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Abstract
We show that several pen-and-paper puzzles are NP-complete by giving polynomial-time reductions
from the Hamiltonian path and Hamiltonian cycle problems on grid graphs with maximum degree 3.
The puzzles include Dotchi Loop, Chains, Linesweeper, Arukone3 (also called Numberlink3), and
Araf. In addition, we show that this type of proof can still be used to prove the NP-completeness of
Dotchi Loop even when the available puzzle instances are heavily restricted. Together, these results
suggest that this approach holds promise in general for finding NP-completeness proofs of many
pen-and-paper puzzles.
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1 Introduction

Pen-and-paper puzzles are often NP-complete. Famous among such results are the NP-
completeness of Sudoku [26] and Minesweeper [17], not least because of the worldwide
popularity of these particular puzzles. But innumerable other such results exist (see,
e.g., [1], [2], [4], [7], [18], and [19], among countless others). Typically, to say a puzzle
is NP-complete means that the problem of deciding whether a given instance of the puzzle
is solvable is an NP-complete problem. Other problems regarding puzzles may also be
considered (see, e.g., [24]), but the present paper addresses only solvability problems.

Often, the proofs of NP-completeness for pen-and-paper puzzles work by reduction from
generally useful NP-complete problems such as 3SAT. However, some puzzles may resist
this approach, or at least seem more naturally suited to be proved NP-complete by other
reduction strategies. In particular, some puzzles take place on a grid and require the solver
to construct a kind of path or loop. For puzzles in this category, it seems plausibly viable to
prove their NP-completeness by reducing a variant of the Hamiltonian path or cycle problem
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© Marnix Deurloo, Mitchell Donkers, Mieke Maarse, Benjamin G. Rin, and Karen Schutte;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Fun with Algorithms (FUN 2024).
Editors: Andrei Z. Broder and Tami Tamir; Article No. 11; pp. 11:1–11:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0009-0003-2868-0212
mailto:b.g.rin@uu.nl
https://orcid.org/0009-0004-0734-9069
https://orcid.org/0009-0004-1661-5437
https://doi.org/10.4230/LIPIcs.FUN.2024.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


11:2 Hamiltonian Paths and Cycles in NP-Complete Puzzles

s

t

Figure 1 A grid graph (left) and a grid graph with specified terminal nodes s and t (right).

to them – particularly, a variant involving grid graphs. The present paper2 considers five3

puzzles, four of which (Dotchi Loop, Chains, Linesweeper, Arukone3) directly require finding
paths or cycles on square grids. The other, Araf, requires the solver to construct regions, but
even there, our reduction shows how to force one such region to be shaped as a (Hamiltonian)
path. In all cases, we find the Hamiltonian path or cycle problem on grid graphs with
maximum degree 3 to be a successful basis for an NP-completeness proof. We surmise that
this approach is broadly applicable to a wide array of other pen-and-paper puzzles.4

1.1 Preliminaries
▶ Definition 1. A grid graph is a finite graph G = ⟨V, E⟩ whose nodes have integer coordinates,
with edges between all and only pairs of nodes with Euclidean distance 1. That is, V ⊆ Z×Z
and E = {(⟨x, y⟩, ⟨x′, y′⟩) ∈ (Z × Z) × (Z × Z) | |x − x′| + |y − y′| = 1}.

When discussing the (non-)existence of a path from a node s (the start node) to t (the
end node), we call s and t terminal nodes. Such a path is a cycle if s = t and is Hamiltonian
if it visits each node in G exactly once.

▶ Example 2. In Figure 1 we see two grid graphs. The first has Hamiltonian paths, but no
cycle. The second has a Hamiltonian path from specified node s to specified node t.

▶ Definition 3. The problem HC3G (the Hamiltonian cycle problem on grid graphs with
max. degree 3) is the problem of determining whether a given grid graph with max. degree 3
has a Hamiltonian cycle.

The problem HP3G (the Hamiltonian path problem on grid graphs with max. degree 3)
is the problem of determining whether a given grid graph with max. degree 3 and specified
nodes s and t has a Hamiltonian path from s to t.

It is well known since [22, Thm. 2] that both of these problems are NP-complete:

▶ Theorem 1 (Papadimitriou & Vazirani, see [22, Thm. 2]). HP3G is NP-complete.

2 This work has its origins in four bachelor theses completed between 2019 and 2023 by authors of this
paper under supervision of the fourth author (see [5], [6], [20], [23]).

3 In Section 7, we also consider a restricted class of Dotchi Loop instances, for a total of six NP-completeness
proofs.

4 This proof strategy is not without precedent. For example, such an approach is taken in [3] to prove
the complexity of Amazons puzzles, and [26] proves the ASP-completeness of Slitherlink. The present
paper’s earliest results, Theorems 3 and 4, were found by the third author in [20], albeit without
restricting the graphs to maximum degree 3, making the proofs more complex than needed. Later,
between the completion of the present paper and its appearance in print, we came to learn of some
recent findings posted on ArXiv by Hadyn Tang for many loop and path puzzles [25]. These findings
show that under certain conditions, puzzles can be proved NP-complete by constructing only gadgets
for grid graph nodes with degree exactly 3, removing the need for gadgets of degree 1 or 2. Indeed,
these conditions seem to obtain for at least some of the puzzles examined below, such as Dotchi Loop
and Linesweeper. Accordingly, it is possible to simplify proofs wherever such gadgets are not needed.
However, such gadgets are typically straightforward to construct anyway, and in any case we often find
their inclusion instructive. It remains unclear how many puzzles, if any, are amenable to our approach
but not Tang’s.
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Figure 2 Four node shapes. (Rotations are also possible.)

▶ Corollary 1. HC3G is NP-complete.

While the corollary is not explicitly stated in [22], it can be proven by the same proof
method as used for Theorem 1 but with one less step.5 An explicit proof can also be found
in [3].

Although the authors of [22] may not have predicted the future explosive popularity of
pen-and-paper puzzles, nor the academic interest in their computational complexity, their
result seems almost ready-made for NP-completeness proofs of many such puzzles – or, more
precisely, NP-hardness proofs. Typically, proving that these puzzles are in NP is trivial,
as verifying the correctness of a given solution attempt is easy to do in polynomial time.
The present paper’s results are no exception. Moreover, with respect to NP-hardness, the
reader can verify that each reduction presented here is easily computable in polynomial
time. Accordingly, we focus hereafter only on presenting the reductions. The early ones have
relatively simple gadgets, but in subsequent proofs the intricacy increases.

