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Abstract
We consider the computational complexity of constant-area levels of games which allow an unlimited
number of objects in a fixed region. We discuss how to prove that such games are RE-hard (and in
particular undecidable) and capable of universal computation, even on constant-area levels. We use
the puzzle game Baba is You as a case study, showing that 8 × 17 levels are capable of universal
computation by constructing a particular small universal counter machine within Baba is You.
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1 Introduction

There has recently been a surge of computational complexity results for games, especially
video games [18, 1, 10, 9, 6]. Most commonly, games (technically, decision problems of the
form “given a level of this game, is it possible to win?”) are shown to be NP- or PSPACE-
complete, and frameworks have been developed to simplify such proofs [14, 18, 1, 7, 5]. There
is not as much infrastructure for other complexity classes, so proofs of e.g. EXP-hardness
are more bespoke, from more “primitive” problems like formula games [17].

In this paper, we work towards resolving this infrastructure gap for RE-hardness. We are
aware of only a few RE-hardness (which implies undecidability) results for single-player video
games: Braid [13], Recursed [8] New Super Mario Bros. [2], and very recent work extending
the latter to other Mario games [12]. The result for Recursed uses a fundamentally different
approach, but the others use counter machines, inspiring this work on Baba is You. Ani [2]
begins to develop a framework for RE-hardness proofs, by extending the motion-planning
gadget framework [7] to allow gadgets with infinitely many states, which can act as registers
for a counter machine.

In this paper, we focus on constant-area levels, meaning instances of a game that have a
fixed size in the game world, but may contain any number of objects. To obtain any kind
of hardness in this setting, we need a reduction that encodes information in the number of
objects present in a small area – for us, in a single cell. In particular, we explain how – and
demonstrate with Baba is You – to prove RE-hardness for two decision problems:
1. Given a constant-area level, is it possible to win?
2. For a specific constant level, given a sequence of inputs, is it possible to win after

performing those inputs?

These decision problems are always in RE (the class of recognizable problems), for
reasonable single-player games (including Baba is You): we can enumerate over all possible
input sequences, test whether each results in victory, and accept if so.
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Figure 1 An introductory level from Baba is You. How many different solutions can you find?

Prior undecidability results use levels that scale with the size of the counter machine being
constructed, and don’t consider hardness on constant-area levels. However, the techniques
we use can easily be applied to any similar proof (including Braid [13] and New Super
Mario Bros. [2]), provided (for the first decision problem) that we allow levels to start with
arbitrarily many objects in the same place – indeed, this has very recently been done for
several Mario games [12].

The key idea to making counter-machine proofs work on constant-area levels is to reduce
from a specific universal counter machine instead of a family of counter machines. The inputs
are encoded in the initial state of the counter machine, which translate to starting the level
with large piles of objects (which take constant space) or an input sequence that initializes
the counters correctly.

1.1 Baba is You
Baba is You is a 2019 puzzle game by Hempuli in the genre of Sokoban. The player (typically)
controls a white creature called BABA in a square grid, and can interact with the world
by pushing objects. The main gimmick in Baba is You is that almost all of the rules are
represented inside the game world, and can be pushed to change the game mechanics. A
typical level, such as the one in Figure 1 will have rules like the following.

BABA IS YOU: the player controls BABA with the arrow keys.
FLAG IS WIN: the player wins if an object they control (e.g. BABA) touches a FLAG.
WALL IS STOP: nothing can move into a WALL.
ROCK IS PUSH: an object moving into a ROCK will push it.
DOOR IS SHUT, KEY IS OPEN: if a KEY touches (or is pushed into) a DOOR, both are
destroyed.

However, there is no fundamental difference between (non-text) objects; any “noun” can
be paired with any “adjective”, and the challenge in a typical level is to construct useful
rules by rearranging the available words.

Baba is You has a feature for sharing custom levels: each uploaded level is given a unique
8-character identifier, and can then be downloaded and played by anyone with the game. We
have uploaded all levels in this paper; level codes are given with each level.
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Figure 2 The rules needed to reduce Pull!-*F [3] to Baba is You, and a level based on a gadget
that proves PSPACE-hardness [4]. Level code: VMN9-1J93.

