intuition of the result presented in Lemma 1 as a visual represention of
the index transformation.

Queries. A positive atom (resp. negative atom) is an expression of R(x) (resp. ¬R(x))
where R is a relation symbol and x a tuple of variables in X. A signed join query Q is a set
of (negative or positive) atoms Q = {R1(x1), . . . , Rp(xp),¬Sp+1(xp+1), . . . ,¬Sm(xm)}. In
this paper, we consider self-join free queries, that is, we assume that two distinct atoms of a
join query have distinct relation symbols. The set of variables of Q is denoted by var(Q), the
set of positive (resp. negative) atoms of Q is denoted by atoms+(Q) (resp. atoms−(Q)). A
positive (resp. negative) join query is a signed join query without negative (resp. positive)
atoms. The size |Q| of Q is defined as

∑m
i=1 |xi|, where |x| denotes the number of variables

in x. A database D for Q is an ordered finite set D called the domain together with a set of
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Figure 1 Representation of the link between k and k′.

relations RD
i ⊆ Dai , SD

j ⊆ Daj such that ai = |xi|. The answers of Q over D is the relation
JQKD ⊆ Dvar(Q) defined as the set of σ ∈ Dvar(Q) such that for every i ⩽ p, σ(xi) ∈ RD

i and
for every p < i ⩽ m, σ(xi) /∈ SD

i . The size |D| of the database D is defined to be the total
number of tuples in it plus the size of its domain, that is, |D|+

∑ℓ
i=1 |Ri|+

∑m
i=ℓ+1 |Sj |. We

follow the definition of [25] about the size of the database. Adding the size of the domain
here is essential since we are dealing with negative atoms. Hence a query may have answers
even when the database is empty, for example, Q = ¬R(x) with RD = ∅ has |D| answers.

A signed conjunctive query Q(Y ) is a join query Q together with Y ⊆ var(Q), called the
free variables of Q and denoted by free(Q). The answers JQ(Y )KD of a conjunctive query Q

over a database D are defined as JQKD|Y , that is, the projection over Y of answers of Q.

Direct Access tasks. Given a query Q, a database instance D on an ordered domain D and
a total order ≺ on the variables of Q, a Direct Access (DA for short) task [12] is the problem
of returning, on input k, the k-th tuple JQKD[k] for the order ≺lex if k < #JQKD and fail
otherwise. We are interested in answering DA tasks using the same setting as [12]: we allow
a precomputation phase during which a data structure is constructed, followed by an access
phase. Our goal is to obtain an algorithm for DA tasks with polynomial precomputation
time and access time that is polylogarithmic time in the size of D.

Hypergraphs and Signed Hypergraphs. A hypergraph H = (V, E) is defined as a set
of vertices V and hyperedges E ⊆ 2V , that is, a hyperedge e ∈ E is a subset of V . A
signed hypergraph H = (V, E+, E−) is defined as a set of vertices V , positive edges E+ ⊆
2V and negative edges E− ⊆ 2V . The signed hypergraph H(Q) = (var(Q), E+, E−) of a
signed conjunctive query Q(Y ) is defined as the signed hypergraph whose vertex set is the
variables of Q and such that E+ = {var(a) | a is a positive atom of Q} and E− = {var(a) |
a is a negative atom of Q}.

A subhypergraph H ′ of H, denoted by H ′ ⊆ H is a hypergraph of the form (V, E′) with
E′ ⊆ E. For S ⊆ V , we denote by H\S the hypergraph (V \S, E′) where E′ = {e\S | e ∈ E}.
Given v ∈ V , we denote by E(v) = {e ∈ E | v ∈ e} the set of edges containing v, by
NH(v) =

⋃
e∈E(v) e the neighbourhood of v in H and by N∗

H(v) = NH(v) \ {v} the open
neighbourhood of v. We will be interested in the following vertex removal operation on
H: given a vertex v of H, we denote by H/v = (V \ {v}, E/v) where E/v is defined as
{e \ {v} | e ∈ E} \ {∅} ∪N∗

H(v), that is, H/v is obtained from H by removing v from every
edge of H and by adding a new edge that contains the open neighbourhood of v.
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Given S ⊆ V and E ⊆ 2V , a covering of S with E is a subset F ⊆ E such that S ⊆
⋃

e∈F e.
The cover number cn(S, E) of S wrt E is defined as the minimal size of a covering of S with
E, that is, cn(S, E) = min{|F | | F is a covering of S with E}. A fractional covering of S

with E is a function c : E → R+ such that for every s ∈ S,
∑

e∈E(s) c(e) ⩾ 1. Observe that a
covering is a fractional covering where c has values in {0, 1}. The fractional cover number
fcn(S, E) of S wrt E is defined as the minimal size of a fractional covering of S with E, that
is, fcn(S, E) = min{

∑
e∈E c(e) | c is a fractional covering of S with E}. Fractional covers

are particularly interesting because of the following theorem by Grohe and Marx:

▶ Theorem 2 ([19]). Let Q be a join query and λ be the fractional cover number of var(Q).
Then for every database D, JQKD has size at most |D|λ.

3 Ordered relational circuits

In this section, we introduce a data structure that can be used to succinctly represent relations.
This data structure is an example of a factorised representation, such as d-representations [28],
but does not need to be structured along a tree, which will allow us to handle more queries,
and especially queries with negative atoms – for example β-acyclic signed conjunctive queries,
a class of queries that do not have polynomial size d-representations [9, Theorem 9].

3.1 Definitions
Relational circuits. A {▷◁, dec}-circuit C on variables X = {x1, . . . , xn} and domain D is a
multi-directed acyclic graph, that is, there may be more than one edge between two nodes u

and v, with one special gate out(C) called the output of C. The circuit is labelled as follows:
every gate of C with no ingoing edge, called an input of C, is labelled by either ⊥ or ⊤;
a gate v labelled by a variable x ∈ X is called a decision gate. We denote x by decvar(v).
Each ingoing edge e of v is labelled by a value d ∈ D and for each d ∈ D, there is at most
one ingoing edge of v labelled by d. This implies that a decision gate has at most |D|
ingoing edges; and
every other gate is labelled by ▷◁.

The set of all the decision gates in a circuit C is denoted by decision(C). Given a gate v

of C, we denote by Cv the subcircuit of C rooted in v to be the circuit whose gates are the
gates reachable from v by following a directed path in C. We define the variable set of v,
denoted by var(v) ⊆ X, to be the set of variables x labelling a decision gate in Cv. The size
|C| of a {▷◁, dec}-circuit is defined to be the number of edges of its underlying DAG. In the
example circuit of Figure 2, the decision gates are represented as containing the variable that
labels them. Considering v to be the leftmost x2 decision gate, we have var(v) = {x2, x3}.

We define the relation rel(v) ⊆ Dvar(v) computed at gate v inductively as follows: if v is
an input labelled by ⊥, then rel(v) = ∅. If v is an input labelled by ⊤, then rel(v) = D∅,
that is, rel(v) is the relation containing only the empty tuple. Otherwise, let v1, . . . , vk be
the inputs of v. If v is a ▷◁-gate, then rel(v) is defined to be rel(v1) ▷◁ . . . ▷◁ rel(vk). If v

is a decision gate labelled by a variable x, rel(v) =
(
[x ← d1] ▷◁ rel(v1) ×D∆(v,v1)) ∪ · · · ∪(

[x ← dk] ▷◁ rel(vk) × D∆(v,vk)) where ei is the incoming edge (vi, v) labelled by di and
∆(v, vi) = var(v) \ ({x} ∪ var(vi)). It is readily verified that rel(v) is a relation on domain
D and variables var(v). The relation computed by C over a set of variables X (assuming
var(C) ⊆ X), denoted by relX(C), is defined to be rel(out(C))×DX\var(out(C)). In Figure 2,
if v is the leftmost x3 decision gate, then rel(v) is the relation where x3 is set to 0 or 1.
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Deciding whether the relation computed by a {▷◁, dec}-circuit is non-empty is NP-complete
by a straightforward reduction to testing non-emptiness of conjunctive queries [14]. Such
circuits are hence of little use to get tractability results. We are therefore more interested in
the following restriction of {▷◁, dec}-circuits where testing non-emptiness and other related
tasks are tractable: a {×, dec}-circuit C is a {▷◁, dec}-circuit such that: (i) for every ▷◁-gate
v of C with inputs v1, . . . , vk and i < j ⩽ k, it holds that var(vi) ∩ var(vj) = ∅, (ii) for every
decision gate v of C labelled by x with inputs v1, . . . , vk and i ⩽ k, it holds that x /∈ var(vi).
An example of such a circuit is presented in Figure 2.

Let X be a set of variables ordered by ≺. A {×, dec}-circuit C on domain D and
variables X is a ≺-ordered {×, dec}-circuit if for every decision gate v of C labelled with
x ∈ X, it holds that for every y ∈ var(v) \ {x}, x ≺ y. We simply say that a circuit C is
an ordered {×, dec}-circuit if there exists some order ≺ on X such that C is a ≺-ordered
{×, dec}-circuit. Observe that if v is a decision-gate in an ordered {×, dec}-circuit, then
rel(v) =

(
[x← d1]× rel(v1)×D∆(v,v1))⊎· · ·⊎(

[x← dk]× rel(vk)×D∆(v,vk)) since x /∈ var(vi)
by definition and that these unions are disjoint because of the value assigned to x. The circuit
presented in Figure 2 is an ordered {×, dec}-circuit for the order induced by the variables
x1, x2, x3.

0

0 1

0 1 2

1

0 1

0 1 2

2

2

0 1 2

𝑥1

𝑥2

𝑥3

⊤ ⊤ ⊥

𝑥2

𝑥3

⊥ ⊤ ⊤

×

𝑥2

⊤ ⊥ ⊤

(a) ordered {×, dec}-circuit.

x1 x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 1
1 0 2
1 1 1
1 1 2
1 2 0
1 2 1
2 0 1
2 0 2
2 2 1
2 2 2

(b) relation computed by the circuit.

Figure 2 Example of a small ordered {×, dec}-circuit computing a simple relation.

Frontiers. Let X = {x1, . . . , xn} with x1 ≺ · · · ≺ xn. A prefix assignment of size p is an
assignment of variables τ ∈ D{x1,...,xp} with p ⩽ n. When answering DA tasks, we will need
to be able to find a representation of the tuples in rel(C) that agree with τ . To do that, we
introduce the notion of frontier. Given τ a prefix assignment, the frontier fτ of τ in C is
defined algorithmically as follows:
1. Instantiate a set F with out(C), the root of the circuit.
2. As long as F is not stable, do:

if v ∈ F is a ×-gate, F := (F \ {v}) ∪
⋃

w∈input(v) w,
if v ∈ F is a decision gate and the variable x labelling v is assigned in the prefix
(x ∈ {x1, . . . , xp}), F := (F \ {v}) ∪ {v′}} where v′ is the node connected to v by the
edge (v′, v) labelled by τ(x).

3. If F contains a ⊥-gate, then fτ = {⊥}, otherwise fτ = F .
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13:8 Direct Access for Conjunctive Queries with Negations

Frontiers are particularly useful because they can be efficiently computed and the relation
they represent is essentially the tuples of the relation represented by C that agree with τ . We
denote by var(fτ ) =

⋃
v∈fτ

var(v) the set of variables appearing below a gate in the frontier and
by rel(fτ ) =×v∈fτ

rel(v). Given a prefix assignment τ of variables {x1, . . . , xp} and a relation
R, we slightly abuse notation by denoting στ (R) the relation σx1=τ(x1)∧···∧xp=τ(xp)(R). We
can prove by induction on p that:

▶ Lemma 3 (⋆). Let τ be a prefix assignment on variables x1, . . . , xp. Then fτ can be
computed in O(|X|) and στ (relX(C)) = {τ} × rel(fτ )×D{xp+1,...,xn}\var(fτ ).

3.2 Direct Access for ordered {×, dec}-circuits
The main result of this section is an algorithm that allows for efficient solving of DA tasks
for an ordered {×, dec}-circuit on domain D and variables X. More precisely, we prove:

▶ Theorem 4. Let (X,≺) be a finite ordered set and C a ≺-ordered {×, dec}-circuit on
variables X and domain D. We can answer direct access tasks on relX(C) ordered by ≺lex with
precomputation time O(|C| · poly(|X|) · polylog|D|) and access time O(poly(|X|) · polylog|D|).

Precomputation. In this section, we assume that C is a ≺-ordered {×, dec}-circuit on
variables X. The count label of C, denoted by nrelC , is the mapping from decision(C)×D

to N such that nrelC(v, d) = #σx⩽d(rel(v)), that is, nrelC(v, d) is the number of tuples from
rel(v) that assign a value on x smaller or equal than d. The precomputation step aims to
compute nrelC so that we can access nrelC(v, d) quickly.

Our algorithm performs a bottom-up computation of the number of satisfying tuples in
rel(v) for every gate v of C. If rel(v) is a decision-gate on variable x, we have by definition:

|rel(v)| =
∑

w∈input(v)

|rel(w)| × |D||∆(v,w)| where ∆(v, w) = var(v) \ ({x} ∪ var(w)). (1)

Similarly, nrelC(v, d) can be computed by restricting the previous relation on the inputs
of v that sets x to a value d′ ⩽ d, that is:

nrelC(v, d) =
∑

w∈input(v),dw⩽d

|rel(w)| × |D||∆(v,w)| where dw is the label of edge (v, w). (2)

Finally observe that if v is a ×-gate, we clearly have |rel(v)| =
∏

w∈input(v) |rel(w)| and for
every gate v, var(v) =

⋃
w∈input(v) var(w).

Hence, using a dynamic programming algorithm that follows the structure of the circuit
in a bottom-up way, we can compute tables Trel, Tvar and TnrelC such that Trel[v] = |rel(v)|,
Tvar[v] = var(v) and TnrelC [v, d] = nrelC(v, d) for every gate v and value d ∈ D, allowing us to
prove the following (a full description of the dynamic programming algorithm can be found
in the full version):

▶ Lemma 5 (⋆). Given a ≺-ordered {×, dec}-circuit C, we can compute a data structure in
time O(|C| · poly|X|polylog|D|) that allows us to access var(v), |rel(v)| for every gate v of C

in time O(1) and nrelC(v, d) for every decision gate v and d ∈ D in time O(polylog(|D|)).

An example of what the nrelC values might look like in practice can be seen at the left of
the decision gates in Figure 3.
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Direct access. We now show how the precomputation from Lemma 5 allows us to get direct
access for ordered {×, dec}-circuits. We first show how one can solve a DA task for any
relation as long as we have access to very simple counting oracles. We then show that one
can quickly simulate these oracle calls in ordered {×, dec}-circuits using precomputed values.

We start by illustrating our algorithm on an example.

▶ Example 6. Consider Figure 3, which represents two different direct access tasks on a
circuit where nrelC has been precomputed and which is represented as lists beside each node.

We start by explaining how we solve direct access for k = 7, depicted in Figure 3a. In
this paragraph, let τ7 be the 7-th solution of the circuit, that is, {x1 7→ 1, x2 7→ 1, x3 7→ 1}
(see Figure 2). Our algorithm iteratively finds the values of τ7 on x1, x2 and x3. It starts
by finding the value τ7(x1) from the decision node at the root of the circuit. Using nrelC ,
one can see that the smallest value one can assign to x1 to have at least 7 solutions is 1.
By Lemma 1, we know that τ7(x1) = 1. The algorithm then follows the edge labelled by 1
to find a subcircuit computing every solution of the circuit when x1 is fixed to 1. We can
now repeat the method to find τ7(x2). However, one has to be careful about the index. By
setting x1 to 1, we have discarded every solution of the circuit where x1 < 1, that is, every
solution where x1 ⩽ 0. From nrelC , we know that there are 4 such solutions. Hence, when
repeating the method, we now look for the third (7− 4 = 3) solution of the next gate. The
same reasoning yields that τ7(x2) = 1 and that we discard 2 solutions. Applying this method
once more yields the desired value for x3.

The algorithm is a bit more complex when encountering ×-gates. We illustrate it in
Figure 3b, where we solve direct access for k = 13. Again, we denote by τ13 the 13-th solution
of the circuit. We find that τ13(x1) = 2 exactly as before. We know that setting x1 to 2
discards 10 solutions. Hence, we need to find the 3-rd solution of the circuit rooted in the
×-gate. To do that, we first follow every edge going in the gate to find only decision-gates.
By 3, we know that the solution of the ×-gate are the Cartesian product of the solutions of
both decision-gates. Now to find the value τ13(x2), we do the same reasoning as before but
one has to be careful: nrelC only contains the number of solutions of the subcircuit but each
one of these solutions can be extended to a full solution of the circuit by completing it with
the value of x3. We now from nrelC on the decision-gate labelled by x3 that there are 2 such
solutions. Hence, each solution of the decision-gate labelled by x2 can be extended into 2
full solutions. Hence, we know that there are 2 solutions where x2 = 0 and 4 solutions where
x2 = 2. Hence, similarly as before, we can deduce that τ13(x2) = 2. We find the value of x3
similarly as before.

▶ Lemma 7 (⋆). Assume that we are given a relation R ⊆ DX with X = {x1, . . . , xn} and
an oracle such that for every prefix assignment τ of size p it returns #στ∧xp+1⩽d(R). Then,
for any k, we can compute R[k] using O(n · polylog|D|) oracle calls, where n = |X|.

Proof sketch. Let τ = R[k]. We apply Lemma 1 iteratively to find τ(xi) for each i = 1, . . . , n.
By Lemma 1, we know that τ(x1) = d where d is the smallest value in D such that
#σx1⩽d(R) ⩾ k. Now one can easily find d using a binary search that makes O(log|D|)
oracle calls. Now, finding τ(x2) boils down to find R′[k′] where the k′ = k − #σx1<d(R)
and R′ = σx1=d(R) which can be done similarly using oracle calls for R′, which could be
simulated by oracle calls to R, and so on for each value τ(xi). ◀

Now, it remains to show that oracle calls as in Lemma 7 can be efficiently solved on
ordered {×, dec}-circuits after preprocessing.
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Figure 3 Examples of paths followed in the circuit for different direct access tasks. Precomputed
values of nrelC for decision gates are represented as lists at the left of each gate. The current index
of the tuple we are searching for is indicated next to the reached nodes.

▶ Lemma 8 (⋆). For a given prefix assignment τ of size p and d ∈ D, assuming that |rel(v)|,
nrelC(v, d) and var(v) have been precomputed for every gate v in C, #στ∧xp+1⩽d(rel(C)) can
be computed in time O(poly(n)polylog|D|), where n = |X|.

Proof sketch. To ease notation, let x = xp+1. We first compute fτ in O(n) with Lemma 3.
Now, στ (rel(C) = D∆ × rel(fτ )× {τ} for ∆ = {xp+1, . . . , xn} \ var(fτ ). Now, either x ∈ ∆
and we have στ∧x⩽d(rel(C)) = D∆\{x} × σx⩽d(D{x}) × rel(fτ ) × {τ} or xp+1 /∈ ∆ and we
can show that there exists a decision gate v in fτ such that decvar(v) = x. In this case,
στ∧x⩽d(rel(C)) = D∆ × σx⩽d(rel(v))× rel(fτ \ {v})×{τ}. In any case, we can compute each
part of the Cartesian product from precomputed values: |rel(fτ )| =

∏
w∈fτ

|rel(w)|, |D∆| =
|D||∆|, #σx⩽d(D{x}) = rank(d) and #σx⩽d(rel(v)) = nrelC(v, d), hence #στ∧xp+1⩽d(rel(C))
is computed with at most n multiplications of integers of size at most n · polylog(|D|). ◀

Theorem 4 now follows from Lemmas 5, 7, and 8. Indeed, after preprocessing the circuit
using Lemma 8, one can use the procedure described in Lemma 7 to solve direct access task
using oracle calls, that can be answered efficiently as shown in Lemma 8.

4 From join queries to ordered {×, dec}-circuits

In this section, we present a simple top-down algorithm such that on input Q, ≺ and D, it
returns a ≻-ordered {×, dec}-circuit C such that rel(C) = Q(D), where Q is a join query, ≺
an order on its variables and D a database. This algorithm is an adaptation of exhaustive
DPLL [31], an algorithm that has been originally devised to solve the #SAT problem, but
Huang and Darwiche [20] have shown that the trace of this algorithm implicitly builds a
Boolean circuit, corresponding to the {×, dec}-circuits on domain {0, 1}. We show how
to adapt it in the framework of signed join queries. The algorithm itself is presented in
Section 4.1. We study the complexity of this algorithm in Section 4.3 depending on the
structure of Q and ≺, using hypergraph structural parameters introduced in Section 4.2.
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4.1 Exhaustive DPLL for signed join queries
The main idea of DPLL for signed join queries is the following: given an order ≺ on the
variables of a join query Q and a database D, we construct a ≻-ordered {×, dec}-circuit
(where x ≻ y iff y ≺ x)1 computing JQKD by successively testing the variables of Q with
decision gates, from the highest to the lowest wrt ≺. At its simplest form, the algorithm
picks the highest variable x of Q wrt ≺, creates a new decision gate v on x and then, for
every value d ∈ D, sets x to d and recursively computes a gate vd computing the subset of
JQKD where x = d. We then add vd as an input of v and proceed with the next value d′ ∈ D.
This approach is however not enough to get interesting tractability results. We hence add
the following optimisations. First, we keep a cache of already computed queries so that if we
recursively call the algorithm twice on the same input, we can directly return the previously
constructed gate. Moreover, if we detect that the answers of Q are the Cartesian product
of two or more subqueries Q1, . . . , Qk, then we create a new ×-gate v, recursively call the
algorithm on each component Qi to construct a gate wi and plug each wi to v. Detecting
such cases is mainly done syntactically, by checking whether the query can be partitioned
into subqueries having disjoint variables. However, this approach would fail to give good
complexity bounds in the presence of negative atoms. To achieve the best complexity, we
also remove from Q every negative atom as soon as it is satisfied by the current partial
assignment. This allows us to discover more cases where the query has connected components.
The theoretical performance of the previously described algorithm may however vary if one
is not careful in the way the recursive calls are actually made. We hence give a more formal
presentation of the algorithm, whose pseudocode is presented in Algorithm 1.

Algorithm 1 An algorithm to compute a ≻-ordered {×, dec}-circuit representing JQKD.

1: procedure DPLL(Q, τ, D,≺)
2: if (Q, τ) is in cache then return cache(Q, τ)
3: if Q is inconsistent with τ then return ⊥-gate
4: if τ assigns every variable in Q then return ⊤-gate
5: x← max≺ var(Q)
6: for d ∈ D do
7: τ ′ ← τ × [x← d]
8: if Q is inconsistent with τ ′ then vd ← ⊥-gate
9: else

10: Let Q1, . . . , Qk be the τ ′-connected components of Q ⇓ τ ′

11: for i = 1 to k do wi ← DPLL(Qi, τi, D,≺) where τi = τ ′|var(Qi)
12: vd ← new ×-gate with inputs w1, . . . , wk

13: end if
14: end for
15: v ← new dec-gate connected to vd by a d-labelled edge for every d ∈ D

16: cache(Q, τ)← v

17: return v

18: end procedure

1 While one could easily change the algorithm so that it produces a ≺-ordered {×, dec}-circuit instead,
the structural parameters we will be considering for the tractability of DPLL in Section 4.2 are more
naturally defined on ≺. We choose to present DPLL this way to ease the proofs later.
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A few notations are used in Algorithm 1. Given a database D on domain D and a tuple
τ ∈ DY , we denote by JQKD

τ the set of tuples σ ∈ Dvar(Q)\Y that are answers of Q when
extended with τ . More formally, σ ∈ JQKD

τ if and only if (σ × τ)|var(Q) ∈ JQKD. Given an
atom R(x), a database D and a tuple τ ∈ DY , we say that R(x) is inconsistent with τ wrt
D (or simply inconsistent with τ when D is clear from context) if there is no σ ∈ RD such
that τ ≃ σ. Observe that if Q contains a positive atom R(x) that is inconsistent with τ then
JQKD

τ = ∅. Similarly, if Q contains a negative atom ¬R(x) such that τ assigns every variable
of x and τ(x) ∈ R, then JQKD

τ = ∅. If one of these cases arises, we say that Q is inconsistent
with τ . Now observe that if ¬R(x) is a negative atom of Q such that R(x) is inconsistent
with τ , then JQKD

τ = JQ′KD
τ ×DW where Q′ = Q \ {¬R(x)} and W = var(Q) \ var(Q′) (some

variables of Q may only appear in the atom ¬R(x)). This motivates the following definition:
the simplification of Q wrt to τ and D, denoted by Q ⇓ ⟨τ, D⟩ or simply by Q ⇓ τ when D
is clear from context, is defined to be the subquery of Q obtained by removing from Q every
negative atom ¬R(x) of Q such that R(x) is inconsistent with τ . From what precedes, we
clearly have JQKD

τ = JQ′KD
τ ×DW where Q′ = Q ⇓ ⟨τ, D⟩ and W = var(Q) \ var(Q′).

For a tuple τ ∈ DY assigning a subset Y of variables of Q, the τ -intersection graph IQ
τ

of Q is the graph whose vertices are the atoms of Q having at least one variable not in Y

and there is an edge between two atoms a, b of Q if a and b share a variable that is not in
Y . Observe that IQ

τ does not depend on the values of τ but only on the variables it sets.
Hence it can be computed in polynomial time in the size of Q only. A connected component
C of IQ

τ naturally induces a subquery QC of Q and is called a τ -connected component. Q is
partitioned into its τ -connected components and the atoms whose variables are completely
set by τ . More precisely, Q =

⋃
C∈CC QC ∪ Q′ where CC are the connected component of

IQ
τ and Q′ contains every atom a of Q on variables x such that x only has variables in Y .

Observe that if τ is an answer of Q′, then JQKD
τ =×C∈CC JQCKD

τC
where τC = τ |var(QC ) since

if C1 and C2 are two distinct τ -connected components of IQ
τ , then var(QC1) ∩ var(QC2) ⊆ Y .

▶ Example 9. We illustrate the previous definitions on the signed join query Q(x1, . . . , x5)
defined as ¬R(x1, . . . , x5), S(x1, x2, x3), T (x1, x4, x5) and database D on domain {0, 1} with
RD = {(1, 1, 1, 1, 1)}. Let τ = [x1 ← 0]. The τ -intersection graph of Q is a path where
¬R(x1, . . . , x5) is connected to S(x1, x2, x3) and T (x1, x4, x5). There is no edge between
S(x1, x2, x3) and T (x1, x4, x5) since x1 is their only common variable and it is assigned by
τ . Hence, Q has one τ -connected component containing every atom of Q. Now, Q ⇓ τ =
S(x1, x2, x3), T (x1, x4, x5) since R(0, x2, . . . , x5) is inconsistent over D and the τ -intersection
graph of Q ⇓ τ consists in two isolated vertices S(x1, x2, x3) and T (x1, x4, x5). Hence Q ⇓ τ

has two τ -connected components. This example also illustrates the role of simplification for
discovering Cartesian products.

The correctness can be proven by induction: a recursive call DPLL(Q, τ, D,≺) returns a
gate computing JQKD

τ . This is formalised in the following theorem. We analyse the complexity
of DPLL in Section 4.3.

▶ Theorem 10 (⋆). Let Q be a signed join query, D a database and ≺ an order on var(Q),
then DPLL(Q, ⟨⟩, D,≺) constructs a ≻-ordered {×, dec}-circuit C and returns a gate v of C

such that rel(v) = JQKD.

4.2 Hyperorder width
In this section, we introduce the notions of width based on elimination orders rather than
tree decompositions that are relevant to pinpoint the complexity of the DPLL procedure.
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Order based widths (how(·), fhow(·)). A hypergraph H = (V, E) and an order ≺ such that
V = {v1, . . . , vn} with v1 ≺ · · · ≺ vn induces a series of hypergraphs defined as H≺

1 , . . . , H≺
n+1

as H≺
1 = H and H≺

i+1 = H≺
i /vi. The hyperorder width how(H,≺) of ≺ wrt H is defined as

maxi⩽n cn(NH≺
i

(vi), E). The hyperorder width how(H) of H is defined as the best possible
width using any elimination order, that is, how(H) = min≺ how(H,≺). We similarly define
the fractional hyperorder width fhow(H,≺) of ≺ wrt H as maxi⩽n fcn(NH≺

i
(vi), E) and the

fractional hyperorder width fhow(H) of H as fhow(H) = min≺ fhow(H,≺).
It has already been observed many times ([23, Appendix C] or [16, 17, 24]) that how(H)

and fhow(H) are respectively equal to the generalised hypertree width and the fractional
hypertree width of H and that there is a natural correspondence between a tree decomposition
and an elimination order having the same width. However, to be able to express our
tractability results as function of the order, it is more practical to define the width of
orders instead of hypertree decompositions. In [7, Definition 9], fhow(H,≺) is called the
incompatibility number, though it is not formally defined on hypergraphs but directly on
conjunctive queries. The case k = 1, which corresponds to the α-acyclicity of the underlying
hypergraph, has also been previously called an order without disruptive trio [12]. However,
these notions are specifically used for the problem of direct access in conjunctive queries while
the characterisation of hypergraph measures in terms of elimination orders of hypergraphs
predates by several years this terminology (see [5] for a survey). We then choose a terminology
closer to the usual terminology for hypergraph decompositions.

Hereditary order based widths (β-how(·), β-fhow(·)). Hypertree width is not hereditary.
That is, the (fractional) hypertree width of a subhypergraph can be much bigger than
the (fractional) hypertree width of the hypergraph itself. It makes it not well suited to
discover tractable classes for signed join queries. Indeed, if a query Q contains a negative
atom ¬R(x) and if RD is empty in the database D, then JQKD is equal to JQ′KD, where
Q′ = Q \ {¬R(x)}. Hence if some aggregation problem for a fixed self-join free query Q on
an input database D can be solved in O(poly(|D|)) for any database D, it has to be tractable
for every Q′ obtained by removing a subset of the negative atoms from Q. This motivates the
following definitions: for a hypergraph H = (V, E) and an order ≺ on V , the β-hyperorder
width β-how(H,≺) of ≺ wrt to H is defined as maxH′⊆H how(H ′,≺). The β-hyperorder
width β-how(H) of H is defined as the width of the best possible elimination order, that is,
β-how(H) = min≺ β-how(H,≺). We define similarly the β-fractional hyperorder width of
an order ≺ and of an hypergraph – β-fhow(H,≺) and β-fhow(H) – by replacing how(·) by
fhow(·) in the definitions.

Comparison with existing measures. The fact that fractional hypertree width is not
hereditary has traditionally been worked around by taking the largest width over every
subhypergraph. In other words, the β-fractional hypertree width β-fhtw(H) of H is defined
as β-fhtw(H) = maxH′⊆H fhtw(H ′). The β-hypertree width β-htw(H) is defined similarly. If
one plugs the ordered characterisation of fhtw(H ′) in this definition, one can observe that
β-fhtw(H) = maxH′⊆H min≺ fhow(H ′,≺). Hence, the difference between β-fhtw(H) and
β-fhow(H) boils down to inverting the min and the max in the definition. It directly gives
that β-fhtw(H) ⩽ β-fhow(H) and β-htw(H) ⩽ β-how(H) for every H. The main advantage
of the β-fractional hyperorder width is that it comes with a natural notion of decomposition
– the best elimination order ≺ – that can be used algorithmically. This is not given by the
definition of β-fhtw(·) and has yet to be found.
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The only exception is the case where β-fhtw(H) = 1, known as β-acyclicity, where an
order-based characterisation is known and has been used to show the tractability of many
problems such as SAT [29], #SAT or #CQ for β-acyclic instances [9, 6]. The elimination
order is based on the notion of nest points. In a hypergraph H = (V, E), a nest point is
a vertex v ∈ V such that E(v) is ordered by inclusion, that is, E(v) = {e1, . . . , ep} with
e1 ⊆ · · · ⊆ ep. A β-elimination order (v1, . . . , vn) for H is an ordering of V such that for
every i ⩽ n, vi is a nest point of H \ {v1, . . . , vi−1}. A closer inspection of the definition
of β-elimination order ≺ shows that β-fhow(H,≺) = β-how(H,≺) = 1, showing that it
corresponds to β-acyclicity. We can actually prove a more general result: the notion of
β-acyclicity has been recently generalised by Lanzinger in [25] using a notion called nest sets.
A set of vertices S ⊆ V is a nest set of H if {e \ S | e ∈ E, e∩ S ̸= ∅} is ordered by inclusion.
A nest set elimination order is a list Π = (S1, . . . , Sp) such that:

⋃p
i=1 Si = 1, Si ∩ Sj = ∅

and Si is a nest set of H \
⋃

j<i Sj .
The width of a nest set elimination is nsw(H, Π) = maxi |Si| and the nest set width

nsw(H) of H is defined to be the smallest possible width of a nest set elimination order of H .
It turns out that our notion of width generalises the notion of nest set width, that is, we have
β-how(H) ⩽ nsw(H). More particularly, any order ≺ obtained from a nest set elimination
order Π = (S1, . . . , Sp) by ordering each Si arbitrarily verifies nsw(H, Π) ⩾ β-how(H,≺).

We summarise the above discussion in the following theorem:

▶ Theorem 11 (⋆). For every hypergraph H = (V, E), we have: β-htw(H) ⩽ β-how(H) ⩽
nsw(H). In particular, H is β-acyclic iff β-how(H) = 1.

The goal of this paper is not to give a thorough analysis of β-fractional hyperorder width
so we leave for future research several questions related to it: what is the complexity of
computing the β-fractional hyperorder width of a hypergraph, how does it compare with other
widths such as (incidence) treewidth, (incidence) cliquewidth, MIM-width or point-width [11].
For these measures of width, #SAT, a problem close to computing the number of answers
in signed join queries, is known to be tractable (see [9] for a survey). We leave open the
most fundamental question of comparing the respective powers of β-fhtw(·) and β-fhow(·).
We also refer the interested reader to the full version where we discuss why the seemingly
natural notion of β-hyperorder width has not appeared earlier in the literature.

Signed hyperorder width. In the case of signed join queries, one can deal with positive
and negative atoms differently, which is not reflected by the definition of β-fhow(·). We
generalise these widths to signed hypergraphs by taking subhypergraphs only on the negative
part, generalising a notion of acyclicity introduced by Brault-Baron in [4] that mixes β-
and α-acyclicities for signed hypergraphs. Let H = (V, E+, E−) be a signed hypergraph.
Given an order ≺ on V , the signed hyperorder width show(H,≺) of ≺ wrt H is defined as
show(H,≺) = maxE′⊆E− how((V, E+ ∪ E′),≺). The signed hyperorder width show(H) of H

is defined as show(H) = min≺ show((H,≺). Fractional version of these widths could easily
be defined but will not be needed in this paper. It is clear from the definition that if E+ = ∅
then show(H,≺) = β-how(H,≺) and if E− = ∅, then show(H,≺) = how(H,≺).

4.3 Complexity of exhaustive DPLL
The complexity of DPLL on a conjunctive query Q and order ≺ can be bounded in terms of
the hyperorder width of H(Q) wrt ≺:
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▶ Theorem 12. Let Q be a signed join query, D a database over domain D and ≺ an
order on var(Q). Then DPLL(Q, ⟨⟩, D,≺) produces a ≻-ordered {×, dec}-circuit C of size
O(polyk(|Q|)|D|k+1) in time O(polyk(|Q|)|D|k+1polylog|D|) such that rel(C) = JQKD where
k = fhow(H(Q),≺) if Q is positive and k = show(H(Q),≺) otherwise.

A full proof of Theorem 12 can be found in the full version. The proof is technical since
there is nothing connecting the structure of the hypergraph of Q and the runtime of DPLL.
Due to space constraints, we only give a short overview of the proof, trying to stress how
both notions connect.

In this section, we fix a signed join query Q that has exactly one ⟨⟩-component (the case
where Q has many ⟨⟩-component can be easily dealt with by constructing the Cartesian
product of each ⟨⟩-component of Q), a database D and an order ≺ on var(Q) = {x1, . . . , xn}
where x1 ≺ · · · ≺ xn. We let D be the domain of D, n be the number of variables of Q and
m be the number of atoms of Q. To ease notation, we will write X instead of var(Q). For
i ⩽ n, we denote {x1, . . . , xi} by X⪯i. Similarly, X≺i = X⪯i \ {xi}, X≻i = var(Q) \X⪯i and
X⪰i = var(Q) \X≺i. Finally, we let RD

Q be the set of (K, σ) such that DPLL(Q, ⟨⟩, D,≺)
makes at least one recursive call to DPLL(K, σ, D,≺). The first thing to observe, is that
thanks to the usage of a cache, the complexity of DPLL can naturally be stated as a function
of |RD

Q |:

▶ Lemma 13 (⋆). DPLL(Q, ⟨⟩, D,≺) produces a circuit of size at most O(|RD
Q |·|D|·poly(|Q|))

in time O(|RD
Q | · poly(|Q|) · |D|polylog|D|).

Hence to prove Theorem 12, one only needs to bound the size of RD
Q . To do that, we

characterise the elements (K, σ) ∈ RD
Q in terms of hypergraph structure. The key notion

we need is the notion of x-components, a definition akin to the one used in [9] to compile
β-acyclic CNF formulas. Let Q′ ⊆ Q be a subquery of Q and x, y two variables of Q′ such
that y ≺ x. An x-path to y in Q′ is a list x0, a0, . . . , xp where ai ∈ atoms(Q′) is an atom
of Q′ on variables xi, xi is a variable of xi, x0 = x, xp = y and xi ⪯ x for every i ⩽ p.
Intuitively, it maps to a path in the hypergraph of Q′ that starts from x and is only allowed
to use vertices smaller than x. The x-component of Q′ is the set of atoms a of Q′ such that
there exists an x-path to a variable y of a in Q′.

It turns out that the recursive calls of DPLL are x-components of some Q′ ⊆ Q and
x ∈ X where Q′ is obtained from Q by removing negative atoms. Intuitively, these removed
atoms are the ones that cannot be satisfied anymore by the current assignment of variables.

▶ Lemma 14 (⋆). Let (K, σ) ∈ RD
Q and let x be the biggest variable of K not assigned by σ.

There exists τ a partial assignment of X≻x such that τ |var(K) = σ and K is the x-component
of Q ⇓ τ .

Moreover, x-components are connected to the width notions from Section 4.2 as follows:

▶ Lemma 15 (⋆). Let Q be a signed join query on variables X = {x1, . . . , xn}, xi a variable
of Q and Ki its xi-component. We let H be the hypergraph of Q, H1 = H and Hj+1 = Hj/xj .
We have Nxi

(Hi) = var(Ki) ∩X⪰xi
.

Intuitively, Lemma 15 allows us to conclude that the variables from X≻x of an x-component
in a hypergraph H admit a fractional cover of value at most k where k = fhow(H,≺). Now
we illustrate how one can use it to get a bound on RD

Q . We start with the case of positive
conjunctive query. Let (K, σ) ∈ RD

Q , σ. By Lemma 14 that there exists τ ⊃ σ such that K

is the x-component of Q ⇓ τ , which is equal to Q in the case of positive conjunctive query.
Moreover, τ must be compatible with every atom of Q, otherwise DPLL would have returned
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⊥ already. In other words, τ satisfies every atom from the x-component of Q restricted
to X≻x. But these atoms have a fractional cover of value at most k, hence by Theorem 2,
there are at most |D|k different τ for each x-component. Since there are at most n distinct
x-component, a bound on RD

Q follows.
We can have a similar bound for the signed case but now Q ⇓ τ is not Q anymore since

some negative atoms may have been removed from Q because they are incompatible with τ .
However, we know that the hypergraph of Q ⇓ τ is obtained by removing negative atoms of
Q, hence we know that the variables from X≻x of any x-component of Q ⇓ τ are covered by
at most k atoms. Moreover, Q ⇓ τ only contains atoms that are compatible with τ . Hence
by Theorem 2 again, we can show that for a given K, there are at most |D|k distinct τ

such that (K, τ) ∈ RD
Q . Moreover, we can show that the possible K can be characterised by

looking at the x-component of Q ⇓ τ for every τ that is a solution of the join of at most k

atoms projected on X≻x which allows us to derive an mk+1|D|k bounds on RD
Q in this case.

To wrap up, we can prove the following bounds on RD
Q :

▶ Lemma 16 (⋆). If Q is a positive join query with m atoms and n variables, |RD
Q | ⩽ n|D|k

where k = fhow(H(Q),≺). Otherwise |RD
Q | ⩽ nmk+1|D|k where k = show(H(Q),≺).

Theorem 12 is a direct corollary of Lemmas 13 and 16. One may wonder why we do not
use fractional width when Q contains negative atoms. The proof of Lemma 16 breaks in this
case when we try to bound the number, for a given x, of x-component K that can appear in
recursive calls. To prove Lemma 16, we bound it by taking at subset of at most k atoms of
Q. To do it with fractional cover, one would need to consider every combination of atoms of
Q having fractional cover at most k which we did not manage to bound by a polynomial in
Q. We therefore leave this question open for future research but observe that it would give a
complexity of at most O(2m|D|k+1polylog|D|) which is polynomial wrt data complexity.

5 Tractability results for signed join and conjunctive queries

Combining the algorithm for DA on ordered circuits from Section 3 with the algorithm of
Section 4 gives tractability results on the complexity of direct access for signed join queries:

▶ Theorem 17 (⋆). Given a signed join query Q, an order ≺ on var(Q) and a database
D on domain D, we can solve the direct access problem for ≺lex with precomputation
O(|D|k+1polylog|D| · polyk(|Q|)) and access time O(poly(n) · polylog|D|) where n = |var(Q)|
where k = fhtw(H(Q),≻) if Q is positive and k = show(H(Q),≻) otherwise.

Negative join queries and #SAT. Theorem 17 generalises many tractability results from
the literature. First of all, our result can directly be applied to #SAT, the problem of
counting the number of satisfying assignment of a CNF formula. A CNF formula F with
m clauses can directly be transformed into a negative join query QF with m atoms having
the same hypergraph and into a database DF on domain {0, 1} and of size at most m such
that JQF KDF is the set of satisfying assignments of F . Indeed, a clause can be seen as the
negation of a relation having exactly one tuple. For example, x ∨ y ∨ ¬z can be seen as
¬R(x, y, z) where R contains the tuple (0, 0, 1). Hence, Theorem 17 generalises both [9] and
[6] by providing a compilation algorithm for β-acyclic queries to any domain size and to
the more general measure of β-hyperorder width. It also shows that not only counting is
tractable but also the more general DA tasks. Theorem 17 also generalises the results of [25]
which shows the tractability of the evaluation of negative join queries with bounded nest set
width. Since a negative join query with nest set width k has β-hyperorder width at most
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Figure 4 Landscape of hypergraph measures and known inclusions (depicted as an arrow) with
tractability results for direct access on positive and negative join queries (PJQ/NJQ) and #SAT on
CNF formulas. Here n is the number of variables, D the database, D the domain ({0, 1} for #SAT),
m the number of atoms/clauses and k the width measure (k = 1 for α- and β-acyclicity).

k by Theorem 11, Theorem 17 implies that DA is tractable for the class of queries with
bounded nest set width. In particular, counting the number of answers is tractable for this
class, a question left open in [25].

Figure 4 summarises our contributions for join queries with negations and locates them in
the landscape of known tractability results. Even if our result applies to signed conjunctive
query, we summarise our contribution only for negative join queries and positive join queries
since it allows to compare hypergraph measures (where tractability of signed queries is stated
using signed hypergraphs parameters). The stated complexity are given assuming that a
decomposition is provided in the input. While the complexity of computing the β-fractional
hyperorder width is open, we observe that for nest set width, this decomposition could also
be computed in FPT time in the size of the hypergraph [25]. In particular, it gives the
following:

▶ Theorem 18. Computing #JQKD can be computed in polynomial time when parametrized
by nest-set width.

Despite the fact that computing an optimal nest-set width elimination order is FPT,
Theorem 18 only gives an XP algorithm for #SAT and not an FPT algorithm since the
complexity of DPLL has a O(mk) dependency where m is the number of atoms.

Direct access for positive conjunctive queries. Theorem 17 allows to recover the tractability
of DA for positive join queries with bounded fractional hypertree width proven in [12, 7].
Indeed, given an order ≺ on the vertices of a hypergraph, [7] introduces the notion of
incompatibility number of ≺ which corresponds exactly to its fractional hyperorder width.
Hence Theorem 17 implies the same tractability results for positive join query as [7, Theorem
10]. The complexity bounds from this paper are however better than ours and proven optimal
since the preprocessing is of the form polyk(Q)|D|k where we have polyk(Q)|D|k+1. We
nevertheless believe that with a more careful analysis of the implementation of Algorithm 1,
we could match this upper bound although this is not the focus of this paper. Another strong
point of [12] (and also [8, Theorem 39] which is the arXiv version of [7]) is that it handles
conjunctive queries, that is, join queries with projection which is not covered by Theorem 17.
We demonstrate the versatility of the circuit-based approach by showing how one can also
handle quantifiers directly on the circuit.

ICDT 2024
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▶ Theorem 19 (⋆). Let C be a ≺-order circuit on domain D, variables X = {x1, . . . , xn}
such that x1 ≺ · · · ≺ xn and j ⩽ n. One can compute in time O(|C| · poly(n) · polylog(|D|))
a circuit C ′ of size at most |C| such that rel(C ′) = rel(C)|{x1,...,xj}.

Now we can use Theorem 19 to handle conjunctive queries by first using Theorem 12 on
the underlying join query to obtain a ≺-circuit and then by projecting the variables directly
in the circuit. This approach works only when the largest variables in the circuits are the
quantified variables. It motivates the following definition: given a hypergraph H = (V, E),
an elimination order (v1, . . . , vn) of V is S-connex if and only if there exists i such that
{vi, . . . , vn} = S. In other words, the elimination order starts by eliminating V \ S and then
proceeds to S. Given a conjunctive query Q and an elimination order ≺ on var(Q), we say
that the elimination is free-connex if it is a free(Q)-connex elimination order of H(Q) where
free(Q) are the free variables of Q2. We directly have the following:

▶ Theorem 20 (⋆). Given a conjunctive query Q(Y ), a free-connex order ≻ on var(Q) and
a database D on domain D, we can solve direct access tasks for ≺lex with precomputation
O(|D|k+1polylog|D| ·polyk(|Q|)) and access time O(n ·polylog(|D|)) where n = |var(Q)| where
k = fhtw(H(Q),≻) if Q is positive and k = show(H(Q),≻) otherwise.

We observe that our notion of free-connex elimination order for Q is akin to [8, Definition
38] with two differences: first, in [8], it is allowed to only specify a preorder on free(Q) and
the complexity of the algorithm is then stated with the best possible compatible ordering,
which would be possible in our framework too. The second difference is that the orders are
presented in reverse, that is, in their definition, the orders start with free variables and end
with quantified variables. We decided to present free-connexity of elimination orders in this
way so that it corresponds to the existing notion of free-connexity of tree decompositions.
Now, Theorem 20 constructs a direct access for ≺lex when ≻ is free-connex, so Theorem 20
proves the same tractability result as [8, Theorem 39], again with an extra |D| factor but
compatible with negative and signed conjunctive queries.

6 Future Work

Our new tractability results for solving DA tasks on signed conjunctive queries relies on a
unifying framework for both positive and signed queries using factorised representation of
the answer sets of the query. It opens many avenues for research. First, contrary to the
positive query case, we do not yet have parameterised lower bounds on the preprocessing and
access time needed for solving DA tasks on signed queries. Having a better understanding
of what happens on the fractional relaxation of β-hyperorder width would be a first step
toward proving such lower bounds. Also, we believe our analysis of the complexity of DPLL
is not optimal and that with the right data structures, we should be able to prove an upper
bound of the order |D|fhow(Q) instead of the |D|fhow(Q)+1 for positive queries, hence matching
the existing upper bounds exactly. We leave a more involved analysis of this algorithm for
future work. Finally, we believe that the circuit representation we are using is promising for
answering different kind of aggregation tasks and hence generalising existing results to the
case of signed conjunctive queries. For example, FAQ and AJAR queries [24, 21] could be
answered using this data structure by annotating the circuit with semi-ring elements and

2 The notion of S-connexity already exists for tree decompositions. We use the same name here as the
existence of an S-connex tree decomposition of (fractional) hypertree width k is equivalent to the
existence of an S-connex elimination order of (fractional) hyperorder width k.
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projecting them out as in Theorem 19. Similarly, we believe that the framework of [15] for
solving DA tasks on conjunctive queries with aggregation operators may be generalised in a
similar way to the class of ordered {×, dec}-circuits.
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Abstract
We propose and study a framework for quantifying the importance of the choices of parameter values
to the result of a query over a database. These parameters occur as constants in logical queries, such
as conjunctive queries. In our framework, the importance of a parameter is its Shap score. This
score is a popular instantiation of the game-theoretic Shapley value to measuring the importance of
feature values in machine learning models. We make the case for the rationale of using this score by
explaining the intuition behind Shap, and by showing that we arrive at this score in two different,
apparently opposing, approaches to quantifying the contribution of a parameter.

The application of the Shap score requires two components in addition to the query and the
database: (a) a probability distribution over the combinations of parameter values, and (b) a utility
function that measures the similarity between the result for the original parameters and the result for
hypothetical parameters. The main question addressed in the paper is the complexity of calculating
the Shap score for different distributions and similarity measures. We first address the case of
probabilistically independent parameters. The problem is hard if we consider a fragment of queries
that is hard to evaluate (as one would expect), and even for the fragment of acyclic conjunctive
queries. In some cases, though, one can efficiently list all relevant parameter combinations, and
then the Shap score can be computed in polynomial time under reasonable general conditions. Also
tractable is the case of full acyclic conjunctive queries for certain (natural) similarity functions. We
extend our results to conjunctive queries with inequalities between variables and parameters. Finally,
we discuss a simple approximation technique for the case of correlated parameters.
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1 Introduction

The parameters of a database query may affect the result in a way that misrepresents the
importance of the parameters, or the arbitrariness in their chosen values. For example, when
searching for products in commercial applications (for clothing, travel, real estate, etc.), we
may fill out a complex form of parameters that produce too few answers or overly expensive
ones; what is the responsibility of our input values to this deficient outcome? We may phrase
a database query to select candidates for awards for job interviews; to what extent is the
choice of parameters affecting people’s fate?
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Considerable effort has been invested in exploring the impact of parameters on query
outcomes. In the empty-answer problem, the goal is typically to explore a space of small
changes to the query that would yield a nonempty result [14, 22]. In that vein, reasoning
about small parameter changes, or perturbations, has been applied to providing explanations
to non-answers, that is, tuples that are missing from the result [5, 31]. From a different angle,
the analysis of sensitivity to parameters has been applied to fact checking, and particularly,
the detection of statements that are cherry picked in the sense that they lead to conclusions
that overly rely on allegedly arbitrary parameter values. This may come in over-restriction
to a database fragment that serves the intended claim [35], or over-generalization that masks
the situation in substantial subgroups that oppose the claim [16].

In this work, we aim to establish a principled quantitative measure for the importance
of individual parameter values to the result Q(D) of a query Q over a database D. To this
end, we begin with the basic idea of observing how the result changes when we randomly
change the parameter of interest. Alternatively, we can observe the change in the result
when the parameter keeps its value while all others randomly change. Yet, these definitions
ignore dependencies among parameters; changing a parameter may have no impact in the
presence of other parameter values (e.g., the number of connecting flights does not matter if
we restrict the travel duration), or it may lead to an overestimation of the value’s importance
(e.g., changing the number of semesters empties the result since we restrict the admission
year). This can be viewed as a special case of a challenge that has been studied for decades in
game theory: How to attribute individual contributions to the gains of a team? Specifically,
we can view the parameter values as players of a cooperative game where each coalition
(set of parameter values in our case) has a utility, and we wish to quantify the contribution
of each parameter value to the overall utility. We then adopt a conventional formula for
contribution attribution, namely the Shapley value [29], as done in many domains, including
economics, law, bioinformatics, crime analysis, network analysis, machine learning, and
more (see, e.g., the Handbook of the Shapley value [1]). The Shapley value is theoretically
justified in the sense that it is unique under several elementary axioms of rationality for
profit sharing [29]. In the context of databases, this value has been studied recently for
measuring the contribution of individual tuples to query answers [17, 8, 2] and to database
inconsistency [18], as well as the contribution of constraints to the decisions of cleaning
systems [7].

Our challenge then boils down to one central question: What game are we playing? In
other words, what is the utility of a set J of parameter values? Following up on the two basic
ideas discussed above, we can think of two analogous ways. In the first way, we measure the
change in the query result when we randomly change the values of the parameters in J ; the
parameter values in J are deemed important if we observe a large change. This change is
random, so we take the expected change. (We later discuss the way that we measure the
change in the result.) In the second way, we again measure the change in the result, but
now we do so when we fix the values of the parameters in J and randomly change the rest;
now, however, the values in J are deemed important if we observe a small change, indicating
that the other parameters have little impact once we use the values of J . This second way
is known as the Shap score [20, 19] in machine learning, and it is one of the prominent
score-attribution methods for features (in addition to alternatives such as LIME [25] and
Anchor [26]).1 This score quantifies the impact of each feature value on the decision for a
specific given instance. Interestingly, we show that the first way described above also coincides

1 For background on attribution scores see textbooks on explanations in machine learning, e.g., Molnar [21].
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with the Shap score, so the two ways actually define the same measure (Theorem 3.4). We
prove it in a general setting and, hence, this equivalence is of independent interest as it shows
an alternative, apparently different way of arriving at Shap in machine learning.

To materialize the framework in the context of a query Q and a database D, one needs
to provide some necessary mechanisms for reasoning about Q(D) and Q′(D), where Q′ is
the same as Q up to the parameters: it uses the same values as Q for the parameters of J ,
but the remaining parameter values are selected randomly. Specifically, to this aim, we need
two mechanisms:
1. A probability distribution Γ of possible parameterizations of the query;
2. A similarity function s between relations to quantify how close Q′(J) is to Q(J).
The distribution Γ may include any feasible combination of parameter values, and they
can be either probabilistically independent or correlated. For s, one can use any similarity
between sets (see, e.g., surveys on similarity measures such as [15, 28]) or measures that
account for the distance between attributes values (e.g., as done in the context of database
repairs [4]). We give examples in Section 3.

A central challenge in the framework is the computational complexity, since the direct
definition of the Shap score (like the general Shapley value) involves summation over
an exponential space of coalitions. Indeed, the calculation can be a hard computational
problem, #P-hard to be precise, even for simple adaptations of the Shap score [3] and
the Shapley value [10, 6, 17]. Hence, instantiations of our framework require specialized
complexity analyses and nontrivial algorithms that bypass the exponential time of the naïve
computation.

We begin the complexity analysis of the framework by establishing some general insights for
finite fully factorized distributions, i.e., where the parameters are probabilistically independent
and each is given as an explicit collection of value-probability pairs. First, the Shap score
can be computed in polynomial time if we can evaluate the query, compute the similarity
measure, and enumerate all parameter combinations in polynomial time. We prove this using
a recent general result by Van den Broeck et al. [32] (from which we borrow some notation)
showing that, under tractability assumptions, the Shap score is reducible to the computation
of the expected value under random parameter values. Second, under reasonable assumptions,
the computation of the Shap score is at least as hard as testing for the emptiness of the
query, for every nontrivial similarity function; this is expected, as the definition of the Shap
scores requires, conceptually, many applications of the query.

Next, we focus on the class of conjunctive queries, where the parameters are constants in
query atoms. Put differently, we consider Select-Project-Join queries where each selection
predicate has the form x = p where x is an attribute and p is a parameter. It follows from
the above general results that this case is tractable under data complexity. Hence, we focus
on combined complexity. As the emptiness problem is intractable, we consider the tractable
fragment of acyclic queries, and show that Shap scores can be #P-hard even there.

We then focus on the class of full acyclic queries and establish that the Shap score can
be computed in polynomial time for three natural, set-based similarity functions between
Q(D) and Q′(D). Interestingly, this gives us nontrivial cases where the Shap score can be
computed in polynomial time even if Q(D) and Q′(D) can be exponential in the size of the
input, and hence, it is intractable to materialize them.

We then extend our results to conjunctive queries with inequalities, that is, built-in atoms
of the form x ≤ p where x is a variable and p is a parameter. We show that this addition
can make the Shap score intractable to compute, even if there is a single relational atom
in addition to the inequality atoms. Nevertheless, we identify cases in which tractability
properties are retained when adding inequalities to classes of parameterized queries (e.g., full
acyclic conjunctive queries), relying on structural assumptions on the use of inequalities.

ICDT 2024
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Given that the computation of the exact Shap score is often intractable, we also study
the complexity of approximate evaluation. We show that using sampling, we can obtain an
efficient approximation scheme (FPRAS) with additive guarantees. Moreover, the tractability
of approximation generalizes to allow for parameters that are correlated through Bayesian
networks (and actually any distribution) that provide(s) polynomial-time sampling while
conditioning on assignments to arbitrary subsets of the random variables.

Details omitted due to space limitations, including the full proofs of the proof sketches,
can be found in the full version of the paper [11].

2 Preliminaries

We write 2S for the power set of S. Vectors, tuples and sequences are denoted by boldface
letters. If x = (xi)i∈I and J ⊆ I, then xJ = (xj)j∈J . Moreover, |x| = |I| is the number of
entries of x. We let [n] = {1, . . . , n}. Truth values (true/false) are denoted by tt and ff.

A (discrete) probability distribution is a function Γ: S → [0, 1], where S is a non-empty
countable set, and

∑
s∈S Γ(s) = 1. The support of Γ is supp(Γ) = {s ∈ S : Γ(s) > 0}. We use

Pr for generic probability distributions and, in particular, PrX∼Γ to refer to probabilities
for a random variable or random vector X being drawn from the distribution Γ. Likewise,
EX∼Γ refers to the expectation operator with respect to the distribution Γ of X.

Whenever x is an input to a computational problem, we write ∥x∥ to refer to the encoding
length of x as it is represented in the input.

2.1 Schemas and Databases
A relation schema is a sequence A = (A1, . . . , Ak) of distinct attributes Ai, each with an
associated domain dom(Ai) of values. We call k the arity of A. If A = (A1, . . . , Ak) is a
relation schema and S = {i1, . . . , iℓ} ⊆ [k] with i1 < i2 < · · · < iℓ, then AS denotes the
relation schema (Ai1 , . . . , Aiℓ

).
A tuple over A is an element a = (a1, . . . , ak) ∈ dom(A1) × · · · × dom(Ak). The set of

tuples over A is denoted by Tup[A]. A relation over A is a finite set of tuples over A. We
denote the space of relations over A by Rel[A]. We typically denote relations by T or T1, T2,
and so on. By default, we assume that all attribute domains are countably infinite.

A database schema is a finite set of relation symbols, where every relation symbol is
associated with a relation schema. For example, if R is a relation symbol with associated
relation schema A = (A1, . . . , Ak), we may refer to R by R(A) or R(A1, . . . , Ak), and call k

the arity of R. A fact f over a database schema S is an expression of the shape R(a) with
R = R(A), where a is a tuple over A. A database over schema S is a finite set of facts over
S. We denote the space of databases over some schema S by DB[S].

2.2 Queries and Parameters
A relational query (or just query) is an isomorphism invariant function that maps databases
to relations. More precisely, a query q has a database schema dom(q) for its valid input
databases (called the domain schema), and a relation schema range(q) for its output relation
(called the range schema). Then q is a function that maps databases over dom(q) to relations
over range(q). We write q = q(R) to denote that range(q) = R.

We focus on queries that are expressed in variants of first-order logic without equal-
ity. In this case, range(q) is the domain of the free variables of q. Whenever we discuss
queries in this paper, it is assumed that they are first-order queries, unless explicitly stated
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otherwise. To emphasize that q has free variables x = (x1, . . . , xn), we write q = q(x). If
a = (a1, . . . , an) ∈ Tup[R], then q(a) denotes the Boolean query obtained from q by sub-
stituting every occurrence of xi with ai, i ∈ [n]. If D is a database over dom(q), then
q(D) := {a ∈ Tup[R] : D |= q(a)}.

A parameterized query Q is a relational query in which some of the free variables are
distinguished parameters. We write Q(x; y) to denote that x are the non-parameter (free)
variables of Q, and that y are the parameters of Q. A parameterized query Q has a parameter
schema param(Q), such that Tup[param(Q)] is the set of valid tuples of parameter values for
Q. If Q = Q(x; y) is a parameterized query, and p ∈ Tup[param(Q)], then Qp(x) := Q(x; p)
is the relational query obtained from Q by substituting the parameters y with the constants
p. The domain and range schemas of Q coincide with dom(Qp) and range(Qp), respectively,
which is independent of the choice of p ∈ Tup[param(Q)]. We write Q = Q(R; P ) to denote
that range(Q) = R and param(Q) = P . If Q = Q(R; P ), then for every database D over
dom(Q) and every p ∈ Tup[P ] we have

Qp(D) :=
{

a ∈ Tup[R] : D |= Qp(a)
}

∈ Rel[R].

▶ Example 2.1. For illustration, we consider a parameterized query over flights data, assuming
access to a database with relations Flight(Id, Date, AirlineName, From, To, Departure, Arrival)
and Airline(Name, CountryOfOrigin). Then

Q(f, tdep, tarr; d, c) = ∃a : Flights(f, d, a, CDG, JFK, tdep, tarr) ∧ Airline(a, c)

is a parameterized query. For parameters (d, c) it asks for departure and arrival times of
flights from Paris to New York City on date d operated by an airline from country c. ⌟

Parameterized queries inherit structural properties from the underlying relational query.
For example, if Q(x; y) is a parameterized query with free variables x, then Q is called
an (acyclic) conjunctive query, if the relational query Q(x, y) with variables x, y is an
(acyclic) conjunctive query. We emphasize that for the notion of acyclicity, the parameters
act as additional free variables. However, a parameterized query Q is called Boolean, if all
(non-parameter) variables in Q are quantified, i.e., if Qp is Boolean for all p.

2.3 The Shapley Value
A cooperative game is a pair (I, ν) where I is a non-empty set of players, and ν : 2I → R is a
utility function that assigns a “joint wealth” ν(J) to every coalition ν(J) ⊆ I. The Shapley
value of player i ∈ I in (I, ν) is defined as

Shapley(I, ν, i) := 1
|I|!

∑
σ∈SI

(
ν(σi ∪ {i}) − ν(σi)

)
= E

σ∼SI

[
ν(σi ∪ {i}) − ν(σi)

]
, (1)

where SI is the set of permutations of I, and σi is the set of players appearing before i in
the permutation σ ∈ SI (and σ ∼ SI refers to drawing from the uniform distribution on SI).
Intuitively, Shapley(I, ν, i) measures the importance (or, contribution) of i among coalitions.
An equivalent, alternative expression is

Shapley(I, ν, i) =
∑

J⊆I\{i}

Πi(J) ·
(
ν(J ∪ {i}) − ν(J)

)
= E

J∼Πi

[
ν(J ∪ {i}) − ν(J)

]
, (2)

where Πi is the probability distribution on I \ {i} with

Πi(J) = |J |! · (|I| − |J | − 1)!
|I|! = 1

|I| ·
(|I|−1

|J|
) . (3)

(For further details, see textbooks on the Shapley value, e.g., [1].) In the next section, we
will discuss the intuition behind using the Shapley value in the context of our paper.
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14:6 The Importance of Parameters in Database Queries

3 The SHAP Score of Query Parameters

In this section, we shall give our exact definition of the Shap score of a query parameter, and
we will argue that it measures the contribution of the parameter to the outcome of the query
in a natural way. We start with a database D over dom(Q); a parameterized query Q(R; P );
and a reference parameter p∗ = (p∗

1, . . . , p∗
ℓ ) over P . We want to quantify the contribution

of each parameter p∗
i to the query answer Qp(D).

3.1 Intuition
A basic idea is to see what happens to the answer if we either modify p∗

i and keep all other
parameters fixed or, conversely, keep p∗

i fixed but modify the other parameters. The following
example shows that neither of these two approaches is sufficient.

▶ Example 3.1. We let Q(x; y1, y2, y3) := R(y1, y2, y3, x) for a relation R(B1, B2, B3, A). Let
N := [n] = {1, . . . , n}, and D be the database where the tuple set of R is(

({1} × N) ∪ (N × {1})
)

× N × N .

Let p∗ = (p∗
1, p∗

2, p∗
3) = (1, 1, 1). Then Qp∗(D) = N .

Let us try to understand the contribution of each parameter p∗
i . Intuitively, the parameter

p∗
3 is completely irrelevant. Whatever value it takes in any configuration of the other two

parameters, the query answer remains the same. Parameters p∗
1 and p∗

2 are important, though.
If we change both of their values to values p1, p2 ∈ N \ {1}, the query answer becomes empty.
However, for this change to take effect, we need to change both values at the same time. If
we change only p1 keeping p∗

2 and p∗
3 fixed, the query answer does not change. If we keep p∗

1
fixed and modify p2 and p3, then again the query answer does not change. The same holds
for the second parameter. ⌟

What this example shows is that even if we just want to understand the contribution of
the individual parameters, we need to look at the contributions of sets of parameters. This
will immediately put us in the realm of cooperative game theory with the parameters acting
as players in a coalitional game.

Assume for a moment that we have a function ν : 2[ℓ] → R such that, for J ⊆ [ℓ], the
function value ν(J) quantifies the combined contribution of the parameters with indices in J .
We will discuss later how to obtain such a function ν.

Given ν, we now quantify the contribution of every individual parameter j ∈ [ℓ]. This is
exactly what the Shapley value Shapley([ℓ], ν, j) does. And not only that: as Shapley [29]
proved, subject to a few natural assumptions (“axioms”) and the technical requirement that ν

is zero on the empty set, it is the only way of doing this. Let us briefly review these axioms (for
details and a proof of Shapley’s theorem, we refer to the literature, e.g., [29, 27, 1]). The first
axiom, symmetry, says that if any two parameters i and j (or rather parameter indices) have
the same contribution to any coalition J ⊆ [ℓ]\{i, j}, then Shapley([ℓ], ν, i) = Shapley([ℓ], ν, j).
The second axiom, efficiency, says that the sum of Shapley([ℓ], ν, j) for all parameters j ∈ [ℓ]
equals the contribution of the “grand coalition” [ℓ]. Thus, the Shapley values “distribute” ν([ℓ])
among the individual parameters. The third axiom, null player, says that if a parameter
makes no contribution to any coalition, then Shapley([ℓ], ν, j) = 0. The fourth axiom,
additivity, says that if we have two different functions ν1, ν2 : 2[ℓ] → R measuring the value of
a coalition of parameters, then Shapley([ℓ], ν1 +ν2, j) = Shapley([ℓ], ν1, j)+Shapley([ℓ], ν2, j).
All of the axioms strike us as completely natural also for evaluating the contribution of
parameters to a query answer.
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Figure 1 On a given database D, we evaluate a parameterized query Q with respect to a

reference parameter p∗. The result is compared (using a similarity function s) against different
parameterizations of Q, according to a probabilistic model Γ.

Concluding the discussion so far, to understand the contribution of individual parameters,
we need to look at sets of parameters, and the method of choice to retrieve this contribution
from a valuation for sets is the Shapley value.

3.2 The Utility Function
What remains to be done is constructing a natural valuation for sets of parameters, that
is, a function ν : 2[ℓ] → R such that, for J ⊆ [ℓ] the value ν(J) quantifies the combined
contribution of the parameters p∗

j , for j ∈ J , to the query answer. The first thing we need is
a way of measuring the similarity between query answers, that is, a function s that takes
two relations of the schema of our query answer and assigns a similarity value to them.
Formally, a similarity function is just an arbitrary function s : DB[R] × DB[R] → R. We
make no restrictions on this function, similarity can have different meanings depending on
the application. Let us just note that the intended use of this function is always to quantify
similarity: the higher s(Q, Q∗), the more similar Q and Q∗ are.

▶ Example 3.2.
(a) Prime examples of similarity functions are set-similarity measures such as the Jaccard

index, the Sørensen index, and Tverski’s index, which attempt to capture the degree
of similarity between two sets [23]. If Q and Q∗ are two relations of the same relation
schema R, then, e.g., their Jaccard index is given by

Jaccard(Q, Q∗) := |Q ∩ Q∗|
|Q ∪ Q∗|

= 1 − |Q △ Q∗|
|Q ∪ Q∗|

,

and Jaccard(∅, ∅) = 0 by convention.
(b) In the same spirit, but somewhat simpler, are similarities based on cardinalities and

basic set operations, for example:

Int(Q, Q∗) := |Q ∩ Q∗|, (size of the interesection)
NegSymDiff(Q, Q∗) := −|Q △ Q∗|, (negative symmetric difference)

NegSymCDiff(Q, Q∗) := −
∣∣|Q| − |Q∗|

∣∣. (negative symmetric cardinality difference)

Note that we do not require similarity to be non-negative, thus NegSymDiff and
NegSymCDiff are well-defined. Intuitively, the negative sign makes sense because two
relations get more similar as their symmetric difference gets smaller.
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(c) In our applications, Q and Q∗ have different roles: Q∗ is always a fixed “reference
relation”, and Q is a modification of Q∗, obtained by changing some parameters in
the query. In some situations, it can be useful to use similarity measures that are not
symmetric. For example, we may only care about not losing any tuples from Q∗, whereas
additional tuples may be irrelevant. This leads to an asymmetric similarity measure:

NegDiff(Q, Q∗) := −|Q∗ \ Q|. (negative difference)

We can also use similarity functions that are specialized to the application at hand. For
example, we can use a similarity function that accounts for differences of attribute values,
such as arrival time minus departure time:

MinDiffA,B(Q, Q∗) := −
∣∣min(Q.A − Q.B) − min(Q∗.A − Q∗.B)

∣∣.
where Q.A is the vector obtained from numerical A column of Q (hence, Q.A − Q.B is the
vector of differences between the A and B attributes). Alternatively, we can use

ExpMinDiffA,B(Q, Q∗) := exp
(
min(Q.A − Q.B) − min(Q∗.A − Q∗.B)

)
.

which uses the exponent function instead of the absolute value. ⌟

Suppose now that we have a subset J ⊆ [ℓ]. We need a value ν(J) quantifying how
important the subtuple p∗

J = (pj)j∈J is to obtain a query answer similar to Qp∗(D). The
crucial idea of the Shap score in a very similar setting in machine learning [20] was to see
what happens if we fix the parameters p∗

J and change the other parameters: the value of
J is high if changing the other parameters has no big effect on the query answer. In other
words, the value of J is large if for parameter tuples p with pJ = p∗

J the relations Qp(D)
and Qp∗(D) are similar, that is, s(p, p∗) is large.2 But of course this depends on how exactly
we change the other parameters. The idea is to change them randomly and take the expected
value, as illustrated in Figure 1. So we assume that we have a probability distribution Γ on
the space of all possible parameter values, and we define

ν(J) := E
p∼Γ

[
s(p, p∗)

∣∣ pJ = p∗
J

]
= E

p∼Γ

[
s(Qp(D), Qp∗(D))

∣∣ pJ = p∗
J

]
.

▶ Remark 3.3. Officially, we should “normalize” to ν(∅) = 0 by subtracting Ep

[
s(p, p∗)

]
. We

chose not to do so, because it leads to the same Shapley values due to linearity. ⌟

With the above, we can quantify the contribution of any individual parameter i as
Shapley

(
[ℓ], ν, i

)
. In using different probability distributions, we can incorporate various

assumptions about the usage of parameters. For example, Γ may apply to only a subset of
interesting parameters and be deterministic (fixed) on the others; it can also be concentrated
on certain values (e.g., locations of a reasonable distance to the original value) or describe
any other statistical model on the parameter space.

There is a different, in some way complementary approach to quantifying the contribution
of a set J of parameters: instead of measuring what happens if we fix p∗

J and randomly
change the other parameters, we can also fix the other parameters and randomly change
the parameters in J . Then the contribution of J is the higher, the more the query answer
changes. Thus, now instead of our similarity measure s we need a dissimilarity measure s. We
simply let s(p, p′) := c − s(p, p′), where c ∈ R is an arbitrary constant. (We will see that this

2 We use s(p, p∗) as shorthand for s(Qp(D), Qp∗ (D)) in case Q and D are clear from the context.
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constant is completely irrelevant, but it may have some intuitive meaning. For example, if
our similarity measure is normalized to take values in the interval [0, 1], as Jaccard similarity,
then it would be natural to take c = 1.) Letting J := [ℓ] \ J for every J ⊆ [ℓ], our new value
functions for sets of indices is

ν(J) := E
p∼Γ

[
s(p, p∗)

∣∣ pJ = p∗
J

]
.

We could have started our treatment with introducing ν instead of ν; indeed, the only reason
that we did not is that the analogue of ν is what is used in machine learning. Both ν

and ν strike us as completely natural value functions for sets of parameters, and we see no
justification for preferring one over the other. Fortunately, we do not have to, because they
both lead to exactly the same Shapley values for the individual parameters.

▶ Theorem 3.4. For all i ∈ [ℓ] we have Shapley
(
[ℓ], ν, i

)
= Shapley

(
[ℓ], ν, i

)
.

Proof sketch. Linearity of expectation entails ν(J) = c − ν(J). The main observation is
then on the relationship between J and J ∪ {i}, for J ⊆ [ℓ] \ {i}: Both sets have the same
probability under Πi and, moreover, there is a one-to-one correspondence between them.
Changing the summation accordingly shows that the Shap scores coincide. ◀

When Q, D, p∗, s, Γ are clear from the context, we write Shap(i) := Shapley([ℓ], ν, i); hence:

Shap(i) =

E
J∼Πi

[
E

p∼Γ

[
s(Qp(D), Qp∗(D))

∣∣ pJ∪{i} = p∗
J∪{i}

]
− E

p∼Γ

[
s(Qp(D), Qp∗(D))

∣∣ pJ = p∗
J

]]
.

We illustrate the framework using our running example from Section 2.

▶ Example 3.5. In Example 2.1, we considered a flights database D and a query Q,
parameterized with a date d and an airline country c, asking for flights between Paris and
New York City. We assess the importance of Q’s parameters with respect to the reference
parameter d = 02/24/2024 and c = USA.

In specifying the parameter distribution Γ, we can tune the exploration of the parameter
space. For example, we may choose to only take local parameter perturbations into account.
For this, we can specify Γ to be a product distribution whose support is restricted to dates in
the vicinity of 02/24/2024, and to the countries USA and France. If the similarity function
NegSymCDiff is used, e.g., then it is measured how close Qp and Qp∗ are in terms of the
number of given flight options. If NegDiff is used, it is measured how many of Qp∗ ’s flight
options are lost when the parameters are changed. With MinDiffArrival,Departure, the difference
in duration of the shortest flight options is assessed. ⌟

3.3 Formal Problem Statement
We now have all the ingredients to formulate the computation of Shap scores as a formal
computational problem. It can be phrased concisely as follows.

▶ Problem 3.6. SHAP(Q, PR, s) is the following computational problem:
On input (Q, p∗, D, Γ), compute Shap(i) for all i ∈ [ℓ]. ⌟

Table 1 presents an overview of the problem parameters and inputs. For technical reasons
(which we explain next), the problem is parameterized with a class of parameterized queries
Q, a class of parameter distributions PR, and a (class of) similarity function(s) s.
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14:10 The Importance of Parameters in Database Queries

Table 1 Problem parameters and inputs for Shap score computation.

Problem parameters Problem inputs

Q class of parameterized queries Q(R; P ) parameterized query
PR class of parameter distributions D ∈ DB[dom(Q)] database
s similarity function p∗ = (p∗

1, . . . , p∗
ℓ ) ∈ P reference parameter

Γ ∈ PRP , Γ(p∗) > 0 parameter distribution

Parameter distributions. For simplicity, we only consider parameter distributions with
finite support and rational probabilities. A class of parameter distributions will always
mean a class PR =

⋃
P PRP where P are relation schemas, and PRP is a set of functions

Γ : Tup[P ] → [0, 1] such that
∑

p Γ(p) = 1.

▶ Example 3.7. One of the simplest classes of parameter distributions is the class IND of fully
factorized distributions, where all parameters are stochastically independent. A probability
distribution Γ over Tup[P ] is called fully factorized if

Γ(p1, . . . , pℓ) = Γ1(p1) · · · Γℓ(pℓ)

for all (p1, . . . , pℓ) ∈ Tup[P ] where Γi is the marginal distribution of pi under Γ. To represent
Γ, it suffices to provide the ℓ lists of all pairs (pi, Γi(pi)) where Γi(pi) > 0. ⌟

Technically, PR is a class of representations of probability distributions in the SHAP problem.
For convenience, we do not distinguish between a distribution and (one of) its representation.
The only assumption we globally make about classes of parameterized distributions is that
the encoding length of parameters is polynomially bounded in ∥Γ∥.

Similarity functions. It would feel natural to consider s as an input to the problem.
Discussing computational complexity in terms of an encoding of such functions is, however,
beyond the scope of this paper. We therefore assume, that the similarity function (or rather, a
class (sR)R of versions of the same abstract similarity function s, one per query range schema)
is a parameter to the problem. We abuse notation, and call this class s too. Moreover, we
write s(T1, T2) for sR(T1, T2) when T1, T2 ∈ DB[R], and R is clear from the context.

Parameterized queries. The parameterized queries we consider are formulated in first-order
logic, unless explicitly stated otherwise. The encoding size of Qp can be larger than that of
the parameterized query Q. By our assumptions on Γ, this blow-up is at most polynomial in
∥Q∥ and ∥Γ∥ if p ∈ supp(Γ).

Complexity. We abuse notation and use s ◦ Q to denote the class of functions mapping
(Q, p, p∗, D) to s(Qp(D), Qp∗(D)) where Q = Q(R; P ) ∈ Q, where D ∈ DB[dom(Q)], and
where p, p∗ ∈ Tup[P ].

▶ Definition 3.8. Let Q be a class of parameterized queries, s a similarity function. We call
Q tractable, if (Q, p, D) 7→ Qp(D) can be computed in polynomial time.
s tractable, if (T1, T2) 7→ s(T1, T2), can be computed in polynomial time.
s ◦ Q tractable, if (Q, p, p∗, D) 7→ s(Qp(D), Qp∗(D)) can be computed in polynomial time.

Tractability of both s and Q imply tractability of s ◦ Q, but the converse is not true in
general (see [12]). For illustration of this phenomenon, consider the query answering problem
for full ACQs: The query answer may be exponentially large, but the answer count can be
computed efficiently [24, Theorem 1].
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▶ Definition 3.9. Let Q be a class of parameterized queries, PR a class of parameter
distributions, and s a similarity function, and let C be a complexity class.

If the complexity of solving SHAP(Q, PR, s), as a function of ∥Q∥ + ∥p∗∥ + ∥D∥ + ∥Γ∥, is
in C, then we say that SHAP(Q, PR, s) is in C in combined complexity.
If for every fixed Q ∈ Q, the complexity of solving SHAP({Q}, PR, s), as a function of
∥p∗∥ + ∥D∥ + ∥Γ∥, is in C, then we say that SHAP(Q, PR, s) is in C in data complexity.

That is, we discuss the computational complexity in terms of variants of the classical
combined, and data complexity [34]. If not indicated otherwise, our statements about the
complexity of SHAP(Q, PR, s) always refer to combined complexity.

4 General Insights for Fully Factorized Distributions

We first discuss fully factorized distributions. We start by showing that for tractable similarity
functions, tractability of SHAP(Q, IND, s) in terms of data complexity is guided by the data
complexity of Q. This contrasts other query evaluation settings involving probabilities, like
query evaluation in probabilistic databases [30, 33]. The intuitive reason is that here, the
probability distributions are tied to the parameterized query instead of the database.

▶ Proposition 4.1. Let s be a tractable similarity function and let Q(R; P ) be a fixed
parameterized query such that Qp(D) can be computed in polynomial time in ∥D∥ for all
p ∈ Tup[P ]. Then SHAP({Q}, IND, s) can be solved in polynomial time.

Proof sketch. When the parameterized query is fixed, ℓ is constant. In particular, the
probability spaces Πi are of constant size. The problem can thus be solved by brute force,
i.e., by evaluating the explicit formula for the Shap score. ◀

For this reason, in the remainder of the paper, we will focus on the combined complexity
of the computation of SHAP(Q, IND, s).

Next, we point out two relationships with other computational problems. First, we see that
SHAP(Q, IND, s) is at least as hard as deciding whether the output of a parameterized query is
non-empty. To be precise, let Q be a class of parameterized queries and let NONEMPTY(Q) be
the problem that takes inputs (Q, p∗, D), and asks to decide whether Qp∗(D) ̸= ∅. In order
to establish a relationship to the SHAP(Q, IND, s) problem, we need two more ingredients.

▶ Definition 4.2. A similarity function s strongly depends on its first argument, if for all
possible range schemas R, one of the following is satisfied:
(s1) for all non-empty T ∈ Rel[R] we have sR(∅, ∅) ̸= sR(T, ∅); or
(s2) for all non-empty T ∈ Rel[R] we have sR(∅, T ) ̸= sR(T, T ).

Both are highly natural conditions for meaningful similarity functions. Moreover, they
entail that s can, to a certain extent, distinguish whether its first argument is empty or not.
For example, the similarity functions from Example 3.2(a)–(c) all satisfy (s2), whereas a
version of NegDiff that swaps the roles of Q and Q∗ would always satisfy (s1).

▶ Theorem 4.3. Let s strongly depend on its first argument. Let Q be a class of param-
eterized queries such that for all Q(R; P ) ∈ Q there exists i0 ∈ [ℓ] (which we can find in
polynomial time) such that, for all D ∈ DB[dom(Q)] and all p = (p1, . . . , pℓ) ∈ Tup[P ] with
pi0 /∈ adom(D), we have Qp(D) = ∅. Then NONEMPTY(Q) ≤P

T SHAP(Q, IND, s).
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Proof sketch. Our probability distribution Γ is just a coin flip between two parameter values
p∗ and pa, where pa coincides with p∗ on all parameters except for p∗

i0
which is replaced with

a value a ≠ p∗
i0

outside of the active domain of D. Calculation shows that the Shap(i0) = 0
if and only if Qp∗(D) = ∅. (We reduce to the SHAP instance (Q, pa, D, Γ) or (Q, p∗, D, Γ),
depending on whether s satisfies (s1) or (s2)). ◀

The restriction we impose on Q expresses that one of the parameters immediately renders
the query result on D empty, if it is chosen outside the active domain of D. This is fulfilled,
for example, for unions of conjunctive queries for which there exists a parameter that appears
in each of its conjunctive queries, and can be extended to Datalog queries for which there
exists a parameter that appears in the body of every rule.

Van den Broeck et al. [32] have shown a reduction from computing Shap to computing
the expected similarity. The latter problem, ESIM(Q, PR, s), takes the same parameters and
inputs as SHAP(Q, PR, s), but asks for Ep∼Γ[s(p, p∗)] instead of Shap(i).

▶ Theorem 4.4 (Cf. [32, Theorem 2]). For any class of parameterized queries Q and any
similarity function s such that s ◦ Q is tractable, we have SHAP(Q, IND, s) ≡P

T ESIM(Q, IND, s).

▶ Remark 4.5. The paper [32] discusses a more general setting, in which Shap scores are
computed for tractable functions F over ℓ-ary domains. They provide an algorithm that
computes Shap scores of F using oracle calls to the expected value of F with different
parameter distributions Γ ∈ IND. This algorithm runs in polynomial time in ∥Γ∥ and is
independent of the choice of F (apart from the oracle, of course). For our version of the
theorem, we use this algorithm on functions FQ,p∗,D(p) = s(Qp(D), Qp∗(D)). ⌟

The key property we needed for Proposition 4.1 was the manageable size of the parameter
distributions. This can be formulated as a property of a class of queries.

▶ Definition 4.6. Let Q(R; P ) be a parameterized query and D ∈ DB[dom(Q)], and denote
psupp(Q, D) := {p ∈ Tup[P ] : Qp(D) ̸= ∅}. A class Q of parameterized queries has polynomi-
ally computable parameter support if there exists a polynomial time algorithm (in ∥Q∥+∥D∥)
which, on input Q(R; P ) ∈ Q and D ∈ DB[dom(Q)], outputs a set P (Q, D) ⊇ psupp(Q, D).

There are simple, yet relevant classes with this property, e.g., parameterized CQs with a
bounded number of joins, or where parameters only appear in a bounded number of atoms.
This property allows the efficient computation of expected similarities.

▶ Proposition 4.7. Let Q have polynomially computable parameter support, and suppose
s ◦ Q is tractable. Then SHAP(Q, IND, s) can be solved in polynomial time.

Proof sketch. We solve ESIM(Q, IND, s) efficiently, by first computing some P ⊇ psupp(Q, D)
and then evaluating the formula for Ep[s(p, p∗)]. For this, we explicitly compute the terms
for p ∈ P , and bundle those for p /∈ P . By Theorem 4.4, this yields tractability of
SHAP(Q, IND, s). ◀

5 Parameterized Conjunctive Queries with Independent Parameters

In this section, we study the complexity of the Shap score for the parameters of acyclic
conjunctive queries. Later in the section, we also investigate the addition of inequalities to
such queries.
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5.1 Acyclic Conjunctive Queries
We first focus on parameterized acyclic conjunctive queries (pACQs). In particular, we will
also consider classes of Boolean parameterized queries. If R is a Boolean relation schema,
then the only possible inputs to a similarity function sR are pairs of tt and ff. In particular,
the properties from Definition 4.2 become
(s1′) sR(ff, ff) ̸= sR(tt, ff) for (s1);
(s2′) sR(ff, tt) ̸= sR(tt, tt) for (s2).
If s takes Boolean inputs and is strongly dependent on its first argument, then s satisfies one
of (s1′), (s2′). Such s is also always tractable, because it has only four possible inputs: the
pairs of the constants tt and ff.

▶ Proposition 5.1. Let Q be the class of Boolean parameterized queries of the shape

Q(; y1, . . . , yℓ) = ∃x : R1(x, y1) ∧ · · · ∧ Rℓ(x, yℓ) (4)

and let s be strongly dependent on its first argument. Then SHAP(Q, IND, s) is #P-hard.

Proof sketch. It can easily be checked that Q is tractable (although it does not have
polynomially computable parameter support). Therefore, so is s ◦ Q. We use Theorem 4.4
and show that ESIM(Q, IND, s) is #P-hard by reduction from #posDNF. The main idea is as
follows. Let φ be a positive DNF formula with variables Xi and disjuncts φj . Construct a
database D in which the tuples Ri(j, yi) represent the possible truth assignments for Xi to
satisfy φj : If Xi occurs in φj , then yi should be tt; otherwise, Xi does not matter in φj and
yi can take both values tt or ff. With this interpretation, Q, on D, expresses the existence of
a disjunct φj , in which all occurring variables are set to tt. The expected similarity under
the uniform distribution can be used to recover #φ. ◀

▶ Remark 5.2. Our hardness results are stated for PR = IND. Inspection of our proofs reveals
that they already hold for the subclass PR = UNIF of parameter distributions that are uniform
on their support. ⌟

Next, we show a tractability result for parameterized full ACQs. In contrast, by Propo-
sition 5.1, even a single existential quantifier can make the problem difficult. A similar
observation has been made for the (weighted) counting for ACQ answers [24, 9] (which we
use to establish tractability here).

▶ Proposition 5.3. Let Q be the class of full pACQs, and let s be any of Int, NegSymDiff,
or NegDiff. Then SHAP(Q, IND, s) can be solved in polynomial time.

Proof sketch. The main idea of the proof is to introduce an artificial “similarity” function
Count with Count(T1, T2) = |T1|. Tractability of Count ◦ Q is given, since counting the
answers to full ACQs is tractable [24]. Thus, we can use Theorem 4.4 again and discuss
ESIM(Q, IND, Count) first. This problem can be reduced to the weighted answer counting
problem for ACQs, which is also tractable for full ACQs by [9]. A simple construction allows
transferring tractability to SHAP(Q, IND, Int). The similarities NegSymDiff and NegDiff are
linear combinations in Int and Count. Therefore, we can compute the Shap scores for the
former two efficiently by computing the Shap scores for the latter two. ◀

▶ Remark 5.4. In light of [9, Proposition 5], our tractability result for Int may seem surprising.
The construction in our proof relies on the fact that in our case, the intersection concerns
different parameterizations of the same query, one of them being fixed. If it were performed
for two arbitrary full ACQs, acyclicity can be lost. ⌟

ICDT 2024
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5.2 Conjunctive Queries with Inequalities
In this section, we investigate parameterized conjunctive queries Q with inequalities of the
shape xi ≤ yj , where xi is a variable (which also appears in the inequality-free part of Q)
and yj is a parameter. We refer to such queries as p≤CQs. For simplicity, we assume that
all attribute domains are numerical.

If Q is a class of pCQs (i.e., without inequalities), then for t = 0, 1, 2, . . . we let Q(≤,t)

denote the class of p≤CQs obtained by adding at most t inequalities of the above shape to
the body of a query from Q. We let Q≤ =

⋃∞
t=0 Q(≤,t).

▶ Remark 5.5. In practice, such inequalities would typically be used for attributes with
continuous domains, like R. Continuous parameter values would require a treatment of
continuous parameter distributions. Our framework can handle continuous parameter
distributions as follows: On the technical side, the definition of the Shap score needs to
be changed to avoid conditional probabilities. For fully factorized distributions, this can
be done easily. On the algorithmic side, we can discretize the continuous distribution into
intervals defined by the values in the database to obtain a discrete distribution with finite
support that yields the same output. ⌟

▶ Proposition 5.6. Let Q be the class of p≤CQs of the shape

Q(; y1, . . . , yℓ) = ∃x1, . . . , xℓ : R(x1, . . . , xℓ) ∧ (x1 ≤ y1) ∧ · · · ∧ (xℓ ≤ yℓ). (5)

and let s be strongly dependent on its first argument. Then SHAP(Q, IND, s) is #P-hard.

Proof sketch. This proof works very similar to that of Proposition 5.1. First, we observe that
Q is tractable (but again not with polynomially parameter support). Then s ◦ Q is tractable
too. In the remainder of the proof, we prove hardness of ESIM(Q, IND, s) by reduction from
#posDNF, similar to the proof of Proposition 5.1. ◀

The simple shape of (5) indicates that structural restrictions on the usage of inequalities
are needed to establish tractability. If Q is a class of pCQs (i.e., without ≤), then we call a
query Q ∈ Q≤ acyclic (a p≤ACQ), if it becomes a pACQ, when ≤ is interpreted as a relation
symbol. It can be shown that Proposition 5.3 extends to this setting:

▶ Proposition 5.7. Let Q be the class of full pACQs (i.e., without ≤), and let Q′ be a class
of full p≤ACQs such that Q′ ⊆ Q≤. Moreover, let s be any of Int, NegSymDiff, or NegDiff.
Then SHAP(Q′, IND, s) can be computed in polynomial time.

Proof sketch. We replace inequalities xi ≤ yj with atoms R≤(xi, yj) and hard-code the
relevant R≤ tuples in the database D. Then, Proposition 5.3 can be applied. ◀

6 Correlated Parameters and Approximability

In this section, we allow classes PR of parameter distributions with correlations. We only
need to make the following tractability assumptions (which are trivially satisfied by IND).
1. For every fixed ℓ, and every Γ ∈ PRP with |P | = ℓ, the support supp(Γ) can be computed

in polynomial time in ∥Γ∥.
2. For all p and J , we can compute Prp′∼Γ(p′

J = pJ) in polynomial time in ∥Γ∥.
For example, the first property holds for distributions encoded by Bayesian networks. The
second one holds for structurally restricted classes of Bayesian networks, like polytrees [13].
The following result states that given these assumptions, the data complexity of the SHAP
problem remains in polynomial time even for parameter distributions with correlations. The
proof is similar to the proof of Proposition 4.1.
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▶ Proposition 6.1. Let s be a tractable similarity function and let Q(R; P ) be a fixed
parameterized query such that Qp(D) can be computed in polynomial time in ∥D∥ for
all p ∈ Tup[P ]. Moreover, let PR be a class of distributions as described above. Then
SHAP({Q}, PR, s) can be solved in polynomial time.