1.2 General scheme
We call gadgets that represent nodes rooms. Rooms typically contain portions corresponding
to edges, called hallways (or corridors). Rooms are usually square, or nearly so, and are
surrounded on all sides by walls – arrangements of cells that prevent the simulated path/cycle
from passing through them. Walls are typically a key – perhaps the key – subgadget for
the success of the sorts of reductions presented in this paper. Their function is to force the
simulated path/cycle to go only in the directions we want (i.e., to adjacent rooms) rather
than wandering chaotically. On a side of a room with a hallway, the room’s wall will naturally
have a gap serving as an exit (or entrance, since the graph is undirected).

In the case of reductions from HP3G, rooms come in one of four distinct shapes (up to
rotation), depending on their degree: a given graph can have one type of degree-1 node, two
types of degree-2 node, and one type of degree-3 node (see figure 2). Additionally, a room’s
design may differ depending on whether the node it represents is the graph’s starting node s,
ending node t, or neither. However, since degree-1 nodes must always be terminal in any
Hamiltonian path, we need not design gadgets for nonterminal degree-1 nodes.6

5 The proof of Theorem 1 works by reduction from a known NP-complete variant of the Hamiltonian cycle
problem on directed graphs, wherein one of the steps involves transforming nodes of a given directed
graph into nodes of a grid graph with max. degree 3. Here, pains are taken to make the resulting grid
graph suitable for checking the presence of a certain path (from specified nodes s and t) rather than a
cycle (see [22, Fig. 2]). By dispensing with this effort and simply skipping this step (i.e., ignoring [22,
Fig. 2b] and instead transforming all nodes of the directed graph in accordance with [22, Fig. 2a]), we
obtain a proof of the NP-completeness of HC3G.

6 Trivially, the reduction can easily map a graph containing such a node to any unsolvable puzzle instance.
So we can assume the given graph contains no such nodes. On another note, for similar reasons, we can
also assume the graph is connected.
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Figure 3 A Dotchi Loop puzzle instance (left) and its solution (right) [12]. Colors indicate regions.

In the case of reductions from HC3G, we can completely ignore all degree-1 nodes, since
no graph with a degree-1 node can have a Hamiltonian cycle.7 This leaves only three types
of room to construct for such reductions, corresponding to (b)-(d) in Figure 2. That said,
degree-1 rooms are usually easy to construct, so we can just as well include such gadgets in
our proof and have our reduction transform graphs with degree-1 nodes into corresponding
puzzle instances just like any other graph, with the understanding that such instances will
necessarily be unsolvable.

2 Dotchi Loop

We begin with a proof for Dotchi Loop. The reduction is simple, but it straightforwardly
demonstrates the use of HC3G for such proofs. In Section 7, we present a more complex
proof showing Dotchi Loop to be NP-complete even when the set of possible puzzle instances
is heavily restricted in a certain way.

Dotchi Loop [12] is a Japanese pen-and-paper puzzle consisting of a grid of cells divided
into contiguous and non-overlapping regions. Some cells are empty and some contain a white
or black circle. The solver must join cells orthogonally to create a single closed loop that
passes through all white circles and avoids all black circles. (See Figure 3.) It is not necessary
to visit every empty cell. The loop is forbidden to cross or overlap itself. Within any given
region, the loop must either turn 90◦ at all white circles or pass straight through all white
circles of that region. For brevity, we call any White circle through which the loop passes
straight a straight circle. We call the others turn circles. For example, the white circle in the
northwest region is straight and the ones in the southwest region are turn circles. A region is
straight (respectively, turn) if its white circles are straight (respectively, turn).

▶ Theorem 2. Dotchi Loop is NP-complete.

Proof. We give a reduction from HC3G. Wall subgadgets are easy to construct by using
rows of black circles. With these, we can straightforwardly build rooms with appropriate
hallways. Each fits in a 3 × 3 area and contains a white circle at the center. We fill the
remaining space in each room with black circles, except for pathways toward the central cell
from every available entrance. See Figure 4. Each room is its own region. As with all these
reductions, rooms are placed in similar relative positions to those of the corresponding nodes
and edges in the input graph. An example can be seen in Figure 5.

To confirm the correctness of the reduction, observe that white circles in each room
guarantee, per the rules, that a solution’s loop will necessarily visit that room. So the
similarly shaped cycle in the given grid graph is Hamiltonian. Conversely, if the grid graph
is Hamiltonian, a similarly shaped loop can clearly cover all white cells. This completes the
proof. ◀

7 Again, such a graph can trivially be mapped to any unsolvable instance of the puzzle at hand. And,
again, we can do the same with any graph that isn’t connected.
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Figure 4 All Dotchi Loop rooms (up to rotation). The first is unnecessary (see Section 1.2).

Figure 5 A graph (left) and corresponding Dotchi Loop puzzle instance (right). Colors distinguish
neighboring regions (though distinct regions with no shared border may share colors in the figure).

▶ Example 4. The graph in Figure 5 has nine nodes. The corresponding puzzle instance has
nine rooms. Each room here is a separate Dotchi Loop region.

3 Chains

A Chains [13] puzzle instance consists of a grid of cells, some of which contain natural numbers.
The solver must join cells orthogonally such that each cell numbered i > 1 is connected by a
“line” (path) of length i to some other cell also containing i. Cells with number i = 1 must
be in lines of length 1 (i.e., to themselves). Lines cannot overlap themselves or other paths.
See Figure 6.

8 4 4 1 3 1 2 8 4 4 1 3 1 2

9 1 2 5 9 1 2 5

2 1 2 2 3 2 1 2 2 3

2 4 4 4 2 4 4 4

9 3 5 4 2 9 3 5 4 2

4 4 3 2 5 4 4 3 2 5

3 4 4 3 4 4

8 2 2 2 3 1 8 2 2 2 3 1

6 5 4 1 2 6 5 4 1 2

4 4 1 4 5 4 4 1 4 5

6 2 2 3 3 6 2 2 3 3

3 3 5 5 1 3 3 5 5 1

1 2 2 4 6 1 2 2 4 6

2 2 1 4 5 2 2 1 4 5

6 6 5 5 6 6 6 5 5 6

Figure 6 A Chains puzzle instance (left) and its solution (right) [14].

▶ Theorem 3. Chains is NP-complete.
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1 1 1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1 1 1

Figure 7 Chains nonterminal room gadgets. (Rotations are also possible.)

s

t

1 1 1 1 1 1

1 13 1

1 1 1 1

1 1 1 1 1 1 1

1 13 1

1 1 1 1 1 1 1 1 1

Figure 8 A graph (left) and equivalent Chains puzzle instance (right).

Proof. We give a reduction from HP3G. Since lines may not cross, walls are simply constructed
out of cells containing 1s. Room gadgets consist of 3 × 3 blocks of cells. The gadgets for
each nonterminal node type are presented in Figure 7. As usual, rooms are placed in relative
positions corresponding to those of the given graph’s nodes.