1.2 Prior work on Baba

In addition to being a video game, Baba is You is a programming language: with the right
set of rules, you can embed all sorts computational system in it. Within weeks of the game’s
release in March 2019, players had constructed Conway’s game of life,1 the Rule 110 cellular
automaton,2 and a Turing machine.3. Often, these constructions are accompanied by a claim
that Baba is You is “Turing-complete”, a term that doesn’t have a precise definition in this
context.

From a complexity theory perspective, these constructions are reductions to (decision
problems about) Baba is You. They show that Baba is You with infinite space is capable of
arbitrary computation. In particular, provided they trigger victory under some appropriate
condition, they show that the decision problem “can you win this level of infinite-space Baba
is You” – or even “do you eventually win this fully deterministic level of infinite-space Baba
is You” – is RE-hard.

However, levels in Baba is You are finite, and in complexity theory we typically gener-
alize to large but still finite instances. This is especially problematic when extending the
construction to an infinite level would require (without other changes) the level starting with
infinitely many objects, as is the case for some of the above constructions.

For finite Baba is You, constructing one of these “Turing-complete” systems typically
proves PSPACE-hardness – but Rule 110, a perennial favorite due to its simplicity, is not
known to be PSPACE-hard, so constructing it doesn’t prove much in terms of complexity.

If the goal is PSPACE-hardness, it is simpler to reduce from a problem more similar
to Baba is You: Figure 2 demonstrates an easy reduction to Baba is You from Pull!-*F, a
PSPACE-complete block-pulling game [3]. But formally proving hardness generally isn’t the
goal of constructions like those above – rather, they showcase the expressive power of Baba
is You by pushing limits on what can be done from within the game.

Geller [11] explicitly considers Baba is You on an infinite board, and proves RE-hardness
(though they don’t use that word) of determining whether a level is winnable using a reduction
from the Post correspondence problem. The proof requires a finite region plus a two-cell-high
empty infinite strip.

1 https://www.youtube.com/watch?v=YH0NR1kmMUo
2 https://twitter.com/mattar0d/status/1109987662608384000
3 https://www.youtube.com/watch?v=hsXpLx4soQY
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Figure 3 A screenshot of Baba is You, after creating more than 2000 objects.

1.3 Our contributions
We consider Baba is You on bounded levels, and even on constant-area levels.

Unfortunately, the actual game has a practical limitation that puts Baba is You in
PSPACE:4 there can only be six instances of an object in a single cell, and any additional
copies will be destroyed. This means the total number of objects is bounded by a polynomial,
so the game can be simulated by a polynomial-space nondeterministic machine. Thus Baba
is You is in NPSPACE=PSPACE [16].

The this constraint seems to be present for practical reasons, e.g. to prevent memory
leaks or lag. But in an idealized theoretical version of Baba is You, there wouldn’t be any
limit on the number of copies of each object – this limit doesn’t fit naturally with the other
rules of the game, and it’s never relevant to the levels in the game or taught to the player.5

We think that the more natural game to consider from a theoretical perspective is Baba
is You without this limit. In particular, we believe this is a more natural generalization than
infinite boards, so our undecidability result sticks to the spirit of the game better than the
prior results which require unlimited space.

There is an additional limitation on constructing levels in practice: levels are described by
three layers, and each layer can have only one object in each cell. So we are unable to make
a level that starts with more than three objects in the same place. This is not a problem for
constructing our counter machines, but it means a constant-area level can’t encode the input
to a counter machine as a large stack. This restriction seems to exist to make the interface
for editing levels more convenient, but again we think the most natural generalization of
Baba is You to study allows any pile of objects, even at the start of the level.

Finally, there is another rare practical failsafe in the game. If there are more than 2000
objects (or any of a few similar conditions are met), the entire level is replaced by the screen
in Figure 3. While it demonstrates a surprising amount of self-awareness, this feature is
inelegant for the same reasons as the limit to 6 copies.