We conclude this section by explaining how SHAP can be approximated via sampling.
Consider an input (Q, p∗, D, Γ) of SHAP(Q, PR, s), where Q = Q(R; P ) and |p∗| = ℓ. We
rewrite Shap(i) as an expectation in a single probability space, instead of nested expectations
in different spaces. Let {i}0 = ∅ and {i}1 = {i}. Consider the following two-step random
process, for b ∈ {0, 1}:
1. Draw J ⊆ [ℓ] \ i according to Πi.
2. Draw p according to Γ, conditioned on having p agree with p∗ on J .
This defines a joint probability distribution on pairs (p, J). By Γi,1 and Γi,0, we denote the
corresponding marginal distributions over parameter tuples p. A simple calculation shows
that the following equality holds:

Shap(i) = E
p∼Γi,1

[
s(p, p∗)

]
− E

p∼Γi,0

[
s(p, p∗)

]
. (6)

We give a proof of this statement in the full version of the paper [11].
We say that PR admits efficient conditional sampling if for all Γ ∈ PR, all p∗ ∈ supp(Γ),

and all J ⊆ [ℓ], the conditional distribution of Γ subject to pJ = p∗
J can be sampled in

polynomial time in ∥Γ∥ + ∥p∗∥. This is again the case, for example, for structurally restricted
classes of Bayesian networks. By the structure of the two-step process defining Γi,b, we can
efficiently sample from Γi,b if we can efficiently sample from conditional distributions of Γ. A
proof of this can be found in the full version of the paper [11].

A similarity function s is bounded for a class of parameterized queries Q if there are
a ≤ b such that for all (Q, p1, p2), Q ∈ Q, we have a ≤ s(p1, p2) ≤ b. For example, similarity
measures, like Jaccard, are usually [0, 1]-valued. The following theorem states that, under
the assumptions of efficient conditional sampling and boundedness, we have an additive
FPRAS for the Shap score of a parameter.

▶ Theorem 6.2. Let Q be a class of tractable parameterized queries, let s a tractable similarity
function, and let PR be a class of parameter distributions such that
(a) Every Γ ∈ PR admits efficient conditional sampling.
(b) The value range of s is bounded for Q.
Then, for all inputs (Q, p∗, D, Γ) and all i ∈ [ℓ], we can compute a value S satisfying
Pr(|S − Shap(i)| < ε) ≥ 1 − δ in time polynomial in 1

ε , log 1
δ , and the size of the input.

Proof sketch. The proof uses a simple sampling procedure and approximates the two terms
in Equation (6) from the means of the samples. The guarantee is then given by a variant of
Hoeffding’s inequality (requiring boundedness of s to be applicable). ◀

7 Conclusions

We proposed a framework for measuring the responsibility of parameters to the result of a
query using the Shap score. We studied the computational problem of calculating the Shap
score of a given parameter value. We gave general complexity lower and upper bounds, and
presented a complexity analysis for the restricted case of conjunctive queries and independent
parameters. We also discussed the complexity of approximate calculation and correlated
parameters. The rich framework we introduced here offers many opportunities for future
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research. Especially important is the direction of aggregate queries, where the similarity
between results accounts for the numerical values such as sum, average, median, and so
on. For such queries, it is important to study numerical parameter distributions, which are
typically continuous probability measures. It is also important to identify general tractability
conditions for similarity measures and parameter distributions in order to generalize the
upper bounds beyond the special cases that we covered here. Finally, we plan to explore the
applicability of Shap to measuring parameters in various queries and datasets, such as those
studied in the context of fact checking [5, 31].

References
1 Encarnación Algaba, Vito Fragnelli, and Joaquín Sánchez-Soriano, editors. Handbook of the

Shapley Value. CRC Press, 2019. doi:10.1201/9781351241410.
2 Dana Arad, Daniel Deutch, and Nave Frost. LearnShapley: Learning to predict rankings

of facts contribution based on query logs. In CIKM, pages 4788–4792. ACM, 2022. doi:
10.1145/3511808.3557204.

3 Marcelo Arenas, Pablo Barceló, Leopoldo E. Bertossi, and Mikaël Monet. The tractability of
shap-score-based explanations for classification over deterministic and decomposable boolean
circuits. In AAAI, pages 6670–6678. AAAI Press, 2021. doi:10.1609/aaai.v35i8.16825.

4 Leopoldo E. Bertossi, Loreto Bravo, Enrico Franconi, and Andrei Lopatenko. The complexity
and approximation of fixing numerical attributes in databases under integrity constraints. Inf.
Syst., 33(4-5):407–434, 2008. doi:10.1016/j.is.2008.01.005.

5 Adriane Chapman and H. V. Jagadish. Why not? In SIGMOD Conference, pages 523–534.
ACM, 2009. doi:10.1145/1559845.1559901.

6 Xiaotie Deng and Christos H. Papadimitriou. On the complexity of cooperative solution
concepts. Math. Oper. Res., 19(2):257–266, 1994. doi:10.1287/moor.19.2.257.

7 Daniel Deutch, Nave Frost, Amir Gilad, and Oren Sheffer. Explanations for data repair through
shapley values. In CIKM, pages 362–371. ACM, 2021. doi:10.1145/3459637.3482341.

8 Daniel Deutch, Nave Frost, Benny Kimelfeld, and Mikaël Monet. Computing the shapley
value of facts in query answering. In SIGMOD Conference, pages 1570–1583. ACM, 2022.
doi:10.1145/3514221.3517912.

9 Arnaud Durand and Stefan Mengel. The complexity of weighted counting for acyclic conjunctive
queries. J. Comput. Syst. Sci., 80(1):277–296, 2014. doi:10.1016/j.jcss.2013.08.001.

10 U. Faigle and W. Kern. The shapley value for cooperative games under precedence constraints.
Int. J. Game Theory, 21(3):249–266, sep 1992. doi:10.1007/BF01258278.

11 Martin Grohe, Benny Kimelfeld, Peter Lindner, and Christoph Standke. The importance of
parameters in database queries, 2024. arXiv:2401.04606 [cs.DB]. doi:10.48550/arXiv.2401.
04606.

12 Yuri Gurevich and Saharon Shelah. Time polynomial in input or output. J. Symb. Log.,
54(3):1083–1088, 1989. doi:10.2307/2274767.

13 Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques.
Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA, 2009.

14 Nick Koudas, Chen Li, Anthony K. H. Tung, and Rares Vernica. Relaxing join and selection
queries. In VLDB, pages 199–210. ACM, 2006. URL: http://dl.acm.org/citation.cfm?id=
1164146.

15 Marie-Jeanne Lesot, Maria Rifqi, and Hamid Benhadda. Similarity measures for binary and
numerical data: a survey. International Journal of Knowledge Engineering and Soft Data
Paradigms, 1(1):63–84, dec 2008. doi:10.1504/ijkesdp.2009.021985.

16 Yin Lin, Brit Youngmann, Yuval Moskovitch, H. V. Jagadish, and Tova Milo. On detecting
cherry-picked generalizations. Proc. VLDB Endow., 15(1):59–71, 2021. doi:10.14778/3485450.
3485457.

https://doi.org/10.1201/9781351241410
https://doi.org/10.1145/3511808.3557204
https://doi.org/10.1145/3511808.3557204
https://doi.org/10.1609/aaai.v35i8.16825
https://doi.org/10.1016/j.is.2008.01.005
https://doi.org/10.1145/1559845.1559901
https://doi.org/10.1287/moor.19.2.257
https://doi.org/10.1145/3459637.3482341
https://doi.org/10.1145/3514221.3517912
https://doi.org/10.1016/j.jcss.2013.08.001
https://doi.org/10.1007/BF01258278
http://arxiv.org/abs/2401.04606
https://doi.org/10.48550/arXiv.2401.04606
https://doi.org/10.48550/arXiv.2401.04606
https://doi.org/10.2307/2274767
http://dl.acm.org/citation.cfm?id=1164146
http://dl.acm.org/citation.cfm?id=1164146
https://doi.org/10.1504/ijkesdp.2009.021985
https://doi.org/10.14778/3485450.3485457
https://doi.org/10.14778/3485450.3485457


M. Grohe, B. Kimelfeld, P. Lindner, and C. Standke 14:17

17 Ester Livshits, Leopoldo E. Bertossi, Benny Kimelfeld, and Moshe Sebag. The Shapley value
of tuples in query answering. In ICDT, volume 155 of LIPIcs, pages 20: 1–20: 19. Schloss
Dagstuhl, 2020. doi:10.4230/LIPIcs.ICDT.2020.20.

18 Ester Livshits and Benny Kimelfeld. The shapley value of inconsistency measures for functional
dependencies. Log. Methods Comput. Sci., 18(2), 2022. doi:10.46298/lmcs-18(2:20)2022.

19 Scott M. Lundberg, Gabriel G. Erion, Hugh Chen, Alex J. DeGrave, Jordan M. Prutkin, Bala
Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations
to global understanding with explainable AI for trees. Nat. Mach. Intell., 2(1):56–67, 2020.
doi:10.1038/s42256-019-0138-9.

20 Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
NIPS, pages 4765–4774, 2017. URL: https://proceedings.neurips.cc/paper/2017/hash/
8a20a8621978632d76c43dfd28b67767-Abstract.html.

21 Christoph Molnar. Interpretable machine learning: A guide for making black box
models explainable, 2023. Version 2023-08-21. URL: https://christophm.github.io/
interpretable-ml-book.

22 Davide Mottin, Alice Marascu, Senjuti Basu Roy, Gautam Das, Themis Palpanas, and Yannis
Velegrakis. A probabilistic optimization framework for the empty-answer problem. Proc.
VLDB Endow., 6(14):1762–1773, 2013. doi:10.14778/2556549.2556560.

23 Santiago Ontañón. An overview of distance and similarity functions for structured data. Artif.
Intell. Rev., 53(7):5309–5351, 2020. doi:10.1007/s10462-020-09821-w.

24 Reinhard Pichler and Sebastian Skritek. Tractable counting of the answers to conjunctive
queries. J. Comput. Syst. Sci., 79(6):984–1001, 2013. doi:10.1016/j.jcss.2013.01.012.

25 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should I trust you?”:
Explaining the predictions of any classifier. In KDD, pages 1135–1144. ACM, 2016. doi:
10.1145/2939672.2939778.

26 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-
agnostic explanations. In Proceedings of the AAAI conference on artificial intelligence, vol-
ume 32, 2018. doi:10.1609/aaai.v32i1.11491.

27 Alvin E. Roth. The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge University
Press, 1988.

28 B. Sathiya and T. V. Geetha. A review on semantic similarity measures for ontology. J. Intell.
Fuzzy Syst., 36(4):3045–3059, 2019. doi:10.3233/JIFS-18120.

29 Lloyd S. Shapley. A value for n-person games. In Harold W. Kuhn and Albert W. Tucker,
editors, Contributions to the Theory of Games II, pages 307–317. Princeton University Press,
Princeton, 1953.

30 Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011. doi:10.2200/
S00362ED1V01Y201105DTM016.

31 Quoc Trung Tran and Chee-Yong Chan. How to conquer why-not questions. In SIGMOD
Conference, pages 15–26. ACM, 2010. doi:10.1145/1807167.1807172.

32 Guy Van den Broeck, Anton Lykov, Maximilian Schleich, and Dan Suciu. On the tractability
of SHAP explanations. Journal of Artificial Intelligence Research, 74:851–886, jun 2022.
doi:10.1613/jair.1.13283.

33 Guy Van den Broeck and Dan Suciu. Query processing on probabilistic data: A survey. Found.
Trends Databases, 7(3-4):197–341, 2017. doi:10.1561/1900000052.

34 Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In
Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H. Landweber, editors,
Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982,
San Francisco, California, USA, pages 137–146. ACM, 1982. doi:10.1145/800070.802186.

35 You Wu, Pankaj K. Agarwal, Chengkai Li, Jun Yang, and Cong Yu. Computational fact
checking through query perturbations. ACM Trans. Database Syst., 42(1):4:1–4:41, 2017.
doi:10.1145/2996453.

ICDT 2024

https://doi.org/10.4230/LIPIcs.ICDT.2020.20
https://doi.org/10.46298/lmcs-18(2:20)2022
https://doi.org/10.1038/s42256-019-0138-9
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.14778/2556549.2556560
https://doi.org/10.1007/s10462-020-09821-w
https://doi.org/10.1016/j.jcss.2013.01.012
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1609/aaai.v32i1.11491
https://doi.org/10.3233/JIFS-18120
https://doi.org/10.2200/S00362ED1V01Y201105DTM016
https://doi.org/10.2200/S00362ED1V01Y201105DTM016
https://doi.org/10.1145/1807167.1807172
https://doi.org/10.1613/jair.1.13283
https://doi.org/10.1561/1900000052
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/2996453




Conjunctive Queries on Probabilistic Graphs:
The Limits of Approximability
Antoine Amarilli # Ñ

LTCI, Télécom Paris, Institut Polytechnique de Paris, France

Timothy van Bremen #

National University of Singapore, Singapore

Kuldeep S. Meel #

University of Toronto, Canada

Abstract
Query evaluation over probabilistic databases is a notoriously intractable problem – not only in
combined complexity, but for many natural queries in data complexity as well [7, 14]. This motivates
the study of probabilistic query evaluation through the lens of approximation algorithms, and
particularly of combined FPRASes, whose runtime is polynomial in both the query and instance
size. In this paper, we focus on tuple-independent probabilistic databases over binary signatures,
which can be equivalently viewed as probabilistic graphs. We study in which cases we can devise
combined FPRASes for probabilistic query evaluation in this setting.

We settle the complexity of this problem for a variety of query and instance classes, by proving
both approximability and (conditional) inapproximability results. This allows us to deduce many
corollaries of possible independent interest. For example, we show how the results of [8] on counting
fixed-length strings accepted by an NFA imply the existence of an FPRAS for the two-terminal
network reliability problem on directed acyclic graphs: this was an open problem until now [37].
We also show that one cannot extend a recent result [34] that gives a combined FPRAS for self-
join-free conjunctive queries of bounded hypertree width on probabilistic databases: neither the
bounded-hypertree-width condition nor the self-join-freeness hypothesis can be relaxed. Finally, we
complement all our inapproximability results with unconditional lower bounds, showing that DNNF
provenance circuits must have at least moderately exponential size in combined complexity.
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1 Introduction

Tuple-independent probabilistic databases (TID) are a simple and principled formalism to
model uncertainty and noise in relational data [13, 32]. In the TID model, each tuple of a
relational database is annotated with an independent probability of existence; all tuples are
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assumed to be independent. In the probabilistic query evaluation (PQE) problem, given a
Boolean query Q and a TID instance I, we must compute the probability that Q holds in a
subinstance sampled from I according to the resulting distribution. The PQE problem has
been studied in database theory both in terms of combined complexity, where the query and
instance are part of the input, and in data complexity, where the query is fixed and only the
instance is given as input [35]. Unfortunately, many of the results so far [32] show that the
PQE problem is highly intractable, even in data complexity for many natural queries (e.g., a
path query of length three), and hence also in combined complexity.

Faced with this intractability, a natural approach is to study approximate PQE : we
relax the requirement of computing the exact probability that the query holds, and settle
for an approximate answer. This approach has been studied in data complexity [32]: for
any fixed union of conjunctive queries (UCQ), we can always tractably approximate the
answer to PQE, additively (simply by Monte Carlo sampling), or multiplicatively (using
the Karp-Luby approximation algorithm on a disjunctive-normal-form representation of the
query provenance). However, these approaches are not tractable in combined complexity, and
moreover the latter approach exhibits a “slicewise polynomial” runtime of the form O(|I||Q|) –
rather than, say, O(2|Q|poly(|I|)) – which seriously limits its practical utility. Thus, our
goal is to obtain a combined FPRAS for PQE: by this we mean a fully polynomial-time
randomized approximation scheme, giving a multiplicative approximation of the probability,
whose runtime is polynomial in the query and TID (and in the desired precision). This
approach has been recently proposed by van Bremen and Meel [34], who show a combined
FPRAS for CQs when assuming that the query is self-join-free and has bounded hypertree
width; their work leaves open the question of which other cases admit combined FPRASes.

Main Results. In this paper, following the work of Amarilli, Monet and Senellart [7] for
exact PQE, we investigate the combined complexity of approximate PQE in the setting of
probabilistic graphs. In other words, we study probabilistic graph homomorphism, which is
the equivalent analogue of CQ evaluation: given a (deterministic) query graph G, and given
a instance graph H with edges annotated with independent probabilities (like a TID), we
wish to approximate the probability that a randomly selected subgraph H ′ ⊆ H admits a
homomorphism from G. This setting is incomparable to that of [34], because it allows for
self-joins and for queries of unbounded width, but assumes that relations are binary.

Of course, the graph homomorphism problem is intractable in combined complexity if
the input graphs are arbitrary (even without probabilities). Hence, we study the problem
when the query graph and instance graph are required to fall in restricted graph classes,
chosen to ensure tractability in the non-probabilistic setting. We use similar classes as those
from [7]: path graphs which may be one-way (1WP: all edges are oriented from left to right)
or two-way (2WP: edge orientations are arbitrary); tree graphs which may be downward
(DWT: all edges are oriented from the root to the leaves) or polytrees (PT: edge orientations
are arbitrary); and, for the instance graph, directed acyclic graphs (DAG), or arbitrary graphs
(All).

For all combinations of these classes, we show either (i) the existence of a combined
FPRAS, or (ii) the non-existence of such an FPRAS, subject to standard complexity-theoretic
assumptions. We summarize our results in Table 1, respectively for graphs that are labelled
(i.e., the signature features several binary relations), or unlabelled (i.e., only one binary
relation). We emphasize that the signature for labelled graphs is assumed to be fixed and
does not form part of the input, consistent with prior work [7] (although identical results
can likely be obtained even when dropping this assumption).
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▶ Result 1.1 (Sections 3 and 4). The results in Table 1, described in terms of the graph
classes outlined above, hold.

In summary, for the classes that we consider, our results mostly show that the general
intractability of combined PQE carries over to the approximate PQE problem. The important
exception is Proposition 3.1: the PQE problem for one-way path queries on directed acyclic
graphs (DAGs) admits a combined FPRAS. We discuss more in detail below how this result is
proved and some of its consequences. Another case is left open: in the unlabelled setting, we
do not settle the approximability of combined PQE for one-way path queries (or equivalently
downward tree queries) on arbitrary graphs. For all other cases, either exact combined PQE
was already shown to be tractable in the exact setting [7], or we strengthen the #P-hardness
of exact PQE from [7] by showing that combined FPRASes conditionally do not exist. We
stress that our results always concern multiplicative approximations: as non-probabilistic
graph homomorphism is tractable for the classes that we consider, we can always obtain
additive approximations for PQE simply by Monte Carlo sampling. Further note that our
intractability results are always shown in combined complexity – in data complexity, for the
queries that we consider, PQE is always multiplicatively approximable via the Karp-Luby
algorithm [32].

As an important consequence, our techniques yield connections between approximate
PQE and intensional approaches to the PQE problem. Recall that the intensional approach
was introduced by Jha and Suciu [21] in the setting of exact evaluation, and when measuring
data complexity. They show that many tractable queries for PQE also admit tractable
provenance representations. More precisely, for these queries Q, there is a polynomial-time
algorithm that takes as input any database instance and computes a representation of the
Boolean provenance of Q in a form which admits tractable model counting (e.g., OBDD,
d-DNNF, etc.). This intensional approach contrasts with extensional approaches (like [14])
which exploit the structure of the query directly: comparing both approaches is still open [27].

In line with this intensional approach, we complement our conditional hardness results
on approximate PQE with unconditional lower bounds on the combined size of tractable
representations of query provenance. Namely, we show a moderately exponential lower bound
on DNNF provenance representations for all our non-approximable query-instance class pairs:

▶ Result 1.2 (Section 5, informal). Let ⟨G,H⟩ be a conditionally non-approximable query-
instance class pair studied in this paper. For any ϵ > 0, there is an infinite family G1, G2, . . .

of G queries and an infinite family H1, H2, . . . of H instances such that, for any i > 0, any
DNNF circuit representing the provenance ProvGi

Hi
has size at least 2Ω((||Gi||+||Hi||)1−ϵ).

The class of DNNF circuits is arguably the most succinct circuit class in knowledge compilation
that still has desirable properties [15, 16]. Such circuits subsume in particular the class of
structured DNNFs, for which tractable approximation algorithms were recently proposed [9].
Thus, these bounds help to better understand the limitations of intensional approaches.

Consequences. Our results and techniques have several interesting consequences of potential
independent interest. First, they imply that we cannot relax the hypotheses of the result of
van Bremen and Meel mentioned earlier [34]. They show the following result on combined
FPRASes for PQE in the more general context of probabilistic databases:

▶ Theorem 1.3 (Theorem 1 of [34]). Let Q be a self-join-free conjunctive query of bounded
hypertree width, and H a tuple-independent database instance. Then there exists a com-
bined FPRAS for computing the probability of Q on H, i.e., an FPRAS whose runtime is
poly(|Q|, ||H||, ϵ−1), where ϵ is the multiplicative error.

ICDT 2024
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It was left open in [34] whether intractability held without these assumptions on the query.
Hardness is immediate if we do not bound the width of queries and allow arbitrary self-join-
free CQs, as combined query evaluation is then NP-hard already in the non-probabilistic
setting. However, it is less clear whether the self-join-freeness condition can be lifted. Our
results give a negative answer, already in a severely restricted setting:

▶ Result 1.4 (Corollaries 6.1 and 6.2). Assuming RP ≠ NP, neither the bounded hypertree
width nor self-join-free condition in Theorem 1.3 can be relaxed: even on a fixed signature
consisting of a single binary relation, there is no FPRAS to approximate the probability of an
input treewidth-1 CQ on an input treewidth-1 TID instance.

A second consequence implied by our techniques concerns the two-terminal network
reliability problem on directed acyclic graphs (DAGs). Roughly speaking, given a directed
graph G = (V, E) with independent edge reliability probabilities π : E → [0, 1], and two
distinguished vertices s, t ∈ V , the two-terminal network reliability problem asks for the
probability that there is a path from s to t. The problem is known to be #P-hard even on
DAGs [29, Table 2]. The existence of an FPRAS for the two-terminal network reliability
problem is a long-standing open question [22], and the case of DAGs was explicitly left open
by Zenklusen and Laumanns [37]. Our results allow us to answer in the affirmative:

▶ Result 1.5 (Theorem 6.3). There exists an FPRAS for the two-terminal network reliability
problem over DAGs.

This result and our approximability results follow from the observation that path queries
on directed acyclic graphs admit a compact representation of their Boolean provenance as
non-deterministic ordered binary decision diagrams (nOBDDs). We are then able to use a
recent result by Arenas et al. [8, Corollary 4.5] giving an FPRAS for counting the satisfying
assignments of an nOBDD, adapted to the weighted setting.

Paper Structure. In Section 2, we review some of the technical background. We then
present our main results on approximability, divided into the labelled and unlabelled case, in
Sections 3 and 4 respectively. Next, in Section 5, we show lower bounds on DNNF provenance
circuit sizes. In Section 6, we show some consequences for previous work [34], as well as for
the two-terminal network reliability problem. We conclude in Section 7.

2 Preliminaries

We provide some technical background below, much of which closes follows that in [4] and [7].

Graphs and Graph Homomorphisms. Let σ be an non-empty finite set of labels. When
|σ| > 1, we say that we are in the labelled setting, and when |σ| = 1, the unlabelled setting. In
this paper, we study only directed graphs with edge labels from σ. A graph G over σ is a tuple
(V, E, λ) with finite non-empty vertex set V , edge set E ⊆ V 2, and λ : E → σ a labelling
function mapping each edge to a single label (we may omit λ in the unlabelled setting). The
size ||G|| of G is its number of edges. We write x

R−→ y for an edge e = (x, y) ∈ E with
label λ(e) = R, and x −→ y for (x, y) ∈ E (no matter the edge label). We sometimes use a
simple regular-expression-like syntax (omitting the vertex names) to represent path graphs:
for example, we write −→−→ to represent an unlabelled path of length two, and the notation
−→k to denote an unlabelled path of length k. All of this syntax extends to labelled graphs
in the obvious way. A graph H = (V ′, E′, λ′) is a subgraph of G, written H ⊆ G, if V = V ′,
E′ ⊆ E, and λ′ is the restriction of λ to E′.
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A graph homomorphism h from a graph G = (VG, EG, λG) to a graph H = (VH , EH , λH)
is a function h : VG → VH such that, for all (u, v) ∈ EG, we have (h(u), h(v)) ∈ EH and
λH((h(u), h(v)) = λG((u, v)). We write G⇝ H to say that such a homomorphism exists.

Probabilistic Graphs and Probabilistic Graph Homomorphism. A probabilistic graph is a
pair (H, π), where H is a graph with edge labels from σ, and π : E → [0, 1] is a probability
labelling on the edges. Note that edges e in H are annotated both by their probability value
π(e) and their σ-label λ(e). Intuitively, π gives us a succinct specification of a probability
distribution over the 2||H|| possible subgraphs of H, by independently including each edge e

with probability π(e). Formally, the distribution induced by π on the subgraphs H ′ ⊆ H is
defined by Prπ(H ′) =

∏
e∈E′ π(e)

∏
e∈E\E′(1− π(e)).

In this paper, we study the probabilistic graph homomorphism problem PHom for a fixed set
of labels σ: given a graph G called the query graph and a probabilistic graph (H, π) called the
instance graph, both using labels from σ, we must compute the probability Prπ(G⇝ H) that a
subgraph of H , sampled according to the distribution induced by π, admits a homomorphism
from G. That is, we must compute Prπ(G⇝ H) :=

∑
H′⊆H s.t. G⇝H′ Prπ(H ′).

We study PHom in combined complexity, i.e., when both the query graph G and instance
graph (H, π) are given as input. Further, we study PHom when we restrict G and H to be
taken from specific graph classes, i.e., infinite families of (non-probabilistic) graphs, denoted
respectively G and H. (Note that H does not restrict the probability labelling π.) To
distinguish the labelled and unlabelled setting, we denote by PHomL(G,H) the problem of
computing Prπ(G ⇝ H) for G ∈ G and (H, π) with H ∈ H when the fixed set of allowed
labels in G and H has cardinality |σ| > 1, and likewise write PHom̸L(G,H) when G and H are
classes of unlabelled graphs. We focus on approximation algorithms: fixing classes G and H,
a fully polynomial-time randomized approximation scheme (FPRAS) for PHomL(G,H) (in
the labelled setting) or PHom̸L(G,H) (in the unlabelled setting) is a randomized algorithm
that runs in time poly(||G||, ||H||, ϵ−1) on inputs G ∈ G, (H, π) for H ∈ H, and ϵ > 0. The
algorithm must return, with probability at least 3/4, a multiplicative approximation of the
probability Prπ(G⇝ H), i.e., a value between (1− ϵ) Prπ(G⇝ H) and (1 + ϵ) Prπ(G⇝ H).

Graph Classes. We study PHom on the following graph classes, which are defined on a
graph G with edge labels from σ, and are either labelled or unlabelled depending on σ:

G is a one-way path (1WP) if it is of the form a1
R1−−→ . . .

Rm−1−−−−→ am for some m, with all
a1, . . . , am being pairwise distinct, and with Ri ∈ σ for 1 ≤ i < m.
G is a two-way path (2WP) if it is of the form a1 − . . . − am for some m, with pairwise
distinct a1, . . . , am, and each − being Ri−−→ or Ri←−− (but not both) for some label Ri ∈ σ.
G is a downward tree (DWT) if it is a rooted unranked tree (each node can have an
arbitrary number of children), with all edges pointing from parent to child in the tree.
G is a polytree (PT) if its underlying undirected graph is a rooted unranked tree, without
restrictions on the edge directions.
G is a DAG (DAG) if it is a (directed) acyclic graph.

These refine the classes of connected queries considered in [7], by adding the DAG class. We
denote by All the class of all graphs. Note that both 2WP and DWT generalize 1WP and are
incomparable; PT generalizes both 2WP and DWT; DAG generalizes PT; All generalizes DAG
(see Figure 2 of [7]).

ICDT 2024
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Boolean Provenance. We use the notion of Boolean provenance, or simply provenance [20,
3, 30]. In the context of databases, provenance intuitively represents which subsets of the
instance satisfy the query: it is used in the intensional approach to probabilistic query
evaluation [21]. In this paper, we use provenance to show both upper and lower bounds.

Formally, let G = (VG, EG, λG) and H = (VH , EH , λH) be graphs. Seeing EH as a set of
Boolean variables, a valuation ν of EH is a function ν : EH → {0, 1} that maps each edge
of H to 0 or 1. Such a valuation ν defines a subgraph Hν of H where we only keep the edges
mapped to 1, formally Hν = (VH , {e ∈ EH | ν(e) = 1}, λH). The provenance of G on H is
then the Boolean function ProvG

H having as variables the edges EH of H and mapping every
valuation ν of EH to 1 (true) or 0 (false) depending on whether G⇝ Hν or not. Generalizing
this definition, for any integer n, for any choice of a1, . . . , an ∈ VG and b1, . . . , bn ∈ VH , we
write ProvG

H [a1 := b1, . . . , an := bn] to denote the Boolean function that maps valuations ν

of EH to 1 or 0 depending on whether or not there is a homomorphism h : G→ Hν which
additionally satisfies h(ai) = bi for all 1 ≤ i ≤ n.

For our lower bounds, we will often seek to represent Boolean formulas as the provenance
of queries on graphs:

▶ Definition 2.1. Given two graphs G and H, and a Boolean formula ϕ whose variables
{e1, . . . , en} ⊆ EH are edges of H, we say that ProvG

H represents ϕ on (e1, ..., en) if for every
valuation ν : EH → {0, 1} that maps edges not in {e1, ..., en} to 1, we have ν |= ϕ if and only
if ProvG

H(ν) = 1.

Circuits and Knowledge Compilation. We consider representations of Boolean functions
in terms of non-deterministic (ordered) binary decision diagrams, as well as decomposable
circuits, which we define below.

A non-deterministic binary decision diagram (nBDD) on a set of variables V =
{v1, . . . , vn} is a rooted DAG D whose nodes carry a label in V ⊔ {0, 1,∨} and whose
edges can carry an optional label in {0, 1}, subject to the following requirements:
1. there are exactly two leaves (called sinks), one labelled by 1 (the 1-sink), and the other

by 0 (the 0-sink);
2. internal nodes are labelled either by ∨ (called an ∨-node) or by a variable of V (called a

decision node); and
3. each decision node has exactly two outgoing edges, labelled 0 and 1; the outgoing edges

of ∨-nodes are unlabelled.
The size ||D|| of D is its number of edges. Let ν be a valuation of V , and let π be a
path in D going from the root to one of the sinks. We say that π is compatible with ν

if for every decision node n of the path, letting v ∈ V be the variable labelling n, then
π passes through the outgoing edge of n labelled with ν(v). In particular, no constraints
are imposed at ∨-nodes; thus, we may have that multiple paths are compatible with a
single valuation. The nBDD D represents a Boolean function, also written D by abuse
of notation, which is defined as follows: for each valuation ν of V , we set D(ν) := 1 if
there exists a path π from the root to the 1-sink of D that is compatible with ν, and set
D(ν) := 0 otherwise. Given an nBDD D over variables V , we denote by Mods(D) the set of
satisfying valuations ν of D such that D(ν) = 1, and by MC(D) the number |Mods(D)| of
such valuations. Further, given a rational probability function w : V → [0, 1] on the variables
of V , define WMC(D, w) to be the probability that a random valuation ν satisfies F , that is,
WMC(D, w) =

∑
ν∈Mods(D)

∏
x∈V s.t. ν(x)=1 w(x)

∏
x∈V s.t. ν(x)=0 (1− w(x)).
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In this paper, we primarily focus on a subclass of nBDDs called non-deterministic ordered
binary decision diagrams (nOBDDs). An nOBDD D is an nBDD for which there exists a
strict total order ≺ on the variables V such that, for any two decision nodes n ̸= n′ such
that there is a path from n to n′, then, letting v and v′ be the variables that respectively
label n and n′, we have v ≺ v′. This implies that, along any path going from the root to a
sink, the sequence of variables will be ordered according to V , with each variable occurring
at most once. We use nOBDDs because they admit tractable approximate counting of their
satisfying assignments, as we discuss later.

We also show lower bounds on a class of circuits, called decomposable negation normal form
(DNNF) circuits. A circuit on a set of variables V is a directed acyclic graph C = (G, W ),
where G is a set of gates, where W ⊆ G × G is a set of edges called wires, and where we
distinguish an output gate g0 ∈ G. The inputs of a gate g ∈ G are the gates g′ such that there
is a wire (g′, g) in W . The gates can be labelled with variables of V (called a variable gate),
or with the Boolean operators ∨, ∧, and ¬. We require that gates labelled with variables
have no inputs, and that gates labelled with ¬ have exactly one input. A circuit C defines a
Boolean function on V , also written C by abuse of notation. Formally, given a valuation ν

of V , we define inductively the evaluation ν′ of the gates of C by setting ν′(g) := ν(v) for a
variable-gate g labelled with variable v, and setting ν′(g) for other gates to be the result of
applying the Boolean operators of g to ν′(g1), . . . , ν′(gn) for the inputs g1, . . . , gn of g. We
then define C(ν) to be ν′(g0) where g0 is the output gate of C.

The circuit is in negation normal form if negations are only applied to variables, i.e., for
every ¬-gate, its input is a variable gate. The circuit is decomposable if the ∧-gates always
apply to inputs that depend on disjoint variables: formally, there is no ∧-gate g with two
distinct inputs g1 and g2, such that some variable v labels two variable gates g′

1 and g′
2

with g′
1 having a directed path to g1 and g′

2 having a directed path to g2. A DNNF is a
circuit which is both decomposable and in negation normal form. Note that we can translate
nOBDDs in linear time to DNNFs, more specifically to structured DNNFs [4, Proposition 3.8].

Approximate Weighted Counting for nOBDDs. Recently, Arenas et al. [9] showed the
following result on approximate counting of satisfying assignments of an nOBDD.

▶ Theorem 2.2 (Corollary 4.5 of [8]). Let D be an nOBDD. Then there exists an FPRAS
for computing MC(D).

For our upper bounds, we need a slight strengthening of this result to apply to weighted model
counting (WMC) in order to handle probabilities. This can be achieved by translating the
approach used in [34, Section 5.1] to the nOBDD setting. We thus show (see Appendix A):

▶ Theorem 2.3. Let D be an nOBDD, and w : vars(D) → [0, 1] be a rational probability
function defined on the variables appearing in D. Then there exists an FPRAS for computing
WMC(D, w), running in time polynomial in ||D|| and w.

3 Results in the Labelled Setting

We now move on to the presentation of our results. We start with the labelled setting of
probabilistic graph homomorphism in which the fixed signature σ of the query and instance
graph contains more than one label (|σ| > 1). Our results are summarized in Table 1a.
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Table 1 Results on approximation proved in this paper. Key: white ( ) means that the problem
lies in P; light grey ( ) means that it is #P-hard but admits an FPRAS; dark grey ( ) means
#P-hardness and non-existence of an FPRAS, assuming RP ̸= NP. All cells without a reference to a
corresponding proposition are either implied by one of the other results in this paper, or pertain to
exact complexity and were already settled in [7].

(a) Complexity of PHomL(G, H).

G ↓ H →
1WP 2WP DWT PT DAG All

1WP 3.1 3.3
2WP 3.7
DWT 3.5
PT

(b) Complexity of PHom̸L(G, H).

G ↓ H →
1WP 2WP DWT PT DAG All

1WP 4.1 ?
2WP 4.3
DWT 4.2 ?
PT

1WP on DAG. We start by showing the tractability of approximation for
PHomL(1WP, DAG), which also implies tractability of approximation for PHomL(1WP, PT),
since PT ⊆ DAG.

▶ Proposition 3.1. PHomL(1WP, DAG) is #P-hard already in data complexity, but it admits
an FPRAS.

For #P-hardness, the result already holds in the unlabelled setting, so it will be shown
in Section 4 (see Proposition 4.1). Hence, we focus on the upper bound. We rely on the
notion of a topological ordering of the edges of a directed acyclic graph H = (V, E): it is
simply a strict total order (E,≺) with the property that for every consecutive pair of edges
e1 = (a1, a2) and e2 = (a2, a3), we have that e1 ≺ e2. Let us fix such an ordering.

Proof of Proposition 3.1. We will show that every 1WP query on a DAG instance admits an
nOBDD representation of its provenance, which we can compute in combined polynomial time.
We can then apply Theorem 2.3, from which the result follows. Let G = a1

R1−−→ . . .
Rm−−→ am+1

be the input path query, and H the instance graph. We make the following claim:

▷ Claim 3.2. For every v ∈ H, we can compute in time O(||G|| × ||H||) an nOBDD
representing ProvL

G
H [a1 := v] which is ordered by the topological ordering ≺ fixed above.

Proof. Writing H = (V, E), we build an nBDD D consisting of the two sinks and of the
following nodes:
|V | × ||G|| ∨-nodes written nu,i for u ∈ V and 1 ≤ i ≤ m; and
|E| × ||G|| decision nodes written de,i for e ∈ E and 1 ≤ i ≤ m which test the edge e.

Each ∨-node nu,i for u ∈ V and 1 ≤ i ≤ m has outgoing edges to each de,i for every edge e

emanating from u which is labelled Ri. For each decision node de,i, letting w be the target
of edge e, then de,i has an outgoing 0-edge to the 0-sink and an outgoing 1-edge to either
nw,i+1 if i < m or to the 1-sink if i = m. The root of the nBDD is the node nv,1.

This construction clearly respects the time bound. To check correctness of the resulting
nBDD, it is immediate to observe that, for any path from the root to a sink, the sequence of
decision nodes traversed is of the form de1,1, . . . , dek,k where the e1, . . . , ek form a path of
consecutive edges starting at v and successively labelled R1, . . . , Rk. This implies that the
nBDD is in fact an nOBDD ordered by ≺. Further, such a path reaches the 1-sink iff k = m

and all decisions are positive, which implies that whenever the nOBDD accepts a subgraph
H ′ of H then indeed H ′ contains a match of G mapping a1 to v. For the converse direction,
we observe that, for any subgraph H ′ of H containing a match of G mapping a1 to v, then,
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letting e1, . . . , em be the successive edges traversed in the match of G, there is a path from
the root of D to the 1-sink which tests these edges in order. This establishes correctness and
concludes the proof of the claim. ◁

Now observe that ProvL
G
H = ProvL

G
H [a1 := v1] ∨ · · · ∨ ProvL

G
H [a1 := vn], where v1, . . . , vn are

precisely the vertices of H. Thus, it suffices to simply take the disjunction of each nOBDD
obtained using the process above across every vertex in H, which yields in linear time the
desired nOBDD. From here we can apply Theorem 2.3, concluding the proof. ◀

1WP on arbitrary graphs. We show, however, that tractability of approximation does not
continue to hold when relaxing the instance class from DAG to arbitrary graphs. This also
implies that more expressive classes of query graphs – such as 2WP, DWT, and PT also
cannot be tractable to approximate on All instances.

▶ Proposition 3.3. PHomL(1WP, All) does not admit an FPRAS unless RP = NP.

Proof. Our result hinges on the following claim:

▷ Claim 3.4. Let d > 1 be a constant. Given a monotone 2-CNF formula ϕ on n variables
where each variable occurs in at most d clauses, we can build in time O(|ϕ|) a 1WP Gϕ and
All graph Hϕ containing edges (e1, . . . , en) such that ProvGϕ

Hϕ
represents ϕ on (e1, . . . , en).

Proof. Let ϕ =
∧

1≤i≤m(Xf1(i) ∨ Xf2(i)) be the input CNF instance over the variables
{X1, . . . , Xn}. As we are in the labelled setting, let U and R be two distinct labels from the

signature. Define the 1WP query graph Gϕ to be U−→
(

R−→
d+2 U−→

)m

. The instance All graph

Hϕ is defined in the following way:
For all 1 ≤ i ≤ n, add an edge ai

R−→ bi.
Add an edge c0

U−→ d0 and for each clause 1 ≤ j ≤ m, an edge cj
U−→ dj .

For each clause 1 ≤ j ≤ m and variable Xi occurring in that clause, let p be the number
of this occurrence of Xi in the formula (i.e., the occurrence of Xi in the j-th clause is the
p-th occurrence of Xi), with 1 ≤ p ≤ d by assumption on ϕ. Then add a path of length p

of R-edges from dj−1 to ai and a path of length (d + 1)− p of R-edges from bi to cj .
The construction of Gϕ and Hϕ is in O(|ϕ|). Furthermore, notice the following (⋆). For any
1 ≤ i ≤ n, the edge e = ai

R−→ bi has at most d incoming R-paths and d outgoing R-paths;
the outgoing paths have pairwise distinct length (i.e., the number of edges until the next
edge is a U -edge), and likewise for the incoming paths. What is more, each incoming R-path
of length p corresponds to an outgoing path of length (d + 1)− p and together they connect
some dj−1 to some cj via the edge e, where the j-th clause contains variable Xi.

Now, define (e1, . . . , en) to be precisely the edges of the form ai
R−→ bi for every 1 ≤ i ≤ n.

Intuitively, the presence or absence of each of these edges corresponds to the valuation of
each variable in ϕ. We claim that ProvGϕ

Hϕ
represents ϕ on (e1, . . . , en). It will suffice to show

that there is a bijection between the satisfying valuations of ϕ, and the subgraphs of Hϕ that
both (i) contain all the edges not in (e1, . . . , en), as these are fixed to 1, and (ii) admit a
homomorphism from Gϕ.

Indeed, consider the bijection defined in the obvious way: keep the edge ai
R−→ bi iff Xi is

assigned to true in the valuation. First suppose that some valuation of {X1, . . . , Xn} satisfies
ϕ. Then, for each clause 1 ≤ j ≤ m, there is a variable in the clause which evaluates to
true. We build a match of Gϕ on the corresponding possible world of Hϕ by mapping the
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j-th U -edge to cj
U−→ dj for all 0 ≤ j ≤ m, and mapping the R-paths for each 1 ≤ j ≤ m by

picking a variable Xi witnessing that the clause is satisfied and going via the path of length
1 + (p) + ((d + 1)− p) = d + 2 that uses the edge ai

R−→ bi, which is present by assumption.
Conversely, assume that we have a match of Gϕ on a possible world of Hϕ. We show that

the corresponding valuation satisfies ϕ. Consider the edge cj
U−→ dj to which the first U -edge

is mapped. The R-path that follows must be mapped to a path from dj to some ai, and
then take the edge ai

R−→ bi, whose presence witnesses that the corresponding variable Xi is
true. But importantly, in order for the path to have length precisely d + 2 before reaching
the next U -edge, it must be the case that the length of the path before and after the edge
ai

R−→ bi sums up to d + 1. As a result of (⋆), this is only possible by taking a path that leads
to cj+1

U−→ dj+1, and so we know that variable Xi occurs in the j-th clause so that clause is
satisfied. Repeating the argument shows that all clauses from the j-th onwards are satisfied,
and as we have m + 1 U -edges in the graph Hϕ and m + 1 U -edges in the graph Gϕ we know
that in fact we must have mapped the first U -edge to the first U -edge (i.e., j = 0), and all
clauses are satisfied. ◁

By [31, Theorem 2], counting the independent sets of a graph of maximal degree 6 admits an
FPRAS only if RP = NP. It is not hard to see that this problem is equivalent to counting
satisfying assignments of a monotone 2-CNF formula in which a variable can appear in up to
6 clauses (see, for example, [25, Proposition 1.1]). Thus, we can apply Claim 3.4 above for
the class of formulas in which d = 6 to obtain (deterministic) graphs Gϕ and Hϕ, and then
build a probabilistic graph H ′

ϕ identical to Hϕ, in which the edges (e1, . . . , en) are assigned
probability 0.5 and all other edges probability 1, giving the desired reduction. ◀

DWT on DWT. Having classified the cases of one-way path queries (1WP) on all instances
classes considered, we turn to more expressive queries. The next two query classes to consider
are two-way path queries (2WP) and downward trees queries (DWT). For these query classes,
exact computation on 2WP instances is tractable by [7], so the first case to classify is that of
DWT instances. Exact computation is intractable in this case by [7], and we show here that,
unfortunately, approximation is intractable as well, so that the border for exact tractability
coincides with that for approximate tractability. We first focus on DWT queries:

▶ Proposition 3.5. PHomL(DWT, DWT) does not admit an FPRAS unless RP = NP.

Proof. Our result hinges on the following, whose proof adapts [26, Proposition 2.4.3]:

▷ Claim 3.6. Given a monotone 2-CNF formula ϕ on n variables, we can build in time
O(|ϕ| log |ϕ|) DWT graphs Gϕ and Hϕ, with the latter containing edges (e1, . . . , en) such
that ProvGϕ

Hϕ
represents ϕ on (e1, . . . , en).

Proof. Let ϕ =
∧

1≤i≤m(Xf1(i) ∨ Xf2(i)) be the input CNF instance over the variables
{X1, . . . , Xn}. We let L = ⌈log2 m⌉ be the number of bits needed to write clause numbers in
binary. As we are in the labelled setting, let 0 and 1 be two distinct labels from the signature.
Construct the query graph Gϕ as follows:

For all 1 ≤ i ≤ m, add an edge z
0−→ xi.

For each 1 ≤ i ≤ m, letting b1 · · · bL be the clause number i written in binary, add a path
of L edges xi

b1−→ yi,1
b2−→ . . .

bL−1−−−→ yi,L−1
bL−→ yi,L.

Now, construct the DWT instance Hϕ as follows:
For all 1 ≤ i ≤ n, add the edges a

0−→ ci.
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For all 1 ≤ i ≤ n and 1 ≤ j ≤ m such that Xi occurs in the j-th clause of ϕ (i.e., Xi is in
f−1

1 (j) or f−1
2 (j)), letting b1 · · · bL be the clause number j written in binary, add a path

of L edges ci
b1−→ di,j,1

b2−→ . . .
bL−1−−−→ di,j,L−1

bL−→ di,j,L.
It is clear that Gϕ ∈ DWT, Hϕ ∈ DWT, and that both graphs can be built in time
O(|ϕ| log |ϕ|). Now, define (e1, . . . , en) to be the edges of the form a

0−→ ci for every 1 ≤ i ≤ n.
We claim that ProvGϕ

Hϕ
represents ϕ on (e1, . . . , en). It suffices to show that there is a

bijection between the satisfying valuations ν of ϕ, and the subgraphs of Hϕ that both (i)
contain all the edges not in (e1, . . . , en), as these are fixed to 1, and (ii) admit a homomorphism
from Gϕ. Indeed, consider the bijection defined in the obvious way: keep the edge a

T−→ ci iff
Xi is assigned to true in the valuation. First, if there is a homomorphism from Gϕ to such a
subgraph, then the root z of the query must be mapped to a (since this is the only element
with outgoing paths of length L + 1 as prescribed by the query), and then it is clear that the
image of any such homomorphism must take the form of a DWT instance that contains, for
each clause number 1 ≤ i ≤ m, a path of length L representing this clause number. This
witnesses that the valuation ν makes a variable true which satisfies clause i. Hence, ν is a
satisfying assignment of ϕ. Conversely, for every satisfying assignment ν, considering the
corresponding subgraph of Hϕ, we can construct a homomorphism mapping the edges of Gϕ

to the edges of Hϕ, by mapping the path of every clause to a path connected to a variable
that witnesses that this clause is satisfied by ν. ◁

The result then follows by an argument analogous to the one in Proposition 3.3. ◀

2WP on DWT. We then move to 2WP queries:

▶ Proposition 3.7. PHomL(2WP, DWT) does not admit an FPRAS unless RP = NP.

This result follows from a general reduction technique from DWT queries on DWT instances
to 2WP queries on DWT instances, which allows us to conclude using the result already
shown on DWT queries (Proposition 3.5). We note that this technique could also have been
used to simplify the proofs of hardness of exact computation in [7] and [2]. We claim:

▶ Lemma 3.8. For any DWT query G, we can compute in time O(||G||) a 2WP query G′

which is equivalent to G on DWT instances: for any DWT H, there is a homomorphism
from G to H iff there is a homomorphism from G′ to H.

For lack of space, we give only the construction of G′ here, and defer the full proof of the
correctness of this construction to Appendix B.

Proof. Let G be a DWT query. We build G′ following a tree traversal of G. More precisely,
we define the translation inductively as follows. If G is the trivial query with no edges,
then we let the translation of G be the trivial query with no edges. Otherwise, let x be
the root of G, let x

R1−−→ y1, . . . , x
Rn−−→ yn be the successive children, and call G1, . . . , Gn the

DWT subqueries of G respectively rooted at y1, . . . , yn. We define the translation of G to
be R1−−→ G′

1
R1←−− · · · Rn−−→ G′

n
Rn←−−, where G′

1, . . . , G′
n are the respective translations of G1, . . . ,

Gn. This translation is in linear time, and the translated query has twice as many edges as
the original query. ◀

Lemma 3.8 allows us to conclude from Proposition 3.5, as it allows us to reduce in linear
time (in combined complexity) the evaluation of a DWT query on a DWT probabilistic instance
to the evaluation of an equivalent 2WP query on the same instance. This establishes that any
approximation algorithm for 2WP queries on DWT instances would give an approximation
for DWT queries on DWT instances, which by Proposition 3.5 is conditionally impossible.
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These results complete Table 1, concluding the classification of the complexity of PHom
in the labelled setting: all cases that were intractable for exact computation are also hard to
approximate, with the notable exception of 1WP queries on DAG instances.

4 Results in the Unlabelled Setting

We now turn to the unlabelled setting of probabilistic graph homomorphism, where the
signature σ has only one label (|σ| = 1). Our results are summarized in Table 1b: we
settle all cases except PHom̸L(1WP, All) and PHom̸L(DWT, All), for which we do not give an
FPRAS or hardness of approximation result. Note that both problems are #P-hard for exact
computation [7]. Further, they are in fact equivalent, because DWT queries are equivalent to
1WP queries in the unlabelled setting (stated in [7] and reproved as Proposition 4.2 below).

1WP on DAG. We start with 1WP queries, and state the following:

▶ Proposition 4.1. PHom̸L(1WP, DAG) is #P-hard already in data complexity, but it admits
an FPRAS.

The positive result directly follows from the existence of an FPRAS in the labelled setting,
which we have shown in the previous section (Proposition 3.1). By contrast, the #P-hardness
does not immediately follow from previous work, as DAG queries were not studied in [7]. We
can nevertheless obtain it by inspecting the usual #P-hardness proof of PQE for the CQ
∃x y R(x), S(x, y), T (y) on TID instances [32]. We give a proof in Appendix C.

DWT on DAG. We can easily generalize the above result from 1WP queries to DWT queries,
given that they are known to be equivalent in the unlabelled setting:

▶ Proposition 4.2 ([7]). PHom̸L(DWT, DAG) is #P-hard already in data complexity, but
admits an FPRAS.

This is implicit in [7, Proposition 5.5]: we give a self-contained proof in Appendix D.

2WP on PT. In contrast to 1WP queries, which are exactly tractable on PT instances and
admit an FPRAS on DAG instances, 2WP queries have no FPRAS already on PT instances:

▶ Proposition 4.3. PHom̸L(2WP, PT) does not admit an FPRAS unless RP = NP.

Proof. It suffices to prove the claim below, which is the analogue to the unlabelled setting
of Claim 3.6 after having transformed the query to 2WP via Lemma 3.8:

▷ Claim 4.4. Given a monotone 2-CNF formula ϕ on n variables, we can build in time
O(|ϕ| log |ϕ|) an unlabelled 2WP graph Gϕ and unlabelled PT graph Hϕ, with the latter
containing edges (e1, . . . , en) such that ProvGϕ

Hϕ
represents ϕ on (e1, . . . , en).

We show this claim via a general-purpose reduction from the labelled setting to the unlabelled
setting, which works in fact for All queries on All graphs. This reduction codes labels via
specific unlabelled paths; a similar but ad-hoc technique was used to prove [7, Proposition 5.6]:
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▶ Lemma 4.5. For any constant k ≥ 2, given a All query G and All graph H on a labelled
signature with relation labels {1, . . . , k}, we can construct in linear time an unlabelled All
query G′ and All graph H ′ such that there is a (labelled) homomorphism from G to H iff
there is an (unlabelled) homomorphism from G′ to H ′. Further, if G is a 2WP then G′ is
also a 2WP, and if H is a PT then H ′ is also a PT.

Proof. We construct G′ from G and H ′ from H by replacing every edge by a fixed path that
depends on the label of the edge. Specifically, we consider every edge x

i−→ y of the query,
where x is the source, t is the target, and 1 ≤ i ≤ k is the label. We code such an edge in G′

by a path defined as follows: x→k+3 ← →i+1 ←k+2 y, where exponents denote repeated
edges and where intermediate vertices are omitted. We code the instance H to H ′ in the
same way. This process is clearly linear-time, and it is clear that if G is a 2WP then G′ is
also a 2WP, and that if H is a PT then H ′ is also a PT. Further, to establish correctness of
the reduction, one direction of the equivalence is trivial: a homomorphism h from G to H

clearly defines a homomorphism from G′ to H ′ by mapping the coding in G′ of every edge e

of G to the coding of the image of e by h in H ′

What is interesting is the converse direction of the equivalence. We establish it via a claim
on homomorphic images of the coding of individual edges: for any 1 ≤ i ≤ k, letting e′ be
the coding of an edge e = x

i−→ y, for any homomorphism h′ from e′ to H ′, there must exist
an edge f = a

i−→ b in H such that h′ maps x to a and y to b. This claim implies the converse
direction of the equivalence: if there is a homomorphism h′ from G′ to H ′, then applying
the claim to the restrictions of h′ to the coding of each edge of G, we see that h′ defines
a function h that maps the vertices of G to vertices of H, and that h is a homomorphism.
Hence, all that remains is to prove the claim, which we do in the rest of the proof.

Consider an edge e = x
i−→ y as in the claim statement, and let e′ be its coding and h′

the homomorphism mapping e′ to H ′. Observe that, in H ′, the only directed paths of length
k + 3 are the first k + 3 edges of the coding of edges of H. (This hinges on the fact that
the paths of length k + 3 defined in the coding of edges of H are never adjacent in H ′ to
another edge that goes in the same direction, even across multiple edges, and no matter
the directions of edges in H.) This means that, considering the directed path →k+3 at the
beginning of e′, there must be an edge f = a

j−→ b of H, with coding f ′ in H ′, such that the
source x of e is mapped to the source a of f , and the first k + 3 edges of e′ are mapped to the
first k + 3 edges of f ′. What remains to be shown is that i = j and that y is mapped to b.

To this end, we continue studying what can be the image of e′ into f ′. After the directed
path →k+3, the next edge ← of e′ must have been mapped forward to the next edge ←
of f ′: indeed, it cannot be mapped backwards on the last edge of the preceding path →k+3

because k + 3 > 1 and i + 1 > 1 so the next edges →i+1 would then have no image. Then
the next directed path →i+1 of e′ is mapped in f ′, necessarily forward because we fail if
we map the first edge backwards: this implies that there at least as many edges going in
that direction in f ′ as there are in e′, i.e., i ≤ j. Now, the last path ←k+2 of e′ cannot be
mapped backwards because k + 2 > i + 1, so we must map it forwards in f ′: for this to be
possible, we must have reached the end of the directed path →j+1 in f ′, so that we have
j = i. We are now done reading e′ and f ′, so we have indeed mapped y to b. This, along
with i = j, establishes that the claim is true, and concludes the proof. ◀

We can thus prove Claim 4.4, starting from Claim 3.6 and translating it first via Lemma 3.8
and then via Lemma 4.5. Using the same argument as in Proposition 3.3, we conclude the
proof of Proposition 4.3. ◀
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5 DNNF Lower Bounds

In this section, we investigate how to represent the provenance of the query-instance pairs that
we consider. More specifically, we study whether there exist polynomially-sized representations
in tractable circuit classes of Boolean provenance functions ProvG

H , for G ∈ G and H ∈ H
in the graph classes studied in this paper. Certainly, for every graph class G and H,
the (conditional) non-existence of an FPRAS for PHom(G,H) implies that, conditionally,
we cannot compute nOBDD representations of provenance in polynomial time combined
complexity – as otherwise we could obtain an FPRAS via Theorem 2.3. In fact, beyond
nOBDDs, it follows from [9, Theorem 6.3] that, conditionally, we cannot tractably compute
provenance representations even in the more general class of structured DNNFs. Indeed, as
for nOBDDs, fixed edges in the reductions can be handled by conditioning [28, Proposition 4].

However, even in settings where there is conditionally no combined FPRAS, it could be
the case that there are polynomial-sized tractable circuits that are difficult to compute, or
that we can tractably compute circuits in a more general formalism such as unstructured
DNNF circuits. The goal of this section is to give a negative answer to these two questions,
for all of the non-approximable query-instance class pairs studied in Sections 3 and 4.

Specifically, we show moderately exponential lower bounds on the size of DNNF circuits
for infinite families of graphs taken from these classes. Remember that DNNF is arguably the
most general knowledge compilation circuit class that still enjoys some tractable properties [16].
Hence, these lower bounds imply that no tractable provenance representation exists in other
tractable subclasses of DNNFs, e.g., structured DNNFs [28], or Decision-DNNFs [10]. We
also emphasize that, unlike the intractability results of Sections 3 and 4 which assumed
RP ̸= NP, all of the DNNF lower bounds given here are unconditional.

We first show a strongly exponential lower bound for labelled 1WP on All instances:

▶ Proposition 5.1. There is an infinite family G1, G2, . . . of labelled 1WP queries and an
infinite family H1, H2, . . . of labelled All instances such that, for any i > 0, any DNNF circuit
representing the Boolean function ProvGi

Hi
has size 2Ω(||Gi||+||Hi||).

Proof. By treewidth of a monotone 2-CNF formula, we mean the treewidth of the graph on
the variables whose edges correspond to clauses in the expected way; and by degree we mean
the maximal number of clauses in which any variable occurs. Let us consider an infinite
family ϕ1, ϕ2, . . . of monotone 2-CNF formulas of constant degree d = 3 whose treewidth is
linear in their size: this exists by [18, Proposition 1, Theorem 5]. We accordingly know by
[4, Corollary 8.5] that any DNNF computing ϕi must have size 2Ω(|ϕi|) for all i > 1. Using
Claim 3.4, we obtain infinite families G1, G2, . . . of 1WP and H1, H2, . . . of All graphs such
that ProvGi

Hi
represents ϕi on some choice of edges, and we have ||Gi||+ ||Hi|| = O(|ϕi|) for

all i > 0 (from the running time bound). Now, any representation of ProvL
Gi

Hi
as a DNNF

can be translated in linear time to a representation of ϕi as a DNNF of the same size, simply
by renaming the edges (e1, . . . , en) to the right variables, and replacing all other variables
by the constant 1. This means that the lower bound on the size of DNNFs computing ϕi

also applies to DNNFs representing ProvGi

Hi
, i.e., they must have size at least 2Ω(|ϕi|), hence

2Ω(||Gi||+||Hi||) as we claimed. ◀

We now present lower bounds for the remaining non-approximable query-instance class pairs,
which are not exponential but rather moderately exponential. This is because our encoding of
CNFs into these classes (specifically, Claim 3.6, and its images by Lemma 3.8 and Lemma 4.5)
do not give a linear, but rather linearithmic bound. We leave to future work the question of
proving strongly exponential lower bounds for these classes, like we did in Proposition 5.1.
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▶ Proposition 5.2. For any ϵ > 0, there is an infinite family G1, G2, . . . of labelled
DWT queries and an infinite family H1, H2, . . . of labelled DWT instances such that, for
any i > 0, any DNNF circuit representing the Boolean function ProvGi

Hi
has size at least

2Ω((||Gi||+||Hi||)1−ϵ).

Proof. The proof is identical to that of Proposition 5.1, except that we apply Claim 3.6:
for all i > 0, ||Gi||+ ||Hi|| = O(|ϕi| log |ϕi|). We perform a change of variables: if we write
y = |ϕi| log |ϕi|, then we can show that |ϕi| = eW (y), where W denotes the Lambert W

function [12]; equivalently |ϕi| = y/W (y) as the W function satisfies W (z)eW (z) = z for all
z > 0. Thus, the lower bound of 2Ω(|ϕi|) on DNNF representations of ϕi implies that any
DNNF for ProvGj

Hj
has size at least 2Ω

( ||Gi||+||Hi||
W (||Gi||+||Hi||)

)
. In particular, as W grows more slowly

than nϵ for any ϵ > 0, this gives a bound of 2Ω((||Gi||+||Hi||)1−ϵ) for sufficiently large ϕj . ◀

The proof for the following two claims are analogous to that of Proposition 5.2, but using
Lemma 3.8 (for the first result) and Claim 4.4 (for the second result):

▶ Proposition 5.3. For any ϵ > 0, there is an infinite family G1, G2, . . . of labelled
2WP queries and an infinite family H1, H2, . . . of labelled DWT instances such that, for
any i > 0, any DNNF circuit representing the Boolean function ProvGi

Hi
has size at least

2Ω((||Gi||+||Hi||)1−ϵ).

▶ Proposition 5.4. For any ϵ > 0, there is an infinite family G1, G2, . . . of unlabelled
2WP queries and an infinite family H1, H2, . . . of unlabelled PT instances such that, for
any i > 0, any DNNF circuit representing the Boolean function ProvGi

Hi
has size at least

2Ω((||Gi||+||Hi||)1−ϵ).

We finish by remarking that all of the lower bounds above apply to acyclic query classes
(i.e., queries of treewidth 1), for which non-probabilistic query evaluation is well-known to be
linear in combined complexity [36]. Thus, these results give an interesting example of query
classes for which query evaluation is in linear-time combined complexity, but computing even
a DNNF representation of query provenance is (moderately) exponential.

6 Consequences

In this section, we consider some corollaries and extensions to the results above.

Optimality of a Previous Result. Recall from the introduction that, as was shown in [34],
PQE for self-join-free conjunctive queries of bounded hypertree width admits a combined
FPRAS (in the general setting of probabilistic databases, rather than probabilistic graphs):

▶ Theorem 1.3 (Theorem 1 of [34]). Let Q be a self-join-free conjunctive query of bounded
hypertree width, and H a tuple-independent database instance. Then there exists a com-
bined FPRAS for computing the probability of Q on H, i.e., an FPRAS whose runtime is
poly(|Q|, ||H||, ϵ−1), where ϵ is the multiplicative error.

Can a stronger result be achieved? Our Proposition 4.3 immediately implies the following:

▶ Corollary 6.1. Assuming RP ̸= NP, even on a fixed signature consisting of a single binary
relation there is no FPRAS to approximate the probability of an input treewidth-1 CQ on an
input treewidth-1 TID instance.
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Hence, tractability no longer holds with self-joins. So, as unbounded hypertree width queries
are intractable in combined complexity even for deterministic query evaluation, we have:

▶ Corollary 6.2. The result in Theorem 1.3 is optimal in the following sense: relaxing either
the self-join-free or bounded-hypertree-width condition on the query implies the non-existence
of a combined FPRAS, unless RP = NP.

Network Reliability. The two-terminal network reliability problem asks the following: given
a graph with probabilistic edges and with source and target vertices s and t, compute the
probability that s and t remain connected, assuming independence across edges. Valiant
showed that this problem is #P-complete [33, Theorem 1], and Provan and Ball showed
that this holds already on directed acyclic graphs [29, Table 1]. Hardness also holds for the
related problem of all-terminal reliability [29, Table 1], which asks for the probability that
the probabilistic graph remains connected as a whole. Given the inherent #P-hardness of
these problems, subsequent research has focused on developing tractable approximations.

Although significant progress has been made on FPRASes for all-terminal
(un)reliability [19, 23], designing an FPRAS for two-terminal reliability has remained open.
This question was even open for the restricted case of directed acyclic graphs; indeed, it
was explicitly posed as an open problem by Zenklusen and Laumanns [37]. We now point
out that the nOBDD construction of Proposition 3.1 implies an FPRAS for two-terminal
reliability on DAGs, again by leveraging the approximate counting result of Arenas et al. [8]:

▶ Theorem 6.3. There exists an FPRAS for the two-terminal network reliability problem
over directed acyclic graphs.

Proof. Given as input an unlabelled probabilistic DAG instance H = (V, E) and two dis-
tinguished source and target vertices s and t ∈ V , construct the labelled DAG instance
H ′ = (V, E, λ) as follows. All vertices and edges are identical to that of H , but every edge of
the form (s, x) emanating from s is assigned label λ((s, x)) = Rs, every edge (x, t) directed
towards t is assigned label λ((x, t)) = Rt, and every other edge (x, y) is assigned the label
λ((x, y)) = R. In the case that (s, t) ∈ E, then assign λ((s, t)) = R′.

Now, by the result in Proposition 3.1, we can construct an nOBDD for each of the following
|E| different labelled 1WP queries: R′

−→, Rs−−→ Rt−−→, Rs−−→ R−→ Rt−−→, . . . , Rs−−→
(

R−→
)|E|−2 Rt−−→. All of

the nOBDDs have the same ordering (given by a topological ordering of the edges of H ′),
so we may take their disjunction to obtain a (complete) nOBDD D in linear time, whose
accepting paths are in bijection with the (s, t)-connected valuations of the edges in H. From
here we conclude by applying Theorem 2.3. ◀

We remark that, after submission of this work, Theorem 6.3 was also obtained independently
(and with a different approach) in a recent preprint by Feng and Guo [17].

7 Conclusions and Future Work

We studied the existence and non-existence of combined approximation algorithms for the
PQE problem, as well as the existence of polynomially-sized tractable circuit representations
of provenance, under the lens of combined complexity.

We see several potential directions for future work. First, it would be interesting to see
if the results in Proposition 3.1 and Theorem 6.3 can be extended beyond DAG instances:
graph classes of bounded DAG-width [11] could be a possible candidate here. We also leave
open the problem of filling in the two remaining gaps in Table 1. Namely, we would like to
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obtain either an FPRAS or hardness of approximation result for the equivalent problems
PHom̸L(1WP, All) and PHom̸L(DWT, All). It is also natural to ask whether our results can
be lifted from graph signatures to arbitrary relational signatures, or whether they apply in
the unweighted setting where all edges are required to have the same probability [6, 1, 24].
Another question is whether we can classify the combined complexity of approximate PQE
for disconnected queries, as was done in [7] in the case of exact computation, for queries that
feature disjunction such as UCQs (already in the exact case [7]), or for more general query
classes, e.g., with recursion [5].

References
1 Antoine Amarilli. Uniform reliability for unbounded homomorphism-closed graph queries. In

ICDT, 2023. doi:10.4230/LIPIcs.ICDT.2023.14.
2 Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart. Combined tractability

of query evaluation via tree automata and cycluits. In ICDT, 2017. doi:10.4230/LIPIcs.
ICDT.2017.6.

3 Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Provenance circuits for trees and
treelike instances. In ICALP, 2015. doi:10.1007/978-3-662-47666-6_5.

4 Antoine Amarilli, Florent Capelli, Mikaël Monet, and Pierre Senellart. Connecting knowledge
compilation classes and width parameters. ToCS, 2020. doi:10.1007/s00224-019-09930-2.

5 Antoine Amarilli and İsmail İlkan Ceylan. The dichotomy of evaluating homomorphism-closed
queries on probabilistic graphs. LMCS, 2022. doi:10.46298/lmcs-18(1:2)2022.

6 Antoine Amarilli and Benny Kimelfeld. Uniform reliability of self-join-free conjunctive queries.
LMCS, 2022. doi:10.46298/lmcs-18(4:3)2022.

7 Antoine Amarilli, Mikaël Monet, and Pierre Senellart. Conjunctive queries on probabilistic
graphs: Combined complexity. In PODS, 2017. doi:10.1145/3034786.3056121.

8 Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros. #NFA
admits an FPRAS: efficient enumeration, counting, and uniform generation for logspace
classes. J. ACM, 68(6), 2021. Extended version available as arXiv preprint arXiv:1906.09226
[cs.DS]. doi:10.1145/3477045.

9 Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros. When is ap-
proximate counting for conjunctive queries tractable? In STOC. ACM, 2021. Extended version
available as arXiv preprint arXiv:2005.10029 [cs.DS]. doi:10.1145/3406325.3451014.

10 Paul Beame, Jerry Li, Sudeepa Roy, and Dan Suciu. Exact model counting of query expressions:
Limitations of propositional methods. TODS, 42(1), 2017. doi:10.1145/2984632.

11 Dietmar Berwanger, Anuj Dawar, Paul Hunter, Stephan Kreutzer, and Jan Obdrzálek. The
DAG-width of directed graphs. J. Comb. Theory, Ser. B, 102(4), 2012. doi:10.1016/j.jctb.
2012.04.004.

12 Robert M. Corless, Gaston H. Gonnet, D. E. G. Hare, David J. Jeffrey, and Donald E. Knuth.
On the lambert W function. Adv. Comput. Math., 5(1), 1996. doi:10.1007/BF02124750.

13 Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. In
VLDB, 2004. doi:10.1016/B978-012088469-8.50076-0.

14 Nilesh N. Dalvi and Dan Suciu. The dichotomy of probabilistic inference for unions of
conjunctive queries. J. ACM, 59(6), 2012. doi:10.1145/2395116.2395119.

15 Adnan Darwiche. Decomposable negation normal form. J. ACM, 48(4), 2001. doi:10.1145/
502090.502091.

16 Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. Artif. Intell. Res., 17,
2002. doi:10.1613/jair.989.

17 Weiming Feng and Heng Guo. An FPRAS for two terminal reliability in directed acyclic
graphs, 2023. doi:10.48550/arXiv.2310.00938.

18 Martin Grohe and Dániel Marx. On tree width, bramble size, and expansion. J. Comb. Theory,
Ser. B, 99(1), 2009. doi:10.1016/j.jctb.2008.06.004.

ICDT 2024

https://doi.org/10.4230/LIPIcs.ICDT.2023.14
https://doi.org/10.4230/LIPIcs.ICDT.2017.6
https://doi.org/10.4230/LIPIcs.ICDT.2017.6
https://doi.org/10.1007/978-3-662-47666-6_5
https://doi.org/10.1007/s00224-019-09930-2
https://doi.org/10.46298/lmcs-18(1:2)2022
https://doi.org/10.46298/lmcs-18(4:3)2022
https://doi.org/10.1145/3034786.3056121
https://arxiv.org/abs/1906.09226
https://doi.org/10.1145/3477045
https://arxiv.org/abs/2005.10029
https://doi.org/10.1145/3406325.3451014
https://doi.org/10.1145/2984632
https://doi.org/10.1016/j.jctb.2012.04.004
https://doi.org/10.1016/j.jctb.2012.04.004
https://doi.org/10.1007/BF02124750
https://doi.org/10.1016/B978-012088469-8.50076-0
https://doi.org/10.1145/2395116.2395119
https://doi.org/10.1145/502090.502091
https://doi.org/10.1145/502090.502091
https://doi.org/10.1613/jair.989
https://doi.org/10.48550/arXiv.2310.00938
https://doi.org/10.1016/j.jctb.2008.06.004


15:18 Conjunctive Queries on Probabilistic Graphs: The Limits of Approximability

19 Heng Guo and Mark Jerrum. A polynomial-time approximation algorithm for all-terminal
network reliability. SIAM J. Comput., 48(3), 2019. doi:10.1137/18M1201846.

20 Tomasz Imielinski and Witold Lipski Jr. Incomplete information in relational databases. J.
ACM, 31(4), 1984. doi:10.1145/1634.1886.

21 Abhay Kumar Jha and Dan Suciu. Knowledge compilation meets database theory: Compiling
queries to decision diagrams. ToCS, 52(3), 2013. doi:10.1007/s00224-012-9392-5.

22 Ravi Kannan. Markov chains and polynomial time algorithms. In FOCS. IEEE, 1994.
doi:10.1109/SFCS.1994.365726.

23 David R. Karger. A randomized fully polynomial time approximation scheme for the all-terminal
network reliability problem. SIAM Rev., 43(3), 2001. doi:10.1137/S0036144501387141.

24 Batya Kenig and Dan Suciu. A dichotomy for the generalized model counting problem for
unions of conjunctive queries. In PODS, 2021. doi:10.1145/3452021.3458313.

25 Jingcheng Liu and Pinyan Lu. FPTAS for counting monotone CNF. In SODA. SIAM, 2015.
doi:10.1137/1.9781611973730.101.

26 Mikaël Monet. Combined complexity of probabilistic query evaluation. (Complexité combinée
d’évaluation de requêtes sur des données probabilistes). PhD thesis, University of Paris-Saclay,
France, 2018. URL: https://pastel.archives-ouvertes.fr/tel-01980366.

27 Mikaël Monet. Solving a special case of the intensional vs extensional conjecture in probabilistic
databases. In PODS. ACM, 2020. doi:10.1145/3375395.3387642.

28 Knot Pipatsrisawat and Adnan Darwiche. New compilation languages based on structured
decomposability. In AAAI. AAAI Press, 2008. URL: http://www.aaai.org/Library/AAAI/
2008/aaai08-082.php.

29 J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM J. Comput., 12(4), 1983. doi:10.1137/0212053.

30 Pierre Senellart. Provenance in databases: Principles and applications. In Reasoning Web,
volume 11810 of LNCS. Springer, 2019. doi:10.1007/978-3-030-31423-1_3.

31 Allan Sly. Computational transition at the uniqueness threshold. In FOCS. IEEE Computer
Society, 2010. doi:10.1109/FOCS.2010.34.

32 Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011. ISBN:
978-1608456802. doi:10.2200/S00362ED1V01Y201105DTM016.

33 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,
8(3), 1979. doi:10.1137/0208032.

34 Timothy van Bremen and Kuldeep S. Meel. Probabilistic query evaluation: The combined
FPRAS landscape. In PODS. ACM, 2023. doi:10.1145/3584372.3588677.

35 Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In STOC.
ACM, 1982. doi:10.1145/800070.802186.

36 Mihalis Yannakakis. Algorithms for acyclic database schemes. In VLDB. IEEE Computer
Society, 1981.

37 Rico Zenklusen and Marco Laumanns. High-confidence estimation of small s-t reliabilities in
directed acyclic networks. Networks, 57(4), 2011. doi:10.1002/net.20412.

A Proof of Theorem 2.3

▶ Theorem 2.3. Let D be an nOBDD, and w : vars(D) → [0, 1] be a rational probability
function defined on the variables appearing in D. Then there exists an FPRAS for computing
WMC(D, w), running in time polynomial in ||D|| and w.

Proof. We may assume without loss of generality that D contains no variable v such that
w(v) = 0 or w(v) = 1, since any such variable can be dealt with in constant time by
conditioning D accordingly. We will use the fact that for any positive integer n and set

https://doi.org/10.1137/18M1201846
https://doi.org/10.1145/1634.1886
https://doi.org/10.1007/s00224-012-9392-5
https://doi.org/10.1109/SFCS.1994.365726
https://doi.org/10.1137/S0036144501387141
https://doi.org/10.1145/3452021.3458313
https://doi.org/10.1137/1.9781611973730.101
https://pastel.archives-ouvertes.fr/tel-01980366
https://doi.org/10.1145/3375395.3387642
http://www.aaai.org/Library/AAAI/2008/aaai08-082.php
http://www.aaai.org/Library/AAAI/2008/aaai08-082.php
https://doi.org/10.1137/0212053
https://doi.org/10.1007/978-3-030-31423-1_3
https://doi.org/10.1109/FOCS.2010.34
https://doi.org/10.2200/S00362ED1V01Y201105DTM016
https://doi.org/10.1137/0208032
https://doi.org/10.1145/3584372.3588677
https://doi.org/10.1145/800070.802186
https://doi.org/10.1002/net.20412


A. Amarilli, T. van Bremen, and K. S. Meel 15:19

of variables S = {x1, . . . , xk} such that k ≥ ⌈log n⌉ + 1, we can construct in time O(k) a
complete OBDD Cn(x1, . . . , xk), implementing a “comparator” on the variables of S, that
tests if the integer represented by the binary string x1 . . . xk is strictly less than n (hence,
Cn(x1, . . . , xk) has precisely n satisfying assignments, for any permitted value of k).

By [4, Lemma 3.16], we may assume that D is complete; thus, there is a bijection between
the models of the Boolean function captured by D, and the paths from the root to the
1-sink of D. Now, complete the following procedure for every variable label vi with weight
w(vi) = pi/qi appearing in D. Set k = ⌈log d⌉ + 1, where d = max{pi, qi − pi}. Send the
1-edge emanating from every node r ∈ D labelled with vi to the OBDD Cpi

(x1, . . . , xk)
(where x1, . . . , xk are fresh variables), redirecting edges to the 1-sink of Cp(x1, . . . , xk) to
the original destination of the 1-edge from n. Do the same for 0-edge from r, but with the
OBDD Cqi−pi

(x1, . . . , xk). Observe that D remains a complete nOBDD. Moreover, it is not
difficult to see that there are now exactly pi paths from the root to the 1-sink of D that pass
through the 1-edge emanating from r, and qi − pi paths passing through the 0-edge.

After repeating this process for every variable in D, we may apply Theorem 2.2, before
normalizing the result by the product of the weight denominators

∏
qi. ◀

B Proof of Lemma 3.8

▶ Lemma 3.8. For any DWT query G, we can compute in time O(||G||) a 2WP query G′

which is equivalent to G on DWT instances: for any DWT H, there is a homomorphism
from G to H iff there is a homomorphism from G′ to H.

Proof. Let G be a DWT query. We build G′ following a tree traversal of G. More precisely,
we define the translation inductively as follows. If G is the trivial query with no edges,
then we let the translation of G be the trivial query with no edges. Otherwise, let x be
the root of G, let x

R1−−→ y1, . . . , x
Rn−−→ yn be the successive children, and call G1, . . . , Gn the

DWT subqueries of G respectively rooted at y1, . . . , yn. We define the translation of G to
be R1−−→ G′

1
R1←−− · · · Rn−−→ G′

n
Rn←−−, where G′

1, . . . , G′
n are the respective translations of G1, . . . ,

Gn. This translation is in linear time, and the translated query has twice as many edges as
the original query. Note that we can also inductively define a homomorphism from G′ to G

mapping the first and last elements of G′ to the root of G: this is immediate in the base
case, and in the inductive claim we obtain suitable homomorphisms from each G′

i to each Gi

by induction and combine them in the expected way.
We claim that, on any DWT instance H, there is a match of G mapping the root to a iff

there is a match of G′ mapping both the first variable and last variable of the path to a. One
direction is clear: from the homomorphism presented earlier that maps G′ to G, we know
that any match of G in H implies that there is a match of G′ in H mapping the first and last
elements as prescribed. Let us show the converse, and let us actually show by induction on G

a stronger claim: if there is a match of G′ mapping the first variable of G′ to a vertex a, then
the last variable is also mapped to a and there is a match of G mapping the root variable
to a. If G is the vacuous query, then this is immediate: a match of the empty query G′

mapping the first variable to a must also map the last variable to a (it is the same variable),
and we conclude. Otherwise, let us write x the root of G and x

R1−−→ y1, . . . , x
Rn−−→ yn be

the children and G1, . . . , Gn the subqueries as above. We know that the match of G′ maps
the first variable to a vertex a, and as H is a DWT instance it maps x to a child a1 of a.
Considering G1 and its translation G′

1, we notice that we have a match of G′
1 where the

first variable is mapped to a1. Hence, by induction, the last variable is also mapped to a1,
and we have a match of G1 where the root variable is mapped to a1. Now, as H is a DWT

ICDT 2024



15:20 Conjunctive Queries on Probabilistic Graphs: The Limits of Approximability

instance, the next edge R1←−− must be mapped to the edge connecting a and a1, so that the
next variable in G′ is mapped to a. Repeating this argument for the successive child edges
and child queries in G, we conclude that the last variable of G′ is mapped to a, and we
obtain matches of G1, . . . , Gn that can be combined to a match of G. ◀

C Proof of Proposition 4.1

▶ Proposition 4.1. PHom̸L(1WP, DAG) is #P-hard already in data complexity, but it admits
an FPRAS.

Proof. As mentioned in the main text, the positive result directly follows from the existence
of an FPRAS in the labelled setting, which was shown in Proposition 3.1. It remains to
show #P-hardness here. Consider the following reduction from the #P-hard problem ♯BIS,
which asks to count the independent sets of a bipartite undirected graph B = (X, Y, EG).
We reduce to PHom̸L(G, DAG), where G is fixed to be the 1WP of length three, i.e., →→→.

Construct a probabilistic graph H = ({s, t} ⊔ X ⊔ Y, EH) and probability labelling π,
where s and t are fresh vertices, and the edge set EH comprises:

a directed edge s→ a for every a ∈ X, with probability 0.5;
a directed edge a→ b for every (a, b) ∈ EG, with probability 1 (i.e., the original bipartite
graph instance, with every edge directed from X towards Y );
a directed edge b→ s for every b ∈ Y , with probability 0.5.

We claim that Prπ(G ⇝ H) is precisely the number of independent sets of B, divided by
|X ⊔ Y |. Indeed, just consider the natural bijection between the subgraphs of H and the
independent sets of B, where for a ∈ X we keep the edge s→ a iff a is in the independent
set, and for b ∈ Y the edge b→ s iff b is in the independent set. ◀

D Proof of Proposition 4.2

▶ Proposition 4.2 ([7]). PHom̸L(DWT, DAG) is #P-hard already in data complexity, but
admits an FPRAS.

Proof. Hardness follows directly from Proposition 4.1, so we show the positive result here.
Let G be a DWT query graph, and m its height, i.e., the length of the longest directed path
it contains. Let G′ be this 1WP of length m, computable in polynomial time from G. We
claim the following.

▷ Claim D.1. For any H ∈ DAG, PHom̸L(G, H) = PHom̸L(G′, H).

Proof. Certainly, if H ′ ⊆ H admits a homomorphism from G, then it admits one from G′

too since G′ ⊆ G. On the other hand, if H ′ admits a homomorphism from G′, then it also
admits one from G: just map all vertices of distance i from the root of G to the image of the
i-th vertex of G′. ◁

Now the result follows from the FPRAS for PHom̸L(G′, DAG) given by Proposition 3.1. ◀
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1 Introduction

The problem of evaluating a first-order sentence on a finite structure is a central computational
task in database theory, finite model theory, and indeed computer science at large. In database
theory, first-order sentences are viewed as constituting the core of SQL; in parameterized
complexity theory, many commonly studied problems can be naturally and directly formulated
as cases of this evaluation problem. In the quest to perform this evaluation efficiently, the
width of a sentence – defined as the maximum number of free variables over all subformulas
of the sentence – has become established as a central and crucial measure. A first reason for
this is that the natural bottom-up algorithm for sentence evaluation exhibits an exponential
dependence on the width [21]; this algorithm runs in polynomial time when restricted to any
class of sentences having bounded width, meaning that there exists a constant bounding their
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width. In addition, there are a number of dichotomy theorems [17, 16, 10, 12] showing that,
for particular fragments of first-order logic, a class of sentences admits tractable evaluation
if and only if the class has bounded width, up to logical equivalence. These theorems are
shown under standard complexity-theoretic assumptions, and concern relational first-order
logic, which we focus on in this article.

These results all point to and support the desirability of minimizing the widths of logical
sentences. However, an undecidability result [7, Theorem 19] immediately rules out the
existence of an algorithm that, given a first-order sentence ϕ, returns a sentence of minimum
width among all sentences logically equivalent to ϕ; indeed, this undecidability result rules
out an algorithm that performs as described even on positive first-order sentences. Despite
this non-computability result, given the importance of width minimization, it is natural to
seek computable methods for reformulating sentences so as to reduce their width. In this
article, we show how to perform width minimization, in an optimal fashion, via established
syntactic rewriting rules known to preserve logical equivalence. The study of such rules is
strongly relevant:

In database theory, such rules are studied and applied extensively to reformulate database
queries with the aim of allowing efficient evaluation [1, Chapter 6].
Well-known tractable cases of conjunctive query evaluation admit logical characterizations
via such rules, such as those of bounded treewidth [18] and bounded hypertreewidth [15].
Such rules play a key role in obtaining the tractability results of some of the mentioned
dichotomy theorems [10, 12].

This article focuses on a collection of common and well-known rewriting rules, which
includes rules that are well-established in database theory [1, Figures 5.1 and 6.2]. Our main
result is the presentation of an algorithm that, given a positive first-order sentence ϕ, outputs
a minimum-width sentence obtainable from ϕ via application of the considered rules. We
thus obtain a complete algorithmic understanding of width minimization up to the studied
rules. Our main result is the first result – of which we are aware – to obtain a comprehensive
characterization of width up to syntactic rules in the general setting of positive first-order
logic.

In order to obtain our main result, we use the theory of term rewriting; in particular,
we make use of basic concepts therein such as termination and confluence. We view this
marriage of term rewriting and query rewriting as a conceptual contribution of our work.
We gently augment the basic theory of term rewriting in two ways. First, we define the
notion of a gauged system, which is an abstract reduction system along with a gauge, a
function mapping each element of the system to a number; the gauge represents a quantity
that one wants to minimize. In this article our focus is on systems whose elements are
first-order formulas, and where the gauge is the width. Second, we define a notion of
division of a system by an equivalence relation. This notion allows us to consider equivalence
classes w.r.t. a subset of the considered rules, in a sense made precise. In particular, we
consider equivalence classes w.r.t. a set of rules that correspond to the computation of tree
decompositions (see Theorem 23). This will make precise and transparent the role of tree
decomposition computations in our algorithm; this also opens up the possibility of applying
procedures that approximate treewidth in a black-box fashion, or decomposition methods
that are designed for unbounded-arity query classes, such as those associated with hypertree
width [14]. Relatedly, we mention here that for any conjunctive query, the minimum width
obtainable by the studied rules is equal to the query’s treewidth, plus one (see Corollary 24);
thus, this measure of minimum width, when looked at for positive first-order logic, constitutes
a generalization of treewidth.
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All together, the presented framework and theory initiate a novel interface among term
rewriting, query rewriting, and structural decomposition theory. In our view, the obtention of
our main theorem necessitates the development of novel ideas and techniques that draw upon,
advance, and fuse together these areas. We believe that further development of this interface
has the potential to further unite these areas via asking new questions and prompting new
techniques – of service to efficient query evaluation. We wish to emphasize, as a conceptual
contribution, the marriage of term rewriting and query rewriting, which is (to our knowledge)
novel, despite an enduring overlap in names!

We wish to add two technical remarks. First, although our results are presented for
positive first-order logic, our width minimization procedure can straightforwardly be applied
to general first-order sentences by first turning it into negation normal form, i.e., pushing
all negations down to the atomic level, and then treating negated atoms as if they were
atoms. Second, our main result’s algorithm straightforwardly gives rise to a fixed-parameter
tractability result: on any class of sentences that have bounded width when mapped under our
algorithm, we obtain fixed-parameter tractability of evaluating the class, with the sentence as
parameter, via invoking our algorithm and then performing the natural bottom-up algorithm
for sentence evaluation.

Related work

Some of the previous characterizations and studies of width, for example [10, 12, 8], focused
on subfragments of positive first-order logic defined by restricting the permitted quantifiers
and connectives; as mentioned, we here consider full positive first-order logic. Width measures
for first-order logic have previously been defined [2, 11]. While the measure of [11] makes use
of syntactic rewriting rules, and the work [2] studies the relationship of width to syntactic
rewriting rules, the present work shows how to optimally minimize formulas up to the set of
studied syntactic rewriting rules, a form of result that (to our knowledge) is not entailed
by the theory of either of these previous works.1 In our view, this situation gives our width
measure a clear interpretation. This situation also renders some of the previously defined
width measures as having, in retrospect, an ad hoc character: as an example, the width
measure of [12] has the property that, when a formula has measure w, it is possible to apply
rewriting rules to the formula so that it has width w, but the optimal width achievable via
these rules is not addressed; the considered rule set from [12] is encompassed by the rule set
studied here.

2 Preliminaries

We assume basic familiarity with the syntax and semantics of relational first-order logic,
which is our logic of focus. We assume relational structures to have nonempty universes. In
building formulas, we assume that conjunction (∧) and disjunction (∨) are binary. When ψ is
a first-order formula, we use free(ψ) to denote the set of free variables of ψ. By a pfo-formula,
we refer to a positive first-order formula, i.e., a first-order formula without any negation.
We use PFO to denote the class of all pfo-formulas. The width of a first-order formula ϕ,
denoted by width(ϕ), is defined as the maximum of |free(ψ)| over all subformulas ψ of ϕ. We

1 We also mention that the class of formulas in this article’s Example 5 has unbounded width under the
width measure of [2] (see their Proposition 3.16), but has bounded width under the width notion of the
present article. Thus, insofar as the work [2] exploits syntactic rewriting rules, it does not exploit the
ones used in Example 5.
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will often identify pfo-formulas with their (syntax) trees, that is, trees whose internal nodes
are labeled with the operations of first-order logic or labeled with atoms. We also sometimes
refer to a node of a syntax tree labeled by an connective ⊕ ∈ {∧,∨} simply as a ⊕-node. We
make the convention that in syntax trees quantifiers and the variables that they bind are in
the label of a single node.

2.1 Hypergraphs and tree decompositions
A hypergraph is a pair (V,E) where V is a set called the vertex set of the hypergraph, and
E is a subset of the power set of V , that is, each element of E is a subset of V ; E is called
the edge set of the hypergraph. Each element of V is called a vertex, and each element of E
is called an edge. In this work, we only consider finite hypergraphs, so we tacitly assume
that V is always a finite set. We sometimes specify a hypergraph simply via its edge set
E; we do this with the understanding that the hypergraph’s vertex set is

⋃
e∈E e. When H

is a hypergraph, we sometimes use V (H) and E(H) to denote its vertex set and edge set,
respectively. We consider a graph to be a hypergraph where every edge has size 2.

A tree decomposition of a hypergraph H is a pair (T, {Bt}t∈V (T )) consisting of a tree
T and, for each vertex t of T , a bag Bt that is a subset of V (H), such that the following
conditions hold:

(vertex coverage) for each vertex v ∈ V (H), there exists a vertex t ∈ V (T ) such that
v ∈ Bt;
(edge coverage) for each edge e ∈ E(H), there exists a vertex t ∈ V (T ) such that e ⊆ Bt;
(connectivity) for each vertex v ∈ V (H), the set Sv = {t ∈ V (T ) | v ∈ Bt} induces a
connected subtree of T .

We define the bagsize of a tree decomposition C = (T, {Bt}t∈V (T )), denoted by bagsize(C),
as maxt∈V (T ) |Bt|, that is, as the maximum size over all bags. The treewidth of a hypergraph
H is the minimum, over all tree decompositions C of H, of the quantity bagsize(C) − 1.
A minimum width tree decomposition of a hypergraph H is a tree decomposition C where
bagsize(C)− 1 is the treewidth of H.

2.2 Term rewriting
Basics

We here introduce the basic terminology of term rewriting to be used; for the most part, we
base our presentation on [3, Chapter 2]. A system is a pair (D,→) where D is a set, and
→ is a binary relation on D; the binary relation → will sometimes be called a reduction.
Whenever → is a binary relation, we use ← to denote its inverse (so a → b if and only if
b← a), and we use ↔ to denote the union → ∪ ← which is straightforwardly verified to be
a symmetric relation. We use ∗→, ∗←, and ∗↔ to denote the reflexive-transitive closures of →,
←, and ↔, respectively. Note that ∗↔ is an equivalence relation.