The rooms representing terminal nodes are constructed identically to the nonterminal
nodes, except that we add the number 3m − 2 to their central cells, where m is the number
of nodes in the graph. See Figure 8 for an example.

To verify the reduction’s correctness, first observe that if a Hamiltonian path exists between
s and t, then the two corresponding central cells can indeed connect via an identically shaped
line of length 3(m − 1) + 1 = 3m − 2, since (i) the number of cells needed to move from one
room’s central cell to the next is always three, (ii) the path from s to t uses m − 1 edges, so
the similarly shaped line in the puzzle connects m − 1 pairs of central cells from adjacent
rooms, and (iii) cell s itself must be counted in the total length.

Conversely, the puzzle instance is constructed in such a way that there is virtually no
flexibility for the solver. From the center of any room, any movement of three steps leads
to the center of another room. Therefore, a line connecting the two cells numbered 3m − 2
(which must have length 3m − 2, by the rules) visits exactly m rooms, making the similarly
shaped path from s to t in the graph Hamiltonian. ◀

▶ Example 5. The graph in Figure 8 has five nodes, so 3m − 2 = 3(5) − 2 = 13.

4 Linesweeper

Linesweeper [15], like Chains, consists of a grid of cells, some of which contain nonnegative8

integers. The solver must find a loop through the grid such that every numbered cell is
orthogonally or diagonally adjacent to precisely that number of cells visited by the loop. An
example is shown in Figure 9.

8 Note that typical instances of Linesweeper have no cells with 0s, but the puzzle’s definition does
explicitly allow them – see [21].
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6 7 6 7

3 3

8 8

5 6 5 6

2 3 2 3

Figure 9 A Linesweeper puzzle instance (left) and its solution (right) [16].

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 3 0 0 0 0

0 0 0 0 0 0 0 0 3

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

Figure 10 All Linesweeper rooms (up to rotation). Cells clearly inaccessible to the solution loop
are shaded as a visual aid. Note that we could also use only the last room and add 0s to block exits.

▶ Theorem 4. Linesweeper is NP-complete.

Proof. We give a reduction from HC3G. Walls are created by use of 0s. Under the rules, the
loop cannot touch any cells adjacent to a cell containing a 0, so each 0-cell creates a 3 × 3
impenetrable area. Room gadgets are shaped rather similarly to those of Chains and Dotchi
Loop, though larger to accommodate the peculiar needs of the degree-3 room. In or adjacent
to the center of each room is a cell with the number 1 or 3, depending on the room type.
See Figure 10.

It is straightforward to see that the gadgets other than the degree-3 room are solvable9

in exactly one way. The degree-3 room is solvable in three ways, displayed in Figure 11. A
full example of the reduction is shown in Figure 12.

To verify the reduction’s correctness, we first note that if a given graph has a Hamiltonian
cycle, the corresponding Linesweeper instance is clearly solvable by a loop of similar shape.
For the converse, suppose the puzzle instance is solvable. Observe that the 1 or 3 in each
room guarantees that the solution loop must visit that room. As noted above, every room
without degree 3 can be traversed by the loop in only one way, and so it is easy to see that
our needed cycle in the graph takes precisely the same shape traversing the corresponding
node. For the degree-3 rooms, the reader can verify that the three solutions presented

9 We acknowledge that only a puzzle instance as a whole, not a subset (such as a single room) can be
formally said to be solved or have a solution. However, as a mild abuse of terminology, we may say
throughout this paper that an indication (usually pictorial, but possibly written) of things for a puzzle
solver to do with respect to a given room is a solution to the room if the indication would describe part
of a correct solution attempt for an entire puzzle instance containing that room. We will say the room
is solved if a solution (in this sense) has been given for it.

FUN 2024
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0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 3 0 0 3 0 0 3

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0

Figure 11 Three solutions for a degree-3 Linesweeper room.

in Figure 11 are the only possible ways to solve such rooms. Consequently, we see that
whichever direction the solution loop takes through a degree-3 room, a Hamiltonian cycle
through the input graph can take the same direction. Thus a given grid graph with max.
degree 3 is Hamiltonian if and only if the corresponding Linesweeper instance is solvable, as
required. ◀

▶ Example 6. In Figure 12 we see a full example of the reduction.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 3 0 0

0 0 3 3 0 0

0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12 A graph and its corresponding Linesweeper puzzle instance.

5 Arukone3

Arukone3 (written Arukone3 in [11]) is another puzzle consisting of a grid of blank and natural-
numbered cells, with the additional stipulation that each number that is present appears
exactly twice. This puzzle is a variant of Arukone (also called Number Link, Nanbarinku, or
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4 5 4 5

3 5 3 5

1 1

2 1 2 1

2 2

4 3 4 3

Figure 13 An Arukone3 puzzle instance (left) and its solution (right) [11].

Flow – see [9]) and Arukone2 (see [10]), which have already been considered.10 The Arukone3
variant contains just one added rule beyond Arukone2 (the 2 × 2 rule – see below), but this
rule markedly affects the nature of the puzzle.

The goal is to connect each pair of equal numbers with a path (called a line) of orthogonally
adjacent cells that never crosses itself or another line and never covers a 2 × 2 area. The
puzzle is solved when all number pairs are connected and all empty cells are filled. Figure 13
shows an example.

▶ Theorem 5. Arukone3 is NP-complete.

Proof. Our reduction for this puzzle is from HP3G. Accordingly, the grid graph should have
two distinguished terminal nodes, s and t. Recall that this makes reductions from HP3G
require the construction of more room types than in reductions from HC3G. In the case
of Arukone3, the two rooms corresponding to nodes s and t will share a number S in their
central cells. We call the line connecting the two S-cells (assuming the puzzle instance is
solvable) the Hamilton line. In this proof, there is no relevant distinction to make between
a starting room and ending room, so we have only one gadget design for, say, the degree-3
terminal room. (In the proof of Theorem 6 for Araf, such a distinction is necessary and more
room types will therefore be needed.)

In our reduction to Arukone3, the “walls” will consist of many number pairs arranged as
dominoes (see, e.g., Figure 14). Since the numbers in a given domino can only be connected
to each other, and since these dominoes are so tightly packed together, the only connection
possible for them is a line of length 2. In general, we say that two equally numbered cells are
connected directly if the line connecting them has length 2, and indirectly otherwise. In our
diagrams, wall cells are shaded for readability. Additionally, rather than display a unique
number pair for each domino within walls, we simply draw a ring (see, e.g., the bottom-right
horizontal dominoes in Figure 14) to indicate that this pair of adjacent cells must be directly
connected in any solution.11 However, not all dominoes will be displayed this way; some
(non-wall) dominoes that may be possible to connect indirectly will be shown with letters
standing for natural numbers – in the present figure, a, b, c, and d. (As discussed above, the
central S is also a natural number.) It is easy to see that the walls constructed here serve
their intended purpose sufficiently: since lines cannot intersect, the mass of directly connected
dominoes prevents another line (in particular, the Hamilton line) from getting through.