For the remainder of this paper, we consider the version of Baba is You without any of
these artificial limitations, which we call Unlimited Baba is You – however, with the exception
of initialized registers, our levels use at most three objects per cell and thus can be built
in the actual game. Our main result is Theorem 1: that Unlimited Baba is You is capable
of universal computation, even on 8 × 17 levels. We prove this by constructing a specific
universal counter machine called U22 [15] in Baba is You.

4 Baba is You has randomness, which complicates this – it’s not even obvious what the decision problem
should be in the presence of randomness. Here we consider the deterministic fragment of Baba is You.

5 We only learned of its existence when we started building counter machines, and they failed in mysterious
ways.
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As a consequence of building U22, we obtain Corollaries 2 and 4, that the two decision
problems mentioned above are RE-complete for Baba is You.

Beyond Baba, the ideas we use can likely be applied to many games that allow arbitrarily
many objects in a bounded region, and we hope to see many similar results for other games
in the future.

1.4 Baba is You mechanics
We now describe the specific mechanics of Baba is You that our reductions use. We do not
attempt to cover all of the mechanics in the game, or even to define the ones we need in
full detail. The game contains text objects, which have a single word. These words can be
read left-to-right or top-to-bottom to form rules, which affect the game. The words in Baba
is You can (roughly) be partitioned into nouns, verbs, adjectives, and prepositions, which
approximately correspond to the usual meanings of those terms.

Nouns refer to kinds of objects, most of which are interchangeable. Verbs are the cores of
rules; by far the most common is IS, which usually assigns an adjective to a noun. Adjectives
represent mechanics, which affect the behavior of nouns the apply to. Prepositions are used
to make noun phrases like “BABA ON FRUIT”, which define a new set of objects and are used
in mostly the same way as nouns.

We use n, a, and N as variables for nouns, adjectives, and noun phrases (including nouns),
respectively. In addition to nouns (which are listed in Figure 6), our constructions use the
words in Table 1.

In Section 2, we discuss counter machines and how they can be used to prove RE-hardness,
even for constant-area instances of a problem like Unlimited Baba is You. In Section 3, we
construct counter machines in Unlimited Baba is You, and obtain RE-hardness for 8 × 17
levels.

2 Count is Universal

A counter machine is a finite state machine with access to a constant number of registers
which each store an arbitrary nonnegative integer. A counter machine interacts with its
registers via instructions such as “add 1” or “transition to a different state depending on
whether the register is 0”.

For instance, Figure 4 shows a simple counter machine with four registers which multiplies
two numbers. The four registers are called 0 through 3. It uses two kinds of instructions
which act on a particular register:

Increment (inc): increase the register by 1.
Jump if zero and decrement (dec): go to one state if the register is positive and a different
state if it’s 0, and decrease it by 1 in the former case.

Korec [15] calls these RiP and RiZM, respectively.
We draw increment instructions as rectangles and jump-and-decrement instructions as

diamonds. The outgoing path from a diamond marked with a 0 is the one taken when
the register is 0. To make them convenient to build in Baba is You, we draw our counter
machines so that paths go straight through increment instructions, go straight through
jump-and-decrement instructions to take the zero branch, and turn to take the nonzero
branch. We write Ri for the value of register i.

To understand the counter machine in Figure 4, start the registers with R1 = m, R2 = n,
and C = D = 0. The machine runs the main loop n times, decrementing R2 on each loop
and stopping when R2 = 0. Each time, it moves R1 to both R0 and R3, then moves R3 back
to R1, for a net effect of increasing R0 by m. When it stops, R0 = mn.

FUN 2024



1:6 Baba Is Universal

Table 1 The words in Baba is You we use other than specific nouns.

Word Part of speech Behavior

IS verb
The “rule N IS a” applies the mechanic corresponding to
a to all instances of N . The rule “N IS n” replaces each
instance of N with an n.

MAKE verb Each time step, the rule “N MAKE n” creates an n in each
cell with an N that doesn’t already have an n.

YOU adjective
This object is controlled by the player’s inputs. There can
be zero or multiple such objects. The player can also choose
to pass, which lets other rules process one time step.

WIN adjective If this object is in the same cell as an object that’s YOU, the
player wins.