We will use the following properties of elements of a system. Let (D,→) be a system,
and let d, e ∈ D.

d is reducible if there exists d′ ∈ D such that d→ d′.
d is in normal form if it is not reducible.
e is a normal form of d if d ∗→ e and e is in normal form.
d and e are joinable, denoted d ↓ e, if there exists an element f such that d ∗→ f

∗← e.
Relative to a system (D,→), an element d ∈ D, and a binary relation →′, we say that →′ is
applicable to d or can be applied to d if there exists an element e ∈ D such that d→′ e.
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We next define properties of a system Y = (D,→); in what follows, d, e, e′, di, etc.
denote elements of D.

Y is confluent if e ∗← d
∗→ e′ implies e ↓ e′.

Y is locally confluent if e← d→ e′ implies e ↓ e′.
Y is terminating if there is no infinite descending chain d0 → d1 → · · · of elements in D.
Y is convergent if it is confluent and terminating.

The property of being terminating immediately implies that of being normalizing, meaning
that each element has a normal form.

We will use the following properties of convergent systems.

▶ Proposition 1 (see [3], Lemma 2.1.8 and Theorem 2.1.9). Suppose that (D,→) is a convergent
system. Then, each element d ∈ D has a unique normal form. Moreover, for all elements
d, e ∈ D, it holds that d ∗↔ e if and only if they have the same normal form.

Whenever an element d ∈ D has a unique normal form, we denote this unique normal
form by d ↓. The last part of Proposition 1 can then be formulated as follows: for every
convergent system (D,→) we have for all elements d, e ∈ D that d ∗↔ e if and only if d↓= e↓.

The following lemma, often called Newman’s Lemma, was first shown in [19] and will be
used to establish convergence. See also [3, Lemma 2.7.2] for a proof.

▶ Lemma 2 ([19]). If a system is locally confluent and terminating, then it is confluent, and
hence convergent.

Gauged systems

We next extend the usual setting of term rewriting by considering systems having a gauge,
which intuitively is a measure that one desires to minimize by rewriting. To this end, define
a gauged system to be a triple (D,→, g) where (D,→) is a system, and g : D → R is a
mapping called a gauge. A gauged system is monotone if for any pair of elements d, e ∈ D
where d→ e, it holds that g(d) ≥ g(e), that is, applying the reduction cannot increase the
gauge. We apply the terminology of Section 2.2 to gauged systems; for example, we say that
a gauged system (D,→, g) is convergent if the system (D,→) is convergent.

▶ Proposition 3. Let (D,→, g) be a gauged system that is monotone and convergent. Then,
for any elements d, e ∈ D, it holds that d ∗↔ e implies g(d↓) ≤ g(e). That is, for any element
d, its normal form d↓ has the minimum gauge among all elements e with d ∗↔ e.

Proof. First note that, by a simple induction using the monotonicity of g, we have for all
elements e′, e′′ ∈ D that e′ ∗→ e′′ implies g(e′) ≥ g(e′′). Next, since (D,→) is convergent, we
have by Proposition 1 that d↓= e↓. But then g(e) ≥ g(e↓) = g(d↓). ◀

Systems and division

We here define a notion of dividing systems by equivalence relations. Let D be a set and
let ≡ be an equivalence relation on D. Let D/≡ denote the set containing the ≡-equivalence
classes. We define (D,→)/≡ as the system (D/≡,→), where we extend the definition of →
to D/≡ by positing that for ≡-equivalence classes C,C ′, it holds that C → C ′ if and only if
there exist d ∈ C and d′ ∈ C ′ such that d→ d′.

Suppose that G = (D,→, g) is a gauged system. We extend the definition of g so that,
for each set S ⊆ D, we have g(S) = inf{g(d) | d ∈ S}. We define G/ ≡ as the system
(D/≡,→, g).
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3 Rewriting rules

We here define well-known transformation rules on first-order formulas, which are all known
to preserve logical equivalence. We define these rules with the understanding that they can
always be applied to subformulas, so that when ψ1 is a subformula of ϕ1 and ψ1 → ψ2, we
have ϕ1 → ϕ2, where ϕ2 is obtained from ϕ1 by replacing the subformula ψ1 with ψ2. In
the following F1, F2, etc. denote formulas. It will be convenient to formalize these rules as
rewriting rules in the sense defined before.

The rule →A is associativity for ⊕ ∈ {∧,∨}:

(F1 ⊕ (F2 ⊕ F3))→A ((F1 ⊕ F2)⊕ F3), ((F1 ⊕ F2)⊕ F3)→A (F1 ⊕ (F2 ⊕ F3)).

The rule →C is commutativity for ⊕ ∈ {∧,∨}:

(F1 ⊕ F2)→C (F2 ⊕ F1).

The pushdown rule →P↓ applies when F2 is a formula in which x is not free:

∃x(F1 ∧ F2)→P↓ (∃xF1) ∧ F2, ∀x(F1 ∨ F2)→P↓ (∀xF1) ∨ F2.

The pushup rule →P↑ is defined as the inverse of →P↓.
The reordering rule →O is defined when Q ∈ {∀, ∃} is a quantifier: QxQyF →O QyQxF .

The renaming rule →N allows QxF →N QyF ′ when y /∈ free(F ) and F ′ is derived from F

by replacing each free occurrence of x with y.
Collectively, we call the above rules the tree decomposition rules, since, as we will see in

Section 8, they allow, in a way that we will make precise, optimizing the treewidth of certain
subformulas.

The splitdown rule distributes quantification over a corresponding connective:

∃x(F1 ∨ F2)→S↓ (∃xF1) ∨ (∃xF2), ∀x(F1 ∧ F2)→S↓ (∀xF1) ∧ (∀xF2).

The splitup rule →S↑ is defined as the inverse of →S↓.
The removal rule →M allows removal of a quantification when no variables are bound

to the quantification: when Q ∈ {∀, ∃}, we have QxF →M F when F contains no free
occurrences of the variable x, that is, when x /∈ free(F ).

We tacitly use the straightforwardly verified fact that when the given rules are applied
to any pfo-formula, the formula’s set of free variables is preserved. We denote these rules
via the given subscripts. We use T to denote the set of all tree decomposition rules,
so T = {A,C, P ↓, P ↑, O,N}. We use A to denote the set of all presented rules, so
A = T ∪ {S ↓, S ↑,M}.

When we have a set R of subscripts representing these rules, we use →R to denote
the union

⋃
R∈R →R. For example, →{A,C,O} denotes →A ∪ →C ∪ →O. In this context,

we sometimes denote a set by the string concatenation of its elements, for example, we
write →ACO in place of →{A,C,O}. We apply these conventions to ←,↔, ∗→, ∗←, ∗↔, and so
forth. When R is a set of rule subscripts and ϕ is a formula, we use [ϕ]R to denote the
∗↔R-equivalence class of ϕ. So, for example, [ϕ]T denotes the ∗↔T -equivalence class of ϕ, and

[ϕ]ACO denotes the ∗↔ACO-equivalence class of ϕ.

▶ Example 4. Let ϕ = ∃x∃y∃t(R(x, t) ∧ S(t, y)); this sentence has width 3. We have

ϕ
∗→O ∃t∃x∃y(R(x, t) ∧ S(t, y)) ∗→P↓ ∃t((∃xR(x, t)) ∧ (∃yS(t, y))).



H. Chen and S. Mengel 16:7

The last formula has width 2; the rules we used were in T . It can, however, be verified that,
using the rules in T \ {O}, this formula ϕ cannot be rewritten into a width 2 formula: using
these rules, any rewriting will be derivable from ϕ via commutativity and renaming.

▶ Example 5. Consider the formulas (ϕn)n≥1 defined by ϕn = ∃x1 . . . ∃xn∀y(
∧n

i=1 Ei(xi, y));
the formula ϕn has width n + 1. (Although formally we consider conjunction as a binary
connective, we allow higher-arity conjunctions due to the presence of the associativity rule.)
We have

ϕn
∗→S↓,A ∃x1 . . . ∃xn(

n∧
i=1
∀yEi(xi, y)) ∗→P↓,A

n∧
i=1

(∃xi∀yEi(xi, y)).

The last formula has width 2, and hence the rules we consider suffice to convert each formula
ϕn into a width 2 formula.

Justification of the rule choice

Before stating our main result in the next section, let us take some time to discuss why we
have chosen the above rules for study, in this paper. First, as suggested in the article, these
rules appear in a number of textbooks and well-known sources. In addition to being in the
standard database book [1], one can find some of the crucial ones in [20, page 99], and many
of the crucial ones also appear in the Wikipedia entry on first-order logic.2 We can remark
that these rules are generally used when showing that first-order formulas can be rewritten
into prenex normal form.

Indeed, apart from distributivity (discussed in the conclusion), we are not aware of any
other syntactic rewriting rules (apart from combinations of the rules that we study); in
particular, we did not find any others in any of the standard sources that we looked at.

As alluded to in the introduction, the study of many of these rules is strongly established
in the research literature. They are studied in articles including [2, 7, 12, 10, 11, 13, 15, 18].
As mentioned, subsets of the rule set are used crucially, in the literature, to obtain the
positive results of dichotomy theorems. In particular, there are precise contexts where a
subset of the rule set is sufficient to give a tractability result (for example, in [12]). The
tractability result of the present article strengthens these previous tractability results since it
optimally minimizes width with respect to the considered rules, and thus provides a wider
and deeper perspective on these previous tractability results.

Let us emphasize that a subset of the considered rules corresponds to treewidth com-
putation in a very precise sense (see Theorem 23 and Corollary 24). The correspondence
between rewriting rules and computation of tree decompositions was also studied, for example,
in [18, 13, 15].

4 Main theorem and roadmap

In this section, we first state our main theorem, then we give the intermediate results that
we will show in the remainder of the paper to derive it; at the end of the section, we prove
the main theorem using the intermediate results. Our main theorem essentially says the
following: there is an algorithm that, given a pfo-formula ϕ, computes a formula ϕ′ that
is derived from ϕ by applying the defined rules A and that has the minimum width over
formulas derivable by these rules. Moreover, up to computation of minimum width tree
decompositions, the algorithm computing ϕ is efficient.

2 https://en.wikipedia.org/wiki/First-order_logic#Provable_identities
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▶ Theorem 6 (Main theorem). There exists an algorithm A that, given a pfo-formula ϕ,
computes a minimum width element of [ϕ]A. Moreover, with oracle access to an algorithm
for computing minimum width tree decompositions, the algorithm A can be implemented in
polynomial time.

Here, we say that an algorithm computes minimum width tree decompositions if, when
given a hypergraph H, it outputs a minimum width tree decomposition of H.

In order to establish our main theorem, we study and make use of the systems

Y = (PFO,→{P↓,S↓,M}) / ∗↔ACO, Y ′ = (PFO,→{S↓,M}) / ∗↔T .

We also make use of the gauged system

G′ = (PFO,→{S↓,M},width) / ∗↔T ,

where, as defined before, width is the function that maps a formula to its width. We show
that for the system Y , normal forms can be computed in polynomial time, and moreover,
that a normal form of Y directly yields a normal form of Y ′.

▶ Theorem 7. The system Y is terminating; moreover, there exists a polynomial-time
algorithm that, given a pfo-formula ϕ, returns a pfo-formula ϕ+ such that [ϕ+]ACO is a
normal form of [ϕ]ACO in the system Y .

▶ Theorem 8. Suppose that ϕ is a pfo-formula where [ϕ]ACO is a normal form of the
system Y ; then, [ϕ]T is a normal form of the system Y ′.

We then prove that the system Y ′ is convergent, and that its corresponding gauged
system G′ is monotone. Together, these results allow us to leverage Proposition 3 and allow
us to compute minimum-width equivalence classes in G′.

▶ Theorem 9. The system Y ′ is convergent.

▶ Theorem 10. The gauged system G′ is monotone.

The remaining piece needed is to show that minimization can be performed within a
∗↔T -equivalence class, which is what the following theorem supplies.

▶ Theorem 11. There exists an algorithm that, given a pfo-formula θ, outputs a pfo-formula
θ+ having minimum width among all formulas in [θ]T . With oracle access to an algorithm
for computing minimum width tree decompositions, this algorithm can be implemented in
polynomial time.

Proof of the main theorem – Theorem 6. Given a pfo-formula ϕ, the algorithm first ap-
plies the algorithm of Theorem 7 to obtain a pfo-formula θ where [θ]ACO is a normal form
of [ϕ]ACO in Y , and then applies the algorithm of Theorem 11 to obtain a pfo-formula θ+

having minimum width among the formulas in [θ]T ; θ+ is the output of the algorithm.
We justify this algorithm’s correctness as follows. As [θ]ACO is a normal form of [ϕ]ACO in

Y , we have [ϕ]ACO
∗→{P↓,S↓,M} [θ]ACO, and thus [ϕ]T

∗→{S↓,M} [θ]T , because all applications
of P ↓ can be simulated by choosing a representative in the equivalence class w.r.t. T . It
follows from Theorem 8 that [θ]T is a normal form of [ϕ]T in Y ′. From Theorems 9 and 10,
we have that the gauged system G′ is convergent and monotone, so by Proposition 3, we
have that, in the gauged system G′, the element [θ]T has the minimum gauge among all
elements that are ∗↔{S↓,M}-related to [ϕ]T . Thus, a minimum width element in [θ]T is a
minimum width element in [ϕ]T ∪{S↓,S↑,M}. ◀
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5 Formulas

In this section, we define a few types of formulas to be used in our development, and show
some basic properties thereof.

5.1 Holey formulas
A holey formula is intuitively defined similarly to a formula, but in lieu of atoms, there are
placeholders where further formulas can be attached; these placeholders are represented by
natural numbers. Formally, a holey pfo-formula is a formula built as follows: each natural
number i ≥ 1 is a holey pfo-formula, and is referred to as a hole; when ϕ and ϕ′ are holey
pfo-formulas, so are ϕ∧ ϕ′ and ϕ∨ ϕ′; and, when ϕ is a holey pfo-formula and x is a variable,
so are ∃xϕ and ∀xϕ. We require that for each holey pfo-formula ϕ, no natural number occurs
more than once. We say that a holey pfo-formula is atomic if it is equal to a natural number
(equivalently, if it contains no connectives nor quantifiers). A holey {∃,∧}-formula is defined
as a holey pfo-formula where, apart from atoms, only the formation rules involving existential
quantification and conjunction are permitted. A holey {∀,∨}-formula is defined dually.

When ϕ is a holey formula with holes among 1, . . . , k and we have that ψ1, . . . , ψk are
formulas, we use ϕJψ1, . . . , ψkK to denote the formula obtained from ϕ by substituting, for
each i = 1, . . . , k, the formula ψi in place of i.

▶ Example 12. Consider the holey pfo-formula ϕ = 2∧1, and the formulas ψ1 = S(x)∨S(y),
ψ2 = R(x, z). We have ϕJψ1, ψ2K = R(x, z) ∧ (S(x) ∨ S(y)).

In the sequel, we will speak of applying rewriting rules (generally excluding the rule N)
to holey formulas. In order to speak of the applicability of rules such as the pushdown
and pushup rules, we need to associate a set of free variables to each subformula of a holey
formula. We define an association for a holey formula ϕ to be a partial mapping a defined
on the natural numbers that is defined on each hole in ϕ, and where, for each number i
on which a is defined, it holds that a(i) is a set of variables. With an association a for a
holey formula ϕ, we can naturally define a set of free variables on each subformula of ϕ, by
considering free(i) = a(i) for each i on which a is defined, and then using the usual inductive
definition of free(·).

5.2 Standardized formulas
Define a standardized formula to be a formula ϕ where, for each occurrence Qx of quantifica-
tion, the following hold: (1) x is not quantified elsewhere, that is, for any other occurrence
Q′x′ of quantification, x ≠ x′ holds; (2) x /∈ free(ϕ). Intuitively, a standardized formula is one
where there is no name clash between a quantified variable x and other variable occurrences
in the formula. It is straightforward to verify that a subformula of a standardized formula is
also standardized.

It is straightforward to verify that every first-order formula can be standardized by
repeatedly applying the renaming rule. We will use the following formalization of this
observation which in effect asserts that in terms of applying the studied rules to reduce
width, one may always assume that variable renaming that leads to a standardized formula
is always performed upfront.

▶ Proposition 13. Let ϕ be a pfo-formula or a holey pfo-formula along with an association a.
Suppose ϕ = ϕ0 and ϕ0 →A1 ϕ1 · · · →At ϕt where each Ai is in T ∪{S ↓,M}. Let A′

1, . . . , A
′
s

be the sequence obtained from A1, . . . , At by removing instances of N . Then, there exists a
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standardized formula ϕ′
0 with the following property: there exist formulas ϕ′

1, . . . , ϕ
′
s where

ϕ
∗→N ϕ′

0 →A′
1
ϕ′

1 · · · →A′
s
ϕ′

s
∗→N ϕt. Indeed, for any standardized formula ϕ′

0 with ϕ ∗→N ϕ′
0,

the given property holds.

5.3 Organized formulas
We next define and study organized formulas, which, intuitively speaking, are pfo-formulas
that are stratified into regions, based on the quantifiers and connectives. The first main
property we show is that each non-atomic pfo-formula can be viewed as an organized formula.

We define {∃,∧}-organized formulas and {∀,∨}-organized formulas by mutual induction,
as follows.

When ϕ is a non-atomic holey {∃,∧}-formula and each of ψ1, . . . , ψk is an atom or a
{∀,∨}-organized formula, then ϕJψ1, . . . , ψkK is an {∃,∧}-organized formula.
When ϕ is a non-atomic holey {∀,∨}-formula and each of ψ1, . . . , ψk is an atom or an
{∃,∧}-organized formula, then ϕJψ1, . . . , ψkK is a {∀,∨}-organized formula.

An organized formula is defined to be a formula that is either an {∃,∧}-organized formula or
a {∀,∨}-organized formula.

We call the formula ϕ in the above definition a region of the organized formula. Thus,
every organized formula θ can be decomposed into atoms and different regions which are
maximal holey {∃,∧}- and {∀,∨}-subformulas of θ. Define the top operation of a pfo-formula
to be the label of the root of the formula when interpreting it as a tree.

▶ Proposition 14. Each non-atomic pfo-formula θ is an organized formula. More precisely,
each non-atomic pfo-formula θ whose top operation is ∃ or ∧ is an {∃,∧}-organized formula.
Each non-atomic pfo-formula θ whose top operation is ∀ or ∨ is an {∀,∨}-organized formula.

When the rules in T \ {N} are applied to organized formulas, they act on regions
independently, in the following formal sense.

▶ Proposition 15. Suppose that Φ = ϕJψ1, . . . , ψkK is an organized formula. Then, each for-
mula in [Φ]T \{N} has the form ϕ′Jψ′

1, . . . , ψ
′
kK, where ϕ′ ∈ [ϕ]T \{N} and ψ′

1 ∈ [ψ1]T \{N}, . . . ,

ψ′
k ∈ [ψk]T \{N}. Here, we understand the T \ {N}-rules to be applied to ϕ and holey

pfo-formulas under the association i 7→ free(ψi) defined on each i = 1, . . . , k.

6 Rule applicability

In the remainder of the paper, it will be crucial to have an understanding for when the rules
of the systems Y and Y ′ can be applied. To this end, in this section, we study the structure
of formulas that allow their application. This will in particular also lead to the normal-form
result of Theorem 8.

We start with the applicability of the removal rule →M . Remember that we say that a
rule → can be applied to a set Φ of formulas if and only if there is a formula ϕ ∈ Φ on which
→ is applicable.

▶ Lemma 16. Let θ be a pfo-formula. Then the following statements are equivalent:
→M can be applied to θ.
→M can be applied to [θ]ACO.
→M can be applied to [θ]T .

Proof sketch. The proof is based on the simple observation that a quantifier does not bind
a variable in θ if and only if it does not bind a variable in any representative in [θ]ACO and
[θ]T . ◀
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It will be useful to consider (sets of) formulas in which the pushdown operation has been
applied exhaustively, in particular, to understand normal forms of the system Y . To this end,
we introduce the following definitions. We say that a pfo-formula ϕ is pushed-down if →P↓
cannot be applied to ϕ; we say that a set Φ of pfo-formulas is pushed-down if each formula
ϕ ∈ Φ is pushed-down.

We say that a pfo-formula is a k-fold conjunction if, up to associativity, it can be written
in the form ψ1 ∧ · · · ∧ψk. We can formalize this as follows. For each pfo-formula θ, define the
multiset conjuncts(θ) inductively, as follows. If θ is an atom, or begins with disjunction or
quantification, define conjuncts(θ) = {θ}, where θ has multiplicity 1. When θ has the form
θ1 ∧ θ2, define conjuncts(θ) as the multiset union conjuncts(θ1)∪ conjuncts(θ2). We say that
θ is a k-fold conjunction when |conjuncts(θ)| ≥ k. We define k-fold disjunctions analogously.

The notion of k-fold conjunction will be useful in the remainder as it allows us to
understand when we can apply the splitdown rule on quantifiers. The following lemma
tells us that the existence of k-fold conjunctions in our equivalence classes with respect to
{A,C,O} and T can be decided by looking at any pushed-down representative.

▶ Lemma 17. Suppose that θ is a pfo-formula with [θ]ACO pushed-down, and let k ≥ 1. Then,
there exists a k-fold conjunction in [θ]T if and only if θ is a k-fold conjunction. Similarly,
there exists a k-fold disjunction in [θ]T if and only if θ is a k-fold disjunction.

As a consequence of Lemma 17, we get that for pushed-down formulas there is a result
similar to Lemma 16 that characterizes when the pushdown rule can be applied.

▶ Lemma 18. Let θ be a pfo-formula where [θ]ACO is pushed-down. Then the following are
equivalent:
→S↓ can be applied to θ.
→S↓ can be applied to [θ]ACO.
→S↓ can be applied to [θ]T .

Proof. The implications from the first point to the second and from the second to the third
are again directly clear as in the proof of Lemma 16.

So assume now that →S↓ can be applied to [θ]T . Then, by definition, there exists a
formula θ+ ∈ [θ]T to which →S↓ can be applied. Since applicability of →S↓ to a formula and
whether or not [θ]ACO is pushed-down are preserved by variable renaming, we may assume
by Proposition 13 that θ is standardized, and that θ+ ∈ [θ]T \{N}. Clearly, the formulas θ
and θ+ are non-atomic. Observe that when →S↓ is applicable to an organized formula, the
quantification must come from a holey {∃,∧}-formula and the connective must come from a
holey {∀,∨}-formula, or vice-versa.

By appeal to the decomposition of each non-atomic pfo-formula into an organized
formula (Proposition 14), and Proposition 15, there exist organized formulas ϕJψ1, . . . , ψkK,
ϕ+Jψ+

1 , . . . , ψ
+
k K that are subformulas of θ and θ+, respectively, where (1) ϕ ∗↔T \{N} ϕ

+

and ψ1
∗↔T \{N} ψ+

1 , . . . , ψk
∗↔T \{N} ψ+

k ; and (2) →S↓ can be applied to an instance of
quantification in ϕ+ and a connective in a formula ψ+

ℓ .
We assume up to duality that ϕ+ is a holey {∀,∨}-formula and that ψ+

ℓ is a {∃,∧}-
organized formula. Viewing ϕ+ and ψ+

ℓ as trees, we have that ℓ occurs as a leaf in ϕ+, that
the parent of this leaf in ϕ+ is a universal quantification ∀x, and that ψ+

ℓ has conjunction
(∧) at its root. Thus ψ+

ℓ is a 2-fold conjunction; by Lemma 17, it follows that ψℓ is a 2-fold
conjunction. Let B be the set of holes occurring in ϕ; since ϕ ∗↔T \{N} ϕ

+, we have that B is
also the set of holes occurring in ϕ+. We have free(ψi) = free(ψ+

i ) for each i = 1, . . . , k. In
applying rules in T \ {N} to obtain ϕ from ϕ+, which of the free occurrences of x from the
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formulas ψi (i ∈ B) are bound to the mentioned quantification ∀x, is preserved. Thus, among
the formulas ψi (i ∈ B), only ψℓ can have a free occurrence bound to the corresponding
quantification ∀x in ϕ. It thus follows that, in ϕ viewed as a tree, there is no instance of
disjunction between ∀x and ℓ, for if there were, by quantifier reordering (applying →O),
∀x could be moved above a disjunction, and then →P↓ would be applicable (contradicting
that [θ]ACO is pushed-down). Thus, in ϕ viewed as a tree, the parent of ℓ is a universal
quantification, and so →S↓ can be applied to θ. ◀

With the insights on rule applicability from above, we can now show that there is a
polynomial time algorithm that decides if rules from the system Y = (PFO,→{P↓,S↓,M}

) / ∗↔ACO can be applied to an equivalence class with respect to ACO. This will be a
building block in the proof of Theorem 7 that shows that we can compute normal forms in
the system Y in polynomial time.

▶ Lemma 19. There is a polynomial time algorithm that, given a pfo-formula θ, decides if
there is a formula θ′ ∈ [θ]ACO such that a rule of Y can be applied to it. If so, it computes
such a θ′ and a formula θ′′ obtainable by applying a rule of Y to θ′.

Proof. We show this for the three rules in Y individually, starting with →M , then →P↓ and
finally →S↓.

For →M , by Lemma 16, a quantifier can be deleted in θ if and only if one can be deleted
from any θ′ ∈ [θ]ACO; we thus directly get a polynomial-time algorithm for →M .

Now assume that →M cannot be applied, so every quantifier binds a variable in at least
one atom in its subformula in θ. Fix one quantifier v in θ, say that quantifier is universal; the
other case is totally analogous. Let θv denote the subformula of θ rooted in v. We assume
that the quantifiers are checked inductively in a bottom-up fashion, so all quantifiers in strict
subformulas of θv have been checked before dealing with v. So we cannot apply →P↓ on any
of them for any θ′ ∈ [θ]ACO. By Proposition 14, we have that the subformula θv is organized.
Let ψ be the region of θv that v is applied on, i.e., the largest holey {∀,∨}-subformula in
θ containing the root of the subformula that v is applied on. If ψ only has one hole, then
clearly we cannot apply →P↓ on v in θ as then ψ does not contain any ∨-operation on
which we could apply the pushdown. This is also true for all formulas θ′ ∈ [θ]ACO since
the corresponding holey formula ψ′ in θ′ also contains no ∨-operation, because the rules in
→ACO cannot move them over other operators. So in particular, if we want to apply →P↓
to v, then ψ must contain a ∨-operation. After potentially applying →O several times, we
may assume that the quantification v in θ is applied on a disjunction. Then we can write ψ
as an r-fold disjunction

ψ =
r∨

i=1
ψi, (1)

for some integer r where the ψi are either holes or have a universal quantifier on top. Now
if there is i∗ ∈ [r] such that ψi∗ does not contain x in any of its holes, we can use →A to
rewrite ψ = ψi∗ ∨

∨
i∈[r]\{i∗} ψi which gives us an ∨-operation to which we can apply →P↓

for v. On the other hand, if all ϕi contain x in one of their holes, then this is the case for all
ψ′ that we get for θ′, because →ACO does not allow exchanging the positions of ∨ and any
other operators. Thus, the representation (1) for all ψ′ is the same as for ψ up to fact that
→ACO might have been used on the disjuncts ψi. But in that case, in no ψ′ and thus in no
θ′ there is a ∨-operation that v could be pushed over. This directly yields a polynomial time
algorithm for this case.
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Finally, assume that →M and →P↓ can both not be applied. Then in particular θ is
pushed-down. Then, by Lemma 18, we get that →S↓ can be applied to [θ]ACO if and only if
it can be applied to θ which directly yields a polynomial time algorithm.

Overall, we have polynomial time algorithms for all three rules of Y . Observing that if
any rule can be applied, we can compute θ′ and the result θ′′ of the rule application efficiently,
completes the proof. ◀

Finally, we give the proof of the normal form Theorem 8 which we restate for the
convenience of the reader. Remember that Y ′ = (PFO,→{S↓,M}) / ∗↔T .

▶ Theorem 8. Suppose that ϕ is a pfo-formula where [ϕ]ACO is a normal form of the
system Y ; then, [ϕ]T is a normal form of the system Y ′.

Proof. Suppose that [ϕ]ACO is a normal form of the system Y . Then, we have that [ϕ]ACO

is pushed-down, since P ↓ is a rule in Y . Since [ϕ]ACO is a normal form of Y , neither of the
rules P ↓, M can be applied to [ϕ]ACO, implying by Lemmas 16 and 18 that neither of these
two rules can be applied to [ϕ]T . Thus [ϕ]T is a normal form of Y ′. ◀

7 Termination and confluence

In this section, we will show that both systems Y and Y ′ are terminating. With Lemma 19
from the last section, this will yield Theorem 7, showing that we can efficiently compute
normal forms for the system Y . For Y ′, we will also show that it is locally confluent which
then implies Theorem 9, the convergence of Y ′.

We will start with termination for the system Y . Let us for every pfo-formula ϕ denote
by |ϕ| the number of nodes in the syntax tree of ϕ.

▶ Lemma 20. For every pfo-formula ϕ, any reduction chain in the system Y starting in
[ϕ]ACO has length at most |ϕ|3.

Proof. Consider a pfo-formula ϕ. We will show that any chain of →P↓,S↓,M -steps starting
in [ϕ]ACO is upper bounded by |ϕ|3. To this end, we define a potential function p on all
pfo-formulas as follows: let F be a subformula of ϕ whose root is labeled by a quantifier.
Then the local potential p̄(F ) of F is defined as a2 where a is the number of atoms in F .
Note that p̄(F ) is positive. Then the potential of ϕ is the sum of the local potentials of all
subformulas that have a quantifier labeling their root.

We claim that applying any operation in →P↓,S↓,M decreases the potential. So let ϕ′ be
obtained from ϕ by applying one reduction step. We consider the different possible cases:
→P↓: Let F = ∃x(F1 ∧ F2) be a sub-formula of ϕ such that in F2 the variable x is not
free, and consider the application ∃x(F1 ∧ F2)→P↓ (∃xF1) ∧ F2︸ ︷︷ ︸

:=F ′

. The only change in the

potential of ϕ when applying this rule is the change from p̄(F ) to p̄(F ′), since no other
sub-formulas of ϕ change. But F1 contains fewer atoms than F1 ∧ F2, so p̄(F ) > p̄(F ′),
so the potential of ϕ decreases. All other cases for → P ↓ follow analogously.
→S↓: Let F = ∀x(F1 ∧ F2) be a sub-formula of ϕ and consider the application ∀x(F1 ∧
F2)→S↓ (∀xF1)∧(∀xF2). Then this application changes the potential p of ϕ by p̄(∀xF1)+
p̄(∀xF2)− p̄(F ). Let a1 be the number of atoms in F1 and a2 the number of atoms in F2,
then

p̄(∀xF1) + p̄(∀xF2) = a2
1 + a2

2 < (a1 + a2)2 = p̄(F ),

so the potential of F decreases. All other cases for →S↓ follow analogously.
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→M: In the definition of p(F ), we lose one positive summand whenever applying →M

without changing any of the other summands, so the potential decreases.
So in any case, whenever applying one of the rules on ϕ, the potential p decreases.

Now consider the equivalence classes of PFO /
∗↔ACO. Note that applying →A, →C

or →O does not change the potential of any formula, so we can define the potential [p] of
every equivalence class [ϕ]ACO by [p] ([ϕ]ACO) := p(ϕ). Now, whenever applying a rule of
the system to an equivalence class [ϕ]ACO, the potential [p]([ϕ]ACO) decreases, because, as
we have seen before, it decreases for any ϕ′ ∈ [ϕ]ACO.

The potential is bounded by [p]([ϕ]ACO) ≤ |ϕ|a2 ≤ |ϕ|3 where |ϕ| is the length of ϕ and
a the number of atoms. Since the potential is a positive integer, the longest descending
chain starting in [ϕ]ACO is thus of length |ϕ|3, so any chain in the system has polynomially
bounded length. ◀

The proof of Theorem 7 follows from this lemma straightforwardly.
We next turn to the termination of Y ′, which will be used to show Theorem 9 with

Lemma 2.

▶ Lemma 21. The system Y ′ is terminating.

Proof sketch. The proof follows the same idea as that of Lemma 20: we introduce a potential
for every pfo-formula and show that it is the same for all representatives of an equivalence
class. Then we show that applying rules from the system Y ′ decreases the potential of any
formula. Unfortunately, the setting is slightly more complicated such that the definition of
the potential is more involved than for Lemma 20. ◀

As the second ingredient for the proof of confluence for Y ′ with the help of Lemma 2, we
now show local confluence of Y ′.

▶ Lemma 22. The system Y ′ is locally confluent.

We now apply Lemma 2 using Lemma 21 and Lemma 22, to directly get Theorem 9.

8 Between rewriting and tree decompositions

The aim of this section is to link tree decompositions and formula width. We will then use
our development to prove Theorem 11. In what follows, we focus on {∃,∧}-formulas, but
our results apply to the corresponding dual formulas, namely, {∀,∨}-formulas.

Let ϕ be for now a standardized holey {∃,∧}-formula, and let a be an association for ϕ. We
define the hypergraph of (ϕ, a) as the hypergraph whose vertex set is

⋃
i a(i), where the union

is over all holes i appearing in ϕ, and whose edge set is {a(i) | i appears in ϕ} ∪ {free(ϕ)};
that is, this hypergraph has an edge corresponding to each hole of ϕ, and an edge made of
the free variables of ϕ.

The following theorem identifies a correspondence between the rules in T \ {N} and the
computation of minimum tree decompositions. A related result appears as [13, Theorem 7].3

▶ Theorem 23. Let ϕ be a standardized holey {∃,∧}-formula, and let a be an association for
ϕ. Let H be the hypergraph of (ϕ, a). It holds that width([ϕ]T \{N}) = tw(H) + 1. Moreover,
there exists a polynomial-time algorithm that, given the pair ϕ, a and a tree decomposition C

of H, outputs a formula ϕ′ ∈ [ϕ]T \{N} where width(ϕ′) ≤ bagsize(C); when C is a minimum
width tree decomposition of H, it holds that width(ϕ′) = bagsize(C).

3 Let us remark that, in the context of the present theorem, the presence of the rewriting rule O is crucial:
Example 4 shows that absence of this rule affects the minimum width achieveable.
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The following is a consequence of Theorem 23, and Proposition 13.

▶ Corollary 24. Let ϕ be a standardized {∃,∧}-sentence, and let H be the hypergraph of ϕ
(defined as having a hyperedge {v1, . . . , vk} for each atom R(v1, . . . , vk) of ϕ). It holds that

width([ϕ]A) = width([ϕ]T ) = width([ϕ]T \{N}) = tw(H) + 1.

Let us briefly explain how to employ Theorem 23 to prove Theorem 11. The proof relies on
the fact that, via Proposition 15, we can consider the regions of the formula θ independently.
Moreover, Theorem 23 allows us to minimize the width of the individual regions.

9 Monotonicity

In this section, we prove monotonicity of the gauged system G′. We begin by proving a
theorem concerning the width, up to rules in T \ {N}, of holey {∃,∧}-formulas that are
conjunctive. This will allow us to understand how to use these rules to minimize a formula
that permits application of the splitdown rule.

▶ Theorem 25. Let θ be a standardized holey {∃,∧}-formula having the form ϕ∧ ϕ′, and let
a be an association for θ. It holds that width([ϕ ∧ ϕ′]T \{N}) is equal to

max(width([ϕ]T \{N}),width([ϕ′]T \{N}), |free(ϕ) ∪ free(ϕ′)|).

Theorem 25 is used to show Theorem 10.

10 Conclusion

We have seen that one can optimally minimize the width of positive first-order formulas
with respect to the application of syntactic rules. The algorithm we have given runs in
polynomial time, up to the use of an algorithm computing minimum tree decompositions
of hypergraphs. While the computation of such decompositions is known to be NP-hard,
there exist FPT-algorithms parameterized by the treewidth (see for example [6, 5]) and it
follows directly that our width minimization algorithm runs in FPT-time parameterized by
the optimal width.

From our techniques, it can be seen that equivalence up to the syntactical rules that we
study can also be checked for pfo-formulas: given two pfo-formulas ϕ1, ϕ2, compute their
normal forms with the algorithm of Theorem 11. Then, ϕ1 and ϕ2 are equivalent if there is
an isomorphism of the structure of their regions – which is easy to check since the regions
are organized in a tree shape – and the regions mapped onto each other by this isomorphism
are equivalent. The latter can be verified by standard techniques for conjunctive queries [9]
which yields the algorithm for checking equivalence of pfo-formulas under our syntactical
rules and, in the positive case, also allows extracting a sequence of rule applications that
transforms ϕ1 to ϕ2.

We close by discussing an open issue: it would be interesting to extend the set of rules we
allow in the width minimization. A particularly natural addition would be the distributive
rules stating that ∧ distributes over ∨, and vice-versa. Note that allowing this operation
would necessarily change the form of the results we could hope for: it is known that there
are formulas whose width minimization leads to an unavoidable exponential blow-up in the
formula size [4], and it is verifiable that this is also true when only allowing syntactical
rewriting rules including distributivity. Note that this is very different from our setting
where the rewriting rules that we consider may only increase the formula size by adding a
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polynomial number of quantifiers by the splitdown rule. Thus, when adding distributivity to
our rule set, we cannot hope for polynomial time algorithms up to treewidth computation, as
we showed in the present article. Still, it would be interesting to understand how distributivity
changes the rewriting process beyond this and if there are algorithms that run polynomially,
say, in the input and output size.
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Abstract
Data integrity is ensured by expressing constraints it should satisfy. One can also view constraints
as data properties and take advantage of them for several tasks such as reasoning about data or
accelerating query processing. In the context of graph databases, simple constraints can be expressed
by means of path constraints while simple queries are modeled as regular path queries (RPQs). In
this paper, we investigate the containment of RPQs under path constraints. We focus on word
constraints that can be viewed as tuple-generating dependencies (TGDs) of the form

∀x1, x2,∃ȳ, a1(x1, y1) ∧ . . . ∧ ai(yi−1, yi) ∧ . . . ∧ an(yn−1, x2) −→
∃z̄, b1(x1, z1) ∧ . . . ∧ bi(zi−1, zi) ∧ . . . ∧ bm(zm−1, x2) .

Such a constraint means that whenever two nodes in a graph are connected by a path labeled
a1 . . . an, there is also a path labeled b1 . . . bm that connects them. Rewrite systems offer an abstract
view of these TGDs: the rewrite rule a1 . . . an → b1 . . . bm represents the previous constraint. A set
of constraints C is then represented by a rewrite system R and, when dealing with possibly infinite
databases, a path query p is contained in a path query q under the constraints C iff p rewrites to
q with R. Contrary to what has been claimed in the literature we show that, when restricting to
finite databases only, there are cases where a path query p is contained in a path query q under the
constraints C while p does not rewrite to q with R. More generally, we study the finite controllability
of the containment of RPQs under word constraints, that is when this containment problem on
unrestricted databases does coincide with the finite case. We give an exact characterisation of the
cases where this equivalence holds. We then deduce the undecidability of the containment problem
in the finite case even when RPQs are restricted to word queries. We prove several properties related
to finite controllability, and in particular that it is undecidable. We also exhibit some classes of word
constraints that ensure the finite controllability and the decidability of the containment problem.
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1 Introduction

The problem. In this paper, we investigate the containment of regular path queries (RPQs)
under path constraints. We model graph databases as finite edge-labeled graphs. We call
ω-graph database (or ω-database) graph databases where we remove the finiteness constraint.
Queries we consider here are RPQs that test whether two nodes of the graph are connected
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by a path whose label belongs to a given regular language. Query containment and query
equivalence are important properties when dealing with data: they play a central role in
query optimizations, and also in reasoning about data. Query containment for RPQs without
constraints is simply the problem of regular languages containment. In practice, query
containment is also often used when dealing with particular databases for which we have
knowledge about the actual data. We focus here on knowledge expressed by word constraints
of the form a1 . . . an ⊑ b1 . . . bm. Such a constraint means that whenever two nodes in a
graph are connected by a path labeled a1 . . . an, there is also a path labeled b1 . . . bm that
connects them. From the logical point of view, this constraint can be seen as the following
tuple-generating dependency (TGD):

∀x1, x2,∃ȳ, a1(x1, y1) ∧ . . . ∧ ai(yi−1, yi) ∧ . . . ∧ an(yn−1, x2) −→
∃z̄, b1(x1, z1) ∧ . . . ∧ bi(zi−1, zi) ∧ . . . ∧ bm(zm−1, x2) .

When b1 . . . bm is the empty word, the constraint a1 . . . an ⊑ ε is actually an Equality-
Generating Dependency (EGD) which can be written:

∀x1, x2, ∃ȳ, a1(x1, y1) ∧ . . . ∧ ai(yi−1, yi) ∧ an(yn−1, x2) −→ x1 = x2 .

In the rest of the paper we are going to be concerned only by word constraints p ⊑ q where
neither p nor q is the empty string. EGDs pose problems slightly different from TGDs and
part of the results of the paper does not apply when we remove this hypothesis.

Given a set of word constraints C and two RPQs P and Q, we may wonder whether
for every ω-database that satisfies C the answer set of the query P is included in that of
Q. In this case we write P ⊑ω

C Q. If we restrict our attention to (finite) databases, we then
write P ⊑f

C Q. In the context of databases without any constraints, the query containment
problem boils down to language inclusion and the relation of query containment coincides in
the finite case and in the infinite case. Such properties are called finitely controllable.

Word constraints are able to define precisely complex notions and then ensure that they
are well used in databases. A simple example consists in defining what it means to be of
the same generation in a genealogical tree, i.e. connecting two persons that are at the same
distance of a common ancestor. We assume that we are given the edge labels child (that
connects a person x to a person y when x is the child of y), parent (that connects a person
x to a person y when x is the parent of y) and sg (for same generation), the following
constraints give a definition of the relation sg:

child parent ⊆ sg
child sg parent ⊆ sg

Word constraints are basic and more refined properties would require more logical
connective, e.g. modalities, joins on paths etc. However, the undecidability results of the
paper for this basic class of constraints apply to more involved and more expressive classes.

Rewrite systems and word constraints. Suppose that there is a path labeled p1pp2 in an
ω-database that satisfies the constraint p ⊑ q. We then know that there is a path p1qp2
that connects the two vertices in the ω-database. If we further know that p1qp2 ⊑ q′, we
can deduce that there exists a path q′ between the two vertices. We can then apply the
same kind of reasoning any number of times. This deduction mechanism is similar to a well
known model of computation: rewrite systems or semi-Thue systems. Rewrite systems offer
an abstract view of these particular TGDs: the rewrite rule a1 . . . an → b1 . . . bm can be
associated with the constraint a1 · · · an ⊑ b1 · · · bm . A (finite) set of constraints C is then
represented by a (finite) rewrite system R.
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Given C a finite set of word constraints, consider the containment problem u ⊑ω
C v where

u and v are words. It is easy to see that if u rewrites to v , we have u ⊑ω
C v, as we have

seen that ⊑ω
C is transitive and closed under context (i.e. u ⊑ω

C v implies w1uw2 ⊑ω
C w1vw2).

With a classic construction, we can build an infinite model D of C such that D |= u ⊑ v iff u

rewrites to v (see Theorem 2). So, for word constraints, ⊑ω
C coincides with the associated

rewrite relation and so, it is undecidable as the word problem (deciding whether two words
are in the rewrite relation) for rewrite systems is in general undecidable.

Word constraints in databases and rewrite systems have already been connected in
different frameworks, e.g. for rooted path constraints in rooted databases [1, 8] and for
constraints in document stores [5]. The framework we consider here is the same as in [14] that
emphasizes this strong connection between the query containment problem in the presence
of word constraints and the word problem in rewrite systems. However, the connection is
slightly more subtle than expected and we investigate it.

Whereas ⊑ω
C and ∗→C coincide, ⊑f

C and ∗→C do not coincide in general - contrary to
what is stated in [14, Theorem 2]. Indeed, on the one hand, the set of descendants of u

by ∗→C is recursively enumerable. On the other hand, the set {v | u ⊑f
C v} is co-recursively

enumerable [8]: one can enumerate the databases until one finds D so that D |= C and there
is a path labeled u between two nodes and no path labeled v between these two nodes. So,
if they coincide, they are recursive: as soon as the set of descendants of u by ∗→C is not
recursive, it cannot be the case that the two sets coincide. As a consequence, there must
be cases where u ⊑f

C v while it is not true that u
∗→C v. We exhibit concrete examples that

illustrate this phenomenon in the paper.

Query containment is not finitely controllable. By the preceding remark, in the setting of
word constraints, for RPQs , ⊑ω

C and ⊑f
C do not coincide: query containment is not finitely

controllable. This result is central in this paper.
We study the finite controllability of the containment of RPQs under word constraints.

We give an exact characterization of P ⊑f
C Q relying on ∗→C . More precisely, P ⊑f

C Q

holds iff every regular language closed under R that intersects with P intersects with Q. We
then deduce from this characterization the undecidability of the containment problem in the
finite case even when RPQs are restricted to word queries. This characterization also allows
us to better understand when this containment problem on unrestricted databases does
coincide with the finite case. We investigate several aspects of the finite controllabillty, and,
in particular, we prove its undecidability. We also exhibit some classes of word constraints
that ensure the finite controllability and the decidability of the containment problem.

Related work. As we already pointed out, this paper is strongly related to [14]. The setting
we consider is the same. We correct some false claims -mainly the finite controllability of the
query containment problem- announced in the paper and give new proofs of correct results
whose proofs were relying on the finite controllability of the query containment problem. If
the proofs are new ones, some ideas in our proofs were already present in [14].

The strong link between rewriting and path constraints has been investigated in [1, 3] in
the rooted case: graphs are rooted, and queries are always evaluated starting from the root.
In this setting, this amounts to use rewrite system with the prefix rewriting strategy, i.e. if
u → v is a rule, only rewritings of the form “up rewrites to vp” are allowed. Prefix rewriting
preserves regularity[7], and given a word u, it is easy to build a finite database with two nodes
n1, n2, such that there is a path v between n1 and n2 iff v is a descendant of u by this prefix
rewriting. This ensures the finite controllability of query containment and the decidability of
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17:4 Containment of Regular Path Queries Under Path Constraints

regular path queries containment in the rooted case. This construction cannot be extended
in general to the non-rooted case: indeed, the language of paths between two nodes in a
finite model is a regular language, so cannot coincide with the set of descendants of u, if this
set is non regular. Preservation of regularity is a key property, even if we prove that this is
sufficient but not necessary to guarantee finite controllability in our setting. Links between
rewriting and path constraints have also been used in the context of ontology-mediated query
answering [5] and consistent query answering [4].

Undecidability of path constraint implication has already been proved in different contexts.
In particular, undecidability of (resp. finite) implication has been proved r.e. (resp. co-r.e.)
complete in the context of rooted graphs for a constraint language allowing constraints of
the form ∀x, (α(r, x) =⇒ ∀y(β(x, y) =⇒ γ(x, y))) where r is a root of the graph, α, β, γ

are paths [8]. In [9], similar constraints are expressed in Description Logic (DL) and finite
implication is proved undecidable both in the rooted and in the global semantics. The global
semantics is actually more general than our setting. The undecidability result concerning
the global semantics of [9, Theorem 15] is strong enough to prove the undecidability of the
query containment problem. For the sake of completeness, we give an original and direct
proof of this result in Section 5.

Finite controllability for containment of conjunctive queries under inclusion and functional
dependencies was introduced in [16]. The notion of finite controllability was later studied
in several papers. In particular, finite controllability of containment for conjunctive queries
under arbitrary inclusion dependencies and under keys and foreign keys has been proved
in [18, 19] and finite controllability of UCQs was later showed for several classes of constraints,
e.g. [12, 13, 2]. Consistent query answering for CRPQs under conjunction regular-path
constraints have been studied in [4]. Finite Controllability for Ontology-Mediated Query
Answering of C2RPQs has been studied in [10] where a complete classification of fragments
of C2RPQs w.r.t. finite controllability under different classes of constraints, is provided
according to the class of the underlying graph structure underlying the query. The results
we obtain here for finite controllability are disjoint from these results, as we restrict to word
constraints and as we focus to RPQs containment. Let us note that the classes of word
constraints ensuring finite controllability that we exhibit don’t fall, as far as we know, in any
of the classes identified as ensuring finite controllability of CQs in the literature.

The problems we consider. Here follow the definitions of the main decision problems at
the heart of this paper:

QC Query Containment
Input A set of word constraints C, two RPQs P, Q

Question P ⊑f
C Q ?

QCω ω−Query Containment
Input A set of word constraints C, two RPQs P, Q

Question P ⊑ω
C Q ?

UF C Uniform Finite Controllability
Input A set of word constraints C

Question For any RPQs P, Q , P ⊑f
C Q iff P ⊑ω

C Q ?
F C Finite Controllability

Input A set of word constraints C, two RPQs P, Q
Question P ⊑f

C Q iff P ⊑ω
C Q ?

Unfortunately, we will see that these problems are undecidable in general. So, we
also consider subclasses of word constraints. Given Problem in {QC, QCω, UFC, FC},
Problem(C) will denote Problem restricted to the class C of word constraints. These



S. Salvati and S. Tison 17:5

Table 1 Decidability of query containment under word constraints (U: undecidable, D: decidable).
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Table 2 Finite controllability of query containment under word constraints (U: undecidable).
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problems can also be restricted to the cases when P or Q is a word query. We denote by
xyProblem(C) with x,y ∈ {u,w}, the problem Problem(C) where P (resp. Q) is restricted
to words if x = w (resp. y = w), unrestricted if x = u (resp. y = u). When both x and y
are u, they can be omitted. If C corresponds to the whole class of word constraints, it can
be omitted. E.g. uwQC denotes the problem of query containment where P is an RPQ and
Q is a word; let CF the class of word constraints associated with context-free grammars,
wwQC(CF) denotes the problem of query containment where P and Q are words and R

belongs to CF .
In the sequel, when we mention query containment we mean QC, i.e. we refer to the

finite case.

Summary of the results. Table 1 and Table 2 summarize most of the results presented in
the paper.

2 Preliminaries

Graph databases. We model graph databases as edge-labeled graphs. For this we fix a
finite alphabet of labels Σ, a graph database (or database) D is a pair (V, E) where V is a
finite set of objects and E ⊆ V ×Σ×V is a finite set of directed labeled edges. We call ω-graph
database (or ω-database) graph databases where we remove the finiteness constraint. When
there is an edge (x, a, y) in an ω-database we say that there is an edge labeled a between x

and y or from x to y. As it is customary, we allow ourselves to write a(x, y) for the edge
(x, a, y). Finally, we abuse notation and write x ∈ D or say x is in D to mention that x is an
object of D. Similarly, for edges, we write a(x, y) ∈ D or say a(x, y) belongs to D.
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17:6 Containment of Regular Path Queries Under Path Constraints

Path queries and database contraints. The set of paths of labels (or simply paths) over the
alphabet Σ is Σ∗ the set of (possibly empty) words or sequences built on Σ. We write ε for
the empty path and Σ+ for Σ∗ \ {ε}. We inductively define the fact that two objects x and
y of a ω-database D are connected by a path labeled u (we note this property u(x, y) ∈ D)
as follows:

if u = ε, then u(x, y) ∈ D iff x = y,
if u = va, then u(x, y) ∈ D iff there is z so that v(x, z) ∈ D and a(z, y) ∈ D.

A path labeled u is considered as a query whose answer on an ω-database D is

ans(u, D) = {(x, y) | u(x, y) ∈ D} .

Adopting the logical point of view, a path query u = a1 · · · an can be seen as a particular
kind of conjunctive query:

∃x1. . . . ∃xn−1. a1(x, x1) ∧ a2(x1, x2) ∧ · · · ∧ an(xn−1, y) .

In actual graph database systems, queries do not restrict to path labels but rather to path
labels languages. Subsets of Σ∗ are called languages. A language Q can also be seen as a
query. The answer to that query on the ω-database D is:

ans(Q, D) = {(x, y) | ∃u ∈ Q. u(x, y) ∈ D} .

In other words, such a query collects all the ordered pairs of nodes that are connected by a
path labeled in Q. When Q is a regular language, the query induced by Q is called regular
path query (RPQ).

Given two languages P and Q included in Σ∗ and an ω-database D, whenever ans(P, D) ⊆
ans(Q, D) we say that D satisfies the constraint P ⊑ Q which we denote with D |= P ⊑ Q.
An ω-database D satisfies a set constraints C when for every P ⊑ Q ∈ C, D |= P ⊑ Q; in that
case we write D |= C. When for every ω-database D, D |= C implies D |= P ⊑ Q, we write
P ⊑ω

C Q. When for every (finite) database D, D |= C implies D |= P ⊑ Q, we write P ⊑f
C Q.

Clearly, P ⊑ω
C Q implies P ⊑f

C Q. In this paper, we focus on finite sets of word constraints,
i.e. constraints of the form {p} ⊑ {q} where p ̸= ε and q ̸= ε, that we also write p ⊑ q. We
also focus on properties P ⊑f

C Q and P ⊑ω
C Q when P and Q are regular languages that do

not contain ε and sometimes more specifically when P or Q are singleton sets, i.e. represent
words.

Rewrite systems. A rewrite system R on an alphabet Σ is a finite set of rules of the
form u → v with u, v in Σ+. The one-step rewrite relation of R, noted →R, is defined as
follows: p →R q when p = u1uu2, q = u1vu2 and R contains the rule u → v. We note
∗→R the reflexive transitive closure of →R. We write DR(u) for the set of descendants of u,

{v | u
∗→R v}. For a language L, DR(L) is

⋃
u∈L DR(u). We similarly define the set AR(u)

of ancestors of u, {v | v
∗→R u} and AR(L) =

⋃
u∈L AR(u). A language L is closed under R

when DR(L) = L. We let R−1 be the rewrite system obtained by reversing each rule of R

(AR(L) = DR−1(L)).
We restrict rewrite systems to rules with non-empty words as we only wish to consider

word constraints that are representable by means of TGDs. Notice that this restriction does
not diminish the computational power of rewrite systems.

The word problem for rewrite systems is the question, given two words u and v, whether
u

∗→R v. This question is known to be undecidable, even with rules with non-empty words.
We denote the set of left-hand (right-hand) sides of the rules in R by lhs(R) (rhs(R)). We
will use the following “modularity” property whose proof can be found in Appendix A:
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▶ Lemma 1. Let R = R1 ∪ R2 a rewrite system such that the letters occurring in lhs(R1)
do not occur in rhs(R2), then, ∗→R = ∗→R1 ◦ ∗→R2

Grammars. We will also use particular types of rewrite systems: grammars. A type-0
grammar G is a tuple (N, Σ, S, R) where N is a finite set of non-terminals, Σ is a finite set
of terminals, S is an element of N , the axiom of G, and R is a finite set of rewrite rules on
the alphabet N ∪ Σ. The language defined by G is L(G) = {w ∈ Σ∗ | S

∗→R w}. Notice that
the rules of grammars being rewrite rules, they use non-empty words. It is well known that
every recursively enumerable language can be defined by means of type-0 grammars. If L

is a recursive language in Σ+, L and its complement in Σ+ can be generated by a type-0
grammar. So, there exists a rewrite system R (resp. R′) over Σ ∪ N , for some alphabet
N (resp. N ′) such that there exists s (resp. s′) in N (resp. N ′) s.t., for every u in Σ+,
u

∗→R s (resp. u
∗→R′ s′) iff u belongs (resp. does not belong) to L. A type-0 grammar

G = (N, Σ, S, R) is a context-free grammar when each its rule is of the form A → w where A

is in N .

3 Query Containment and Rewriting

3.1 From word constraints to rewrite rules
As already explained, we can view word constraints and rewrite rules as similar objects. The
rewrite rule u → v is naturally mapped to the constraint u ⊑ v and vice-versa. So given a set
of contraints C we may consider it as a rewrite system and simply write u

∗→C v to mean that
the rewrite system naturally associated with C rewrites the word u to v. Similarly, given a
rewrite system R, we may write D |= R, u ⊑ω

R v or u ⊑f
R v to denote the fact that in the set

of constraints CR that is naturally associated with R, we have D |= CR, u ⊑ω
CR

v or u ⊑f
CR

v.
In the sequel, we will often conflate the set of word constraints and its naturally associated
rewrite system.

3.2 Comparing ⊑ω
R, ⊑f

R and
∗→R

For a set of word constraints R, a natural question is then how the ∗→R, ⊑ω
R and ⊑f

R are
related. We are first going to see that ∗→R and ⊑ω

R coincide, using a construction inspired
from [1]:

▶ Theorem 2. Given a set of word constraints R, we have

u ⊑ω
R v iff u

∗→R v .

Proof. The right to left part of the equivalence does not present any difficulty. For the other
direction, let D = (V, E) the ω-database defined by V = Σ∗ and E = {(v, a, u) | u

∗→R va}.
An easy induction shows that there is a path labeled w between the vertices v and u iff
u

∗→R vw. So if there is a path labeled w between the vertices v and u and w
∗→R t, then

u
∗→R vw

∗→R vt and so there is a path labeled t between v and u. Thus if w
∗→R t, then

D |= w ⊑ t. This shows that D |= R. Now, if u ⊑ω
R v, as there is a path labeled by u from

the vertex ε to the vertex u, we get that there is also a path labeled by v from ε to u, and
then, by what precedes that u

∗→R v. ◀

This theorem tells us also the conditions under which query inclusion holds.
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▶ Corollary 3. Given a set of word constraints R and two queries Q1 and Q2 on that alphabet,
the following are equivalent:

Q1 ⊑ω
R Q2,

for every p in Q1, DR(p) ∩ Q2 ̸= ∅.
Q1 ⊆ AR(Q2).

Proof. Consider the ω-database used in the proof of Theorem 2. If Q1 ⊑ω
R Q2, as D |= R, for

every p in Q1, there is a path labeled by some q in Q2 from the vertex ϵ to the vertex p, so
by what precedes, DR(p) ∩ Q2 ̸= ∅. The other implications do not present any difficulty. ◀

An important remark is that our characterization fails if we authorize rewrite rules with
empty right hand sides, i.e. of the form p → ε. For example, consider the rewrite system
R that contains only one rule a → ε. Clearly we do not have a

∗→R aa, however, for every
ω-database, if there is a path labeled a between two nodes x and y, as a →R ε, we must have
x = y, so for every k there is path labeled ak from x to y: in that case a ⊑ω

R aa while it is
not the case that a

∗→R aa.
We have seen in the introduction that contrary to what is stated in of [14, Theorem 2], it

is not true that ⊑f
R and ∗→R coincide. To summarize, we get:

▶ Theorem 4.
u

∗→R v iff u ⊑ω
R v .

Q1 ⊑ω
R Q2 iff Q1 ⊆ AR(Q2) .

If Q1 ⊑ω
R Q2, then Q1 ⊑f

R Q2 .

In general, u ⊑f
R v does not imply that u ⊑ω

R v .

3.3 Characterizing ⊑f
R: from query containment to non-separability

We have seen that u ⊑f
R v and u

∗→R v do not coincide. However, we will give a precise
characterization of Q1 ⊑f

R Q2 that uses closure under R:

▶ Theorem 5. The following propositions are equivalent:
Q1 ⊑f

R Q2,
every regular language closed under R that intersects with Q1 intersects with Q2.

Proof. Suppose that it is not the case that Q1 ⊑f
R Q2. Then there exists D, a model of R

with two vertices x and y so that:
there is a path of Q1 labeled q from x to y,
there is no path labeled by a word of Q2 from x to y.

Seeing D as an automaton with initial state x and final state y, it must be the case that:
it defines a regular language that is closed under R,
it intersects with Q1,
it does not intersect with Q2.

So there is a regular language closed under R that intersects with Q1 and does not intersect
with Q2.

We now suppose that there is a regular language K closed under R that intersects with
Q1 (i.e. K ∩ Q1 ≠ ∅) and does not intersect with Q2 (i.e. K ∩ Q2 = ∅). We will build a
database D so that D |= R and D does not satisfy Q1 ⊑ Q2.

Let K1, . . . , Kn be the finite set of left residuals of K. The left residual of K by a word
q, noted q−1K, is the language q−1K = {p | qp ∈ K}. A language is a left residual of K

when it is of the form q−1K for some q. It is well-known that a language is regular iff the set
of its left residuals is finite. We start by making the following remark about the Ki’s:
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▶ Lemma 6. For every i in [n], Ki is closed under R.

Proof. Take i in [n], p in Ki and p′ such that p
∗→R p′. There is q so that Ki = q−1K and qp

is in K. Since K is closed under R, qp′ is also in K implying that p′ is in q−1K = Ki. ◀

We define the database D as follows:
the set of vertices is {K1, . . . , Kn},
there is an edge labeled a between Ki and Kj iff Kj ⊆ a−1Ki .

▶ Lemma 7. There is a path in D labeled by p ∈ Σ+ between Ki and Kj iff p−1Ki ⊇ Kj.

Proof. We proceed by induction on p.
When p = a, the conclusion directly follows from the definition.
Let p = p′a with p′ ∈ Σ+. We first suppose that there is a path labeled p from Ki to

Kj . So, there is Kk so that there is a path labeled p′ from Ki to Kk and there is an arc
labeled a between Kk and Kj . From the induction hypothesis, we have that p′−1Ki ⊇ Kk

and by definition a−1Kk ⊇ Kj , thus p−1Ki = a−1p′−1Ki ⊇ a−1Kk ⊇ Kj . Suppose now that
p−1Ki ⊇ Kj , we let Kk = p′−1Ki. By induction, there is a path labeled p′ between Ki and
Kk, and moreover a−1Kk = p−1Ki ⊇ Kj so that there is an edge labeled a between Kk and
Kj . Therefore there is a path labeled p between Ki and Kj . ◀

▶ Lemma 8. If there is a path labeled p between Ki and Kj, for any constraint p ⊑ q in R,
there is a path labeled q between Ki and Kj.

Proof. If there is a path labeled p between Ki and Kj , then p−1Ki ⊇ Kj from Lemma 7.
So, if t belongs to Kj , pt belongs to Ki. As p ⊑ q in R, we have p →R q and therefore
pt →R qt. Now, from Lemma 6, qt also belongs to Ki and thus t is in q−1Ki. Consequently
q−1Ki ⊇ Kj and Lemma 7 implies that there is a path labeled q between Ki and Kj . ◀

The previous lemma shows that D |= R. Now let x = K and y = q−1K with q ∈ K ∩ Q1
(recall that K ∩ Q1 ̸= ∅).

We now show that the set of words that label paths between x and y intersects with
Q1 and is included in K and so does not intersect with Q2. It intersects with Q1 as from
Lemma 7, there is a path labeled by q between K and q−1K. When there is a path labeled
by p between K and q−1K, we have that p−1K ⊇ q−1K (Lemma 7). Now since q ∈ K, we
have that ε ∈ q−1K and therefore ε is also an element of p−1K so p belongs to K and does
not belong to Q2 by hypothesis.

In a nutshell, we have D |= R, there is a path between x and y labeled by a word of Q1
(the word q) and no path labeled by a word in Q2. This finally shows that it is not the case
that Q1 ⊑f

R Q2. ◀

So, we get as corollaries:

▶ Corollary 9. The following propositions are equivalent:
p ⊑f

R Q2,
every regular language closed under R that contains p intersects with Q2.

▶ Corollary 10. The following propositions are equivalent:
p1 ⊑f

R p2,
every regular language closed under R that contains p1 contains p2.
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4 About (non) finite controllability

4.1 Non finitely controllable systems
We now show how to construct examples where we have u ⊑f

R v and we do not have
u ⊑ω

R v. We first illustrate the idea of the construction by taking R = {c → acb}. The
set of descendants of c by R is {ancbn | n ∈ N}. Every finite database D such that
D |= R and that contains a path labeled c between two nodes has necessarily (by a usual
pumping argument) a path labeled ancbm with n > m between these two nodes. Now, let
T = {acb → c, ac → c, ac → 0}. It is easy to see that any word ancbm ∗→T 0 iff n > m . Thus,
in every finite database D such that D |= R ∪ T , if there is a path labeled by c between two
vertices, then there is also a path labeled by 0: c ⊑f

R∪T 0. However, one can check that c

does not rewrite to 0 with R ∪ T . The idea underlying this construction can be used for any
rewrite system R and any word u such that DR(u) is recursive but not regular.

▶ Proposition 11. Let any set of word constraints R and any word u such that DR(u) is
recursive but not regular. Let R′ = R ∪ T ∪ B defined as above: then u ⊑f

R′ 0 while it is not
the case that u ⊑ω

R′ 0.

Proof. We assume that the symbols used by R are taken from the finite set Σ. We now take
a finite set Σ with the same number of elements as Σ and a bijection between Σ and Σ. We
define B = {a → a | a ∈ Σ}. Given a word w in (Σ ∪ Γ)∗ with Γ ∩ Σ = ∅, we write w, for the
word obtained by replacing all occurrences of a in Σ by a and leaving other letters unchanged.
As we suppose that DR(u) is recursive, we can assume the existence of a rewrite system T

based on an alphabet Γ disjoint from Σ and that contains Σ and {0} so that: v →T 0 iff v

is not in DR(u). Furthermore, we can suppose that 0 does not occur in lhs(T ). We take
R′ = R ∪ T ∪ B.

▶ Lemma 12. For every v in Σ+, v
∗→R′ 0 iff there is w in Σ+ so that v

∗→R w and w /∈ DR(u).

Proof. The if part of the statement is a simple consequence of the definitions. For the only
if part we prove a slightly stronger property. Given a word v we prove that there is w so
that:

v
∗→R w and

w
∗→T 0.

Indeed, by Lemma 1, using the fact that the alphabet of rhs(T ) is disjoint from the
alphabet of lhs(R ∪ B), that the alphabet of rhs(B) is disjoint from the alphabet of the
lhs(R), we get that there exists w in Σ+,w′ in (Σ ∪ Σ)∗+ such that v

∗→R w
∗→B w′ ∗→T 0. As

0 is only produced by T and as the alphabet of lhs(T ) is disjoint from Σ,we have w′ = w. ◀

Now, let K be a language containing u that is regular and closed under R′. Then K ∩ Σ∗

is regular and contains DR(u): as DR(u) is not regular K ∩ Σ∗ contains a word v in Σ∗ that
is not in DR(u): then v

∗→B v
∗→T 0: as K is closed under R′, K contains 0 and by Theorem

5, u ⊑f
R′ 0 while it is not the case that u

∗→R′ 0. ◀

4.2 Finite controllability: word queries vs RPQs
A consequence of [14, Theorem 2] that is also false, is that Q1 ⊑f

R Q2 iff for every q1 in Q1
there is q2 in Q2 so that q1 ⊑f

R q2 [14, Lemma 3]. We construct here an example of a rewrite
system for which this property does not hold. We take the following rewrite system R:
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a → aab aab → a

b → abb abb → b

ab → ba ba → ab

Let p, q be two words. If p = ϵ or q = ϵ, it is easy to check that p
∗→R q iff p = q iff p ⊑f

R q.
Let us now suppose that both are non empty. First, it is easy to check that p

∗→R q iff
|q|a−|q|b = |p|a−|p|b 1. Second, p ⊑f

R q iff p
∗→Rq. Indeed, let Nq = |q|a−|q|b, Np = |p|a−|p|b.

If we do not have p
∗→Rq, then Nq ̸= Np. Let K = {w | |w|a−|w|b ≡ Np mod (Nq+1)(Np+1)}.

The language K is regular and closed under R, contains p and does not contain q. So, using
Theorem 5, we do not have p ⊑f

R q.
Now, let p = ab and let Q be the regular language b+. By what precedes, there is no q in

Q so that p ⊑f
R q. Now, let K a regular language that contains p and that is closed under

R. Then K contains {anbn | n > 0}. Using the pumping lemma for regular languages we
deduce that for some m > 0 we must have that anbn+m is in K. As K is closed under R, it
contains bm.

So, by Theorem 5, we do have p ⊑f
R Q, while there is no word q of Q so that p ⊑f

R q.
Furthermore, by Corollary 3, P ⊑ω

R Q iff for every q1 in P there is q2 in Q2 so that
q1 ⊑ω

R q2. So, R provides an example of system such that containment of word queries is
finitely controllable whereas the containment for regular path queries is not:

▶ Theorem 13. There are sets of word constraints for which the containment of word queries
is finitely controllable, while the containment of regular path queries is not.

5 Query containment under word constraints is undecidable

In [14], the proof of undecidability of query containment under word constraints is a mere
corollary of the assertion that u ⊑f

R v and u
∗→R v coincide. As we have seen earlier, this

assertion is false. However, query containment under word constraints is actually undecidable.
In this section, we give a proof of that fact. Notice that this result can also be derived
from [9, Theorem 15].

▶ Theorem 14. wwQC is undecidable.

Proof. The undecidability result is obtained by reduction from the problem of the separability
of context-free languages by some regular language. Formally this decision problem is stated
as follows:

Input two context free grammars G1 and G2

Question Is there a regular language R so that L(G1) ⊆ R and L(G2) ∩ R = ∅ ?
This problem is known to be undecidable [15].
Take G1 = (N1, Σ, S1, R1) and G2 = (N2, Σ, S2, R2) two context free grammars on the

alphabet Σ. We assume w.l.o.g. that
N1 ∩ N2 = ∅,
they do not have rules of the form A → ε,
they are reduced (every non-terminal is reachable from the start symbol and defines a
non-empty language).

We let R be the rewrite system on the alphabet Γ = Σ ⊎ N1 ⊎ N2 containing the rules of R1
and R−1

2 .

1 |u|x denotes the number of occurrences of the letter x in the word u.
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▶ Lemma 15. Given u and v in Γ∗, we have that u
∗→R v iff there is w so that u

∗→R1 w

and w
∗→R−1

2
v. Furthermore, if u does not contain any non-terminal of G2 and v does not

contain any non-terminal of G1, then w is in Σ+.

Proof. As we have supposed that N1 ∩ N2 = ∅, it must be the case that left hand side of a
rule in R1 does not share any symbol with the right hand side of a rule in R−1

2 . So, we get
the first part of the lemma by Lemma 1. Finally, as R1 (resp. R−1

2 ) cannot generate (resp.
eliminate) nonterminals of G2 (resp. G1), w does not contain any non-terminal symbol of
G2 (resp. G1). ◀

We are going to show that it is not the case that S1 ⊑f
R S2 iff there is a regular language

that separates L(G1) and L(G2).
Suppose that it is not the case that S1 ⊑f

R S2: by what precedes, there exists a regular
language L closed under R that contains S1 and does not contain S2. As it is closed under
R, it is closed under R1: as it contains S1, it contains L(G1). Similarly, it is closed under
R−1

2 and as it does not contain S2, so it does not contain any word of L(G2): L is a regular
language that separates L(G1) and L(G2).

Suppose now that L is a regular language that separates the languages of G1 and of G2,
e.g. that contains L(G1) and does not intersect with L(G2). We can suppose L ⊆ Σ∗. Let
us note Σ1 the alphabet Σ enriched with the non terminals of G1. By Theorem 5, we only
have to prove that there is a regular language closed under R that contains S1 and does not
contain S2.

Let us first notice that R1 (resp. R−1
2 ) preserves regularity by ascendants (resp. descend-

ants).
Let K1 = Σ∗

1/AR1(Σ∗/L). K1 is regular. Let us prove that K1 is closed under R1; let u

in K1, u
∗→R1 v: then v belongs to Σ∗

1; if v does not belong to K1, v belongs to AR1(Σ∗/L)
and, as u

∗→R1 v, u belongs to AR1(Σ∗/L), which contradicts the fact that u belongs to K1.
By construction, K1 ∩ Σ∗ ⊆ L. As DR1(S1) ∩ Σ∗ = L(G1), DR1(S1) ∩ Σ∗ ⊆ L: S1 belongs
to K1 and as K1 is closed under R1, K1 ∩ Σ∗ ⊇ L. So, K1 ∩ Σ∗ = L.

Now, let K = DR−1
2

(K1); S1 belongs to K, as S1 belongs to K1. By Lemma 15, K is closed
by R, as K1 is closed by R1. Furthermore, by the same lemma, K ∩ Σ∗

2 = DR−1
2

(K1 ∩ Σ∗),
i.e. K ∩ Σ∗

2 = DR−1
2

(L). As L ∩ L(G2) is empty, K does not contain S2.
So, K is a regular language closed under R that contains S1 and does not contain S2 :

by Theorem 5, it is not the case that S1 ⊑f
R S2. So L(G1) and L(G2) are separable by a

regular language iff we do not have S1 ⊑f
R S2.

So, given R, u, v, it is undecidable whether u ⊑f
R v. ◀

6 How to ensure decidability and finite controllability of QC?

As we have proven that generally, u ⊑f
R v does not necessarily imply that u

∗→R v, we naturally
wonder which classes of rewrite systems ensure the equivalence between u ⊑f

R v and u
∗→R v.

We will see later that this equivalence is in general undecidable for arbitrary rewrite systems.
This entails, that we must content ourselves with finding particular restrictions which have
this property without ever having a complete and effective characterization. More generally,
we can also try to identify classes of rewrite systems which ensure the equivalence between
Q1 ⊑f

R Q2 and Q1 ⊑ω
R Q2 for any RPQs Q1 and Q2.

By Subsection 3.3, we get easily (Proofs in Appendix B) the three following lemmas:

▶ Lemma 16. For any word query p and RPQ Q, if DR(p) is regular, then p ⊑f
R Q iff

p ⊑ω
R Q.
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▶ Lemma 17. There is a set of word constraints R and RPQs P and Q so that DR(P ) is
regular, P ⊑f

R Q, but we do not have P ⊑ω
R Q.

▶ Lemma 18. For any RPQs Q1, Q2, if AR(Q2) is regular, then
Q1 ⊑f

R Q2 iff Q1 ⊑ω
R Q2.

So, an obvious property ensuring finite controllability of a rewrite system R is the
preservation of regularity by R or its inverse R−1. A rewrite system R (resp. R−1) preserves
regularity when for every regular language Q, DR(Q) (resp. DR−1(Q) = AR(Q)) is a regular
language. Lemma 17 tells us that it is not enough that the rewrite system preserves the
regularity of a particular regular language.

▶ Corollary 19. Let R a rewrite system. If R (resp. R−1) preserves regularity, query
containment is finitely controllable.

Proof. If R−1 preserves regularity, we get the result by Lemma 18. If R preserves regularity,
let us suppose that Q1 ⊑f

R Q2. It implies that for every p in Q1, p ⊑f
R Q2, and then by

Lemma 16 p ⊑ω
R Q2: so, Q1 ⊑ω

R Q2. ◀

We say that R effectively preserves regularity when it preserves regularity and when
given a regular language Q (effectively presented by a regular expression or a finite state
automaton) it is possible to compute (a representation of) DR(Q). We write RewRec to
denote this class of rewrite systems and RewRec−1 the class rewrite systems R whose
inverse R−1 effectively preserves regularity.

▶ Corollary 20.
The problem wuQC(RewRec) is decidable.
The problem uuQC(RewRec−1) is decidable.

Deciding whether a rewrite system preserves regularity is an undecidable property [17].
However, several classes of string rewrite systems that effectively preserve regularity have
been identified, e.g. monadic systems [6] and match-bounded systems [11]. Monadic systems
are systems whose rules have a letter as right-hand side – so the corresponding TGDs can be
viewed as a Datalog program. A context-free grammar can be viewed as the inverse of a
monadic rewrite system and so query containment is finitely controllable and decidable for
the corresponding class of word constraints.

The first part of Corollary 20 cannot be generalized to uuQC(RewRec) which happens
to be undecidable. We prove a slightly stronger result in Theorem 21 using the problem
of universality of context-free languages which is well known to be undecidable. It can be
stated as follows:

Input A context free grammar G

Question L(G) = Σ+?

The reduction is as follows: take a context free grammar G = (N, Σ, S, ∆) (w.l.o.g. we
suppose that ϵ does not belong to G and does not occur in r.h.s. of ∆). The rewrite system
R = ∆−1 is monadic and thus effectively preserves regularity [6]. Thus, Lemma 18 and
Theorem 2 tell us that Σ+ ⊑f

R−1 S is equivalent to the universality problem for G and is
thus undecidable. This gives us an alternative proof of [14, Theorem 4]. Both proofs rely on
similar constructions but the proof in [14] relies on a false theorem, namely [14, Theorem 3].

▶ Theorem 21. The problem uwQC(RewRec) is undecidable.
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Our characterization leaves room for finding rewrite systems that do not preserve regularity
but for which query containment is finitely controllable. The following proposition (Proof
in Appendix C) states a modularity property: if two sets of word constraints are alphabet-
disjoint and if both ensure finite controllability of query containment, their union does also
ensure finite controllability.

▶ Proposition 22. Let R1 and R2 two rewrite systems on disjoint alphabets Σ1 and Σ2 that
ensure finite controllability of regular query containment. Then, R = R1 ∪ R2 also ensures
finite controllability of regular query containment.

As the preservation of regularity of rewrite systems is not in general closed under union,
this proposition allows us to construct rewrite systems R that ensure finite controllability
of regular queries containment while neither R nor R−1 preserves regularity. E.g., let
R1 = {c → acb} and R2 = {dfe → f}. R−1

1 and R2 are monadic and so preserve regularity
and then R1 and R2 ensure both finite controllability. By the preceding proposition, R =
{c → acb, dfe → f} ensures finite controllability. However, neither R nor R−1 preserve
regularity, as DR(c) = {ancbn | n ∈ N } and AR(f) = {dnfen | n ∈ N }.

7 Finite controllability is undecidable

We are now looking at the decidability of finite controllability (wwFC) and of uniform finite
controllability (wwUFC) defined in Section 1.

As u ⊑ω
R v implies u ⊑f

R v, we focus on the undecidability of u ⊑ω
R v under the

hypothesis that u ⊑f
R v. We use a reduction from the following undecidable problem (Proof

in Appendix D):

▶ Lemma 23. The following problem is undecidable:
Input L1, L2 two recursive sets that are not separable by a regular set.

Question Is L1 ∩ L2 empty?

So, let L1, L2 be two recursive sets on the alphabet Σ+ that are not separable by a regular
set. As previously, we take a finite set Σ in bijection with Σ. We define B = {a → a | a ∈ Σ}.
Given an alphabet Γ disjoint from Σ and a word w in (Σ ⊎ Γ)∗, we write w, for the word
obtained by replacing all occurrences of a in Σ by a and leaving other letters unchanged.

As L1, L2 are recursive, there exist two rewrite systems :
R1 on an alphabet Σ1 containing Σ and a symbol s1 such that for any u in Σ∗, s1

∗→R1 u

iff u ∈ L1.
R2 on an alphabet Σ2 containing Σ and a symbol s2 such that for any u in Σ∗, u

∗→R2 s2
iff u ∈ L2.

We can suppose that Σ1 ∩ Σ2 = ∅. Let ∆ = Σ1 ∪ Σ2 ∪ {♯l, ♯r, g} where ♯l, ♯r and g are
fresh symbols. We define:

R♯ = {x → ♯ls1♯r | x ∈ ∆ \ {♯l, ♯r}}
Rg = {♯ls2♯r → g} ∪ {g → xg, g → x, xg → g, gx → g | x ∈ ∆}
RL1,L2 = R1 ∪ R2 ∪ R♯ ∪ B ∪ Rg.
In the sequel, we denote RL1,L2 by R. Then, we get (Proof in Appendix E):

▶ Lemma 24.
1. If L1 ∩ L2 ̸= ∅, u

∗→R v for any (u, v) in ∆+ \ {♯l, ♯r}∗ × ∆+ .

2. If L1 ∩ L2 = ∅, we do not have ♯ls1♯r
∗→R ♯ls2♯r .

3. ♯ls1♯r ⊑f
R ♯rs2♯r .

4. If u ∈ {♯l, ♯r}∗, then u ⊑f
R v (resp. u

∗→R v) iff u = v .

5. u ⊑f
R v iff u ∈ ∆+ \ {♯l, ♯r}∗ or u = v .
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A consequence of Lemma 24 is that deciding equivalence of ♯ls1♯r ⊑f
R ♯rs2♯r and ♯ls1♯r

∗→R

♯rs2♯r amounts to decide non emptiness of L1 ∩ L2. More generally, for every u, v ∈ ∆+,
u ⊑f

R v is equivalent to u
∗→R v only when L1 ∩ L2 ̸= ∅. Therefore we get the undecidability

of finite controllability and uniform finite controllability of a rewrite system:

▶ Theorem 25. wwFC and wwUFC are undecidable.

Furthermore, let C be the class of systems RL1,L2 for L1, L2 recursive sets on the alphabet
Σ that are not separable by a regular set. On the one hand, for any rewrite system R in C,
u ⊑f

R v iff u ∈ ∆+/{♯l, ♯r}∗ or u = v. So, for any rewrite system R in C, ⊑f
R is decidable.

On the other hand, s1
∗→R s2 is equivalent to L1 ∩ L2 = ∅ so is undecidable in C. So, we get:

▶ Proposition 26. There exists a class of rewrite systems for which the wwQC is decidable
whereas wwQCω is undecidable.

This proposition contradicts [14, Corallary 2] that is a consequence of [14, Theorem 2 ].

8 Conclusion

Starting with an error in the proof of [14], we have studied the containment of RPQs under
word constraints. Contrary to what was claimed in [14], we have showed that this property
is not finitely controllable in general. We also have given counter-examples to properties that
were corollaries of this false claim and alternate proofs to those that were correct.

For this, we have studied the relation between word constraints and rewrite systems. We
have given a precise characterization of P ⊑f

R Q in terms of separability and closure under
rewriting by R. This characterization has played a key role in identifying the properties of
query containment in this setting and in giving a correct proof of the undecidability of the
containment problem.

The stage being set we have studied further properties of finite controllability in this
setting. In particular, we have showed that it is undecidable and we have exhibited some
classes of constraints that ensure the finite controllability and the decidability of query
containment. This study allowed us to show that the finite controllability of the containment
of word queries and that of RPQs do not coincide. More specifically we give examples of
constraints for which the containment of word queries is finitely controllable, whereas it is
not the case for general RPQs. Interestingly we have also showed that when p ⊑f

R Q, we do
not necessarily have p ⊑f

R q for some word q in Q, i.e. the “witness” of containment depends
on the model.

We observe that for obtaining finite controllability in this setting, it suffices to consider
constraints for which the underlying rewrite system preserves regularity by inverse rewriting.
We also observe that those for which the underlying rewrite system preserves regularity have
nice properties. Such rewrite systems have been widely studied. We show that other rewrite
systems can also have interesting properties with respect to that containment problem (as
done in Proposition 22).

Finally many of the results of the paper could be extended to RPQ constraints of the
form P ⊆ u, where P is an RPQ , u a word. In particular, we think that the characterization
of u ⊑f

R v in terms of separability could likely be extended. An interesting consequence
would then be that decidability results about finite controllability and query containment
would then hold for some classes of RPQs .
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A Proof of Lemma 1

Proof. First let us note that if u →R2 w →R1 v, there exists w′ such that u →R1 w′ →R2 v.
Indeed, as u →R2 w , u = u1l2u2, w = u1r2u2 for some rule (l2, r2) in R2. As w →R1 v,
w = v1l1v2 for some rule (l1, r1) in R2 and v = v1r1v2. By hypothesis the letters of l1 do
not occur in r2: so either v1l1 is a prefix of u1, or l1v2 is a suffix of u2. W.l.o.g., let us
suppose that v1l1 is a prefix of u1: w = v1l1w1r2u2 , v = v1r1w1r2u2 and u = v1l1w1l2u2:
u →R1 v1r1w1l2u2 →R2 v1r1w1r2u2 = v.

Now, let u
∗→R v: there exists a derivation u →R u1 →R . . . un = v. At step i either a

rule of R1 or a rule of R2 is applied. An inversion in the derivation is a couple (i, j) with
i < j such that the rule applied at step i is in R2 whereas the rule applied at step j is in R1.
We will prove that the derivation can be “sorted” and that u

∗→R1 ◦ ∗→R2 v by induction of
the number of inversions in the derivation. If the number of inversions is 0, by definition,
u

∗→R1 ◦ ∗→R2 v. Otherwise, there is an inversion: this implies that there exists a step i such
that the rule applied at step i is in R2 whereas the rule applied at step i + 1 is in R1. By
what precedes, we can permute these two steps and we get a derivation u

∗→R v whose number
of inversions is strictly smaller: so, by induction, u

∗→R1 ◦ ∗→R2 v. ◀

B Proof of Lemmas 16, 17, 18

Proof of Lemma 16. By Theorem 4 we just need to prove that if p ⊑f
R Q then p ⊑ω

R Q.
DR(p) is a regular language closed by R and contains p. Then, by Theorem 5, if p ⊑f

R Q,
DR(p) intersects with Q and so, there exists q in Q such that p

∗→R q; then, by Theorem 2,
p ⊑ω

R q and so, p ⊑ω
R Q. ◀

Proof of Lemma 17. We take the rewrite system R of Section 4.2. We let P = Σ+ and
Q = a+ + b+. We define B as the set {u | u ̸= ε ∧ |u|a = |u|b}. For every u /∈ B, we either
have that |u|a > |u|b or |u|a < |u|b. In the first case, u

∗→R ak for k = |u|a − |u|b and, in the
second case, u

∗→R bk for k = |u|b − |u|a. So for every u /∈ B, we have that u ⊑ω
R a+ + b+ and

thus u ⊑f
R a+ + b+ . In contrast, we have that DR(B) = B and B ∩ a+ + b+ = ∅. Therefore

for every u ∈ B, we do not have u ⊑ω
R a+ + b+ . Thus, we do not have that Σ+ ⊑ω

R b+ + a+ .
However, for every u ∈ B, let n = |u|a, as u

∗→R anbn we have that u ⊑f
R anbn. We have

seen Section 4.2 that anbn ⊑f
R bm for some m > 0. This shows that Σ+ ⊑f

R a+ + b+ . ◀

Proof of Lemma 18. By Theorem 4 we just need to prove that if Q1 ⊑f
R Q2 then Q1 ⊑ω

R Q2.
K = Σ∗/AR(Q2) is a regular language closed under R that does not intersect with Q2. From
Theorem 5, if Q1 ⊑f

R Q2, K does not intersect with Q1; then Q1 ⊆ AR(Q2) and by Theorem
4 Q1 ⊑ω

R Q2. ◀
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C Proof of Proposition 22

Proof. We only need to prove that q ⊑f
R Q implies q ⊑ω

R Q. Take a path q and a regular
set of paths Q such that there is no p in Q with q

∗→R p. We will prove the existence of a
regular language K closed under R containing q and not intersecting with Q.

Let q1p1 . . . qnpn be the unique decomposition of q such that q1 ∈ Σ∗
1, pn ∈ Σ∗

2, q2, . . . , qn ∈
Σ+

1 and p1, . . . , pn−1 ∈ Σ+
2 .

Let P = Σ∗
1(Σ+

2 Σ+
1 )n−1Σ∗

2. If Q ∩ P is empty, we can choose P for K: it is easy to check
that it satisfies all the conditions. Otherwise, Q∩P is a non empty regular language included
in P .

We use the following property: given three regular sets N, A, B, if N ⊆ AB, then
N =

⋃
i∈I AiBi where the Ai (resp. Bi) are all regular, all included in A (resp. B)

and I is finite. Indeed it is easy to check that N =
⋃

u∈A([u] ∩ A).(u−1N ∩ B), where
[u] = {v | u−1N = v−1N}. The number of distincts [u] and u−1N is finite as N is regular,
so we get the required finite decomposition.

Iterating the aforementioned property, we get that Q ∩ P can be decomposed in a finite
union of products of regular languages

⋃
i∈I A1,iB1,i . . . An,iBn,i for some finite I, where

A1,i ⊆ Σ∗
1, Bn,i ⊆ Σ∗

2, Aj,i ⊆ Σ+
1 for j ̸= 1, Bj,i ⊆ Σ+

2 , for j ̸= n.
As, by hypothesis, there is no p in Q so that q

∗→R p, Q∩P ∩DR(q) = ∅. Thus, for every i

in I, A1,iB1,i . . . An,iBn,i ∩ DR(q) is empty and so there exists j such that Aj,i ∩ DR1(qj) = ∅
or Bj,i ∩ DR2(pj) = ∅. Since R1 (resp. R2) is finitely controllable, there is a regular language
K1 (resp. K2) closed under R1 (resp. R2) containing DR1(qj) (resp. DR2(pj)) and not
intersecting with Aj,i (resp.Bj,i).

Define Li as:
Li = Σ∗

1(Σ+
2 Σ+

1 )j−2Σ+
2 (K1 ∩ Σ+

1 )(Σ+
2 Σ+

1 )n−jΣ∗
2

in case Aj,i ∩ DR1(qj) = ∅ ,
Li = Σ∗

1(Σ+
2 Σ+

1 )j−1(K2 ∩ Σ+
2 )(Σ+

1 Σ+
2 )n−j−1Σ+

1 Σ∗
2

otherwise (in this case Bj,i ∩ DR2(pj) = ∅ ).

It is easy to check that in both cases Li is regular, closed under R, contains q, does not
intersect with A1,iB1,i . . . An,iBn,i.

Define K as
⋂

i∈I Li: K is regular, closed under R, contains q, does not intersect with Q.
By Theorem 5, we obtain that it is not the case that q ⊑f

R Q. ◀

D Proof of Lemma 23

Proof. Our proof relies on undecidability of emptiness of the intersection of recursive sets of
numbers. We represent sets of numbers as one letter languages. For k ̸= 0, we let pk to be
the kth prime number and, given a letter a and a set of numbers N , we write Pa(N ) for the
language {apn | n ∈ N }. We write Pa for the language {ap | p prime number} and Pc

a for
a∗ − Pa.

First, let us notice that if L is regular and L is included in Pa, then L is finite. Indeed,
by a pumping argument, we get that if L is an infinite regular language included in Σ∗, there
exists n ≥ 0, m > 0 such that an+pm belongs to L for any integer p. But, then an+(n+2m+2)m

belongs to L. As n + (n + 2m + 2) ∗ m = (n + 2m) ∗ (m + 1) is not prime, L is not included
in Pa .

Let N1 and N2 two infinite arbitrary recursive sets of numbers. We let L1 = Pc
a ∪Pa(N1),

L2 = Pa(N2). We have that N1 ∩ N2 = ∅ iff L1 ∩ L2 = ∅. If R is a regular language
containing L1, a∗/R is included in Pa, and then, from what precedes, is finite; so, R contains
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all, but finitely, many elements of a∗ and as L2 is infinite, we must have L2 ∩ R ≠ ∅. In
other words, L1 and L2 cannot be separated by a regular set. However deciding L1 ∩ L2 = ∅
is equivalent to deciding N1 ∩ N2 = ∅. ◀

E Proof of Lemma 24

Proof. We prove below the different items, the second one being the most technical.

1. If L1 ∩ L2 is non empty, there exists w such that s1
∗→R1 w

∗→B w
∗→R2 s2, so s1

∗→R s2.
Let (u, v) in ∆+/{♯l, ♯r}∗ × ∆+: u can be decomposed in u1xu2 with x /∈ {♯l, ♯r}.
Then, u →R♯

u1♯ls1♯ru2
∗→R u1♯ls2♯ru2 →Rg

u1♯lg♯ru2
∗→Rg

g.
As g can generate any word of ∆+, we have u

∗→R v.
2. Suppose ♯ls1♯r

∗→R ♯ls2♯r.
We first prove that ♯ls1♯r

∗→R1∪B∪R2∪R♯
m1♯ls2♯rm2. If no g occurs in the derivation,

the derivation is in R1 ∪ B ∪ R2 ∪ R♯ and satisfies the requirements. Otherwise, let us
consider ig, the first step of the derivation where g occurs. As g is only produced by
♯ls2♯r → g or by a rule containing g in its l.h.s., the derivation truncated at its ig − 1
first steps is of the form ♯ls1♯r

∗→R1∪B∪R2∪R♯
m1♯ls2♯rm2 for some m1, m2.