10 See [1]. Also notable is [19], which shows the NP-completeness of a further Arukone variant.
11 For most of these dominoes, the need for direct connection is obvious because they have no empty space

around them. For some – e.g., the vertical dominoes on the left of Figure 14 – direct connection is
forced because any indirect connection would violate the 2 × 2 rule.
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S
a b
a b

c c
d d

Figure 14 A degree-1 node and Arukone3 degree-1 room. Colors are only a visual aid.

Rooms in this reduction are 13 × 13 square areas, minus ten cells for each corridor out.
These cells are occupied by the adjacent room. The room in Figure 14 has one corridor,
which consists of all the empty cells in the southwest quadrant forming a rough δ-shape. The
exit is west of the cc domino. Later it will become clearer how rooms in this reduction fit
together.

One oddity in this reduction, in contrast to the rest in this paper, is that rooms in this
reduction are tilted 45◦ clockwise from the nodes they represent. For example, Figure 14
depicts a degree-1 room in which the outgoing corridor heads southwest, representing a
degree-1 node with an outgoing edge to the south.

The aforementioned non-wall dominoes in Figure 14 with numbers a, b, c, and d form
what we call pillars. The two dominoes aa and bb together comprise one pillar and the
dominoes cc and dd comprise another. In general, a pillar diagonally touching the central
cell (here, the a-b pillar) is called an inner pillar and a pillar more distant (here, c-d) is
called an outer pillar. In the present gadget, all four of these dominoes must be connected
directly (the degree-1 room bears only one possible solution, wherein pillar dominoes must
connect directly to avoid blocking the line from S). However, in other gadgets this will not
always hold. As we will see, the purpose of pillars, in rooms with more than one possible
solution, is to be able to connect indirectly and fill the cells of corridors not in use by the
Hamilton line. Since the rules of Arukone3 require that all cells be filled, pillars are a key
part of the construction that make the reduction work. We will see, furthermore, that when
a pillar domino needs to connect indirectly to fill unused corridor cells, it can do so without
breaking the 2 × 2 rule.

Figure 15(a) depicts a nonterminal straight degree-2 room with northwest and southeast
corridors, corresponding to a nonterminal straight degree-2 node with west and east edges.
Figure 15(b) depicts a nonterminal corner degree-2 room with northeast and southeast
corridors, corresponding to a nonterminal corner degree-2 node with north and east edges.

The straight room, we claim, is solvable in exactly one way, with no possibility for the
pillars to have indirect connections – similarly to the degree-1 room. In this unique solution,
the empty cells must be all filled by a single line passing completely through the room. (It
will turn out that this line is the Hamilton line.) To verify this, observe by inspection that
the central cell cannot be reached by any possible line that would indirectly connect a domino
within this room. So the central cell must be in some line extending outside the room. Since
the central cell, like any cell without a number, can never be the endpoint its line, its line
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a b
a b c c

d d

e e
f f g h

g h

a a
b b

d c
d c

e e
f f g h

g h

Figure 15 Nonterminal degree-2 straight and corner Arukone3 rooms.

a b a b a b
a b c c a b c c a b c c

d d d d d d
S S S
e e e e e e
f f g h f f g h f f g h

g h g h g h

Figure 16 An Arukone3 terminal degree-2 straight room and its two solutions.

must extend out through both exits (in the process, filling both of the two corridors entirely).
In sum, this room is solved only by running a line from one exit to the other, passing through
the center cell along the way. This behavior matches that of nonterminal straight degree-2
nodes in solved HP3G instances.

The corner room is similar. Its solution requires a single line containing the center, both
exits, and (consequently) all other white cells. The only difference in the argument is in the
reason why the center is inaccessible to pillar connection lines. For the straight room, it
was because of physical inaccessibility, but in the corner room, the 2 × 2 rule plays a role
in preventing an inner pillar domino’s line from filling the center. In fact, we can see by
inspection that all pillar domino lines in the corner room must connect directly. As with
the straight room, the unique possible solution for the present gadget matches that of the
corresponding node type in solved HP3G instances.

In contrast to these two nonterminal degree-2 rooms, the terminal degree-2 rooms can
(unsurprisingly) be solved two ways, neither of which can use both corridors (because the
cell with number S cannot be a middle point of its line). The two possible solutions, shown
in Figure 16, correspond precisely to the two possible behaviors of terminal straight degree-2
nodes in solved HP3G instances. Here the use of pillars to fill otherwise empty corridor space
exemplifies our earlier description.

Figure 17 shows the terminal corner degree-2 room. We claim this room is solvable in
two ways, much like the terminal room already discussed. Note that in Figure 17 there are
two possible cells for the Hamilton line to visit in its first step from cell S. If it visits the cell
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a a a a a a
b b b b b b

d c d c d c
d c d c d c

S S S
e e e e e e
f f g h f f g h f f g h

g h g h g h

(a) (b) (c)

Figure 17 An Arukone3 terminal degree-2 corner room and its two solutions.

a a a a a a
b b b b b b

c d c d c d
c d c d c d

e f g g e f g g e f g g
e f h h i j e f h h i j e f h h i j

i j i j i j
k k k k k k
l l l l l l

Figure 18 An Arukone3 nonterminal degree-3 room and two of three solutions.

south of S, then it cannot also visit any cells north of the center row, as that would leave
behind white cells that pillar dominoes could never fill without breaking the 2 × 2 rule. By
a similar argument, if the line originating from S heads east, then it cannot visit any cells
south of the center row. In either case, the cells not filled by the Hamilton line can and must
be filled by the pillars, as seen in the figure.

Figure 18 displays a nonterminal degree-3 room. We claim there are precisely three
possible solutions (two, up to symmetry), in concordance with nonterminal degree-3 nodes
in solved HP3G instances. First, note that the central cell must, as before, be part of a line
that traverses precisely two of the exits. If they are the northeast and southwest exits, then
the solution must be as in Figure 18(b) (other attempts – for instance, using the three white
cells in the central column – fail for reasons similar to those previously discussed). Likewise,
if they are the northeast and southeast, the solution must be as in the third figure. The last
case (southwest and southeast) is symmetrical to this.