MOVE adjective

Each time step, this object moves one unit in the direction
it’s facing. If it can’t move forward (e.g. because it’s the
edge of the level), it bounces off (the details won’t matter
for our reduction).

SHIFT adjective
Each time step, move all other objects in the same cell one
unit in the direction this object is facing, and set their facing
directions to match.

FLOAT adjective
This object is on a second “layer”, which is independent
of the default layer for some adjectives including WIN and
SHIFT.

STOP adjective Other objects can’t move into the cell containing this object.

PUSH adjective If another object attempts to move into the cell containing
this object, this object is pushed in the same direction.

PULL adjective This object is STOP, and if an object adjacent to it moves
away, this object follows.

OPEN
SHUT

adjectives

If an OPEN object is in the same cell as a SHUT object, destroy
both. This always destroys objects in pairs – it will destroy
the same number of OPEN and SHUT objects, up to whichever
there are fewer of.

ON preposition The noun phrase “n ON n′” refers to each n which is in the
same cell as an n′.

AND preposition

The noun phrase “n AND n′” refers to both each n and each
n′, and similarly for conjunctions of more than two nouns.
AND can also be used to combine adjectives, e.g. “BABA IS
YOU AND FLOAT”.

NOT preposition The noun phrase “NOT n” refers to object that aren’t n. A
rule of the form “n IS NOT a” overrules the rule “n IS a”.

TEXT noun Refers to all text objects.

There are many possible instructions we can allow counter machines to use. From the
perspective of using counter machines to prove undecidability, there is a tradeoff between
simplicity and efficiency: more powerful instruction sets require more work to implement, but
may allow us to use a counter machine that has fewer registers or states, or that simulates a
Turing machine more efficiently.

Korec [15] constructs explicit universal counter machines for a variety of instruction sets
at different points on this tradeoff. For Baba is You, we will use counter machines with the
two instructions described above.
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dec 2

dec 1 inc 0

inc 3

dec 3 inc 1

0

0

0

start stop

Figure 4 A counter machine which inputs two numbers A and B and outputs their product
on register D. Rectangles are increment instructions; diamonds are jump if zero and decrement
instructions, with 0 indicating the branch to take when the register is 0.
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Figure 5 Korec’s strongly universal counter machine U22 [15].

The counter machine we will use is the 22-state machine U22 [15], which is shown in
Figure 5 laid out in a way that suits our purposes. This machine is strongly universal,
meaning the following. Let Φi be an enumeration of partial computable functions N → N,
e.g. as Turing machines. There is a computable function g such that, if we run U22 starting
from R1 = g(i), R2 = n, and all other registers 0, it halts if and only if Φi(n) is defined, and
if so when it halts R0 = Φi(n). That is, if we input g(i) and n, this machine computes Φi(n).

We now attempt to summarize how U22 works. The input on register 1 is actually a
description of a particular kind of counter machine with three very specific instructions,
which U22 simulates – the first step of computing g is to convert your Turing machine into
such a counter machine. Registers 0, 2, and 3 are for the simulated machine. The description
and current state of the simulated machine are kept in registers 1 and 4, respectively. The
left half of U22 parses these two registers, unpacking the encoding of the counter machine at
the current state. The result is that R5 encodes both the next instruction to execute (which
determines where the machine exits the loop with three dec 5 instructions) and the next
state to switch to (which becomes R4). The bottom right section carries out the instruction,
possibly decrementing R4 to allow the simulated machine to branch, before moving to the
next step or halting.

FUN 2024
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2.1 Game Make Count
Consider a game capable of building counters in bounded space, typically by stacking
arbitrarily many objects in the same place. Suppose that we can also implement the
instructions used by U22, or some other sufficiently powerful instruction set. Games that fit
these criteria include Braid [13], several Mario games [10, 12], and Baba is You (as we will
show).

After designing these components, it is straightforward to prove RE-hardness for such a
game: convert any Turing machine to an appropriate counter machine, and then construct
the counter machine in the game. But we can do better, by using a universal counter machine
to obtain results for constant-area levels.

Specifically, construct a level which simulates U22 (or another universal counter machine).
Then that level is capable of universal computation: if it is initialized with the appropriate
set of objects to represent R1 = g(i) and R2 = n, when it halts it will encode R0 = Φi(n).