Now, let us prove that by induction of the length of the derivation the following property:
Let u in (Σ1 ∪ Σ2)∗; If ♯ls1♯r

∗→R1∪B∪R2∪R♯
m1♯lu♯rm2 for some m1, m2, there exists a

derivation ♯ls1♯r
∗→R1∪B∪R2 ♯lu♯r.

If the derivation is of length 1, either ♯ls1♯r →R1 ♯lu♯r or ♯ls1♯r →R♯
♯l♯ls1♯r♯r and u = s1.

In both cases, ♯ls1♯r
≤1→R1 ♯lu♯r.

Let us now suppose that the property is true for derivations of length n and let a
derivation of length n + 1: If ♯lu♯r is not concerned by the last rewriting step, we
have ♯ls1♯r

n→R m′
1♯lu♯rm′

2 for some m′
1, m′

2 and we have the property by induction.
If ♯lu♯r is concerned by the last step, as u is in (Σ1 ∪ Σ2)∗, either the last step uses
a rule x →R♯

♯ls1♯r and u = s1, so the property is trivial or the derivation is of
the form ♯ls1♯r

n→R1∪B∪R2∪R♯
m1♯lu

′♯lm2 →R1∪B∪R2 m1♯lu♯rm2. Then by induction,
♯ls1♯r

∗→R1∪B∪R2 ♯lu
′♯r →R1∪B∪R2 ♯lu♯r.

Applying the property to ♯ls1♯r
∗→R1∪B∪R2∪R♯

m1♯ls2♯rm2, we get that there is a derivation
♯ls1♯r

∗→R1∪B∪R2 ♯ls2♯r. By adapting the reasonment already used in Lemma 12, there
exists a derivation ♯ls1♯r

∗→R1 ♯lm♯r
∗→B ♯lm♯r

∗→R2 ♯ls2♯r. But then m belongs to L1 ∩ L2
that would not be empty.

3. Every regular language closed under R containing ♯gs1♯d contains ♯gL1♯d and then
intersects with ♯gL2♯d as L1 and L2 are not regularly separable. So, by Corollary 10,
♯gs1♯d ⊑f

R ♯gs2♯d .

4. If u ∈ {♯g, ♯d}∗, then DR(u) = {u} is a regular language closed under R. By Corollary 10,
u ⊑f

R v iff u = v and, therefore, iff u
∗→R v .

5. Let u ∈ ∆+/{♯l, ♯r}∗: we have u = u1xu2 with x ∈ ∆. Therefore, u →R♯
u1♯ls1♯ru2, so

u ⊑f
R u1♯ls1♯ru2, As ♯ls1♯r ⊑f

R ♯ls2♯r , u ⊑f
R u1♯ls2♯ru2 ⊑f

R u1gu2 ⊑f
R v for any v.

In case u ∈ {♯l, ♯r}∗, we have already seen that that u ⊑f
R v iff u = v .

In a nutshell, u ⊑f
R v iff u ∈ ∆+/{♯l, ♯r}∗ or u = v . ◀
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Abstract
We are given a set Z = {(R1, s1), . . . , (Rn, sn)}, where each Ri is a range in Rd, such as rectangle or
ball, and si ∈ [0, 1] denotes its selectivity. The goal is to compute a small-size discrete data distribution
D = {(q1, w1), . . . , (qm, wm)}, where qj ∈ Rd and wj ∈ [0, 1] for each 1 ≤ j ≤ m, and

∑
1≤j≤m

wj =
1, such that D is the most consistent with Z, i.e., errp(D, Z) = 1

n

∑n

i=1|si −
∑m

j=1 wj · 1(qj ∈ Ri)|p

is minimized. In a database setting, Z corresponds to a workload of range queries over some table,
together with their observed selectivities (i.e., fraction of tuples returned), and D can be used as
compact model for approximating the data distribution within the table without accessing the
underlying contents.

In this paper, we obtain both upper and lower bounds for this problem. In particular, we show
that the problem of finding the best data distribution from selectivity queries is NP-complete. On the
positive side, we describe a Monte Carlo algorithm that constructs, in time O((n+δ−d)δ−2 polylog n),
a discrete distribution D̃ of size O(δ−2), such that errp(D̃, Z) ≤ minD errp(D, Z) + δ (for p = 1, 2, ∞)
where the minimum is taken over all discrete distributions. We also establish conditional lower
bounds, which strongly indicate the infeasibility of relative approximations as well as removal of the
exponential dependency on the dimension for additive approximations. This suggests that significant
improvements to our algorithm are unlikely.
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selectivities from query workloads, or a combination of both. At a high-level, many of these
techniques build a model of the underlying data distribution and use it to answer queries.
While they work very well in practice, often outperforming their traditional counterparts, a
theoretical understanding of this line of work is missing. This leads to the natural question,
whether selectivity can be learned efficiently from a small sample of query selectivities alone,
without access to the data distribution. Hu et al. [27] formalize the learnability of the
selectivity estimation problem in this setting. They use the agnostic-learning framework [25],
an extension of the classical PAC learning framework for real-valued functions, where one is
given a set of sample queries from a fixed query distribution and their respective selectivities
(the training set), and the goal is to efficiently construct a data distribution so that the
selectivity of a new query from the same query distribution can be answered with high
accuracy. They show that for a wide class of range queries, the selectivity query can be
learned within error ε ∈ (0, 1) with probability at least 1 − δ using a training set of size
ε−O(1) log δ−1, where the exponent of ε depends on the query type; see [27] for a precise
statement of their results. Informally, learnability implies that performance of a model on
the training set generalizes to unseen queries from the same distribution. This reduces the
task of learning to finding a (model of the) data distribution that best fits the training data
i.e. Empirical Risk Minimization (ERM). Although Hu et al. [27] prove a sharp bound on
the sample complexity, their algorithm for ERM takes prohibitively long and produces a
data distribution of large size. They also present fast heuristics to construct small-size data
distributions, but they do not provide any guarantee on the performance with respect to the
best data distribution fitting the training set. This raises the question of how to develop a
provably efficient and effective algorithm for constructing the best data distribution (in a
given family) from a training set.

Note that the size of the distribution computed by [27], can further be reduced to O(ε−2)
by choosing an ε-approximation, with an increase of ε in the error; see [23] and Section 3
below. However, the paper aims at computing a small-size distribution (whose performance
is comparable to the best data distribution) directly and efficiently, without constructing a
large-size distribution first. For this problem, we obtain hardness results as well as efficient
algorithms.

Problem Statement. A range space Σ = (X ,R) comprises a set of objects X and a collection
of subsets R ⊆ 2X called ranges. In this paper, X is a finite set of points, and each range
R ∈ R corresponds to a query that returns the subset of objects that fall within a simple
geometric region such as a rectangle (corresponding to an orthogonal range query), a ball
(neighborhood range query), or a half-space (query with a linear constraint). We will not
distinguish between a region R and R ∩ X , so with a slight abuse of notation, we will use R
to denote a set of geometric regions such as a set of rectangles or balls.

A discrete distribution D = {(p1, w1), ..., (pm, wm)} is defined by a finite set of points
and their associated probabilities, where each pi is a point in Rd for some constant d ≥ 1,
each wi > 0, and

∑m
i=1 wi = 1. We refer to the point set {p1, ..., pm} as the support of D

and denote it by supp(D). The size of a discrete distribution D is defined as the size of its
support and is denoted as |D|. Let D denote the family of all discrete distributions, and
let Dk be the family of discrete distributions of size at most k. Given a range R ⊆ R, let
sD(R) =

∑m
i=1 1(pi ∈ R)wi denote the selectivity of R over D, which is the probability for a

random point drawn from D to lie in R (or the total measure of D inside R).
In this paper, our goal is to learn a (discrete) distribution from the selectivities of range

queries. For ease of exposition, we will describe our results for rectangles (orthogonal ranges),
although our techniques extend to other natural range spaces.
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Let Z = {z1, ..., zn} be a set of training samples, where zi = (Ri, si), Ri is an axis-
aligned rectangle (orthogonal range) in Rd, and si ∈ [0, 1] is its observed selectivity.1 Let
R = {R1, ..., Rn} denote the set of ranges in Z. For a discrete distribution D ∈ D and for
p ≥ 1 we define the (ℓp) empirical error to be

errp(D,Z) = 1
n

n∑
i=1
|sD(Ri)− si|p , and for p =∞, err∞(D,Z) = max

1≤i≤n
|sD(Ri)− si| . (1)

We focus on p = 1, 2, and ∞.
Let α∗

p(Z) = minD∈D errp(D,Z) denote the minimum error achievable for all distributions
in the family. Given Z, our goal is to compute a discrete distribution D̃p with err(D̃p,Z) = α∗

p.
As argued in [27], such a discrete distribution of size O(nd) can be computed in nO(d) time.
However, this distribution is too large even for moderate values of n and d, so we are
interested in computing a smaller size distribution at the cost of a slight increase in the
empirical error. Hence, our problem becomes the following: given Z and some δ ∈ [0, 1],
compute a small-size distribution D, ideally of size that depends on δ and independent of n,
such that errp(D,Z) ≤ α∗

p + δ. Alternatively, given a size budget k, compute a distribution
D̂ ∈ Dk such that errp(D̂,Z) = minD∈Dk

errp(D,Z).

Our results. We present both negative and positive results for the data-distribution2 learning
problem. On the negative side in Section 5, we prove that the problem is NP-complete even
for rectangles in R2. Namely, given Z where R is a set of rectangles in R2, p ∈ {1, 2,∞},
and two parameters δ ∈ [0, 1] and k ≥ 1, the problem of determining whether there is a data
distribution D of size k such that errp(D,Z) ≤ δ is NP-hard.

On the positive side, we focus on designing an efficient algorithm for constructing
a small-size distribution with additive-approximation error. We present a Monte Carlo
algorithm that computes, with high probability, a discrete distribution D̃ of size O(δ−2)
with errp(D̃,Z) ≤ α∗

p + δ, for p ∈ {1, 2,∞}, in O(nδ−2 log n + δ−d−2 log3 n) time (exact
time complexity is given in Lemma 8). Starting with p = 1 (ℓ1 empirical error), we first
present in Section 2 a basic algorithm that maps our problem to a linear program (LP)
with O(n) constraints and O(nd) variables. We show how the Multiplicative-Weight-Update
(MWU) method [5] can be used to solve this LP. A naive implementation of the MWU of
this algorithm takes Ω(nd) time. Next, in Section 3, we exploit underlying geometry in two
ways to solve this LP involving exponential number of variables efficiently, by representing it
implicitly. First, we give a geometric interpretation to the main step of the MWU method:
we map a maximization problem with O(nd) variables to the problem of finding the weighted
deepest point in an arrangement of n rectangles in Rd. The best algorithm to solve this
geometric problem takes O(nd/2) time [9], which would allow one to improve the running time
to O(δ−2nd/2 log n). But this is also expensive. Second, we use the notion of ε-approximation
to quickly compute an approximately deepest point in a weighted set of rectangles efficiently,
in time O(δ−d log n).

1 Note that we do not assume the training set Z to be consistent with any distribution distribution in
D, or any distribution in general; i.e., there might not exist any distribution D such that si reflects
the selectivity of Ri for every 1 ≤ i ≤ n. This flexibility allows us to model settings where the query
workload was executed on an evolving database instance, and the observed selectivities on different
concrete instances may not be consistent with each other.

2 In this paper we focus on discrete distributions. For simplicity, sometimes we use the term data
distribution instead of discrete distribution.
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In Section 4 we extend our algorithm to more general settings. We show that our near-
linear time algorithm works for the ℓ∞ and the ℓ2 empirical error. Furthermore, we show
that our algorithm can be extended to other ranges such as balls and halfspaces in Rd.

In Section 5, we also give conditional lower bounds that indicate that avoiding the
exponential dependency on d is not possible even for additive approximations. This makes
meaningful improvements to our algorithm unlikely. We also give conditional lower bounds
for a variant of our problem, allowing an arbitrary relative approximation factor on the size
of the distribution or an arbitrary relative approximation factor on the error of the returned
distribution. Our conditional hardness results are based on the FPT ̸= W [1] conjecture;
see [14] for the definition. Finally, we also show that when the distribution size is fixed, any
relative approximation is NP-hard.

2 Basic Algorithm

In this section we present our basic algorithm for computing a small-size discrete distribution
that (approximately) minimizes the ℓ1 empirical error. For simplicity, let err(·, ·) and α∗

denote err1(·, ·) and α∗
1, respectively. Given a training set Z and a parameter δ ∈ (0, 1), it

computes a discrete distribution D∗ of size O(δ−2 log n) such that err(D∗,Z) = α∗ +δ. At the
heart, there is a decision procedure IsFeasible that, given Z and parameters α, δ ∈ (0, 1),
returns a distribution D∗ with err(D∗,Z) ≤ α+ δ/2 if α ≥ α∗ and returns No if α < α∗.

We do not know the value of α∗, so we perform a binary search on the value of α. In
particular, let E = { δ

2 , (1 + δ
2 ) δ

2 , (1 + δ
2 )2 δ

2 , . . . , 1} be a discretization of the range [0, 1], and
let αj be the j-th value of E. Suppose the binary search currently guesses αi to be the
current guess of α∗. If IsFeasible(Z, δ, αi) returns a distribution D, we continue the binary
search for values less than αi in E. Otherwise, we continue the binary search for values
greater than αi in E. At the end of the binary search, we return the last distribution D∗

that IsFeasible found. Assuming the correctness of the decision procedure, the algorithm
returns the desired distribution in log 1

δ iterations. If α∗ ≤ δ/2, then IsFeasible(Z, δ, α1)
returns a distribution D∗ such that err(D∗,Z) ≤ α1 + δ/2 = δ ≤ α∗ + δ. In any other case,
without loss of generality assuming that αi−1 < α∗ ≤ αi, we have αi ≤ (1 + δ/2)α∗. By
definition, IsFeasible(Z, δ, αi) returns a distribution Di such that err(Di,Z) ≤ αi + δ/2.
Hence,

err(D∗,Z) ≤ err(Di,Z) ≤ αi + δ/2 ≤ (1 + δ/2)α∗ + δ/2 ≤ α∗ + δ.

We now describe the decision procedure IsFeasible.

2.1 Decision procedure
Let Z, δ, and α be as defined above. The decision problem can be formulated as follows:

(FP1) ∃? D ∈ D s.t.

1
n

n∑
i=1

ui ≤ α

|sD(Ri)− si| ≤ ui for i = 1 . . . n
ui ∈ [0, 1] for i = 1 . . . n.

Here ui models the error in the selectivity of Ri. A challenge in solving the above decision
problem is determining the candidate set of points in supp(D). The problem as stated is
infinite-dimensional. Our next lemma suggests how to reduce it to a finite-dimensional
problem by constructing a finite set of candidate points for supp(D).
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Figure 1 The (black) points qi represent points from the underlying data distribution D while
(blue) points pτ ∈ P. The (green) dashed segments show three cells of the arrangement in rectangle
R. The weights of points in P are: w(p1) = w1 +w3, w(p2) = w2, w(p3) = w4 +w5, w(p4) = w6 +w8,
w(p5) = w7.

The arrangement of R, denoted A(R), is a partitioning of Rd into contiguous regions
called cells such that for every (d-dimensional) cell τ in the arrangement, τ lies in the same
subset of R. For each d-dimensional cell τ ∈ A(R), we choose an arbitrary point pτ in the
interior of τ . Let P = {pτ | τ ∈ A(R)} be the set of candidate points. Note that A(R) has
O(nd) cells, and it can be computed in O(nd log n) time [3]. Therefore, |P| = O(nd) and P
can be computed in O(nd log n) time.

▶ Lemma 1. For any discrete distribution D ∈ D, there is another discrete distribution D′

such that supp(D′) ⊆ P and err(D,Z) = err(D′,Z).

Proof. For each d-dimensional cell τ ∈ A(R), let

wτ =
∑

pi∈supp(D)

1(pi ∈ τ)wi

be the total weight of points of supp(D) that lie in τ . We define

D′ = {(pτ , wτ ) | τ ∈ A(R), wτ > 0}.

See also Figure 1. By definition, for any rectangle R ∈ R, the cells of A(R) lying inside R
induce a partitioning of R. Let A(R | R) denote this partitioning of R into cells. Then

sD′(R) =
∑

pτ ∈P
1(pτ ∈ R)wτ =

∑
τ∈A(R|R)

wτ =
∑

τ∈A(R|R)

∑
pi∈τ∩supp(D)

wi

=
∑

pi∈supp(D)

1(pi ∈ R)wi = sD(R).

Hence, err(D,Z) = err(D′,Z). ◀

▶ Remark. We note that the choice of point pτ in each cell τ ∈ A(R) is arbitrary; one can
use any point in τ as its representative point.

In view of Lemma 1, it suffices to restrict supp(D) to be a subset of P . We order the cells
of A(R) arbitrarily and let pj denote the point chosen from the j-th cell, so P = {p1, . . . , pm}
where m = |P |. We introduce a real variable vj ∈ [0, 1] that models the weight of pj ∈ P.
Then (FP1) can be rewritten as
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(FP2)
1
n

n∑
i=1

ui ≤ α∣∣∣∣∣∣
∑

j:pj∈Ri

vj − si

∣∣∣∣∣∣ ≤ ui for i = 1 . . . n (2)

m∑
j=1

vj ≤ 1 (3)

ui, vj ∈ [0, 1] for i = 1 . . . n, j = 1 . . .m

We require that the sum of weights of the discrete distribution we compute is at most 1
because, for any distribution returned with

∑m
j vj < 1, we can add an arbitrary point that

is not contained in any range with weight 1−
∑m

j vj .
The above decision problem can be written as a linear program by replacing (2) with two

linear inequalities.

(LP1) −
1
n

n∑
i=1

ui ≥ −α (4)

ui −
∑

j:pj∈Ri

vj ≥ −si for 1 ≤ i ≤ n (5)

ui +
∑

j:pj∈Ri

vj ≥ si for 1 ≤ i ≤ n (6)

m∑
j=1

vj ≤ 1 (7)

ui, vj ∈ [0, 1] for i = 1 . . . n, j = 1 . . .m

It will be convenient to write the above LP in a compact form. Let u = (u1, . . . , un),
v = (v1, . . . , vm), and x = (u, v). Set

X = {x = (u, v) ∈ [0, 1]n+m | ∥v∥1 ≤ 1}.

For 0 ≤ κ ≤ 2n, let Aκx ≥ bκ denote the κ-th constraint of (4), (5), (6). Namely, A0x ≥ b0
denotes (4), and for 1 ≤ i ≤ n, A2i−1x ≥ b2i−1 and A2ix ≥ b2i denote the constraints (5) and
(6), respectively, for the rectangle Ri. Then (LP1) asks whether there exists an x ∈ X such
that Ax ≥ b.

We use a Multiplicative-Weight-Update (MWU) method to solve this linear program,
following the general approach described by Arora et al. [5], though the exact implementation
depends on the specific LP; see also [42]. We describe how this approach is implemented in
our setting. We will need this algorithm for the faster implementation described in Section 3.

2.2 MWU algorithm
We describe an algorithm that either returns a x̃ ∈ X such that Ax̃ ≥ b − δ/4 or returns
that there is no feasible solution for (LP1). We set two parameters η = δ

c1
and T =⌈

c2δ
−2 ln(2n+ 1)

⌉
, where c1, c2 > 0 are sufficiently large constants to be chosen later. The

algorithm works in T rounds. At the beginning of round t, it has a (2n + 1)-dimensional
probability vector w(t) = (w(t)

0 , . . . , w(t)
2n). Initially, w(1) = ( 1

2n+1 , . . . ,
1

2n+1 ). In the t-th round,
the algorithm solves the decision problem consisting of one constraint

w(t)⊤Ax ≥ w(t)⊤b, x ∈ X (8)

which we refer to as the expected constraint. The algorithm computes, as described below,
x(t) = arg maxx∈X w(t)⊤Ax.
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If w(t)⊤Ax(t) < w(t)⊤b, we conclude that (LP1) is infeasible because, by definition, any
feasible solution of (LP1) satisfies (8), and we return No. Otherwise, for i = 0 . . . 2n, we set

w(t+1)
i = w(t)

i

1− η(Aix(t) − bi)
µ(t+1)

(9)

where µ(t+1) is a normalization factor so that ∥w(t+1)∥1 = 1.
If the algorithm does not return No within the first T rounds, then after completing

T rounds, it returns x̃ = 1
T

∑T
i=1 x(t). Suppose x̃ = (ũ, ṽ). We return the distribution

D̃ = {(pj , ṽj) | ṽj > 0}.

Computing x(t)x(t)x(t). We now describe the computation of x(t) = (u(t)
1 , . . . , u(t)

n , v(t)
1 , . . . , v(t)

m ) at
each step. We can express the LHS of the expected constraint (8) as

w(t)⊤Ax =
n∑

i=1
φ(t)

i ui +
m∑

j=1
ψ(t)

j vj (10)

where φ(t)
i = w(t)

2i + w(t)
2i−1 −

w(t)
0
n

for 1 ≤ i ≤ n, (11)

ψ(t)
j =

∑
i:pj∈Ri

w(t)
2i − w(t)

2i−1 for 1 ≤ j ≤ m. (12)

Note that the two terms in (10) do not share variables and (7) does not involve ui’s, so we
can maximize each of them independently. Recall that ui ∈ [0, 1], so to maximize (10), we
choose for 1 ≤ i ≤ n,

u(t)
i =

{
1 if φ(t)

i > 0,
0 otherwise.

(13)

Next, we choose v(t)
j as follows. Let j(t) = arg max1≤j≤m ψ(t)

j . Since v ∈ [0, 1]m and ∥v∥1 ≤ 1
for (u, v) ∈ X, we choose for 1 ≤ j ≤ m,

v(t)
j =

{
1 if j = j(t) and ψ(t)

j > 0,
0 otherwise.

(14)

Note that although many ui’s could be set to 1, at most one vj is set to 1. This property
will be crucial for our faster implementation in the next section. Since at most T vj ’s are
non-zero, |D̃| ≤ T = O(δ−2 log n).

This completes the description of our basic algorithm. We now analyze its running time
and correctness.

2.3 Analysis
▶ Lemma 2. Assume that the MWU algorithm returns a solution x̃ after T rounds. Then
Aix̃ ≥ bi − δ/4, for every 0 ≤ i ≤ 2n.

Proof. It is straightforward to verify that for any round 1 ≤ t ≤ T , |Aix(t) − bi| ≤ 2. Let
T −

i = {t ≤ T | Aix(t) − bi < 0} be the subset of rounds where Aix(t) − bi < 0. Using the
analysis in Arora et al. [5] (see the proof of Theorem 3.3), for every 0 ≤ i ≤ 2n, we obtain,
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0 ≤
T∑

t=1

1
2(Aix(t) − bi) + η

T∑
t=1

1
2 |Aix(t) − bi|+

ln(2n+ 1)
η

= (1 + η)
T∑

t=1

1
2(Aix(t) − bi) + 2η

∑
t∈T −

i

1
2 |Aix(t) − bi|+

ln(2n+ 1)
η

≤ (1 + η)
T∑

t=1

1
2(Aix(t) − bi) + 2ηT + ln(2n+ 1)

η
.

The last inequality follows because |Aix(t) − bi| ≤ 2. Noting that x̃ = 1
T

∑T
i=1 x(t), we get

0 ≤ (1 + η)(Aix̃ − bi) + 4η + 2 ln(2n+1)
ηT . By choosing c1 = 32 and c2 = 512, we obtain η = δ

32
and T =

⌈
512δ−2 ln(2n+ 1)

⌉
. Therefore

(1 + η)(Aix̃ − bi) + δ/4 ≥ 0⇔ Aix̃ ≥ bi − δ/4. ◀

▶ Lemma 3. Given a training set Z and parameters α, δ, the algorithm IsFeasible either
returns a discrete distribution D̃ of size O(δ−2 log n) such that err(D̃,Z) ≤ α + δ/2, or
returns No for α < α∗.

Proof. First, by definition, our algorithm always solves the expected constraint optimally.
Hence, if the algorithm stops in iteration t ≤ T (because we cannot satisfy the expected
constraint w(t)⊤Ax ≥ w(t)⊤b for x ∈ X) then it is also true that there is no x ∈ X such that
Ax ≥ b. So the algorithm correctly returns that the LP is infeasible and α < α∗.

Next, assume that the algorithm returns D̃. Recall that x̃ = (ũ, ṽ) =
(ũ1, . . . , ũn, ṽ1, . . . , ṽn) ∈ X. Since X is convex and x(t) ∈ X for each 1 ≤ t ≤ T , it also
holds that x̃ ∈ X and ∥ṽ∥1 ≤ 1. Hence, it follows that D̃ is indeed a distribution of size at
most T = O(δ−2 log n). From Lemma 2 and the equivalence of (FP2) and (LP1), we get

1
n

n∑
i=1

ũi ≤ α+ δ/4 and

∣∣∣∣∣∣
∑

j:pj∈Ri

ṽj − si

∣∣∣∣∣∣ ≤ ui + δ/4

for i = 1 . . . n. Recall that sD̃(Ri) =
∑

j 1(pj ∈ Ri)ṽj . Hence

err(D̃,Z) = 1
n

n∑
i=1
|sD̃(Ri)− si| ≤

1
n

n∑
i=1

ũi + δ/4 ≤ α+ δ/4 + δ/4 = α+ δ/2. ◀

As for the running time, the binary search executes O(log 1
δ ) iterations, each of which

runs the IsFeasible algorithm. We need O(m log n) = O(nd log n) time to construct (LP1).
The IsFeasible algorithm runs for T = O(δ−2 log n) rounds. In each round t, we need O(n)
time to compute the values of u(t) by (11) and (13). We need O(m log n) = O(nd log n) time
to find all the values ψ(t)

j by (12). Putting everything together, we have the following lemma.

▶ Lemma 4. The algorithm runs in O(δ−2nd log2 n log δ−1) time.

3 The Improved Algorithm

We present an implementation of a small variant of the algorithm in the last section that
computes the desired distribution with high probability in n(δ−1 log n)O(1) time (see The-
orem 9 below for a more precise characterization). There are two challenges in implementing
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the IsFeasible procedure efficiently. First, (LP1) has O(nd) variables – although u has
dimension n, v has dimension m = O(nd) – so we cannot afford to represent (LP1) explicitly.
Second, in each round t, computing u(t) is easy, but computing v(t) quickly seems challenging
even though only one of the values in v is non-zero. We exploit underlying geometry to
address both challenges. We first describe how to implement IsFeasible without writing
the LP explicitly and then describe how to compute x(t) quickly.

Implicit representation of LP. We maintain the probability vector w(t) as before. We
also maintain a multi-set F ⊂ Rd of points. Initially, F = ∅. Each round adds one point
to F , so |F| ≤ T = O(δ−2 log n). Since we have w(t) at our disposal, we can compute
u(t)

i , for 1 ≤ i ≤ n, using (11) and (13) as before. The main question is how to compute
j(t) = arg max1≤j≤m ψ(t)

j without maintaining all the variables explicitly. For each rectangle
Ri ∈ R, let ω(t)(Ri) = w(t)

2i − w(t)
2i−1. For each point x ∈ Rd, we define its depth with respect

to (R, ω(t)), denoted by ∆(x), to be

∆(x) =
∑
R∈R

1(x ∈ R)ω(t)(R).

It is easily checked that the depth of all points lying in the same cell of A(R) is the same, and
that many cells may have the same depth. By the definition of the depth, ψ(t)

j = ∆(pj). Thus
the problem of computing j(t) is equivalent to choosing a point p(t) in Rd of the maximum
depth, i.e., ∆(p(t)) = maxp∈Rd ∆(p). Chan [9] has described an O(nd/2) time algorithm to
compute a point of maximum depth in a set of n weighted rectangles in Rd. We refer to this
algorithm as DeepestPt(R, ω), where R is a set of n rectangles in Rd and ω ∈ Rn is the
weight vector.

We thus proceed in the t-th round of IsFeasible as follows. First, compute the vector
u(t) as before. Next, we compute the deepest point p(t) by calling DeepestPt(R, ω(t)).
If ∆(p(t)) > 0, then we add p(t) to the set F ; otherwise we ignore it. Intuitively, this
is equivalent to setting vj(t) = 1 if ψj(t) > 0 and 0 otherwise. We do not know how to
compute j(t) efficiently and thus cannot compute which vj needs to be set to 1. But what
comes to our rescue is that we only need to compute w(t)

q Aqx, for all 0 ≤ q ≤ 2n, to check
whether the expected constraint holds and to update the weight factors. Fortunately, we can
accomplish this using only u and p(t), without an explicit representation of x, as follows. We
set w(t)

2i−1A2i−1x = w(t)
2i−1u

(t)
i and w(t)

2i A2ix = w(t)
2i u

(t)
i if ∆(p(t)) ≤ 0 or p(t) /∈ Ri, and we set

w(t)
2i−1A2i−1x = w(t)

2i−1(u(t)
i − 1) and w(t)

2i A2ix = w(t)
2i (u(t)

i + 1) if ∆(p(t)) > 0 and p(t) ∈ Ri. It
can be checked that these values are the same as when we set vj(t) as above.

After having computed w(t)
q Aqx for all 0 ≤ q ≤ 2n, we check whether w(t)⊤Ax < w(t)⊤b.

If so, we stop and return No. Otherwise, we compute w(t+1) using (9) as before. If the
algorithm is not aborted within the first T rounds, we return D̂ = {(p, 1

T ) | p ∈ F}. Recall
that F is a multi-set. If there are s copies of a point p, we keep only one copy of p and set
its weight to s

T . The following lemma establishes the correctness of the algorithm.

▶ Lemma 5. Given Z and δ ∈ [0, 1], err(D̃,Z) = err(D̂,Z).

Proof. For simplicity, we assume that for any ω(t), 1 ≤ t ≤ T , the maximum-depth cell
in A(R) with respect to ω(t) is unique and that j(t) are distinct for each t ≤ T . Then by
the definition of depth, p(t) and pj(t) lie in the same cell of A(R), so the value of w(t)⊤Ax
computed by the implicit algorithm is the same as w(t)⊤Ax(t) computed by the basic algorithm.
Hence, assuming w(t) computed by the two algorithms is the same, w(t+1) computed by them
is also the same. Recall that v(t)

j(t) is set to 1 if and only if ψ(t)
j(t) > 0, which is the same
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condition when p(t) is added to F by the implicit algorithm. v(t)
j(t) = 1 if and only if p(t) ∈ F .

Hence, pj(t) ∈ supp(D̃) if and only if p(t) ∈ supp(D̂) and pj(t) and p(t) lie in the same cell of
A(R). The same argument as in Lemma 1 now implies that err(D̃,Z) = err(D̂,Z). ◀

Fast computation of p(t)p(t)p(t). The main observation is that it is not crucial to compute
x(t) = arg maxx∈X w(t)⊤Ax in the t-th round of the MWU algorithm. Instead, it suffices to
compute x̃(t) such that w(t)⊤Ax̃(t) ≥ w(t)⊤Ax(t) − δ/12. In the terminology of the implicit
LP algorithm, this is equivalent to saying that it suffices to compute a point p̃(t) with
∆(p̃(t)) ≥ maxp∈Rd ∆(p)− δ/12. We use ε-approximations and random sampling [23, 11] to
compute p̃(t) quickly. The notion of ε-approximation is defined for general range spaces but
we define ε-approximation in our setting.

Given a set R of rectangles and a weight function ω : R → [0, 1] a multi-subset N ⊂ R is
called an ε-approximation of (R, ω) if for any point x ∈ Rd,∣∣∣∣∆(x,R, ω)

ω(R) − ∆(x,N )
|N |

∣∣∣∣ ≤ ε, (15)

where ∆(x,R, ω) is the weighted depth of point x in the set of rectangles R with weights ω,
and ∆(x,N ) is the depth of point x in the set of rectangles N assuming that the weight of
each rectangle in N is 1.

Let A be a random (multi-)subset of R of size O(ε−2 lnϕ−1) where at each step each
rectangle of R is chosen with probability proportional to its weight (with repetition). It is well
known [23, 11] that A is an ε-approximation with probability at least 1− ϕ. With this result
at our disposal, we compute p̃(t), an approximately deepest point with respect to (R,w(t)),
as follows. Let w(t) be as defined above. Let w+ = (w+

1 , . . . , w
+
n ) and w− = (w−

1 , . . . , w
−
n ) be

two vectors such that w+
i = w(t)

2i and w−
i = w(t)

2i−1 for every 1 ≤ i ≤ n. We set r = c3δ
−2,

where c3 > 0 is a sufficiently large constant. We repeat the following for µ = O(log n)
times: For each h ≤ µ, we choose a random sample N+

h of (R,w+) of size r and another
random sample N−

h of (R,w−) of size r. Let Nh = N+
h ∪N

−
h . We define the weight function

ω̄h : Nh → R as

ω̄h(R) =
{

∥w+∥1
r if R ∈ N+

h ,

−∥w−∥1
r if R ∈ N−

h .
(16)

We compute a deepest point p̃(t)
h with respect to (Nh, ω̄h) along with ∆(p̃(t)

h ,Nh, ω̄h)
by calling DeepestPt(Nh, ω̄h). After repeating µ times, we choose as p̃(t) the point p̃(t)

ξ

with the median ∆(p̃(t)
ξ ,Nξ, ω̄ξ) among depths {∆(p̃(t)

1 ,N1, ω̄1), . . . ,∆(p̃(t)
µ ,Nµ, ω̄µ)}, where

ξ ∈ [1, µ]. Recall that ω(t)
i = w(t)

2i − w(t)
2i−1.

▶ Lemma 6. ∆(p̃(t),R, ω(t)) ≥ maxx∈Rd ∆(x,R, ω(t)) − δ/12 with probability at least 1 −
1/nO(1).

Proof. If we choose the constant c3 sufficiently large, then both N+
h and N−

h are δ
48 -

approximations with probability greater than 1/2. Therefore, for any point x ∈ Rd,∣∣∣∣∣∆(x,R,w+)
∥w+∥1

−
∆(x,N+

h )∣∣N+
h

∣∣
∣∣∣∣∣ ,

∣∣∣∣∣∆(x,R,w−)
∥w−∥1

−
∆(x,N−

h )∣∣N−
h

∣∣
∣∣∣∣∣ ≤ δ

48 . (17)

Using (17) and the fact that ∥w+∥1, ∥w−∥1 ≤ 1, we obtain

∆(x,R, ω(t))=∆(x,R,w+)−∆(x,R,w−) ≤ ∥w
+∥1

r
∆(x,N+

h )−∥w
−∥1

r
∆(x,N−

h )+2 δ48

= ∆(x,Nh, ω̄h) + δ

24 .
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Similarly, ∆(x,R, ω(t)) ≥ ∆(x,Nh, ω̄h)− δ
24 . Next, we define x∗ = arg maxx∈Rd ∆(x,R, ω(t)).

Hence, with probability greater than 1/2,

∆(p̃(t)
h ,R, ω(t)) ≥ ∆(x∗,R, ω(t))− δ

12 .

Using the well known median trick (an application of the median trick can be found
in [29]), we know that p̃(t) = p̃(t)

ξ that has the median depth satisfies

∆(p̃(t),R, ω(t)) ≥ ∆(x∗,R, ω(t))− δ

12 ,

with probability at least 1− 1/nO(1). ◀

▶ Lemma 7. With probability at least 1− 1/nO(1), the IsFeasible decision procedure either
returns a discrete distribution D̃ of size O(δ−2 log n) such that err(D̃,Z) ≤ α+δ/2 or returns
No for α < α∗.

Proof. Using the proofs of Lemma 2 and Lemma 3 (by slightly increasing the constants
c1, c2) we get that with probability at least 1− 1/nO(1), if the algorithm does not abort in
the first T iterations in the end it finds x̃ ∈ X such that Ax̃ ≥ b− 3δ/12 = b− δ/4. Using
Lemma 5 and Lemma 3, we conclude the result. ◀

▶ Lemma 8. The improved algorithm runs in time

O((n+ δ−2 log2 n+ δ−d log n)δ−2 log n log δ−1).

Proof. In each round, we spend O(n) time to compute u(t). For each h, we construct two
ε-approximations N−

h ,N
+
h of size O(δ−2) by applying weighted random sampling. Using

a binary search tree constructed at the beginning of each round of the MWU algorithm,
we get each sample in O(log n) time. Hence, we construct Nh in O(δ−2 log n). We spend
O((δ−2)d/2) time to compute p̃(t)

h using [9]. Overall we spend O((δ−2 log n+ δ−d) log n) time
to compute the point p̃(t). Summing these bounds over all iterations of the binary search
and the MWU method, we have the desired bound. ◀

The algorithm we proposed computes a discrete distribution D̃ of size O(δ−2 log n). The
size can be reduced to O(δ−2) as follows. We first run the algorithm above with δ ← δ/2.
After obtaining D̃, we repeat the following procedure O(log n) times. In the h-th iteration,
we get a Ñh of O(δ−2) weighted random samples from D̃. This is a δ/2-approximation with
probability at least 1/2. Let D̃h be the distribution of size O(δ−2) defined by Ñh. In the
end, we return the best δ/2-distribution D̃h with respect to err(D̃h,Z). With probability at
least 1− 1/nO(1), we find a distribution of size O(δ−2) and additive error δ. The running
time of the additional steps is dominated by the running time in Lemma 8.

▶ Theorem 9. Let Z = {z1, . . . , zn} be a set of training samples such that zi = (Ri, si),
where Ri is an axis aligned rectangle in Rd and si ∈ [0, 1] is its selectivity. Given a parameter
δ ∈ (0, 1), a discrete distribution D̃ of size O(δ−2) can be computed in O((n+ δ−2 log2 n+
δ−d log n)δ−2 log n log δ−1) time such that err1(Z, D̃) ≤ α∗

1(Z) + δ, with probability at least
1− 1/nO(1).

▶ Remark. As we will see in the next section, our main algorithm can be extended to other
settings. However, for axis-aligned rectangles, we can improve the dependency on d if we
use a more sophisticated construction of ε-approximations for rectangular ranges. In fact,
using [41] to construct the ε-approximation [11], we can get a distribution D̃ with the same
properties as in Theorem 9 in O((n+ δ−6 log2 n+ δ−d/2)δ−2 log n log δ−1) time.
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4 Extensions

4.1 Extending to other error functions
So far, we only focused on the ℓ1 empirical error. Our algorithm can be extended to ℓ∞ and
ℓ2 empirical errors with the same asymptotic complexity. In both cases, we run the same
binary search as we had for the ℓ1 error, and we call the IsFeasible(Z, δ, α).

ℓ∞ℓ∞ℓ∞ error. Following the same arguments as in Section 2.1, we can formulate the problem
as a simpler LP than (LP1). More specifically, by definition, we have to satisfy ui ≤ α for
1 ≤ i ≤ n instead of constraint (4). However, we observe that the linear problem is then
equivalent to (LP1) setting ui = α for 1 ≤ i ≤ n. Without having a vector u, in each round t,
the algorithm only computes the vector v by computing p(t) as we had in Section 3. The
result follows.

ℓ2ℓ2ℓ2 error. The goal now is to find a distribution D that minimizes err(D,Z). This is
equivalent to the feasibility problem (LP1) replacing constraint (4) with

− 1
n

n∑
i=1

u2
i ≥ −α. (18)

Interestingly, the MWU method works even if the feasibility problem is on the form f(x) ≥ 0,
where f(·) is concave. It is straightforward to see that the new constraint (18) is concave.
The rest of the constraints remain the same as in (LP1) so they are linear. Hence, we can
use the same technique to optimize the new feasibility problem. Still the goal is to try and
satisfy the expected constraint (8) by maximizing its LHS. In fact the new LHS of (8) is

w(t)⊤Ax =
n∑

i=1
−w

(t)
0
n
u2

i + (w(t)
2i + w(t)

2i−1)ui +
m∑

j=1
ψ(t)

j vj (19)

The variables vi are set by efficiently computing p(t) as shown in Section 3. So we only focus
on setting the variables ui. Recall that our goal is to maximize the LHS in order to check if
the expected constraint is satisfied. By simple algebraic calculations it is straightforward to
see that the function g(ui) = −w(t)

0
n u2

i + (w(t)
2i + w(t)

2i−1)ui under the constraint ui ∈ [0, 1] is
maximized for

u(t)
i = min

{
n(w(t)

2i + w(t)
2i−1)

2w(t)
0

, 1
}
. (20)

After computing w(t), we can find u(t) in O(n) time. Hence, using (20) instead of (13) we can
set u that maximizes the expected constraint. All the other steps of the algorithm remain the
same. Following the improved algorithm along with the proofs of Lemmas 2, 3, if α > α∗

2(Z),
with high probability, we get a distribution D̃ of size O(δ−2) in near linear time such that
err2(D̃,Z) ≤ α+ δ/2.

▶ Theorem 10. Let Z = {z1, . . . , zn} be a set of training samples such that zi = (Ri, si),
where Ri is an axis-aligned rectangle in Rd and si ∈ [0, 1] is its selectivity. Given the
parameters δ ∈ (0, 1) and p ∈ {1, 2,∞}, a discrete distribution D̃ of size O(δ−2) can be
computed in O((n + δ−2 log2 n + δ−d log n)δ−2 log n log δ−1) time such that errp(Z, D̃) ≤
α∗

p(Z) + δ with probability at least 1− 1/nO(1).



P. K. Agarwal, R. Raychaudhury, S. Sintos, and J. Yang 18:13

4.2 Extending to other types of ranges

Besides rectangles, our algorithm can be extended to more general ranges such as balls and
halfspaces in Rd. A semi-algebraic set in Rd is a set defined by Boolean functions over
polynomial inequalities, such as a unit semi-disc {(x2 + y2 ≤ 1) ∩ (x ≥ 0)}, or an annulus
{(x2 + y2 ≤ 4) ∩ (x2 + y2 ≥ 1)}. Most familiar geometric shapes such as balls, halfspaces,
simplices, ellipsoids, are semi-algebraic sets. The complexity of a semi-algebraic set is the sum
of the number of polynomial inequalities and their maximum degree. See [6] for a discussion
on semi-algebraic sets. Our results extend to semi-algebraic ranges of constant complexity.
Let Z = {(Γ1, s1), . . . , (Γn, sn)} be a training set where each Γi is a semi-algebraic set of
constant complexity. Let Γ = {Γ1, . . . ,Γn}. It is known that A(Γ) has nO(d) complexity,
that for any weight function ω : Γ→ [0, 1], the deepest point can be computed in O(nd) time,
and that a random sample of size O(δ−2 log ϕ−1) is a δ-approximation with probability at
least 1− ϕ, [2, 3]. With these primitives at our disposal, the algorithm in Section 3 can be
extended to this setting. Omitting all the details we obtain the following.

▶ Theorem 11. Let Z = {z1, . . . , zn} be a set of training samples such that zi = (Γi, si),
where Γi is a semi-algebraic set of constant complexity and si ∈ [0, 1] is its selectivity. Given
the parameters δ ∈ (0, 1) and p ∈ {1, 2,∞}, a discrete distribution D̃ of size O(δ−2) can
be computed in O((n+ δ−2 log2 n+ δ−2d log n)δ−2 log n log δ−1) time such that errp(Z, D̃) ≤
α∗

p(Z) + δ with probability at least 1− 1/nO(1).

5 Hardness Results

5.1 NP-Completeness

Let Selectivity be the decision problem of constructing a distribution with small size
and minimum error. More specifically, let Z = {(R1, s1), ..., (Rn, sn)} be the input training
set consisting of n rectangles R1, . . . , Rn in Rd along with their selectivities s1, . . . , sn,
respectively. Let k be a positive natural number and ε ∈ [0, 1] be an error parameter. The
Selectivity problem asks if there exists a distribution D ∈ Dk such that errp(D,Z) ≤ ε.
In the full version of the paper [1], we prove the following theorem.

▶ Theorem 12. The Selectivity problem is NP-Complete, even for d = 2.

The NP-hardness proof is based on a gadget used by [37] to prove the NP-hardness of
the Square Cover problem: given a set R of n squares, and a parameter k, decide if there
are k points S ∈ R2 such that R ∩ S ̸= ∅ for each R ∈ R. We prove Theorem 12 by reducing
3 -SAT to the Selectivity problem in R2. Let (X,C) be the 3 -SAT formula consisting
of variables x1, ..., xn and clauses C1, ..., Cm. We construct a set of weighted axis-aligned
rectangles Z and a number k such that (X,C) is satisfiable if and only if there exists a
discrete distribution D of size k such that errp(D,Z) = 0.

In the above reduction, we construct a training set Z such that there exists a D ∈ Dk

with errp(D,Z) = 0 if and only if the formula is satisfiable. This construction implies a
stronger result. Given Z and k, let α∗

p,k = minD∈Dk
errp(D,Z).

▶ Corollary 13. Let f : N −→ N be a monotonically non-decreasing function. Assuming
P ̸= NP , there is no polynomial-time algorithm that given a training set Z and an input
parameter k ∈ N can compute D ∈ Dk such that errp(D,Z) ≤ f(n)α∗

p,k(Z).
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5.2 Conditional lower bounds

A natural question to ask is whether given Z and k, a discrete distribution of size at most
g(n)k can be computed in polynomial time such that the error is at most f(n)α∗

p,k, where
f(n), g(n) are monotonically non-decreasing non-negative functions. We prove conditional
lower bounds for this problem, assuming the FPT ≠ W [1] conjecture; see [14] for details of
this conjecture.

Consider the following problem, which we refer to as Selectivity+: given a training
set Z of n rectangles in Rd along with their associated selectivities and a parameter k,
compute a discrete distribution D ∈ D such that |D| ≤ g(n)k and errp(D,Z) ≤ f(n)α∗

p,k,
where g : N −→ N and f(n) : N −→ N are any functions that satisfy f(n) ≥ 1, g(n) ≥ 1, and
g(n) · k = O(n).

We prove a conditional lower bound on Selectivity+ by a reduction from the coverage
problem: given a set R of n rectangles in Rd and a box B, does the union of rectangles in R
cover B, i.e. B ⊆

⋃
R∈R

R. The coverage problem is known to be W [1]-Hard, therefore, there

cannot be an algorithm for coverage with running time h(d)nO(1), where h : N→ N, under
the FPT ̸= W [1] conjecture.

▶ Theorem 14. The Selectivity+ problem cannot be solved in h(d)nO(1) time, where h is
any computable function h : N→ N, under the FPT ̸= W [1] conjecture.

Proof. Suppose on the contrary there is an algorithm A for Selectivity+ that runs in
h(d)nO(1) time.

We show a reduction from the coverage problem. Let R, B, as defined above, be an
instance of the coverage problem. For each rectangle Ri ∈ R, we construct zi = (Ri, 0), i.e.,
rectangle Ri with selectivity 0. Finally, we add zn = (B, 1). We set k = 1. The running time
to construct the instance of the Selectivity+ problem is O(d · n). We then run A on this
instance.

We first consider the case when the input is a No instance of the coverage problem.
This implies that there exists a point q ∈ Rd such that q ∩ B ≠ ∅ and q

⋂
(
⋃

Ri∈R Ri) = ∅.
Consider the distribution D = {(q, 1)}. Notice that errp(D,Z) = 0 = α∗

p,1 = α∗
p,k = f(n)α∗

p,k

because q lies only inside B, where B has selectivity 1 and all other rectangles Ri have
selectivity 0. By definition of Selectivity+, A in this instance must return a distribution
D such that errp(D,Z) = 0.

In the Yes instance of the coverage problem, if q ∈ B then q ∈
⋃

Ri∈R Ri. Hence, if we
add any point q ∈ B in distribution D with positive probability then errp(D,Z) > 0 because
the selectivity of every rectangle in R is 0. On the other hand, the selectivity of B is 1
so if we do not add any point q ∈ B in D with positive probability then errp(D,Z) > 0.
In any case, f(n)α∗

p,k ≥ errp(D,Z) > 0. Actually, it is easy to verify that for any D ∈ D,
errp(D,Z) > 1

2n2 for any p ∈ {1, 2,∞}. Thus, f(n)α∗
p,k >

1
2n2 > 0.

Overall, let D be the distribution returned by A. Given D, we can compute errp(D,Z)
in O(n2) time, because |D| ≤ g(n)k ≤ n. If errp(D,Z) = 0 then the solution to the coverage
problem in the original instance is No. Otherwise, if errp(D,Z) > 0, then the solution to
the coverage problem in the original instance is Yes.

We thus obtain a h(d)nO(1) time algorithm for the coverage problem, which is a contra-
diction under the FPT ̸= W [1] conjecture. Hence, A cannot run in h(d)nO(1) time under the
FPT ̸= W [1] conjecture, as claimed. ◀
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The above theorem implies there is no near-linear algorithm for Selectivity+ under the
FPT ̸= W [1] conjecture. In fact, we can prove a stronger conditional lower bound. We define
the Approx-Selectivity problem: given a training set Z of n rectangles in Rd along with
their associated selectivities and a parameter δ > 0, compute a D ∈ D such that |D| ≤ 1

δ3

and errp(D,Z) ≤ f(n)α∗
p,1 + δ, where f(n) : N −→ N is any function that satisfies f(n) ≥ 1.

The requirements for Approx-Selectivity are considerably weak. First, we are allowed
to use more points than our algorithm i.e. 1

δ3 points. Second, we only need to compete with a
multiplicative factor of the best solution using just one point i.e. f(n)α∗

p,1. It turns out that
for small δ, the conditions of the Approx-Selectivity become the same as Selectivity+
and hence the proof technique for Theorem 14 also proves the following:

▶ Theorem 15. The Approx-Selectivity problem cannot be solved in h(d)
(
nO(1)+δ−O(1)+

nO(1)δ−O(1)) time, where h is any computable function h : N→ N, under the FPT ≠ W [1]
conjecture.

Proof. Similar to the proof of Theorem 14, we map an instance of the coverage problem to
an instance of Approx-Selectivity, picking δ = 1

8n2 . The same argument shows that in
the No instance an algorithm for approx-selectivity returns a distribution with error at
most 1

8n2 while in the Yes instance, it returns a distribution with error at least 1
2n2 . ◀

▶ Remark. Notice that both theorems are based on reductions from the coverage problem.
Chan [8] proved that the coverage problem is W [1]-hard with respect to dimension d, showing
that the existence of a d-clique in a graph with

√
n vertices can be reduced to the coverage

problem with O(n) boxes in Rd. Thus, the time complexity of the d-clique problem is
intimately related to our problem. If fast matrix multiplication is allowed, the best known
algorithm for the d-clique problem requires ω(nd/3) time [39].

Due to inefficiencies of fast matrix multiplication, there is a lot of interest in solving
the clique problem using combinatorial algorithms (i.e. without fast matrix multiplication).
However, the best current combinatorial algorithm for the d-clique problem in general
graphs requires Ω(nd/ polylog(n)) running time. This lower bound implies that an o(nd/2−η)
time combinatorial algorithm for the Selectivity+ problem or a o(n + δ−d/2+η) time
combinatorial algorithm for the the Approx-Selectivity problem, for any η > 0, is unlikely.
Such an algorithm would lead to a o(nd−η) combinatorial algorithm for d-clique, solving a
major open problem in graph theory.

6 Related Work

Selectivity Estimation. Selectivity estimation techniques can be broadly classified into
three regimes: query-driven, data-driven, and hybrid. Most literature focuses on orthogonal
range queries.

Query-driven methods: These methods derive selectivity estimates based on previous
queries and their results. They do not require access to the underlying data distribution.
Methods falling under this category include DQM [24] and the query-driven histogram
techniques such as STHoles [7], Isomer [45], and QuickSel [40]. They construct models or
histograms using results from previous queries and apply these models to estimate selectivity
for new queries.

Data-driven methods: These methods, on the other hand, derive selectivity estimates
from the underlying data distribution. They sample data and build statistical models that
capture the data distribution, which are then used for selectivity estimation. There is long
history along this direction, but some recent examples in this category include Naru [49],
DQM-D [35], and DeepDB[26].
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Hybrid methods: These methods take into account both the query workload and the
underlying data distribution. They not only model the data distribution but also incorporate
query feedback to refine the model over time. Examples of such methods include MSCN [28]
and LW [15], which utilize both data and query features in a regression-based framework for
selectivity estimation. See [47] for a detailed literature review.

Our method is query-driven, but is unique because none of query-driven and data-driven
models above offered theoretical guarantees on the learnability of the functions or their
learning procedures.

Multiplicative-Weights-Update (MWU) method. The MWU method has been independ-
ently rediscovered multiple times and has found applications in several areas including
machine learning [17], game theory [18, 20], online algorithms [16], computational geometry
[12], etc. In the context of optimization problems, there is a rich body of work on using MWU
and related techniques to efficiently solve special classes of LPs and SDPs [30, 42, 50, 4].
The technique we use in this paper is an adaption of the one used by [42] to solve packing
and covering LPs. See also [5] for a detailed overview. The MWU method has also been
used to implicitly solve linear programs. A classical example is the multi-commodity flow
problem where the describing the LP explicitly requires exponential number constraints [19].
Furthermore, there has been a lot of work related to implicitly solving special classes of LPs in
computational geometry or combinatorial optimization using the MWU method [10, 12, 13],
the primal dual method [48], or the ellipsoid method [22, 21].

Despite the geometric nature of our problem, to the best of our knowledge, all previous
(geometric) techniques that implicitly solve an LP do not extend to our problem. In particular,
in [12] the authors study various geometric packing and covering problems, such as the
weighted set cover of points by disks, and the maximum weight independent set of disks,
using the MWU method. The main difference from our setting is that for all problems they
study, the matrix A and the vector b are non-negative. One of the main challenges in our
setting is that we have to deal with both positive and negative values in A and b. It is not
clear how their algorithms can be extended to our setting. For example, for the maximum
weight independent set problem, they also describe an efficient algorithm to compute an
approximately deepest point. However, their algorithm works in 2 dimensions while all ranges
have positive weights. In our setting, we have ranges in any constant dimension d with both
positive and negative weights.

7 Conclusion and future work

In this work, we studied the problem of finding the data distribution to fit a query training
set consisting of axis-aligned rectangles (representing orthogonal range selectivity queries)
with the smallest error. While the problem has been studied in the past, only an expensive
Ω(nd) algorithm was known for constructing a distribution of size O(nd). We showed that the
decision problem is NP-complete even for d = 2. Based on a standard complexity conjecture,
we also gave conditional lower bounds showing that the exponential dependency on d is
inevitable for additive or relative approximations. On the positive side, for the ℓ1 empirical
error, we gave a O((n+ δ−d)δ−2 polylog n) time algorithm that returns a data distribution
of size O(δ−2) with additive error δ. Furthermore, we showed that our algorithm for ℓ1 error
can be extended to ℓ2 and ℓ∞, as well as any type of ranges as long as they are algebraic
sets of constant complexity. In view of our hardness results, significant improvements to our
upper bounds are unlikely.
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There are some interesting directions following from this work. What properties should
the data and query distribution satisfy so that the running time is polynomial in d as well?
In addition to selectivity queries, another interesting line of work is to study the construction
of distributions for other types of database queries such as aggregation and joins.
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Abstract
Information inequalities appear in many database applications such as query output size bounds,
query containment, and implication between data dependencies. Recently Khamis et al. [14] proposed
to study the algorithmic aspects of information inequalities, including the information inequality
problem: decide whether a linear inequality over entropies of random variables is valid. While the
decidability of this problem is a major open question, applications often involve only inequalities
that adhere to specific syntactic forms linked to useful semantic invariance properties. This paper
studies the information inequality problem in different syntactic and semantic scenarios that arise
from database applications. Focusing on the boundary between tractability and intractability, we
show that the information inequality problem is coNP-complete if restricted to normal polymatroids,
and in polynomial time if relaxed to monotone functions. We also examine syntactic restrictions
related to query output size bounds, and provide an alternative proof, through monotone functions,
for the polynomial-time computability of the entropic bound over simple sets of degree constraints.
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1 Introduction

Information inequalities are linear constraints on entropies of random variables. Often
referred to as the laws of information, these inequalities describe what is not possible in
information theory. More than three decades ago, Pippenger asked whether all such laws
follow from the polymatroidal axioms [25], depicted in Fig. 1. The polymatroidal axioms
are also known to be equivalent to the non-negativity of Shannon’s information measures,
which consist of entropy, conditional entropy, mutual information, and conditional mutual
information. The inequality constraints derivable from the polymatroidal axioms are hence
called Shannon inequalities. Pippenger’s question was famously answered in the negative by
Zhang and Yeung who were the first to find a non-Shannon information inequality that is
valid over entropies [28]. Zhang and Yeung’s proof was based on a novel innovation, identified
as the copy lemma in [4], which still today remains essentially the only tool to establish novel
non-Shannon inequalities [8].

Constraints on entropies are known to have many applications in database theory. Lee
[19, 20] observed already in the 80s that database constraints can alternatively be expressed
as equalities over information measures. More recently, the implication problem for data
dependencies has been connected to validity of information inequalities [13], information
theory has been used to analyze normal forms in relational and XML data models [1], and
query containment for conjunctive queries under bag semantics – a notoriously difficult
problem to study – has been proven to be equivalent in certain special cases to checking
information inequalities involving maximum [15]. Perhaps the most fruitful application has
been the use of information inequalities to obtain tight output size bounds for database
queries [2, 6, 7, 11, 16, 17], and the subsequent development of worst-case optimal join
algorithms that run in time proportional to these bounds [16, 17, 23, 24].
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Recently Khamis et al. [14] initiated the study of the algorithmic properties of information
inequalities. The most central problem, called the information inequality problem, is to
decide whether a given information inequality is valid over all entropic functions. The
decidability of this problem is a major open question in the foundations of information
theory. It was shown in [14] that checking the validity of monotone Boolean combinations
of information inequalities (including the aforementioned max-inequalities) is co-recursively
enumerable (co-r.e.). Since the implication problem for conditional independence implication
is undecidable [18, 21], validity for general Boolean combinations of information inequalities
is known to be undecidable. While the focus of [14] was on generalizations of the information
inequality problem, this paper shifts attention to simplifications of the problem. Many
applications, such as implication problems or query output size bounds, are related to
information inequalities that adhere to specific syntactic forms. These syntactic forms are
also often linked to semantic invariance properties which render the associated problems
computable and sometimes even tractable. Identifying factors that make the information
inequality problem either easy or hard is thus a task that can prove beneficial in multiple
application scenarios.

This paper examines the information inequality problem with respect to different syntactic
restrictions and semantic settings, focusing in particular on the boundary between tractable
and intractable cases. We demonstrate that different factors, including the influence of the
coefficients and the expressiveness of the information measures, give rise to coNP-completeness
with respect to normal polymatroids (the subset of entropic functions associated with a non-
negative I-measure [13, 27]), and disagreement between normal polymatroids and entropic
functions. Our findings also reveal that when we relax the semantics to monotone functions
or restrict it to modular functions (an implicit result in existing literature), the information
inequality problem can be solved in polynomial time. Additionally, we demonstrate that this
problem becomes polynomial-time solvable when we impose syntactic restrictions linked to
cases where computing the entropic query output size bound is known to be in polynomial
time. Finally, we identify a syntactic restriction over which monotone and entropic functions
agree, leading to an alternative proof for the previously established fact [11] that the entropic
bound is polynomial-time computable over simple sets of degree constraints.

2 Preliminaries

We write [n] for the set of integers {1, . . . , n}. We usually use boldface letters to denote sets.
For two sets X and Y , we write XY to denote their union. If A is an individual element,
we sometimes write A instead of {A} to denote the singleton set consisting of A.

2.1 Relational databases
Fix disjoint countably infinite sets Var and Val of variables and values. Each variable
A ∈ Var is associated with a subset of Val, called the domain of A, denoted Dom(A).
For a vector X = (A1, . . . , An) of variables, we write Dom(X) for the Cartesian product
Dom(A1) × · · · × Dom(An). Given a finite set of variables X, an X-tuple is a mapping
t : X → Val such that t(A) ∈ Dom(A). We write Tup(X) for the set of all X-tuples. For
Y ⊆ X, the projection t[Y ] of t on Y is the unique Y -tuple that agrees with t on X. A
relation R over X is a subset of Tup(X). The variable set X is also called (relation) schema
of R. We sometimes write R(X) instead of R to emphasize that X is the schema of R. For
Y ⊆ X, the projection of R on Y , written R[Y ], is the set of all projections t[Y ] where
t ∈ R. A database is a finite collection of relations D = {RD1 (X1), . . . , RDn (Xn)}. We assume
in this paper that each relation is finite.
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2.2 Information theory
Let X be a random variable associated with a finite domain D = Dom(X) and a probability
distribution p : D → [0, 1], where

∑
a∈D p(a) = 1. The entropy of X is defined as

H(X) := −
∑
x∈D

p(x) log p(x). (1)

Entropy is non-negative and does not exceed the logarithm of the domain size: 0 ≤ H(X) ≤
log |D|. In particular, H(X) = 0 if and only if X is constant (i.e., p(a) = 1 for some a ∈ D),
and H(X) = log |D| if and only if X is uniformly distributed (i.e., p(a) = 1/|D| for all
a ∈ D).

Fix n ≥ 1 and consider a set of variables X = {X1, . . . , Xn}. We will use α for subsets of
[n], and write Xα := {Xi | i ∈ α}. In the following, we list some common classes of vectors
h = (hα)α⊆[n] ∈ R2n . Note that such vectors h can alternatively be conceived as functions
from P(X) to R, called set functions. Hence we often write h(Xα) to denote the element hα
of h, and from now on refer to h as a function. We assume h(∅) = 0 for all functions h. For
a list of functions h1, . . . ,hn, the function c1h1 + · · ·+ cnh is called a positive combination
(resp. non-negative combination) of h1, . . . ,hn if ci > 0 (resp. ci ≥ 0) for all i ∈ [n].

Polymatroids. If h satisfies the polymatroidal axioms (Fig. 1), it is called a polymatroid.
The set of polymatroids over n is denoted Γn.

1. h(∅) = 0
2. h(X ∪ Y ) ≥ h(X) (monotonicity)
3. h(X) + h(Y ) ≥ h(X ∩ Y ) + h(X ∪ Y ) (submodularity)

Figure 1 Polymatroidal axioms.

Monotone functions. If h satisfies the first two axioms of the polymatroidal axioms, we
call it a monotone function, and denote the set of monotone functions over n by Monn.

Entropic functions. Consider a relation R over a set X = {Xi}ni=1 of variables with finite
domains, associated with a probability distribution p : R → [0, 1]. Each subset Y ⊆ X

can be viewed as a random variable with domain D = R[Y ] and probability distribution
pY (t) =

∑
t′∈R,t′[Y ]=t p(t′). In particular, the subset Y is thus associated with an entropy

H(Y ). The function h = (H(Xα))α⊆[n] arising from p in this way is called an entropic
function. Each entropic function is a polymatroid, but in the converse direction there are
polymatroids which are not entropic functions. In general entropic functions satisfy many
additional constraints which do not follow by the polymatroidal axioms alone. However, it
is not known whether there exists any effective procedure to check that a given function is
entropic. The entropic region Γ∗

n ⊆ R2n consists of all entropic functions over n. The almost
entropic region Γ∗

n is defined as the topological closure of Γ∗
n.

Normal polymatroids and step functions. For U ⊆X, the function

sU (W ) =
{

0 if W ⊆ U ;
1 otherwise;

(2)

ICDT 2024
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is called a step function. We also use the notation sV to denote the step function sX\V . Note
that the step function sV is the entropic function arising from the uniform distribution of
two tuples t and t′ such that t(A) ̸= t′(A) if and only if A ∈ V . The set of all step functions
over n is denoted Sn. A normal polymatroid is a positive combination of step functions, and
the set of all normal polymatroids over n is denoted Nn.

Modular functions. A polymatroid h is called modular if the submodularity inequality
(Fig. 1) is an equality: h(X) + h(Y ) = h(X ∩ Y ) + h(X ∪ Y ). Alternatively, a function
h is modular if it is non-negative and such that h(X) =

∑
Y ∈X h(Y ). The set of modular

functions over n is denoted Modn. Modular functions can alternatively be defined in terms of
basic modular functions, which are step functions s{A} defined in terms of singleton sets {A}.
We denote the set of all basic modular functions over n by Bn. A function f is a modular
function if and only if it is a positive combination of basic modular functions.

By continuity of Eq. (1), and since there are no restrictions on domain sizes, ch is entropic
for c > 0 and step functions h. Furthermore, if h and h′ are entropic functions defined by
probability distributions p and p′ over some relation R, the distribution p′′(t⊗ t′) := p(t)p′(t′)
on the direct product {t ⊗ t′ | t, t′ ∈ R}, (t ⊗ t′)(X) := (t(X), t′(X)), defines h + h′. This
shows that the entropic region is closed under multiplication by positive integers, even though
in general it is not closed under positive scalar multiplication [27]; in other words, Γ∗

n is
not a cone. We conclude that both modular and normal polymatroids are entropic. In fact,
Kenig and Suciu [13] have shown that the normal polymatroids are exactly those entropic
functions that have a non-negative I-measure [27]. The introduced set functions are related
to one another in the following way:

Bn ⊆ Sn⊆ ⊆

Modn ⊆ Nn ⊆ Γ∗
n ⊆ Γ∗

n ⊆ Γn ⊆ Monn.

If n ≥ 4, then all the above subset relations are strict.
We will repeatedly refer to the following Shannon’s information measures (over some h).
Conditional entropy: h(Y |X) := h(XY )− h(X).
Mutual information: Ih(X; Y ) := h(X) + h(Y )− h(XY ).
Conditional mutual information: Ih(Y ; Z |X) := h(XY ) + h(XZ)− h(X)− h(XY Z).

We may drop the subscript h if it is clear from the context.
An information inequality is an expression ϕ of the form

c1h(X1) + · · ·+ ckh(Xk) ≥ 0, (3)

where ci ∈ R, and Xi are sets of variables from {Xj}nj=1. We sometimes write ϕ(X) instead
of ϕ to emphasize that the set of variables appearing in ϕ is X. For V ⊆ R2n , we say that ϕ
is valid over V , denoted V |= ϕ, if it holds true for all functions h ∈ V .

▶ Example 1. Suppose X and Y are independent and uniformly either 0 or 1, and let
Z = X + Y (mod 2). This joint distribution can be constructed by taking the uniform
distribution over the relation R in Tab. 1. Let h be the entropic function arising from this
distribution. Let ϕ be an information inequality of the form Ih(X,Y, Z) ≥ 0 where

Ih(X,Y, Z) := h(XY Z)− h(XY )− h(XZ)− h(Y Z) + h(X) + h(Y ) + h(Z) (4)

is the mutual information of variables X,Y, Z. We observe that ϕ is not true for h because
Eq. (4) evaluates to −1. In particular, this means that Γ∗

3 ̸|= ϕ. On the other hand, ϕ is
true if we interpret h as any step function sU , U ⊆ {X,Y, Z}. Since normal polymatroids
are positive combinations of step functions, this entails N3 |= ϕ.
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Table 1 The relation R representing X + Y ≡ Z (mod 2).

R X Y Z

0 0 0
0 1 1
1 0 1
1 1 0

This paper focuses on the information inequality problem (IIP), introduced in [14], which is
to decide whether a given information inequality is valid over Γ∗

n. This problem is co-r.e. [14],
as the continuity of the entropy (1) and the density of the rationals in the reals imply that
enumeration of all rational distributions will eventually lead to a counterexample of (3),
if one exists at all. We introduce the following relativized version of IIP. Fixing sets of
functions Fn ⊆ R2n , n ≥ 1, and a set C of information inequalities, the information inequality
problem over Fn w.r.t. C (IIPFn

(C)) is to determine whether a given information inequality
ϕ ∈ C over n variables is valid over Fn. We leave out Fn (resp. C) if Fn = Γ∗

n (resp. C
contains all information inequalities). Note that an inequality ϕ is valid over the entropic
region Γ∗

n if and only if it is valid over the almost entropic region Γ∗
n. To see why, V |= ϕ

is tantamount to V ⊆ Cϕ, where Cϕ = {h ∈ R2n | h |= ϕ}, and by taking closures on both
sides, Γ∗

n ⊆ Cϕ entails Γ∗
n ⊆ Cϕ. More generally, validity over Γ∗

n and Γ∗
n disagrees with

respect to Boolean combinations of information inequalities [12, 14]. Since our focus is on
the information inequality problem alone, we now drop the almost entropic region Γ∗

n from
discussions.

Before proceeding, we shortly discuss input representation. We assume that the coefficients
are rational. Note that in [14] the inputs of IIP and other related problems are vectors
c ∈ Z2n representing the coefficients in Eq. (3). In this paper, we consider the input
as a sequence ((c1,X1), . . . , (ck,Xk)), which is potentially exponentially shorter than the
aforementioned coefficient vector c. This distinction is not important if one is solely interested
in decidability, as is the case in [14]. Since our aim is to chart the tractability boundary for
different information inequality problems, we opt for the latter more concise representation.
Furthermore, we assume that the coefficients themselves are encoded in binary.

We begin our analysis from intractable examples, and then move on to discuss tractable
cases and their connections to query output bounds.

3 Intractable cases

Kenig and Suciu [13] establish an interesting connection between information inequalities
and the implication problem for database dependencies. Fix a relation schema X of n
variables. An expression of the form σ = (V ; W | U) is called a conditional independence
(CI). If UV W = X, σ is specifically called a saturated conditional independence (SCI), and if
V = W , it is called a conditional and shortened as (V | U ). Lee [19] observed that an SCI of
the form (V ; W | U ) holds true on the uniform distribution of a database relation R(UV W )
if and only if R satisfies the corresponding multivalued dependency (MVD) U ↠ V . An
analogous correspondence can be drawn between a conditional (V | U) and the functional
dependency (FD) U → V . The results in [13] entail that if Σ is a set of SCIs and conditionals,
and τ is a conditional, then for any V such that Nn ⊆ V ⊆ Γn,

V |=
∑
σ∈Σ

h(σ) ≥ h(τ) ⇐⇒ Σ |= τ, (5)

ICDT 2024
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where the right-hand side denotes implication between the corresponding MVDs and FDs
over database relations. Whether or not

∑
σ∈Σ h(σ) ≥ h(τ) is valid over V can be thus

decided in polynomial time, because the implication problem for MVDs and FDs is known
to be in polynomial time [3].

There are at least two ways to make the inequality in Eq. (5) harder. One possibility is
to allow more complex information measures, much like how one can allow more expressive
database dependencies in the implication problem. For instance, once the aforementioned
syntactic restrictions are lifted, the implication problem for CIs becomes undecidable in
both database theory (where CIs are known as embedded multivalued dependencies) and
probability theory [10, 18, 21]. Another possibility, which does not seem to have a counterpart
in the implication problem, is to permit coefficients distinct from 1. Next, we consider both
of these strategies in isolation, considering first complex information measures.

The mutual information of two random variables generalizes to the multivariate mutual
information over a set of random variables S. For a general set function h, the multivariate
mutual information is given as

Ih(S) =
∑
T ⊆S

(−1)|T |−1h(T ). (6)

Again, we drop the subscript whenever this is possible without confusion. A particular
case of the multivariate mutual information is the three-variate one, presented in Eq. (4).
Multivariate mutual information is non-negative on step functions, but, as discussed in
Example 1, it can be negative on entropic functions. Next we show that solving inequalities
containing three-variate mutual informations and conditional entropies can already be coNP-
hard, even if each coefficient is exactly one. The result, proven by a reduction from monotone
satisfiability, holds for step functions but does not extend to entropic functions.

A conjunctive normal form Boolean formula ϕ is called monotone if each clause in ϕ

contains only negative or only positive literals. The monotone satisfiability problem is the
problem of deciding whether such a formula ϕ has a satisfying truth assignment. This
problem is well known to be NP-complete [5], and it remains NP-complete even if each clause
consists of exactly three distinct literals [22]. Let us denote this restriction of the problem by
3DMONSAT. An instance of 3DMONSAT can be represented as a pair ϕ = (ϕ+, ϕ−), where
ϕ+ (resp. ϕ−) is the set of all positive (resp. negative) clauses of ϕ, and each clause is a set
of exactly 3 variables.

▶ Theorem 2. The information inequality problem over normal polymatroids is coNP-
complete.

Proof. Since normal polymatroids are positive combinations of step functions, and inequalities
are preserved under positive combinations, the information inequality problems over step
functions and normal polymatroids coincide. The upper bound is thus obvious. For the
lower bound, we present a reduction from the complement of 3DMONSAT to the information
inequality problem over step functions. Let ϕ = (ϕ+, ϕ−) be an instance of 3DMONSAT.
Suppose X is the set of variables appearing in ϕ. We may assume without loss of generality
that every satisfying assignment must map at least one variable to 1.

Define an information inequality∑
C∈ϕ+

h(X | C) +
∑

C∈ϕ−

I(C) ≥ h(X), (7)

where I(C) is the three-variate mutual information (4) over the variables of C, and h(X | C)
is the conditional entropy of X given C.
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Each subset Y ⊆X determines a unique step function sY (Eq. 2) and a unique Boolean
assignment

mY (A) =
{

1 if A ∈ Y ,

0 otherwise.

We claim that mY satisfies ϕ if and only if Eq. (7) is false for h = sY .
Assume first that mY satisfies ϕ. By our assumption some variable is mapped to 1, which

means that Y is non-empty. In particular, sY (X) = 1. For any positive clause C ∈ ϕ+, we
have C ∩ Y ̸= ∅, and consequently sY (X | C) = sY (X) − sY (C) = 0. For any negative
clause C ∈ ϕ−, we have C ̸⊆ Y , in which case it is straightforward to verify that I(C) = 0.
We conclude that Eq. (7) is false for h = sY .

Assume then that mY does not satisfy ϕ. If sY (X) = 0, then Eq. (7) is trivially
true for h = sY by the non-negativity of the conditional entropy and the multivariate
mutual information on step functions. Suppose then sY (X) ̸= 0, in which case sY (X) = 1.
Assuming mY does not satisfy some C ∈ ϕ+, we have C ∩ Y = ∅ implying sY (X | C) = 0.
Assuming mY does not satisfy some C ∈ ϕ−, we have C ⊆ Y implying I(C) = 1. We
conclude that, for h = sY , the left-hand side of Eq. (7) is at least 1, and thus the inequality
holds. This concludes the proof of the claim.

The claim implies that ϕ is not satisfiable if and only if Eq. (7) is valid over step functions.
The theorem statement follows, since the reduction is clearly polynomial. ◀

Observe that Eq. (7) is syntactically similar to the inequality in Eq. (5) in that each coefficient
is exactly one. The difference comes from allowing three-variate mutual information, whereas
the inequality in Eq. (5) allows only specific forms of conditional mutual information. The
above proof moreover establishes strong coNP-completeness, because the problem remains
coNP-complete even under unary encoding of the coefficients.

Alternatively, the preceding theorem can be proven by reducing 3-colorability to inequal-
ities that allow the coefficients to grow while using only conditionals. Let G = (V ,E) be a
graph consisting of a vertex set V and a set of undirected edges E. For each node A ∈ V ,
introduce variables Ar, Ag, Ab representing possible colors of A. Assume that the graph
contains n vertices. We define∑
c∈{r,g,b}
A∈V

h(Ac)+
∑

c,d∈{r,g,b}
c̸=d
A∈V

(2n+1)h(V | AcAd)+
∑

c∈{r,g,b}
{A,B}∈E

(2n+1)h(V | AcBc) ≥ (2n+1)h(V ).

(8)

Then G is three-colorable if and only if Eq. (8) is not valid over step functions (Appendix A).
This way of proving Theorem 2 establishes also strong coNP-completeness, since each
coefficient is bounded by a polynomial in the input size. It is necessary to allow coefficients
other than 1 in Eq. (8). Otherwise, the equivalence (5) holds, meaning that the validity
problem is equivalent to the implication problem for FDs, which is in polynomial time.

▶ Example 3. Eq. (8) behaves differently for step functions and entropic functions, even
though both functions are non-negative on all the occurring information measures; in contrast,
the proof of Theorem 2 relied on three-variate mutual information which is only guaranteed
to be non-negative for step functions but can be negative for entropic functions. For a
concrete example, suppose G is the complete graph of four vertices A,B,C,D. Since G is
not three-colorable, Eq. (8) is valid over step functions. For the entropic function arising
from the uniform distribution of Tab. 2, however, Eq. (8) is false.
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Table 2 Three-tuple counterexample.

Ar Bg Cb Ag Bb Cr Ab Br Cg Dr Dg Db

0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 2 2 2

4 Tractable cases

We have seen that intractable inequalities arise from (i) complex information measures
even if coefficients are restricted to 1, (ii) more simple information measures if coefficients
are allowed to grow, and (iii) inequalities where the negative coefficients are associated
with sets of size at most two. In this section we consider restrictions that give rise to
inequalities solvable in polynomial time. We are specifically interested in inequalities of the
form

∑
σ∈Σ wih(σ) ≥ h(X) where wi ≥ 0, and Σ is a set of conditionals. Such inequalities

make appearance when information theory is applied to obtain tight upper bounds for query
output sizes. Since inequalities of the form (8) are intractable, imposing syntactic restrictions
on Σ becomes necessary.

We next introduce information-theoretic query upper bounds, after which we move on
to discuss the complexity of related syntactic restrictions and semantic modifications of the
information inequality problem.

4.1 Query upper bounds
Fix a relation R over a variable set X. Given vectors U ,V of variables from X, and values
u ∈ Dom(U), the V -degree of U = u in R, denoted degR(V | U = u), is the number of
distinct values of V that occur in R together with the value u of U . The max-V -degree of
U , denoted degR(V | U) is the maximum V -degree of U = u over all u. Expressions of the
form degR(σ) ≤ B (omitting the parentheses of σ), where σ is a conditional and B ≥ 1, are
usually called degree constraints. Note that degR(V | U) = 1 if and only if R satisfies the
functional dependency U → V . A Σ-inequality is an information inequality ϕΣ(X,w) of the
form∑

σ∈Σ
wσh(σ) ≥ h(X), (9)

where w = (wσ)σ∈Σ is a sequence of non-negative reals.
Fix a self-join-free full conjunctive query, i.e., a quantifier-free first-order formula of the

form

Q(X) = R1(X1) ∧ · · · ∧Rn(Xn),

where Ri(Xi) are relational atoms over distinct relation names Ri, and variable sequences
Xi such that X lists all the variables occurring in them. Note that this incurs a slight abuse
of notation, because Ri(Xi) could also refer to a relation Ri over Xi. We also blur the
distinction between a set and a sequence of variables Xi, and say that a set of conditionals
Σ is guarded by Q if every σ = (V | U ) from Σ is associated with a relation name Ri, called
the guard of σ and denoted Rσ, such that UV ⊆Xi. A sequence of the form B = (Bσ)σ∈Σ,
Bσ ≥ 1, form the degree values associated with Σ. A database D containing relations Rσ,
σ ∈ Σ, satisfies a conditionals-values pair (Σ,B), written D |= (Σ,B), if degRσ

(σ) ≤ Bσ for
all σ ∈ Σ.
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For a set S ⊆ R2n , and a set of conditionals Σ guarded by Q(X) and associated with
values B, define the bound of Q w.r.t. Σ, S,B as

BoundS(Q,Σ,B) := inf
w≥0

S|=ϕΣ(X,w)

∏
σ∈Σ

Bwσ
σ .

The bounds BoundModn ,BoundNn ,BoundΓ∗
n
,BoundΓn are often referred to as the modular

bound, the coverage bound, the entropic bound, and the polymatroid bound. Writing Q(D)
for the output of Q on a database D = {RD1 (X1), . . . , RDn (Xn)}, one can prove that the
entropic bound is valid: |Q(D)| ≤ BoundΓ∗

n
(Q,Σ,B) whenever D |= (Σ,B). Since Γ∗

n ⊆ Γn,
the entropic bound is less than or equal to the polymatroid bound. The entropic bound is
asymptotically tight, but it is open whether or not the bound is computable. The polymatroid
bound can be attained by solving a linear program of exponential size, but it is not tight.
For a derivation of the entropic bound and a discussion on the asymptotic tightness (or lack
thereof) of these bounds, we refer the reader to [26].

Fortunately, there are well-behaving syntactic restrictions for sets of conditionals Σ, some
of which are presented next.

For σ = (V | U), where U = ∅, degree constraints of the form degR(σ) ≤ B are called
cardinality constraints. The AGM bound [2] can be viewed as the entropic bound over a
specific set of cardinality constraints.
Σ is called acyclic if the following directed graph is acyclic: the vertices are the variables
in X, and there is an edge from A to B if A ∈X and B ∈ Y \X, for some (Y |X) ∈ Σ.
Σ is called simple if |U | ≤ 1 for each (V | U) ∈ Σ.

The entropic bound is polynomial-time computable in all of these cases. Let us call the Σ-
inequality (9) acyclic (resp. simple) if the underlying set Σ is acyclic (resp. simple). The sets
of conditionals underlying cardinality constraints are vacuously acyclic, and validity for acyclic
Σ-inequalities coincides for modular functions, entropic functions, and polymatroids [23].
Consequently, the entropic bound becomes computable in polynomial time through a linear
program describing the validity of Eq. (9) over basic modular functions. Validity for simple Σ-
inequalities similarly coincides for entropic functions, polymatroids, and normal polymatroids.
This does not immediately entail that the entropic bound for simple Σ is computable in
polynomial time, because normal polymatroids are constructed with step functions, and
there are exponentially many step functions in the number of variables. The entropic bound
is nevertheless known to be polynomial-time computable in this case, as has been shown
recently [11].

Eq. (8) can now be viewed as an Σ-inequality (9) (up to scaling) arising from Σ that does
not belong to any of the aforementioned well-behaving classes. Since validity of inequalities
of the form Eq. (8) is coNP-hard over step functions (Appendix A), this immediately gives
us the following result.

▶ Theorem 4. The information inequality problem over normal polymatroids w.r.t. Σ-
inequalities is coNP-complete. This problem remains coNP-hard even if |U | ≤ 2 for all
(V | U) ∈ Σ.

Related to the previous result, computing the coverage bound over a set of conditionals
is known to be NP-hard, and computing the polymatroid bound over an arbitrary set of
conditionals can be efficiently reduced to computing the polymatroid bound over another set
of conditionals (V | U) such that |U | ≤ 2 and |V | ≤ 3 [11].

We now turn to discuss tractable cases of the information inequality problem obtained
either by syntactic restrictions or semantic modifications. The syntactic restrictions we
consider correspond quite closely to the aforementioned acyclic/simple Σ-inequalities.
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4.2 Modular functions
Since modular functions can be constructed as positive combinations of basic modular
functions, the information inequality problem is trivially polynomial-time computable in this
context.

▶ Proposition 5. The information inequality problem over modular functions is in polynomial
time.

One example of a syntactic class with respect to which validity over entropic functions
corresponds to validity over modular functions are the acyclic Σ-inequalities. Given an
acyclic set Σ of conditionals (V | U), and a polymatroid h over X, one can construct
a modular function f such that (i) f(X) = h(X), and (ii) f(V | U) ≤ h(V | U) for
all (V | U) ∈ Σ [23]. Consequently, validity of acyclic Σ-inequalities (9) coincides for
polymatroids, entropic functions, normal polymatroids, and modular functions. Thus it is
known that all the aforementioned bounds (modular, coverage, entropic, and polymatroid
bounds) coincide and are polynomial-time computable if Σ is acyclic. With respect to the
information inequality problem, we analogously obtain the following result.

▶ Proposition 6. Let Modn ⊆ K ⊆ Γn. The information inequality problem over K w.r.t.
acyclic Σ-inequalities is in polynomial time.

4.3 Monotone functions
Next we will show that, at the other extreme direction, the information inequality problem
over monotone functions is also in polynomial time.

▶ Theorem 7. The information inequality problem over monotone functions is in polynomial
time.

Analogously to the previous section, this semantic modification of the information inequality
problem helps us identify syntactic classes with respect to which the general information
inequality problem is tractable. Before we proceed into details, let us give a short sketch of the
proof of this theorem. We associate an information inequality (3) with a set representation
(S+, S−), where

S+ :={(Xi, k) | k ∈ [|ci|], ci > 0}, and
S− :={(Xi, k) | k ∈ [|ci|], ci < 0}.

Then, we present a fixed-point algorithm (Alg. 1) to capture validity of information inequal-
ities over monotone functions. This algorithm iteratively decomposes an input inequality
into monotonicity axioms. For this, it maintains a bipartite directed graph G initialized
as GS = (S+ ∪ S−, E), where E is the set of edges from S+ to S− that correspond to
possible monotonicity axioms (forward edges). The initial graph contains no edges from
S− to S+ (backward edges). The number of these backward edges, which represent those
monotonicity axioms that are currently selected for the decomposition, is increased in each
iteration. Although the algorithm as such does not run in polynomial time (it runs in
pseudo-polynomial time, i.e., in polynomial time in the length of the input and the numeric
values of the coefficients), it does guide us toward a characterization of valid inequalities as
positive combinations of monotonicity axioms and non-negativity axioms h(X) ≥ 0, which
are derivable as combinations of the first two polymatroidal axioms. These combinations are
polynomial in the input length, and consequently can be found through a linear program of
polynomial size, which entails the desired result.
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Algorithm 1 Decomposition algorithm for inequalities.

Input: Set representation S = (S+, S−) of ϕ
Output: true iff ϕ is Mn-valid

1: G← GS , S0 ← S+, S1 ← S−

2: while G contains a path u0, . . . , um from S0 to S1 do
3: remove u0 from S0 and um from S1

4: remove from G (backward) edges (u1, u2), (u3, u4), . . . , (um−2, um−1)
5: add to G (backward) edges (u1, u0), (u3, u2), . . . , (um, um−1)

return true if S1 is empty, otherwise false

The following example demonstrates the use of Alg. 1.

▶ Example 8. Consider an information inequality of the form

XY + Y Z + 2XZ + X ≥ Y + 3Z. (10)

The set representation is (S+, S−), where

S+ ={(XY , 1), (Y Z, 1), (XZ, 1), (XZ, 2), (X, 1)}, and
S− ={(Y , 1), (Z, 1), (Z, 2), (Z, 3)}.

Clearly, the inequality (10) is valid over monotone functions. Alg. 1 also returns true after
four iterations. The leftmost graph in Fig. 2 illustrates the starting point for the last iteration
in one possible implementation. The edges from right to left (backward edges) represent
monotonicity axioms that have been selected in the previous iteration. The edges from left
to right (forward edges), some of which are visible in the middle graph of Fig. 2, represent
possible monotonicity axioms. Since there is a path from S0 to S1, we can increase the
number of selected monotonicity axioms by deleting the backward edges in the path, and
changing the direction of the forward edges in the path. The rightmost graph illustrates
the result of this modification. Since S1 becomes empty, the algorithm terminates returning
true. The final state of the algorithm represents an integral decomposition of Eq. (10) into
monotonicity and non-negativity axioms.
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(XZ, 1)
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Figure 2 Last iteration of Alg. 1 for Eq. (10).
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An inequality ϕ of the form (3) can be identified with its coefficient function cϕ, where
cϕ(X) = c if the term ch(X) appears in (3), and otherwise cϕ(X) = 0. We then say that
ϕ is a (positive) combination of inequalities ϕ1, . . . , ϕn if cϕ is a (positive) combination
of cϕ1 , . . . , cϕn . We furthermore say that a combination of functions c1h1 + · · · + cnhn is
separable if there exist no i, j and Y such that hi(Y ) < 0 and hj(Y ) > 0, while ci ̸= 0 ̸= cj .
This definition is extended to combinations of inequalities in the natural way. For example,
any positive combination of h(A) + h(B) ≥ 0 and h(B)− h(AB) ≥ 0 is separable, but no
positive combination of inequalities h(A)− h(B) ≥ 0 and h(A) + h(B) ≥ 0 is separable. In
particular, if ϕ is a positive and separable combination of monotonicity and non-negativity
axioms, then h(X) cannot appear in the left-hand side of ψ0 and in the right-hand side of
ψ1, for any two axioms ψ0 and ψ1 appearing in the combination.

We also say that a set function h is Boolean-valued if it maps every X to either 0 or 1.
The proof the following lemma is located in Appendix B.

▶ Lemma 9. Let ϕ be an information inequality of the form

c1h(X1) + · · ·+ ckh(Xk) ≥ 0 (ci ∈ R). (11)

The following are equivalent:
1. ϕ is valid over monotone functions.
2. ϕ is valid over monotone, Boolean-valued functions.
3. ϕ is a positive and separable combination of monotonicity and non-negativity axioms.

Since linear programming is in polynomial time, we can now establish Theorem 7 as a
consequence of the following lemma. This lemma will also be applied in the next section
that focuses on simple Σ-inequalities.

▶ Lemma 10. For each information inequality ϕ of the form

c1h(X1) + · · ·+ ckh(Xk) ≥ d1h(Y 1) + · · ·+ dlh(Y l) (ci, di > 0), (12)

there exists a matrix M such that the inequality Mx ≥ cd has a solution x ≥ 0 if and only
if ϕ is valid over monotone functions. In particular, M can be constructed in polynomial
time from ϕ (with rational coefficients).

Proof. Consider first a set Y i from the right-hand side of the inequality. Let Xi1 , . . . ,Xim

list all those sets Xj from the left-hand side that contain Y i as a subset. We need to describe
how the term dih(Y i) is distributed to monotonicity axioms. For this, define

xii1 + · · ·+ xiim ≥ di, (13)

where xij is a variable denoting the coefficient of the monotonicity axiom h(Xj) ≥ h(Y i).
We also need to ensure that this variable does not grow exceedingly large. Consider a set
Xj from the left-hand side of the inequality, and let Y j1 , . . . ,Y jn

list all those sets from the
right-hand side that are contained in Xj .

xj1
j + · · ·+ xjn

j ≤ cj . (14)

Combining Eqs. (13) and (14) we obtain an inequality Mx ≥ cd, where M is a ((k+ l)×kl)-
matrix with entries of from −1, 0, 1, x is a vector of length kl, and cd (i.e., c and d

concatenated) is a vector of length k + l. Obviously M can be constructed in polynomial
time given ϕ. Moreover, Mx ≥ cd has a solution x ≥ 0 if and only if ϕ is a positive and
separable combination of monotonicity and non-negativity axioms. The statements of the
theorem then follow by Lemma 9. ◀



M. Hannula 19:13

4.4 Simple Σ-inequalities
Let us first recall the reason why normal and general polymatroids are known to agree on
the validity of simple Σ-inequalities. On the one hand, any such Σ-inequality over a variable
set X can be presented in the form

c1h(X1) + · · ·+ cnh(Xn) ≥ d1h(Y 1) + · · ·+ dmh(Y m) (ci, di > 0), (15)

where each Y i is either the full set X or some singleton set {X}. On the other hand,
every polymatroid h over X can be associated with a normal polymatroid f over X such
that f(Y ) ≤ h(Y ) for all Y ⊆ X, f(X) = h(X), and f(X) = h(X) for all X ∈ X [26].
Hence, if h is a counterexample for Eq. (15), then f must also be a counterexample. Since
normal polymatroids are positive combinations step functions, it follows that at least one
step function is also a counterexample. This brings us to the following result.