Finally, Figure 19 displays a terminal degree-3 room. As noted for the other terminal
rooms, the cell numbered S must be an endpoint of its line, so its line must visit precisely one
of the three cells adjacent to it. (The other two must be filled by inner pillars.) If it moves
east, then the other two cells neighboring S must be filled by inner pillars (see Figure 19(b)),
after which there is no option but to take the northeast exit (Figure 19(c)). The other two
cases – moving one cell south or west (not shown) – are similar (forcing east and south exits,
respectively). Again, in this gadget we see all, and only, the possible behaviors corresponding
to those of terminal degree-3 nodes in HP3G instances.
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a a a a a a
b b b b b b

c d c d c d
c d c d c d

S S … S
e f g g e f g g e f g g
e f h h i j e f h h i j e f h h i j

i j i j i j
k k k k k k
l l l l l l

(a) (b) (c)

Figure 19 Arukone3 terminal degree-3 room (a), a partial solution (b), and a full solution (c).

This completes the discussion of individual gadgets. An example puzzle instance showing
how they fit together is given in Figure 20. Extra walls can be added to make the instance
rectangular. This completes the proof. ◀

s

t

S
a a S
b b c d e f g g

c d e f h h i j
k k i j
l l m m

o o p p
q q r r s t u v

w w s t u v x x
y y

z z
a’ a’ b’ c’ d’ e’

b’ c’ d’ e’
f’ f’
g’ g’ h’ h’

i’ j’ k’ k’
i’ j’ l’ l’ m’ n’

o’ o’ m’ n’

Figure 20 A graph and its corresponding Arukone3 instance. (Further walls in white space not
shown.) The instance has a 45◦ clockwise tilt compared to the graph.

FUN 2024



11:14 Hamiltonian Paths and Cycles in NP-Complete Puzzles

1 4 8 3 1 4 8 3
2 8 2 8

3 4 1 5 3 4 1 5
4 7 4 7
5 1 5 1

4 5 8 4 4 5 8 4
8 12 8 12

5 3 12 1 5 3 12 1

Figure 21 An Araf puzzle instance (left) and its solution (right). [8].

6 Araf

Araf, like Linesweeper and Chains, consists of a grid of cells that each may contain a natural
number. (Unlike Arukone3, Araf need not have precisely two of each present number.) The
goal is to divide the grid into contiguous regions such that (i) each cell is part of exactly one
region, (ii) each region contains exactly two numbers, and (iii) the size of each region’s area
is strictly between those two numbers. Figure 21 presents an example.

▶ Theorem 6. Araf is NP-complete.

Proof. We give a reduction from HP3G. In this reduction, it will be necessary to construct
eleven rooms, not seven as in Arukone3. This is because we have separate designs for rooms
representing start nodes and end nodes, rather than a single design for both types of terminal
node for any given node degree/shape. We will begin with the rooms for start nodes, then
present the rooms for nonterminal nodes, and then finally present the rooms for end nodes.

Let us say two cells are connected in a solution if they occupy the same region. We may
at times identify a numbered cell with its number, if no confusion arises. Thus we may say,
e.g., that the numbers a and b in a given room are connected.

In all rooms we construct, the walls are built out of dominoes that each consist of a 1
and a 3 (see Figure 22). By rule (iii), the two domino cells must be together in a region of
area exactly 2, as long as no nearby numbered cells provide other options. We construct the
rooms in such a way that no problem with this arises. Technically, while it is conceivable
that a large area filled with wall dominoes could be solved in more than one way (e.g., if a
horizontal 3-1 domino is above a horizontal 1-3 domino, these four cells can be paired off
vertically or horizontally), these differences have no meaningful effect on the puzzle solution
or our proof. In particular, the region corresponding to the grid graph’s Hamiltonian path
(hereafter, the Hamilton region) is unaffected. Accordingly, we will not distinguish between
solutions with identical Hamilton regions that differ only by small variations such as with
the 3-1 pairings.

Importantly, all the rooms in this proof are constructed in such a way that they can’t
affect each other. The sides of each room are filled with 1s and there is a 3 in each corner.
Thus the cells on the side of a room will be unable to share a region with cells on the side of
an adjacent room. Therefore, it will be impossible for a solution to have any region include
cells from two or more gadgets, with the exception of the Hamilton region.

If the grid graph has a Hamiltonian path, the size of the Hamilton region in the puzzle is
straightforward to calculate. As we will see, the start room will have nine cells available for
the Hamilton region, the end room will have seven, and the nonterminal rooms will each
have thirteen. Hence the region has 9 + 7 + 13(n − 2) = 13n − 10 cells, where n is the number
of nodes in the grid graph.
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3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 1 3 1 3 1 3 1 3 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1
1 3 1 3 1 3 3 3 1 3 1 3 1 1 3 1 3 1 3 3 3 1 3 1 3 1
1 3 1 3 1 3 b 3 1 3 1 3 1 1 3 1 3 1 3 b 3 1 3 1 3 1
1 3 1 3 1 3 a 3 1 3 1 3 1 1 3 1 3 1 3 a 3 1 3 1 3 1
1 3 1 3 1 3 3 1 3 1 3 1 1 3 1 3 1 3 3 1 3 1 3 1
1 3 1 3 1 3 3 1 3 1 3 1 1 3 1 3 1 3 3 1 3 1 3 1
1 3 1 3 1 3 3 1 3 1 3 1 1 3 1 3 1 3 3 1 3 1 3 1
1 3 1 3 1 1 1 1 3 1 3 1 1 3 1 3 1 1 1 1 3 1 3 1
1 3 1 3 3 3 3 3 1 3 3 1 1 3 1 3 3 3 3 3 1 3 3 1
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3

Figure 22 An Araf degree-1 start room (left) and solution.

We now define a = 13n − 11 and b = a + 2 = 13n − 9. The room representing the start
node will contain a domino with a and b, arranged so that these two numbers must connect
in any solution. Their region, with forced size 13n − 10, will be the Hamilton region.

Note that the rest of the numbers in the puzzle will all be 9 or less, so the numbers a

and b will be by far the greatest.
In Figure 22 the degree-1 start room is shown. There are eighty 3-1 regions and two

(large) numbers a and b, which we now argue must share a region (the Hamilton region).
Observe that b cannot connect to one of the 3s next to it – for, if it did, its region would
need to have size at least 4, which is not possible in the given room. So b must connect to a.
A similar observation will hold for the other start rooms.

Since a and b are connected, the 3s and 1s in this gadget must connect to each other. Since
each such connection yields a region of size 2 under Araf’s rules, there must be 80 · 2 = 160
cells filled. There are 13 × 13 = 169 total cells in this gadget, so the nine remaining cells,
including a and b, must be occupied by the Hamilton region.

Figure 23 shows the straight degree-2 start room. We argue that a solution for it must
contain seventy-four 3-1 regions, one 9-7 region, one 9-1 region and one 6-1 region. This
results in at least 74 · 2 + 8 + 2 + 2 = 160 filled cells.