To prove RE-hardness for constant-area levels, we need two additional conditions: the
counter machine terminating should trigger victory, and the initial state of a level must be
allowed to have arbitrarily many objects to encode an arbitrary initial register value. Then
we can reduce from the halting problem. Given a number encoding a Turing machine i and
an input n, build the level that simulates U22 initialized as above, so the player wins if and
only if Φi(n) is defined.

For RE-hardness of a constant level after a given sequence of inputs, we must build
something that allows the player to choose the initial values of the input registers. Then
we can again reduce from the halting problem: start by making a sequence of moves that
initializes the counter machine as described above and then transitions to deterministically
simulating the machine. After this sequence, the player will win if and only if Φi(n) is
defined.

In the next section, we will do all of this for Unlimited Baba is You. We will build counter
machines by representing each register as the number of copies of an object in a single cell.
Then we will describe a level that runs U22 with no player choices, and a version of it that
allows the player to set input values during the initialization phase.

3 Baba is Count

We now start building counter machines in Unlimited Baba is You. There are many possible
approaches to doing this; we choose one which is space-efficient and will result in levels
visually matching diagrams like Figure 4.

In our construction, the player will never be able to make choices – nothing will be YOU
until the frame the player wins, so all the player can do is wait for the counter machine. We
will never move text or have rules change. Each register will be represented by a particular
objects, with the number of copies matching the current value. All of these registers will
be in the same cell, and will move around the counter machine together. When the pile
encounters certain other objects, it will gain or lose register objects and be redirected to
simulate the counter machine.

The moving pile will be “carried” by a CART, with the rule “CART IS MOVE”. It will be
routed using BELTs, with “BELT IS SHIFT”. We will decrement registers by using a GATE to
consume an item, with ’GATE IS SHUT’.

Each register will use three types of object, which we call REG, INC, and DEC to explain a
generic register. REG is the object that forms a pile to keep track of the value of the register.
We have the rule “REG ON CART IS MOVE” so that it follows the cart, but other instances of
REG waiting to be picked up stay where they are.
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To increment, we have “INC MAKE REG”. Each copy of INC will have one REG sitting on it,
and if the CART drives over that cell the REG will be added to the pile. The facing direction
of the waiting REG matches that of the INC, so we need place the INC facing the direction
the CART will cross it.

To decrement, we have “DEC MAKE GATE” and “REG ON DEC IS OPEN”. When the pile of
registers crosses DEC, the GATE on it will consume exactly one REG. Having REG only be OPEN
when on DEC ensures that we won’t consume an item from the wrong register.

To branch, we again use DEC. We have the rule “DEC ON REG IS SHIFT”, with the DEC
facing a direction orthogonal to the direction the CART is moving. If the register is zero, the
DEC is not on a REG, so the CART continues straight. Otherwise, the DEC deflects it.

There is a potential conflict between decrementing and branching: if the pile MOVEs onto
the DEC and is immediately SHIFTed, it fails to consume one of the REGs–SHIFT is applied
before OPEN and SHUT. We can avoid this by having a BELT directly into every DEC, so that
the pile MOVEs onto the BELT, is SHIFTed onto the DEC, and then the GATE can consume a
REG (but the pile’s direction will change to match the DEC if the register is nonzero).

When the counter machine halts, the CART arrives at a FLAG. So that this results in
victory, we have the rules “CART ON FLAG IS YOU” and “FLAG IS WIN”.

To summarize: the objects we use are CART, BELT, GATE, FLAG, and three objects (REG,
INC, DEC) for each register. The rules are

CART IS MOVE
BELT IS SHIFT
GATE IS SHUT
CART ON FLAG IS YOU
FLAG IS WIN
For each register:

REG ON CART IS MOVE
INC MAKE REG
DEC MAKE GATE
REG ON DEC IS OPEN
DEC ON REG IS SHIFT

Figure 6 shows these objects, including the objects we’ll use for the eight registers of U22.
Figure 7 shows an Unlimited Baba is You level implementing the simple counter machine

from Figure 4. The actual counter machine in is the top left, below it are the “generic” rules,
and to the right is a square of rules for each of the four registers. The CART is facing up, and
start by driving into the top belt and then the SWORD (it needs a bit of space at the start so
the SWORD has time to MAKE a GATE).