▶ Theorem 11 ([26]). Let ϕ(X) be an information inequality of the form Eq. (15), where
each Y i is either the full set X or a singleton set. Then, ϕ is valid over step functions if
and only if it is valid over polymatroids.

Since Sn ⊆ Nn ⊆ Γ∗
n ⊆ Γn, it follows that validity for simple Σ-inequalities coincides for step

functions, normal polymatroids, entropic functions, and polymatroids. If we remove terms of
the form h(X) from the right-hand side of Eq. (15), the previous result extends to monotone
functions.

▶ Theorem 12. Let ϕ(X) be an information inequality of the form Eq. (15), where each Y i

is a singleton set. Then, ϕ is valid over step functions if and only if it is valid over monotone
functions.

Proof. Since step functions are monotone, we only need to consider the “only-if” direction.
To show the contraposition, assume that ϕ is not valid over monotone functions. By Lemma
9, we find a monotone, Boolean-valued function h such that Eq. (15) becomes false. Consider
the step function sU , where U consists of all those variables Ai that are mapped to 1 by
h. Clearly, h and sU agree on the right-hand side of Eq. (15). Furthermore, for any set Z,
we have sU (Z) ≤ h(Z) by monotonicity of h. Consequently, Eq. (15) is also false for sU ,
meaning that ϕ is not valid over step functions. ◀

It follows that validity for information inequalities of the form (15), where Y i are singletons,
is decidable in polynomial time with respect to any K such that Sn ⊆ K ⊆ Monn, including
K = Γ∗

n. Note that simple Σ-inequalities are not of this form; rewritten in the form (15) one
of the sets Y i is the full variable set. However, as we will see next, it is possible to remove
such terms in a single step.

Continuing our analysis of ϕ(X) of the form (15), fix a variable A from X. Define sums

cA =
∑
i∈[n]
A∈Xi

ci and dA =
∑
i∈[n]
A∈Y i

di,

and define the A-reduction of ϕ as the inequality ϕA(X \ {A}) given as

(cA − dA)h(X \ {A}) +
∑
i∈[n]
A/∈Xi

cih(Xi) ≥
∑
i∈[n]
A/∈Y i

dih(Y i), (16)
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▶ Lemma 13. An information inequality ϕ(X) of the form (15) (having no restrictions on
sets Y i) is valid over step functions if and only if for all A ∈X, the A-reduction ϕA of ϕ is
valid over step functions.
1. cA ≥ dA, and
2. the A-reduction ϕA(X \ {A}) is valid over step functions.

Proof. Note that s{A} |= ϕ if and only if cA ≥ dA. Also, if ∅ ̸= Y ⊆ X \ {A}, we have
sY ∪{A} |= ϕ if and only if sY |= ϕA, where sY ∪{A} and sY refer specifically to the set
functions over X and X \ {A}, respectively. The statement of the lemma follows. ◀

In particular, if each Y i in the inequality (15) is either a singleton or the full set X,
then checking validity of this inequality reduces to checking validity of a linear number of
inequalities in which the sets appearing in the right-hand side are all singletons. Theorems 7,
11, and 12, and Lemma 13 thus entail that the validity of such inequalities (15) over normal
polymatroids, entropic functions, and polymatroids can be determined in polynomial time.
This leads us to the following corollary.

▶ Corollary 14. The information inequality problem w.r.t. simple Σ-inequalities is in
polynomial time over normal polymatroids, entropic functions, and polymatroids.

One may recall from Theorem 4 that, at least in the context of step functions, the requirement
of Σ being simple is necessary.

We conclude this section by offering an alternative proof for the fact that the entropic
bound for simple sets of conditionals Σ is polynomial-time computable. In order to formulate
this statement precisely, we need the concept of the logarithmic bound. Similarly to the
degree values, the log-degree values associated with Σ are defined as a sequence b = (bσ)σ∈Σ,
where bσ ≥ 0. A function h satisfies (Σ, b), denoted h |= (Σ, b), if h(σ) ≤ bσ for all σ ∈ Σ.
For a set S ⊆ R2n , and a set of conditionals Σ guarded by a query Q(X) and associated
with values b, define the log-bound of Q w.r.t. S as

Log-BoundS(Q,Σ, b) := inf
w≥0

S|=ϕΣ(X,w)

∑
σ∈Σ

wσb
σ,

where ϕΣ(X,w) is the Σ-inequality (9). It is known that the entropic log-bound Log-BoundΓ∗
n

is computable in polynomial time [11]. In the following, we present an alternative proof for
this fact via monotone functions.

▶ Theorem 15. Let Σ be a set of conditionals that is guarded by a query Q(X) and associated
with values b. If Σ is simple, the entropic log-bound Log-BoundΓ∗

n
(Q,Σ, b) is computable in

polynomial time in the size of the input (Q,Σ, b).

Proof. We construct a linear program that is polynomial in the size of the input and such
that its optimal value is attained at the entropic log-bound. Theorem 11 entails

Γ∗
n |= ϕΣ(X,w) ⇐⇒ Sn |= ϕΣ(X,w), (17)

where ϕΣ is the Σ-inequality (9). Lemma 13 implies that

Sn |= ϕΣ(X,w) ⇐⇒ ∀A ∈X : cA ≥ dA and Sn−1 |= ϕAΣ, (18)

where cA, dA are the sums of coefficients wσ computed from ϕΣ for a variable A. Since ϕAΣ
contain only singletons on their right-hand sides, Lemma 12 yields

Sn−1 |= ϕAΣ ⇐⇒ Monn−1 |= ϕAΣ.
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By Theorem 7 we can construct in polynomial time matrices MA such that

Monn−1 |= ϕAΣ ⇐⇒ MAxA ≥ wA for some xA ≥ 0,

where wA is a list (with possible repetitions) of coefficients wσ that appear in ϕAΣ. Note
that we should now treat wσ as variables, since we are interested in optimizing their values.
Thus we rewrite MAxA ≥ wA ∧ cA ≥ dA as M ′

AxAwA ≥ 0, where M ′
A is obtained from

(MA | −I|wA|) by adding one extra row to describe the inequality cA ≥ dA. Then we construct
a single matrix M∗ such that M∗xw = (xAwA)A∈X , where w = (wσ)σ∈Σ, and x is the
concatenation of all xA. Finally, composing M ′

A diagonally into a single matrix MX , and
writing Mσ = MXM

∗, we obtain

∀A ∈X : cA ≥ dA and Sn−1 |= ϕAΣ ⇐⇒ MΣxw ≥ 0. (19)

By Eqs. (17), (18), and (19) we obtain

Log-BoundΓ∗
n
(Q,Σ, b) = inf

w≥0
Γ∗

n|=ϕΣ(X,w)

∑
σ∈Σ

wσb
σ = min

xw≥0
MΣxw≥0

∑
σ∈Σ

wσb
σ.

Since MΣ can be constructed in polynomial time in the size of (Q,Σ, b), we can compute in
polynomial time the entropic log-bound Log-BoundΓ∗

n
(Q,Σ, b) as the optimal value of the

linear program

minimize
∑
σ∈Σ

wσb
σ

subject to MΣxw ≥ 0
xw ≥ 0. ◀

5 Conclusion

The present paper marks the first attempt to demarcate the tractability boundary for different
variants of the information inequality problem, introduced in [14]. We established that this
problem is coNP-complete over normal polymatroids, and in polynomial time over monotone
functions. Restricted to Σ-inequalities where |U | ≤ 2 for all (V | U) ∈ Σ, we proved that
the information inequality problem remains coNP-hard over normal polymatroids. The same
problem was shown to be in polynomial time over normal polymatroids, entropic functions,
and polymatroids if |U | ≤ 1. If every set in the right-hand side of Eq. (15) is a singleton
or the full variable set, we proved that the information inequality problem is in polynomial
time over any K that falls inbetween normal polymatroids and monotone functions. Using
this result, we constructed an alternative proof for the polynomial-time computability of the
entropic bound in the case where the set of conditionals Σ is simple.

Based on these findings we may delineate a preliminary complexity classification of
information inequalities over different set functions and syntactic classes. Consider an
information inequality ϕ over n variables, presented in the form (15). If A and B are subsets
of [n], we say that ϕ is of type (A,B) if |Xi| ∈ A for each Xi appearing in the left-hand side
in (15), and |Y j | ∈ A for each Y j appearing in the right-hand side in (15). For instance, the
inequality (8) is of type ({1, n}, {2}), and all simple Σ-inequalities are of type ([n], {1, n}).
Using this convention, Tab. 3 summarizes the results of this paper.

Specifically, we showed that results on step functions and monotone functions lead to a
polynomial-time algorithm for the entropic bound over simple degree constraints. To find
more results of this kind, it may be useful to extend investigations to also other classes
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Table 3 Complexity of the information inequality problem for different syntactic types and set
functions.

types/set functions Modn Nn Γ∗
n Γn Monn

([n], [n]), ({1, n}, {2}) ∈ P[23] coNP-complete ∈ Π0
1 [14] ∈ EXP [27] ∈ P

([n], {1, n}) ∈ P[23] ∈ P ∈ P ∈ P ∈ P

of set functions. For instance, as illustrated in Examples 1 and 3, as k grows uniform
distributions over (bags of) k tuples yield increasingly accurate answers to questions about
entropic constraints, compared to step functions derived from two tuples. One way to identify
more decidable classes of information inequalities would be to find syntactic restrictions for
which validity is captured by uniform distributions over k tuples, for some fixed k.
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A Alternative coNP-hardness proof

Recall that validity coincides for step functions and normal polymatroids, and thus it suffices
to consider validity in the former sense. We reduce from three-colorability. Let G = (V ,E)
be a graph consisting of a vertex set V and a set of undirected edges E. For each node
A ∈ V , we introduce variables Ar, Ag, Ab representing possible colors of A. Assume that the
graph contains n vertices. We define∑
c∈{r,g,b}
A∈V

h(Ac)+
∑

c,d∈{r,g,b}
c̸=d
A∈V

(2n+1)h(V | AcAd)+
∑

c∈{r,g,b}
{A,B}∈E

(2n+1)h(V | AcBc) ≥ (2n+1)h(V ).

(20)

We claim that G is three-colorable if and only if Eq. (20) is not valid over Sn.
Assume first Eq. (20) is not valid, and let sU , U ⊆ V , be a step function such that Eq.

(20) is false for h = sU . We claim that the function that maps each vertex A to a color c if
Ac ∈ U is well-defined and constitutes a coloring of the graph. Since the entropy and the
conditional entropy are non-negative for all step functions, we have sU (V ) = 1, and thus the
right-hand side of Eq. (20) is 2n+ 1. Consequently, the left-hand side is at most 2n. From
the first summation term, we obtain that U must contain at least n elements. Moreover,
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each term of the form h(V | AcAd) or h(V | AcBc) must be zero. In particular, we have
AcAd ̸⊆ U and AcBc ̸⊆ U , which entails that each vertex is assigned exactly one color, and
no two vertices connected by an edge are assigned the same color. We conclude that the
function defined by the step function is well defined and constitutes a graph coloring.

Assume then Eq. (20) is valid. For each coloring of the vertices we may define a subset
U ⊆ V such that Ac ∈ U if and only if vertex A is assigned color c. Then, the first
summation term in the left-hand side of Eq. (20) is n, and the second summation term is
zero. By hypothesis, some term of the form h(V | AcBc) must be non-zero, which means
that there exists an edge whose endpoints are assigned the same color. This concludes the
proof of the claim.

Since the reduction is in polynomial time, and each coefficient is bounded by a polynomial
in the input size, strong coNP-completeness again follows. ◀

B Completeness of fixed-point algorithm

▶ Lemma 9. Let ϕ be an information inequality of the form

c1h(X1) + · · ·+ ckh(Xk) ≥ 0 (ci ∈ R). (11)

The following are equivalent:
1. ϕ is valid over monotone functions.
2. ϕ is valid over monotone, Boolean-valued functions.
3. ϕ is a positive and separable combination of monotonicity and non-negativity axioms.

Proof. The implications (3)⇒ (1) and (1)⇒ (2) are immediate. We prove that (2)⇒ (3).
Clearly, if this implication holds w.r.t. ci ∈ Z, then it holds w.r.t. ci ∈ Q. We first prove the
following claim.

▷ Claim 16. If the implication (2)⇒ (3) holds w.r.t. ci ∈ Q, then it holds w.r.t. ci ∈ R.

Proof. To prove this, assume ϕ is valid over Mon0,1
n . Let (ϕn) be a sequence of information

inequalities

cn1h(X1) + · · ·+ cnkh(Xk) ≥ 0 (cni ∈ Q, n ≥ 1), (21)

where limn→∞ cni = ci and cni ≥ c
n+1
i . We may assume that c1

i is negative if ci is negative.
That is, (cni ) is a sequence of positive (resp. negative) values if ci is positive (resp. negative).
Clearly, if ϕ is valid over Boolean-valued, monotone functions, then so are ϕn. By hypothesis,
ϕn decompose into positive and separable combinations of monotonicity and non-negativity
axioms. Writing cϕ for the coefficient function arising from ϕ, we may write

cϕn = dn1 cψ1 + · · ·+ dnmcψm (dni ≥ 0), (22)

where ψl list all possible monotonicity and non-negativity axioms respectively of the form
h(Xi) ≥ 0 and h(Xi) − h(Xj) ≥ 0, where i, j ∈ [k] and Xj ⊆ Xi, excluding those ψl for
which the coefficient dnl is always zero. That is, the combinations (22) are separable and have
fixed length over all n ≥ 1; recall that separability was defined with respect to terms having
a non-zero coefficient. Fix attention to an arbitrary ψl being either of the form h(Xi) ≥ 0
or h(Xi) − h(Xj) ≥ 0. In this case, the coefficient function cψl

maps Xi to 1, that is,
cψl

(Xi) = 1. We claim that the coefficient ci of h(Xi) in Eq. (11) is positive. For this,
consider some p ≥ 1 such that the coefficient dpl of cψl

is strictly positive. Assume toward
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contradiction that ci is not positive, meaning that it is negative. Then by construction, cpi is
negative (i.e., cϕp

(Xi) < 0), whence cψl′ (Xi) < 0 for some l′ ̸= l associated with a strictly
positive coefficient dpl′ . Since cψl

(Xi) > 0, this contradicts separability of (22), proving our
claim. The claim entails by construction that cni are positive for all n ≥ 1. Hence we obtain
dnl ≤ cni ≤ c1

i by separability of (22).
We conclude that (dn) = (dn1 , . . . , dnm) is an infinite and bounded sequence of Rm. The

Bolzano-Weierstrass theorem entails that (dn) has a subsequence (dnp
) that converges to

some d = (d1, . . . , dm). Obviously the vector d is non-negative. By continuity,

cϕ = lim
p→∞

cϕnp
= lim
p→∞

d
np

1 cψ1 + · · ·+ dnp
m cψm = d1cψ1 + · · ·+ dmcψm .

The obtained combination is separable, because otherwise some combination (22) is not
separable for large enough np, which leads to a contradiction. We conclude that ϕ is a
positive and separable combination of monotonicity and non-negativity axioms, which shows
that (2)⇒ (3) w.r.t. ci ∈ R. ◁

It remains to prove that (2) ⇒ (3) w.r.t. ci ∈ Z. Let S = (S+, S−) be the set
representation of ϕ. We associate S with a directed graph GS , where

the set of nodes are the elements of S+ and S−, and
there is a directed edge from (X, i) to (Y , j) if (X, i) ∈ S+, (Y , j) ∈ S−, and Y ⊆X.

Consider Alg. 1 which maintains a bipartite directed graph G that is initially set up as
GS . The monotonicity axioms isolated at the current step are represented as directed edges
going from S− to S+ backward edges; in the beginning no such edges have been introduced
yet. The edges that proceed from S+ to S− (forward edges) are kept fixed.

We say that a node u is connected to a node v in a directed graph if u = v, or there is a
sequence of nodes (a path from u to v) in which the first node is u, the last node is v, and
each node is connected to the following node by a directed edge. A set U is connected to
another set V is some node in U is connected to some node in V .

Consider the following claim.

▷ Claim 17. If Alg. 1 returns true on ϕ, then ϕ is a positive and separable combination of
the monotonicity and non-negativity axioms.

Proof. Consider the graph G and the sets S0 and S1 after termination of the algorithm. Note
that if G contains a backward edge (u, v), then the reverse edge (v, u) forms a forward edge
of GS and consequently corresponds to a monotonicity axiom. The backward edges also
form a bijection from S− \ S1 to S+ \ S0. Since S1 is empty by assumption, and S0 can be
viewed as representing non-negativity axioms, it can now be observed that ϕ decomposes
into a positive and separable combination of monotonicity and non-negativity axioms. This
proves the claim. ◁

We now prove the contraposition of (2)⇒ (3) w.r.t. ci ∈ Z. Suppose ϕ is not a positive
and separable combination of the monotonicity axioms. The previous claim entails that the
algorithm returns false. Consider again the graph G and the sets S0, S1 after termination of
the algorithm. Note that S1 is now non-empty. Let V denote the set of variables appearing in
ϕ. Let Y be the (non-empty) collection of sets Y ⊆ V such that for some j, (Y , j) belongs to
S− and is connected to S1. Consider also its upper closure Y↑ := {Z ⊆ V | ∃Y ∈ Y : Y ⊆ Z}.
Define a mapping h such that h(Z) = 1 if Z ∈ Y↑, and otherwise h(Z) = 0. Clearly, h is a
Boolean, monotone function. We show that h does not satisfy ϕ.
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Consider a pair (X, i) ∈ S+ such that h(X) = 1. Then, X contains a set Y from Y . Let
j be such that (Y , j) belongs to S− and is connected to S1. Since there is an edge from
(X, i) to (Y , j), it follows that (X, i) is connected to S1. Now, if (X, i) belonged to S0, the
algorithm could not have terminated yet. Hence (X, i) must belong to S+ \ S0. Recall that
the backward edges form a bijection from S− \ S1 to S+ \ S0. In particular, (X, i) is the
target of a unique backward edge with a source node (Z, k). Since (X, i) is connected to S1,
it follows that (Z, k) is also connected to S1. This entails that h(Z) = 1. In particular, this
shows that any (X, i) ∈ S+ such that h(X) = 1 is paired by a backward edge with a unique
(Z, k) ∈ S− \ S1 such that h(Z) = 1. In addition, because S1 is non-empty, there exists an
element (U , l) ∈ S− ∩ S1 such that h(U) = 1. In particular, (U , l) is not the source node of
any backward edge. These observations entail that h does not satisfy ϕ. This proves the
contraposition of (2)⇒ (3) w.r.t. ci ∈ Z.

This concludes the proof of the direction (2)⇒ (3). ◀

The following example demonstrates that Alg. 1 correctly returns false on the submodularity
axiom, as this axiom is not a consequence of monotonicity and non-negativity.

▶ Example 18. The submodularity axiom XY + XZ − X − XY Z ≥ 0 is not valid over
monotone functions. This can be also seen by referring to Alg. 1. The set representation is
(S+, S−) where S+ = {(XY, 1), (XZ, 1)} and S− = {(X, 1), (XY Z, 1)}. Suppose at the first
step the algorithm introduces a backward edge from (X, 1) to (XY, 1); the only other option
is the symmetric scenario where it introduces an edge from (X, 1) to (XZ, 1). After the first
step we have S0 = {(XZ, 1)} and S1 = {(XY Z, 1)}. Then, no path exists from S0 to S1,
since no forward edge points to (XY Z, 1). The algorithm therefore terminates returning
false. Accordingly, the function that maps XY Z to 1 and all other sets to 0 is monotone,
Boolean-valued, and does not satisfy the aforementioned submodularity axiom.
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Abstract
Conditional independence plays a foundational role in database theory, probability theory, information
theory, and graphical models. In databases, a notion similar to conditional independence, known as
the (embedded) multivalued dependency, appears in database normalization. Many properties of
conditional independence are shared across various domains, and to some extent these commonalities
can be studied through a measure-theoretic approach. The present paper proposes an alternative
approach via semiring relations, defined by extending database relations with tuple annotations
from some commutative semiring. Integrating various interpretations of conditional independence in
this context, we investigate how the choice of the underlying semiring impacts the corresponding
axiomatic and decomposition properties. We specifically identify positivity and multiplicative
cancellativity as the key semiring properties that enable extending results from the relational context
to the broader semiring framework. Additionally, we explore the relationships between different
conditional independence notions through model theory.
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1 Introduction

Conditional independence (CI) is an expression of the form Y ⊥⊥ Z | X, stating that Y
and Z are conditionally independent given X. Common to its different interpretations is
that conditional independence is a mark of redundancy. For instance, on a relation schema
over attributes X,Y, Z, the multivalued dependency (MVD) X ↠ Y can be viewed as the
counterpart of the CI Y ⊥⊥ Z | X, expressing that a relation can be losslessly decomposed
into its projections on X,Y and X,Z. The process of splitting the schema into smaller
parts – in order to avoid data redundancy – is called normalization, and a database schema
is in fourth normal form if every non-trivial MVD follows from some key. In probability
theory, CIs over random variables give rise to factorizations of joint probability distributions
into conditional distributions. Since the decomposed distributions can be represented more
compactly, this allows more efficient reasoning about the random variables. In addition to
these classical examples, conditional independence has applications in ordinal conditional
functions [24], Dempster-Schaefer theory [8, 23], and possibility theory [29].

Since the notion of conditional independence has a relatively fixed meaning across various
contexts, it is no coincidence that the central rules governing its behavior are universally
shared. The semigraphoid axioms [21] state five basic rules that hold true for diverse
interpretations of conditional independence. Initially conjectured to be complete by Pearl,
Studený [25] proved incompleteness of these rules by discovering a new rule that is not
derivable by the semigraphoid axioms, while being sound for probability distributions. Later
he [26] proved that there cannot be any finite axiomatization for conditional independence, a
fact that had been established earlier for embedded multivalued dependencies (EMVDs) [15].
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The implication problem, which is to determine whether some set of dependencies Σ logically
implies a dependency τ , is in fact undecidable not only for EMVDs [14], but also for CIs in
probability theory, as has been recently shown [18, 20].

In some partial cases, the semigraphoid axioms are known to be complete. A saturated
conditional independence (SCI) is a CI that contains all the variables of the underlying joint
distribution. The semigraphoid axioms are complete for the implication of arbitrary CIs by
saturated ones under various semantics [12], and for the implication of CIs from a set of CIs
encoded in the topology of a Bayesian network [10]. In databases, where SCIs correspond to
MVDs, the implication problem for MVDs combined with functional dependencies (FDs) is
well-known to have a finite axiomatization and a polynomial-time algorithm [4].

Moving beyond saturated CIs, the implication problem not only becomes undecidable,
but also more sensitive to the underlying semantics. Studený [27] presents several example
inference rules that involve non-saturated CIs and are sound in one setting while failing to
be sound in others. For instance, the aforementioned rule1 showing incompleteness of the
semigraphoid axioms is not sound for database relations, but its soundness for probability
distributions follows by a simple information-theoretic argument. FDs and MVDs can also
be alternatively expressed in terms of information measures over a uniformly distributed
database relation [19], and their implication problem has recently been connected to validity
of information inequalities [16]. Galliani and Väänänen [9] associate relations with a so-called
diversity measure to capture FDs and other data dependencies. These measure-theoretic
approaches, however, fail to capture the semantics of the embedded multivalued dependency
in full generality.

This paper examines K-relations as a unifying framework for conditional independence
and other dependency concepts. Introduced in the seminal work [11], K-relations extend
ordinary relations by tuple annotations from a commutative semiring K, providing a powerful
abstraction for data provenance. While it is natural to consider propagation of tuple
annotations through queries in this context, one can also ask how tuple annotations couple
with data dependencies. Dependencies on K-relations have thus far received limited attention
(see, e.g., [2, 3, 7]). Related to this work, Barlag et al. [3] define conditional independence
for K-relations, and raise the question of how much the related axiomatic properties depend
on the algebraic properties of K. Atserias and Kolaitis [2] study the relationship between
local and global consistency for K-relations, introducing also many concepts that will be
adopted in this paper. Although the authors do not consider conditional independence, they
show that functional dependencies on K-relations entail lossless-join decompositions.

The following contributions are presented in this paper: First, we show that conditional
independence for K-relations corresponds to lossless-join decompositions whenever K is
positive and multiplicatively cancellative. Then, we provide a proof that, for any K exhibiting
these characteristics, the semigraphoid axioms are sound for general CIs, and extend to
a complete axiomatization of SCI+FD which is comparable to that of MVD+FD. This
entails that database normalization techniques extend to K-relations whenever positivity and
multiplicative cancellativity are assumed. To showcase potential applications, we illustrate
through an example how the semiring perspective can lead to decompositions of data tables
which appear non-decomposable when interpreted relationally. Lastly, we explore how K-
relations and model theory can shed light into the interconnections among different CI
semantics.

1 This rule states that A ⊥⊥ B | CD ∧ C ⊥⊥ D | A ∧ C ⊥⊥ D | B ∧ A ⊥⊥ B | ∅ if and only if
C ⊥⊥ D | AB ∧ A ⊥⊥ B | C ∧ A ⊥⊥ B | D ∧ C ⊥⊥ D | ∅. For probability distributions the rule follows by
the non-negativity of conditional mutual information I(Y ; Z|C), and the fact that I(Y ; Z|X) = 0 if and
only if Y and Z are conditionally independent given X. For database relations the rule is not sound;
see a counterexample in [27].
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2 Semirings

We commence by recapitulating concepts related to semirings. A semiring is a tuple
K = (K,⊕,⊗, 0, 1), where ⊕ and ⊗ are binary operations on K, (K,⊕, 0) is a commutative
monoid with identity element 0, (K,⊗, 1) is a monoid with identity element 1, ⊗ left and
right distributes over ⊕, and x ⊗ 0 = 0 = 0 ⊗ x for all x ∈ K. The semiring K is called
commutative if (K,⊗, 1) is a commutative monoid. That is, semirings are rings which need
not have additive inverses. As usual, we often write ab instead of a⊗ b. In this paper, we
assume that every semiring is non-trivial (0 ̸= 1) and commutative. The symbols ⊕,⊗,

⊕
,
⊗

are used in reference to specific semiring operations, and symbols +, ·,
∑
,
∏

refer to ordinary
arithmetic operations.

We list some example semirings that will be considered in this paper.
The Boolean semiring B = (B,∨,∧, 0, 1) models logical truth and is formed from the
two-element Boolean algebra. It is the simplest example of a semiring that is not a ring.
The probability semiring R≥0 = (R≥0,+, ·, 0, 1) consists of the non-negative reals with
standard addition and multiplication.
The semiring of natural numbers N = (N,+, ·, 0, 1) consists of natural numbers with their
usual operations.
The tropical semiring T = (R ∪ {∞},min,+,∞, 0) consists of the reals expanded with
infinity and has min and standard addition respectively plugged in for addition and
multiplication.
The Viterbi semiring V = ([0, 1],max, ·, 0, 1) associates the unit interval with maximum
as addition and standard multiplication.

Other examples include the semiring of multivariate polynomials N[X] = (N[X],+, ·, 0, 1)
which is the free commutative semirings generated by the indeterminates in X, and the
Lukasiewicz semiring L = ([0, 1],max, ·, 0, 1), used in multivalued logic, which endows the
unit interval with max addition and multiplication a · b := max(0, a+ b− 1).

Let ≤ be a partial order. A binary operator ∗ is said to be monotone under ≤ if a ≤ b

and a′ ≤ b′ implies a ∗ a′ ≤ b ∗ b′. If ∗ = ⊕ (resp. ∗ = ⊗), we call this property of (K,≤)
additive monotony (resp. multiplicative monotony). A partially ordered semiring is a tuple
K = (K,⊕,⊗, 0, 1,≤), where (K,⊕,⊗, 0, 1) is a semiring, and (K,≤) is a partially ordered
set satisfying additive and multiplicative monotony. Given a semiring K = (K,⊕,⊗, 0, 1),
define a binary relation ≤K on K as

a ≤K b :⇔ ∃c : a⊕ c = b. (1)

This relation is a preorder, meaning it is reflexive and transitive. If ≤K is also antisymmetric,
it is a partial order, called the natural order of K, and K is said to be naturally ordered. In
this case, K endowed with its natural order is a partially ordered semiring. If additionally
the natural order is total, i.e., a ≤K b or b ≤K a for all a, b ∈ K, we say that K is naturally
totally ordered.

If a semiring K satisfies ab = 0 for some a, b ∈ K where a ̸= 0 ̸= b, we say that K has
divisors of 0. The semiring K is called ⊕-positive if a⊕ b = 0 implies that a = b = 0. If K is
both ⊕-positive and has no divisors of 0, it is called positive. For example, the modulo two
integer semiring Z2 is not positive since it is not ⊕-positive (even though it has no divisors
of 0). Conversely, an example of a semiring with divisors of 0 is Z4. A semiring is called
additively (resp. multiplicatively) cancellative if a⊕ b = a⊕ c implies b = c (resp. ab = ac

and a ̸= 0 implies b = c). It is simply cancellative if it is both additively and multiplicatively
cancellative. A semiring K in which each non-zero element has a multiplicative inverse is
called a semifield. A semifield K in which each element has an additive inverse is a field.
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In particular, note that the probability semiring R≥0, the semiring of natural numbers N,
the Boolean semiring B, and the tropical semiring are positive, multiplicatively cancellative,
and naturally ordered. Of these only the first two are also additively cancellative. This
difference seems to be crucial for the behavior of conditional independence.

This section concludes with two lemmata. The first lemma is applied when examining the
relationship between lossless-join decompositions and conditional independence (Theorem 10).
The second lemma comes into play when comparing the CI implication problem for different
semirings (Theorem 20). A formal definition of an embedding of a model into another model
is located in Appendix A. The lemma proofs can be found in the arXiv version [13]. A field
F endowed with a total order ≤ is a totally ordered field if (F,≤) satisfies additive monotony
and monotony of non-negative multiplication: a ≥ 0 and b ≥ 0 implies ab ≥ 0.

▶ Lemma 1. Any positive multiplicatively cancellative semiring K embeds in a positive
semifield F . Furthermore, if K is additively cancellative, then F is additively cancellative,
and if K is a naturally totally ordered, then F is naturally totally ordered.

▶ Lemma 2. Any naturally totally ordered cancellative semiring embeds in a totally ordered
field.

3 K-relations

This section introduces ordinary relations as well as K-relations and their associated basic
properties.

We use boldface letters to denote sets. For two sets X and Y , we write XY to denote
their union. If A is an individual element, we sometimes write A instead of {A} to denote
the singleton set consisting of A.

3.1 Relations
Fix disjoint countably infinite sets Var and Val of variables and values. Each variable A ∈ Var
is associated with a subset of Val, called the domain of A and denoted Dom(A). Given a
finite set of variables X, an X-tuple is a mapping t : X → Val such that t(A) ∈ Dom(A).
We write Tup(X) for the set of all X-tuples. Note that Tup(∅) is a singleton set consisting
of the empty tuple. For Y ⊆ X, the projection t[Y ] of t on Y is the unique Y -tuple that
agrees with t on X. In particular, t[∅] is always the empty tuple.

A relation R over X is a subset of Tup(X). The variable set X is also called the (relation)
schema of R. We sometimes write R(X) instead of R to emphasize that X is the schema of
R. For Y ⊆ X, the projection of R on Y , written R[Y ], is the set of all projections t[Y ]
where t ∈ R. A database D is a finite collection of relations {R1[X1], . . . , Rn[Xn]}. Unless
stated otherwise, we assume that each relation is finite.

3.2 K-relations
Fix a semiring K, and let X be a set of variables. A K-relation over X is a function
R : Tup(X) → K. Again, the variable set X is called the (relation) schema of R, and we
can write R(X) instead of R to emphasize that X is the schema of R. If K is the Boolean
semiring B, the tuple annotation R(t) characterizes an ordinary relation, and thus we will
often in this paper identify B-relations and relations. Note that a K-relation over ∅ associates
the empty tuple with some value of K. The support Supp(R) of a K-relation R over X is
the set {t ∈ Tup(X) | R(t) ̸= 0} of tuples associated with a non-zero value. We often write
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R′ for the support of R. The K-relation R is called total if for all t ∈ Tup(X) it holds that
R(t) ̸= 0, i.e., if Supp(R) = Tup(X). It is called normal if

⊕
t∈Tup(X) R(t) = 1. For a ∈ K,

we write aR for the K-relation over X defined by (aR)(t) = aR(t). For a Y -tuple t, where
Y ⊆ X, the marginal of R over t is defined as

R(t) :=
⊕

t′∈Tup(X)
t′[Y ]=t

R(t′). (2)

We then write R[Y ] for the relation over Y , called the marginal of R on Y , that consists of
the marginals of R over all Y -tuples. Note that the marginal R[∅] of R on the empty set is a
function that maps the empty tuple to

∑
t∈Tup(X) R(t). In particular, if K is the Boolean

semiring B, the marginal of R on Y is the projection of R on Y . In this paper, we assume
that each relation is finite and non-empty, and likewise each K-relation is assumed to have a
finite and non-empty support.

K-relations instantiated in different ways lead to familiar notions. For instance, a database
relation can be viewed as B-relation, and a probability distribution as a normal R≥0-relation.
Alternatively, database relations can be transformed to K-relations by reinterpreting variables
as tuple annotations.

▶ Example 3. Tab. 1 collects data about room prizes in a hotel. The table can be viewed as
a standard database relation. Since Price is a function of Room, Date, and Persons, one can
also interpret it as a K-relation Price(Room, Date, Persons) over some semiring K containing
positive integers. In principle, other variables such as Room and Persons can also be turned
into annotations.

Table 1 Price data for hotel rooms.

Room Date Persons Price

double 2023-12-01 1 100
double 2023-12-01 2 120
double 2023-08-20 1 120
double 2023-08-20 2 140
twin 2023-08-20 1 110
twin 2023-08-20 2 120

3.3 Basic properties
Prior to delving into the concept of conditional independence, we here list some basic
properties regarding projections and supports of K-relations. Lemmata 4 and 5 appear in [2],
with the exception that there K is always assumed to be positive. Also the concept of a
marginal in that paper is stated otherwise as in Eq. (2), except that there t′ ranges over
R′ instead of Tup(X). Obviously the two versions lead to the same concept. To account
for these slight modifications, we include the proofs of these two lemmata in the arXiv
version [13].

▶ Lemma 4. Let R(X) be a K-relation, and let Z ⊆ Y ⊆ X. The following statements
hold:
1. Assuming K is ⊕-positive, for all Y ⊆ X it holds that R′[Y ] = R[Y ]′.
2. For all Z ⊆ Y ⊆ X it holds that R[Y ][Z] = R[Z].
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Two K-relations R and R′ over a variable set V are said to be equivalent (up to normal-
ization), written R ≡ R′, if there are a, b ∈ K \ {0} such that aR = bR′.

▶ Lemma 5. Let K be a semiring, let W ,V , W ⊆ V , be two variable sets, and let R,R′, R′′

be three K-relations over V . Then,
1. R ≡ R′ implies R[W ] ≡ R′[W ]; and
2. if K has no divisors of zero, R ≡ R′ and R′ ≡ R′′ implies R ≡ R′′.

4 Conditional independence and decompositions

Regardless of the context, what we call conditional independence tends to describe essentially
the same property. For a “system” consisting of three components X,Y ,Z, we might say
that Y is conditionally independent of Z given X if Y does not reveal anything about Z,
once X has been fixed. This usually entails that the “system” can be decomposed to its
“subsystems” over X,Y and X,Z without loss of information. In this section we consider
a general semantics for conditional independence over K-relations, and show that under
certain assumptions, this definition matches the above intuition.

▶ Definition 6 (Conditional independence for K-relations [3]). Let R be a K-relation over
a variable set V , and let X,Y ,Z be disjoint subsets of V . An expression of the form
Y ⊥⊥ Z | X is called a conditional independence (CI). We say that R satisfies Y ⊥⊥ Z | X,
denoted R |= Y ⊥⊥ Z | X, if for all V -tuples t,

R(t[XY ])R(t[XZ]) = R(t[XY Z])R(t[X]). (3)

Fix a relation schema V and three pairwise disjoint subsets X,Y ,Z ⊆ V . A saturated
conditional independence (SCI) is a CI of the form Y ⊥⊥ Z | X, where XY Z = V . Over
B-relations SCIs coincide with multivalued dependencies (MVDs), which are expressions of
the form X ↠ Y , where X and Y may overlap. A V -relation R satisfies X ↠ Y , written
R |= X ↠ Y , if for all two tuples t, t′ ∈ R such that t[X] = t′[X] there exists a third tuple
t′′ ∈ R such that t′′[XY ] = t′[XY ] and t[V \ XY ] = t′[V \ XY ]. An embedded multivalued
dependency (EMVD) is an expression of the form X ↠ Y | Z, where X, Y, Z may overlap.
We say that R satisfies X ↠ Y | Z, written R |= X ↠ Y | Z, if the projection R[XY Z]
satisfies the MVD X ↠ Y .

▶ Example 7. Returning to Example 3, we observe that the price function Price(Room, Date,
Persons) exhibits certain types of dependencies between its arguments. The room prices vary
depending on the date and the room type. Additionally, adding a second person incurs a
price increase by a flat rate which is independent of the date but depends on the room type.
This kind of independence can be captured by viewing the price function as a T-relation,
in which case it satisfies the SCI Date ⊥⊥ Persons | Room. Suppose instead of a flat price
increase, the addition of a second person incurs a 20% price increase for double rooms, and
a 10% price increase for twin rooms. Then, interpreting Price(Room, Date, Persons) as a
R≥0-relation, we again obtain Price |= Date ⊥⊥ Persons | Room. When Tab. 1 is viewed as
an ordinary relation, it satisfies the EMVD Room ↠ Date | Persons, while failing to satisfy
any MVD.

Several conditional independence notions from the literature can be recovered through
K-relations. For instance, beside EMVDs, the following examples were considered in [27]
and can now be restated using the previous definition.



M. Hannula 20:7

For K = R≥0, the definition coincides with the concept of conditional independence in
probability theory.
For K = T, the definition correponds to conditional independence over natural condi-
tional functions. A natural conditional function is a mapping f : Tup(X) → N, where
mint∈Tup(X) f(t) = 0. The notion of conditional independence over such functions [27]
coincides with Def. 6 over integral-valued, total, and normal T-relations. Recall that for
(min-plus) tropical semirings, addition is interpreted as minimum, and multiplication as
the usual addition, meaning that its neutral element is 0.
For K = V, the definition correponds to conditional independence over possibility func-
tions. A possibility function is a function f : Tup(X) → [0, 1], where

∑
t∈Tup(X) f(t) = 1.

Such functions can be viewed as normal V-relations, where V is the Viterbi semiring, in
which case their notion of conditional independence [27] matches Def. 6.

In order to connect conditional independence over K-relations to decompositions, we
next consider the concept of a join. An arguably reasonable expectation is that whenever
a K-relation T (ABC) satisfies a CI A ⊥⊥ C | B, then one should be able to retrieve T
from its projections on AB and BC using the join. That is, T should be equivalent to
the join of T [AB] and T [BC] up to normalization. In the relational context this is indeed
the outcome once A ⊥⊥ C | B is interpreted as the MVD B ↠ A, and the join R ▷◁ S of
two relations R(X) and S(Y ) is given in the usual way, i.e., as the relation consisting of
those XY -tuples t whose projections t[X] and t[Y ] appear respectively in R and S. In the
context of K-relations the join of R(X) and S(Y ) is often defined via multiplication as the
K-relation R ∗ S over XY where

(R ∗ S)(t) = R(t[X])S(t[Y ]) (4)

(see, e.g., [11]). Substituting K = B in this definition now yields the standard relational join.
Similarly, letting K = N we arrive at the bag join operation of SQL. However, as illustrated
in the next example, this notion of a join falls short of our expectations.

▶ Example 8. Continuing our running example, the two top tables in Fig. 1 illustrate
the projections of the T-relation Price(Room, Date, Persons) on {Room, Date} and {Room,
Persons}. The table in the bottom row is the multiplicative join (4) of the two projections.
Note that in the tropical semiring the aforementioned projections are formed as minima
of prices, while addition plays the role of multiplication in the join operation. We observe
that the multiplicative join is not equivalent to the original price function. In particular,
there is no uniform (tropical) scaling factor that returns us Price from Price([Room, Date]) ∗
Price([Room, Persons]).

Two K-relations R(X) and S(Y ) are said to be consistent if there exists a third relation
T (XY ) such that T [X] ≡ R and T [Y ] ≡ S. Atserias and Kolaitis [2] demonstrate that
the multiplicative join does not always witness the consistency of two K-relations, a fact
that can be also seen from our running example. Consequently, they introduce a novel join
operation which we will now incorporate into our approach. Intuitively this notion of a join
is an adaptation of the factorization of a probability distribution obtained from conditional
independence. Suppose two random events A and C are independent given a third event
B. The joint probability P (A,B,C) can then be rewritten as P (B)P (A | B)P (C | B) =
P (A,B)P (B,C)/P (B). We may recognize that this equation is similar to the multiplicative
join of two K-relations conditioned on their common part. In our example this corresponds
to multiplying the multiplicative join Price([Room, Date]) ∗ Price([Room, Persons]) with the
(tropical) multiplicative inverse of Price([Room]). We observe from Fig. 1 that this sequence
of operations yields the initial price function depicted in Tab. 1 (even without re-scaling), in
accordance with our expectations.
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Price[Room, Date]
Room Date Price

double 2023-12-01 100
double 2023-08-20 120
twin 2023-08-20 110

Price[Room, Persons]
Room Persons Price

double 1 100
double 2 120
twin 1 110
twin 2 120

Price([Room, Date]) ∗ Price([Room, Persons])
Room Date Persons Price

double 2023-12-01 1 200
double 2023-12-01 2 220
double 2023-08-20 1 220
double 2023-08-20 2 240
twin 2023-08-20 1 220
twin 2023-08-20 2 230

(Price[Room])−1

Room Price

double -100
twin -110

Figure 1 Decomposition of the price function.

We will now provide a precise definition of the join operation introduced in [2]. This
definition matches the above intuitive description with one exception: Semirings generally
lack multiplicative inverses, and therefore the conditioning on the common part of two
K-relations is defined indirectly. For a K-relation R(X), a subset Z ⊆ X, and a Z-tuple u,
define

c∗
R,Z :=

⊗
v∈R[Z]′

R(v) and cR(u) :=
⊗

v∈R[Z]′

v ̸=u

R(v),

with the convention that the empty product evaluates to 1, the neutral element of multi-
plication in K. We isolate the following simple property which is applied frequently in the
sequel.

▶ Proposition 9. Suppose K does not have divisors of zero. If R(X) is a K-relation, Z ⊆ X,
and u is a Z-tuple, then c∗

R,Z ̸= 0 and cR(u) ̸= ∅

If R(X) and S(Y ) are two K-relations, the join R ▷◁ S of R and S is the K-relation over
XY defined by

(R ▷◁ S)(t) := R(t[X])S(t[Y ])cS(t[X ∩ Y ]). (5)

If K is a semifield (i.e., it has multiplicative inverses), we may rewrite the join as

(R ▷◁ S)(t) =
c∗

S,X∩Y R(t[X])S(t[Y ])
S(t[X ∩ Y ]) .

The definition of R ▷◁ S is not symmetric, and hence there may be occasions where
commutativity fails, i.e., R ▷◁ S ̸= S ▷◁ R. However, whenever R and S agree on the marginals
on their shared variable set X ∩Y , commutativity holds by definition. In particular, Lemma 4
entails that the join of two projections R[X] and R[Y ] of the same relation R is commutative.
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The join operation (5) can also be described in terms of conditional independence and
consistency. Suppose K is a semifield, and suppose X,Y ,Z are pairwise disjoint. Let
S(XY ) and T (XZ) be two normal K-relations that are consistent. Since equivalence entails
identity for normal K-relations over semifields K, this is tantamount to finding a normal
K-relation R(XY Z) such that

R[XY ] = S and R[XZ] = T. (6)

In particular, Lemma 4 and Eq. (6) yield S[X] = T [X], whereby c∗
S,X = c∗

T,X . We may
now observe that R = 1/c∗

T,X(S ▷◁ T ) is the unique K-relation that satisfies (6) and the
CI Y ⊥⊥ Z | X. In the particular case where K = R≥0 – in which case S and T are
two consistent probability distributions – we also know that R = 1/c∗

T,X(S ▷◁ T ) is the
unique probability distribution that satisfies (6) and maximizes the entropy of XY Z (or
alternatively, the conditional entropy of Y Z given X) [2].

Let R be a K-relation over XY . The decomposition of R along X and Y consists of
its projections R[X] and R[Y ] on X and Y , respectively. Such a decomposition is called
a lossless-join decomposition if R[X] ▷◁ R[Y ] ≡ R. This definition, which appears already
in [2], generalizes the definition of a lossless-join decomposition in database relations. It turns
out, as we will next show, that if K is positive and multiplicatively cancellative, conditional
independence holds on a K-relation if and only if the corresponding decomposition is a
lossless-join one.

▶ Theorem 10 (Lossless-join decomposition). Let K be a positive semiring, X,Y ,Z pairwise
disjoint sets of variables, and R(XY Z) a K-relation. If R satisfies Y ⊥⊥ Z | X, then
the decomposition of R along XY and XZ is a lossless-join one. If K is additionally
multiplicatively cancellative, then the converse direction holds.

Proof. Assume R satisfies Y ⊥⊥ Z | X. We need to show that R[XY ]▷◁R[XZ] ≡ R. Let t
be an arbitrary tuple from Tup(XY Z). By assumption and Lemma 4 we obtain

(R[XY ]▷◁R[XZ])(t) =R(t[XY ])R(t[XZ])cR[XZ](t[X])

=R(t[X])R(t)
⊗

v∈R[XZ][X]′

v ̸=t[X]

R[XZ](v)

=R(t[X])R(t)
⊗

v∈R[X]′

v ̸=t[X]

R(v)

= c∗
R,XR(t),

where c∗
R,X ̸= 0 by Proposition 9. This proves that R[XY ]▷◁R[XZ] ≡ R.

For the converse direction, suppose R[XY ]▷◁R[XZ] ≡ R. Let a, b ∈ K \{0} be such that
aR = b(R[XY ]▷◁R[XZ]). By Lemma 1, we may assume without loss of generality that K
is a submodel of some positive semifield F . Hence R[XY ]▷◁R[XZ] = cR for c = ab−1 ∈ F .
We claim that c = c∗

R,X . Since we assume a non-empty support for each K-relation, we may
select a tuple t from R′. By Lemma 4 we have t[X] ∈ R[X]′, i.e., R(t[X]) ̸= 0. We can also
deduce the following:

ICDT 2024



20:10 Conditional Independence on Semiring Relations

cR(t[X]) =
⊕

t′∈Tup(XY Z)
t′[X]=t[X]

cR(t′) =
⊕

t′∈Tup(XY Z)
t′[X]=t[X]

(R[XY ]▷◁R[XZ])(t′)

=
⊕

t′∈Tup(XY Z)
t′[X]=t[X]

R(t′[XY ])R(t′[XZ])cR[XZ](t′[X])

= cR[XZ](t′[X])
⊕

t′∈Tup(XY )
t′[X]=t[X]

R(t′[XY ])
⊕

t′∈Tup(XZ)
t′[X]=t[X]

R(t′[XZ])

=R(t[X])R(t[X])
⊗

v∈R[X]′

v ̸=t[X]

R(v) = c∗
R,XR(t[X]).

Multiplying (in F ) by the inverse of R(t[X]) then yields c = c∗
R,X , proving our claim.

Since R[XY ] ▷◁ R[XZ] = c∗
R,XR, we may apply the sequence of equations from the

previous case to obtain that for all t ∈ Tup(XY Z),

R(t[XY ])R(t[XZ])cR[XZ] = R(t[X])R(t)cR[XZ].

Since cR[XZ] is non-zero by Proposition 9, it can be removed from both sides of the equation
by multiplicative cancellativity. We conclude that R satisfies Y ⊥⊥ Z | X. ◀

The preceding proof entails that over positive and multiplicatively cancellative semirings
K, the satisfaction of Y ⊥⊥ Z | X by a K-relation R(XY Z) holds if and only if R[XY ]▷◁
R[XZ] = c∗

R,XR. If K is additionally a semifield, then R |= Y ⊥⊥ Z | X exactly when we
find two K-relations S(XY ) and T (XZ) such that R(t) = S(t[XY ])T (t[XZ]).

Our running example demonstrates that semiring interpretations can give rise to lossless-
join decompositions which are unattainable under the relational interpretation.

▶ Example 11. Consider again Tab. 1 as a T-relation Price(Room, Date, Persons).
As we see from Fig. 1, this T-relation decomposes along {Room, Date} and {Room,
Persons}. In particular, Price[Room, Date] ▷◁ Price[Room, Persons] = c∗

Price,{Room}Price
where c∗

Price,{Room} = 210. However, viewed as an ordinary relation R over {Price, Room,
Date, Persons} this table is in sixth normal form, meaning that no decomposition along
X1, . . . , Xn is a lossless-join one, unless Xi for some i is the full variable set. Specifically, for
any X ⊊ {Price, Room, Date, Persons}, the projection of the tuple (double, 2023-08-20, 2,
120) on X is in R[X], even though the tuple itself does not belong to R.

Examples of positive semirings which are not multiplicatively cancellative seem somewhat
artificial. Consider K = (N>0,Z2) ∪ {(0, 0)} with the semiring structure pointwise inherited
from N and Z2. Note that K is positive but violates multiplicative cancellativity, as
(1, 1) ⊗ (1, 0) = (1, 0) ⊗ (1, 0), while (1, 1) ̸= (1, 0) ̸= (0, 0). Using K we can demonstrate that
the assumption of multiplicative cancellativity cannot be dropped from the second statement
of Lemma 10. We write X ⊥⊥ Y for the marginal independence between X and Y , defined
as the CI X ⊥⊥ Y | ∅. Consider the K-relation R from Fig. 2. This K-relation does not
satisfy A ⊥⊥ B: Choosing t(A,B) = (0, 0) we observe R(t[A]) ⊗R(t[B]) = (2, 1) ⊗ (2, 1) ̸=
(4, 0) ⊗ (1, 0) = R(∅) ⊗ R(t[AB]). On the other hand, we have R ≡ R[A] ▷◁R[B] because
aR = b(R[A]▷◁R[B]), where a = (4, 0) ̸= (0, 0) ̸= (1, 0) = b.

Similarly, the assumption of positivity is necessary for the first statement of Lemma 10.
Suppose a, b ∈ K \{0} are such that a⊕b = 0, and consider variables X,Y with domain {0, 1}.
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R

A B #

0 0 (1, 0)
0 1 (1, 1)
1 0 (1, 1)
1 1 (1, 0)

R[C], C ∈ {A,B}
C #

0 (2, 1)
1 (2, 1)

R[A]▷◁R[B]
A B #

0 0 (4, 1)
0 1 (4, 1)
1 0 (4, 1)
1 1 (4, 1)

Figure 2 Decomposition without independence.

(S1) Triviality: Y ⊥⊥ ∅ | X.
(S2) Symmetry: Y ⊥⊥ Z | X, then Z ⊥⊥ Y | X.
(S3) Decomposition: Y ⊥⊥ ZW | X, then Y ⊥⊥ Z | X.
(S4) Weak union: Y ⊥⊥ ZW | X, then Y ⊥⊥ W | XZ.
(S5) Contraction: Y ⊥⊥ Z | X and Y ⊥⊥ W | XZ, then Y ⊥⊥ ZW | X.
(G) Interaction: Y ⊥⊥ Z | XW and Y ⊥⊥ W | XZ, then Y ⊥⊥ ZW | X.

Figure 3 Semigraphoid axioms (S1–S5) and graphoid axioms (S1–S5,G).

Then, the K-relation R(XY ) corresponding to the set {(0, 0; a), (0, 1; b), (1, 0; b), (1, 1; a)} of
triples (t(X), t(Y );R(t)) satisfies X ⊥⊥ Y , but the decomposition along X and Y is obviously
not a lossless-join one. In fact, the definition of the marginal, Eq. (2), may not even be useful
if K is not positive. For instance, a pure quantum state |ψ⟩XY within a finite-dimensional
composite Hilbert space HXY can be conceived as a C-relation R(XY ) over complex numbers
C. Its marginal with respect to HX is however not obtained from Eq. (2), but through a
partial trace of the relevant density matrix. The marginal state may not even be a C-relation
anymore, because it can be mixed, i.e., a probability distribution over pure states.

5 Axiomatic properties

The previous section identifies positivity and multiplicative cancellativity as the key semiring
properties underlying the correspondence between conditional independence and lossless-join
decompositions. The main observation of the present section will be that the same key
semiring properties guarantee soundness and completeness of central axiomatic properties
associated with CIs.

5.1 Semigraphoid axioms
The semigraphoid axioms [21] (the first five rules in Fig. 3) are a collection of fundamental
conditional independence properties observed in various contexts, including database rela-
tions and probability distributions. The graphoid axioms are obtained by extending the
semigraphoid axioms with the interaction rule (the last rule in Fig. 3). While not sound in
general, the interaction rule is known to hold for probability distributions in which every
probability is positive. We observe next that these results extend to K-relations whenever K
is positive and multiplicatively cancellative; the interaction rule, in particular, is sound over
total K-relations.

To offer context for Theorem 12 which is proven in Appendix B, recall from information
theory the concept of conditional mutual information, which can be defined over sets of
random variables U, V, W as I(V ; W | U) := H(UV ) + H(UW ) − H(U) − H(UV W ),
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where H is the Shannon entropy. The conditional mutual information I(V ; W | U) is zero
if and only if the CI V ⊥⊥ W | U holds in the underlying probability distribution. Now,
consider the chain rule

I(Y ; Z | X) + I(Y ; W | XZ) = I(Y ; ZW | X)

of conditional mutual information. Since conditional mutual information is non-negative,
the chain rule readily entails Decomposition, Weak union, and Contraction for probability
distributions. In the semiring setting we cannot deduce these rules analogously, as there
seems to be no general measure to capture conditional independence over K-relations. We
can however use the measure-theoretic interpretation of conditional independence as a guide
toward a proof. Consider, for instance, the contraction rule, which can be restated in the
information context as follows: if

H(XY ) +H(XZ) = H(X) +H(XY Z) and (7)
H(XY Z) +H(XZW ) = H(XZ) +H(XY ZW ), (8)

then

H(XY ) +H(XZW ) = H(X) +H(XY ZW ). (9)

In particular, Eq. (9) is a consequence of subtracting H(XZ) + H(XY Z) from the
combination of Eqs. (7) and (8). The soundness proof for K-relations has now the same
general structure. Instantiations of Eq. (3) for the CIs appearing in the contraction rule are
structurally similar to Eqs. (7), (8), and (9), with addition between entropies being replaced by
multiplication within K. Instead of subtraction, one now applies multiplicative cancellativity
to remove all superfluous terms from the combination of two equations. Additionally, one
has to deal with those cases where the terms to be eliminated are zero, and multiplicative
cancellativity cannot be applied.

▶ Theorem 12. Triviality, Symmetry, and Decomposition are sound for K-relations. Weak
union and Contraction are sound for K-relations where K is positive and multiplicatively
cancellative. Interaction is sound for total K-relations where K is positive and multiplicatively
cancellative.

Having considered the graphoid axioms for K-relations, we next consider the interaction
between conditional independence and functional dependence.

5.2 Functional dependencies
Given two sets of variables X and Y , the expression X → Y is called a functional dependency
(FD). A relation R satisfies X → Y , denoted R |= X → Y , if for all t, t′ ∈ R, t[X] = t′[X]
implies t[Y ] = t′[Y ]. We extend this definition to K-relations R by stipulating that R
satisfies an FD σ whenever its support R′ satisfies σ.

The Armstrong axioms for FDs [1] comprise the first three rules in Fig. 4. These rules are
sound and complete for database relations, and hence, by definition, for K-relations over any
K. The last two rules are two combination rules for MVDs and FDs [4] rewritten in different
syntax. To extend these rules K-relations, we again need positivity and multiplicative
cancellativity. The following proposition is proven in the arXiv version [13].

▶ Proposition 13. CI introduction is sound for all K-relations, where K is ⊕-positive. FD
contraction is sound for all K-relations, where K is positive and multiplicatively cancellative.
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(FD1) Triviality: if Y ⊆ X, then X → Y .
(FD2) Augmentation: if X → Y and XZ → Y Z.
(FD3) Transitivity: if X → Y and Y → Z, then X → Z.

(FD-CI1) CI introduction: if X → Y , then Y ⊥⊥ Z | X.
(FD-CI2) FD contraction: if Y ⊥⊥ Z | X and XY → Z, then X → Z.

Figure 4 Armstrong’s axioms (FD1–FD3) and combination rules (FD–CI1,FD–CI2).

Soundness of CI introduction means that, for positive K, a functional dependency on
a K-relation leads to a lossless-join decomposition. The next proposition, stating this fact,
was proven originally in [2]. Alternatively, we now see that the proposition follows directly
by Theorem 10 and Proposition 13.

▶ Proposition 14 ([2]). Let K be a positive semiring, X,Y ,Z be pairwise disjoint sets of
variables, and R(XY Z) be a K-relation. If R satisfies X → Y , then the decomposition of
R along XY and XZ is a lossless-join one.

We have now examined fundamental inference rules for CIs and FDs that have their
origins in database theory and probability theory. The combination of these rules however
is not – and cannot be – complete in either context. Specifically, over both finite relations
and finite distributions, the implication problems for EMVDs/CIs are not even r.e. since
the problems are known to be undecidable [14, 18, 20] and co-r.e. [17]. In the next section
we restrict attention to saturated CIs which are known to exhibit favorable algorithmic and
axiomatic properties.

5.3 Saturated conditional independence and functional dependence
We next show that SCI+FD enjoys a complete axiomatization that is shared by all positive and
multiplicatively cancellative semirings K. This result readily entails that logical implication
within the class SCI+FD does not depend on the chosen semiring K, provided that it has
the fundamental properties mentioned above.

Given a set Σ ∪ {τ} of dependencies, we say that Σ implies τ over relations (resp. K-
relations), denoted Σ |= τ (resp. Σ |=K τ), if every relation (resp. K-relation) satisfying
Σ satisfies τ . Let σ 7→ σ∗ associate an SCI/CI with its corresponding MVD/EMVD.
Extend this mapping to be the identity on FDs, and extend it to sets in the natural way:
Σ∗ = {σ∗ | σ ∈ Σ}.

▶ Theorem 15. Let K be a positive and multiplicatively cancellative semiring. Let Σ ∪ {τ}
be a set of SCIs and FDs. The following are equivalent:
1. τ can be derived from Σ using (S1-S5), (FD1-FD3), and (FD-CI1,FD-CI2).
2. Σ implies τ over K-relations.
3. Σ∗ implies τ∗ over relations consisting of two tuples.
4. Σ∗ implies τ∗ over relations.

Proof. (1) ⇒ (2). This direction is immediate due to Theorem 12, Proposition 13, and
soundness of the Armstrong axioms for ordinary relations. (2) ⇒ (3). Any two-tuple
relation R = {t, t′} can be transformed to a K-relation S such that the support S′ is R, and
S(t) = S′(t) = 1. It is straightforward to verify that R satisfies σ∗ if and only if S satisfies
σ, for all CIs and FDs σ. From this, the direction follows. (3) ⇒ (4). This direction has
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been proven in [22]. (4) ⇒ (1). This direction follows from the fact that the system (S1-S5),
(FD1-FD3), (FD-CI1,FD-CI2) mirrors the complete axiomatization of MVDs and FDs. We
give an explicit proof in the arXiv version [13]. ◀

▶ Corollary 16. Let K,K ′ be positive and multiplicatively cancellative semirings, and let
Σ ∪ {τ} be a set of SCIs and FDs. Then, Σ implies τ over K-relations if and only if Σ
implies τ over K ′-relations.

Theorem 10 and Corollary 16 demonstrate that the decomposition properties arising
from multivalued and functional dependencies hold invariably for all K-relations, given K is
multiplicatively cancellative and positive. Standard database normalization methods thus
extend to diverse contexts and may sometimes coincide with existing methods. The following
example shows that relational normalizations can sometimes match the factorizations of
probability distributions arising from Bayesian networks.

A relational database schema is a set of relation schemata, each associated with a set of
constraints. It is in fourth normal form (4NF) if for any of its MVD constraints X ↠ Y ,
X is a superset of a key. A Bayesian network is a directed acyclic graph in which the
nodes represent random variables and the directed edges probabilistic dependencies between
variables. Each node is thus directly influenced by its parents in the graph. Conversely, each
node indirectly influences its descendants by transitivity. The local Markov property states
that once the parent nodes are known, the state of the current node does not reveal any
additional information about the states of its non-descendants, i.e., each node is conditionally
independent of its non-descendants given its parents.

▶ Example 17. Consider the Bayesian network in Fig. 5. The chain rule of probability dis-
tributions and the local Markov property implies that the joint distribution P (A,B,C,D,E)
has a factorization P (A)P (B | A)P (C | A)P (D | BC)P (E | D).

The local Markov property produces three non-trivial CIs up to symmetry, rewritten
as the following EMVDs A ↠ B|C, BC ↠ A|D, D ↠ ABC|E. Suppose our goal is to
transform the unirelational database schema {ABCDE} into 4NF, assuming absence of
key constraints. Since the last EMVD is also an MVD, we first decompose ABCDE along
ABCD and DE. Since the second EMVD is an MVD on ABCD, we continue by splitting
ABCD into ABC and BCD. To remove the last remaining MVD, we decompose ABC
along AB and AC. The final schema {AB,AC,BCD,DE} is free of MVDs, and thus in
4NF. Furthermore, the decomposition of P (as a R≥0-relation) along {AB,AC,BCD,DE}
reproduces the aforementioned factorization of P into conditional probabilities.

A

B C

D E

Figure 5 A simple Bayesian network.
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6 Comparison of implication

As mentioned previously, implication for non-saturated CIs depends heavily on the underlying
semantics. In this section, we examine the connections between different conditional inde-
pendence semantics in relation to the semiring properties they rely on. Using model-theoretic
arguments, we first show that Σ |=R≥0 τ implies Σ |=K τ , whenever K is cancellative and
equipped with a natural total order.

Consider a CI of the form τ = Y ⊥⊥ Z | X, where X,Y ,Z are disjoint subsets of a
schema V . Suppose the domain of each variable in V is finite. For each V -tuple t, introduce
a variable xt. Denote by x⃗V a sequence listing all variables xt, t ∈ Tup(V ). We associate τ
and V with a quantifier-free first-order arithmetic formula

ϕτ,V :=
∧

tX ∈Tup(X)
tY ∈Tup(Y )
tZ∈Tup(Z)

⊕
t∈Tup(XY Z)

t[X]=tX

xt

⊕
t∈Tup(XY Z)

t[X]=tX

t[Y ]=tY

t[Z]=tZ

xt =
⊕

t∈Tup(XY Z)
t[X]=tX

t[Y ]=tY

xt

⊕
t∈Tup(XY Z)

t[X]=tX

t[Z]=tZ

xt.

A formula ϕ is said to be universal if it is of the form ∀x1 . . . ∀xnθ, where θ is quantifier-
free. All universal first-order properties of a model are preserved for its submodels (and any
of their isomorphic copies) [6].

▶ Proposition 18. Let A and B be models over a vocabulary τ , and let ϕ be a universal
first-order sentence over τ . If A embeds in B, then A |= ϕ implies B |= ϕ.

The following theorem lists some basic properties of real-closed fields [5, 6]. A field F is
called real if it can be associated with an ordering ≤ such that (F,≤) becomes an ordered
field. A field F ′ is an extension of a field F if F ⊆ F ′, and the field operations of F are those
inherited from F ′. The extension is proper if F is a strict subset of F ′, and algebraic if every
element in F ′ is a root of a non-zero polynomial with coefficients in F . A real field with no
proper real algebraic extension is called real closed. For instance, the field of real numbers is
real closed, whereas the field of rational numbers is real but not real closed. On the other
hand, no finite or algebraically closed field is real. A real closed field has a unique ordering,
which is definable by a ≤ b :⇔ ∃c(a⊕ c2 = b). An algebraic extension F ′ of an ordered field
(F,≤) is called a real closure of F if F ′ is real closed, and its unique ordering extends that of
F (i.e., the ordering is preserved under the inclusion map F ↪−→ F ′). Two models A and B
are elementarily equivalent, written A ≡ B, if they satisfy the same first-order sentences.

▶ Theorem 19.
Any totally ordered field (F,≤) has a real closure F ′.
If (F,≤) is a totally ordered field, and F0 and F1 are its real closures uniquely ordered
by ≤0 and ≤1, there is an isomorphism between (F0,≤0) and (F1,≤1) which is identity
on F .
Any two real-closed fields F0 and F1 are elementarily equivalent.

We can now prove the property that R≥0-implication entails K-implication, for any
semiring K embedded in a cancellative and naturally totally ordered one.

▶ Theorem 20. Let Σ ∪ {τ} be a finite set of CIs, and suppose K embeds in a naturally
totally ordered cancellative semiring. Then, Σ |=R≥0 τ implies Σ |=K τ .

Proof. By Lemma 2, Theorem 19, and transitivity of the embedding relation, K embeds in
a real-closed field F . Let R(V ) be a K-relation, where V is a set of variables that includes
each variable appearing in Σ ∪ {τ}. We need to show that R |= Σ implies R |= τ . Since
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satisfaction of a CI by R does not depend on tuple values that do not appear in R, we may
without loss of generality assume that the domain of each variable in V is finite. Then,
assuming Σ = {σ1, . . . , σn}, we may consider the universal first-order sentence

ψΣ,τ,V := ∀x⃗V (x⃗V ≥ 0⃗ ∧ ϕσ1,V ∧ . . . ∧ ϕσn,V → ϕτ,V ),

where, given a sequence x⃗ = (x1, . . . , xl), we write x⃗ ≥ 0⃗ as a shorthand for x1 ≥ 0∧. . .∧xl ≥ 0.
Since Σ |=R≥0 τ by hypothesis, ψΣ,τ,V must be true for the field of reals R (equipped with its
unique ordering). Since F and R are real-closed, they share the same first-order properties;
in particular, F also satisfies ψΣ,τ,V . By Proposition 18, K likewise satisfies ψΣ,τ,V , and
hence R |= Σ implies R |= τ . We conclude that Σ |=K τ . ◀

The preceding theorem readily entails that implication over R≥0 entails implication over
N≥0 and Q≥0. Another example is K = N × N with pointwise addition and multiplication,
and neutral elements (0, 0) and (1, 1). This semiring is not naturally totally ordered, because
it contains incomparable elements, such as (0, 1) and (1, 0). However, it can be extended
to K ∪ (Z × N>0) which is naturally totally ordered and cancellative. For another example,
consider the semiring K = N[X] of polynomials in X with coefficients from natural numbers.
Since K contains incomparable elements, such as X + 2 and 2X + 1, its natural order is not
total. The extension of K with those polynomials of Z[X] in which the leading coefficient is
positive produces a cancellative semiring whose natural order is total.

Let us then turn attention to the Boolean semiring B and its connections with other
semirings. First we note that although both R≥0 and B are naturally totally ordered, only
the first one is additively cancellative. In light of Theorem 20, this may help explain why
there is no implication from Σ |=R≥0 τ to Σ |=B τ . Another difference is that only the
Boolean semiring is associated with an idempotent addition; an operation ∗ on K is said to
be idempotent if a∗a = a for all a ∈ K. We observe that B-implication entails K-implication,
whenever K has an idempotent addition.

▶ Proposition 21. Let K be a semiring associated with an idempotent addition. Let Σ ∪ {τ}
be a set of CIs. Then, Σ |=K τ implies Σ |=B τ .

Proof. Recall that we consider only non-trivial semirings K, where 0 ̸= 1. Thus, any
B-relation R can be readily interpreted as a K-relation R′. The idempotence of addition
guarantees that R |= σ if and only if R′ |= σ, for any CI σ. The statement of the lemma
then follows. ◀

We leave it as an open question whether the statements of Theorem 20 and Proposition 21
hold also in the converse directions.

7 Conclusion

We have studied axiomatic and decomposition properties of conditional independence over
K-relations. For positive and multiplicatively cancellative K, we showed that (i) conditional
independence corresponds to lossless-join decompositions, (ii) the semigraphoid axioms
of conditional independence are sound, and (iii) saturated conditional independence and
functional dependence have a sound and complete axiom system, mirroring the sound and
complete axiom system of MVDs and FDs. To demonstrate possible applications, we provided
an example data table that admits a lossless-join decomposition only when one of its variables
is reinterpreted as a semiring annotation. Finally, we considered a model-theoretic approach
to study the relationships between different CI semantics.
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The questions of the axiomatic characterization [15, 26, 28] and decidability [14, 20] of the
CI implication problem have been answered in the negative in different frameworks. Having
identified positivity and multiplicative cancellativity as the fundamental semiring properties
for the notion of conditional independence, we may now ask whether these negative results
extend to any K with these characteristics.
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A Embeddings

Let τ be a first-order vocabulary consisting of function and relation symbols (constant
symbols can be viewed as 0-ary function symbols). We write write ar(α) for the arity of
a symbol α ∈ τ . Given a τ -structure M and an element α from τ , we write αM for the
interpretation of α in M. Let A and B be two τ -structures with domains A and B. We
call A a submodel of B, written A ⊆ B, if A ⊆ B, and the interpretation of every function
symbol and relation symbol in τ is inherited from B; i.e., for each α ∈ τ , αA is the restriction
αB ↾ Ak of αB to Ak. We say that A and B are isomorphic, written A ∼= B, if there exists a
bijection (called an isomorphism between A and B) π : A → B such that

π(fA(a1, . . . , aar(f))) = fB(π(a1), . . . , π(aar(f))), for all function symbols f ∈ τ and
elements a1, . . . , ak ∈ A, and
(a1, . . . , aar(R)) ∈ RA ⇐⇒ (π(a1), . . . , π(aar(R))) ∈ RB, for all relation symbols R ∈ τ

and elements a1, . . . , ak ∈ A.
We say that A embeds in B, written A ≼ B, if A and some submodel of B are isomorphic.

B Graphoid axioms

We will use the following helping lemma in the proof of Theorem 12.

▶ Lemma 22. Let R(X) be a K-relation, where K is ⊕-positive. Let t be a tuple of R, and
let Y ,Z be variable sets such that Z ⊆ Y ⊆ X. Then, t[Y ] ∈ R[Y ]′ implies t[Z] ∈ R[Z]′.

https://doi.org/10.1109/TSE.1987.232847
https://doi.org/10.1109/TIT.2023.3247570
https://doi.org/10.1145/322261.322263
https://doi.org/10.1007/BFb0028219
https://doi.org/10.1016/0888-613X(94)00014-T


M. Hannula 20:19

Proof. By Lemma 4, R[Y ][Z] = R[Z]. Using Eq. (2) we have

R(t[Z]) =
⊕

u∈Tup(Y )
u[Z]=t[Z]

R(u) = R(t[Y ]) ⊕
⊕

u∈Tup(Y )
u[Z]=t[Z]
u[Y ] ̸=t[Y ]

R(u).

Since by assumption R(t[Y ]) ̸= 0, we obtain by ⊕-positivity of K that R(t[Z]) ̸= 0, i.e.,
t[Z] ∈ R[Z]′. ◀

▶ Theorem 12. Triviality, Symmetry, and Decomposition are sound for K-relations. Weak
union and Contraction are sound for K-relations where K is positive and multiplicatively
cancellative. Interaction is sound for total K-relations where K is positive and multiplicatively
cancellative.

Proof. Triviality and Symmetry are clearly sound for all K-teams. We thus consider only
Decomposition, Weak union, and Contraction. Fix a K-relation R(V ) over some variable set
V that contains XY ZW .

Decomposition: Suppose R satisfies Y ⊥⊥ ZW | X. Then, for all tuples t ∈ Tup(V ) it
holds that

R(t[XY ])R(t[XZW ]) = R(t[X])R(t[XY ZW ]) (10)

This implies

R(t[XY ])R(t[XZ]) = R(t[XY ])
⊕

t′∈Tup(XZW )
t′[XZ]=t[XZ]

R(t′[XZW ])

=
⊕

t′∈Tup(XY ZW )
t′[XY Z]=t[XY Z]

R(t′[XY ])R(t′[XZW ]) =
⊕

t′∈Tup(XY ZW )
t′[XY Z]=t[XY Z]

R(t′[X])R(t′[XY ZW ])

= R(t[X])
⊕

t′∈Tup(XY ZW )
t′[XY Z]=t[XY Z]

R(t′[XY ZW ]) = R(t[X])R(t[XY Z]).

Having showed

R(t[XY ])R(t[XZ]) = R(t[X])R(t[XY Z]), (11)

we conclude that R satisfies Y ⊥⊥ Z | X.
Weak union: Suppose again R satisfies Y ⊥⊥ ZW | X, in which case Eq. (10) holds for
all tuples t ∈ Tup(V ). Multiplying both sides by R[t(XZ)]R[t(XY Z)] yields

R(t[XY ])R(t[XZW ])R[t(XZ)]R[t(XY Z)]
=R(t[X])R(t[XY ZW ])R[t(XZ)]R[t(XY Z)].

If R(t[XY ])R(t[XZ]) ̸= 0, we may apply Eq. (11), which is implied by Eq. (10), and
multiplicative cancellativity to obtain

R(t[XZW ])R(t[XY Z]) = R[t(XZ)]R[t(XY ZW )]. (12)

Suppose then R(t[XY ])R(t[XZ]) = 0. Since K lacks zero divisors, either R(t[XY ]) = 0
or R(t[XZ]) = 0. By positivity and and Lemma 22, it follows that R(t[XY Z]) = 0 and
R(t[XY ZW ]) = 0. In particular, both sides of Eq. (12) vanish. Hence we may conclude
that R satisfies Y ⊥⊥ W | XZ.

ICDT 2024
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Contraction: Suppose R satisfies Y ⊥⊥ Z | X and Y ⊥⊥ W | XZ, in which case we have
Eq. (12) as well as

R(t[XY ])R(t[XZ]) = R(t[X])R(t[XY Z]), (13)

for all t ∈ Tup(V ). Multiplying both left-hand sides and right-hand sides of Eqs. (12)
and (13) with one another yields

R(t[XZW ])R(t[XY Z])R(t[XY ])R(t[XZ])
=R(t[XZ])R(t[XY ZW ])R(t[X])R(t[XY Z]).

If R(t[XZ])R(t[XY Z]) ̸= 0, we obtain Eq. (10) by multiplicative cancellativity. On the
other hand, assuming R(t[XZ])R(t[XY Z]) = 0 we have three cases:

1. R(t[XZ]) = R(t[XY Z]) = 0. Then R(t[XZW ]) = R(t[XY ZW ]) = 0 by positivity
of R and Lemma 22, wherefore both sides of Eq. (10) vanish.

2. R(t[XZ]) = 0 and R(t[XY Z]) ̸= 0. Then R(t[X]) = 0 by positivity of K and Eq.
(13). Again, both sides of Eq. (10) vanish.

3. R(t[XZ]) ̸= 0 and R(t[XY Z]) = 0. This time R(t[XY ]) = 0 by positivity of K and
Eq. (13), and once more we obtain Eq. (10).

Since Eq. (10) always holds, we conclude that R satisfies Y ⊥⊥ W Z | X.
Interaction: Suppose R satisfies Y ⊥⊥ Z | XW and Y ⊥⊥ W | XZ. Then, we have

R(t[XZW ])R(t[XY W ]) = R(t[XW ])R(t[XY ZW ]), (14)
R(t[XY Z])R(t[XZW ]) = R(t[XZ])R(t[XY ZW ]), (15)

for all tuples t ∈ Tup(V ). By Proposition 1, K embeds in some semifield F . Given
a ∈ K \{0}, let us write a−1 for its multiplicative inverse in F . By positivity of K, totality
of R, and Lemma 22, we observe R(t[U ]) ̸= 0 for all U ⊆ V and t ∈ Tup(V ). Thus, the
expression R(t[U ′] | t([U ]) := R(t[UU ′])R(t[U ])−1 is well defined for all U ,U ′ ⊆ V and
t ∈ Tup(V ). We may now rewrite Eqs. (14) and (15) as

R(t[XY W ] | t[XW ]) = R(t[XY ZW ] | t[XZW ]) = R(t[XY Z] | t[XZ])

from which we obtain

R(t[XY W ])R(t[XZ]) = R(t[XY Z])R(t[XW ])

for all t ∈ Tup(V ). Thus, for arbitrary t ∈ Tup(V ),

R(t[XY ])R(t[XZ]) =R(t[XZ])
⊕

t′∈Tup(XY W )
t′[XY ]=t[XY ]

R(t′[XY W ])

=
⊕

t′∈Tup(XY ZW )
t′[XY Z]=t[XY Z]

R(t′[XZ])R(t′[XY W ])

=
⊕

t′∈Tup(XY ZW )
t′[XY Z]=t[XY Z]

R(t′[XY Z])R(t′[XW ])

=R(t[XY Z])
⊕

t′∈Tup(XW )
t′[X]=t[X]

R(t′[XW ])

=R(t[XY Z])R(t[X]),

by which we conclude that R satisfies Y ⊥⊥ Z | X. Hence, R also satisfies Y ⊥⊥ ZW | X

by soundness of Contraction. ◀
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Abstract
Given a massive data graph G = (V, E) and a small pattern graph Q, the goal of subgraph enumeration
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1 Introduction

This paper revisits subgraph enumeration, a classical problem that has been extensively
studied in computer science (see [2, 3, 5–8, 10, 13–19,27, 30, 32, 40] and the references therein)
and has many applications in database systems. The input is a simple undirected graph
G = (V, E) called the data graph and another simple undirected graph Q = (VQ, EQ) called
the pattern. The objective is to find all the pattern’s occurrences in the data graph, or
specifically, all the subgraphs1 of G that are isomorphic to Q. We consider that (i) Q is
connected (i.e., only a single connected component), and (ii) G has no isolated vertices (i.e.,
vertices with no incident edges), implying |V | ≤ 2|E|.

We investigate the problem in the external memory (EM) model [1], the de facto model
for studying I/O-efficient algorithms. A machine is equipped with M words of memory and
an unbounded disk that has been partitioned into disjoint blocks, each comprising B words.
The values of M and B satisfy M ≥ 2B. An I/O operation either reads a disk block into
memory or overwrites a disk block with B memory words. The cost of an algorithm is defined
as the number of I/Os performed. CPU calculation is for free.

We require Q to have a constant size, namely, |VQ| = O(1) (otherwise, even detecting
whether G contains at least one occurrence of Q is NP-hard [9]). Conversely, the data graph
G is presumed to have a gigantic size |E| > M and is provided under the adjacency format
across O(|E|/B) blocks. An algorithm should report each occurrence Gsub of Q by “emission”.
Specifically, the algorithm has the discretion to emit Gsub – for free – at any moment when
all the edges of Esub are memory resident, as long as Gsub is emitted only once throughout

1 A subgraph of G is defined to be a graph Gsub = (Vsub, Esub) satisfying Vsub ⊆ V and Esub ⊆ E.
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the algorithm. Although not required to output the result to the disk, such an algorithm can
be easily modified to do so in O(OUT/B) extra I/Os, where OUT is the total number of
occurrences found.

Our discussion will focus on indivisible algorithms (also called tuple-based algorithms),
which operate under the constraint that one I/O can bring O(B) edges into the memory,
effectively prohibiting any compression tricks that attempt to pack ω(B) edges into B words.
Nearly all the existing subgraph enumeration algorithms are indivisible. Consequently,
discerning the optimal I/O complexity attainable by this class provides valuable insight into
the problem’s characteristics.

Previous Results. An imperative parameter characterizing the computational hardness of
subgraph enumeration is the fractional edge covering number ρ of the pattern Q = (VQ, EQ).
To understand this concept, imagine assigning, for each edge e = {X, Y } ∈ EQ, a non-
negative weight we such that, for each vertex X ∈ VQ, the edges incident on X have a
total weight at least 1, i.e.,

∑
e∈EQ:X∈e we ≥ 1. Then, the value of ρ is the smallest sum∑

e∈EQ
we that can be achieved by all possible weight assignments. As a well-established

lower bound [20, 23, 36], every (deterministic or randomized) indivisible algorithm needs
Ω(|E|ρ/(Mρ−1B)) I/Os to solve the subgraph enumeration problem in the worst case.

Designing an algorithm to match this lower bound has been an intriguing endeavor. Next,
we provide a chronicle of the milestones in the literature. In 2014, Pagh and Silvestri [36]
studied the subgraph enumeration problem for Q = triangle (i.e., 3-clique) and presented two
algorithms: the first is randomized and guarantees the I/O complexity O(|E|1.5/(

√
MB)) in

expectation, while the second is deterministic and ensures an I/O cost of O(|E|1.5/(
√

MB) ·
logM/B

|E|
B ). In 2015, Hu, Qiao, and Tao [22] (long version in [23]) managed to improve the

deterministic bound to O(|E|1.5/(
√

MB)). Because ρ = 1.5 for Q = triangle, the algorithm
of [22] is asymptotically optimal (and so is the randomized algorithm of [36] in expected
performance).

In 2016, Hu and Yi [20] considered the scenario where the pattern Q is an (arbitrary)
tree and gave a deterministic algorithm with I/O complexity O( |E|ρ

Mρ−1B logM/B
|E|
B ). In 2017,

Ketsman and Suciu [25] obtained an algorithm that, given an arbitrary pattern Q, solves
the subgraph enumeration problem in O( |E|ρ

Mρ−1B polylog |E|) I/Os with high probability (i.e.,
with probability at least 1 − 1/|E|c, where c can be an arbitrarily large constant decided
before running the algorithm), provided that M ≥ |E|Ω(1). In 2020, Tao [38] found a simpler
algorithm attaining the same I/O complexity as [25]. Another main contribution of [38] is
its establishment of the isolated cartesian product theorem (the ICP-theorem) (see also [26]),
which serves as the main weapon in analyzing the performance of a method called heavy-light
decomposition. This method underlies the algorithm of [38] and all the subsequent works
(including ours) on the topic.

In 2023, Deng, Silvestri, and Tao [12] presented new progress that came close to achieving
the optimal I/O bound for a general pattern Q = (VQ, EQ). Their algorithm finishes in
O( |E|ρ

Mρ−1B + |E|k/2

Mk/2−1B
logM/B

|E|
B ) I/Os with high probability, where the parameter k represents

the size of VQ. In general, we know ρ ≥ k/2 [37]. For a pattern Q where ρ is strictly greater
than k/2, the I/O cost of [12] can be simplified to the optimal bound O(|E|ρ/(Mρ−1B)).
However, when ρ = k/2, the I/O bound becomes O( |E|ρ

Mρ−1B logM/B
|E|
B ), which is away from

optimality by a logM/B
|E|
B factor. It is worth mentioning that the relationship ρ = k/2 is

satisfied by many patterns Q, important examples of which include k-cycles and k-cliques.
Unlike in the EM model, subgraph enumeration has been well understood in the traditional

RAM model, where the problem can be settled in O(|E|ρ) time [34,35,39], which is known to
be worst-case optimal; see also [4, 11,24,28,29,31,33] for algorithms with O(|E|ρ polylog |E|)
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Table 1 A summary of the previous results and ours.

pattern Q I/O cost in big-O source remark
triangle |E|1.5/(

√
MB) expected [36]

triangle |E|1.5
√

MB
logM/B

|E|
B

[36]

triangle |E|1.5/(
√

MB) [21, 23]

acyclic |E|ρ

Mρ−1B
logM/B

|E|
B

[20]

arbitrary |E|ρ

Mρ−1B
· polylog |E| w.h.p. [25, 26,38] needs M ≥ |E|Ω(1)

arbitrary |E|ρ

Mρ−1B
logM/B

|E|
B

w.h.p. [12]

arbitrary |E|ρ/(Mρ−1B) w.h.p. ours optimal

time. In general, it is non-trivial to translate a RAM algorithm into an efficient external
memory counterpart: a direct translation of the solutions in [4,11,24,28,29,31,33–35,39] will
result in a huge I/O complexity of Ω(|E|ρ). Indeed, the aforementioned subgraph enumeration
algorithms in EM harbor numerous ideas that are purposed for accessing data in blocks and
are thus not required in RAM.

Our Results. This paper’s main contribution is an algorithm that solves the subgraph
enumeration problem in O(|E|ρ/(Mρ−1B)) I/Os with high probability (and, hence, also in
expectation). Although this improves the result of [12] by “only” a logarithmic factor, our
algorithm is the first whose I/O complexity matches the lower bound Ω(|E|ρ/(Mρ−1B)) for
any pattern Q. See Table 1 for a comparison between our result and the existing ones.

Math Conventions. For an integer x ≥ 1, the notation [x] represents the set {1, 2, ..., x}.
We define sort(n) to be the I/O complexity of sorting n elements; it is known [1] that
sort(n) = O(1 + ⌈ n

B ⌉ logM/B⌈ n
B ⌉). We use double curly braces to represent multi-sets, e.g.,

{{1, 1, 1, 2, 2, 3}} is a multi-set with 6 elements. Symbol N represents the set of integers.

2 The Heavy-Light Algorithmic Framework

This section will introduce the heavy-light decomposition technique, a framework that trans-
forms subgraph enumeration into a join on binary relations. To lay the groundwork for
a formal discussion, we will begin by reviewing the relevant concepts of joins and their
connections to subgraph enumeration in Section 2.1. Then, Section 2.2 will delve into the
specifics of the decomposition technique at a level sufficient for our technical development.

2.1 Reducing Subgraph Enumeration to Joins
Let att represent an arbitrary infinite set where each element is called an attribute. Given
any set U ⊆ att, we define a tuple over U as a function t : U → N. Given any subset Usub of
U , we designate t[Usub] as the tuple tsub over Usub such that tsub(X) = t(X) holds true for
every X ∈ Usub.

A relation is a set R comprising tuples over the same set U of attributes. The set U

is called the schema of R, a fact we denote as U = schema(R). We say that R is unary if
|schema(R)| = 1, or binary if |schema(R)| = 2. Given an integer value x and an attribute
X ∈ schema(R), the degree of x under X in R is the number of tuples t ∈ R satisfying

ICDT 2024
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t(X) = x. We say that the attribute X has degree at most λ in R if all values have degrees
bounded by λ under X in R. For each attribute X ∈ schema(R), define its active domain
under R – represented as adomR(X) – as ΠX(R), where Π is the standard projection
operator in relational algebra.

A join is formalized as a set Q of relations. If we denote schema(Q) =
⋃

R∈Q schema(R),
the join result – denoted as join(Q) – can be defined as a relation over schema(Q):

join(Q) = {tuple t over schema(Q) | ∀R ∈ Q : t[schema(R)] ∈ R}.

The input size N of Q is the total number of tuples in all the relations of Q, namely,
N =

∑
R∈Q |R|. The join Q is schema-clean if it has no two relations such that the schema of

one relation contains that of the other. For each attribute X ∈ schema(Q), define its active
domain under Q – represented as adomQ(X) – as

⋃
R∈Q:X∈schema(R) adomR(X), namely,

the set of values that appear under X in at least one relation of Q.
Every join Q defines a schema graph, which is a hypergraph G = (X , E) where X =

schema(Q) and E = {{schema(R) | R ∈ Q}}. Throughout the paper, we will refer to the
elements in X as “attributes” and the elements in E as “hyperedges”. Note that E is a multi-
set: even if two relations R1, R2 ∈ Q share a common schema, we still treat schema(R1) and
schema(R2) as different hyperedges in E . As another noteworthy remark, if a relation R ∈ Q
is unary, the hyperedge schema(R) ∈ E has only one attribute. Finally, we say that two
attributes X1, X2 ∈ X are adjacent in G if they co-appear in at least one hyperedge in E .

In EM, the join enumeration problem is formalized as follows. Let Q be a schema-clean
join whose schema graph G = (X , E) has O(1) attributes. Initially, the tuples of each relation
R ∈ Q – which we call the raw tuples – are provided in O(⌈|R|/B⌉) consecutive blocks on
the disk, and G is provided in memory using O(1) words. Similar to subgraph enumeration,
an algorithm is not required to write the result to the disk. Instead, it suffices to do the
reporting through emission. Specifically, for each tuple t ∈ join(Q), the algorithm can emit t

for free at any moment when the raw tuple t[schema(R)] exists in memory for every R ∈ Q,
but t should be emitted only once throughout the algorithm. A randomized algorithm is
said to guarantee an I/O bound “with high probability” if the bound holds asymptotically
with a probability at least 1 − 1/N c, where c can be any arbitrarily large constant decided
before running the algorithm. We consider only indivisible algorithms where each I/O can
bring only O(B) raw tuples into memory.

The following lemma was proved in [12]:

▶ Lemma 1 ([12]). Consider any input to subgraph enumeration with data graph G = (V, E)
and pattern graph Q. It is possible to construct a join Q with schema graph Q and input size
N = Θ(|E|) such that, if we can emit all the result tuples of Q using an indivisible algorithm
in Tjoin I/Os with high probability, then we can design an indivisible algorithm to solve the
original subgraph enumeration problem using Tjoin + O(⌈|E|/B⌉) I/Os with high probability.

As implied by the lemma’s statement, the join Q constructed contains only binary
relations, all of which have distinct schemas. Henceforth, we will concentrate on devising an
algorithm to process any schema-clean join Q on binary relations in Tjoin = O(Nρ/(Mρ−1B))
I/Os with high probability, where ρ is the fractional edge-covering number of the schema
graph of Q. Once this is done, we will have obtained a subgraph enumeration algorithm
that achieves the I/O complexity O(|E|ρ/(Mρ−1B)) with high probability. In the rest of the
paper, we consider that Q has at least two relations (if Q has only one relation, the join
requires no I/Os because the relation itself is the join result).
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2.2 Heavy-Light Decomposition
Given a join Q, the heavy-light decomposition method conceptually partitions the tuples t in
the join result join(Q) by (i) the number of “high-degree” values used in t and (ii) the specific
attributes under which those values appear. The method then concentrates on computing
the result tuples in each partition separately. Presented below is a version of the method
that was introduced in [38] and deployed in the subsequent works [12,26].

Suppose that we are given a join Q where there are at least two relations, all the relations
are binary, and their schemas are distinct. Denote by G = (X , E) the schema graph of Q.
For each hyperedge e ∈ E , we use Re to represent the (only) relation in Q whose schema is e.

Define

λ =
√

NM (1)

where N is the input size of Q and M is the memory size. An integer x is heavy if the degree
of x under an attribute of any relation is no less than λ; otherwise, the integer is light. The
total number of heavy integer values is bounded by O(N/λ).

Configurations. Fix an arbitrary subset H ⊆ X . We call each attribute of H a heavy
attribute. A configuration of H is a tuple η over H such that η(X) is a heavy value for
every X ∈ H. We denote by config(H) the set of “active configurations” η satisfying
η[e] ∈ Re for every hyperedge e ∈ E subsumed by H (i.e., e ⊆ H); note that if no
such hyperedges exist, then every configuration of H is active. It is easy to see that
|config(H)| = O((N/λ)|H|) = O((N/M)|H|/2), plugging in the value of λ in (1).

Residual Joins. Fix any subset H ⊆ X and any active configuration η ∈ config(H). Next,
we will formulate a “residual join” to compute the tuples u ∈ join(Q) that “agree” with η on
every heavy attribute. We say that a hyperedge e ∈ E is relevant to H if e \ H ̸= ∅, namely, e

is not subsumed by H. For every relevant e ∈ E , define Re(η) as the relation that comprises
every tuple t ∈ Re satisfying

t(X) = η(X) for all X ∈ e ∩ H;
t(X) is light for every X ∈ e \ H.