3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 1 1 1 3 b 3 1 1 1 3 1 1 3 1 1 1 3 b 3 1 1 1 3 1 1 3 1 1 1 3 b 3 1 1 1 3 1
1 3 3 3 3 1 a 1 3 3 3 3 1 1 3 3 3 3 1 a 1 3 3 3 3 1 1 3 3 3 3 1 a 1 3 3 3 3 1

1 3 3 3 3 9 7 9 3 3 3 3 1 1 3 3 3 3 9 7 9 3 3 3 3 1 1 3 3 3 3 9 7 9 3 3 3 3 1
1 3 1 1 1 1 6 1 1 1 1 3 1 1 3 1 1 1 1 6 1 1 1 1 3 1 1 3 1 1 1 1 6 1 1 1 1 3 1
1 3 3 3 3 3 1 3 3 3 1 3 1 1 3 3 3 3 3 1 3 3 3 1 3 1 1 3 3 3 3 3 1 3 3 3 1 3 1
1 3 1 1 1 1 3 1 1 1 3 3 1 1 3 1 1 1 1 1 1 1 1 3 3 1 1 3 1 1 1 1 1 1 1 1 3 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3

(a) (b) (c)

Figure 23 An Araf degree-2 straight start room (left) and solutions.

For all 1s except those adjacent to a or 6, it is obvious that they must connect to a
neighboring 3. For each of the 1s next to a, if it would connect elsewhere then the only
options would be a 7 or 9. However, the 7 is impossible because this would block the a and b,
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3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
1 3 3 1 1 3 4 6 3 1 1 3 3 1 1 3 4 6 3 1 1 3 3 1 1 3 4 6 3 1
1 3 1 3 1 3 4 2 3 1 1 3 1 3 1 3 4 2 3 1 1 3 1 3 1 3 4 2 3 1
1 3 1 3 1 3 2 4 2 6 3 1 1 3 1 3 1 3 2 4 2 6 3 1 1 3 1 3 1 3 2 4 2 6 3 1
1 3 1 3 1 3 4 2 4 4 3 1 1 3 1 3 1 3 4 2 4 4 3 1 1 3 1 3 1 3 4 2 4 4 3 1
1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
1 3 1 3 3 1 a 1 3 3 3 3 1 1 3 1 3 3 1 a 1 3 3 3 3 1 1 3 1 3 3 1 a 1 3 3 3 3 1
1 3 1 3 1 3 b 3 1 1 1 3 1 1 3 1 3 1 3 b 3 1 1 1 3 1 1 3 1 3 1 3 b 3 1 1 1 3 1
1 3 1 3 3 3 3 3 3 3 1 3 1 1 3 1 3 3 3 3 3 3 3 1 3 1 1 3 1 3 3 3 3 3 3 3 1 3 1
1 3 3 1 1 1 1 1 1 1 3 3 1 1 3 3 1 1 1 1 1 1 1 3 3 1 1 3 3 1 1 1 1 1 1 1 3 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3

(a) (b) (c)

Figure 24 An Araf degree-2 corner start room (left) and solutions.

whose region requires far more than just two cells. Likewise for the far 9. For the close 9 (two
spaces below the 1), connecting would leave a 3 from the same quadrant as the 1 unpaired,
forcing the 3 to connect to the 7 or remaining 9. But this, even if somehow possible, would
again block off a and b. So each 1 next to a must connect to a neighboring 3.

The 7 must now connect to a 9, as it cannot connect to a 6 by the rules of Araf. The
resulting 9-7 region requires exactly eight cells. To avoid blocking the a and b, this region
must be as in Figure 23(b) or (c). All other cells in the central row must remain open to be
filled by the b-a (Hamilton) region.

We thus see that the remaining 9 cannot connect to the adjacent 3, because the resulting
region would need at least four cells, including two central row cells. Hence the 9 must
connect to the adjacent 1, forming a region that can and must use just two cells.

Finally, the 6-1 region can also only occupy two cells, because of the limited space around
it. Adding this up with the other regions, 160 cells are filled, leaving nine for the Hamilton
region. This can be done exactly two ways, depicted in Figure 23.

Figure 24 shows the corner degree-2 start room. We argue that a solution must have sixty-
nine 3-1 regions, four 4-2 regions, and two 6-4 regions. This results in 69 · 2 + 4 · 3 + 2 · 5 = 160
filled cells. So the remaining nine cells must be filled by the Hamilton region.

Here, the 6s must connect to the adjacent 4s because those 4s have no alternative. Further,
the b cannot connect to a 3 as argued previously, so it must connect to a and form the
Hamilton region. The 1 to the right of a cannot make a 1-4 region, as that blocks the east
hallway while also forcing a 2-4 region above to block the north hallway. This leaves two,
somewhat symmetrical, ways to solve the room, as seen in Figure 24.

Figure 25 shows the degree-3 start room, constructed similarly to the corner degree-2 start
room but with a southeast quadrant mirroring the northeast. Forced in its solution are fifty-
eight 3-1 regions, eight 4-2 regions, and four 6-4 regions. This results in 58 ·2+8 ·3+4 ·5 = 160
filled cells, leaving nine for the Hamilton region. In each of the two eastern quadrants, the
numbers’ regions can together fill either a 7 × 6 or 6 × 7 rectangular area, resulting in three
ways to solve the room. Two are shown in the figure. The third, with Hamilton region
heading north, mirrors the first.
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3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
1 3 3 1 1 3 4 6 3 1 1 3 3 1 1 3 4 6 3 1 1 3 3 1 1 3 4 6 3 1
1 3 1 3 1 3 4 2 3 1 1 3 1 3 1 3 4 2 3 1 1 3 1 3 1 3 4 2 3 1
1 3 1 3 1 3 2 4 2 6 3 1 1 3 1 3 1 3 2 4 2 6 3 1 1 3 1 3 1 3 2 4 2 6 3 1
1 3 1 3 3 1 4 2 4 4 3 1 1 3 1 3 3 1 4 2 4 4 3 1 1 3 1 3 3 1 4 2 4 4 3 1
1 3 1 3 b a 1 3 1 3 b a 1 3 1 3 b a
1 3 1 3 3 1 4 2 4 4 3 1 1 3 1 3 3 1 4 2 4 4 3 1 1 3 1 3 3 1 4 2 4 4 3 1
1 3 1 3 1 3 2 4 2 6 3 1 1 3 1 3 1 3 2 4 2 6 3 1 1 3 1 3 1 3 2 4 2 6 3 1
1 3 1 3 1 3 4 2 3 1 1 3 1 3 1 3 4 2 3 1 1 3 1 3 1 3 4 2 3 1
1 3 3 1 1 3 4 6 3 1 1 3 3 1 1 3 4 6 3 1 1 3 3 1 1 3 4 6 3 1
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3

(a) (b) (c)

Figure 25 An Araf degree-3 start room (left) and two of three solutions.