To supply inputs, we start the level with a pile of m ROBOTs and n LEVERs in the same
cell as the CART – for readability, the figure shows m = n = 0. The CART will eventually
reach the FLAG carrying mn PAPERs (and still m ROBOTs), at which point the player wins.

It’s somewhat inelegant that we have to encode the input in the level: if a player simply
wants to know what the product of two numbers is, they have to load up the level editor
and stick in some ROBOTs and LEVERs (which in practice requires adding more space). We
modify the level as shown in Figure 8 to allow the player to choose the inputs to the counter
machine.

We have changed the rules a bit, added a TILE above the CART and created the cage on
the left. Now the counter machine doesn’t start running immediately, and the player doesn’t
win when it halts. Instead, the player controls BABA, who is stuck in the cage.

FUN 2024



1:10 Baba Is Universal

Figure 6 The Baba is You objects used in our counter machines. The objects at the top are not
connected to a specific register, and each register 0 through 7 uses the items in one of the rows, listed
in the order REG, INC, and DEC. The DECs are chosen so that the direction they’re facing is visible –
all objects have a facing direction, but some don’t have directional sprites. We have attempted to
use semantically-related items to make the registers somewhat intuitive, but the limited inventory of
objects makes this challenging.

Figure 7 A counter machine that multiplies two numbers (Figure 4) built in Unlimited Baba is
You. Level code: EUQT-TCZJ.
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Figure 8 The same Unlimited Baba is You counter machine as in Figure 7, but with infrastructure
that lets the player choose inputs. Level code: Q1V8-PRIE.

The player will eventually create CART IS MOVE, which starts the counter machine and
requires putting MAKE somewhere it can’t be used. Before this, the player chooses the inputs
to R1 and R2, which are the initial numbers of ROBOTs and LEVERs, respectively. They do so
by creating TILE MAKE ROBOT and TILE MAKE LEVER for any desired number of time steps:
push TILE down, and then push the nouns on the right down three times, waiting in between
for the appropriate number of steps while the created objects SHIFT off the TILE. The player
can use a slightly different sequence to make either or both registers start at 0 – the cage
gives just enough freedom to allow this without letting the player create any unintended
rules or MAKE any more objects after starting the counter machine.

To read out the product the machine computes, the player must be attentive when the
CART reaches the FLAG: it turns into SCISSORS, which create GATEs to consume one PAPER
each time step – they decrement register 0. The WALL prevents the SCISSORS from SHIFTing
the pile of counters away. The player receives the desired product by counting how many
times they hear the distinctive noise of mutual annihilation of OPEN and SHUT.

Finally, the player moves to the FLAG at the top of their cage. This allows them to
complete the level after it multiplies the numbers of their choosing, or to abandon it early
should they decide to use a more efficient calculator.

3.1 U22 in Baba
Since we’ve described how to construct general counter machines in Unlimited Baba is You,
we can build Korec’s U22 [15]. This is shown in Figure 9. The actual counter machine is
about a third of the space of the level, with the rest being taken up by rules.

As before, the input is given as a stack of ROBOTs and LEVERs on the cart, representing
the initial values of R1 and R2, respectively. If we wish to compute Φi(n), we should set up
the level with g(i) ROBOTs and n LEVERs. Then the player wins exactly when Φi(n) exists,
and if so the number of PAPERs on the CART just before victory is Φi(n). We now apply the
construction we used to create Figure 8, to allow us to perform computation in a level that
is not only constant-area, but truly constant. This level is shown in Figure 10.

FUN 2024
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Figure 9 U22 (Figure 5) in Unlimited Baba is You. Level code: 7LKG-WKBJ (initialized with one
ROBOT so that it terminates).

The cage is now in the top right, and we have moved some rules to make space. There
are two differences from the cage in Figure 8: there isn’t an accessible FLAG, and the CART
becomes BABA (instead of SCISSORS) when it reaches the FLAG, triggering victory.