Namely, t(X) must take the heavy value η(X) if X is heavy; otherwise, t(X) must be light.
Once Re(η) is ready, we can define the residual relation of e under η – denoted as R′

e(η)
– via a simple projection2:

R′
e(η) = Πe\H(Re(η)). (2)

Now, by putting together the residual relations defined by all the relevant hyperedges e, we
obtain the residual join of η – denoted as Q′(η) – which can be formalized as

Q′(η) = {R′
e(η) | e ∈ E , e relevant to H}. (3)

We will use Nη to represent the input size of Q′(η), that is

Nη =
∑

R∈Q′(η)

|R|. (4)

It is important to note that the relations in Q′(η) consist solely of light values.

2 Strictly speaking, a tuple in R′
e(η) may no longer be a raw tuple (recall that raw tuples are those in

the input relations of Q). This would create an issue when the need arises to verify our algorithms’
indivisibility. The issue, however, can be easily fixed by “augmenting” each tuple u ∈ R′

e(η) with η,
thereby recording the raw tuple of Re corresponding to u. In the subsequent discussion, we will no
longer be concerned with such (pedantic) details, except to mention that all our join algorithms can be
implemented in an indivisible manner without affecting the claimed I/O complexities.
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(a) Original schema graph G. (b) Residual sch. graph G′ of H. (c) Simplified residual sch. graph G′′ of H.

Figure 1 Illustration of the heavy-light decomposition method (H = {D, E}).

To “visualize” the schemas of the relations in Q′(η), define G′ = (X ′, E ′) as the hypergraph
obtained by discarding the heavy attributes from G = (X , E), namely, X ′ = X \ H and
E ′ = {{e \ H | e ∈ E and e \ H ̸= ∅}} (note: E ′ is a multi-set). This G′ – called the residual
schema graph of H – is the schema graph of Q′(η); this is true regardless of η.

▶ Example 2. For an illustration, Figure 1a presents the schema graph G = (X , E) of a
join Q, where X = {A, B, C, D, E, F} and E = {AB, AC, AE, BC, BE, DE, DF, EF}. Set H = {D, E};
the two heavy attributes D and E are colored black in the figure. Let η be an arbitrary active
configuration of H. All the hyperedges are relevant to H, except DE. The residual relation of
AB under η – that is, R′

AB(η) – is the same as RAB(η), which in turn is simply the relation
RAB in Q. The residual relation of AE under η – that is, R′

AE(η) – has only one attribute A
and contains every light value a such that RAE has a tuple u with u(A) = a and u(E) = η(E).
Figure 1b shows the residual schema graph G′, which is the schema graph of the residual join
Q′(η) of η.

By considering all subsets H ⊆ X , we have

join(Q) =
⋃
H

( ⋃
η∈config(H)

join(Q′(η)) × {η}
)

. (5)

This transforms the evaluation of the original join Q into computing the residual joins.

Simplified Residual Joins. Again, fix any subset H ⊆ X and one arbitrary configuration
η ∈ config(H). One issue arising from computing the residual join Q′(η) is that the join
may not be schema-clean, i.e., Q′(η) may contain two relations where one relation’s schema
encompasses that of the other. The second phase of the heavy-light decomposition framework
is to convert each Q′(η) to its schema-clean version. Next, we explain how this is done.

Define L = X \ H; we will call each attribute in L a light attribute (as opposed to the
heavy attributes in H). We say that a light attribute X ∈ L is a border attribute if it is
adjacent in G to at least one heavy attribute in H. For each such attribute X, define

R′′
X(η) =

⋂
e∈E:X∈e

ΠX(R′
e(η)). (6)

To understand the intuition behind, here we look at all the edges (of G) containing X and
examine their residual relations under η. The relation R′′

X(η) collects every integer that
appears under attribute X in all those residual relations.

Now consider each hyperedge e = {X1, X2} in G where both X1 and X2 are light attributes.
Note that e is also a hyperedge in E ′. Construct a relation R′′

e (η) ⊆ R′
e(η) as follows:

If X1 and X2 are both border attributes, then R′′
e (η) = R′

e(η) ▷◁ R′′
X1

(η) ▷◁ R′′
X2

(η),
where ▷◁ is the standard natural join operator in relational algebra;
If only X1 is a border attribute, then R′′

e (η) = R′
e(η) ▷◁ R′′

X1
(η);

If only X2 is a border attribute, then R′′
e (η) = R′

e(η) ▷◁ R′′
X2

(η);
If neither is a border attribute, then R′′

e (η) = R′
e(η).
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It is safe to discard the tuples in R′
e(η) \ R′′

e (η) because they cannot contribute to the result
of the residual join Q′(η). We call R′′

e (η) the simplified residual relation of e under η.
A border attribute X ∈ X may become isolated in G′, meaning that X is not adjacent to

any other vertex in G′ (i.e., X appears only in unary hyperedges of E ′). This happens when
X is not adjacent to any light attribute in G (i.e., X is adjacent to only heavy attributes
in G). Let I be the set of isolated attributes in G′.

The simplified residual join of η – denoted as Q′′(η) – can now be formalized as

Q′′(η) = {R′′
e (η) | binary e ∈ E ′} ∪ {R′′

X(η) | X ∈ I}. (7)

To visualize the schemas of the relations in Q′′(η), define G′′ = (X ′′, E ′′) where X ′′ = X ′ = L
and E ′′ contains (ii) all the binary edges of E ′ and (ii) one unary edge for each isolated
attribute. This G′′ is the schema graph of Q′′(η), regardless of η ∈ config(H).

▶ Example 3. Let us continue the discussion in Example 2. In Figure 1a, L = {A, B, C, F},
and among these attributes, A, B and F are border attributes, but only F is an isolated attribute.
The relation R′′

A is the intersection of ΠA(R′
AB(η)) = ΠA(RAB), ΠA(R′

AC(η)) = ΠA(RAC), and
R′

AE(η) (recall that R′
AE(η) contains only one attribute, i.e., A). The simplified residual

relation of AB – that is, R′′
AB(η) – comprises every tuple u ∈ R′

AB(η) such that u(A) ∈ R′′
A and

u(B) ∈ R′′
B . The simplified residual relation of BC – that is, R′′

BC(η) – comprises every tuple
u ∈ R′

BC(η) such that u(B) ∈ R′′
B . Figure 1c shows the simplified residual schema graph G′′,

which is the schema graph of the simplified residual join Q′′(η) of η.

It is easy to verify that join(Q′′(η)) = join(Q′(η)). Combining this fact with (5), we
have

join(Q) =
⋃
H

( ⋃
η∈config(H)

join(Q′′(η)) × {η}
)

. (8)

which transforms the evaluation of the original join Q into computing join(Q′′(η)) × {η} for
all η ∈ config(H) and H ⊆ X .

A main contribution of [12] is the following lemma.

▶ Lemma 4 ([12]). Let Q be a schema-clean join on at least two binary relations whose
schema graph is G = (X , E). Let k = |X |, N be the input size of Q, and ρ be the fractional
edge covering number of G. Suppose that, for any H ⊆ X , using TH I/Os in total we can
produce

config(H) in consecutive disk blocks;
each input relation of Q′′(η) in consecutive disk blocks for every active configuration
η ∈ config(H).

Then, there is an algorithm for computing join(Q) using
∑

H⊆X TH +O(Nρ/(Mρ−1B)) I/Os.

The algorithm of [12] necessitates
∑

H⊆X TH = O( Nk/2

Mk/2−1B
logM/B

N
B ) I/Os, as is the

culprit behind the algorithm’s sub-optimality. Our mission in this work is:

reduce
∑

H⊆X

TH to O(Nk/2/(Mk/2−1B)). (9)

3 Binary-Relation Joins in a Small Domain

In this and the next sections, we will discuss two standalone problems that are intriguing in
their own right. The solutions to those problems will play a crucial role in our approach to
achieving the objective given in (9).
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This section will study join enumeration in the special scenario where the number of
distinct values is limited. The rest of the section serves as a proof of:

▶ Lemma 5. Let Q be a schema-clean join on binary relations, and let G = (X , E) be its
schema graph. If |adomQ(X)| ≤ D for every attribute X ∈ X , we can emit all the result
tuples of the join Q in O((1 + D√

M
)k · M

B + sort(N)) I/Os, where k = |X |, N is the input
size of Q, M is the memory size, and B is the disk block size.

Recall from Section 2 that adomQ(X) is the active domain of X under Q. In general, the
value of D (i.e., the maximum active domain size) can reach Ω(N), in which case Lemma 5
is not particularly useful: it is worse than the O(Nρ/(Mρ−1B)) I/O bound that will be
ultimately established in this paper. However, the lemma’s strength is reflected in the
scenario where D is small. For example, for D =

√
N and k ≥ 3, the I/O complexity of

Lemma 5 becomes O(Nk/2/(Mk/2−1B)), which is never worse, but can be considerably
better, than O(Nρ/(Mρ−1B)) because the value of ρ falls in the range from k/2 to k − 1 [37].

We now proceed to prove the lemma. For each attribute X ∈ X , we obtain and sort the
active domain adomQ(X) in O(sort(N)) I/Os. Then, by scanning (the sorted) adomQ(X),
we partition the integer domain N into a set Sintv

X of disjoint intervals such that each interval
covers ⌊

√
M/c⌋ values of adomQ(X) – where c is a constant to be chosen later – except

possibly one interval that may cover less values. The size of Sintv
X is O(1 + D/

√
M) because

|adomQ(X)| ≤ D.
Let X1, X2, ..., Xk be an arbitrary ordering of the k attributes in X . Consider any

hyperedge e = {Xi, Xj} of E (1 ≤ i < j ≤ k). Given an interval Ii ∈ Sintv
Xi

and an interval
Ij ∈ Sintv

Xj
, define

Re(Ii, Ij) = {u ∈ Re | u(Xi) ∈ Ii and u(Xj) ∈ Ij}.

Recall that Re is the (only) relation in Q with schema e. As Ii (resp., Ij) covers ⌊
√

M/c⌋ values
of adomQ(Xi) (resp., adomQ(Xj)), the set Re(Ii, Ij) can contain at most (⌊

√
M/c⌋)2 ≤

M/c2 tuples. For each interval combination (I1, I2, ..., Ik) ∈ Sintv
X1

× Sintv
X2

× ... × Sintv
Xk

, define
a sub-join

Q(I1, I2, ..., Ik) = {Re(Ii, Ij) | e = {Xi, Xj} ∈ E}.

It is easy to verify that

join(Q) =
⋃

(I1,I2,...,Ik)∈Sintv
X1

×Sintv
X2

×...×Sintv
Xk

join(Q(I1, I2, ..., Ik)). (10)

Let us assume, for now, that, given a hyperedge e = {Xi, Xj} ∈ E , any interval Ii ∈ Sintv
Xi

,
and any interval Ij ∈ Sintv

Xj
, we can load Re(Ii, Ij) from the disk into memory using O(M/B)

I/Os. Fix an arbitrary interval combination (I1, I2, ..., Ik) ∈ Sintv
X1

× Sintv
X2

× ... × Sintv
Xk

. If
we add up the size of Re(Ii, Ij) for all hyperedges e = {Xi, Xj} ∈ E , the total size is at
most |E| · M/c2, which is at most M by setting the constant c sufficiently large. Hence, in
O(M/B) · |E| = O(M/B) I/Os, we can load into memory the set Re(Ii, Ij) of every hyperedge
e = {Xi, Xj} ∈ E . This permits us to emit the result tuples of Q(I1, I2, ..., Ik) with no more
I/Os. As the cartesian product Sintv

X1
× Sintv

X2
× ... × Sintv

Xk
has a size of O((1 + D√

M
)k), by

virtue of (10) we can emit all the result tuples in Q using O((1 + D√
M

)k · M
B ) I/Os.

It remains to explain how to ensure that Re(Ii, Ij) can always be loaded into memory
using O(M/B) I/Os. This requires only O((1 + D√

M
)2 · 1

B + sort(N)) extra I/Os to prepare
the input relations of Q appropriately. The details are standard and moved to Appendix A.
With that, we conclude the proof of Lemma 5.
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4 Batched Two-Way Semi-Join Reductions

This section will study an interesting variant of the traditional “semi-join” problem. This
variant is extracted from a sub-problem that will arise in Section 5 when we discuss how to
fulfill the objective outlined in (9).

We are given a binary relation R with schema {X, Y }, together with ℓ unary relations
S1, S2, ..., Sℓ with schema {X} and another ℓ unary relations T1, T2, ..., Tℓ with schema {Y }.
Both attributes X and Y have degrees at most λ in R, whereas every Si and every Ti (i ∈ [ℓ])
have been sorted by X and Y , respectively. For each i ∈ [ℓ], define a join

Qi = {R, Si, Ti} (11)

whose result join(Qi) is a subset of R, including every tuple u ∈ R with u(X) ∈ Si and
u(Y ) ∈ Ti. Our objective is to compute, for every i ∈ [ℓ], the result join(Qi) and write it to
consecutive blocks on the disk. We will refer to the above as the batched two-way semi-join
reduction problem.

The problem admits a “textbook solution” that computes each join(Qi) individually as
follows. Specifically, we can first sort R on attribute X and compute R′ = R⋉Si by scanning
R and Si synchronously. Then, we sort R′ on attribute Y and compute R′′ = R′ ⋉ Ti by
scanning R′ and Ti synchronously. The relation R′′ is the join result join(Qi). Executing these
steps for each i ∈ [ℓ] necessitates a total I/O cost of O(ℓ · sort(|R|) +

∑ℓ
i=1⌈(|Si| + |Ti|)/B⌉).

On the other hand, we will prove:

▶ Lemma 6. Batched two-way semi-join reduction can be solved with an I/O complexity

O

((
|R|
λ

+ λ

M

) ∑ℓ
i=1 |Si| + |Ti|

B
+ ℓ ·

⌈ |R|
B

⌉
+ ℓ · |R|2M

λ2 · B
+ sort(|R|)

)
.

The above holds for arbitrary integers λ and ℓ (which may not be constants).

The lemma is most interesting under λ =
√

|R| · M , in which case the I/O complexity can
be simplified to O(

√
|R|/M · (

∑ℓ
i=1 |Si| + |Ti|)/B + ℓ · |R|/B + sort(|R|)). In the “lopsided

situation” where
∑ℓ

i=1 |Si| + |Ti| ≤ ℓ
√

|R| · M – that is, on average each unary relation has
a size O(

√
|R| · M) = O(λ) – the I/O complexity becomes O(ℓ · ⌈|R|/B⌉ + sort(|R|)), which

improves the aforementioned textbook solution by a factor of O(logM/B(|R|/B)) for large ℓ.
The rest of the section serves as a proof of Lemma 6. We start by partitioning the integer

domain N into a set Sintv
X of intervals such that

|Sintv
X | = O(|R|/λ) and

for each interval I ∈ Sintv
X , the relation R has O(λ) tuples u with u(X) ∈ I.

Symmetrically, obtain a set Sintv
Y of intervals satisfying two analogous conditions with respect

to Y . The intervals in Sintv
X and Sintv

Y can be obtained in O(sort(|R|)) I/Os3.

3 We will explain this only for Sintv
X due to symmetry. Sort and group the tuples of R by their X-values.

Each group has a size of at most λ. Next, we will scan the groups in ascending order of their X-values
and, in doing so, divide the tuples of R using special tokens. First, place a token before the first group
and then start the scan. Every time an entire group of tuples has been scanned, place another token at
the end of the group if we have seen at least λ tuples since the last token. Finally, place another token
at the end of the last group. It is easy to see that there can be at most 2λ tuples between any two
consecutive tokens and the number of tokens is O(|R|/λ). The desired set Sintv

X of intervals can then be
easily determined based on the tokens.
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For any interval IX ∈ Sintv
X , any interval IY ∈ Sintv

Y , and any i ∈ [ℓ], define

R(IX , IY ) = {u ∈ R | u(X) ∈ IX and u(Y ) ∈ IY }
Si(IX) = {u ∈ X | u(X) ∈ IX}
Ti(IY ) = {u ∈ Y | u(Y ) ∈ IY }.

After O(ℓ + |R|2

λ2·B + sort(|R|) + ℓ·|R|
λB +

∑ℓ
i=1(|Si| + |Ti|)/B) I/Os, we can store each

R(IX , IY ) in consecutive blocks whose starting address can be located in one I/O;
Si(IX) in consecutive blocks whose starting address can be located in one I/O;
Ti(IY ) in consecutive blocks whose starting address can be located in one I/O.

The details are standard and moved to Appendix B.
For each i ∈ [ℓ], we initialize an empty disk file for Qi and will gradually populate the

file with tuples of join(Qi) until eventually the file’s content is exactly join(Qi). Motivated
by the fact

join(Qi) =
⋃

(IX ,IY )∈Sintv
X

×Sintv
Y

R(IX , IY ) ▷◁ Si(IX) ▷◁ Ti(IY ) (12)

we process each interval pair (IX , IY ) ∈ Sintv
X × Sintv

Y separately and, in doing so, append
R(IX , IY ) ▷◁ Si(IX) ▷◁ Ti(IY ) to the file of Qi for every i ∈ [ℓ].

We now elaborate how to process a pair (IX , IY ) ∈ Sintv
X × Sintv

Y . Conceptually, partition
R(IX , IY ) (arbitrarily) into chunks, each of which contains M − B ≥ M/2 tuples except
possibly the last chunk. For each chunk, we first read it into memory using O(M/B) I/Os;
let Rchunk be the set of tuples in that chunk. Keeping Rchunk in memory, we then – for
each i ∈ [ℓ] in turn – compute and append Rchunk ▷◁ Si(IX) ▷◁ Ti(IY ) to the file of Qi

using O( |Si(IX )|+|Ti(IY )|+M
B ) I/Os. For this purpose, we scan Si in its entirety using one

block of memory. As soon as a tuple v ∈ Si(IX) is brought into memory, it is compared
to all the tuples in Rchunk . In doing so, for each tuple u ∈ Rchunk , we track whether any
tuple v ∈ Si(IX) with u(X) = v(X) has been seen; if so, we “mark” u. Similarly, by
scanning Ti(IY ) once, we can detect, for each tuple u ∈ Rchunk , whether Ti(IY ) has any
tuple v with u(Y ) = v(Y ); if so, we “mark” u. The tuples of Rchunk ▷◁ Si(IX) ▷◁ Ti(IY ) are
exactly those in Rchunk that receive two marks (one from scanning Si(IX) and the other
from Ti(IY )). These tuples are then written to the disk in O(M/B) I/Os. In the entire
processing of (IX , IY ), Si(IX) and Ti(IY ) are scanned O(⌈|R(IX , IY )|/M⌉) times, i.e., the
number of chunks.

By executing the above algorithm for every (IX , IY ), we produce the result of Qi on the
disk for all i ∈ [ℓ] with an I/O complexity:

O
( ∑

(IX ,IY )∈Sintv
X

×Sintv
Y

⌈
|R(IX , IY )|

M

⌉
·

ℓ∑
i=1

|Si(IX)| + |Ti(IY )| + M

B

)
(13)

In Appendix C, we show how to relate the above to the degree threshold λ and prove

(13) = O
(( |R|

λ
+ λ

M

) ∑ℓ
i=1 |Si| + |Ti|

B
+ ℓ · |R|

B
+ ℓ · |R|2M

λ2 · B

)
. (14)

With this, we can then conclude the proof of Lemma 6.
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5 I/O-Efficient Heavy-Light Decomposition

We now return to processing a schema-clean join consisting purely of binary relations and
will accomplish the mission described in (9). This section effectively proves the lemma below.

▶ Lemma 7. Let Q be a schema-clean join on at least two binary relations, whose schema
graph is G = (X , E). Let k = |X |, and let N be the input size of Q. Fix an arbitrary H ⊆ X .
In TH = O(Nk/2/(Mk/2−1B)) I/Os, we can produce

config(H) in consecutive disk blocks;
each input relation of Q′′(η) in consecutive disk blocks for every active configuration
η ∈ config(H).

Because X has 2k = O(1) subsets H, the above lemma indicates
∑

H⊆X TH =
O(Nk/2/(Mk/2−1B)), as needed in (9). We will explain in Section 5.1 how to generate
config(H) and then in Section 5.2 how to create the input relations of the simplified residual
joins Q′′(η) for all η ∈ config(H). As will be clear later, the core of the former (resp., latter)
task boils down to the problem tackled in Section 3 (resp., 4).

Preprocessing. For each attribute X ∈ X , we use adomH
Q(X) (resp., adomL

Q(X)) to
represent the set of heavy (resp., light) values in adomQ(X). Recall that, for each hyperedge
e = {X, Y } ∈ E , the symbol Re denotes the only relation in Q whose schema is e. We define:

RHH
e = {u ∈ Re | u(X) ∈ adomH

Q(X) and u(Y ) ∈ adomH
Q(Y )}. (15)

RLL
e = {u ∈ Re | u(X) ∈ adomL

Q(X) and u(Y ) ∈ adomL
Q(Y )}. (16)

If e contains a heavy attribute X ∈ H and a light attribute Y ∈ L (recall: L = X \ H), we
refer to e ∈ E as a crossing hyperedge. Given a crossing hyperedge e, we define:

RHL
e = {u ∈ Re | u(X) ∈ adomH

Q(X) and u(Y ) ∈ adomL
Q(Y )}. (17)

It is rudimentary to use sort(N) I/Os to produce on the disk:
adomH

Q(X) in sorted order for every X ∈ X ;
adomL

Q(X) in sorted order for every X ∈ X ;
RHH

e for every e ∈ E ;
RLL

e for every e ∈ E ;
RHL

e for every crossing hyperedge e ∈ E .
We remark that sort(N) = O( N

B logM/B
N
B ) = O( N

B logM/B
N
M ) = O( N

B

√
N
M ) = O( Nk/2

Mk/2−1B
),

where the last step used the fact k ≥ 3 (because Q has at least two relations and is
schema-clean). In other words, sorting is within the target budget of Lemma 7.

5.1 Generating config(H)
Let us first explain how to compute config(H) under the condition H = X . In such case, we
construct a join

QH = {RHH
e | e ∈ E}.

Note that config(H) is precisely the result join(QH) of QH . The input relations of QH
contain only values classified as “heavy” for the original join Q. Hence, for every attribute
X ∈ X , it holds that adomQH(X) – the active domain of X under QH – has size O(N/λ),
which is O(

√
N/M) given the heavy-value threshold λ in (1). We compute join(QH) –

namely, config(H) – using Lemma 5 (plugging in D = O(
√

N/M)). The I/O cost is
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O
((

1 +
√

N/M√
M

)k

· M

B
+ sort(N)

)
+ O

( |config(H)|
B

)
(18)

where the term O(|config(H)|/B) does not come from Lemma 5, but is instead due to the need
of writing config(H) to the disk. Applying the relationship |config(H)| = O((N/M)|H|/2) =
O((N/M)k/2), the reader can easily confirm that (18) is bounded by O(Nk/2/(Mk/2−1B)).

The case where H ⊂ X can be dealt with in a more conventional manner:

1. CPadomH =×X∈H adomH
Q(X), i.e., the cartesian product of the heavy-value sets

adomH
Q(X) for all the heavy attributes X ∈ H.

2. R∗ = CPadomH

/* henceforth, we will regard R∗ as a relation with schema H */
3. for each hyperedge e ∈ E such that e ⊆ H do
4. R∗ = R∗ ⋉ Re (semi-join)

The final R∗ is the config(H) we aim to compute. Regarding the cost, Line 1 can be
implemented4 in O(|CPadomH|/B) I/Os (dominated by the cost of writing CPadomH to
the disk), where |CPadomH| = O((

√
N/M)|H|). With sorting, we can perform Lines 2-4 in

O(sort(|CPadomH|) + sort(N)) I/Os. The total overhead is thus bounded by

O
((

N

M

)|H|/2
logM/B

N

M
+ sort(N)

)
= O

((
N

M

)k/2
+ sort(N)

)
= O(Nk/2/(Mk/2−1B)) (19)

I/Os, where the first equality holds because |H| < |X | = k.

5.2 Generating the Input Relations for the Simplified Residual Joins
We now proceed to explain how to create the input relations of Q′′(η) for every active
configuration η ∈ config(H). It suffices to consider H ⊂ X (if H = X , every Q′′(η) is
empty, i.e., there are no input relations at all). The relationship H ⊂ X implies a useful
property: O(sort(|config(H)|) = O(sort((N/M)|H|/2) = O(Nk/2/(Mk/2−1B)), following the
same derivation as in (19).

Input Relations of Residual Joins. We start by generating Re(η) – the subset of the
relation Re that “agrees” with η; see definition in Section 2.2 – for every hyperedge e ∈ E
relevant to H (i.e., e is not subsumed by H, as defined in Section 2.2) and active configuration
η ∈ config(H). This is, in fact, trivial if e is disjoint with H (i.e., both attributes in e

are light), in which case Re(η) is simply the relation RLL
e in (16), which has already been

obtained.
It remains to consider the crossing hyperedges e ∈ E (which contain one heavy attribute

and one light attribute). W.l.o.g., let e = {X, Y } where X ∈ H and Y ∈ L. Imagine
dividing RHL

e into groups according to the X-values of the tuples therein. Then, for each
active configuration η ∈ config(H), the set Re(η) is exactly the group having the X-value
η(X). Motivated by this, we sort RHL

e (defined in (17)) by attribute X in O(sort(N))
I/Os and sort the active configurations η ∈ config(H) by η(X) in O(sort(|config(H)|) =
O(Nk/2/(Mk/2−1B)) I/Os. Then, by going through RHL

e and config(H) synchronously once,
we can, for each η ∈ config(H), identify the starting disk address of Re(η) and store this
address along with η.

4 Using the textbook algorithm “blocked nested loop”.
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Now that we have created Re(η) on the disk for every relevant hyperedge e ∈ E and active
configuration η ∈ config(H), we can acquire the residual relation R′

e(η) via a projection,
as indicated in (2), which requires only a single scan of Re(η). This generates the input
relations of the residual joins Q′(η) of all η ∈ config(H). The overall I/O cost is bounded by
O(Nk/2/(Mk/2−1B)).

While the above algorithm fulfills the objective of creating the input relations of all residual
joins, we will modify it slightly to better facilitate the subsequent algorithm design. The
purpose of these modifications is to ensure that, for every active configuration η ∈ config(H)
and every hyperedge e ∈ E containing a border attribute5 Y ∈ L, there should be a copy
of R′

e(η) on the disk that has been sorted on attribute Y . To that end, we change the
aforementioned method for computing Re(η) as follows:

If e is disjoint with H, sort RLL
e on Y in O(sort(N)) I/Os. Remember that RLL

e = Re(η)
regardless of η ∈ config(H).
If e is a crossing hyperedge of the form {X, Y } where X ∈ H, instead of sorting RHL

e only
by attribute X as described earlier, we perform the sorting first by X and then break
ties by Y . After that, the relations Re(η) of all η ∈ config(H) can still be obtained by
going through (the sorted) RHL

e and (the sorted) config(H) synchronously once, but the
tuples of each Re(η) are now sorted on attribute Y .

Every relation R′
e(η) is still computed by taking a projection of Re(η) as before. The overall

I/O complexity remains as O(Nk/2/(Mk/2−1B)).

Input Relations of Simplified Residual Joins. Next, for each border attribute X ∈ X and
every active configuration η ∈ config(H), we compute the set R′′

X(η) defined in (6). This is
the intersection of all the ΠX(R′

e(η)), where e ranges over all the hyperedges in G′ (defined
in Section 2.2) containing X. Since (i) we have prepared a copy of R′

e(η) sorted by X on
the disk and (ii) R′

e(η) has a size at most Nη (see (4)), the intersection can be computed
in O(⌈Nη/B⌉) I/Os; note that the R′′

X(η) thus computed is sorted on X and has a size at
most Nη. The total cost for obtaining the sets R′′

X(η) of all η ∈ config(H) is bounded by∑
η∈config(H)

O(⌈Nη/B⌉) = |config(H)| +
∑

η∈config(H)

O(Nη/B) (20)

Deng et al. showed [12, Lemma 11] that∑
η∈config(H)

Nη = O(Nk/2/Mk/2−1).

Therefore:

(20) = O(Nk/2/Mk/2) + O(Nk/2/(Mk/2−1B)) = O(Nk/2/(Mk/2−1B)). (21)

In the scenario where every hyperedge e ∈ E contains at most one light attribute, the set I of
isolated attributes is exactly the set of border attributes, and hence, the simplified residual
join Q′′(η) of each η ∈ config(H) – see (7) – consists of {R′′

X(η) | X is a border attribute}.
We are therefore done with generating the input relations of all the simplified residual joins.

In the final segment of our proof (for Lemma 7), we consider that E has at least one edge
e = {X1, X2} where both X1 and X2 are light attributes. Note that this means |H| ≤ k − 2.
Next, given an arbitrary such hyperedge e = {X1, X2}, we will explain how to produce on
the disk the simplified residual relations R′′

e (η) under all active configurations η ∈ config(H)
with O(Nk/2/(Mk/2−1B)) I/Os in total.

5 As defined in Section 2.2, a border attribute is a light attribute that co-appears with a heavy attribute
in some hyperedge of E .
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This is trivial if neither X1 nor X2 is a border attribute – in this case, R′′
e (η) = R′

e(η),
which has already been computed. Now consider the case where e has only one border
attribute, say, X1 (thus X2 is not a border attribute; nonetheless, remember that X2 is a light
attribute). Earlier we have prepared a copy of R′

e(η) = RLL
e sorted on X1, as well as R′′

X1
(η),

which is also sorted on X1. Because the sizes of both R′
e(η) and R′′

X1
(η) are at most Nη, we

can compute R′′
e (η) = R′

e(η) ▷◁ R′′
X1

(η) in O(⌈Nη/B⌉) I/Os. Hence, the simplified residual
relations R′′

e (η) under all η ∈ config(H) can be obtained in O(
∑

η∈config(H) O(⌈Nη/B⌉))
I/Os, which is O(Nk/2/(Mk/2−1B)); see (20) and (21).

The most non-trivial situation arises when both X1 and X2 in e are border attributes.
This is where the “batched two-way semi-join reductions” problem (we will abbreviate the
problem name as “batched semi” from now on) discussed in Section 4 comes in. Let us
construct an instance of that problem as follows:

The value of ℓ in “batched semi” equals |config(H)| = O((N/M)|H|/2) = O((N/M)k/2−1),
applying |H| ≤ k − 2.
The binary relation R in “batched semi” corresponds to RLL

e .
The degree threshold λ in “batched semi” equals the value of λ in (1), which is O(

√
NM).

The i-th (i ∈ [ℓ]) unary relation Si in “batched semi” corresponds to the set R′′
X1

(η) of
the i-th6 active configuration η ∈ config(H). Remember that R′′

X1
(η) has been sorted

on X1.
The i-th (i ∈ [ℓ]) unary relation Ti in “batched semi” corresponds to set R′′

X2
(η) of the

i-th active configuration η ∈ config(H). Remember that R′′
X2

(η) has been sorted on X2.

“Batched semi” computes the result join(Qi) of the join Qi defined in (11). Based on our
construction, join(Qi) equals RLL

e ▷◁ R′′
X1

(η) ▷◁ R′′
X2

(η) – with η being the i-th configuration
in config(H) – which is exactly the simplified residual relation R′′

e (η) of e under η. From
Lemma 6, we can assert that the relations R′′

e (η) under all η ∈ config(H) can be computed
with an I/O cost

O

((
N

λ
+ λ

M

) ∑
η∈config(H) |R′′

X1
(η)| + |R′′

X2
(η)|

B
+ ℓ · N

B
+ ℓ · N2M

λ2 · B
+ sort(N)

)

= O

 √
N√

MB

( ∑
η∈config(H)

(|R′′
X1

(η)| + |R′′
X2

(η)|)
)

+ ℓ · N

B
+ sort(N)


= O

 √
N√

MB

( ∑
η∈config(H)

(|R′′
X1

(η)| + |R′′
X2

(η)|)
)

+ Nk/2

Mk/2−1B

 (22)

where the last step applied ℓ = O((N/M)k/2−1).

▶ Proposition 8.
∑

η∈config(H) |R′′
X1

(η)| = O
(√

NM ·
(

N
M

)k/2−1
)

Proof. Because X1 is a border attribute, there must exist a heavy attribute H ∈ H such
that e = {X1, Y } is a hyperedge in E . By how R′′

X1
(η) is computed in (6), we know that

R′′
X1

(η) is a subset of R′
e(η). Furthermore, since R′

e(η) = Πe\H(Re(η)) (see (2)), it must
hold that

|R′′
X1

(η)| ≤ |R′
e(η)| ≤ |Re(η)|.

6 Here, impose an arbitrary ordering of config(H).
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Next, we will prove that∑
η∈config(H)

|Re(η)| = O

(
√

NM ·
(

N

M

)k/2−1
)

(23)

which will then imply the claim in the proposition.
To that end, we break the left hand side of (23) as follows:∑
η∈config(H)

|Re(η)| =
∑

y∈adomH (Y )

( ∑
η∈config(H):η(Y )=y

|Re(η)|
)

. (24)

Observe from the definition of Re(η) that Re(η) is simply σY =y(Re) where σ is the standard
selection operator in relational algebra. Hence, for any y ∈ adomH(Y ), the size |Re(η)| is
the same for all η ∈ config(H) satisfying η(Y ) = y. As there are at most O((N/M)(|H|−1)/2)
such active configurations η, we can derive

(24) = O((N/M)(|H|−1)/2) ·
∑

y∈adomH (Y )

|σY =y(Re)|

≤ O((N/M)(|H|−1)/2) · |Re|

= O

(
N (|H|+1)/2

M (|H|−1)/2

)
(as |H| ≤ k − 2) = O

(
√

NM ·
(

N

M

)k/2−1
)

as claimed in (23). ◀

A symmetric argument yields
∑

η∈config(H) |R′′
X2

(η)| = O(
√

NM ·
(

N
M

)k/2−1). Plugging
these relationships into (22), we can derive

(22) = O

( √
N√

MB
·
√

NM

(
N

M

)k/2−1
+ Nk/2

Mk/2−1B

)
= O

(
Nk/2

Mk/2−1B

)
.

We now conclude that the input relations of the simplified residual joins Q′′(η) of all
η ∈ config(H) can be computed in O(Nk/2/(Mk/2−1B)) I/Os in total. This completes the
entire proof of Lemma 7.

6 Conclusions

By putting together Lemmas 1, 4, and 7, we have arrived at the main result of this paper:

▶ Theorem 9. Let G = (V, E) be a simple undirected graph with no isolated vertices. Let
Q = (VQ, EQ) be a simple undirected connected pattern graph. There is an algorithm in the
external memory model that, with probability at least 1 − 1/|E|c where c is an arbitrarily high
constant decided before running the algorithm, emits every occurrence of Q in G exactly once
with O(|E|ρ/(Mρ−1B)) I/Os, where ρ is the fractional edge covering number of Q, M is the
number of words in memory, and B is the number of words in a disk block. The same I/O
complexity holds also in expectation.

The theorem optimally settles the subgraph enumeration problem in external memory
when randomization is permitted. The main open problem left behind by this work is to
achieve the I/O complexity O(|E|ρ/(Mρ−1B)) deterministically.
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A Completing the Proof of Lemma 5

Focusing on an arbitrary hyperedge e = {Xi, Xj} ∈ E , next we will explain how to process
Re in O((1 + D√

M
)2 · 1

B + sort(N)) I/Os such that, given any interval Ii ∈ Sintv
Xi

, and any
interval Ij ∈ Sintv

Xj
, we can load Re(Ii, Ij) into memory using O(M/B) I/Os.

Recall that the intervals in Sintv
Xi

are disjoint. We order those intervals by their starting
points; an interval has rank t if it has the t-th smallest starting point. Define ranks similarly
for the intervals in Sintv

Xj
.

For each tuple u ∈ Re, we associate it with an Xi-interval rank, which is the rank of the
interval in Sintv

Xi
covering u(Xi). By sorting, we can obtain the Xi-interval ranks of all the

tuples in Re using O(sort(N)) I/Os. We also associate u with an Xj-interval rank, defined
similarly with respect to Xj . The Xj-interval ranks of all the tuples in Re can again be
decided using O(sort(N)) I/Os.

We now sort the tuples of Re by their Xi-interval ranks, breaking ties by Xj-interval
ranks. After sorting, for any intervals Ii ∈ Sintv

Xi
and Ij ∈ Sintv

Xj
, the O(M) tuples in

Re(Ii, Ij) have been grouped into O(M/B) consecutive blocks on the disk. We bookmark
the group’s starting address such that, given the ranks of Ii and Ij , we can locate the
group on the disk immediately. This requires materializing the starting addresses of all the
|Sintv

Xi
| · |Sintv

Xj
| = O((1 + D/

√
M)2) groups in a two-dimensional array, which can be created

in O(1 + (1 + D√
M

)2 · 1
B + N

B ) I/Os by scanning the (sorted) Re once.

B Preprocessing the Input Relations for Proving Lemma 6

We will first explain how to preprocess R in O(( |R|
λ )2 · 1

B + sort(|R|)) I/Os such that, for any
interval IX ∈ Sintv

X and any interval IY ∈ Sintv
Y , we can ensure that (i) R(Ii, Ij) is stored in

consecutive blocks and (ii) the first block’s address can be obtained in one I/O.
It suffices to re-apply the techniques illustrated in Appendix A. Sort the intervals of

Sintv
X by their starting points and do the same for Sintv

Y , which requires O(sort(|R|/λ)) I/Os.
An interval of Sintv

X (resp., Sintv
Y ) is said to have rank t if it has the t-th smallest starting

point among all the intervals in Sintv
X (resp., Sintv

Y ). Associate each tuple u ∈ R with an
X- (resp., Y -) interval rank, which is the rank of the interval in Sintv

X covering u(X) (resp.,
Sintv

Y covering u(Y )). Sort the tuples of R by their X-interval ranks, breaking ties by their
Y -interval ranks, after which the tuples in R(IX , IY ) are placed in a sequence of consecutive
blocks for any interval pair (IX , IY ) ∈ Sintv

X ×Sintv
Y . We record the sequence’s starting address

such that the sequence can be located immediately based on the ranks of IX and IY . This
requires materializing |Sintv

X | · |Sintv
Y | = O((|R|/λ)2) starting addresses in a two-dimensional

array, which can be created in O(1 + ( |R|
λ )2 · 1

B + |R|
B ) I/Os by scanning R once.
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We now turn our attention to preprocessing S1, S2, ..., Sℓ. For each i ∈ [ℓ], recall that Si

has been sorted on attribute X. By scanning Si synchronously with the (already sorted)
Sintv

X , we can ensure that, for each interval IX ∈ Sintv
X , the set Si(IX) is stored in a

sequence of consecutive blocks. We record the sequence’s starting address such that the
sequence can be located directly based on the rank of IX . This requires materializing
|Sintv

X | = O(⌈|R|/λ⌉) starting addresses in an array, which can be created in O(1 + |R|
λB + |Si|

B )
I/Os by scanning Si once. The total I/O cost of preprocessing the Si of all i ∈ [ℓ] this way is
O(ℓ + ℓ |R|

λB +
∑ℓ

i=1 |Si|/B).
The preprocessing of T1, T2, ..., Tℓ is similar and omitted.

C Proof of Equation (14)

We will prove the following relationship for each i ∈ [ℓ]:∑
(IX ,IY )∈Sintv

X
×Sintv

Y

⌈
|R(IX , IY )|

M

⌉
· |Si(IX)| + |Ti(IY )| + M

B

= O
(( |R|

λ
+ λ

M

)
|Si| + |Ti|

B
+ |R|

B
+ |R|2M

λ2B

)
. (25)

Equation (14) will then follow from a simple summation on all i ∈ [ℓ].
Clearly:

left hand side of (25)

≤
∑

(IX ,IY )

(
1 + |R(IX , IY )|

M

)
· |Si(IX)| + |Ti(IY )| + M

B

=
∑

(IX ,IY )

|Si(IX)| + |Ti(IY )| + M

B
+

∑
(IX ,IY )

|R(IX , IY )|
M

· |Si(IX)| + |Ti(IY )| + M

B
. (26)

The first summation of (26) is easy to bound:∑
(IX ,IY )

|Si(IX)| + |Ti(IY )| + M

B
=

∑
(IX ,IY )

|Si(IX)|
B

+
∑

(IX ,IY )

|Ti(IY )|
B

+
∑

(IX ,IY )

M

B

= |T intv
Y | · |Si|

B
+ |Sintv

X | · |Ti|
B

+ M

B
· |Sintv

X | · |T intv
Y |

= O

(
|R|(|Si| + |Ti|)

λ · B
+ M

B

|R|2

λ2

)
(27)

where the last step used |Sintv
X | = O(|R|/λ) and |T intv

Y | = O(|R|/λ). To unfold the second
summation of (26), let us first rearrange the terms:∑

(IX ,IY )

|R(IX , IY )|
M

· |Si(IX)| + |Ti(IY )| + M

B

=
∑

(IX ,IY )

|R(IX , IY )|
M

|Si(IX)|
B

+
∑

(IX ,IY )

|R(IX , IY )|
M

|Ti(IY )|
B

+
∑

(IX ,IY )

|R(IX , IY )|
B

(28)

To facilitate the subsequent derivation, let us define

R(IX , −) = {u ∈ R | u(X) ∈ IX}

ICDT 2024



21:20 Subgraph Enumeration in Optimal I/O Complexity

for any interval IX ∈ Sintv
X . Note that the size of R(IX , −) is bounded by O(λ) due to the

way that Sintv
X is constructed. Equipped with this, we can derive

∑
(IX ,IY )

|R(IX , IY )||Si(IX)| =
∑
IX

|Si(IX)| ·

(∑
IY

|R(IX , IY )|
)

=
∑
IX

|Si(IX)| · |R(IX , −)|

= O(λ) ·
∑
IX

|Si(IX)| = O(λ · |Si|). (29)

A symmetric analysis shows that
∑

(IX ,IY ) |R(IX , IY )||Ti(IY )| = O(λ · |Ti|). Utilizing also
the obvious fact

∑
(IX ,IY ) |R(IX , IY )| = |R|, we obtain

(28) = O

(
λ · |Si|
MB

+ λ · |Ti|
MB

+ |R|
B

)
. (30)

Equation (25) now follows from (26), (27) and (30).
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Unions of conjunctive two-way regular path queries (UC2RPQs) are a common abstraction of query
languages for graph databases, much like unions of conjunctive queries (UCQs) in the relational
case. As in the case of UCQs, their evaluation is NP-complete in combined complexity. Semantic
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decide the semantic tree-width of a UC2RPQ, by constructing the best under-approximation of a
given treewidth, in the form of a UC2RPQ of size doubly exponential in the size of the original
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time doubly exponential in the size of the parameter, i.e. in the UC2RPQ. Here we describe a more
efficient fpt algorithm for evaluating UC2RPQs of semantic treewidth k which runs in time singly
exponential in the size of the parameter. We do this by a careful construction of a witness query
which, while still being doubly exponential, can be represented as a Datalog program of bounded
width and singly exponential size.
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1 Introduction

“The future is big graphs” [21]. Already today graph databases are mainstream in a wide
range of application domains, including social networks, fraud detection, biological networks,
bioinformatics, cheminformatics, medical data, and knowledge management [3]. By 2025, as
Gartner predicts, graph technologies will be used in 80% of data and analytics innovations.
The landscape of graph technologies, however, is currently very fragmented, with multiple
vendors offering their own query languages (e.g. [13, 23]). This might change with the
upcoming Graph Query Language Standard [11], but for now theoretical research naturally
focuses on abstract formalisms, capturing the core of the multiple query languages.

While for relational databases conjunctive queries (CQs) and their unions (UCQs) are a
premier abstract query language, graph databases are typically queried using conjunctive
regular path queries (CRPQs) and unions thereof (UCRPQs) which generalize UCQs by
replacing atoms with regular path queries (RPQs) [19]. RPQs specify connections between
graph nodes using regular expressions over edge labels. If edges can be traversed both ways,
one speaks of two-way regular path queries (2RPQs) and (unions of) conjunctive two-way
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regular path queries, abbreviated as (U)C2RPQs. While the original semantics for such
queries was based on the existence of simple paths, the most commonly adopted semantics
nowadays relies on unrestricted paths. Under the latter semantics, 2RPQs can be evaluated
in polynomial time, but the complexity of evaluating C2RPQs is the same as for CQs:
NP-complete in combined complexity.

In the classical setting, the intractability of CQs lead to a long line of research, where
different structural measures on queries were proposed in an attempt to identify cases where
evaluation can be done efficiently. This spans from the well-known polynomial time algorithm
of Yannakakis for evaluating acyclic CQs [24] to tractability results for queries of bounded
treewidth [9], bounded (fractional) hypertreewidth [14, 16], and culminates with the result
of Grohe [15] that establishes a dichotomy for fixed-parameter tractable evaluation of CQs
in the bounded arity setting.

Under an assumption from parameterized complexity theory, that W[1] ̸= FPT, Grohe’s
result establishes that exactly those classes of UCQs which have bounded treewidth modulo
equivalence (also known as bounded semantic treewidth) can be evaluated in FPT. Fur-
thermore, bounded semantic treewidth also guarantees tractability in a classical sense, i.e.
polynomial-time combined complexity. In the unbounded arity setting, a similar dichotomy
(again subject to an assumption, the Exponential Time Hypothesis [17]) has been established,
this time using another measure called submodular width [18, 10].

In the same vein, Barcelo et al. [4, 5] initiated the investigation of efficient evaluation of
UC2RPQs. They showed that acyclic UC2RPQs can be evaluated in polynomial time (even
linear in particular cases). Semantically acyclic UC2RPQs [6] enjoy the same good properties,
although deciding whether a UC2RPQ is semantically acyclic is ExpSpace-complete (unlike
for UCQs, for which it is NP-complete). This is not surprising given that the containment
problem for UC2RPQs is ExpSpace-complete [8].

As concerns semantic treewidth of (U)C2RPQs, Romero et al. [20] introduced two
notions of C2RPQ equivalence: one based on homomorphisms, and another based on
logical equivalence. They show that there exists a notion of homomorphism for C2RPQs
under which bounded treewidth modulo equivalence guarantees polynomial evaluation. For
logical equivalence, however, tractability is no longer achievable, so the focus shifts to fixed
parameter tractability. In this case, it follows from existing results on UCQ evaluation and
RPQ evaluation that UC2RPQs of bounded treewidth are fixed-parameter tractable: one
can simply materialize all the RPQs in the database and then regard the C2RPQ as a CQ
over the materialized database. The authors lift this to UC2RPQs of bounded semantic
treewidth, i.e. UC2RPQs that are logically equivalent to one of bounded treewidth. They
achieve this by computing a so-called witness for bounded semantic treewidth, whose actual
treewidth might be up to 2k + 1, when the semantic treewidth of the query is k. Again,
according to results on UCQ evaluation, together with the complexity of evaluating RPQs,
such a query can be evaluated in time O(f(Φ)|G|2k+1), where |Φ| is the size of the query, |G|
is the size of the graph database and f is a singly exponential function.

It remained open how to decide semantic TW of UC2RPQs, and, in particular, how to
construct a witness of optimal TW. This has been settled recently by Figueira and Morvan [12],
who construct for a given k the best (in the sense of tightest) under-approximations of
treewidth k of the original query. Such under-approximations have in the worst case size
doubly exponential in the size of the original query. As such an under-approximation is
equivalent to the original query when the semantic treewidth of the query is k, this leads to
an algorithm for evaluating UC2RPQs of semantic TW k which runs in time O(f(Φ)|G|k+1),
with f being a doubly exponential function. While this is a significant improvement in data
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complexity, as it lowers the exponent of the size of data from 2k + 1 to k + 1 compared to
existing algorithms, the algorithm is impractical due to its doubly exponential combined
complexity.

In this paper, we zoom into the problem of evaluating a UC2RPQ Φ of semantic TW k

and show that it is possible to evaluate Φ in time O(g(Φ)|G|k+1), with g a singly exponential
function. We do this by a careful construction of optimal approximations of a given
treewidth (and implicitly of semantic treewidth witness queries). We construct several
such approximations, starting with an infinitary one which we refine to ensure some good
structural properties, and ending with a finite witness of bounded size. As the finite witness
in the worst case is still doubly exponential in the size of Φ (as in [12]) we cannot use it
to get better complexity bounds. However, we can exploit the infinitary witness with good
structural properties. This query can be compiled into a union of singly exponentially many
queries, called skeleton queries.

Skeleton queries group together C2RPQs which share some common structure, the
skeleton. They can be seen as tree-shaped conjunctions of so-called type reachability queries.
Such type reachability queries encode all ways in which a top k + 1 tuple can be reached
from a bottom k + 1 tuple via a path query of width k. While there might be doubly
exponentially many such ways to reach a tuple, the type reachability query can be encoded
via an exponential sized Datalog program of width k + 1 by employing suitable notions of
types and compatibility between such types. As concerns skeleton queries, their tree-based
structure makes them amenable to evaluation via a dynamic programming approach. The
approach is reminiscent of Yannakakis’ algorithm for evaluating acyclic CQs [24], if one
regards type reachability queries as oracles that compute a set of target (k + 1)-tuples when
seeded with a set of source (k + 1)-tuples. Again, this step can be encoded via a Datalog
program of width k + 1 and polynomial size. By executing such a Datalog program, we
obtain an evaluation procedure which runs within the desired time bounds.

The paper is organized as follows. We start with some preliminaries in Section 2.
Section 3 is dedicated to constructing TW k approximations. Then, in Section 4 we encode
the evaluation of TW k approximations into a Datalog program, to achieve higher efficiency.
Finally, in Section 5 we conclude and discuss future work.

2 Preliminaries

Relational structures, graph databases
A schema S is a finite set of relational symbols with associated arities. An S-fact has the
form r(a), where r ∈ S, and a is a tuple of constants of size the arity of r. An S-structure
A is a set of S-facts. The domain of a structure A, dom(A), is the set of constants which
occur in facts in A. A structure A maps into a structure B, written A → B if there exists a
function h : dom(A) → dom(B) such that for every fact r(a) in A, there exists a fact r(h(a))
in B, where h(a) is the tuple obtained from a by pointwise application of h. In this case,
h is said to be a homomorphism from A to B. The Gaifman graph of a structure A is an
undirected graph (V,E) with V = dom(A) and {a1, a2} ∈ E iff there exists some fact r(a) in
A such that both a1 and a2 occur in a.

In the following, let Σ be some countable alphabet. A graph database G over Σ is a
finite directed graph with edges labeled with symbols from Σ. It can be seen as a relational
structure over the schema {Ra | a ∈ Σ}, where each relational symbol is binary. A path p in
a graph database is a sequence (u1

a1−→ u2 . . . ul
al−→ ul+1) denoting that for every 1 ≤ i ≤ l,

Rai
(ui, ui+1) is in G. The label of p as above, denoted λ(p), is the word a1 . . . al from Σ∗.

ICDT 2024
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Regular expressions, automata
A non-deterministic finite automata (NFA) A is a tuple (Q,Σ, δ, s0, F ), where Q is the set of
states, δ : Q× Σ → 2Q is the transition function, s0 is the initial state and F ⊆ Q is a set of
final states. To access the set of states of any given automaton we use the function states(·);
that is, states(A) = Q. A run of A on a word w ∈ Σ∗ is a sequence of states of the form
(s0, . . . , sn), where n = |w| and for every 1 ≤ i ≤ n, si ∈ δ(wi, si−1). Automaton A accepts a
word w if there exists a run (s0, . . . , sn) of A on w such that sn ∈ F .

Every regular expression can be represented via an NFA of linear size. For such an
expression L, we denote with A(L) a fixed linear-size NFA for L. Conversely, each NFA A

can be converted into a regular expression E(A). For an NFA A and two states s, s′ we denote
with A(s, s′) the NFA having the same set of states and transition function as A, but having s
as initial state and s′ as a unique final state. When convenient, we abbreviate E(A(L)(s, s′))
as L[s, s′]. While L[s, s′] may be exponentially larger than L as its computation involves the
determinization of the NFA L[22], we actually always work with the NFA representation,
whose size does not grow.

UC2RPQs
A regular path query (RPQ) is a query of the form L(u, v) where L is a regular expression
over Σ. For a graph database G and u′, v′ ∈ dom(G), it is the case that G |= L(u′, v′) if there
exists a path p in G from u′ to v′ such that λ(p) ∈ L. When one is interested in two-way
navigation along labeled edges in a graph database, the regular expression L can be over
the alphabet Σ± = Σ ∪ {a− | a ∈ Σ}. In this case, L(u, v) is said to be a two-way RPQ
(2RPQ) and it is evaluated over the completion G± of a graph database with “reverse” edges:
G± = G ∪ {Ra−(v, u) | Ra(u, v) ∈ G}. A conjunctive two-way regular path query (C2RPQ)
ϕ(v′) is a query of the form ∃u′ ∧

1≤i≤n L(ui, vi) where each L(ui, vi) is a 2RPQ and (v′,u′)
is a disjoint partition of the set of variables v ∪ u occurring in the query. The variables v′

are called the free variables of ϕ. When v′ = ∅, we say that ϕ is Boolean. If v′ = v ∪ u, ϕ(v′)
is said to be a full C2RPQ. If all atoms in a C2RPQ ϕ are of the form L(u, v), with L a
language over Σ, we say that ϕ is a conjunctive query (CQ). For G a graph database and a a
tuple of constants from dom(G), it is the case that G |= ϕ(a) if there exists some mapping
h : u ∪ v → dom(G) such that h(v′) = a and G |= L(h(ui), h(vi)), for every 1 ≤ i ≤ n. When
ϕ is Boolean, we say that h is a homomorphism from ϕ to G.

A UC2RPQ Φ(v′) is a union of C2RPQs with free variables v′. When v′ = ∅, Φ is said
to be Boolean. For G a graph database and a a tuple of constants from dom(G), G |= Φ(a),
if G |= ϕ(a) for some C2RPQ ϕ in Φ. We say that a UC2RPQ Φ1 is contained in another
UC2RPQ Φ2, denoted Φ1 ⊆ Φ2, if for every graph database G and every tuple a of constants
from dom(G), G |= Φ1(a) implies G |= Φ2(a). If Φ1 ⊆ Φ2 and Φ2 ⊆ Φ1, we say that Φ1 and
Φ2 are equivalent, and we write Φ1 ≡ Φ2.

Trees, tree decompositions, semantic treewidth
A tree T is represented as an acyclic undirected graph (V,E), with a distinguished node
r ∈ V , the root. Given a tree T as above and two nodes v1, v2 ∈ V , the unique simple path in
T from v1 to v2 is denoted as pathT (v1, v2). We write v ≤T v′ if v ∈ pathT (r, v′) and v <T v′

if v ∈ pathT (r, v′) and v ̸= v′. The lowest common ancestor of v1 and v2 in T , denoted
as lcaT (v1, v2), is the node v such that v ≤T v1, v ≤T v2, and v ∈ pathT (v1, v2). We write
v1 ̸≶T v2 if v1 and v2 are ≤T -incomparable; that is, neither v1 ≤T v2 nor v1 ≥T v2.
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A tree decomposition of a graph G = (V,E) is a pair δ = (Tδ, χ), with Tδ = (Vδ, Eδ) a
tree with root rδ, and χ a labeling function Vδ → 2V such that:
1.

⋃
t∈Vδ

χ(t) = V .
2. If (v1, v2) ∈ E, then v1, v2 ⊆ χ(t) for some t ∈ Vδ.
3. For each v ∈ V , the set of nodes {t ∈ Vδ | v ∈ χ(t)} induces a connected subtree of Tδ.

We will refer to elements of Vδ as bags of the tree decomposition and to χ(v) as the
content of bag v, for v ∈ Vδ. For each u ∈ V , we denote with uδ the root of the subtree
{v ∈ Vδ | u ∈ χ(v)} of Tδ, i.e. the node v from Vδ for which there is no other node v′ ∈ Vδ

such that u ∈ χ(v′), and v′ <Tδ
v. The width of δ is maxv∈Vδ

(|χ(v)| − 1).
The treewidth (TW) of G, TW(G), is the smallest k such that there exists a tree

decomposition δ of G of width k.
For a graph database D, the treewidth of D, TW(D), is the treewidth of its Gaifman

graph GD. For a Boolean C2RPQ ϕ with variables v, we denote with Gϕ, the graph (V,E)
with V = v and E = {(u, v) | L(u, v) ∈ ϕ}. The treewidth of ϕ, denoted TW(ϕ), is TW(Gϕ).
The treewidth of a Boolean UC2RPQ Φ is the maximum treewidth among its C2RPQs:
TW(Φ) = maxϕ∈ΦTW(ϕ).

The semantic treewidth of a UC2RPQ Φ is the minimum treewidth of a UC2RPQ which
is equivalent to it.

Parameterized complexity
For a finite alphabet Σ, a parameterized problem is a tuple (P, κ), where P ⊆ Σ∗ is a problem,
and κ : Σ∗ → N is a PTime computable function called the parameterization of P . Such a
parameterized problem is fixed-parameter tractable if there exists an algorithm for deciding
P for an input x ∈ Σ∗ in time f(κ(x))poly(|x|), where f is a computable function and poly

is a polynomial. The class of all fixed-parameter tractable problems is denoted as FPT. In
this paper we are interested in the parameterized problem of evaluating Boolean UC2RPQs,
where the parameter is the size of the query.

Datalog
A term is a constant or variable. An atom is of the form p(t1, . . . , tn), where p is a predicate
symbol of arity n and t1, . . . , tn are terms. An atom is said to be ground if it contains no
variables. A Datalog program Π is a set of rules of the form

(r) : β(x,y) → a(x),

where β(x,y) is a set of atoms having as terms constants or variables from x ∪ y (called the
body of r), and a(x) is an atom with variables x (called the head of r). Predicate symbols
which occur only in atoms in the body of rules are called EDBs, while all other predicates
are called IDBs. The maximum number of variables occuring in some rule in Π is the width
of Π, denoted w(Π).

A structure I satisfies a Datalog rule r as above, if for every function h : x ∪ y → dom(I)
which is a homomorphism from β(x,y) to I, a(h(x)) ∈ I. Given a database D and a Datalog
program Π, a structure I is a model of Π if it extends D (we adopt the standard name
assumption – constants in dom(D) are interpreted as themselves) and satisfies every rule
from Π. For a ground atom a, we say that (Π, D) |= a if for every model I of Π and D,
I |= a.
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Datalog programs (in conjunction with DBs) have the property that they have a finite
minimal model [1], i.e. a model MΠ,D which is a sub-structure of every other model of Π
and D. The minimal model MΠ,D can be computed via a fix-point procedure (called naive
evaluation or chase) which constructs a sequence of converging instances (Ii)i≥0 as follows:
I0 = D; given Ii, Ii+1 is obtained by considering for every rule in Π all homomorphisms h
from β(x,y) to Ii and adding a(x) to I. Then, MΠ,D =

⋃
Ii. The procedure runs in time

O(f(|Π|)|D|w(Π)), where f is a polynomial function.

3 Treewidth-k Approximations

In this section we investigate how one can approximate a given UC2RPQ with a UC2RPQ
of a given treewidth.

▶ Definition 1. A UC2RPQ Φ′ is a TW-k approximation of a UC2RPQ Φ if
(i) Φ′ has TW k;
(ii) Φ′ ⊆ Φ; and
(iii) there is no UC2RPQ Φ′′ of TW k such that Φ′ ⊂ Φ′′ ⊆ Φ.

The actual goal of this section is to develop a toolbox for handling TW-k approximations,
suitable for our approach to query evaluation, described in Section 4. However, to focus our
attention, we set a local goal of re-proving the following result, established in [12].

▶ Theorem 2. For every UC2RPQ Φ and k > 1, it is possible to construct a TW-k
approximation Φk of size doubly exponential in the size of Φ.

Note that once we know how to construct TW-k approximations, we can compute the
semantic treewidth of a given UC2RPQ by constructing TW-k approximations for increasing
values of k and testing their equivalence to the original UC2RPQ. It is known that checking
containment of UC2RPQs is decidable and can actually be performed in ExpSpace [8].

We construct the TW-k approximation in several steps, starting from an infinitary
UC2RPQ and finally obtaining a UC2RPQ with the desired size bounds. For the initial step,
we use the following sufficient condition.

▶ Lemma 3. Let Φ be a UC2RPQ and Φ′ be a UC2RPQ of TW k which is contained in Φ
and is equivalent to Φ on graph databases of TW k. Then Φ′ is a TW-k approximation of Φ.

The proof of Lemma 3 uses the notion of expansion, which is a graph database of a certain
shape which satisfies a C2RPQ.

▶ Definition 4. Given a C2RPQ Φ and a graph database G such that G |= Φ, we say that G
is an expansion of Φ if there exists an injective homomorphism h from Φ to G such that G
can be seen as a set of paths of the form h(ui) → u′

2 → u′
3 → . . . → h(vi), one for each atom

of the form L(ui, vi) in Φ, that are pairwise disjoint except (possibly) for their endpoints.

The following lemma summarises some properties of expansions:

▶ Lemma 5 (Folklore). Let Φ be a C2RPQ. The following hold:
1. if Φ has TW k, with k > 1, so does every expansion G of Φ
2. for every graph database G such that G |= Φ, there exists an expansion G′ of Φ such that

G′ → G.

We are ready to provide the proof of Lemma 3.
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Proof. Towards contradiction, suppose that Φ′ is not a TW-k approximation of Φ and let
Φ′′ be one. Then, there exists a graph database G such that G |= Φ′′ but G ̸|= Φ′. From
Lemma 5, there must be an expansion G′ of Φ′′ of TW k such that G′ → G. Clearly, G′ |= Φ′′.
Since Φ′′ ⊆ Φ, G′ |= Φ. As G′ has TW k and Φ′ ≡k Φ, G′ |= Φ′. It follows immediately that
G |= Φ′, which contradicts the initial assumption and concludes the proof. ◀

In the following, we will denote with ≡k the notion of equivalence of UC2RPQs on TW-k
databases. Similarly, for ⊆k.

For technical convenience, we shall assume that each C2RPQ has at most one atom of
the form L(x, y) for each regular expression L. This is without loss of generality, as we
can always replace different occurrences of the same regular expression by equivalent but
syntactically different regular expressions. By a path in a C2RPQ ψ we mean a sequence
A0(x0, x1), A1(x1, x2), . . . , An(xn, xn+1) of atoms from ψ. We say the path is simple if
variables x0, x1, . . . , xn+1 are all different.

Following [20], we rely on subdivisions and quotients of C2RPQs, which we recall below.
For a UC2RPQ Φ, and some r ≥ 1, the set SDr(Φ) of r-subdivisions of Φ is the set of all
C2RPQs that can be obtained from a C2RPQ ϕ in Φ as follows: for each atom L(u, v) in
ϕ, consider fresh variables u1, . . . , ul, with l < r, and a sequence of states s0, s1, . . . , sl+1 of
A(L) such that s0 and sl+1 are an initial and a final state of A(L), and replace L(u, v) in ϕ

with a path L[s0, s1](u, u1), L[s1, s2](u1, u2), . . . , L[sl, sl+1](ul, v). We will refer to this path
as the L-path and to the introduced atoms as the L-atoms. For a set S of C2RPQs, we write
Q(S) for the set of quotients of C2RPQ in S; that is, C2RPQs that can be obtained from
a C2RPQ in S by variable identification. We let Qk(S) be the set of C2RPQs from Q(S)
which have treewidth k.

With that, we can make our first step in constructing the desired approximation of Φ.
Let Φk,∞ be the infinitary UC2RPQ consisting of all C2RPQs from

⋃
r>1 Qk(SDr(Φ)).

▶ Lemma 6. For each UC2RPQ Φ, Φk,∞ is a TW-k approximation of Φ.

The next step is to simplify the structure of C2RPQs building up the TW-k approximation.
This will help us ensure the desired size bounds, and will be crucial in the next section.

Given a C2RPQ ψ and a tree decomposition δ of ψ, we say that a path α in ψ is
unmeandering (wrt. δ) if each bag of δ covers at most one atom of α, i.e. it contains at most
one such atom with all arguments belonging to the bag.

Consider a C2RPQ ψ ∈ Qk(SDr(Φ)) obtained by quotienting an r-subdivision of a C2RPQ
ϕ from Φ. Identifying variables does not break paths, in the sense that L-paths are still
present in ψ, except that they need not be simple any more. We call a tree decomposition δ

of ψ unmeandering if each L-path in ψ is unmeandering wrt. δ.
Let Φ′

k,∞ be the UC2RPQ obtained from Φk,∞ by keeping only those C2RPQs that
admit an unmeandering tree decomposition of width k, and dropping the remaining ones.
By shortcutting meanders as shown in Figure 1, we can refine Lemma 6 as follows.

▶ Lemma 7. For each UC2RPQ Φ, Φ′
k,∞ is a TW-k approximation of Φ.

Proof. By construction, Φ′
k,∞ ⊆ Φk,∞ ⊆ Φ. We show that Φk,∞ ⊆ Φ′

k,∞ and thus, Φ ⊆k

Φ′
k,∞. Let ϕ′ be a C2RPQ from Φk,∞. That is, ϕ′ is obtained from a C2RPQ ϕ of Φ by an

r-subdivision followed by variable identification, and ϕ′ has TW k. Let δ = (T, χ) be a TW-k
decomposition of ϕ′ and let G be a database such that G |= ϕ′. We construct a query ϕ′′ from
Φ′

k,∞ such that G |= ϕ′′. For every atom L(u, v) in ϕ, query ϕ′ has atoms L[si, si+1](vi, vi+1)
for 0 ≤ i < l. We obtain ϕ′′ from ϕ′ by merging these atoms exhaustively, as follows. As long
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Figure 1 Shortcutting a meander. Whenever two atoms (dark red edges on the left) of some
L-path are covered by the same bag, we replace the whole segment between them (dark and light
red edges on the left) with a single summarizing atom (dark red on the right).

as some bag of δ covers two atoms of the forms L[si, si′ ](vi, vi′) and L[sj′ , sj ](vj′ , vj) with
i′ ≤ j′, we replace them by L[si, sj ](vi, vj). After each merging step, the current version of
ϕ′ satisfies the following invariant:

it has TW k (a witnessing decompositon is obtained from δ by dropping unused variables);
it is satisfied in G (via the same homomorphism restricted to currently used variables);
it can be obtained from ϕ via an r-subdivision followed by variable identification; and
it contains L-atoms L[si0 , si1 ](vi0 , vi1), . . . , L[sim

, sim+1 ](vim
, vim+1) for some m ≤ l and

0 = i0 < i1 < · · · < im+1 = l + 1.
When no more merges of L atoms are possible, the resulting query still satisfies the invariant
and additionally no bag of δ covers more than one of its L-atoms. We perform this exhaustive
procedure for each atom L(u, v) in ϕ. The resulting query ϕ′′ belongs to Φ′

k,∞ and holds in
G, as required. ◀

We now prove a strong structural property for unmeandering paths, showing that they
manifest in tree decompositions in one of three simple ways, illustrated in Figure 2.

▶ Lemma 8. Consider a C2RPQ ψ, a tree decomposition δ = (T, χ) of ψ, and an unmean-
dering path A0(x0, x1), A1(x1, x2), . . . , An(xn, xn+1) in ψ.

Then, there exists some 0 ≤ i ≤ n+ 1 such that:

δ(x0) >T δ(x1) >T · · · >T δ(xi) ≤T δ(xi+1) <T δ(xi+2) <T · · · <T δ(xn+1)

Moreover, if 1 ≤ i ≤ n, then either:
1. δ(xi−1) ̸≶T δ(xi+1) (Figure 2A), or
2. δ(xi−1) >T δ(xi+1) and δ(xi−1) ̸≶T δ(xj) for all j > i+ 1 (Figure 2B), or
3. δ(xi−1) <T δ(xi+1) and δ(xj) ̸≶T δ(xi+1) for all j < i− 1 (Figure 2C).
In particular, δ(x0), δ(x1), . . . , δ(xn+1) are all different, except potentially δ(xi) and δ(xi+1).
Also, if xj and xj′ belong to the same bag, then |j − j′| ≤ 1.
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Figure 2 An unmeandering path in a tree decomposition. A triangle with label j represents the
subtree of the decomposition consisting of bags containing the j-th variable of the path.

Note that Lemma 8 implies that each unmeandering path is simple, unless it consists of
a single atom. Indeed, while δ(xi) and δ(xi+1) might be equal, xi = xi+1 would mean that
each bag covering Ai−1(xi−1, xi) or Ai+1(xi+1, xi+2) also covers Ai(xi, xi+1).

As the last step before establishing the size bound, we use Lemma 8 to simplify tree
decompositions of queries in Φ′

k,∞. Given a tree decomposition δ = (T, χ) of a C2RPQ ψ,
and an unmeandering path α = A0(x0, x1), . . . , An(xn, xn+1), we define the chevron of α,
written α̂, as the union of two shortest paths in T : from δ(x0) to δ(xi) and from δ(xi) to
δ(xn+1). By the main path of the chevron we mean the shortest path from δ(x0) to δ(xn+1).
Note that the main path is contained in the chevron and the highest node on the main path is
the lowest common ancestor of δ(x0) to δ(xn+1). We call it the key of the chevron. We refer
to δ(x0) and δ(xn+1) as the endpoints of the chevron, and to δ(xi) as the tip. We divide the
main path into two parts: the up-path from δ(x0) to the key, and the down-path from the key
to δ(xn+1). Note that α̂ contains all δ(x0), δ(x1), . . . , δ(xn+1), and each atom Aj(xj , xj+1)
of α is covered by a bag from the main path of α̂. Given a C2RPQ ψ ∈ Qk(SDr(Φ)), a
chevron tree decomposition of ψ is any unmeandering tree decomposition in which each bag
belongs to the chevron of some L-path in ψ.

▶ Lemma 9. If a C2RPQ ψ ∈ Qk(SDr(Φ)) has an unmeandering tree decomposition of width
k, then it has a chevron tree decomposition of width k.

Consider a chevron tree decomposition δ = (T, χ) of a C2RPQ ψ ∈ Qk(SDr(Φ)). By
a critical node in T we mean a leaf, a root, a node that has at least two children, or an
endpoint of the chevron of an L-path.A segment in δ is a path of the form pathT (u, v) for
some critical nodes u and v such that u <T v, and all remaining nodes in pathT (u, v) are
non-critical. The number of leaves in δ is bounded by the number of variables in the original
C2RPQ ϕ ∈ Φ from which ψ was obtained, and there are at most twice as many critical
nodes. There is no bound, however, on the length of the segments. Our last step in the proof
of Theorem 2 essentially consists in providing such a bound. We begin with two preparatory
observations, which will be also useful in Section 4.

▷ Claim 10. If a segment p in δ shares a non-critical node with the main path of a chevron
α̂ of an L-path α in ψ, then p is contained in the up-path or the down-path of α̂ (but not
both).

We write L(p) for the set of L-atoms such that segment p is contained in the main path
of the chevron of the L-path in ψ. We also define dirp : L(p) → {↑, ↓} as dirp(L) = ↑ if p is
contained in the up-path of the chevron of the L-path, and dirp(L) = ↓ if p is contained in
the down-path of the chevron of the L-path.
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▷ Claim 11. Let p = pathT (u, v) be a segment in δ and α = A0(x0, x1), . . . , An(xn, xn+1)
an L-path in ψ for some L ∈ L(p). Then, the atoms of α covered by bags from p are

Aℓ(xℓ, xℓ+1), Aℓ+1(xℓ+1, xℓ+2), . . . , Am−1(xm−1, xm)

for some 0 ≤ ℓ ≤ m ≤ n + 1 with xℓ ∈ χ(u) and xm ∈ χ(v), and there are nodes
uℓ, uℓ+1, . . . , um−1 ∈ p such that uj covers Aj(xj , xj+1) for all ℓ ≤ j < m, and either
uℓ <T uℓ+1 <T · · · <T um−1 or uℓ >T uℓ+1 >T · · · >T um−1.

We are now ready for the final step in the proof of Theorem 2. So far we have constructed
an infinitary TW-k approximation based on arbitrary subdivisions of atoms in the original
UC2RPQ. We next show that it suffices to consider bounded subdivisions. For a given r, let
Φ′

k,r be the UC2RPQ obtained from Φ′
k,∞ by keeping only those C2RPQs that belong to

Qk(SDr(Φ)), and dropping the remaining ones.

▶ Lemma 12. For each UC2RPQ Φ, there is a positive integer r, singly exponential in the
size of Φ, such that Φ′

k,r is a TW-k approximation of Φ.

Proof. We show that Φ′
k,∞ ⊆ Φ′

k,r for some r < ∞ whose value will follow from the
construction. Take ψ from Φ′

k,∞ and let δ = (T, χ) be a chevron tree decomposition of ψ.
We transform ψ into ψ′ from Φ′

k,r for such that ψ ⊆ ψ′.
We have already seen that the number of critical nodes in δ is bounded linearly in the size

of Φ, but the segments in δ can be arbitrarily long. We obtain ψ′ by shrinking the segments.
Consider a segment p in δ and an internal node v in p. We annotate variables in v with

multiple pairs of the form (L, s), where s is a state of the automaton for L. For each L ∈ L(p)
with dirp(L) = ↓, we annotate x with (L, s) if there is an atom L[s, s′](x, x′) in ψ. For each
L ∈ L(p) with dirp(L) = ↑, we annotate x with (L, s) if there is an atom L[s′, s](x′, x) in
ψ. Let ζ(v) be the set of variables in χ(v) that have non-empty annotation. We say that
internal nodes v1 and v2 are alike if there is an isomorphism between ψ restricted to χ(v1)
and ψ restricted to χ(v2) that preserves annotations and is identity over χ(v1) ∩χ(v2). (Note
that annotations of the same variable in different bags in p are the same.)

Suppose that segment p contains two internal nodes v1 and v2 such that v1 <T v2 and
v1 and v2 are alike via an isomorphism ι. Let u1 be the parent of v1, and u2 the parent of
v2. Note that u1 and u2 belong to p, and v1 ≤T u2. We can then shrink p as follows. We
replace the subtree of T rooted at v1 with the subtree of T rooted at v2, and replace each
variable x ∈ χ(u1) ∩ χ(v1) with ι(x), both in the tree decomposition and in the query. Note
that this removes all bags from pathT (v1, u2). We modify the query accordingly: we remove
all atoms that use a variable that does not occur in the modified tree decomposition.

Recalling the characterization of Claim 11, we can see that the effect this has on the
query is that for each L ∈ L(p), a subpath

Lj [sj , sj+1](xj , xj+1), Lj+1[sj+1, sj+2](xj+1, xj+2), . . . Lk−1[sk−1, sk](xk−1, xk)

with sj+1 = sk gets replaced with Lj [sj , sk](xj , xk), as shown in Figure 3. Hence, after a
single shrinking, the query still belongs to Q(SDr(Φ)). Also, the modified tree decomposition
has still width at most k and is unmeandering. Hence, the modified query belongs to Φ′

k,∞.
Finally, if the original query holds in some database, so does the modified one, with the same
witnessing mapping of variables to nodes.

We obtain ψ′ by repeatedly shrinking segments until it is no longer possible. By the
above invariants, ψ′ ∈ Φ′

k,∞ and ψ ⊆ ψ′. It remains to see that ψ′ ∈ Qk(SDr(Φ)) for some
r exponential in the size of Φ. Because we the tree decomposition corresponding to ψ′
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Figure 3 Shrinking a segment.

is unmeandering, the number of atoms in each L-path is bounded by the size of the tree
decomposition. We already know that the number of critical nodes is linear in the size of Φ.
Hence, so is the number of segments. After shrinking, no two internal bags in a segment are
alike, so the length of each segment is bounded by a function single exponential in the size of
Φ. Hence, the whole tree decomposition is of size single exponential in the size of Φ, and we
are done. ◀

Lemma 12 yields a TW-k approximation of a UC2RPQ Φ in which each C2RPQ has size
at most singly exponential in the size of Φ. As there are at most doubly exponentially many
such C2RPQs, Theorem 2 follows directly from the lemma.

Related Work
As explained in the beginning of this section, TW-k approximations for UC2RPQs have
already been constructed in [12]. Our construction has some common points, but also
differences, to the construction from [12]. In both approaches, an infinitary approximation is
constructed, which is first normalized, and then is shrunk by bounding the height of tree
decompositions. We will address these below.

Normalization of the approximation. In our case the normalization step consists in con-
structing approximations which admit unmeandering tree decompositions, while in [12]
original paths are contracted such that a bag of the tree decomposition is not revisited once
it is left. However, inside bags, atoms belonging to original paths might form cyclic paths
and they are not contracted. This is achieved by so-called tagged tree decompositions. As we
will see in the next section, the notion of unmeandering tree decomposition will be crucial for
our algorithm to efficiently evaluate UC2RPQs. As part of the algorithm, we will define a
notion of types which capture the content of bags that occur in such decompositions. While
we do not preclude the possibility to define a similar notion based on decompositions with
arbitrary bags, it would be much more cumbersome.

Shrinking of the approximation. Both approaches shrink paths of unbounded length in tree
decompositions of approximations. In our approach we annotate bags of tree decompositions
and completely remove paths between nodes which are alike w.r.t. annotations. Figueira
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and Morvan [12] annotate bags as well, using a less-constrained notion for identifying similar
bags. However, due to this less-constrained notion, it is is not possible for them to fully
remove the path between such nodes: instead, by using nice tree decompositions, they shrink
the path between two such similar nodes to a path of constant length.

4 Exploiting Semantic Treewidth

As discussed in the introduction, it is already known from [6] that UC2RPQs of bounded TW
are fpt. There, an algorithm based on computing and evaluating a witness of bounded TW
is presented. However, the treewidth of the witness might not be optimal: for a UC2RPQ
Φ of semantic TW-k, the witness query Φw from [6] might have treewidth 2k + 1. Using
standard results concerning CQ evaluation [15] and RPQ evaluation [7], it is possible to
evaluate Φw in time O(p(|Φw|)|G|2k+2)), for some polynomial p: one can first “materialize”
all the RPQs which occur in C2RPQs in Φw in the database, i.e. create a new database G′

which contains all facts L(a1, a2) such that G |= L(a1, a2), for every atom of the form L(u, v)
in Φw. This can be done in polynomial time in the size of Φw and dom(G′) = dom(G). In a
second step, Φw can be seen as a CQ of TW 2k + 1 over G′, which can then be evaluated
in time O(p(|Φw|)|G′|2k+2), where p is some polynomial. As |Φw| is bounded by a singly
exponential function in |Φ|, one obtains an algorithm for evaluating Φ which runs in time
O(g(|Φ|)|G′|2k+2), for g some singly exponential function.

On the other hand, similarly to [12], in Section 3, for every k > 1, we constructed semantic
treewidth witnesses with optimal TW in the form of TW k-approximations of size doubly
exponential in the size of Φ. Let Φk be such an approximation of a UC2RPQ Φ. Using
similar arguments as for Φw, we obtain that there must be some function g such that Φk can
be evaluated in time O(g(|Φ|)|G|k+1), with g a doubly exponential function. While in our
parameterized setting, where we expect the size of the data to be much larger than that of
the query, this is an important improvement compared to the approach based on the witness
of non-optimal TW 2k + 1, the doubly exponential combined complexity makes such an
approach prohibitive.

However, as we will show in the following, there is an algorithm for evaluating Φ in time
O(g(Φ)|G|k+1), with g a singly exponential function. The evaluation procedure uses Φ′

k,∞,
the infinitary UC2RPQ constructed in Section 3, Lemma 7, which has the nice structural
property that all its C2RPQs admit unmeandering tree decompositions. We first observe
that Φ′

k,∞ can be regarded as a union of singly exponentially many queries, where each
of these queries is an infinitary UC2RPQ which contains all C2RPQs from Φ′

k,∞ which
share some common structure, called skeleton. We achieve a compact representation of each
such UC2RPQ by means of so-called reachability queries which are queries which impose
reachability conditions from one k + 1-tuple of variables to another k + 1-tuple. In this view
a skeleton query is a tree of reachability queries, one query associated to each edge of the
tree. This makes it possible to encode the evaluation of such a query in a Datalog program
which simulates a bottom-up evaluation of the skeleton tree. As the program has width k+ 1
and singly exponential size, we obtain the above-mentioned complexity bounds.

Abstracting C2RPQs via Skeletons
Recall that each C2RPQ ϕ′ from Φ′

k,∞ is from Qk(SDl(ϕ)), for some ϕ ∈ Φ, and l > 0 and,
thus there exists a natural mapping h from var(ϕ) to var(ϕ′). Given a tree decomposition δ′

for ϕ′ one can define the set of critical nodes and segments of δ′, denoted here as crit(δ′), and
seg(δ′), as in Section 3. A segment signature σ is a tuple of the form (Lσ, dirσ), where Lσ is
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a set of regular expressions and dirσ : Lσ → {↑, ↓}. For every segment p ∈ seg(δ′), we denote
with sig(p) its segment signature defined as follows: Lsig(p) = L(p) and dirsig(p)(L) = dirp(L),
for every L ∈ Lsig(p). We denote with sig(δ′) the set of all segment signatures sig(p), where
p ∈ seg(δ′) and with sig(Φ′

k,∞) the union of all sets sig(δ′), where δ′ is an unmeandering tree
decomposition of some C2RPQ ϕ′ from Φ′

k,∞.
We introduce some further notations: an extended1 C2RPQ is a C2RPQ in which we

allow also atoms of the form L[s](v), where L is a regular expression and s ∈ states(A(L)).
For a C2RPQ θ, we denote with ext(θ) the extended C2RPQ obtained from θ by adding
atoms L[s](v) and L[s′](v′), for every atom of the form L[s, s′](v, v′) in θ. Conversely, for an
extended C2RPQ γ, we denote with bin(γ), the C2RPQ obtained from γ by maintaining
only binary atoms.

The notation var is lifted to extended C2RPQ as expected. Also, given an extended
C2RPQ θ and a set of variables V ⊆ var(θ), we denote with θV the extended C2RPQ obtained
from θ by retaining every atom from θ with all arguments from V (be it binary or unary).
Given a set of regular expressions L, and a set of variables V, CL

k+1(V) is the set of all
extended C2RPQs using regular expressions from L with at most k + 1 variables from V.

We are now ready to define the data structure which will serve as a common abstraction
for different C2RPQs from Φk,∞:

▶ Definition 13. Given ϕ′ ∈ Φk,∞ and δ′ = (T ′, χ′) a tree decomposition of ϕ′, the skeleton
of ϕ′ w.r.t. δ′, sk(ϕ′, δ′), is a triple (T, q, µ), where:
1. T = (crit(δ′), E) is the tree induced by <′

T on crit(δ′);
2. q : crit(δ′) → CLϕ′

k+1(var(ϕ′)) is the function: q(v) = ext(ϕ′)χ′(v), for v ∈ crit(δ′); and
3. µ : E → sig(δ′) is the function: µ(v1, v2) = sig(v2, v1), for (v1, v2) ∈ E.

Intuitively, sk(ϕ′, δ′) abstracts ϕ′ w.r.t. δ′ by keeping only atoms covered by critical
bags (endpoints of segments) together with new unary atoms which are pointers to the
intersection(s) of L-paths with such a bag; the inner parts of segments are replaced with
their signature (captured by edges from E labelled by µ).

Let sk(Φ′
k,∞) be the set of all sk(ϕ′, δ′), where ϕ′ is a C2RPQ from Φ′

k,∞ and δ′ is an
unmeandering tree decomposition of ϕ′. For sk ∈ sk(Φ′

k,∞), and ϕ′ from Φ′
k,∞, we say that ϕ′

abstracts to sk if there exists an unmeandering tree decomposition δ′ such that sk(ϕ′, δ′) = sk.
In the following, for every sk ∈ sk(Φ′

k,∞), we let Φsk be the UC2RPQ which is the union of
all C2RPQs from Φ′

k,∞ which abstract to sk. Thus, Φsk contains all C2RPQs which share
common structure in the form of sk.

As all disjuncts of Φ′
k,∞ are covered by some UC2RPQ of the form Φsk, with sk ∈ sk(Φ′

k,∞),
we have that:

Φ′
k,∞ =

∨
sk∈sk(Φ′

k,∞)

Φsk.

▶ Proposition 14. The set sk(Φ′
k,∞) is of size singly exponential in |Φ| and can be computed

in singly exponential time in |Φ|.

In the following, we show how each query Φsk can be reformulated into a query which
mirrors the structure of a skeleton, in the sense that it can be seen as a conjunction of queries,
one corresponding to each edge in the tree underlying the skeleton. Each such query can
be seen as a type reachability query, i.e. a query which specifies how to reach the top type
induced by the segment signature attached to an edge from the corresponding bottom type.

1 We will not define the semantics of such a C2RPQ as its purpose is to serve mainly as a syntactical
object for later constructions.
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Types and Reachability Queries
We start by defining σ-types over at most k + 1 variables, where σ is a segment signature.
Intuitively, such a type captures for every L ∈ Lσ the intersection of the L-path with a bag
in some unmeandering tree decomposition belonging to a σ-segment, be it either in the form
of an L-atom or a single variable which is visited by the path in a certain state. We use
extended C2RPQs to capture such information. In the following, we reserve a set of fresh
2k + 1 variables V = {v1, . . . v2k+1}.

▶ Definition 15. For a segment signature σ, a σ-type τ is an extended full C2RPQ from
CLσ

k+1(V) such that for every L ∈ Lσ, one of the following holds:
1. τ contains exactly one atom of the form L[s, s′](v, v′);
2. τ contains exactly one atom of the form L[s](v).

Given such a σ-type τ , based on the direction of paths in σ, we can compute enter
and exit points in the form of pairs (variable, state) for each path in σ w.r.t. τ . To
this purpose, we define functions inτ : Lσ → var(τ) ×

⋃
L∈Lσ

states(A(L)) and outτ : Lσ →
var(τ) ×

⋃
L∈Lσ

states(A(L)) as follows:
1. if τ contains an L-atom of the form L[s, s′](v, v′) and dirs(L) = ↑, then inτ (L) = (v, s)

and outτ (L) = (v′, s′);
2. if τ contains an L-atom of the form L[s, s′](v, v′) and dirs(L) = ↓, then inτ (L) = (v′, s′)

and outτ (L) = (v, s);
3. if τ contains no L-atom of the form L[s, s′](v, v′), then inτ (L) = outτ (L) = (v, s), where

L[s](v) is the unique L-atom from τ .

Conditions (1) and (2) above can be explained as follows. To build segments, types have
to be matched. With “out” we single out the node and state from which the path should
be continued in the next type and with “in” the node and state which continues the path
from a previous type; this is dependent on the direction of the path relative to the segment
it traverses. Because segments are built bottom-up, upward paths are built forward and
downward paths are built backwards. That is, for downward paths, the first argument of an
atom will have to be matched when we stack up another type; for upward paths, the second.
Constraint (3) simply ensures that paths are carried over in σ-types; it might be the case
that nothing new is added by a type to a certain path, in which case both “in” and “out”
refer to the same variable and the same state.

Building on these functions, we introduce a notion of type compatibility which captures
the idea that a σ-type τ1 is compatible with a σ-type τ2 if τ1 can be continued by τ2.

▶ Definition 16. Given a segment signature σ, and two σ-types τ1 and τ2, τ1 is compatible
with τ2 if for every L ∈ Lσ it is the case that either:
1. there is some atom of the form L[s, s′](v1, v2) ∈ τ2 ∩ τ1, or
2. inτ2(L) = outτ1(L);
Furthermore, for every v ∈ var(τ1)∩var(τ2), it must be the case that there exists some L ∈ Lσ

such that either v = v1 or v = v2 as in condition (1) above, or inτ2(L) = outτ1(L) = v.

Thus, for a type τ1 to be continuable by a type τ2 it must be the case that they either
share a common part of a path in the form of an L-atom or the ingoing L-variable of the
second type τ2 coincides with the outgoing L-variable of the first type τ1. Also, only variables
which occur in such a shared atom or are used to continue L-paths from one type to the
next, occur in both types.
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Figure 4 Constructing a skeleton query.

We will next introduce the notion of reachability query between so-called σ-types instan-
tiations. Given a type τ and a tuple of variables u⃗ such that |u⃗| = |var(τ)| (we assume that
all variables in u⃗ are distinct), the instantiation of τ with u⃗, τ(u⃗), is the extended C2RPQ
obtained from τ by replacing var(τ) with u⃗.

▶ Definition 17. Given two σ-types instantiations τ ′
1(x1) and τ ′

2(x2), a reachability query
from τ ′

1(x1) to τ ′
2(x2), denoted reach(τ ′

1(x1), τ ′
2(x2)) is the union of all C2RPQs of the form

∃y
∧

0≤i≤m

bin(τi(yi)),

where m ∈ N, m ≥ 2, and (taui(yi))1≤i≤m is a sequence of type instantiations such that:
1. τ0(y0) is τ ′

1(x1) and τm(ym) is τ ′
2(x2);

2. for every 0 ≤ i < m: τi is compatible with τi+1;
3. for every i ̸= j, 1 ≤ l ≤ |yi|, and 1 ≤ n ≤ |y|j : yi,l = yj,n iff zi,l = zj,n where zi = var(τi)

and zj = var(τj), and
4. y =

⋃
0<i<m yi \ (x1 ∪ x2).

Thus, the reachability query is a UC2RPQ with free variables x1 ∪ x2, in which each
C2RPQ can be seen as the conjunction of C2RPQs occurring in type instantiations from a
sequence of type instantiations. Condition (3) in Definition 17 asks for tuples yi and yj to
have the same intersection profile as the tuples of variables pertaining to types τi and τj ; for
example, if var(τi) = (v1, v2, v3) and var(τj) = (v2, v3, v4), then yi and yj will be of the form
(_, y1, y2) and (y1, y2,_), respectively, and yi ∩ yj = {y1, y2}.

Skeleton Queries
We now return to sk = (T, q, µ) from sk(Φ′

k,∞). We associate to every edge e = (v1, v2) ∈ E a
reachability query between the two µ(e)-type instantiations induced by v1 and v2. Recall that
for every v ∈ V , q(v) is an extended C2RPQ which contains atoms of the form L[s, s′](u, u′)
or L[s](u). For e = (v1, v2) ∈ E and i ∈ {1, 2}, we can read µ(e)-type instantiations τ i

e(xi
e)

from q(vi) by simply maintaining all L-atoms with L ∈ Lµ(e).
Let reache(x2

e,x1
e) be an abbreviation for reache(τ2

e (x2
e), τ1

e (x1
e)) and let qsk be the following

Boolean query:

∃e∈E,i∈{1,2} xi
e

∧
e∈E

reache(x2
e,x1

e).
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Figure 4 describes the construction of query qsk. On the left hand side, it depicts the
underlying skeleton sk: circles denote nodes from V with their corresponding extended
C2RPQs, while the grey quadrangles together with the colored directed paths denote segment
signatures. On the right hand side, we show how a C2RPQ from a reachability query
corresponding to an edge in the skeleton looks like.

An important observation is the following:

▶ Observation 18. For every sk ∈ sk(Φ′
k,∞), it holds that: qsk ≡ Φsk.

Proof. The query qsk is a conjunction of reachability queries, thus a conjunction of disjunc-
tions of C2RPQs. By distributing the disjunction over conjunction one obtains an equivalent
UC2RPQ Θ in which each C2RPQ is from Φ′

k,∞, and, in particular, from Φsk (as it abstracts
to sk). Conversely, each C2RPQ which abstracts to sk can be seen as a conjunction of
realizations of reachability queries over segments and thus is from Θ. ◀

As a corollary, we obtain the following:

▶ Corollary 19. For every k > 1, it is the case that Φ′
k,∞ ≡

∨
sk∈sk(Φ′

k,∞) qsk.