We now present the nonterminal rooms. As degree-1 nonterminal rooms are unnecessary,
we begin in Figures 26 and 27 with the degree-2 nonterminal rooms, which require no
comment.

3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1

1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 3 1
1 3 3 3 3 3 3 3 3 3 1 3 1 1 3 3 3 3 3 3 3 3 3 1 3 1
1 3 1 1 1 1 1 1 1 1 3 3 1 1 3 1 1 1 1 1 1 1 1 3 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3

Figure 26 An Araf degree-2 straight nonterminal room (left) and its solution.

3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
1 3 3 1 1 3 1 1 1 1 3 1 1 3 3 1 1 3 1 1 1 1 3 1
1 3 3 1 1 3 3 3 3 3 3 1 1 3 3 1 1 3 3 3 3 3 3 1
1 3 3 1 1 3 3 1 1 1 3 1 1 3 3 1 1 3 3 1 1 1 3 1
1 3 3 1 1 3 1 3 3 3 3 1 1 3 3 1 1 3 1 3 3 3 3 1
1 3 3 1 1 3 1 3 3 1 1 3
1 3 3 1 1 3 3 3 3 3 3 3 1 1 3 3 1 1 3 3 3 3 3 3 3 1
1 3 3 1 3 1 1 1 1 1 1 3 1 1 3 3 1 3 1 1 1 1 1 1 3 1
1 3 3 1 1 1 1 1 1 1 1 3 1 1 3 3 1 1 1 1 1 1 1 1 3 1
1 3 1 3 3 3 3 3 3 3 3 3 1 1 3 1 3 3 3 3 3 3 3 3 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3

Figure 27 An Araf degree-2 corner nonterminal room (left) and its solution.

The degree 3 nonterminal room, shown in Figure 28, is more complex. We claim it has
thirty-nine 3-1 regions, two 4-1 regions, seven 5-3 regions, two 6-3 regions, two 7-5 regions,
two 8-6 regions and two 6-4 regions. Two solutions are shown, and a third symmetrical to
the second is also possible.
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3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
1 3 5 3 3 1 1 3 5 3 3 1 1 3 5 3 3 1
1 3 6 3 5 7 8 4 1 1 3 6 3 5 7 8 4 1 1 3 6 3 5 7 8 4 1
1 3 5 3 6 3 1 1 3 5 3 6 3 1 1 3 5 3 6 3 1
1 3 5 3 4 6 3 1 1 3 5 3 4 6 3 1 1 3 5 3 4 6 3 1
1 3 5 3 1 3 5 3 1 3 5 3
1 3 5 3 4 6 3 1 1 3 5 3 4 6 3 1 1 3 5 3 4 6 3 1
1 3 5 3 6 3 1 1 3 5 3 6 3 1 1 3 5 3 6 3 1
1 3 6 3 5 7 8 4 1 1 3 6 3 5 7 8 4 1 1 3 6 3 5 7 8 4 1
1 3 5 3 3 1 1 3 5 3 3 1 1 3 5 3 3 1
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3

(a) (b) (c)

Figure 28 An Araf degree-3 nonterminal room (left) and two of the solutions.

Note that all cells in the west side will always be filled. In the east is some flexibility.
However, observe that all 1s must connect to the adjacent 3s and 4s. This leaves two areas
that each contain numbers 4, 5, 6, 6, 7, and 8. In each, since a 6 can never connect to 5 or
7, the 6s must connect to the 8 and 4. So the 5 must connect to 7. This yields regions of
exactly five, exactly six, and exactly seven cells.

The two 6-3 regions can fill either four or five cells and the two 4-1 regions can fill two
or three cells. This means that the total area covered by regions of numbers in the room is
between 154 and 158 cells, leaving between eleven and fifteen for the Hamilton region.

The images in Figure 28 show the intended ways to solve this room, but unlike the
previous rooms, this one offers freedom for the solver to place regions in other ways that are
at least locally acceptable within the rules. See Figure 29. We argue, however, that these
lead to global failure for solving the puzzle instance as a whole, or at any rate do not render
solvable any puzzle instances whose corresponding graphs have no Hamiltonian paths.

3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
1 3 5 3 3 1 1 3 5 3 3 1 1 3 5 3 3 1
1 3 6 3 5 7 8 4 1 1 3 6 3 5 7 8 4 1 1 3 6 3 5 7 8 4 1
1 3 5 3 6 3 1 1 3 5 3 6 3 1 1 3 5 3 6 3 1
1 3 5 3 4 6 3 1 1 3 5 3 4 6 3 1 1 3 5 3 4 6 3 1
1 3 5 3 1 3 5 3 1 3 5 3
1 3 5 3 4 6 3 1 1 3 5 3 4 6 3 1 1 3 5 3 4 6 3 1
1 3 5 3 6 3 1 1 3 5 3 6 3 1 1 3 5 3 6 3 1
1 3 6 3 5 7 8 4 1 1 3 6 3 5 7 8 4 1 1 3 6 3 5 7 8 4 1
1 3 5 3 3 1 1 3 5 3 3 1 1 3 5 3 3 1
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 3

(a) (b) (c)

Figure 29 Alternative solution attempts for Araf degree-3 nonterminal room.

First we note that since eleven or more cells are unfilled by regions of numbers in the
room itself, the Hamilton region must visit there. The only question is whether/how it
exits. But failing to exit, as in image (a), leaves the Hamilton region with at least three
endpoints: the start room, the end room, and this room. The only way for this to occur is if
there is some room (with degree 3) elsewhere whose three hallways are all used. But this is
impossible, as it would require nineteen cells for the Hamilton region (the normal thirteen
plus six more), which exceeds the maximum (fifteen) established above. Solution attempts
such as (b) and (c) can be similarly disregarded.
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Having now handled all start and nonterminal rooms, we finally turn to end rooms. All of
these except for the straight degree-2 room are constructed identically to their corresponding
start rooms, but with a 3-1 or 1-3 domino in place of a and b. Their solutions are the same
as the start rooms’, except with the two cells formerly occupied by a and b now enclosed
within a two-cell region, leaving seven (not nine) cells for occupation by the Hamilton region.
We show just one example (Figure 30).