As before, the player can choose how many ROBOTs and LEVERs to start the counter
machine with, setting the initial values of R1 and R2. Once the player makes CART IS WIN,
there is nothing of use they can do but wait, and will eventually win if the counter machine
halts on the provided input.

3.2 Smaller levels
We now compact our counter machine construction to show RE-hardness for smaller constant-
area levels. The actual counter machine in Figure 9 is already pretty compact; our goal here
is to make the rules take less space. In addition to leaving less empty space, there are a few
tricks we employ:

We place rules in the same region as the counter machine. We need TEXT IS FLOAT so
that text isn’t affected by BELTs, and TEXT IS NOT PUSH so that it isn’t affected by the
moving CART.
Multiple words can go in the same cell: to write ROCKET MAKE GATE and SWORD MAKE
GATE, we have cell with both words ROCKET and SWORD in front of MAKE GATE.
Another way to make that pair of rules is with AND: the rule ROCKET AND SWORD MAKE
GATE is more efficient than having both rules separately.
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Figure 10 The same construction of U22 as in Figure 9, but now the player can control BABA to
specify inputs to the counter machine. Level code: ZFGG-WH6Z.

Combining the two previous points, we make rules like SWORD/ROCKET AND FISH/BUNNY
MAKE GATE, which is parsed as four separate rules of the form X AND Y MAKE GATE. We
end up with multiple copies of SWORD MAKE GATE – this is fine for MAKE, but is an issue
for other verbs like MOVE, where two copies of CART IS MOVE means the CART moves two
cells per time step.

The level editor allows us to place multiple objects in the same cell using layers, but there is
a limit of 3 objects per cell.

The result is the unreadable mess in Figure 11, which is an 8 × 17 level. It behaves the
same as in Figure 9. In particular, inputs are given as piles of left-facing ROBOTs and LEVERs
in the seventh row, and the output is the number of PAPERs when the player wins.

▶ Theorem 1. An 8 × 17 level of Unlimited Baba is You is capable of universal computation,
where inputs and outputs are encoding as the number of identical objects in a single cell.

By universal computation, we mean that with the inputs g(i) and n in the format specified
for some computable function g, the output is Φi(n), again in the format specified.

▶ Corollary 2. Deciding whether an 8 × 17 level of Unlimited Baba is You is solvable is
RE-complete (and in particular undecidable).

We can also compactify the level in Figure 10, which lets the player specify inputs to the
counter machine. The only additional complication is that we need TEXT IS NOT PUSH to
not exist until after the player is done initializing. We also place the TILE under the CART to
avoid needing TILE IS SHIFT.

FUN 2024
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Figure 11 U22 in Baba is You (Figure 9), after compactifying at the cost of clarity. Level code:
4ZGV-BPQ3 (initialized with one ROBOT so that it terminates).

Figure 12 U22 in Baba is You with inputs given by the player (Figure 10), after compactifying in
the same way as Figure 11. Level code: 7GG1-1PTH.

▶ Corollary 3. There is a specific 8 × 21 level of Unlimited Baba is You which is capable of
universal computation, where inputs are given by a sequence of moves the player makes and
the output is the number of identical objects in a single cell when the player wins.

To compute Φi(n), the player performs a fixed sequence of moves to make TILE MAKE
ROBOT, waits g(i) − 1 times, performs another fixed sequence of moves to destroy that
rule and create TILE MAKE LEVEL, waits n − 1 times, and finally destroys that rule as well
while creating CART IS MOVE. If g(i) or n is zero, the player must use a slightly different
initialization sequence.

▶ Corollary 4. There is a specific 8×21 level of Unlimited Baba is You for which the decision
problem “if the player starts by performing a given sequence of inputs, can they go on to win
(without undoing)?” is RE-complete.

Results about constant-area levels have another small advantage: our levels are buildable
in the Baba is You level editor, which has a maximum size of 33 × 18 (and three objects per
cell) – and you can play them at the level codes given. If you enter initial values for the
levels where that’s possible (Figures 8, 10 and 12), you can then run the counter machine
the level simulates, with only the caveat that the values of registers are capped at 6.
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