Using this insight, it is possible to evaluate queries of the form Φsk by means of a dynamic
programming approach based on traversing the data structure sk. The approach can be
seen as a Yannakakis-style [24] bottom-up evaluation algorithm for qsk in which we have
oracles to compute the upper end of a segment/reachability query given its lower end. We
encode both parts of the procedure, the meta-level, where segments are combined, and the
segment-specific type reachability queries, as a joint (k + 1)-Datalog program Πsk.

Datalog Encoding
We are now ready to define a Datalog rewriting ΠΦ,k for Φ∞,k. The program will have
several components. First, we assume that we have a program ΠL which contains binary
IDBs L (we slightly overload the notation, to avoid introducing new names), one for each
atom L(u, v) occurring in Φ∞,k. The purpose of the program is to materialize such atoms
w.r.t. the database. The encoding is fairly standard using rules with only two variables, so
we do not provide it here [2].

Next we define for every segment signature σ, a program Πσ which captures σ-types
and the way they can be interlinked to build segments. We start by introducing IDBs
corresponding to types. For every σ-type τ , we will have an IDB of the form I[τ ] with
arity |var(τ)|. Furthermore, for every such type we denote with exitτ the set of all variables
from var(τ) which are exit variable for some path L ∈ L(p), i.e. there exist some state s
such that outτ (L) = (v, s). Then, for such a type and every set of variables v′ such that
exit(τ) ⊆ v′ ⊂ var(τ) we will have an IDB predicate I[τ,v′] of arity |v′|. Intuitively, the
predicate stands for projections of a type; it collects instances of the (sub-)type in the
database. For every set of variables v′ such that exit(τ) ⊆ v′ ⊂ var(τ), program Πσ contains
a rule of the form:

I[τ ](var(τ)) → I[τ,v′](v′) (1)

We next provide a rule for combining σ-types. For every two σ-types τ1 and τ2 such that
τ1 is compatible with τ2, let v = var(τ1) ∩ var(τ2). Then we add the following rule to Πσ:

I[τ1,v](v), bin(τ2) → I[τ2](var(τ2)) (2)
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Intuitively, to keep the width of the program bounded by k+1, when combining compatible
types, we first project the first type on the variables relevant for matching, i.e. those
variables which occur also in the second type. We remark that although var(bin(τ2)) might
not contain all variables from var(τ2), the conditions on type compatibility ensure that
v ∪ var(bin(τ2)) = var(τ2). In particular, v contains all those variables from var(τ2) for which
there is no L-atom in bin(τ2), but are used to carry over information about L-paths by means
of unary L-atoms in τ2.

We next provide for every sk ∈ sk(Φk,∞), rules which, building on the axiomatizations of
previously introduced IDBs, encode the query Φsk, by simulating a bottom-up evaluation of
the equivalent query qsk. We denote the set of such rules as Πsk.

Let sk = (T, q, µ) with T = (V,E) and r being the root of T . Recall that each edge
e = (v1, v2) in E stands for a type reachability query reache(τ2

e (x2
e), τ1

e (x1
e)), where τ i

e is the
type instantiation induced by µ(e) and q(vi), for i ∈ {1, 2}. Each node v ∈ V is in the scope
of several such type reachability queries: some correspond to edges of the form (v′, v), and
at most one such a query corresponds to an edge of the form (v, v′). For a node v which is
not a leaf, we denote with Ev the set of edges of the form (v′, v) and with low(v) the set of
type instantiations corresponding to the second argument of such an edge: {τ2

e (x2
e) | e ∈ Ev}.

Also, for a node v which is not the root, let ev be the unique edge (v, v′) and τv(xv) be
the type instantiation corresponding to the first argument of ev (i.e. an abbreviation for
τ1

ev
(x1

ev
)).

There are three types of rules in the definition of Πsk: those pertaining to leaves of T ,
one rule pertaining to the root, and rules pertaining to the other nodes. We start with
the first type. For every node v ∈ V which is a leaf of T , we define a rule which seeds the
type instantiation τv(xv). Note that there might be variables in xv which do not occur in
bin(τv(xv)). To initialize such variables we assume that we have a built-in unary predicate
dom() which binds a variable to the domain of the given database. Assuming that v1, . . . , vl

are those dangling variables, our rule is as follows:

bin(τv(xv)), dom(v1), . . . , dom(vl) → I[τv](xv) (3)

We move on to nodes v ∈ V which are neither leaves, nor the root of T . For such nodes,
both τv(xv) and low(v) are defined. Assuming low(v) = {τ1(x1), . . . , τl(xl)} we add the
folowing rule to Πsk:

I[τ1](x1), . . . , I [τl](xl), bin(τv(xv)) → I[τv](xv) (4)

Rule 4 intersects the IDBs corresponding to the top ends of segments coming from below
to populate the IDB corresponding to the bottom end of the segment going upwards. Finally,
we move on to the root node of T , r. Assuming low(r) = {τ1(x1), . . . , τl(xl)} we add the
folowing rule to Πsk:

I[τ1](x1), . . . , I [τl](xl) → true (5)

Note that rules of type (4) and (5) as above have width at most k+ 1 as all xi-s are from
some var(q(v)), with v ∈ V .

Finally, let

ΠΦ,k = ΠL ∪
⋃

σ∈sig(Φ′
k,∞)

Πσ ∪
⋃

sk∈sk(Φ′
k,∞)

Πsk

The following proposition follows from Proposition 14 and the fact that there are singly
exponentially many segment signatures, and for each segment signature σ, singly exponentially
many σ-types:
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▶ Proposition 20. For Φ a Boolean UC2RPQ, and for every k > 1, the Datalog program
ΠΦ,k is of width k + 1, has size singly exponential in |Φ| and can be constructed in singly
exponential time in |Φ|.

Further on, we show that the program ΠΦ,k encodes TW k approximations:

▶ Proposition 21. For Φ a Boolean UC2RPQ, k > 1, and G be a graph database, it is the
case that: G |= Φ′

k,∞ iff (G,ΠΦ,k) |= true.

Proposition 20 and Proposition 21 together with complexity results on evaluation of
Datalog programs of width k + 1, yield our main result:

▶ Theorem 22. Let G be a graph database and Φ be a Boolean UC2RPQ of semantic TW k

with k > 1. Then, Φ be evaluated in time O(f(|Φ|)|G|k+1), where f is a singly exponential
function.

Related Work
The skeleton queries we constructed in this section have connections both to the witness
queries Φw constructed in [20] discussed at the beginning of this section and to the so-called
summary queries introduced in [12].

Figueira and Morvan [12] introduce so-called summary queries which are exponentially
more succinct representations of their TW-k approximations. To this purpose, they introduce
so-called path-l approximations which are queries whose semantics is defined in terms of
infinitary C2RPQs which admit a path-l decomposition, where a path decomposition is
defined to be any tree decomposition whose underlying tree is a path. Our notions of skeleton
queries and type reachability queries are based on similar intuitions, with the difference that
our queries are retricted to those which admit unmeandering tree decompositions, and thus
we have a clear notion of types and how they can be chained in a type reachability query.

Romero et. al [20] essentially construct witness queries of TW 2k+ 1 by first constructing
infinitary TW-k approximations using sub-divisions and quotients. In a subsequent step, they
identify a set of nodes which correspond to our set of critical nodes, and contract paths by
considering only their intersection with this set of critical nodes. By virtue of this contraction
operation, they obtain tree decompositions of TW 2k + 1: intuitively, each two critical nodes
which are top and bottom end of some segment are merged giving rise to a bag in the new
tree decomposition. Each of our skeleton queries can be seen as the TW-k approximation of
such a C2RPQ of TW 2k + 1 belonging to Φw, as instead of contracting the paths between
two critical nodes, we consider all their realizations via paths of width k.

5 Summary and Outlook

In this paper we looked at the problem of efficient evaluation of UC2RPQs of bounded
semantic treewidth. Previous approaches based on computing a witness of semantic TW k

of doubly ponential size were running in time O(f(|Φ|)|G|k+1), with f a doubly exponential
function, where Φ is the size of the UC2RPQ and |G| is the size of the graph database. We
showed that it is possible to evaluate such UC2RPQs in time O(g(|Φ|)|G|k+1), with g a
singly exponential function. We did this by encoding the evaluation problem into a Datalog
program of singly exponential size and width k + 1.

Besides the improvement in worst-case running time, the Datalog encoding also opens
the way for practical approaches to evaluating UC2RPQs levaraging the plethora of available
Datalog engines.
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As open questions, a major one is a full characterisation of fixed parameter tractability
of UC2RPQs, in particular establishing lower bounds. Another question concerns the
precise complexity of computing semantic treewidth: for now it is known [12] that it is
ExpSpace-hard and in 2ExpSpace.
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Abstract
Given a (natural) join with an acyclic set of degree constraints (the join itself does not need
to be acyclic), we show how to draw a uniformly random sample from the join result in
O(polymat/ max{1, OUT}) expected time (assuming data complexity) after a preprocessing phase
of O(IN) expected time, where IN, OUT, and polymat are the join’s input size, output size, and
polymatroid bound, respectively. This compares favorably with the state of the art (Deng et al. and
Kim et al., both in PODS’23), which states that, in the absence of degree constraints, a uniformly
random sample can be drawn in Õ(AGM/ max{1, OUT}) expected time after a preprocessing phase
of Õ(IN) expected time, where AGM is the join’s AGM bound and Õ(.) hides a polylog(IN) factor.
Our algorithm applies to every join supported by the solutions of Deng et al. and Kim et al.
Furthermore, since the polymatroid bound is at most the AGM bound, our performance guarantees
are never worse, but can be considerably better, than those of Deng et al. and Kim et al.

We then utilize our techniques to tackle directed subgraph sampling, a problem that has extensive
database applications and bears close relevance to joins. Let G = (V, E) be a directed data graph
where each vertex has an out-degree at most λ, and let P be a directed pattern graph with a constant
number of vertices. The objective is to uniformly sample an occurrence of P in G. The problem
can be modeled as join sampling with input size IN = Θ(|E|) but, whenever P contains cycles,
the converted join has cyclic degree constraints. We show that it is always possible to throw away
certain degree constraints such that (i) the remaining constraints are acyclic and (ii) the new join
has asymptotically the same polymatroid bound polymat as the old one. Combining this finding
with our new join sampling solution yields an algorithm to sample from the original (cyclic) join
(thereby yielding a uniformly random occurrence of P ) in O(polymat/ max{1, OUT}) expected time
after O(|E|) expected-time preprocessing, where OUT is the number of occurrences.
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1 Introduction

In relational database systems, (natural) joins are acknowledged as notably computation-
intensive, with its cost surging drastically in response to expanding data volumes. In
the current big data era, the imperative to circumvent excessive computation increasingly
overshadows the requirement for complete join results. A myriad of applications, including
machine learning algorithms, online analytical processing, and recommendation systems,
can operate effectively with random samples. This situation has sparked research initiatives
focused on devising techniques capable of producing samples from a join result significantly
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faster than executing the join in its entirety. In the realm of graph theory, the significance of
join operations is mirrored in their intrinsic connections to subgraph listing, a classical problem
that seeks to pinpoint all the occurrences of a pattern P (for instance, a directed 3-vertex
cycle) within a data graph G (such as a social network where a directed edge symbolizes
a “follow” relationship). Analogous to joins, subgraph listing demands a vast amount of
computation time, which escalates rapidly with the sizes of G and P . Fortunately, many
social network analyses do not require the full set of occurrences of P , but can function well
with only samples from those occurrences. This has triggered the development of methods
that can extract samples considerably faster than finding all the occurrences.

This paper will revisit join sampling and subgraph sampling under a unified “degree-
constrained framework”. Next, we will first describe the framework formally in Section 1.1,
review the previous results in Section 1.2, and then overview our results in Section 1.3.

1.1 Problem Definitions
Join Sampling. Let att be a finite set, with each element called an attribute, and dom be
a countably infinite set, with each element called a value. For a non-empty set X ⊆ att of
attributes, a tuple over X is a function u : X → dom. For any non-empty subset Y ⊆ X , we
define u[Y] – the projection of u on Y – as the tuple v over Y satisfying v(Y ) = u(Y ) for
every attribute Y ∈ Y.

A relation R is a set of tuples over the same set Z of attributes; we refer to Z as the
schema of R and represent it as schema(R). The arity of R is the size of schema(R). For any
subsets X and Y of schema(R) satisfying X ⊂ Y (note: X is a proper subset of Y), define:

degY|X (R) = max
tuple u over X

∣∣∣{v[Y] | v ∈ R, v[X ] = u
}∣∣∣. (1)

For an intuitive explanation, imagine grouping the tuples of R by X and counting, for each
group, how many distinct Y-projections are formed by the tuples therein. Then, the value
degY|X (R) corresponds to the maximum count of all groups. It is worth pointing out that,
when X = ∅, then degY|X (R) is simply |ΠY(R)| where Π is the standard “projection” operator
in relational algebra. If in addition Y = schema(R), then degY|X (R) equals |R|.

We define a join as a set Q of relations (some of which may have the same schema).
Let schema(Q) be the union of the attributes of the relations in Q, i.e., schema(Q) =⋃

R∈Q schema(R). Focusing on “data complexity”, we consider only joins where both Q and
schema(Q) have constant sizes. The result of Q is a relation over schema(Q) formalized as:

join(Q) = {tuple u over schema(Q) | ∀R ∈ Q : u[schema(R)] ∈ R}.

Define IN =
∑

R∈Q |R| and OUT = |join(Q)|. We will refer to IN and OUT as the input
size and output size of Q, respectively.

A join sampling operation returns a tuple drawn uniformly at random from join(Q) or
declares join(Q) = ∅. All such operations must be mutually independent. The objective of
the join sampling problem is to preprocess the input relations of Q into an appropriate data
structure that can be used to perform join-sampling operations repeatedly.

We study the problem in the scenario where Q conforms to a set DC of degree constraints.
Specifically, each degree constraint has the form (X ,Y, NY|X ) where X and Y are subsets of
schema(Q) satisfying X ⊂ Y and NY|X ≥ 1 is an integer. A relation R ∈ Q is said to guard
the constraint (X ,Y, NY|X ) if

Y ⊆ schema(R), and degY|X (R) ≤ NY|X .
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The join Q is consistent with DC – written as Q |= DC – if every degree constraint in DC
is guarded by at least one relation in Q. It is safe to assume that DC does not have two
constraints (X ,Y, NY|X ) and (X ′,Y ′, NY′|X ′) with X = X ′ and Y = Y ′; otherwise, assuming
NY|X ≤ NY′|X ′ , the constraint (X ′,Y ′, NY′|X ′) is redundant and can be removed from DC.

In this work, we concentrate on “acyclic” degree dependency. To formalize this notion,
let us define a constraint dependency graph GDC as follows. This is a directed graph whose
vertex set is schema(Q) (i.e., each vertex of GDC is an attribute in schema(Q)). For each
degree constraint (X ,Y, NY|X ) such that X ̸= ∅, we add a (directed) edge (X, Y ) to GDC
for every pair (X, Y ) ∈ X × (Y − X ). We say that the set DC is acyclic if GDC is an acyclic
graph; otherwise, DC is cyclic.

It is important to note that each relation R ∈ Q implicitly defines a special degree
constraint (X ,Y, NY|X ) where X = ∅, Y = schema(R), and NY|X = |R|. Such a constraint –
known as a cardinality constraint – is always assumed to be present in DC. As all cardinality
constraints have X = ∅, they do not affect the construction of GDC. Consequently, if DC only
contains cardinality constraints, then GDC is empty and hence trivially acyclic. Moreover,
readers should avoid the misconception that “an acyclic GDC implies Q being an acyclic
join”; these two acyclicity notions are unrelated. While the definition of an acyclic join is not
needed for our discussion, readers unfamiliar with this term may refer to [2, Chapter 6.4].

Directed Graph Sampling. We are given a data graph G = (V, E) and a pattern graph
P = (VP , EP ), both being simple directed graphs. The pattern graph is weakly-connected1

and has a constant number of vertices. A simple directed graph Gsub = (Vsub, Esub) is a
subgraph of G if Vsub ⊆ V and Esub ⊆ E. The subgraph Gsub is an occurrence of P if they
are isomorphic, namely, there is a bijection f : Vsub → VP such that, for any distinct vertices
u1, u2 ∈ Vsub, there is an edge (u1, u2) ∈ Esub if and only if (f(u1), f(u2)) is an edge in EP .
We will refer to f as a isomorphism bijection between P and Gsub.

A subgraph sampling operation returns an occurrence of P in G uniformly at random or
declares the absence of any occurrence. All such operations need to be mutually independent.
The objective of the subgraph sampling problem is to preprocess G into a data structure that
can support every subgraph-sampling operation efficiently. We will study the problem under
a degree constraint: every vertex in G has an out-degree at most λ.

Math Conventions. For an integer x ≥ 1, the notation [x] denotes the set {1, 2, ..., x};
as a special case, [0] represents the empty set. Every logarithm log(·) has base 2, and
function exp2(x) is defined to be 2x. We use double curly braces to represent multi-sets, e.g.,
{{1, 1, 1, 2, 2, 3}} is a multi-set with 6 elements.

1.2 Related Work
Join Computation. Any algorithm correctly answering a join query Q must incur Ω(OUT)
time just to output the OUT tuples in join(Q). Hence, finding the greatest possible value of
OUT is an imperative step towards unraveling the time complexity of join evaluation. A
classical result in this regard is the AGM bound [6]. To describe this bound, let us define the
schema graph of Q as a multi-hypergraph G = (V, E) where

V = schema(Q), and E = {{schema(R) | R ∈ Q}}. (2)

1 Namely, if we ignore the edge directions, then P becomes a connected undirected graph.
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Note that E is a multi-set because the relations in Q may have identical schemas. A
fractional edge cover of G is a function w : E → [0, 1] such that, for any X ∈ V , it holds that∑

F ∈E:X∈F w(F ) ≥ 1 (namely, the total weight assigned to the hyperedges covering X is at
least 1). Atserias, Grohe, and Marx [6] showed that, given any fractional edge cover, it always
holds that OUT ≤

∏
F ∈E |RF |w(F ), where RF is the relation in Q whose schema corresponds

to the hyperedge F . The AGM bound is defined as AGM (Q) = minw

∏
F ∈E |RF |w(F ).

The AGM bound is tight: given any hypergraph G = (V, E) and any set of positive
integers {NF | F ∈ E}, there is always a join Q such that Q has G as the schema graph,
|RF | = |NF | for each F ∈ E , and the output size OUT is Θ(AGM (Q)). This has motivated
the development of algorithms [5, 13, 20, 22, 24, 27, 30–33, 36] that can compute join(Q) in
Õ(AGM (Q)) time – where Õ(.) hides a factor polylogarithmic to the input size IN of Q –
and therefore are worst-case optimal up to an Õ(1) factor.

However, the tightness of the AGM bound relies on the assumption that all the degree
constraints on Q are purely cardinality constraints. In reality, general degree constraints are
prevalent, and their inclusion could dramatically decrease the maximum output size OUT.
This observation has sparked significant interest [12,16,20,21,23,24,29,34] in establishing
refined upper bounds on OUT tailored for more complex degree constraints. Most notably,
Khamis et al. [24] proposed the entropic bound, which is applicable to any set DC of degree
constraints and is tight in a strong sense (see Theorem 5.5 of [34]). Unfortunately, the
entropic bound is difficult to compute because it requires solving a linear program (LP)
involving infinitely many constraints (it remains an open problem whether the computation
is decidable). Not coincidentally, no join algorithm is known to have a running time matching
the entropic bound.

To circumvent the above issue, Khamis et al. [24] introduced the polymatroid bound as an
alternative, which we represent as polymat(DC) because this bound is fully decided by DC
(i.e., any join Q |= DC must satisfy OUT ≤ polymat(DC)). Section 2 will discuss polymat(DC)
in detail; for now, it suffices to understand that (i) the polymatroid bound, although possibly
looser than the entropic bound, never exceeds the AGM bound, and (ii) polymat(DC) can be
computed in O(1) time under data complexity. Khamis et al. [24] proposed an algorithm
named PANDA that can evaluate an arbitrary join Q |= DC in time Õ(polymat(DC)).

Interestingly, when DC is acyclic, the entropic bound is equivalent to the polymatroid
bound [29]. In this scenario, Ngo [29] presented a simple algorithm to compute any join
Q |= DC in O(polymat(DC)) time, after a preprocessing of O(IN) expected time.

Join Sampling. For an acyclic join (not to be confused with a join having an acyclic
set of degree constraints), it is possible to sample from the join result in constant time,
after a preprocessing of O(IN) expected time [38]. The problem becomes more complex
when dealing with an arbitrary (cyclic) join Q, with the latest advancements presented
in two PODS’23 papers [13, 25]. Specifically, Kim et al. [25] described how to sample in
Õ(AGM (Q)/ max{1, OUT}) expected time, after a preprocessing of Õ(IN) time. Deng et
al. [13] achieved the same guarantees using different approaches, and offered a rationale
explaining why the expected sample time O(AGM (Q)/OUT) can no longer be significantly
improved, even when 0 < OUT≪ AGM (Q), subject to commonly accepted conjectures. We
refer readers to [3,9,10,13,25,38] and the references therein for other results (now superseded)
on join sampling.

Subgraph Listing. Let us start by clarifying the fractional edge cover number ρ∗(P ) of a
simple undirected pattern graph P = (VP , EP ). Given a fractional edge cover of P (i.e.,
function w : EP → [0, 1] such that, for any vertex X ∈ VP , we have

∑
F ∈EP :X∈F w(F ) ≥ 1),
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define
∑

F ∈EP
w(F ) as the total weight of w. The value of ρ∗(P ) is the smallest total weight

of all fractional edge covers of P . Given a directed pattern graph P , we define its fractional
edge cover number ρ∗(P ) as the value ρ∗(P ′) of the corresponding undirected graph P ′ that
is obtained from P by ignoring all the edge directions.

When P has a constant size, it is well-known [4,6] that any data graph G = (V, E) can
encompass O(|E|ρ∗(P )) occurrences of P . This upper bound is tight: for any integer m, there
is a data graph G = (V, E) with |E| = m edges that has Ω(mρ∗(P )) occurrences of P . Thus,
a subgraph listing algorithm is considered worst-case optimal if it finishes in Õ(|E|ρ∗(P ))
time.

It is well-known that subgraph listing can be converted to a join Q on binary relations
(namely, relations of arity 2). The join Q has an input size of IN = Θ(|E|), and its AGM
bound is AGM (Q) = Θ(|E|ρ∗(P )). All occurrences of P in G can be derived from join(Q)
for free. Thus, any Õ(AGM (Q))-time join algorithm is essentially worst-case optimal for
subgraph listing.

Assuming P and G to be directed, Jayaraman et al. [18] presented interesting enhancement
over the above transformation in the scenario where each vertex of G has an out-degree
at most λ. The key lies in examining the polymatroid bound of the join Q derived from
subgraph listing. As will be explained in Section 4, this join Q has a set DC of degree
constraints whose constraint dependency graph GDC coincides with P . Jayaraman et al.
developed an algorithm that lists all occurrences of Q in G in O(polymat(DC)) time (after a
preprocessing of O(IN) expected time) and confirmed that this is worst-case optimal. Their
findings are closely related to our work, and we will delve into them further when their
specifics become crucial to our discussion.

There is a substantial body of literature on bounding the cost of subgraph listing using
parameters distinct from those already mentioned. These studies typically concentrate on
specific patterns (such as paths, cycles, and cliques) or particular graphs (for instance, those
that are sparse under a suitable metric). We refer interested readers to [1, 7, 8, 11,14,17,19,
26,28,35] and the references therein.

Subgraph Sampling. Fichtenberger, Gao, and Peng [15] described how to sample an
occurrence of the pattern P in the data graph G in O(|E|ρ∗(P )/ max{1, OUT}) expected
time, where OUT is the number of occurrences of P in G, after a preprocessing of O(|E|)
expected time. In [13], Deng et al. clarified how to deploy an arbitrary join sampling algorithm
to perform subgraph sampling; their approach ensures the same guarantees as in [15], baring
an Õ(1) factor.

1.3 Our Results
For any join Q with an acyclic set DC of degree constraints, we will demonstrate in Section 3
how to extract a uniformly random sample from join(Q) in O(polymat(DC)/ max{1, OUT})
expected time, following an initial preprocessing of O(IN) expected time. This performance
is favorable when compared to the recent results of [13,25] (reviewed in Section 1.2), which
examined settings where DC consists only of cardinality constraints and is therefore trivially
acyclic. As polymat(DC) is at most but can be substantially lower than AGM (Q), our
guarantees are never worse, but can be considerably better, than those in [13,25].

What if DC is cyclic? An idea, proposed in [29], is to discard enough constraints to make
the remaining set DC′ of constraints acyclic (while ensuring Q |= DC′). Our algorithm can
then be applied to draw a sample in O(polymat(DC′)/ max{1, OUT}) time. However, this can
be unsatisfactory because polymat(DC′) can potentially be much larger than polymat(DC).
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Our next contribution is to prove that, interestingly, the issue does not affect subgraph
listing/sampling. Consider first directed subgraph listing, defined by a pattern graph P and a
data graph G where every vertex has an out-degree at most λ. This problem can be converted
to a join Q on binary relations, which is associated with a set DC of degree constraints such
that the constraint dependency graph GDC is exactly P . Consequently, whenever P contains
a cycle, so does GDC, making DC cyclic. Nevertheless, we will demonstrate in Section 4 the
existence of an acyclic set DC′ ⊂ DC ensuring Q |= DC′ and polymat(DC) = Θ(polymat(DC′)).
This “magical” DC′ has an immediate implication: Ngo’s join algorithm in [29], when applied
to Q and DC′ directly, already solves directed subgraph listing optimally in O(polymat(DC′))
= O(polymat(DC)) time. This dramatically simplifies – in terms of both procedure and
analysis – an algorithm of Jayaraman et al. [18] (for directed subgraph listing, reviewed in
Section 1.2) that has the same guarantees.

The same elegance extends to directed subgraph sampling: by applying our new join
sampling algorithm to Q and the “magical” DC′, we can sample an occurrence of P in G using
O(polymat(DC)/ max{1, OUT}) expected time, after a preprocessing of O(|E|) expected time.
As polymat(DC) never exceeds but can be much lower than AGM (Q) = Θ(|E|ρ∗(P )), our
result compares favorably with the state of the art [13,15,25] reviewed in Section 1.2.

In the full version of this paper [37], we will prove similar results for undirected subgraph
sampling and demonstrate how our techniques can be significantly simplified in that sce-
nario. By virtue of the power of sampling, our findings have further implications on other
fundamental problems including output-size estimation, output permutation, and small-delay
enumeration, as discussed in Section 5.

2 Preliminaries

Set Functions, Polymatroid Bounds, and Modular Bounds. Suppose that S is a finite
set. We refer to a function h : 2S → R≥0 as a set function over S, where R≥0 is the set of
non-negative real values. Such a function h is said to be

zero-grounded if h(∅) = 0;
monotone if h(X ) ≤ h(Y) for all X ,Y satisfying X ⊆ Y ⊆ S;
modular if h(X ) =

∑
A∈X h({A}) holds for any X ⊆ S;

submodular if h(X ∪ Y) + h(X ∩ Y) ≤ h(X ) + h(Y) holds for any X ,Y ⊆ S.
Define:

MS = the set of modular set functions over S
ΓS = the set of set functions over S that are zero-grounded, monotone, submodular

Note that every modular function must be zero-grounded and monotone. Clearly, MS ⊆ ΓS .
Consider C to be a set of triples, each having the form (X ,Y, NY|X ) where X ⊂ Y ⊆ S

and NY|X ≥ 1 is an integer. We will refer to C as a rule collection over S and to each triple
therein as a rule. Intuitively, the presence of a rule collection is to instruct us to focus only
on certain restricted set functions. Formally, these are the set functions in:

HC =
{

set function h over S | h(Y)− h(X ) ≤ log NY|X , ∀(X ,Y, NY|X ) ∈ C
}

. (3)

The polymatroid bound of C can now be defined as

polymat(C) = exp2

(
max

h∈ΓS ∩HC
h(S)

)
. (4)

Recall that exp2(x) = 2x. Similarly, the modular bound of C is defined as

modular(C) = exp2

(
max

h∈MS ∩HC
h(S)

)
. (5)
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Join Output Size Bounds. Let us fix a join Q whose schema graph is G = (V, E). Suppose
that Q is consistent with a set DC of degree constraints, i.e., Q |= DC. As explained in
Section 1.1, we follow the convention that each relation of Q implicitly inserts a cardinality
constraint (i.e., a special degree constraint) to DC. Note that the set DC is merely a rule
collection over V. The following lemma was established by Khamis et al. [24]:

▶ Lemma 1 ([24]). The output size OUT of Q is at most polymat(DC), i.e., the polymatroid
bound of DC (as defined in (4)).

How about modular(DC), i.e., the modular bound of V? As MV ⊆ ΓV , we have
modular(DC) ≤ polymat(DC) and the inequality can be strict in general. However, an
exception arises when DC is acyclic, as proved in [29]:

▶ Lemma 2 ([29]). When DC is acyclic, it always holds that modular(DC) = polymat(DC),
namely, maxh∈ΓV ∩HDC h(V) = maxh∈MV ∩HDC h(V).

As a corollary, when DC is acyclic, the value of modular(DC) always serves as an upper
bound of OUT. In our technical development, we will need to analyze the set functions
h∗ ∈ ΓV that realize the polymatriod bound, i.e., h∗(V) = maxh∈ΓV ∩HDC h(V). A crucial
advantage provided by Lemma 2 is that we can instead scrutinize those set functions
h∗ ∈ MV realizing the modular bound, i.e., h∗(V) = maxh∈MV ∩HDC h(V). Compared to
their submodular counterparts, modular set functions exhibit more regularity because every
h ∈ MV is fully determined by its value h({A}) on each individual attribute A ∈ V. In
particular, for any h ∈ MV ∩HDC, it holds true that h(Y)− h(X ) =

∑
A∈Y−X h(A) for any

X ⊂ Y ⊆ V . If we associate each A ∈ V with a variable νA, then maxh∈MV ∩HDC h(V) – hence,
also maxh∈ΓV ∩HDC h(V) – is precisely the optimal value of the following LP:

modular LP max
∑

A∈V νA subject to∑
A∈Y−X

νA ≤ log NY|X ∀(X ,Y, NY|X ) ∈ DC

νA ≥ 0 ∀A ∈ V

We will also need to work with the LP’s dual. Specifically, if we associate a variable δY|X for
every degree constraint (X ,Y, NY|X ) ∈ DC, then the dual LP is:

dual modular LP min
∑

(X ,Y,NY|X )∈DC
δY|X · log NY|X subject to

∑
(X ,Y,NY|X )∈DC

A∈Y−X

δY|X ≥ 1 ∀A ∈ V

δY|X ≥ 0 ∀(X ,Y, NY|X ) ∈ DC

3 Join Sampling under Acyclic Degree Dependency

This section serves as a proof of our first main result:

▶ Theorem 3. For any join Q consistent with an acyclic set DC of degree constraints, we
can build in O(IN) expected time a data structure that supports each join sampling operation
in O(polymat(DC)/ max{1, OUT}) expected time, where IN and OUT are the input and out
sizes of Q, respectively, and polymat(DC) is the polymatroid bound of DC.
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Basic Definitions. Let G = (V, E) be the schema graph of Q, and GDC be the constraint
dependency graph determined by DC. For each hyperedge F ∈ E , we denote by RF the
relation whose schema corresponds to F . Recall that every constraint (X ,Y, NY|X ) ∈ DC is
guarded by at least one relation in Q. Among them, we arbitrarily designate one relation as
the constraint’s main guard, whose schema is represented as F (X ,Y) (the main guard can
then be conveniently identified as RF (X ,Y)).

Set k = |V|. As GDC is a DAG (acyclic directed graph), we can order its k vertices
(i.e., attributes) into a topological order: A1, A2, ..., Ak. For each i ∈ [k], define Vi =
{A1, A2, ..., Ai}; specially, define V0 = ∅. For any i ∈ [k], define

DC(Ai) = {(X ,Y, NY|X ) ∈ DC | Ai ∈ Y − X} (6)

Fix an arbitrary i ∈ [k] and an arbitrary constraint (X ,Y, NY|X ) ∈ DC(Ai). Given a
tuple w over Vi−1 (note: if i = 1, then Vi−1 = ∅ and w is a null tuple) and a value a ∈ dom,
we define a “relative degree” for a as:

reldegi,X ,Y(w, a) =
∣∣σAi=a(ΠY(RF (X ,Y) ⋉ w))

∣∣∣∣ΠY(RF (X ,Y) ⋉ w)
∣∣ (7)

where σ and ⋉ are the standard selection and semi-join operators in relational algebra,
respectively. To understand the intuition behind reldegi,X ,Y(w, a), imagine drawing a tuple
u from ΠY(RF (X ,Y) ⋉ w) uniformly at random; then reldegi,X ,Y(w, a) is the probability to
see u(Ai) = a. Given a tuple w over Vi−1 and a value a ∈ dom, define

reldeg∗
i (w, a) = max

(X ,Y,NY|X )∈DC(Ai)
reldegi,X ,Y(w, a) (8)

constraint∗
i (w, a) = arg max

(X ,Y,NY|X )∈DC(Ai)
reldegi,X ,Y(w, a). (9)

Specifically, constraint∗
i (w, a) returns the constraint (X ,Y, NY|X ) ∈ DC(Ai) satisfying the

condition reldegi,X ,Y(w, a) = reldeg∗
i (w, a). If more than one constraint meets this condition,

define constraint∗
i (w, a) to be an arbitrary one among those constraints.

Henceforth, we will fix an arbitrary optimal solution {δY|X | (X ,Y, NY|X ) ∈ DC} to the
dual modular LP in Section 2. Thus:∏

(X ,Y,NY|X )∈DC

N
δY|X
Y|X = exp2

( ∑
(X ,Y,NY|X )∈DC

δY|X · log NY|X

)
= exp2

(
max

h∈MV ∩HDC
h(V)

)
(by (5)) = modular(DC)

(by Lemma 2) = polymat(DC). (10)

Finally, for any i ∈ [0, k] and any tuple w over Vi, define:

Bi(w) =
∏

(X ,Y,NY|X )∈DC

(
degY|X (RF (X ,Y) ⋉ w)

)δY|X . (11)

Two observations will be useful later:
If i = 0, then w is a null tuple and B0(null) =

∏
(X ,Y,NY|X )∈DC(degY|X (RF (X ,Y)))δY|X ,

which is at most
∏

(X ,Y,NY|X )∈DC N
δY|X
Y|X = polymat(DC).

If i = k and w ∈ join(Q), then RF (X ,Y) ⋉ w contains exactly one tuple for any
(X ,Y, NY|X ) ∈ DC and thus Bk(w) = 1.
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Algorithm 1 Our sampling algorithm.

ADC-sample
0. A1, A2, ..., Ak ← a topological order of GDC
1. w0 ← a null tuple
2. for i = 1 to k do
3. pick a constraint (X ◦,Y◦, NY◦|X ◦) uniformly at random from DC(Ai)
4. u◦ ← a tuple chosen uniformly at random from ΠY◦(RF (X ◦,Y◦) ⋉ wi−1)

/* note: if i = 1, then RF (X ◦,Y◦) ⋉ wi−1 = RF (X ◦,Y◦) */
5. ai ← u◦(Ai)
6. if (X ◦,Y◦, NY◦|X ◦) ̸= constraint∗

i−1(wi−1, ai) then declare failure
7. wi ← the tuple over Vi formed by concatenating wi−1 with ai

8. declare failure with probability 1− ppass(i, wi−1, wi), where ppass is given in (12)
9. if wk[F ] ∈ RF for ∀F ∈ E then /* that is, wk ∈ join(Q) */
10. return wk

Algorithm. Our sampling algorithm, named ADC-sample, is presented in Algorithm 1. At a
high level, it processes one attribute at a time according to the topological order A1, A2, ..., Ak.
The for-loop in Lines 2–9 finds a value ai for attribute Ai (i ∈ [k]). The algorithm may fail
to return anything, but when it succeeds (i.e., reaching Line 10), the values a1, a2, ..., ak will
make a uniformly random tuple from join(Q).

Next, we explain the details of the for-loop. The loop starts with values a1, a2, ..., ai−1
already stored in a tuple wi−1 (i.e., wi−1(Aj) = aj for all j ∈ [i − 1]). Line 3 randomly
chooses a degree constraint (X ◦,Y◦, NY◦|X ◦) from DC(Ai); see (6). Conceptually, next we
identify the main guard RF (X ◦,Y◦) of this constraint, semi-join the relation with wi−1, and
project the semi-join result on Y◦ to obtain ΠY◦(RF (X ◦,Y◦) ⋉wi−1). Then, Line 4 randomly
chooses a tuple u◦ from ΠY◦(RF (X ◦,Y◦) ⋉ wi−1) and Line 5 takes u◦(Ai) as the value of ai

(note: Ai ∈ Y◦−X ◦ ⊆ Y◦). Physically, however, we do not compute ΠY◦(RF (X ◦,Y◦) ⋉wi−1)
during the sample process. Instead, with proper preprocessing (discussed later), we can
acquire the value ai in O(1) time. Continuing, Line 6 may declare failure and terminate ADC-
sample, but if we get past this line, (X ◦,Y◦, NY◦|X ◦) must be exactly constraint∗

i (wi−1, ai);
see (9). As clarified later, the check at Line 6 can be performed in O(1) time. We now form
a tuple wi that takes value aj on attribute Aj for each j ∈ [i] (Line 7). Line 8 allows us to
pass with probability

ppass(i, wi−1, wi) = Bi(wi)
Bi−1(wi−1) ·

1
reldeg∗

i (wi−1, wi(Ai))
(12)

or otherwise terminate the algorithm by declaring failure. As proved later, ppass(i, wi−1, wi)
cannot exceed 1 (Lemma 4); moreover, this value can be computed in O(1) time. The overall
execution time of ADC-sample is constant.

Analysis. Next we prove that the value in (12) serves as a legal probability value.

▶ Lemma 4. For every i ∈ [k], we have ppass(i, wi−1, wi) ≤ 1.

Proof. Consider an arbitrary constraint (X ,Y, NY|X ) ∈ DC(Ai). Recall that ADC-sample
processes the attributes by the topological order A1, ..., Ak. In the constrained dependency
graph GDC, every attribute of X has an out-going edge to Ai. Hence, all the attributes in X
must be processed prior to Ai. This implies that all the tuples in RF (X ,Y) ⋉wi−1 must have
the same projection on X . Therefore, degY|X (RF (X ,Y) ⋉wi−1) equals |ΠY(RF (X ,Y) ⋉wi−1)|.
By the same reasoning, degY|X (RF (X ,Y) ⋉ wi) equals |ΠY(RF (X ,Y) ⋉ wi)|. We thus have:
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degY|X (RF (X ,Y) ⋉ wi)
degY|X (RF (X ,Y) ⋉ wi−1) =

|ΠY(RF (X ,Y) ⋉ wi)|
|ΠY(RF (X ,Y) ⋉ wi−1)|

=
∣∣σAi=ai

(ΠY(RF (X ,Y) ⋉ wi−1))
∣∣∣∣ΠY(RF (X ,Y) ⋉ wi−1)

∣∣
= reldegi,X ,Y(wi−1, ai)
≤ reldeg∗

i (wi−1, ai). (13)

On the other hand, for any constraint (X ,Y, NY|X ) /∈ DC(Ai), it trivially holds that

degY|X (RF (X ,Y) ⋉ wi) ≤ degY|X (RF (X ,Y) ⋉ wi−1) (14)

because RF (X ,Y) ⋉ wi is a subset of RF (X ,Y) ⋉ wi−1.
We can now derive

ppass(i, wi−1, wi) = 1
reldeg∗

i (wi−1, ai)
∏

(X ,Y,NY|X )∈DC

( degY|X (RF (X ,Y) ⋉ wi)
degY|X (RF (X ,Y) ⋉ wi−1)

)δY|X

(by (14)) ≤ 1
reldeg∗

i (wi−1, ai)
∏

(X ,Y,NY|X )∈DC(Ai)

( degY|X (RF (X ,Y) ⋉ wi)
degY|X (RF (X ,Y) ⋉ wi−1)

)δY|X

(by (13)) ≤ 1
reldeg∗

i (wi−1, ai)
∏

(X ,Y,NY|X )∈DC(Ai)

reldeg∗
i (wi−1, ai)δY|X

= reldeg∗
i (wi−1, ai)

(∑
(X ,Y,NY|X )∈DC(Ai)

δY|X

)
−1
≤ 1.

The last step used
∑

(X ,Y,NY|X )∈DC(Ai) δY|X ≥ 1 guaranteed by the dual modular LP. ◀

Next, we argue that every result tuple v ∈ join(Q) is returned by ADC-sample with the
same probability. For this purpose, let us define two random events for each i ∈ [k]:

event E1(i): (X ◦,Y◦, NY◦|X ◦) = constraint∗
i (wi−1, v(Ai)) in the i-th loop of ADC-sample;

event E2(i): Line 8 does not declare failure in the i-th loop of ADC-sample.
The probability for ADC-sample to return v can be derived as follows.

Pr[v returned] =
k∏

i=1

Pr[ai = v(Ai), E1(i), E2(i) | wi−1 = v[Vi−1]]

(if i = 1, then wi−1 = v[Vi−1] becomes w0 = v[∅], which is vacuously true)

=
k∏

i=1

(
Pr[ai = v(Ai), E1(i) | wi−1 = v[Vi−1]] ·

Pr[E2(i) | E1(i), ai = v(Ai), wi−1 = v[Vi−1]]
)

. (15)

Observe

Pr[ai = v(Ai), E1(i) | wi−1 = v[Vi−1]]
= Pr[E1(i) | wi−1 = v[Vi−1]] · Pr[ai = v(Ai) | E1(i), wi−1 = v[Vi−1]]

= 1
|DC(Ai)|

·

∣∣σAi=v(Ai)(ΠY(RF (X ◦,Y◦) ⋉ v[Vi−1]))
∣∣∣∣ΠY(RF (X ◦,Y◦) ⋉ v[Vi−1])

∣∣
(note: (X ◦, Y◦, NY◦|X ◦ ) = constraint∗

i (v[Vi−1], v(Ai)), due to E1(i) and wi−1 = v[Vi−1]])

= 1
|DC(Ai)|

· reldegi,X ◦,Y◦ (v[Vi−1], v(Ai)) = 1
|DC(Ai)|

· reldeg∗
i (v[Vi−1], v(Ai)). (16)
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On the other hand:

Pr[E2(i) | E1(i), ai = v(Ai), wi−1 = v[Vi−1]]
= ppass(i, v[Vi−1], v[Vi])

(by (12)) = Bi(v[Vi])
Bi−1(v[Vi−1]) ·

1
reldeg∗

i (v[Vi−1], v(Ai))
. (17)

Plugging (16) and (17) into (15) yields

Pr[v returned] =
k∏

i=1

Bi(v[Vi])
Bi−1(v[Vi−1]) ·

1
|DC(Ai)|

= Bk(v[Vk])
B0(v[V0]) ·

k∏
i=1

1
|DC(Ai)|

= 1
B0(null) ·

k∏
i=1

1
|DC(Ai)|

.

As the above is identical for every v ∈ join(Q), we can conclude that each tuple in the join
result gets returned by ADC-sample with the same probability. As an immediate corollary,
each run of ADC-sample successfully returns a sample from join(Q) with probability

OUT
B0(null) ·

k∏
i=1

1
|DC(Ai)|

≥ OUT
polymat(DC) ·

k∏
i=1

1
|DC(Ai)|

= Ω
( OUT

polymat(DC)

)
.

In the full version [37], we explain how to preprocess the relations of Q in O(IN) expected
time to ensure that ADC-sample completes in O(1) time.

Performing a Join Sampling Operation. Recall that this operation must either return a
uniformly random sample of join(Q) or declare join(Q) = ∅. To support this operation, we
execute two threads concurrently. The first thread repeatedly invokes ADC-sample until it
successfully returns a sample. The other thread runs Ngo’s algorithm in [29] to compute
join(Q) in full, after which we can declare join(Q) ̸= ∅ or sample from join(Q) in constant
time. As soon as one thread finishes, we manually terminate the other one.

This strategy guarantees that the join operation completes in
O(polymat(DC)/ max{1, OUT}) time. To explain why, consider first the scenario
where OUT ≥ 1. In this case, we expect to find a sample with O(polymat(DC)/OUT) repeats
of ADC-sample. Hence, the first thread finishes in O(polymat(DC)/OUT) expected sample
time. On the other hand, if OUT = 0, the second thread will finish in O(polymat(DC)) time.
This concludes the proof of Theorem 3.

Remarks. When DC has only cardinality constraints (is thus “trivially” acyclic), ADC-sample
simplifies into the sampling algorithm of Kim et al. [25]. In retrospect, two main obstacles
prevent an obvious extension of their algorithm to an arbitrary acyclic DC. The first is
identifying an appropriate way to deal with constraints (X ,Y, NY|X ) ∈ DC where X ̸= ∅
(such constraints are absent in the degenerated context of [25]). The second obstacle involves
determining how to benefit from a topological order (attribute ordering is irrelevant in [25]);
replacing the order with a non-topological one may ruin the correctness of ADC-sample.

4 Directed Subgraph Sampling

Given a directed pattern graph P = (VP , EP ) and a directed data graph G = (V, E), we use
occ(G, P ) to represent the set of occurrences of P in G. Every vertex in G has an out-degree
at most λ. Our goal is to design an algorithm to sample from occ(G, P ) efficiently.
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Let us formulate the “polymatroid bound” for this problem. Given an integer m ≥ 1, an
integer λ ∈ [1, m], and a pattern P = (VP , EP ), first build a rule collection C over VP as
follows: for each edge (X, Y ) ∈ EP , add to C two rules: (∅, {X, Y }, m) and ({X}, {X, Y },
λ). Then, the directed polymatriod bound of m, λ, and P can be defined as

polymatdir(m, λ, P ) = polymat(C) (18)

where polymat(C) follows the definition in (4).
This formulation reflects how directed subgraph listing can be processed as a join.

Consider a companion join Q constructed from G and P as follows. The schema graph
of Q, denoted as G = (V, E), is exactly P = (VP , EP ) (i.e., V = VP and E = EP ). For
every edge F = (X, Y ) ∈ EP , create a relation RF ∈ Q by inserting, for each edge (x, y)
in the data graph G, a tuple u with u(X) = x and u(Y ) = y into RF . The rule collection
C can now be regarded as a set DC of degree constraints with which Q is consistent, i.e.,
Q |= DC = C. The constraint dependence graph GDC is precisely P . It is immediate that
polymatdir(|E|, λ, P ) = polymat(DC). To find all the occurrences in occ(G, P ), it suffices
to compute join(Q). Specifically, every tuple u ∈ join(Q) that uses a distinct value on
every attribute in V (= VP ) matches a unique occurrence in occ(G, P ). Conversely, every
occurrence in occ(G, P ) matches the same number c of tuples in join(Q), where c ≥ 1 is a
constant equal to the number of automorphisms of P . If we denote OUT = |occ(G, P )| and
OUTQ = |join(Q)|, it follows that c ·OUT ≤ OUTQ ≤ polymat(DC) = polymatdir(|E|, λ, P ).

The above observation suggests how directed subgraph sampling can be reduced to
join sampling. First, sample a tuple u from join(Q) uniformly at random. Then, check
whether u(A) = u(A′) for any two distinct attributes A, A′ ∈ V. If so, declare failure;
otherwise, declare success and return the unique occurrence matching the tuple u. The
success probability equals c ·OUT/OUTQ. In a success event, every occurrence in occ(G, P )
has the same probability to be returned.

When P is acyclic, so is GDC, and thus our algorithm in Theorem 3 can be readily
applied to handle a subgraph sampling operation. To analyze the performance, consider
first OUT ≥ 1. We expect to draw O(OUTQ/OUT) samples from join(Q) until a success
event. As Theorem 3 guarantees retrieving a sample from join(Q) in O(polymat(DC)/OUTQ)
expected time, overall we expect to sample an occurrence from occ(G, P ) in

O
(polymat(DC)

OUTQ
· OUTQ

OUT

)
= O

(polymat(DC)
OUT

)
time. To prepare for the possibility of OUT = 0, we apply the “two-thread approach” in
Section 3. We run a concurrent thread that executes Ngo’s algorithm in [29], which finds the
whole join(Q), and hence occ(G, P ), in O(polymat(DC)) time, after which we can declare
occ(G, P ) = ∅ or sample from occ(G, P ) in O(1) time. By accepting whichever thread finishes
earlier, we ensure that the operation completes in O(polymat(DC)/ max{1, OUT}) time.

The main challenge arises when P is cyclic. In this case, GDC (which equals P ) is cyclic.
Thus, DC becomes a cyclic set of degree constraints, rendering neither Theorem 3 nor Ngo’s
algorithm in [29] applicable. We overcome this challenge with the lemma below.

▶ Lemma 5. If DC is cyclic, we can always find an acyclic subset DC′ ⊂ DC satisfying
polymat(DC′) = Θ(polymat(DC)).

The proof is presented in Appendix A. Because Q |= DC and DC′ is a subset of DC, we
know that Q must be consistent with DC′ as well, i.e., Q |= DC′. Therefore, our Theorem 3
can now be used to extract a sample from join(Q) in O(polymatdir(DC′)/ max{1, OUTQ})
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time. Importantly, Lemma 5 also permits us to directly apply Ngo’s algorithm in [29] to
compute join(Q) in O(polymat(DC′)) time. Therefore, we can now apply the two-thread
technique to sample from occ(G, P ) in

O
( polymat(DC′)

max{1, OUT}

)
= O

( polymat(DC)
max{1, OUT}

)
= O

(polymatdir(|E|, λ, P )
max{1, OUT}

)
time. We thus have arrived yet:

▶ Theorem 6. Let G = (V, E) be a simple directed data graph, where each vertex has an
out-degree at most λ. Let P = (VP , EP ) be a simple weakly-connected directed pattern graph
with a constant number of vertices. We can build in O(|E|) expected time a data structure
that supports each subgraph sampling operation in O(polymatdir(|E|, λ, P )/ max{1, OUT})
expected time, where OUT is the number of occurrences of P in G, and polymatdir(|E|, λ, P )
is the directed polymatrioid bound in (18).

Remarks. For subgraph listing, Jayaraman et al. [18] presented a sophisticated method that
also enables the application of Ngo’s algorithm in [29] to a cyclic P . Given the companion join
Q, they employ the degree uniformization technique [20] to generate t = O(polylog |E|) new
joins Q1,Q2, ...,Qt such that join(Q) =

⋃t
i=1 join(Qi). For each i ∈ [t], they construct an

acyclic set DCi of degree constraints (which is not always a subset of DC) with the property∑t
i=1 polymat(DCi) ≤ polymat(DC). Each join Qi (i ∈ [t]) can then be processed by Ngo’s

algorithm in O(polymat(DCi)) time, thus giving an algorithm for computing join(Q) (and
hence occ(G, P )) in O(polymat(DC)) time. On the other hand, Lemma 5 facilitates a direct
application of Ngo’s algorithm to Q, implying the non-necessity of degree uniformization
in subgraph listing. We believe that this simplification is noteworthy and merits its own
dedicated exposition, considering the critical nature of the subgraph listing problem. In the
absence of Lemma 5, integrating our join-sampling algorithm with the methodology of [18]
for the purpose of subgraph sampling would require substantially more effort. Our proof of
Lemma 5 does draw upon the analysis of [18], as discussed in depth in Appendix A.

5 Concluding Remarks

Our new sampling algorithms imply new results on several other fundamental problems. We
will illustrate this with respect to evaluating a join Q consistent with an acyclic set DC of
degree constraints. Similar implications also apply to subgraph sampling.

By standard techniques [10,13], we can estimate the output size OUT up to a relative
error ϵ with high probability (i.e., at least 1− 1/INc for an arbitrarily large constant c)
in time Õ( 1

ϵ2
polymat(DC)
max{1,OUT} ) after a preprocessing of O(IN) expected time.

Employing a technique in [13], we can, with high probability, report all the tuples in
join(Q) with a delay of Õ( polymat(DC)

max{1,OUT} ). In this context, “delay” refers to the maximum
interval between the reporting of two successive result tuples, assuming the presence of a
placeholder tuple at the beginning and another at the end.
In addition to the delay guarantee, our algorithm in the second bullet can, with high
probability, report the tuples of join(Q) in a random permutation. This means that each
of the OUT! possible permutations has an equal probability of being the output.

All of the results presented above compare favorably with the current state of the art as
presented in [13]. This is primarily due to the superiority of polymat(DC) over AGM (Q).
In addition, our findings in the last two bullet points also complement Ngo’s algorithm as
described in [29] in a satisfying manner.
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A Proof of Lemma 5

Let us rephrase the problem as follows. Let P = (VP , EP ) be a cyclic pattern graph. Given
an integer m ≥ 1 and an integer λ ∈ [1, m], define DC to be a set of degree constraints
over VP that contains two constraints for each edge (X, Y ) ∈ EP : (∅, {X, Y }, m) and ({X},
{X, Y }, λ). The constraint dependence graph GDC is exactly P and, hence, is cyclic. We
want to prove the existence of an acyclic DC′ ⊂ DC such that polymat(DC′) = polymat(DC).
We will first tackle the situation where λ >

√
m before proceeding to the opposite scenario.

The former case presents a more intriguing line of argumentation than the latter.

A.1 Case λ >
√

m

For every edge (X, Y ) ∈ GDC = (VP , EP ), define two variables: xX,Y and zX,Y . Jayaraman
et al. [18] showed that, for λ >

√
m, polymat(DC) is, up to a constant factor, the optimal

value of the following LP (named LP(+) following [18]):

LP(+) [18] min
∑

(X,Y )∈EP

xX,Y log m + zX,Y log λ subject to

∑
(X,A)∈EP

(xX,A + zX,A) +
∑

(A,Y )∈EP

xA,Y ≥ 1 ∀A ∈ VP

xX,Y ≥ 0, zX,Y ≥ 0 ∀(X, Y ) ∈ EP

▶ Lemma 7. There exists an optimal solution to LP(+) satisfying the condition that the
edges in {(X, Y ) ∈ EP | zX,Y > 0} induce an acyclic subgraph of GDC.

We note that while the above lemma is not expressly stated in [18], it can be extrapolated
from the analysis presented in Section H.2 of [18]. Nevertheless, the argument laid out in [18]
is quite intricate. Our proof, which will be presented below, incorporates news ideas beyond
their argument and is considerably shorter. Specifically, these new ideas are evidenced in the
way we formulate a novel LP optimal solution in (19)-(22).

Proof of Lemma 7. Consider an arbitrary optimal solution to LP(+) that sets xX,Y = x∗
X,Y

and zX,Y = z∗
X,Y for each (X, Y ) ∈ EP . If the edge set {(X, Y ) ∈ EP | z∗

X,Y > 0} induces
an acyclic graph, we are done. Next, we consider that GDC contains a cycle.

Suppose that (A1, A2) is the edge in the cycle with the smallest z∗
A1,A2

(breaking ties
arbitrarily). Let (A2, A3) be the edge succeeding (A1, A2) in the cycle. It thus follows that
z∗

A2,A3
≥ z∗

A1,A2
. Define

x′
A2,A3

= x∗
A2,A3

+ z∗
A1,A2

(19)
x′

A1,A2
= x∗

A1,A2
(20)

z′
A2,A3

= 0 (21)
z′

A1,A2
= 0 (22)

For every edge (X, Y ) ∈ EP \ {(A1, A2), (A2, A3)}, set x′
X,Y = x∗

X,Y and z′
X,Y = z∗

X,Y . It is
easy to verify that, for every vertex A ∈ VP , we have∑

(X,A)∈EP

(x′
X,A + z′

X,A) +
∑

(A,Y )∈EP

x′
A,Y ≥

∑
(X,A)∈EP

(x∗
X,A + z∗

X,A) +
∑

(A,Y )∈EP

x∗
A,Y .

Therefore, {x′
X,Y , z′

X,Y | (X, Y ) ∈ EP } serves as a feasible solution to LP(+). However:
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( ∑
(X,Y )∈EP

x′
X,Y log m + z′

X,Y log λ
)
−

( ∑
(X,Y )∈EP

x∗
X,Y log m + z∗

X,Y log λ
)

= z∗
A1,A2

log m− (z∗
A1,A2

+ z∗
A2,A3

) log λ

≤ z∗
A1,A2

log m− 2 · z∗
A1,A2

log λ

< 0 (23)

where the last step used the fact λ2 > m. This contradicts the optimality of {x∗
X,Y , z∗

X,Y |
(X, Y ) ∈ EP }. ◀

We now build a set DC′ of degree constraints as follows. First, take an optimal solution
{x∗

X,Y , z∗
X,Y | (X, Y ) ∈ EP } to LP(+) promised by Lemma 7. Add to DC′ a constraint

(X, {X, Y }, λ) for every (X, Y ) ∈ EP satisfying z∗
X,Y > 0. Then, for every edge (X, Y ) ∈ EP ,

add to DC′ a constraint (∅, {X, Y }, m). The DC′ thus constructed must be acyclic. Denote
by GDC′ = (V ′

P , E′
P ) the degree constraint graph of DC′. Note that VP = V ′

P and E′
P ⊂ EP .

▶ Lemma 8. The DC′ constructed in the above manner satisfies polymat(DC′) =
Θ(polymat(DC)).

Proof. We will first establish polymat(DC′) ≥ polymat(DC). Remember that polymat(DC′)
is the optimal value of the modular LP (in its primal form) defined by DC′, as described
in Section 2. Similarly, polymat(DC) is the optimal value of the modular LP defined
by DC. Given that DC′ ⊂ DC, the LP defined by DC′ incorporates only a subset of
the constraints found in the LP defined by DC. Therefore, it must be the case that
polymat(DC′) ≥ polymat(DC).

The rest of the proof will show polymat(DC′) = O(polymat(DC)), which will establish the
lemma. Consider the following LP:

LP(+)
1 min

∑
(X,Y )∈EP

xX,Y log m + zX,Y log λ subject to

∑
(X,A)∈EP

xX,A +
∑

(A,Y )∈EP

xA,Y +
∑

(X,A)∈E′
P

zX,A ≥ 1 ∀A ∈ VP

xX,Y ≥ 0, zX,Y ≥ 0 ∀(X, Y ) ∈ EP

The condition (X, A) ∈ E′
P in the first inequality marks the difference between LP(+)

1 and
LP(+). Note that the two LPs have the same objective function.

▷ Claim 1. LP(+)
1 and LP(+) have the same optimal value.

To prove the claim, first observe that any feasible solution {xX,Y , zX,Y | (X, Y ) ∈ EP } to
LP(+)

1 is also a feasible solution to LP(+). Hence, the optimal value of LP(+) cannot exceed
that of LP(+)

1 . On the other hand, recall that earlier we have identified an optimal solution
{x∗

X,Y , z∗
X,Y | (X, Y ) ∈ EP } to LP(+). By how DC′ is built from that solution and how

GDC′ = (V ′
P , E′

P ) is built from DC′, it must hold that z∗
X,Y = 0 for every (X, Y ) ∈ EP \ E′

P .
Hence, {x∗

X,Y , z∗
X,Y | (X, Y ) ∈ EP } makes a feasible solution to LP(+)

1 . This implies that
{x∗

X,Y , z∗
X,Y | (X, Y ) ∈ EP } must be an optimal solution to LP(+)

1 . Claim 1 now follows.

ICDT 2024
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Consider another LP:

LP(+)
2 min

∑
(X,Y )∈EP

xX,Y log m +
∑

(X,Y )∈E′
P

zX,Y log λ subject to

∑
(X,A)∈EP

xX,A +
∑

(A,Y )∈EP

xA,Y +
∑

(X,A)∈E′
P

zX,A ≥ 1 ∀A ∈ VP

xX,Y ≥ 0 ∀(X, Y ) ∈ EP

zX,Y ≥ 0 ∀(X, Y ) ∈ E′
P

LP(+)
2 differs from LP(+)

1 in that the former drops the variables zX,Y of those edges (X, Y ) ∈
EP \ E′

P . This happens both in the constraints and the objective function.

▷ Claim 2. LP(+)
1 and LP(+)

2 have the same optimal value.

To prove the claim, first observe that, given a feasible solution {xX,Y | (X, Y ) ∈ EP }∪{zX,Y |
(X, Y ) ∈ E′

P } to LP(+)
2 , we can extend it into a feasible solution to LP(+)

1 by padding ZX,Y

= 0 for each (X, Y ) ∈ EP \ E′
P . Hence, the optimal value of LP(+)

1 cannot exceed that
of LP(+)

2 . On the other hand, as mentioned before, {x∗
X,Y , z∗

X,Y | (X, Y ) ∈ EP } is an
optimal solution to LP(+)

1 . In this solution, z∗
X,Y = 0 for every (X, Y ) ∈ EP \ E′

P . Thus,
{x∗

X,Y | (X, Y ) ∈ EP } ∪ {z∗
X,Y | (X, Y ) ∈ E′

P } makes a feasible solution to LP(+)
2 , achieving

the same objective function value as the optimal value of LP(+)
1 . Claim 2 now follows.

Finally, notice that LP(+)
2 is exactly the dual modular LP defined by DC′. Hence,

log(polymat(DC′)) is exactly the optimal value of LP(+)
2 . Thus, polymat(DC′) =

O(polymat(DC)) can now be derived from the above discussion and the fact that
log(polymat(DC)) is asymptotically the optimal value of LP(+). ◀

A.2 Case λ ≤
√

m

Let us first define several concepts. A directed star refers to a directed graph where there are
t ≥ 2 vertices, among which one vertex, designated the center, has t− 1 edges (in-coming
and out-going edges combined), and every other vertex, called a petal, has only one edge
(which can be an in-coming or out-going edge). Now, consider a directed bipartite graph
between U1 and U2, each being an independent sets of vertices (an edge may point from one
vertex in U1 to a vertex in U2, or vice versa). A directed star cover of the bipartite graph is
a set of directed stars such that

each directed star is a subgraph of the bipartite graph,
no two directed stars share a common edge, and
every vertex in U1 ∪ U2 appears in exactly one directed star.

A directed star cover is minimum if it has the least number of edges, counting all directed
stars in the cover.

Next, we review an expression about polymat(DC) derived in [18]. Find all the strongly
connected components (SCCs) of GDC = (VP , EP ). Adopting terms from [18], an SCC is
classified as (i) a source if it has no in-coming edge from another SCC, or a non-source
otherwise; (ii) trivial if it consists of a single vertex, or non-trivial otherwise. Define:

S = the set of vertices in GDC each forming a trivial source SCC by itself.
T = the set of vertices in GDC receiving an in-coming edge from at least one vertex in S.

Take a minimum directed star cover of the directed bipartite graph induced by S and T .
Define

S1 = the set of vertices in S each serving as the center of some directed star in the cover.
S2 = S \ S1.
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T2 = the set of vertices in T each serving as the center of some directed star in the cover.
T1 = T \ T2.

Note that the meanings of the symbols S1, S2, T1, and T2 follow exactly those in [18] for the
reader’s convenience (in particular, note the semantics of T1 and T2).

We now introduce three quantities:
c1: the number of non-trivial source SCCs;
n1: the total number of vertices in non-trivial source SCCs;
n2 = |VP | − n1 − |S| − |T |.

Jayaraman et al. [18] showed:

polymatdir(m, λ, P ) = Θ
(

mc1+|S| · λn1+n2+|T1|−2c1−|S1|
)

. (24)

Let G′
DC = (V ′

P , E′
P ) be an arbitrary weakly-connected acyclic subgraph of GDC satisfying

all the conditions below.
VP = V ′

P .
E′

P contains all the edges in the minimum directed star cover identified earlier.
In each non-trivial source SCC, every vertex, except for one, has one in-coming edge
included in E′

P . We will refer to the vertex X with no in-coming edges in E′
P as the

SCC’s root. The fact that every other vertex Y in the SCC has an in-coming edge in E′
P

implies (X, Y ) ∈ E′
P for at least one Y . We designate one such (X, Y ) as the SCC’s main

edge.
In each non-trivial non-source SCC, every vertex has an in-coming edge included in E′

P .
It is rudimentary to verify that such a subgraph G′

DC must exist.
From GDC = (VP , EP ) and G′

DC = (V ′
P , E′

P ), we create a set DC′ of degree constraints as
follows.

For each edge (X, Y ) ∈ EP (note: not E′
P ), add a constraint (∅, {X, Y }, m) to DC′.

We inspect each directed star in the minimum directed star cover and distinguish two
possibilities.

Scenario 1: The star’s center X comes from S1. Let the star’s petals be Y1, Y2, ..., Yt

for some t ≥ 1; the ordering of the petals does not matter. For each i ∈ [t− 1], we add
a constraint ({X}, {X, Yi}, λ) to DC′. We will refer to (X, Yt) as the star’s main edge.
Scenario 2: The star’s center X comes from T2. Nothing needs to be done.

Consider now each non-trivial source SCC. Remember that every vertex Y , other than
the SCC’s root, has an in-coming edge (X, Y ) ∈ E′

P . For every such Y , if (X, Y ) is not
the SCC’s main edge, add a constraint ({X}, {X, Y }, λ) to DC′.
Finally, we examine each non-source SCC. As mentioned, every vertex Y in such an SCC
has an in-coming edge (X, Y ) ∈ E′

P . For every Y , add a constraint ({X}, {X, Y }, λ) to
DC′.

The rest of the proof will show polymat(DC′) = Θ(polymat(DC)). As DC′ ⊂ DC, we must
have polymat(DC′) ≥ polymat(DC) following the same reasoning used in the λ >

√
m case.

We will now proceed to argue that polymat(DC′) = O(polymat(DC)). Recall that
log(polymat(DC′)) is the optimal value of the dual modular LP of DC′ (see Section 2).
On the other hand, the value of polymat(DC) satisfies (24). In the following, we will construct
a feasible solution to the dual modular LP of DC′ under which the LP’s objective function
achieves the value of(

(c1 + |S|) · log m
)

+ (n1 + n2 + |T1| − 2c1 − |S1|) · log λ (25)

which will be sufficient for proving Lemma 7.
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The dual modular LP associates every constraint (X ,Y, NY|X ) ∈ DC′ with a variable
δY|X . We determine these variables’ values as follows.

For every constraint (X ,Y, NY|X ) ∈ DC′ where NY|X = λ, set δY|X = 1.
Consider each directed star in the minimum directed star.

Scenario 1: The star’s center X comes from S1. For the star’s main edge (X, Y ), the
constraint (∅, {X, Y }, m) exists in DC′. Set δ{X,Y }|∅ = 1.
Scenario 2: The star’s center X comes from T2. For every petal Y of the star, the
constraint (∅, {X, Y }, m) exists in DC′. Set δ{X,Y }|∅ = 1.

Consider each non-trivial source SCC. Let (X, Y ) be the main edge of the SCC. The
constraint (∅, {X, Y }, m) exists in DC′. Set δ{X,Y }|∅ = 1.

The other variables that have not yet been mentioned are all set to 0.
It is tedious but straightforward to verify that all the constraints of the dual modular LP

are fulfilled. To confirm that the objective function indeed evaluates to (25), observe:
There are c1 + |S| constraints of the form (∅, {X, Y }, m) with δ{X,Y }|∅ = 1. Specifically,
c1 of them come from the roots of the non-trivial source SCCs, |S1| of them come from
the star center vertices in S1, and |S2| of them come from the petal vertices in S2.
There are n1 + n2 + |T1| − 2c1 − |S1| of the form ({X}, {X, Y }, λ) with δ{X,Y }|{X} = 1.
Specifically, n1 − 2c1 of them come from the non-main edges of the non-trivial source
SCCs, n2 of them come from the vertices that are not in any non-trivial source SCC and
are not in S ∪ T , and |T1| − |S1| of them come from the petal vertices that are (i) in T1
but (ii) not in the main edges of their respective stars.

We now conclude the whole proof of Lemma 5.
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Abstract
A witness is a sub-database that preserves the query results of the original database but of much
smaller size. It has wide applications in query rewriting and debugging, query explanation, IoT
analytics, multi-layer network routing, etc. In this paper, we study the smallest witness problem
(SWP) for the class of conjunctive queries (CQs) without self-joins.
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any CQ without such a property cannot be approximated within a logarithmic factor, unless P = NP.

We further explore efficient approximation algorithms for CQs without head-domination property:
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CQs; (2) for any CQ with only one non-output attribute, such as star CQs, we show a greedy
algorithm with a logarithmic approximation ratio; (3) for line CQs, which contain at least two non-
output attributes, we relate SWP problem to the directed steiner forest problem, whose algorithms can
be applied to line CQs directly. Meanwhile, we establish a much higher lower bound, exponentially
larger than the logarithmic lower bound obtained above. It remains open to close the gap between
the lower and upper bound of the approximated SWP for CQs without head-domination property.
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1 Introduction

To deal with large-scale data in analytical applications, people have developed a large body of
data summarization techniques to reduce computational as well as storage complexity, such
as sampling [10, 41, 12], sketch [15], coreset [36] and factorization [34]. The notion of witness
has been studied as one form of why-provenance [9, 26, 3] that provides a proof for output
results, with wide applications in explainable data-intensive analytics. The smallest witness
problem was first proposed by [32] that given a query Q, a database D and one specific
query result t ∈ Q(D), the target is to find the smallest sub-database D′ ⊆ D such that t

is witnessed by D′, i.e., t ∈ Q(D′). In this paper, we consider a generalized notion for all
query results, i.e., our target is to find the smallest sub-database D′ ⊆ D such that all query
results can be witnessed by D′, i.e., Q(D) = Q(D′). Our generalized smallest witness has
many useful applications in practice, such as helping students learn SQL queries [32], query
rewriting, query explanation, multi-layer network routing, IoT analytics on edge devices[35].
We mention three application scenarios:
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▶ Example 1. Alice located at Seattle wants to send the query results of Q over a database
D (which is also stored at Seattle) to Bob located at New York. Unfortunately, the number
of query results could be polynomially large in terms of the number of tuples in D. An
alternative is to send the entire database D, since Bob can retrieve all query results by
executing Q over D at New York. However, moving the entire database is also expensive. A
natural question arises: is it necessary for Alice to send the entire D or Q(D)? If not, what
is the smallest subset of tuples to send?

▶ Example 2. Charlie is a novice at learning SQL in a undergraduate database course.
Suppose there is a huge test database D, a correct query Q that Charlie is expected to learn,
and a wrong query Q′ submitted by him, where some answers in Q(D) are missed from
Q′(D). To help Charlie debug, the instructor can simply show the whole test database D

to him. However, Charlie will have to dive into such a huge database to figure out where
his query goes wrong. A natural question arises: is it necessary to show the entire D to
Charlie? If not, what is the smallest subset of tuples to show so that Charlie can quickly
find all missing answers by his wrong query?

▶ Example 3. In a multi-layer communication network, clients and servers are connected
by routers organized into layers, such that links (or edges) exist between routers residing in
consecutive layers. What is the smallest subset of links needed for building a fully connected
network, i.e., every client-server pair is connected via a directed path? For a given network,
what is the maximum number of links that can be broken while the connectivity with respect
to the client-server pairs does not change? This information could help evaluate the inherent
robustness of a network to either malicious attacks or even just random failures.

Recall that our smallest witness problem finds the smallest sub-database D′ ⊆ D such
that Q(D) = Q(D′). It would be sufficient for Alice to send D′, while Bob can retrieve all
query results by executing Q over D′, saving much transmission cost. Also, it would be
sufficient for the instructor to show D′ to Charlie, from which all correct answers in Q(D)
can be recovered, saving Charlie much efforts in exploring a huge test database.1 Moreover,
the connectivity of a multi-layer network D can be modeled as a line query Q (formally
defined in Section 5.3) with connected client-server pairs as Q(D), such that D′ is a smallest
subset of links needed for maintaining the desired connectivity, and D −D′ is a maximum
subset of links that can be removed safely. In this paper, we aim to design algorithms that
can efficiently compute or approximate the smallest witness for conjunctive queries, and
understand the hardness of this problem when such algorithms do not exist.

1.1 Problem Definition
Let R be a database schema that contains m relations R1, R2, · · · , Rm. Let A be the set of
all attributes in R. Each relation Ri is defined on a subset of attributes Ai ⊆ A. We use
A, B, C, A1, A2, A3, · · · etc. to denote the attributes in A and a, b, c, · · · etc. to denote their
values. Let dom(A) be the domain of attribute A ∈ A. The domain of a set of attributes
X ⊆ A is defined as dom(X) =

∏
A∈X dom(A). Given the database schema R, let D be a given

database of R, and let the corresponding relations of R1, · · · , Rm be RD
1 , · · · , RD

m, where
RD

i is a collection of tuples defined on dom(Ai). The input size of database D is denoted as
N = |D| =

∑
i∈[m] |RD

i |. Where D is clear from the context, we will drop the superscript.

1 The smallest witness for a single query result [32] has been incorporated into an educational tool
(https://dukedb-hnrq.github.io/), successfully employed in Duke database courses with 1,000+
undergraduate users. Our generalized version can also be incorporated and save more efforts by showing
one small witness for all answers.

https://dukedb-hnrq.github.io/
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R1

A B

a1 b1
a2 b2
a3 b2

R2

B C

b1 c1
b2 c3
b3 c2
b3 c3

R3

C F

c1 f1
c2 f3
c3 f3

R4

C H

c1 h1
c2 h1
c3 h1
c3 h2

Q(D)
A C F

a1 c1 f1
a2 c3 f3
a3 c3 f3

Figure 1 An example of database schema R = {R1, R2, R3, R4} (with A = {A, B, C, F, H},
attr(R1) = {A, B}, attr(R2) = {B, C}, attr(R3) = {C, F } and attr(R4) = {C, H}), a database
D, and the result of CQ Q(A, C, F ) : −R1(A, B), R2(B, C), R3(C, F ), R4(C, H) over D. D′ =
{(a1, b1), (b1, c1), (c1, f1), (c1, h1)} is the solution to SWP(Q, D, ⟨a1, c1, f1⟩). D′ together with tuples
{(a2, b2), (a3, b2), (b2, c3), (c3, f3), (c3, h2)} is the solution to SWP(Q, D).

We consider the class of conjunctive queries without self-joins:

Q(A) : −R1(A1), R2(A2), · · · , Rm(Am)

where A ⊆ A is the set of output attributes (a.k.a. free attributes) and A−A is the set of non-
output attributes (a.k.a. existential attributes). A CQ is full if A = A, indicating the natural
join among the given relations; otherwise, it is non-full. Each Ri in Q is distinct. When
a CQ Q is evaluated on database D, its query result denoted as Q(D) is the projection of
natural join result of R1(A1) ⋊⋉ R2(A2) ⋊⋉ · · · ⋊⋉ Rm(Am) onto A (after removing duplicates).

▶ Definition 4 (Smallest Witness Problem (SWP)). For CQ Q and database D, it asks
to find a subset of tuples D′ ⊆ D such that Q(D) = Q(D′), while there exists no subset of
tuples D′′ ⊆ D such that Q(D′′) = Q(D) and |D′′| < |D′|.

Given Q and D, we denote the above problem by SWP(Q, D). See an example in Figure 1.
We note that the solution to SWP(Q, D) may not be unique, hence our target simply finds one
such solution. We study the data complexity [38] of SWP i.e., the sizes of database schema
and query are considered as constants, and the complexity is in terms of input size N . For
any CQ Q and database D, the size of query results |Q(D)| is polynomially large in terms of
N , and Q(D) can also be computed in polynomial time in terms of N . In contrast, the size of
SWP(Q, D) is always smaller than N , while as we see later SWP(Q, D) may not be computed in
polynomial time in terms of N . Again, our target is to compute the smallest witness instead
of the query results. We say that SWP is poly-time solvable for Q if, for an arbitrary database
D, SWP(Q, D) can be computed in polynomial time in terms of |D|. As shown later, SWP is
not poly-time solvable for a large class of CQs, so we introduce an approximated version:

▶ Definition 5 (θ-Approximated Smallest Witness Problem (ASWP)). For CQ Q

and database D, it asks to find a subset of tuples D′ ⊆ D such that Q(D′) = Q(D) and
|D′| ≤ θ · |D∗|, where D∗ is a solution to SWP(Q, D).

Also, SWP is θ-approximable for Q if, for an arbitrary database D, there is a θ-approximated
solution to SWP(Q, D) that can be computed in polynomial time in terms of |D|.

1.2 Our Results
Our main results obtained can be summarized as (see Figure 2):

In Section 3, we obtain a dichotomy of computing SWP for CQs. More specifically, SWP
for any CQ with head-cluster property (Definition 11) can be solved by a trivial poly-time
algorithm, while SWP for any CQ without head-cluster property is NP-hard by resorting to
the NP-hardness of set cover problem (Section 3.2).
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Figure 2 Summary of our results. The shadow area is the class of free-connex CQs.

In Section 4, we show a dichotomy of approximating SWP for CQs without head-cluster
property. The head-domination property that has been identified for deletion propagation
problem [31], also captures the hardness of approximating SWP. We show a poly-time algorithm
that can return a O(1)-approximated solution to SWP for CQs with head-domination property.
On the other hand, we prove that SWP cannot be approximated within a factor of (1 −
o(1)) · log N for every CQ without head-domination property, unless P = NP, by resorting to
the logarithmic inapproximability of set cover problem (in Section 4.2). Interestingly, this
separation on approximating SWP for acyclic CQs (in Section 2.1) coincides with the separation
of free-connex and non-free-connex CQs (in Section 4.1) in the literature. In Section 5, we
further explore approximation algorithms for CQs without head-domination property. Firstly,
we show a baseline of returning the union of witnesses for every query result leads to a
O(N1−1/ρ∗)-approximated solution, where ρ∗ is the fractional edge covering number2 of the
input CQ [4]. Furthermore, for any CQ with only one non-output attribute, which includes
the commonly-studied star CQs, we show a greedy algorithm that can approximate SWP
within a O(log N) factor, matching the lower bound. However, for another commonly-studied
class of line CQs, which contains more than two non-output attributes, we prove a much
higher lower bound Ω(2(log N)1−ϵ) for any ϵ > 0 in approximating SWP, by resorting to the
label cover problem (see full version [28]). Meanwhile, we observe that SWP problem for line
queries is a special case of the directed Steiner forest (DSF) problem (Section 5.3), and
therefore existing algorithms for DSF can be applied to SWP directly. But, how to close the
gap between the upper and lower bounds on approximating SWP for line CQs remains open.

2 Preliminaries

2.1 Notations and Classifications of CQs
Extending the notation in Section 1.1, we use rels(Q) to denote all the relations that appear
in the body of Q, and use attr(Q), head(Q) ⊆ attr(Q) to denote all the attributes that
appear in the body, head of Q separately (so, head(Q) = A in Section 1.1). Moreover,
head(Ri) = head(Q) ∩ attr(Ri). For any attribute A ∈ attr(Ri), πAt denotes the value
over attribute A of tuple t. Similarly, for a set of attributes X ⊆ attr(Ri), πXt denotes
values over attributes in X of tuple t. We also mention two important classes of CQs.

2 For a CQ Q, a fractional edge covering is a function W : rels(Q) → [0, 1] with
∑

Ri:A∈attr(Ri) W (Ri) ≥ 1
for every A ∈ A. The fractional edge covering number is the minimum value of

∑
Ri:Ri∈rels(Q) W (Ri)

over all fractional edge coverings.
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▶ Definition 6 (Acyclic CQs [6, 19]). A CQ Q is acyclic if there exists a tree T such that (1)
there is a one-to-one correspondence between the nodes of T and relations in Q; and (2) for
every attribute A ∈ attr(Q), the set of nodes containing A forms a connected subtree of T.
Such a tree is called the join tree of Q.

▶ Definition 7 (Free-connex CQs [5]). A CQ Q is free-connex if Q is acyclic and the resulted
CQ by adding another relation contains exactly head(Q) to Q is also acyclic.

2.2 SWP for One Query Result
The SWP problem for one query result is formally defined as:

▶ Definition 8 (SWP for One Query Result). For CQ Q, database D and query result
t ∈ Q(D), it asks for finding a subset of tuples D′ ⊆ D such that t ∈ Q(D′), while there is
no subset D′′ ⊆ D such that t ∈ Q(D′′) and |D′′| < |D′|.

Given Q, D and t, we denote the above problem by SWP(Q, D, t). It has been shown
by [32] that SWP(Q, D, t) can be computed in polynomial time for arbitrary Q, D, and
t ∈ Q(D). Their algorithm [32] simply finds an arbitrary full join result t′ ∈⋊⋉Ri∈rels(Q) Ri

such that πhead(Q)t
′ = t, and returns all participating tuples in

{
πattr(Ri)t

′ : Ri ∈ rels(Q)
}

as the smallest witness for t. This primitive is used in building our SWP algorithm. The SWP
problem for a Boolean CQ (A = ∅, indicating whether the result of underlying natural join
is empty or not) can be solved by finding SWP for an arbitrary join result in its full version.

2.3 Notions of Connectivity
We give three important notions of connectivity for CQs, which will play an important role
in characterizing the structural properties used in SWP. See an example in Figure 3.

Connectivity of CQ. We capture the connectivity of a CQ Q by modeling it as a graph
GQ, where each relation Ri is a vertex and there is an edge between Ri, Rj ∈ rels(Q)
if attr(Ri) ∩ attr(Rj) ̸= ∅. A CQ Q is connected if GQ is connected, and disconnected
otherwise. For a disconnected CQ Q, we can decompose it into multiple connected subqueries
by applying search algorithms on GQ, and finding all connected components for GQ. The set
of relations corresponding to the set of vertices in one connected component of GQ form a
connected subquery of Q. Given a disconnected CQ Q, let Q1, Q2, · · · , Qk be its connected
subqueries. Given a database D over Q, let Di ⊆ D be the corresponding sub-databases
defined for Qi. Observe that every witness for Q(D) is the disjoint union of a witness for
Qi(Di), for i ∈ [k]. Hence, Lemma 9 follows. In the remaining of this paper, we assume that
Q is connected.

▶ Lemma 9. For a disconnected CQ Q of k connected components Q1, Q2, · · · , Qk, SWP is
poly-time solvable for Q if and only if SWP is poly-time solvable for every Qi, where i ∈ [k].

Existential-Connectivity of CQ. We capture the existential-connectivity of a CQ Q by
modeling it as a graph G∃

Q, where each relation Ri with attr(Ri)− head(Q) ̸= ∅ is a vertex,
and there is an edge between Ri, Rj ∈ rels(Q) if attr(Ri) ∩ attr(Rj) − head(Q) ̸= ∅.
We can find the connected components of G∃

Q by applying search algorithm on G∃
Q, and

finding all connected components for G∃
Q. Let E1, E2, · · · , Ek ⊆ rels(Q) be the connected

components of G∃
Q, each corresponding to a subset of relations in Q.
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Figure 3 An illustration of GQ for Q(A1, A2, A3, A4, A5) : − R1(A1, B1), R2(B1, B2),
R3(A2, B2, B3), R4(A2, A3, B4), R5(A1, A2), R6(A4, B5), R7(B5, A5), R8(B6, B7) with three sub-
queries Q1(A1, A2, A3) : − R1(A1, B1), R2(B1, B2), R3(A2, B2, B3), R4(A2, A3, B4), R5(A1, A2),
and Q2(A4, A5) : − R6(A4, B5), R7(B5, A5) and Q3 : −R8(B6, B7). The middle is G∃

Q1 for Q1, with
two connected components {R1, R2, R3}, {R4} and dominants R5, R4. The right is HQ1 for Q1,
with two connected components {B1, B2, B3}, {B4}.

Nonout-Connectivity of CQ. We capture the nonout-connectivity of a CQ Q by modeling
it as a graph HQ, where each non-output attribute A ∈ attr(Q)− head(Q) is a vertex, and
there is an edge between A, B ∈ attr(Q)− head(Q) if there exists a relation Ri ∈ rels(Q)
such that A, B ∈ attr(Ri). We can find the connected components of HQ, and finding all
connected components for HQ. Let H1, H2, · · · , Hk ⊆ attr(Q)− head(Q) be the connected
components of HQ, each corresponding to a subset of non-output attributes in Q.

2.4 Head Cluster and Domination
These two important structural properties identified for characterizing the hardness of (A)SWP
are directly built on the existential-connectivity of a CQ Q and the notion of dominant
relation. For a CQ Q with a subset E ⊆ rels(Q) of relations, Ri ∈ rels(Q) is a dominant
relation for E if every output attribute appearing in any relation of E also appears in Ri,
i.e., ∪Rj∈Ehead(Rj) ⊆ head(Ri).

▶ Definition 10 (Head Domination [30]). For CQ Q, let E1, E2, · · · , Ek be the connected
components of G∃

Q. Q has head-domination property if for any i ∈ [k], there exists a dominant
relation from rels(Q) for Ei.

The notion of head-domination property has been first identified for deletion propagation
with side effect problem [31], which studied the smallest number of tuples to remove so that
a subset of desired query results must disappear while maintain as many as remaining query
results. We give a detailed comparison between SWP and deletion propagation in the full
version [28], although they solve completely independent problem for CQs without self-joins.

▶ Definition 11 (Head Cluster). For CQ Q, let E1, · · · , Ek be connected components of G∃
Q.

Q has head-cluster property if for any i ∈ [k], every Rj ∈ Ei is a dominant relation for Ei.

There is an equivalent but simpler definition for head-cluster property: A CQ Q has head-
cluster property if for every pair of relations Ri, Rj ∈ rels(Q) with head(Ri) ̸= head(Rj),
there must be attr(Ri) ∩ attr(Rj) ⊆ head(Q). Here, we define head-cluster property based
on dominant relation, since it is a special case of head-domination property.

3 Dichotomy of Exact SWP

In this section, we focus on computing SWP exactly for CQs, which can be efficiently done if
head-cluster property is satisfied. All missing proofs are given in the full version [28].

▶ Theorem 12. If a CQ Q has head-cluster property, SWP is poly-time solvable; otherwise,
SWP is not poly-time solvable, unless P = NP.
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Algorithm 1 SWP(Q, D).

1 D′ ← ∅;
2 (E1, E2, · · · , Ek)← connected components of G∃

Q;
3 A1, A2, · · · , Ak ← output attributes of E1, E2, · · · , Ek;
4 foreach Rj ∈ rels(Q) with attr(Rj) ⊆ head(Q) do
5 D′ ← D′ ∪ πattr(Rj)Q(D);
6 foreach i ∈ [k] do
7 Define Qi (Ai) : −{Rj(Aj) : Rj ∈ Ei};
8 foreach t′ ∈ πAiQ(D) do
9 D′ ← D′ ⊎

SWP (Qi, {Rj : Rj ∈ Ei}, t′);

10 return D′;

3.1 An Exact Algorithm
We prove the first part of Theorem 12 with a poly-time algorithm. The head-cluster property
implies that if two relations have different output attributes, they share no common non-output
attributes. This way, we can cluster relations by output attributes. As shown, Algorithm 1
partitions all relations into {E1, E2, · · · , Ek} based on the connected components in G∃

Q. For
the subset of relations in one connected component Ei, every relation is a dominant relation,
i.e., shares the same output attributes. If one relation only contains output attributes Ai

(line 4), it must appear alone as a singleton component, since we assume there is no duplicate
relations in the input CQ. All tuples from such a relation that participate in any query results
must be included by every witness to Q(D). We next consider the remaining components
containing at least two relations. In Ei, for each tuple t′ ∈ πAi

Q(D) in the projection of
query results onto the output attributes Ai, Algorithm 1 computes the smallest witness for
t′ in sub-query Qi defined on relations in Ei. The disjoint union (

⊎
) of witnesses returned

for all groups forms the final witness. On a CQ with head-cluster property, Algorithm 1 can
be stated in a simpler way (see the full version [28]). Algorithm 1 runs in polynomial time,
as (i) Q(D) can be computed in polynomial time; (ii) |Q(D)| is polynomially large; and (iii)
the primitive in line 9 only takes O(1) time.

▶ Lemma 13. For a CQ Q with head-cluster property, Algorithm 1 finds a solution to
SWP(Q, D) for any database D in polynomial time.

Proof. We prove that for any CQ Q with head-cluster property and an arbitrary database
D, Algorithm 1 returns the solution to SWP(Q, D). Together with the fact that Algorithm 1
runs in polynomial time, we finish the proof for Lemma 13. Let D′ be the solution returned
by Algorithm 1. Let D′

i ⊆ D′ be the set of tuples from relations in Ei. We show that D′ is a
witness for Q(D), i.e., Q(D′) = Q(D).

Direction ⊆. As Q is monotone, Q(D′) ⊆ Q(D) holds for any sub-database D′ ⊆ D.

Direction ⊇. Consider an arbitrary query result t ∈ Q(D). Let D′
i(t) denote the group of

tuples returned by SWP(Qi, {Rj : Rj ∈ Ei}, πAi
t). We note that t ∈ πA ⋊⋉i∈[k] D′

i(t), since
every tuple has the same value πAt over any output attribute A, if it contains attribute A;
there is no non-output attribute to join for tuples across groups;
tuples inside each group can be joined by non-output attribute; (implied by the correctness
of SWP for a single query result)

Hence, t ∈ Q(D′). Together, Q(D′) ⊇ Q(D).
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We next show that there exists no D′′ ⊆ D such that Q(D′′) = Q(D) and |D′′| < |D′|.
Suppose not, let D′′

i ⊆ D′′ denote the set of tuples from relations in Ei. As |D′′| < |D′|,
there must exist some i ∈ [k] such that |D′′

i | < |D′
i|, i.e., D′

i −D′′
i ̸= ∅. In Algorithm 1, we

can rewrite D′
i as follows:

D′
i =

⊎
t′∈πAi

Q(D)

SWP(Qi, {Ri : Ri ∈ Ei}, t′),

where
⊎

denotes the disjoint union. As D′
i −D′′

i ̸= ∅, there must exist some t′ ∈ πAi
Q(D)

such that t′ /∈ Qi(D′′
i ), i.e., t′ cannot be witnessed by D′′

i . Correspondingly, there must exist
some query result t with πAi

t = t′ such that t /∈ Q(D′′), i.e. t cannot be witnessed by D′′,
contradicting the fact that Q(D′′) = Q(D). Hence, no such D′′ exists. ◀

▶ Remark 1. SWP is poly-time solvable for any full CQ, since attr(Ri)∩attr(Rj) ⊆ head(Q)
holds for every pair of relations Ri, Rj ∈ rels(Q). Hence, the hardness of SWP comes from
projection. On the other hand, SWP is also poly-time solvable for some non-full CQs, say
Q(A1, A2, A3) : −R1(A1, A2), R2(A2, A3), R3(A1, A3), R4(A1, B1).

▶ Remark 2. It is not always necessary to compute Q(D) as Algorithm 1 does. We actually
have much faster algorithms for some classes of CQs. If CQ Q is full, SWP(Q, D) is the set
of non-dangling tuples in D, i.e., those participate in at least one query result of Q(D).
Furthermore, if Q is an acyclic full CQ, non-dangling tuples can be identified in O(|D|)
time [40]. It is more expensive to identify non-dangling tuples for cyclic full CQs, for example,
the PANDA algorithm [2] can identify non-dangling tuples for any full CQ in O(Nw) time,
where w ≥ 1 is the sub-modular width of input query [2]. It is left as an interesting open
question to compute SWP for CQs with head-cluster property more efficiently.

3.2 Hardness
We next prove the second part of Theorem 12 by showing the hardness for CQs without
head-cluster property. Our hardness result is built on the NP-hardness of set cover [7]:
Given a universe U of n elements and a family S of subsets of U , it asks to find a subfamily
C ⊆ S of sets whose union is U (called “cover”), while using the fewest sets. We start with
Qcover(A) : −R1(A, B), R2(B) and then extend to any CQ without head-cluster property.

▶ Lemma 14. SWP is not poly-time solvable for Qcover(A) : −R1(A, B), R2(B), unless P = NP.

Proof. We show a reduction from set cover to SWP for Qcover. Given an arbitrary instance
(U ,S) of set cover, we construct a database D for Qcover as follows. For each element u ∈ U ,
we add a value au to dom(A); for each subset S ∈ S, we add a value bS to dom(B), and a
tuple (bS) to R2. Moreover, for each pair (u, S) ∈ U × S with u ∈ S, we add a tuple (au, bS)
to R1. Note that Qcover(D) = U . It is now to show that (U ,S) has a cover of size ≤ k if and
only if SWP(Qcover, D) has a solution D′ of size ≤ |U|+ k. Then, if SWP is poly-time solvable
for Qcover, set cover is also poly-time solvable, which is impossible unless P = NP. ◀

▶ Lemma 15. For a CQ Q without head-cluster property, SWP is not poly-time solvable for
Q, unless P = NP.

Proof. Consider such a CQ Q with a desired pair of relations Ri, Rj ∈ rels(Q). We next
show a reduction from Qcover to Q. Given an arbitrary database Dcover over Qcover, we
construct a database D over Q as follows. First, it is always feasible to identify attribute
A′ ∈ head(Ri) − attr(Rj) and attribute B′ ∈ attr(Ri) ∩ attr(Rj) − head(Q). We set
dom(A′) = dom(A), dom(B′) = dom(B), and remaining attributes with a dummy value {∗}.
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Each relation in Q degenerates to R1(A, B), or R2(B), or a dummy tuple {∗, ∗, · · · , ∗}. It can
be easily checked that there is a one-to-one correspondence between solutions to SWP(Q, D)
and solutions to SWP(Qcover, Dcover). Thus, if SWP is poly-time solvable for Q, then SWP is
also poly-time solvable for Qcover, coming to a contradiction of Lemma 14. ◀

4 Dichotomy of Approximated SWP

As it is inherently difficult to compute SWP exactly for general CQs, the next interesting
question is to explore approximated solutions for SWP. In this section, we establish the following
dichotomy for approximating SWP. All missing proofs are given in the full version [28].

▶ Theorem 16. If a CQ Q has head-domination property, SWP is O(1)-approximable; other-
wise, SWP of input size N is not (1− o(1)) · log N -approximable, unless P = NP.

4.1 A O(1)-Approximation Algorithm
Let’s start by revisiting Qcover(A) : −R1(A, B), R2(B). Although SWP is hard to compute
exactly for Qcover, it is easy to approximate SWP(Qcover, D) for arbitrary database D within a
factor of 2. Let D∗ be a solution to SWP(Qcover, D). We can simply construct an approximated
solution D′ by picking a pair of tuples (a, b) ∈ R1, (b) ∈ R2 for every a ∈ Qcover(D), and show
that |D′| ≤ 2 · |Qcover(D)| ≤ 2 · |D∗|. This is actually not a violation to the inapproximability
of set cover problem. If revisiting the proof of Lemma 14, (U ,S) has a cover of size ≤ k if
and only if SWP(Qcover, D) has a solution of size ≤ |U|+ k. Due to the fact that k ≤ |U|, the
inapproximability of set cover does not carry over to SWP for Q. This observation can be
generalized to all CQs with head-domination property.

As described in Algorithm 1, an approximated solution to SWP(Q, D) for a CQ Q with
head-domination property consists of two parts. For every relation that only contains output
attributes, Algorithm 1 includes all tuples that participate in at least one query result
(line 4–5), which must be included by any witness for Q(D). For the remaining relations,
Algorithm 1 partitions them into groups based on the existential connectivity. Intuitively,
every pair of relations across groups can only join via output attributes in their dominants.
Recall that Ai denotes the set of output attributes appearing in relations from Ei. Then, for
each group Ei, we consider each tuple t′ ∈ πAi

Q(D) and find the smallest witness for t′ in
Qi defined by relations in Ei. The union of witnesses returned for all groups forms the final
answer. As shown before, Algorithm 1 runs in polynomial time.

▶ Lemma 17. For a CQ Q with head-domination property, Algorithm 1 finds a O(1)-
approximated solution to SWP(Q, D) for any database D in polynomial time.

Proof. Consider the connected components E1, E2, · · · , Ek of G∃
Q with dominants Ṙ1, Ṙ2, · · · ,

Ṙk. Let Qi be the subquery defined over relations in Ei, with output attributes head(Qi) =
attr(Ṙi), and Di = {Rj : Rj ∈ Ei} be the corresponding database for Qi. Let D∗ be the
solution to SWP(Q, D). We point out some observations on D∗:

For each Rj with attr(Rj) ⊆ head(Q), D∗ must include all tuples in πattr(Rj)Q(D).
For every dominant Ṙi, D∗ must include at least |πhead(Ṙi)Q(D)| tuples from Ṙi.

On the other hand, Algorithm 1 includes |rels(Qi)| tuples for each primitive at line 11,
and invokes this primitive for each tuple in πhead(Ṙi)Q(D). Together, we come to:

|D′| =
∑

Rj :attr(Rj)⊆head(Q)

∣∣πattr(Rj)Q(D)
∣∣ +

∑
Ṙi:i∈[k]

∣∣∣πhead(Ṙi)Q(D)
∣∣∣ · |rels(Qi)|

≤ |D∗|+ |D∗| · |rels(Qi)| ≤ 2 · |D∗| · |rels(Q)|
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Figure 4 A free-connex CQ Q with head(Q) =
{A1, A2, A3, A7}. A partition of relations containing non-
output attributes is {{R3, R9}, {R4, R5, R6}, {R7, R8}},
with dominant relations R3, R4, R7 respectively.
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Figure 5 A database D for Qmatrix

with an integral sub-database in red.
Each vertex is a value in the attribute,
and each edge is a tuple in D.

It can also be easily checked that Q(D) = Q(D′). Hence, Algorithm 1 always returns
a O(1)-approximation solution for SWP(Q, D). Moreover, the query results Q(D) can be
computed in poly-time in the input size of D. Each primitive of finding the smallest witness
for one query result takes O(1) time. Hence, Algorithm 1 runs in polynomial time. ◀

Connection with Free-connex CQs. We point out that every free-connex CQ has head-
domination property, which is built on an important property as stated in Lemma 18.

▶ Lemma 18 ([5]). A free-connex CQ has a tree structure T such that (1) each node of T
corresponds to attr(Ri) or head(Ri) for some relation Ri ∈ rels(Q); and for each relation
Ri ∈ rels(Q), there exists a node of T corresponding to attr(Ri); (2) for every attribute
A ∈ attr(Q), the set of nodes containing A form a connected subtree of T; (3) there is a
connected subtree Tcon of T including the root of T, such that the set of attributes appearing
in Tcon is exactly head(Q).

▶ Lemma 19. Every free-connex CQ has head-domination property.

Proof. Recall that Q has head-domination property if for any connected component Ej of
G∃

Q, there exists a dominant relation from rels(Q) for Ej . Suppose we are given a tree
structure T for a free-connex CQ Q with Tcon as described by Lemma 18. Consider an
arbitrary relation Ri with attr(Ri) − head(Ri) ̸= ∅, such that all its ancestors in T only
contain output attributes. Let Ti be the subtree rooted at Ri. We note that any relation
in Ti cannot fall into the same connected component with a relation in T \ Ti, since they
do not share any common non-output attribute. Consider any relation Rj ∈ Ti. Implied
by the fact that Tcon is a connected subtree and Ri /∈ Tcon, we have Rj /∈ Tcon. Then,
head(Rj) ⊆ head(Ri); otherwise, any output attribute in head(Rj) − head(Ri) does not
appear in Tcon. Hence, for any connected component Ej formed by relations from Ti, Ri is a
dominant relation for Ej . This argument applies for every connected component of G∃

Q. ◀

4.2 Logarithmic Inapproximability
Now, we turn to the class of CQs without head-domination property, and show their hardness
by resorting to inapproximability of set cover [20, 17]: there is no poly-time algorithm for
approximating set cover of input size n within factor (1− o(1)) · log n, unless P = NP. We
identify two hardcore structures (Definition 23 and Definition 26), and prove that no poly-
time algorithm can approximate SWP for any CQ containing a hardcore within a logarithmic
factor, unless P = NP. Lastly, we complete the proof of Theorem 16 by establishing the
connection between the non-existence of a hardcore and head-domination property for CQs.
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(O1) min
∑
b∈B

|Cb|

s.t.
⋃

b:(a,b)∈R1

Cb = C, ∀a ∈ A

Cb ⊆ C, ∀b ∈ B

(O2) min
∑
b∈B

xb

s.t.
∑

b:(a,b)∈R1

xb ≥ 1, ∀a ∈ A

xb ∈ {0, 1}, ∀b ∈ B

Figure 6 Optimization problems in the proof of Lemma 21.

4.2.1 Free sequence
Let’s start with the simplest acyclic but non-free-connex CQ Qmatrix(A, C) :−R1(A, B), R2(B,

C). We show a reduction from set cover to SWP for Qmatrix while preserving its logarithmic
inapproximability. The essence of is the notion of integral witness, such that for any database
D where R2 is a Cartesian product, SWP(Qmatrix, D) always admits an integral witness.

▶ Definition 20 (Integral Database). For any database D over Qmatrix with R2 = (πBR2)×
(πCR2), a sub-database (R′

1, R′
2) ⊆ D is integral if R′

2 = (πBR′
2)× (πCR2).

▶ Lemma 21. For Qmatrix and any database D where R2 = (πBR2)× (πCR2), there is an
integral solution to SWP(Qmatrix, D), i.e., a smallest witness to Q(D) that is also integral.

Proof. Consider a database D where R2 = (πBR2)× (πCR2). We assume that there exists
no dangling tuples in R1, R2, i.e., every tuple can join with some tuple from the other relation;
otherwise, we simply remove these dangling tuples. With a slight abuse of notation, we
denote A = πAR1, B = πBR1(= πBR2) and C = πCR2. We consider the optimization
problem O1 in Figure 6. Intuitively, it asks to assign a subset of elements Cb ⊆ C to each
value b ∈ B, such that each a is “connected” to all values in C via tuples in R1, R2, while
the total size of the assignment defined as

∑
b∈B |Cb| is minimized. See Figure 5.

We rewrite the objective function as:
∑

b∈B |Cb| =
∑

c∈C |{b ∈ B : c ∈ Cb}|, where {b ∈
B : c ∈ Cb} indicates the subset of values from B to which c is assigned. Together with the
constraint that every a ∈ A must be connected to c, we note that minimizing |{b ∈ B : c ∈ Cb}|
is equivalent to solving the optimization problem (O2) in Figure 6. Let x∗ be the optimal
solution of the program above, which only depends on the input relation R1, and completely
independent of the specific value c. Hence, we conclude that

∑
b∈B |Cb| = |C| ·

∑
b∈B x∗

b .
We next construct an integral sub-database D′ as follows. For each b ∈ B with x∗

b = 1,
we add tuples in {(b, c) ∈ R2 : ∀c ∈ C} to D′. For each a ∈ A, we pick an arbitrary b ∈ B

with (a, b) ∈ R1 and x∗
b = 1, and add (a, b) to D′. Any solution to SWP(Qmatrix, D) must

contain at least |A| tuples from R1 and at least |C| ·
∑

b∈B x∗
b tuples from R2. Hence, D′ is

an integral witness to SWP(Qmatrix, D). ◀

▶ Lemma 22. There is no poly-time algorithm to approximate SWP for Qmatrix within a factor
of (1− o(1)) · log N , unless P = NP.

Proof. Consider an arbitrary instance of set cover (U ,S), where |U| = n and |S| = nc for
some constant c ≥ 1.3 We construct a database D for Qmatrix as follows. For each element
u ∈ U , we add a value au to dom(A) and cu to dom(C); for each subset S ∈ S, we add a
value bS to dom(B). Moreover, for each pair (u, S) ∈ U ×S with u ∈ S, we add tuple (au, bS)

3 The inapproximability of set cover holds even when the size of the family of subsets is only polynomially
large with respect to the size of the universe of elements [33].

ICDT 2024



24:12 Finding Smallest Witnesses for Conjunctive Queries

to R1. R2 is a Cartesian product between dom(B) and dom(C). Every relation contains at
most nc+1 tuples. Hence N ≤ 2nc+1. Note that Qmatrix(D) is the Cartesian product between
A and C. Implied by Lemma 21, it suffices to consider integral witness to SWP(Qmatrix, D).
Here, we show that (U ,S) has a cover of size ≤ k if and only if the SWP(Qmatrix, D) has an
integral solution of size ≤ |U|+ k · |V | = n(k + 1).
Direction only-if. Suppose we are given a cover S ′ of size k to (U ,S). We construct an
integral solution D′ to SWP(Qmatrix, D) as follows. Let B′ ⊆ dom(B) be the set of values that
corresponding to S ′. For every bS ∈ B′, i.e., S ∈ S ′, we add tuple (bS , cu) to D′ for every
u ∈ U . For every au ∈ dom(A), we choose an arbitrary value bS ∈ B′ such that u ∈ S, and
add tuple (au, bS) to D′. This is always feasible since S ′ is a valid set cover. It can be easily
checked that n tuples from R1 and k · n tuples from R2 are added to D′.
Direction if. Suppose we are given a integral solution D′ of size k′ to SWP(Qmatrix, D). Let
B′ be the subset of values whose incident tuples in R2 are included by D′. We argue that all
subsets corresponding to B′ forms a valid cover of size k′

n−1 . By definition of integral solution,
|B′| = k′

n − 1. Moreover, for every value a ∈ dom(A), at least one edge (a, b) is included by
D′ for some b ∈ B′, hence B′ must be a valid set cover.

Hence, if SWP is (1− o(1)) · log N -approximable for Qmatrix, there is a poly-time algorithm
that approximates set cover of input size n within a (1 − o(1)) · log N factor, which is
impossible unless P = NP. ◀

▶ Definition 23 (Free Sequence). In a CQ Q, a free sequence is a sequence of attributes
P = ⟨A1, A2, · · · , Ak⟩ such that4

A1, Ak ∈ head(Q) and A2, A3, · · · , Ak−1 ∈ attr(Q)− head(Q);
for every i ∈ [k− 1], there exists a relation Rj ∈ rels(Q) such that Ai, Ai+1 ∈ attr(Rj);
there exists no relation Rj ∈ rels(Q) such that A1, Ak ∈ Rj.

▶ Lemma 24. For a CQ Q containing a free sequence, there is no poly-time algorithm that
can approximate SWP for Q within a factor of (1− o(1)) · log N , unless P = NP.

Proof. Let P = ⟨A1, A2, · · · , Ak⟩ be such a sequence. For simplicity, let P ′ = {A2, A3, · · · ,

Ak−1}. We next show a reduction from set cover to SWP(Q, D). Consider an arbitrary
instance of set cover with a universe U and a family S of subsets of U where |U| = n and
|S| = nc for some constant c ≥ 1. We construct a database D for Q as follows. For each
u ∈ U , we add a value au to dom(A1) and dom(Ak). For each subset S ∈ S, we add a value
bS to dom(B) for every B ∈ P ′. We set the domain of remaining attributes in attr(Q)− P

as {∗}. For each relation Rj ∈ rels(Q), we distinguish the following cases:
If A1 ∈ attr(Rj), we further distinguish two more cases:

if attr(Rj) ∩ P ′ = ∅, we add tuple t with πA1t = au for every u ∈ U ;
otherwise, we add tuple t with πA1t = au and πAi

t = bS for Ai ∈ attr(Rj) ∩ P ′, for
every pair (u, S) ∈ U × S such that u ∈ S;

If Ak ∈ attr(Rj), we further distinguish two more cases:
if attr(Rj) ∩ P ′ = ∅, we add tuple t with πAk

t = au for every u ∈ U ;
otherwise, we add tuple t with πAk

t = au and πAi
t = bS for Ai ∈ attr(Rj) ∩ P ′, for

every pair (u, S) ∈ U × S;
If P ∩ attr(Rj) ⊆ P −{A1, Ak}, we add a tuple t with πAi

t = bS for Ai ∈ attr(Rj)∩P ,
for every S ∈ S;
If P ∩ attr(Rj) = ∅, then we add a tuple {∗};

4 Free sequence is a slight generalized notion of free path [5] studied in the literature, which further
requires that for any relation Rj ∈ rels(Q), either attr(Rj) ∩ P = ∅, or |attr(Rj) ∩ P | = 1, or
attr(Rj) ∩ P = {Ai, Ai+1} for some i ∈ [k − 1].
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It can be easily checked that every relation contains at most nc+1 tuples, hence log N =
Θ(log n). The query result Q(D) is exactly the Cartesian product of U × U .

Consider a sub-database D′ of D constructed above. Let R′
j be the corresponding sub-

relation of Rj in D′. A solution D′ to SWP(Q, D) is integral if R′
j =

(
πattr(Rj)∩P ′R′

j

)
×(πAk

Rj)
holds for every relation Rj with Ak ∈ attr(Rj) and attr(Rj) ∩ P ′ ≠ ∅. Applying a similar
argument as Lemma 21, we can show that there always exists an integral solution to SWP(Q, D).
Below, it suffices to focus on integral solutions. It can be easily proved that (U ,S) has a
cover of size ≤ k if and only if SWP(Q, D) has an integral solution of size ≤ nq1 + knq2 + q3
where q1, q2, q3 ≤ |rels(Q)| are query-dependent parameters. If SWP is (1 − o(1)) · log N -
approximatable for Q, there is a poly-time algorithm that can approximate set cover instances
of input size n within a log n-factor, which is impossible unless P = NP. ◀

Connection with Non-Free-connex CQs. We point out that every acyclic but non-free-
connex CQ has a free sequence [5], hence does not have head-domination property. Together
with Lemma 19, our characterization of SWP for acyclic CQs coincides with the separation
between free-connex and non-free-connex CQs. In short, SWP is poly-time solvable or O(1)-
approximable for free-connex CQs, while no poly-time algorithm can approximate SWP for
any acyclic but non-free-connex CQs within a factor of (1− o(1)) · log N , unless P = NP.

4.2.2 Nested Clique
Although free sequence suffices to capture the hardness of approximating SWP for acyclic CQs,
it is not enough for cyclic CQs. Let’s start with the simplest cyclic CQ Qpyramid(A, B, C) :
−R1(A, B), R2(A, C), R3(B, C), R4(A, F ), R5(B, F ), R6(C, F ) that does not contain a free
sequence, but SWP is still difficult to approximate.

▶ Lemma 25. There is no poly-time algorithm to approximate SWP for Qpyramid within a
factor of (1− o(1)) · log N , unless P = NP.

Proof. Consider an instance (U ,S) of set cover, with U = {u1, u2, · · · , un} and S =
{S1, S2, · · · , Sm}, where m = nc for some constant c > 1. We construct a database D

for Q as follows. Let dom(A) = {a1, a2, · · · , an}, dom(B) = {b1, b2, · · · , bn}, dom(C) =
{c1, c2, · · · , cn} and dom(F ) = dom(F −)×dom(F +), where dom(F −) = {f−

1 , f−
2 , · · · , f−

m} and
dom(F +) = {f+

1 , f+
2 , · · · , f+

n }. Relations R1, R2, R3 and R6 are Cartesian products of their
corresponding attributes. For each pair (uℓ, Sj) ∈ U × S with uℓ ∈ Sj , we add tuples of
{(aℓ, f−

j )} × dom(F +) to R4. For each i ∈ [n], we add tuples {bi} × dom(F −)× {f+
i } to R5.

It can be easily checked that the input size of D is O(n2c), hence log N = Θ(log n). Q(D) is
the Cartesian product between A,B and C. Hence, every solution to SWP(Q, D) includes all
tuples in R1, R2, R3. Below, we focus on R4, R5, R6.

We observe that D enjoys highly symmetric structure over dom(B). More specifically,
each value bi ∈ dom(B) induces a subquery Qi(A, C) = R4(A, Fi) ⋊⋉ R5(Fi) ⋊⋉ R6(C, Fi),
where dom(Fi) = dom(F −) × {f+

i }, and a sub-database Di =
{

Ri
4, Ri

5, Ri
6
}

, where Ri
4 =

{(aℓ, f−
j , f+

i ) : ∀ℓ ∈ [n], j ∈ [m], uℓ ∈ Sj}, Ri
5 = dom(Fi) and Ri

6 = dom(C) × dom(Fi).
It can be easily checked that SWP(Q, D) = R1 ⊎ R2 ⊎ R3 ⊎

(
⊎i∈[n]SWP(Qi, Di)

)
. For any

i ∈ [n], computing SWP(Qi, Di) is almost the same as Qmatrix. Moreover, the solution to each
SWP(Qi, Di) shares the same structure, which is independent of the specific value bi ∈ dom(B).
In a sub-database D′ ⊆ D, let R′

i be the corresponding sub-relation of Ri. A solution D′

to SWP(Q, D) is integral if R′
4 = (πA,F −R′

4)× dom(F +), R′
5 = dom(B)× (πF −R′

5)× dom(F +),
and R′

6 = dom(C)× (πF −R′
6)× dom(F +). Implied by Lemma 21 and analysis above, there

always exists an integral solution to SWP(Q, D).
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Moreover, (U ,S) has a cover of size ≤ k if and only if SWP(Q, D) has an integral witness
of size ≤ 3n2 + n(n + k + kn) = (k + 4)n2 + kn. If SWP is (1− o(1)) · log N -approximable for
Q, then there is a poly-time algorithm that can approximate set cover instances of input size
n within a factor of (1− o(1)) · log n, which is impossible unless P = NP. ◀

Now, we are ready to introduce the structure of nested clique and the rename procedure
for capturing the hardness of cyclic CQs:

▶ Definition 26 (Nested Clique). In a CQ Q, a nested clique is a subset of attributes
P ⊆ attr(Q) such that

for any pair of attributes A, B ∈ P , there is some Rj ∈ rels(Q) with A, B ∈ attr(Rj);
P ∩ head(Q) ̸= ∅ and P − head(Q) ̸= ∅;
there is no relation Rj ∈ rels(Q) with P ∩ head(Q) ⊆ head(Rj).

▶ Definition 27 (Rename). Given the nonout-connectivity graph HQ of a CQ Q with con-
nected components H1, H2, · · · , Hk, the rename procedure assigns one distinct attribute
to all attributes in the same component. The resulted CQ Q′ contains the same out-
put attributes as Q, and each Ri ∈ rels(Q) defines a new relation R′

i ∈ rels(Q′) with
attr(R′

i) = head(Ri) ∪ {Fj : ∀j ∈ [k], Hj ∩ attr(Ri) ̸= ∅}.

In Figure 3, Q1 is renamed as Q′
1(A1, A2, A3) : −R1(A1, F1), R2(F1), R3(A2, F1),

R4(A2, A3, F2), R5(A1, A2).

▶ Theorem 28. For a CQ Q, if its renamed query Q′ contains a nested clique, there is no
poly-time algorithm that can approximate SWP for Q within a factor of (1 − o(1)) · log N ,
unless P = NP.

Proof. Let P ⊆ attr(Q) be the subset of attributes corresponding to the clique in the
renamed query of Q. We identify the relation that contains the most number of output
attributes of P , say R2 = arg maxRi∈rels(Q) |attr(Ri) ∩ P ∩ head(Q)|. As there exists
no relation Rk ∈ rels(Q) with head(Q) ∩ P ⊆ attr(Rk), it is always feasible to identify
an attribute A ∈ head(Q) ∩ P − attr(R2). For simplicity, we denote P ′ = head(Q) ∩
P − attr(R2) − {A} = {A1, A2, · · · , Aℓ}, for some integer ℓ. All non-output attributes in
P − head(Q) collapse to a single attribute F . All other attributes in attr(Q)− P contain a
dummy value {∗}.

Consider an arbitrary instance of set cover (U ,S) with U = {u1, u2, · · · , un} and S =
{S1, S2, · · · , Sm}, where m = nc for some constant c > 1. We construct a database D for
Q. Let dom(A) = {a1, a2, · · · , an}, dom(B) = {b1, b2, · · · , bn}, dom(C) = {c1, c2, · · · , cn} for
every C ∈ P ′, and dom(F ) = dom(F −)× dom(F +) where dom(F −) = {f−

1 , f−
2 , · · · , f−

m} and
dom(F +) = {f+

h1,h2,··· ,hℓ
: ∀h1, h2, · · · , hℓ ∈ [n]}. We distinguish the following cases:

If attr(Ri)∩P ⊆ head(Q), Ri is a Cartesian product over all attributes in head(Ri)∩P ;
Otherwise, we further distinguish the following three cases:

R2 is a Cartesian product over all attributes in attr(R2) ∩ P ;
If A, F ∈ attr(Ri), we construct sub-relation (πA,F Ri) such that for each pair
(uℓ, Sj) ∈ U × S with uℓ ∈ Sj , we add tuples

{
aℓ, f−

j

}
× dom(F +) to (πA,F Ri).

If attr(Ri) ∩ P ′ ≠ ∅, for each tuple
(

aℓ, f+
h1,h2,··· ,hℓ

, f−
j

)
∈ (πA,F Ri), we extend it by

attaching value chj
for attribute Aj ∈ attr(Ri) ∩ P ′. This way, we already obtain(

πA,F,attr(Ri)∩P ′Ri

)
. At last, we construct Ri as the Cartesian product of remaining

attributes in head(Ri) ∩ head(R2) ∩ P and
(
πA,F,attr(Ri)∩P ′Ri

)
.
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Otherwise, F ∈ attr(Ri) but A /∈ attr(Ri). We construct sub-relation (πF Ri) =
dom(F ). If attr(Ri) ∩ P ′ ̸= ∅, for each tuple

(
f+

h1,h2,··· ,hℓ
, f−

j

)
∈ πF Ri, we extend it

by attaching value chj
for attribute Aj ∈ attr(Ri) ∩ P ′. This way, we already obtain(

πF,attr(Ri)∩P ′Ri

)
. At last, we construct Ri as the Cartesian product of remaining

attributes in head(Ri) ∩ head(R2) ∩ P and
(
πA,F,attr(Ri)∩P ′Ri

)
.

It can be checked that every relation contains O(n|head(Q)∩P | · m) tuples, hence log N =
Θ(log n). Meanwhile, the query result Q(D) is the Cartesian product over attributes in
head(Q)∩P , so every solution to SWP(Q, D) must contain all tuples in Ri if attr(Ri)∩P ⊆
head(Q), and the dummy tuple {∗} in every relation Ri if attr(Ri) ∩ P = ∅.

Here, D also enjoys highly symmetric structure over every attribute C ∈ P ′. More
specifically, every tuple t = (ci1 , ci2 , · · · , ciℓ

) ∈ ×C∈P ′dom(C) induces a subquery by removing
all attributes in P ′, and restricting dom(F ) as dom(Ft) = dom(F −)×

{
f+

i1
, f+

i2
, · · · , f+

iℓ

}
. In

a sub-database D′ ⊆ D, let R′
i be the corresponding sub-relation Ri. A solution D′ to

SWP(Q, D) is integral if:
for every relation Ri ∈ rels(Q) with A, F ∈ attr(Ri),

πA,F,head(Ri)∩head(R2)∩P R′
i =

(
πA,F −R′

i

)
× dom(F +)×

(
×C∈head(Ri)∩head(R2)∩P dom(C)

)
for every relation Ri ∈ rels(Q) with A /∈ attr(Ri) and F ∈ attr(Ri),

πF,head(Ri)∩head(R2)∩P R′
i = (πF −R′

i)× dom(F +)×
(
×C∈head(Ri)∩head(R2)∩P dom(C)

)
It can be easily shown that there always exists an integral solution to SWP(Q, D). Moreover,
(U ,S) has a cover of size ≤ k if and only if SWP(Q, D) has an integral solution of size
(q1k + q2) · n|head(Q)∩P |−1, where q1, q2 ≤ |rels(Q)| are some query-dependent parameters.
Applying a similar argument as Lemma 21, we can show that if SWP is (1 − o(1)) · log N -
approximable for Q, there is a poly-time algorithm that can approximate set cover instances
of input size n within a log n-factor, which is impossible unless P = NP. ◀

4.3 Completeness
At last, we complete the proof of Theorem 16 by establishing the connection between the
non-existence of hardcore structures and head-domination property:

▶ Lemma 29. In a CQ Q, if there is neither a free sequence nor a nested clique in its
renamed query, Q has head-domination property.

We have proved Lemma 29 for acyclic CQs, such that if Q does not contain a free sequence,
Q has head-cluster property. It suffices to focus on cyclic CQs. We note that any cyclic CQ
contains a cycle or non-conformal clique [8]. Our proof is based on a technical lemma that
if every cycle or non-conformal clique contains only output attributes or only non-output
attributes, Q has head-domination property. We complete it by showing that if Q does not
contain a free sequence or nested clique in its renamed query, no cycle or non-conformal
clique contains both output and non-output attributes.

5 Approximation Algorithms

We next explore possible approximation algorithms for CQs without head-domination property.
All missing proofs are in the full version [28].
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5.1 Baseline
A baseline for general CQs returns the union of smallest witness for every query result, which
includes at most min{N, |rels(Q)| · |Q(D)|} tuples. Meanwhile, AGM bound [4] implies
that at least O(|Q(D)|1/ρ∗) tuples are needed to reproduce |Q(D)| results, where ρ∗ is the
fractional edge covering number of Q. Together, we obtain:

▶ Theorem 30. SWP is N1−1/ρ∗-approximable for any CQ Q, where ρ∗ is the fractional edge
covering number of Q.

This upper bound is polynomially larger than the logarithmic lower bound proved in
Section 4. We next explore better approximation algorithms for some commonly-used CQs.

5.2 Star CQs
We look into one commonly-used class of CQs noted as star CQs:

Qstar(A1, A2, · · · , Am) : −R1(A1, B), R2(A2, B), · · · , Rm(Am, B).

Our approximation algorithm follows the greedy strategy developed for weighted set cover
problem, where each element to be covered is a query result and each subset is a collection
of tuples. Intuitively, the greedy strategy always picks a subset that minimizes the “price”
for covering the remaining uncovered elements. The question boils down to specifying the
universe U of elements, and the family S of subsets as well as their weights. However, naively
taking every possible sub-collection of tuples from the input database as a subset, would
generate an exponentially large S, which leads to a greedy algorithm running in exponential
time. Hence, it is critical to keep the size of S small. Let’s start with Qmatrix (m = 2).

Greedy Algorithm for Qmatrix. Given Qmatrix, a database D, and a subset of query results
C ⊆ Qmatrix(D), the price of a collections of tuples (X, Y ) for X ⊆ R1 and Y ⊆ R2 is
defined as f(C, X, Y ) = |X|+|Y |

|πA,C (X⋊⋉Y )−C| . To shrink the space of candidate subsets, a critical
observation is that the subset with minimum price chosen by the greedy algorithm cannot be
divided further, i.e., all tuples should have the same join value as captured by Lemma 31.

▶ Lemma 31. Given Qmatrix and a database D, for two distinct values b, b′ ∈ dom(B), and
two pairs of subsets of tuples (X1, Y1) ∈ 2σB=bR1 × 2σB=bR2 , (X2, Y2) ∈ 2σB=b′ R1 × 2σB=b′ R2 ,
for arbitrary C ⊆ Qmatrix(D), min{f(C, X1, Y1), f(C, X2, Y2)} ≤ f(C, X1 ∪X2, Y1 ∪ Y2).

Now, we are ready to present a greedy algorithm that runs in polynomial time. As shown
in Algorithm 2, we always maintain a pair (Xi, Yi) for every value bi ∈ dom(B), such that
(Xi, Yi) minimize the function f(C, X, Y ) for X ⊆ σB=bi

R1 and Y ⊆ σB=bi
R2. The greedy

algorithm always chooses the one pair with minimum price, pick all related tuples in this
pair, and update the coverage C. After this step, we also need to update the candidate pair
(Xi, Yi) for each value bi ∈ dom(B) and enter into the next iteration. We will stop until all
query results are covered. The remaining question is how to compute (Xi, Yi) with minimum
price (line 8) efficiently. We mention densest subgraph in the bipartite graph in the literature
[25, 29], for which a poly-time algorithm based on max-flow has been proposed.

▶ Definition 32 (Densest Subgraph in Bipartite Graph). Given a bipartite graph (X, Y, E)

with E : X × Y → {0, 1}, it asks to find X ′ ⊆ X, Y ′ ⊆ Y to maximize
∑

x∈X′,y∈Y ′ E(x,y)
|X′|+|Y ′| .
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Algorithm 2 GreedySWP(Qmatrix, D).

1 D′ ← ∅, C ← ∅;
2 foreach bi ∈ dom(B) do (Xi, Yi)← (σB=bi

R1, σB=bi
R2);

3 while C ̸= Qmatrix(D) do
4 bj ← arg minbi∈dom(B) f(C, Xi, Yi);
5 D′ ← D′ ∪Xj ∪ Yj , C ← C ∪ πA,C(Xj ⋊⋉ Yj);
6 foreach bi ∈ dom(B) do
7 (Xi, Yi)← arg min

X⊆σB=bi
R1,Y ⊆σB=bi

R2
f(C, X, Y );

8 return D′;

Back to our problem, each value bi ∈ dom(B) induces a bipartite graph with X = σB=bi
R1,

Y = σB=bi
R2, and E = {(x, y) | x ∈ X, y ∈ Y, πA,C(x ⋊⋉ y) /∈ C}. This way, the densest

subgraph in this bipartite graph corresponds to a subset of uncovered query results with
minimum price, and vice versa.

The approximation ratio of our greedy algorithm follows the standard analysis of weighted
set cover [39]. We next focus on the time complexity. The while-loop proceeds in at most
O(|Q(D)|) iterations, since |C| increases by at least 1 in every iteration. It takes O(N) time to
find the pair with minimum price, since there are O(N) distinct values in dom(B). Moreover,
it takes polynomial time to update (Xi, Yi) for each bi ∈ dom(B). Overall, Algorithm 2 runs
in polynomial time in terms of N .

Extensions. Our algorithm for Qmatrix can be extended to star CQs, and further to all CQs
with only one non-output attribute. Similar property as Lemma 31 also holds. Our greedy
algorithm needs a generalized primitive, noted as densest subgraph in hypergraph5 [27] for
finding the “set” with the smallest price. Following the similar analysis, we obtain:

▶ Theorem 33. For any CQ Q with |attr(Q)−head(Q)| = 1, SWP is O(log N)-approximable.

5.3 Line CQs
We turn to another commonly-used class of CQs noted as line CQs:

Qline(A1, Am+1) : −R1(A1, A2), R2(A2, A3), · · · , Rm(Am, Am+1)

with m ≥ 3. We surprisingly find that SWP for line CQs is closely related to directed Steiner
forest (DSF) problem [18, 11, 21, 16] in the network design: Given an edge-weighed directed
graph G = (V, E) of |V | = n and a set of k demand pairs {(si, ti) ∈ V × V : i ∈ [k]} and the
goal is to find a subgraph G′ of G with minimum weight such that there is a path in G′ from
si to ti for every i ∈ [k]. Observe that SWP(Qline, D) is a special case of DSF. This way, all
existing algorithm proposed for DSF can be applied to SWP for Qline. The best approximation
ratio achieved is O(min{k 1

2 +o(1), n0.5778}) [21, 11, 1]. Combining the baseline in Section 5.1
(with ρ∗ = 2 for line CQs) and existing algorithms for DSF, we obtain:

▶ Theorem 34. For Qline and any database D of input size N , there is a poly-time algorithm
that can approximate SWP(Qline, D) within a factor of O(min{|Qline(D)| 12 +o(1), dom0.5778, N

1
2 }),

where dom is the number of values that participates in at least one full join result.

5 Given a hypergraph H = (V, E) for E ⊆ 2V , it asks to find a subset of nodes S ⊆ V such that the ratio
|{e ∈ E : e ⊆ S}|/|S| is maximized.
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There is a large body of works investigating the lower bounds of DSF; and we refer interested
readers to [16] for details. We mention a polynomial lower bound Ω(k1/4−o(1)) for DSF, but
it cannot be applied to SWP, since SWP is a special case with its complexity measured by the
number of edges in the graph. Instead, we built a reduction from label cover to SWP for Qline
directly (which is an adaption of reduction proposed in [18, 13]) and prove the following:

▶ Theorem 35. No poly-time algorithm approximates SWP for Qline within Ω(2(log N)1−ϵ)
factor for any constant ϵ > 0, unless P = NP.

6 Related Work

Factorized database [34]. Factorized database studies a nested representations of query
results that can be exponentially more succinct than flat query result, which has the same
goal as SWP. They built a tree-based representations by exploiting the distributivity of product
over union and commutativity of product and union. This notion is quite different from
SWP. They measure the regularity of factorizations by readability, the minimum over all its
representations of the maximum number of occurrences of any tuple in that representation,
while SWP measures the size of witness.

Data Synopses [14, 36]. In approximate query processing, people studied a lossy, compact
synopsis of the data such that queries can be efficiently and approximately executed against
the synopsis rather than the entire dataset, such as random samples, sketches, histograms and
wavelets. These data synopses differ in terms of what class of queries can be approximately
answered, space usage, accuracy etc. In computational geometry, a corset is a small set of
points that approximate the shape of a larger point set, such as for shape-fitting, density
estimation, high-dimensional vectors or points, clustering, graphs, Fourier transforms etc.
SWP can also be viewed as data synopsis, since it also selects a representative subset of
tuples. But, it is more query-dependent, as different CQs over the same database (such
as Q1(x) : −R1(x, y), R2(y, z) and Q2(x, y, z) : −R1(x, y), R2(y, z)) can have dramatically
different SWP. Furthermore, all query results must be preserved by SWP, but this is never
guaranteed in other data synopses. There is no space-accuracy tradeoff in SWP as well.

Related to Other Problems in Database Theory. The SWP problem also outputs the
smallest provenance that can explain why all queries results are correct. This notion of
why-provenance has been extensively investigated in the literature [9, 26, 3], but not from
the perspective of minimizing the size of witness. The SWP problem is also related to the
resilience problem [22, 23, 37], which intuitively finds the smallest number of tuples to remove
so that the query answer turns into false. Our SWP problem essentially finds the maximum
number of tuples to remove while the query answer does not change. We can observe clear
connection here, but their solutions do not imply anything to each other.

7 Conclusion

In this paper, we study the data complexity of SWP problem for CQs without self-joins. There
are several interesting problems left:
1. Approximating SWP for CQs without head-domination property. So far, the approximation

of SWP is well-understood only on some specific class of CQs without head-domination
property. For remaining CQs, both upper and lower bounds remain to be improved,
which may lead to fundamental breakthrough for other related problems, such as DSF.
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2. SWP for CQs with self-joins. It becomes much more challenging when self-joins exists, as
one tuple appears in multiple logical copies of input relation. Similar observation has
been made for the related resilience problem [23, 31]

3. Relaxing the number of query results witnessed. It is possible to explore approximation
on the number of query results that can be witnessed. Here, SWP is related to the partial
set cover problem, for which many approximation algorithms [24] have been studied.
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Abstract
We study the problem of enumerating the satisfying assignments for certain circuit classes from
knowledge compilation, where assignments are ranked in a specific order. In particular, we show
how this problem can be used to efficiently perform ranked enumeration of the answers to MSO
queries over trees, with the order being given by a ranking function satisfying a subset-monotonicity
property.

Assuming that the number of variables is constant, we show that we can enumerate the satisfying
assignments in ranked order for so-called multivalued circuits that are smooth, decomposable, and in
negation normal form (smooth multivalued DNNF). There is no preprocessing and the enumeration
delay is linear in the size of the circuit times the number of values, plus a logarithmic term in
the number of assignments produced so far. If we further assume that the circuit is deterministic
(smooth multivalued d-DNNF), we can achieve linear-time preprocessing in the circuit, and the
delay only features the logarithmic term.
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1 Introduction

Data management tasks often require the evaluation of queries on large datasets, in settings
where the number of query answers may be very large. For this reason, the framework of
enumeration algorithms has been proposed as a way to distinguish the preprocessing time of
query evaluation algorithms and the maximal delay between two successive answers [32, 37].
Enumeration algorithms have been studied in several contexts: for conjunctive queries [8]
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and unions of conjunctive queries [10, 16] over relational databases; for first-order logic over
bounded-degree structures [23], structures with local bounded expansion [33], and nowhere
dense graphs [31]; and for monadic second-order logic (MSO) over trees [7, 25, 3].

We focus on the setting of MSO over trees. In this context, the following enumeration
result is already known. For any fixed MSO query Q (i.e., in data complexity) where the free
variables are assumed to be first-order, considering the answers of Q on a tree T given as input
(i.e., the functions that map the variables of Q to nodes of T in a way that satisfies Q), we
can enumerate them with linear preprocessing on the tree T and with constant delay. If the
free variables are second-order, then the delay is output-linear, i.e., linear in each produced
answer [7, 3]. Further results are known when the query is not fixed but given as input
as a potentially non-deterministic automaton [4, 5], or when maintaining the enumeration
structure under tree updates [28, 5].

However, despite their favorable delay bounds, a shortcoming of these enumeration
algorithms is that they enumerate answers in an opaque order which cannot be controlled.
This is in contrast with application settings where answers should be enumerated, e.g., by
decreasing order of relevance, or focusing on the top-k most relevant answers. This justifies
the need for enumeration algorithms that can produce answers in a user-defined order, even
if they do so at the expense of higher delay bounds.

This task, called ranked enumeration, has recently been studied in various contexts.
For instance, Carmeli et al. [17, 13, 14] study for which order functions one can efficiently
perform ranked direct access to the answers of conjunctive queries: here, efficient ranked
direct access implies efficient ranked enumeration. Ranked enumeration has also been studied
to support order-by operators on factorized databases [9]. Other works have studied ranked
enumeration for document spanners [21], which relate to the evaluation of MSO queries
over words. Closer to applications, some works have studied the ranked enumeration of
conjunctive query answers, e.g., Deep et al. [20, 19] or Tziavelis et al. [35, 36]. Variants
of in-order enumeration have been also studied on knowledge compilation circuit classes,
for instance top-k, with a pseudo-polynomial time algorithm [11]. Closest to the present
work, Bourhis et al. [12] have studied enumeration on words where the ranking function on
answers is expressed in the formalism of MSO cost functions. They show that enumeration
can be performed with linear preprocessing, with a delay between answers which is no longer
constant but logarithmic in the size of the input word. However, their result does not apply
in the more general context of trees.

Contributions. In this paper, we embark on the study of efficient ranked enumeration
algorithms for the answers to MSO queries on trees, assuming that all free variables are
first-order. We define this task by assigning scores to each so-called singleton assignment
[x→ d] describing that variable x is assigned tree node d, and combining these values into
a ranking function while assuming a subset-monotonicity property [36]: intuitively, when
extending two partial assignments in the same manner, then the order between them does
not change. This setting covers many ranking functions, e.g., those defined by order, sum, or
a lexicographic order on the variables. Our main contribution is then to show the following
results on the data complexity of ranked enumeration for MSO queries on trees:

▶ Result 1. For any fixed MSO query Q(x1, . . . , xn) with free first-order variables, given
as input a tree T and a subset-monotone ranking function w on the partial assignments of
x1, . . . , xn to nodes of T , we can enumerate the answers to Q on T in nonincreasing order
of scores according to w with a preprocessing time of O(|T |) and a delay of O(log(K + 1)),
where K is the number of answers produced so far.
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Note that, as the total number of answers is at most |T |n, and as n is constant in data
complexity, the delay of O(log(K + 1)) can alternatively be bounded by O(n log |T |), or
O(log |T |). This matches the bound of [12] on words, though their notion of rank is different.
Further, our bound shows that the first answers can be produced faster, e.g., for top-k
computation.

Our results for MSO queries on trees are shown in the general framework of circuit-based
enumeration methods, introduced by [3]. In this framework, enumeration results are achieved
by first translating the task to a class of structured circuits from knowledge compilation, and
then proposing an enumeration algorithm that works directly on the structured class. This
makes it possible to re-use enumeration algorithms across a variety of problems that compile
to circuits. In this paper, as our task consists in enumerating assignments (from first-order
variables of an MSO query to tree nodes), we phrase our results in terms of multivalued
circuits. These circuits generalize Boolean circuits by allowing variables to take values in
a larger domain than {0, 1}: intuitively, the domain will be the set of the tree nodes. We
assume that circuits are decomposable, i.e., that no variable has a path to two different
inputs of a ∧-gate: this yields multivalued DNNFs, which generalize usual DNNFs. We also
assume that the circuits are smooth: intuitively, no variable is omitted when combining
partial assignments at an ∨-gate. Multivalued circuits can be smoothed while preserving
decomposability, in quadratic time or faster in some cases [34]. Smooth multivalued DNNF
circuits can alternatively be understood as factorized databases, but we do not impose that
they are normal [30], i.e., the depth can be arbitrary.

Our enumeration task for MSO on trees thus amounts to the enumeration of satisfying
assignments of smooth multivalued DNNFs, following a ranking function which we assume to
be subset-monotone. However, we are not aware of existing results for ranked enumeration on
circuits in the knowledge compilation literature. For this reason, the second contribution of
this paper is to show efficient enumeration algorithms on these smooth multivalued DNNFs.

We first present an algorithm for this task that runs with no preprocessing and polynomial
delay. The algorithm can be seen as an instance of the Lawler-Murty [26, 29] procedure. We
show:

▶ Result 2. For any constant n ∈ N, given a smooth multivalued DNNF circuit C with
domain D and with n variables, given a subset-monotone ranking function w, we can
enumerate the satisfying assignments of C in nonincreasing order of scores according to w

with delay O(|D| × |C|+ log(K + 1)), where K is the number of assignments produced so far.

We then show a second algorithm, which allows for a better delay bound at the expense
of making an additional assumption on the circuit; it is with this algorithm that we prove
Result 1. The additional assumption is that the circuit is deterministic: intuitively, no
partial assignment is captured twice. This corresponds to the class of smooth multivalued
d-DNNF circuits. For our task of enumerating MSO query answers, the determinism property
can intuitively be enforced on circuits when we compute them using an deterministic tree
automaton to represent the query. We then show:

▶ Result 3. For any constant n ∈ N, given a smooth multivalued d-DNNF circuit C with
n variables, given a subset-monotone ranking function w, we can enumerate the satisfying
assignments of C in nonincreasing order of scores according to w with preprocessing time
O(|C|) and delay O(log(K + 1)), where K is the number of assignments produced so far.

Paper structure. We give preliminary definitions in Section 2. We first study in Section 3
the ranked enumeration problem for smooth multivalued DNNF circuits (Result 2). We then
move on to a more efficient algorithm on smooth multivalued d-DNNF circuits (Result 3)
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in Section 4. We show how to apply the second algorithm to ranked enumeration for the
answers to MSO queries (Result 1) in Section 5. We conclude in Section 6. Missing proofs
can be found in the full version [2].

2 Preliminaries

For n ∈ N, we write [n] for the set {1, . . . , n}.

Assignments. For two finite sets D of values and X of variables, an assignment on domain D

and variables X is a mapping from X to D. We write DX the set of such assignments. We
can see assignments as sets of singleton assignments, where a singleton assignment is an
expression of the form [x→ d] with x ∈ X and d ∈ D.

Two assignments τ ∈ DY and σ ∈ DZ are compatible, written τ ≃ σ, if we have
τ(x) = σ(x) for every x ∈ Y ∩ Z. In this case, we denote by τ ▷◁ σ the assignment of DY ∪Z

defined following the natural join, i.e., for y ∈ Y \Z we set (τ ▷◁ σ)(y) := τ(y), for z ∈ Z \ Y

we set (τ ▷◁ σ)(z) := σ(z), and for x ∈ Z ∩ Y , we set (τ ▷◁ σ)(x) to the common value
τ(x) = σ(x). Two assignments τ ∈ DY and σ ∈ DZ are disjoint if Y ∩ Z = ∅: then they are
always compatible and τ ▷◁ σ corresponds to the relational product, which we write τ × σ.

Given R ⊆ DY and S ⊆ DZ , we define R ∧ S = {τ ▷◁ σ | τ ∈ R, σ ∈ S, τ ≃ σ}: this
is a subset of DY ∪Z . Note how, if the domain is D = {0, 1}, then this corresponds to the
usual conjunction for Boolean functions, and in general we can see it as a relational join, or
a relational product whenever Y ∩ Z = ∅. Further, we define R ∨ S = {τ ∈ DY ∪Z | τ |Y ∈
R or τ |Z ∈ S}, which is again a subset of DY ∪Z . Again observe how, when D = {0, 1}, this
corresponds to disjunction; and in general we can see this as relational union except that
assignments over Y and Z are each implicitly completed in all possible ways to assignments
over Y ∪ Z.

Multivalued circuits. A multivalued circuit C on domain D and variables X is a DAG with
labeled vertices which are called gates. The circuit also has a distinguished gate r called the
output gate of C. Gates having no incoming edges are called inputs of C. Moreover, we have:

Every input of D is labeled with a pair of the form ⟨x : d⟩ with x ∈ X and d ∈ D;
Every other gate of D is labeled with either ∨ (a ∨-gate) or ∧ (a ∧-gate).

We denote by |C| the number of edges in C.
Given a gate v of C, the inputs of v are the gates w of C such that there is a directed

edge from w to v. The set of variables below v, denoted by var(v), is then the set of variables
x ∈ X such that there is an input w which is labeled by ⟨x : d⟩ for some d ∈ D and which
has a directed path to v. Equivalently, if v is an input labeled by ⟨x : d⟩ then var(v) := {x},
otherwise var(v) :=

⋃k
i=1 var(vi) where v1, . . . , vk are the inputs of v. We assume that the

set X of variables of the circuit is equal to var(r) for r the output gate of C: this can be
enforced without loss of generality up to removing useless variables from X.

For each gate v of C, the set of assignments rel(v) ⊆ Dvar(v) of v is defined inductively as
follows. If v is an input labeled by ⟨x : d⟩, then rel(v) contains only the assignment [x 7→ d].
Otherwise, if v is an internal gate with inputs v1, . . . , vk then rel(v) := rel(v1) op · · · op rel(vk)
where op ∈ {∨,∧} is the label of v. The set of assignments rel(C) of C is that of its output
gate. Note that, if D = {0, 1}, then the set of assignments of C precisely corresponds to its
satisfying valuations when we see C as a Boolean circuit in the usual sense.

We say that a ∧-gate v is decomposable if all its inputs are on disjoint sets of variables;
formally, for every pair of inputs v1 ̸= v2 of v, we have var(v1) ∩ var(v2) = ∅. A ∨-gate v is
smooth if all its inputs have the same set of variables (so that implicit completion does not
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occur); formally, for every pair of inputs v1, v2 of v, we have var(v1) = var(v2). A ∨-gate v is
deterministic if every assignment of v is computed by only one of its inputs; formally, for every
pair of inputs v1 ̸= v2 of v, if τ ∈ rel(v) then either τ |var(v1) /∈ rel(v1) or τ |var(v2) /∈ rel(v2).

Let v be an internal gate with inputs v1, . . . , vk. Observe that if v is decomposable,
then rel(v) =×k

i=1 rel(vi). If v is smooth then rel(v) =
⋃k

i=1 rel(vi). If moreover v is
deterministic, then rel(v) =

⊎k
i=1 rel(vi), where ⊎ denotes disjoint union. Accordingly, we

denote decomposable ∧-nodes as ×-nodes, denote smooth ∨-nodes as ∪-nodes, and denote
smooth deterministic ∨-nodes as ⊎-nodes.

A multivalued circuit is decomposable (resp., smooth, deterministic) if every ∧-gate is
decomposable (resp., every ∨-gate is smooth, every ∨-gate is deterministic). A multivalued
DNNF on domain D and variables X is then a decomposable multivalued circuit on D and X.
A multivalued d-DNNF on domain D and variables X is a deterministic multivalued DNNF
on D and X. In all this paper, we only work with circuits that are both decomposable and
smooth, i.e., smooth multivalued DNNFs. Note that smoothness can be ensured on Boolean
circuits in quadratic time [34], and the same can be done on multivalued circuits.

Ranking functions. Our notion of ranking functions will give a score to each assignment,
but to state their properties we define them on partial assignments. Formally, a partial
assignment is a mapping ν : X → D∪{⊥}, where ⊥ is a fresh symbol representing undefined.
We denote by DX the set of partial assignments on domain D and variables X. The support
supp(ν) of ν is the subset of X on which ν is defined.

We extend the definitions of compatibility, of ▷◁, and of disjointness, to partial assignments
in the following way. Two partial assignments τ ∈ DY and σ ∈ DZ are compatible, again
written τ ≃ σ, when for every x ∈ Y ∩ Z, if τ(x) ̸= ⊥ and σ(x) ̸= ⊥ then τ(x) = σ(x). In
this case, we denote by τ ▷◁ σ the partial assignment of DY ∪Z defined by: for y ∈ Y \ Z

we have (τ ▷◁ σ)(y) := τ(y), for z ∈ Z \ Y we have (τ ▷◁ σ)(z) := σ(z), and for x ∈ Z ∩ Y ,
if τ(x) ̸= ⊥ then (τ ▷◁ σ)(x) = τ(x), otherwise (τ ▷◁ σ)(x) = σ(x). We call τ and σ disjoint
if Y ∩ Z = ∅; then again they are always compatible and we write τ × σ for τ ▷◁ σ.

We then consider ranking functions defined on partial assignments DX , on which we will
impose subset-monotonicity. Formally, a (D, X)-ranking function w is a function1 DX → R
that gives a score to every partial assignment. Such a ranking function induces a weak
ordering2 ⪯ on DX , with µ ⪯ µ′ defined as w(µ) ≤ w(µ′). We always assume that ranking
functions can be computed efficiently, i.e., with running time that only depends on X, not D.

By a slight notational abuse, we define the score w(τ) of partial assignment τ ∈ DY

with Y ⊆ X by seeing τ as a partial assignment on X which is implicitly extended by
assigning ⊥ to every z ∈ X \ Y . Following earlier work [20, 36, 19], we then restrict our
study to ranking functions that are subset-monotone [36]:

▶ Definition 2.1. A (D, X)-ranking function w : DX → R is subset-monotone if for
every Y ⊆ X and partial assignments τ1, τ2 ∈ DY such that w(τ1) ≤ w(τ2), for every partial
assignment σ ∈ DX\Y (so disjoint with τ1 and τ2), we have w(σ × τ1) ≤ w(σ × τ2).

We use in particular the following consequence of subset-monotonicity, where we call τ ∈ DX

maximal (or maximum) for w : DX → R when for every τ ′ ∈ DX we have w(τ ′) ≤ τ(τ):

1 As usual, when we write R, we assume a suitable representation, e.g., as floating-point numbers.
2 Recall that a weak ordering ⪯ on A is a total preorder on A, i.e., ⪯ is transitive and we have either

x ⪯ y or y ⪯ x for every x, y ∈ A. In particular, it can be the case that two distinct elements x and y
are tied, i.e., x ⪯ y and y ⪯ x.
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▶ Lemma 2.2. Let R ⊆ DY and S ⊆ DZ with Y ∩ Z = ∅, and let w : DY ∪Z → R be
subset-monotone. If τ is a maximal element of R and σ is a maximal element of S with
respect to w, then τ × σ is a maximal element of R ∧ S with respect to w.

We give a few examples of subset-monotone ranking functions. Let W : X × D → R
be a function assigning scores to singleton assignments, and define the (D, X)-ranking
function sumW : DX → R by sumW (τ) =

∑
x∈X,τ(x)̸=⊥ W (x, τ(x)). Then sumW is subset-

monotone. Similarly define maxW : DX → R by maxW (τ) = maxx∈X,τ(x)̸=⊥ W (x, τ(x)), or
prodW in a similar manner (with non-negative scores for singletons); then these are again
subset-monotone. In particular, we can use sumW to encode lexicographic orderings on DX .

Enumeration and problem statement. Our goal in this article is to efficiently enumerate
the satisfying assignments of circuits in nonincreasing order according to a ranking function.
We will in particular apply this for the ranked enumeration of the answers to MSO queries
on trees, as we will explain in Section 5. We call this problem RankEnum. Formally, the
input to RankEnum consists of a multivalued circuit C on domain D and variables X, and a
(D, X)-ranking function w that is subset-monotone. The output to enumerate consists of all
of rel(C), without duplicates, in nonincreasing order of scores (with ties broken arbitrarily).

Formally, we work in the RAM model on words of logarithmic size [1], where memory
cells can represent integers of value polynomial in the input length, and on which arithmetic
operations take constant time. We will in particular allocate arrays of polynomial size in
constant time, using lazy initialization [24]. We measure the performance of our algorithms
in the framework of enumeration algorithms, where we distinguish two phases. First, in the
preprocessing phase, the algorithm reads the input and builds internal data structures. We
measure the running time of this phase as a function of the input; in general the best possible
bound is linear preprocessing, e.g., preprocessing in O(|C|). Second, in the enumeration
phase, the algorithm produces the assignments, one after the other, without duplicates, and
in nonincreasing order of scores; the order of assignments that are tied according to the
ranking function is not specified. The delay is the maximal time that the enumeration phase
can take to produce the next assignment, or to conclude that none are left. We measure the
delay as a function of the input, as a function of the produced assignments (which each have
size |X|), and also as a function of the number of results that have been produced so far.
The best delay is output-linear delay, i.e., O(|X|), which can be achieved for (non-ranked)
enumeration of MSO queries on trees [7, 25, 3]. In our results, we will always fix |X| to a
constant (for technical reasons explained in the next section), so the corresponding bound
would be constant delay, but, like [12], we will not be able to achieve it. Also note that
the memory usage of the enumeration phase is not bounded by the delay, but can grow as
enumeration progresses.

Brodal queues. Similar to [12], our algorithms in this paper will use priority queues, in a
specific implementation called a (functional) Brodal queue [15]. Intuitively, Brodal queues
are priority queues which support union operations in O(1), and which are purely functional
in the sense that operations return a queue without destroying the input queue(s). More
precisely, a Brodal queue is a data structure which stores a set of priority-data pairs of
the form (p : foo, d : bar) where foo is a real number and bar an arbitrary piece of data,
supporting operations defined below. Brodal queues are purely functional and persistent, i.e.,
for any operation applied to some input Brodal queues, we obtain as output a new Brodal
queue Q′, such that the input queues can still be used. Note that the structures of Q′ and of
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the input Brodal queues may be sharing locations in memory; this is in fact necessary, e.g.,
to guarantee constant-time bounds. However, this is done transparently, and both Q′ and
the input Brodal queues can be used afterwards3. Brodal queues support the following:

Initialize, in time O(1), which produces an empty queue;
Push, in time O(1), which adds to Q a priority-data pair;
Find-Max , in time O(1), which either indicates that Q is empty or otherwise returns
some pair (p : foo, d : bar) with foo being maximal among the priority-data pairs stored
in Q (ties are broken arbitrarily);
Pop-Max , in time O(log(|Q|)), which either indicates that Q is empty or returns two
values: first the pair p returned by Find-Max, second a queue storing all the pairs of Q

except p;
Union, in time O(1), which takes as input a second Brodal queue Q′ and returns a queue
over the elements of Q and Q′.

3 Ranked Enumeration for Smooth Multivalued DNNFs

In this section, we start the presentation of our technical results by giving our algorithm to
solve the ranked enumeration problem for DNNFs under subset-monotone orders. This is
Result 2 from the introduction, which we restate below:

▶ Theorem 3.1. For any constant n ∈ N, we can solve the RankEnum problem on an
input smooth multivalued DNNF circuit C on domain D and variables X with |X| =
n and a subset-monotone (D, X)-ranking function with no preprocessing and with delay
O(|D| × |C|+ log(K + 1)), where K is the number of assignments produced so far.

Note how the number n of variables is assumed to be constant in the result statement. This
is for a technical reason: we will need to store partial assignments in memory, but in the
RAM model we can only index polynomially many memory locations [24, page 3], so we must
ensure that the total number of assignments is polynomial. The circuit itself and the domain
can however be arbitrarily large, following the application to MSO queries over trees studied
in Section 5: the variables of the circuit will be the variables of the MSO query (which is
fixed because we will work in data complexity), and the size of the circuit and that of the
domain will be linear in the size of the tree (which represents the data).

Our algorithm can be seen as an instance of the Lawler-Murty [26, 29] procedure, that
has been previously used to enumerate paths in DAGs in decreasing order of weight in [36].
Interestingly, the result does not require that the input circuit is deterministic. However, it
is less efficient than the method presented in Section 4 where determinism is exploited.

We prove Theorem 3.1 in the rest of this section. Let us fix a smooth multivalued DNNF C

on domain D and variables X, and a subset-monotone ranking function w : DX → R. For
a partial assignment τ , we denote by wC(τ) = max{w(τ × σ) | σ ∈ DX\supp(τ) and τ × σ ∈
rel(C)} the score of the maximal completion of τ to a satisfying assignment of C if it exists
and wC(τ) = ⊥ if no such completion exists. Our algorithm relies on the following folklore
observation:

▶ Lemma 3.2. Given a partial assignment τ , one can compute wC(τ) in time O(|C|).

3 This is similar to how persistent linked lists can be modified by removing the head element or concate-
nating with a new head element. Such operations can run in constant time and return the modified
version of the list without invalidating the original list; with both lists sharing some memory locations
in a transparent fashion.
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Algorithm 1 Algorithm for Theorem 3.1.

Data: Smooth multivalued DNNF C with n variables, subset-monotone ranking
function w.

Result: Enumeration of the satisfying assignments of C in nonincreasing order of
scores by w.

1 Q← empty priority queue;
2 Push the empty assignment [] into Q with priority wC([]);
3 while Q is not empty do
4 Pop into γ the assignment with maximum wC-score from Q;
5 for j ← |supp(γ)|+ 1 to n do
6 foreach d ∈ D do
7 Construct αd = γ × ⟨xj : d⟩;
8 Compute wC(αd) using Lemma 3.2;
9 end

10 γ ← αd0 such that wC(αd0) is not ⊥ and is maximal;
11 Push into Q all αd′ for d′ ̸= d0 where wC(αd′) ̸= ⊥, with priority wC(αd′);
12 end
13 Output γ;
14 end

Proof. Let X be the variables of C. It is enough to show that we can compute, given a smooth
multivalued DNNF C ′ and monotone ranking function w′, some σ′ ∈ rel(C ′) that maximizes
w′(σ′), in O(|C ′|). Indeed, if this is the case we can first compute the conditioning4 C ′ of
C on τ in time O(|C ′|): specifically, C ′ is a multivalued circuit on domain D and variables
X \ supp(τ) such that, for σ′ ∈ DX\supp(τ) we have that σ′ ∈ rel(C ′) iff τ ×σ′ ∈ rel(C). Then,
letting w′ be the ranking function on DX\supp(τ) defined by w′(σ′) := w(σ′ × τ) (which is
subset-monotone), find one such σ′ ∈ rel(C ′) in time O(|C|), and then return w(σ′× τ). This
is correct thanks to subset-monotonicity of w, more precisely, by Lemma 2.2.

Now the algorithm to do this proceeds by bottom-up induction as follows: for each gate
v of C ′, we compute σv ∈ rel(v) such that w′(σv) = max{w′(σ) | σ ∈ rel(v)}. If v is an
input then rel(v) is a singleton assignment, and we let σv be this assignment. Now, if v is a
×-gate with inputs v1, . . . , vk, we let σv = σv1 × · · · × σvk

. By Lemma 2.2, σv is maximal
for rel(v) if each σvi is maximal for rel(vi) which is the case by induction. Finally, if v is a
∪-gate with input v1, . . . , vk, we define σv = arg maxk

i=1 w′(σvi
), which is clearly maximal in

rel(v) =
⋃k

i=1 rel(vi) if σvi is maximal in rel(vi) for each i because v is smooth, which is the
case by induction. ◀

With this in place, we are ready to describe the algorithm. Notice that our definition
of multivalued circuits implies that rel(C) can never be empty, because all gates except
input gates have inputs, and the circuit is decomposable. We fix an arbitrary order on
X = {x1, . . . , xn} and, for i ∈ {1, . . . , n + 1}, we denote by X<i the set {x1, . . . , xi−1}
(which is empty for i = 1). A partial assignment τ ∈ DX is called a prefix assignment if
supp(τ) = X<i for some i ∈ {1, . . . , n + 1}.

4 See [18, Definition 5.4] for the definition of conditioning on Boolean circuits, which easily adapts to
multivalued circuits.
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The enumeration algorithm is then illustrated as Algorithm 1, which we paraphrase in
text below. The algorithm uses a variable γ holding a prefix assignment and a priority
queue Q containing prefix assignments. The priorities in the queue are the wC-score, i.e.,
the priority of each prefix assignment is the score returned by wC on this assignment. We
initialize Q to contain only the empty partial assignment (i.e., the assignment that maps
every variable to ⊥, denoted [] in Algorithm 1): note that the wC -score of [] is not ⊥ because
rel(C) ̸= ∅. We then do the following until the queue is empty. We pop (i.e., call Pop-Max)
from the queue a prefix assignment (of maximal wC-score) that we assign to γ; we will
inductively see that γ is a prefix assignment of D<i for some i ∈ {1, . . . , n + 1} and that its
wC-score is not ⊥. We then do the following for j := i to n (i.e., potentially zero times, in
case i = n + 1 already). For every possible choice of domain element d ∈ D, we let αd be the
prefix assignment that extends γ by assigning xi to d, and we compute the value wC(αd)
using Lemma 3.2. Among these values, the definition of wC ensures that one has a wC -score
which is not ⊥, because this is true of γ. We thus pick a value d0 ∈ D such that wC(αd0)
is maximal (in particular non-⊥). We set γ to αd0 , and we push into Q all other prefix
assignments αd′ for d′ ̸= d0 for which we have wC(αd′) ̸= ⊥. Once we have run this for all
values of j, we have i = n + 1, hence γ is a total assignment, and we output it. We then
continue processing the remaining contents of the queue.

Correctness of the algorithm. We can show (see the full version [2]) that the following
invariants hold at the beginning and end of every while loop iteration:
1. For every τ ∈ Q, no satisfying assignment of C compatible with τ has been outputted

so far;
2. For every τ, τ ′ ∈ Q, if τ ̸= τ ′ then τ ̸≃ τ ′;
3. For every σ ∈ rel(C) that has not yet been outputted by the algorithm, there exists some

i ∈ {1, . . . , n + 1} such that σ|X<i
∈ Q (in fact, the previous point then implies there is

at most one such i);
4. The number of elements in Q is at most n× |D| × (K + 1), where K is the number of

assignments produced so far.
We explain next why they imply correctness.

▷ Claim 3.3. Algorithm 1 terminates, enumerates rel(C) without duplicates and in non-
increasing order, and runs with delay O(|D| × |C| + log(K + 1)) with K the number of
assignments produced so far.

Proof. We first show that the algorithm terminates. Indeed, notice that we pop a prefix
assignment from the queue at the beginning of every while loop iteration. Let us show that,
once a prefix assignment τ has been popped from Q, it cannot be pushed again into Q for
the rest of the algorithm’s execution. Indeed, observe that once we pop τ from Q, we will
first push to Q assignments that are strict extensions of τ (hence different from τ), and then
output a satisfying assignment τ ′ of C that is compatible with τ , after which the current
iteration of the while loop ends. Now, by invariant (1), no partial assignment compatible
with τ ′ can ever be added to Q, and in particular it is the case that τ cannot ever be added
to Q. Thus the queue becomes empty and the algorithm terminates.

Since the queue eventually becomes empty, by invariant (3), the algorithm outputs at least
all of rel(C). The fact that there are no duplicates follows from invariant (1), using a similar
reasoning to how we proved termination. Furthermore, it is clear that only assignments
of rel(C) are ever outputted. Therefore the algorithm indeed enumerates exactly all of rel(C)
with no duplicates.
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To check that assignments are enumerated in nonincreasing order, consider an iteration
of the while loop where we output τ ∈ rel(C). Let σ ∈ rel(C) be an assignment that has not
yet been outputted, and assume by contradiction that w(τ) < w(σ). Consider the prefix
assignment γ that was popped from the queue Q at the beginning of that iteration; clearly by
construction we have wC(γ) = w(τ). But by invariant (3), there exists a prefix assignment γ′

in Q of which σ is a completion, hence for this γ′ we have wC(γ′) ≥ w(σ) by definition of wC ,
and this is strictly bigger than w(γ), contradicting the fact that γ had maximal priority.

Last, we check that the delay between any two consecutive outputs is indeed O(|D| ×
|C|+ log(K + 1)). The O(|D| × |C|) term corresponds to the at most n× |D| applications of
Lemma 3.2 during a for loop until we produce the next satisfying assignment (remember
that n is constant so it is not reflected in the delay). The O(log(K + 1)) term corresponds
to the unique pop operation performed on the priority queue during a while loop iteration.
Indeed, by invariant (4) the queue contains less than n× |D| × (K + 1) prefix assignments
and the complexity of a pop operation is logarithmic in this. Since n is constant we
obtain O(log |D|+ log(K + 1)), and the O(log |D|) gets absorbed in the O(|D| × |C|) term.

◁

Thus, up to showing that the invariants hold (see the full version [2]), we have concluded the
proof of Theorem 3.1.

4 Ranked Enumeration for Smooth Multivalued d-DNNFs

Having shown our polynomial-delay ranked enumeration algorithm for DNNF circuits,
we move on in this section to our main technical contribution. Specifically, we present an
algorithm for smooth multivalued DNNF circuits that are further assumed to be deterministic,
but which achieves linear-time preprocessing and delay O(log(K + 1)), where K denotes the
number of satisfying assignments produced so far. This proves Result 3, which we restate
below:

▶ Theorem 4.1. For any constant n ∈ N, we can solve the RankEnum problem on an input
smooth multivalued d-DNNF circuit C with n variables and a subset-monotone ranking
function, with preprocessing O(|C|) and delay O(log(K + 1)), where K is the number of
assignments produced so far.

Let us fix for this section the set X of variables of C (with |X| = n) and the domain D.
The rest of this section is devoted to proving Theorem 4.1. It is structured in three

subsections, corresponding to the three main technical difficulties to overcome. First, we
explain in Section 4.1 the preprocessing phase of the algorithm, where in particular we
use Brodal queues to quickly “jump” over ⊎-gates. Second, in Section 4.2, we present a
simple algorithm, that we call the A⊙B ranked enumeration algorithm, which conveys in a
self-contained fashion the idea of how we handle ×-gate during the enumeration phase of the
main algorithm. Last, we present the enumeration phase in Section 4.3.

4.1 Preprocessing Phase
The preprocessing phase is itself subdivided in four steps, described next.

Preprocessing: first step. We preprocess C in O(|C|) to ensure that the ×-gates of the
circuit always have exactly two inputs. This can easily be done as follows. Remember that
our definition of multivalued circuits does not allow ×-gates with no inputs, so this case does
not occur. We can then eliminate ×-gates with one input by replacing them by their single
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input. Next, we can rewrite ×-gates with more than two inputs to replace them by a tree of
×-gates with two inputs. For simplicity, let us call C again the resulting smooth multivalued
d-DNNF circuit in which ×-gates always have exactly two inputs.

Preprocessing: second step. We compute, for every gate g of C the value #g := |rel(g)|.
This can clearly be done in linear time again, by a bottom-up traversal of C and using
decomposability, determinism and smoothness. Note that #g has value at most |D|n, which
is polynomial (as n is a constant), so this fits into one memory cell.

Preprocessing: third step. The third step begins by initializing for every gate g of C

an empty Brodal queue Bg. We then populate those queues by a (linear-time) bottom-up
traversal of the circuit, described next. This traversal will add to each queue Bg some
priority-data pairs of the form (p : w(τ), d : (g′, 1, τ)) where g′ has a (possibly empty)
directed path to g and τ ∈ rel(g). We will shortly explain what is the exact content of
these queues at the end of this third preprocessing step, but we already point out one
invariant: once we are done processing a gate g in the traversal, then Bg contains at least
one priority-data pair of this form, i.e., it is non-empty.

The traversal proceeds as follows:
If g is an input gate labeled with ⟨x : d⟩ corresponding to the singleton assignment α =
[x 7→ d], then we push into Bg the priority-data pair corresponding to this assignment:
(p : w(α), d : (g, 1, α)).
If g is a ×-gate with inputs g1 and g2 then we call Find-Max on the Brodal queues Bg1

and Bg2 of the inputs. These gates g1 and g2 have already been processed, so the queues
Bg1 and Bg2 are non-empty, and we obtain priority-data pairs (p : w(τ1), d : (g′

1, 1, τ1))
and (p : w(τ2), d : (g′

2, 1, τ2)), where τ1 ∈ rel(g1) and τ2 ∈ rel(g2). We push into Bg the
pair (p : w(τ1 × τ2), d : (g, 1, τ1 × τ2)).
If g is a ⊎-gate with input gates g1, . . . , gm then we set Bg to be the union of Bg1 , . . . , Bgm ;
recall that the union operation on two Brodal queues can be done in O(1), so that this
union is linear in m.

It is clear that this third preprocessing step takes time O(|C|). To describe what the queues
contain at the end of this step, we need to define the notion of exit gate of a ⊎-gate:

▶ Definition 4.2. For a ⊎-gate g of C, an exit gate of g is a gate g′ which is not a ⊎-gate
(i.e., a ×-gate or an input of the circuit) such that there is a path from g′ to g where every
gate except g′ on this path is a ⊎-gate. We denote by exit(g) the set of exit gates for g.

We can then characterize what the queues contain:

▷ Claim 4.3. When the third preprocessing step finishes, the queues Bg are as follows:
If g is an input gate corresponding to the singleton assignment α = [x 7→ d] then Bg

contains only the pair (p : w(α), d : (g, 1, α)).
If g is a ×-gate then Bg contains only one pair, which is of the form (p : w(τ), d : (g, 1, τ))
where τ is some satisfying assignment of g of maximal score (i.e., maximal among rel(g)).
If g is a ⊎-gate then Bg contains exactly the following: for every exit gate g′ of g, the
queue Bg contains one pair of the form (p : w(τ), d : (g′, 1, τ)) where τ is some satisfying
assignment of g′ of maximal score (i.e., maximal among rel(g′)).

This implies, in particular, that for every g ∈ C the queue Bg contains a pair (p : w(τ), d :
(g′, 1, τ)) (possibly g′ = g) where τ is a satisfying assignment of g of maximal score among
rel(g).

Proof of Claim 4.3. It is routine to prove this by bottom-up induction, in particular using
Lemma 2.2 for the case of ×-gates. ◁
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This concludes the third preprocessing step. Intuitively, the Brodal queues computed at this
step will allow us to jump directly to the exits of ⊎-gates, without spending time traversing
potentially long paths of ⊎-gates. Thanks to the constant-time union operation on Brodal
queues, this third step takes linear time, and in fact this is the only part of the proof where
we need this bound on the union operation. More precisely, in the remainder of the algorithm,
we will only use on priority queues Q the operations Initialize, Push and Find-Max (in O(1))
and Pop-Max (in O(log |Q|)).

Preprocessing: fourth step. In the fourth and last preprocessing step, we define some more
data structures on every gate g of C.

First, we define for every gate g a priority queue Qg. For all input gates and ⊎-gates,
we simply set Qg := Bg, but for ×-gates we will define Qg to be new priority queues. Once
this is done, we will only use the priority queues Qg, and can forget about the priority
queues Bg. We construct Qg for each ×-gate g separately, in O(1) time, as follows. Letting
g1 and g2 be the inputs to g, we call Find-Max on Bg. By Claim 4.3, we obtain a pair
(p : w(τ), d : (g, 1, τ)) where τ is some satisfying assignment of g of maximal score. We split
τ into τ1× τ2 where τi ∈ rel(gi) for i ∈ {1, 2}, and we define the priority queue Qg to contain
one priority-data pair, namely, (p : w(τ), d : (1, 1, τ1, τ2)).

Second, we allocate for every gate g a table Tg of size #g (indexed starting from 1),
that will later hold satisfying assignments of g in nonincreasing order of scores, stored into
contiguous memory cells starting at the beginning of Tg. We do not bother initializing these
tables, but we initialize integers ig to 0, that will store the current number of assignments
stored in Tg.

Last, we also initialize to 0 a bidimensional bit table Rg for every×-gate g, of size #g1×#g2
with g1, g2 the two inputs of g. This can be done in O(1) with the technique of lazy
initialization, see e.g., [24, Section 2.5]. The role of these tables will be explained later.

This concludes the description of the preprocessing phase of our algorithm. In what
follows, we will rely on the priority queues Qg, the tables Tg, the integers ig storing their
size, and the tables Rg, The following should then be clear:

▷ Claim 4.4. Once we finish the fourth preprocessing step (concluding the preprocessing),
all integers ig are 0, all tables Tg and Rg are empty, and the queues Qg contain the following:

If g is an input gate corresponding to the singleton assignment α = [x 7→ d], then Qg

contains only the pair (p : w(α), d : (g, 1, α)).
If g is a ×-gate with inputs g1, g2, then Qg contains only one priority-data pair which is
of the form (p : w(τ1 × τ2), d : (1, 1, τ1, τ2)), where τ1 × τ2 is some satisfying assignment
of g of maximal score (among rel(g)).
If g is a ⊎-gate, then Qg contains, for every exit gate g′ of g, one pair of the form
(p : w(τ), d : (g′, 1, τ)) where τ is some satisfying assignment of g′ of maximal score
(among rel(g′)).

Again, this in particular implies that each Qg stores a satisfying assignment of g of maximal
score (but the way in which it is represented depends on the type of g).

4.2 A ⊙ B Ranked Enumeration Algorithm
Having described the preprocessing phase, we present in this section a component of the
enumeration phase of our algorithm, called the A⊙B ranked enumeration algorithm. This
simple algorithm will be used at every ×-gate g during the enumeration phase to enumerate
all ways to combine the assignments of the two inputs of g.



A. Amarilli, P. Bourhis, F. Capelli, and M. Monet 25:13

Algorithm 2 Algorithm for A ⊙ B ranked enumeration.

Data: Two arrays A, B of real numbers of size n1, n2 (indexed from 1), sorted in
nonincreasing order; An operation ⊙ as described in the main text.

Result: An enumeration of the pairs {(i, j) | (i, j) ∈ {1, . . . , n1} × {1, . . . , n2}} in
nonincreasing order of the score A[i]⊙B[j]

1 R← bidimensional array of size n1 × n2 lazily initialized to 0;
2 Q← empty priority queue;
3 Push (1, 1) into Q with priority A[1]⊙B[1];
4 R[1, 1]← true;
5 while Q is not empty do
6 Pop into (i, j) the pair with maximal priority from Q;
7 Output (i, j);
8 for (p, q) ∈ {(i + 1, j), (i, j + 1)} do
9 if p ≤ n1 and q ≤ n2 and R[p][q] = 0 then

10 Push (p, q) into Q with priority A[p]⊙B[q];
11 R[p][q]← true;
12 end
13 end
14 end

Let ⊙ : R × R → R be an operation which is computable in O(1) and such that, for
all a ≤ a′ and b ≤ b′ we have a⊙ b ≤ a′ ⊙ b′ (this is similar to subset-monotonicity, and is
in fact equivalent; cf. the full version [2]). We explain in this section how, given as input
two tables (indexed starting from 1) A, B of reals of size n1, n2 sorted in nonincreasing
order, we can enumerate the set of integer pairs {(i, j) | (i, j) ∈ {1, . . . , n1}× {1, . . . , n2}}, in
nonincreasing order of the score A[i]⊙B[j], with O(1) preprocessing and a delay O(log K)
where K is the number of pairs outputted so far.

Intuitively, this will be applied at every ×-gate g, with [n1] (resp., [n2]) representing the
satisfying valuations of the first (resp., second) input of g sorted in a nonincreasing order, as
in the table A (resp., B).

The algorithm is shown in Algorithm 2, but we also paraphrase it in text with more
explanations. We initialize a two-dimensional bit table R of size n1 × n2 to contain only
zeroes (again using lazy initialization [24, Section 2.5]), whose role will be to remember
which pairs have been seen so far, and a priority queue Q containing only the pair (p :
A[1]⊙ B[1], d : (1, 1)); we set R[1, 1] to true because the pair (1, 1) has been seen. Then,
while the queue is not empty, we do the following. We pop (call Pop-Max) from Q, obtaining
a priority-data pair of the form (p : A[i]⊙B[j], d : (i, j)). We output the pair (i, j). Then,
for each (p, q) ∈ {(i + 1, j), (i, j + 1)} that is in the [n1]× [n2] grid, if the pair (p, q) has not
been seen before, then we push into Q the pair (p : A[p]⊙B[q], d : (p, q)) and mark (p, q)
as seen in R. We show the following in the full version [2].

▷ Claim 4.5. This A⊙B ranked enumeration algorithm is correct and runs with the stated
complexity.

Proof sketch. The proof is simple and hinges on the following two invariants:
1. For any pair (i, j) not enumerated so far, there exists a pair (i′, j′) (possibly (i, j) = (i′, j′))

such that (i′, j′) is in Q, and a simple path in the [n1] × [n2] grid from (i′, j′) to (i, j)
with nondecreasing first and second coordinates such that none of the pairs in that path
have been outputted yet.

2. The queue contains at most K + 1 pairs for K the number of pairs outputted so far. ◁
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4.3 Enumeration Phase
We last move on to the enumeration phase. We first give a high-level description of how the
enumeration phase works, before presenting the details.

The operation Get(g, j). We will define a recursive operation Get, running in complex-
ity O(log(K + 1)), that applies to a gate g and integer 1 ≤ j ≤ ig + 1 and does the following.
If j ≤ ig then Get(g, j) simply returns the satisfying assignment of g that is stored in Tg[j]
(i.e., this assignment has already been computed). Otherwise, if j = ig + 1, then Get(g, j)
finds the next assignment to be enumerated, inserts it into Tg, and returns that assignment.
Note that, in this case, calling Get(g, j) modifies the memory for g and some other gates g′.
Specifically, it modifies the tables Tg′ and Rg′ , the queues Qg′ , and the integers ig′ for various
gates g′ having a directed path to g (i.e., including g′ = g).

When we are not executing an operation Get, the memory will satisfy the following
invariants, for every g of C:

The table Tg contains assignments τ ∈ rel(g), ordered by nonincreasing score and with no
duplicates; and ig is the current size of Tg;
For any assignment τ ∈ rel(g) that does not occur in Tg, it is no larger than the last
assignment in Tg, i.e., we have w(τ) ≤ w(Tg[ig]).
The queues Qg will also satisfy some invariants, which will be presented later.
The tables Rg for the ×-gates record whether we have already seen pairs of satisfying
assignments of the two children, similarly to how this is done in the A⊙B algorithm.

The tables Tg store the assignments in the order in which we find them, which is compatible
with the ranking function. This allows us, in particular, to obtain in constant time the j-th
satisfying assignment of rel(g) if it has already been computed, i.e., if j ≤ ig. The reason
why we keep the assignments in the tables Tg is because we may reach the gate g via many
different paths throughout the enumeration, and these paths may be at many different stages
of the enumeration on g.

At the top level, if we can implement Get while satisfying the invariants above, then the
enumeration phase of the algorithm is simple to describe: for j ranging from 1 to #r, we
output Get(r, j), where r is the output gate of C.

Implementing Get. We first explain the intended semantics of data values in the queues Qb:
If g is a ⊎-gate then Qb will always contain pairs of the form (p : w(τ), d : (g′, j, τ))
where g′ ∈ exit(g) and j ∈ {1, . . . , ig′ + 1} and τ ∈ rel(g′), and the idea is that at the end
of the enumeration τ will be stored at position j in Tg′ .
If g is a ×-gate, letting g′

1 and g′
2 be the input gates, then Qb will always contain pairs

of the form (p : w(τ1 × τ2), d : (j1, j2, τ1, τ2)) with τi ∈ rel(gi) and at the end of the
enumeration τi will be at position ji in Tgi with ji ∈ {1, . . . , ig′

i
+ 1} for all i ∈ {1, 2}.

If g is an input gate, then Qb initially contains the only assignment captured by g,
becomes empty the first time we call Get(g, 1), and remains empty thereafter.

The implementation of Get is given in Algorithm 3. Intuitively, the algorithm for ⊎-gates
simply consists of interleaving the maximal assignments of its exit gates, similarly to how
one builds a sorted list for the union of two or more sorted lists. Here, determinism ensures
that we do not get duplicates. The algorithm for ×-gates proceeds similarly to the A⊙B

algorithm, as explained in the previous section.
This concludes the presentation of the function Get, and with it that of the enumeration

phase of the algorithm. The discussion of the delay bound can be found in the full version [2].
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Algorithm 3 Implementation of Get(g, j) for the enumeration phase.

Data: The tables Tg, Rg, queues Qg, integers #g, ig, ranking function w, a gate g,
and integer j ∈ {1, . . . ig + 1}.

Result: The j-th satisfying assignment of g.
1 if j ≤ ig then return Tg[j] ;

// From now on, we have j = ig + 1
2 if g is an input gate then
3 (p : δ, d : (g, 1, τ ′))← Pop from Qj ;
4 τ ← τ ′;
5 end
6 else if g is a ⊎-gate then
7 (p : δ, d : (g′, j′, τ ′))← Pop from Qj ;
8 τ ← τ ′;
9 if j′ + 1 ≤ #g′ then

10 τ ′′ ← Get(g′, j′ + 1);
11 Push into Qg the priority-data pair (p : w(τ ′′), d : (g′, j′ + 1, τ ′′));
12 end
13 end
14 else if g is a × gate then
15 (p : δ, d : (j1, j2, τ1, τ2))← Pop from Qj ;
16 τ ← τ1 × τ2;
17 for (p, q) ∈ {(j1 + 1, j2), (j1, j2 + 1)} do
18 if p ≤ #g1 and q ≤ #g2 and Rg[p][q] = false then
19 τ ′

1 ← Get(g1, p);
20 τ ′

2 ← Get(g2, q);
21 τ ′ ← τ ′

1 × τ ′
2;

22 Push into Qg the priority-data pair (p : w(τ ′), d : (p, q, τ ′));
23 Rg[p][q]← true;
24 end
25 end
26 end
27 Tg[ig + 1]← τ ;
28 ig ← ig + 1;
29 return τ

5 Application to Monadic Second-Order Queries

Having presented our results on ranked enumeration for smooth multivalued DNNFs and
d-DNNFs, we present their consequences in this section for the problem of ranked enumeration
of MSO query answers on trees. We first present some preliminaries on trees and MSO,
formally define the evaluation problem, and explain how to reduce it to our results on circuits.

Trees and MSO on trees. We fix a finite set Λ of tree labels. A Λ-tree is then a tree T

whose nodes carry a label from Λ, and which is rooted, ordered, binary, and full, i.e., every
node has either no children (a leaf ) or exactly one left child and one right child (an internal
node). We often abuse notation and write T to refer to its set of nodes.
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We consider monadic second-order logic (MSO) on trees, which extends first-order logic
with quantification over sets. The signature of MSO on Λ-trees allows us to refer to the left
child and right child relationships along with unary predicates referring to the node labels;
and it can express, e.g., the set of descendants of a node. We only consider MSO queries
where the free variables are first-order. We omit the precise semantics of MSO; see, e.g., [27].

Fixing an MSO query Φ(x1, . . . , xn) on Λ-trees, given a Λ-tree T , the answers of Φ on T

are the assignments α on variables X = {x1, . . . , xn} and domain T such that Φ(α) holds
on T in the usual sense. It is known that, for any such query Φ, given T and an assignment α

from X to T , we can check whether Φ(α(X)) holds in linear time. What is more, given T , we
can enumerate the answers of Φ on T with linear preprocessing and constant delay [7, 25, 3].

We now define ranked enumeration. For a tree T and variables X = {x1, . . . , xn}, a (T, X)-
ranking function is simply a ranking function as in Section 2, whose domain is the set of nodes
of T . We still assume that ranking functions are subset-monotone. The ranked enumeration
problem for a fixed MSO query Φ with variables X, also denoted RankEnum, takes an input
a tree T and a subset-monotone (T, X)-ranking function w, and must enumerate all answers
of Φ on T , without duplicates, in nonincreasing order of scores (with ties broken arbitrarily).

Ranked enumeration for MSO. We are now ready to restate Result 1 from the introduction:

▶ Theorem 5.1. For any fixed tree signature Λ and MSO query Φ on variables X on Λ-
trees, given a Λ-tree T and a subset-monotone (T, X)-ranking function w, we can solve the
RankEnum problem for Φ on T and w with preprocessing time O(|T |) and delay O(log(K +1))
where K is the number of answers produced so far.

Recall that, as the total number of answers is at most |T ||X| and |X| is constant, then this
implies a delay bound of O(log |T |). The result is simply shown by constructing a smooth
multivalued d-DNNF representing the query answers. This can be done in linear time with
existing techniques (we provide a self-contained proof in the full version [2]):

▶ Proposition 5.2 ([3, 5]). For any fixed tree signature Λ and MSO query Φ on variables
X on Λ-trees, given a Λ-tree T , we can check in time O(|T |) if Φ has some answers on T ,
and if yes we can build in time O(|T |) a smooth multivalued d-DNNF C on domain T and
variables X such that rel(C) is precisely the set of answers of Φ on T .

Note that we exclude the case where Φ has no answer on T , because our definition of
multivalued circuits does not allow them to capture an empty set of assignments; of course
we can do this check in the preprocessing, and if there are no answers then enumeration is
trivial.

These results are intuitively shown by translating the MSO query to a tree automaton, and
then computing a provenance circuit of this automaton by a kind of product construction [6].
The resulting circuit is a smooth multivalued DNNF, and is additionally a d-DNNF if
the automaton is deterministic. We can then show Theorem 5.1 simply by performing the
compilation (Proposition 5.2) as part of the preprocessing, and then invoking the enumeration
algorithm of Section 4 (Theorem 4.1). Notice that we could also use the algorithm of Section 3
(Theorem 3.1), in particular if it is easier to obtain a nondeterministic tree automaton for
the query, as its provenance circuit would then be a non-deterministic DNNF [5].

6 Conclusion

We have studied the problem of ranked enumeration for tractable circuit classes from
knowledge compilation, namely, DNNFs and d-DNNFs, in the setting of multivalued circuits
so as to apply these results to ranked enumeration for MSO query answers on trees. We have
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shown that the latter task can be solved with linear-time preprocessing and delay logarithmic
in the number of answers produced so far, in particular logarithmic delay in the input tree
in data complexity. This result on trees is the analogue of a previous result on words [12],
achieving the same bounds but for a different notion of ranking functions.

We leave several questions open for future work. For instance, our efficient algorithms
always assume that the input circuits are smooth: although this can be ensured “for free”
in the setting of MSO on trees, it is generally quadratic to enforce on an arbitrary input
circuit [34]. It may be possible to perform enumeration directly on non-smooth circuits, or
on implicitly smoothed circuits, e.g., with special gates as in [3]. It would also be natural
to study this problem in combined complexity, or for free second-order variables, though
our algorithms cannot work on the RAM model if we need to store a superpolynomial
number of assignments in memory. Last, it may be possible to extend our algorithms to more
general ranking functions than the one we study, for instance by leveraging the framework
of MSO cost functions used in [12], or using weighted logics [22], or possibly replacing
subset-monotonicity by a weaker guarantee.

Last, it would be interesting to study whether our results can extend to the support of
updates, e.g., reweighting updates to the ranking functions, or updates on the underlying
circuits or (for MSO queries) on the tree, as in [28] or [5]. However, this is more difficult
than the case of updates for non-ranked enumeration, because our algorithms use larger
intermediate structures which are more challenging to maintain.
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