3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 1 3 1 3 1 3 1 3 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1
1 3 1 3 1 3 3 3 1 3 1 3 1 1 3 1 3 1 3 3 3 1 3 1 3 1
1 3 1 3 1 3 1 3 1 3 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1
1 3 1 3 1 3 3 3 1 3 1 3 1 1 3 1 3 1 3 3 3 1 3 1 3 1
1 3 1 3 1 3 3 1 3 1 3 1 1 3 1 3 1 3 3 1 3 1 3 1
1 3 1 3 1 3 3 1 3 1 3 1 1 3 1 3 1 3 3 1 3 1 3 1
1 3 1 3 1 3 3 1 3 1 3 1 1 3 1 3 1 3 3 1 3 1 3 1
1 3 1 3 1 1 1 1 3 1 3 1 1 3 1 3 1 1 1 1 3 1 3 1
1 3 1 3 3 3 3 3 1 3 3 1 1 3 1 3 3 3 3 3 1 3 3 1
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3

Figure 30 An Araf degree-1 end room (left) and its solution.

For the case of the straight degree-2 end room, Figure 31 shows its layout and one of its
two solutions. The other is symmetrical. We claim that the room contains sixty-nine 3-1
regions, two 8-6 regions and two 6-4 regions. This results in 69 · 2 + 2 · 7 + 2 · 5 = 162 filled
cells, with the remaining seven cells being filled by the Hamilton region.

Observe that each 6 adjacent to an 8 must connect to the 8, because the only alternative
is to connect to a 3, which would leave a 1 optionless. The other 6s must then connect to
their neighboring 4s, since the 4s have no other option.

3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1

1 3 4 6 6 4 3 1 1 3 4 6 6 4 3 1
1 3 8 6 6 8 3 1 1 3 8 6 6 8 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 1 3 3 3 1 3 1
1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 3 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3

Figure 31 An Araf degree-2 end room (left) and one of two solutions.

Having covered all the gadgets, we conclude the proof. In Example 7 we show a full
example of an Araf puzzle instance that simulates a grid graph. ◀

▶ Example 7. The graph in Figure 32 has five nodes, so we have a = 5(13) − 11 = 54
and b = a + 2 = 56. Figure 33 gives the puzzle instance’s solution.
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s

t
3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3
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Figure 32 Example graph and its corresponding Araf instance.
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Figure 33 Araf example solution with 56-54 region representing a Hamiltonian path.
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7 Dotchi Loop, revisited

We now come full circle to our first puzzle, Dotchi Loop. In this section we show that Dotchi
Loop remains NP-complete even when the set of available puzzle instances is restricted so
that black circles are forbidden from being orthogonally or diagonally adjacent. Let us call
the solvability problem for Dotchi Loop under these conditions Restricted Dotchi Loop. It is
easy to see that the formation of walls in Restricted Dotchi Loop is much more difficult than
in unrestricted Dotchi Loop (Section 2).

▶ Theorem 7. Restricted Dotchi Loop is NP-complete.

Proof. We again give a reduction from HC3G. Although the formation of walls in the manner
of our earlier proof is difficult or impossible, the key idea in our construction is now the use of
the loop itself to form a sort of wall. Here we make use of the fact that the loop is forbidden
to cross itself. By forcing the loop to surround each room, we give it no opportunity to
wander astray.

The degree-3 room is shown in Figure 34. Here, the letter F is not part of the gadget,
but just a label for our reference (see below). Degree-2 rooms (not shown) are constructed
similarly, but with changes we now describe.

All rooms have 6×6 regions in the corners with black circles arranged as in the figure. The
Gg-Gt-Tg-Tt square is also the same as in the figure. On a side with no exit, between the
two 6×6 regions in the corners is a rectangle like the Ga-Gf-Ta-Tf rectangle shown, rotated
appropriately. In a side with an exit, there is a rectangle resembling the Gu-Gz-Tu-Tz
rectangle shown, rotated appropriately. For example, the degree-2 corner room with hallways
north and east is identical to the degree-3 room depicted, except with its Ug-Ut-Zg-Zt
rectangle replaced by a left-rotated copy of the Ga-Gf-Ta-Tf rectangle.

a b c d e f g h i j k l m n o p q r s t u v w x y z
A
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F
G F F
H
I
J
K F F
L
M
N
O
P F F
Q
R
S
T F F
U
V
W
X
Y
Z

Figure 34 Restricted Dotchi Loop degree-3 room. There are twelve distinct regions. As in
Figure 5, colors distinguish neighboring regions, but distant regions may be shown with similar color.
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We now describe how these rooms work, using the degree-3 room as an example. We first
claim that all regions containing white circles are straight regions, except for each room’s
large central light gray region (containing the Gg-Gt-Tg-Tt square and its 2×6 attachments
– e.g., between Mu and Nz). To prove this, note that a region containing a white circle
flanked by two black circles to form a black-white-black I-tromino (e.g., at Jf -Lf or Lb-Ld)
must be straight, because such a white circle gives the loop no space to turn through it.

Further, once the loop enters a cell adjacent to any of the straight white circles, it must
go immediately onto that white circle, as going elsewhere would make that circle unsolvable.
Therefore, a sequence of such I-trominoes with one-space gaps between them, such as the
sequence Bf -Bh, Df -Dh, Ff -Fh, must be solved with a straight line directly through the
white circles, as seen in Figure 35.

a b c d e f g h i j k l m n o p q r s t u v w x y z
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F
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J
K
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N
O
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Q
R
S
T
U
V
W
X
Y
Z

Figure 35 One of three (non-equivalent) solutions to Restricted Dotchi Loop degree-3 room.

We can also see that the cells earlier marked “F” (e.g., cell Gk) can be considered forced
entrances/exits from the large central region to the side regions, because the white circles
adjacent to them are necessarily straight. Finally, we can infer that the large central region
must be a turn region, because the circle at Gg (among others) cannot be a straight circle
without causing the loop to block off one of the two adjacent (now known to be straight)
white circles.

These facts together suffice to force the entire solution to be as in Figure 35, for a
loop traveling through this room using the north and east entrances (mutatis mutandis for
north-south or east-south) – save for inconsequential differences such as getting things done
in a slightly different order, or making some irrelevant additional movements within the large
empty space in the central region. That is to say, deviating meaningfully from the depicted
solution would prevent one or more of the white circles from being crossed properly (turn or
straight, according to its region).
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We now see how the loop is forced to form its own self-impenetrable wall around the
room, save for an opening at each of exactly two of the 2 × 6 areas mentioned earlier. These
areas are the “corridors” of this reduction and each one joins with one from a neighboring
room (as they are aligned at the center). Accordingly, we now see that the rooms work as
they need to. ◀

8 Discussion and Future Research

8.1 Application of HP3G and HC3G
We have seen how HP3G and HC3G are useful graph-theoretic computational problems for
giving reductions to some pen-and-paper puzzles, particularly those occurring on square
grids with a kind of path- or loop-finding aspect. But even Araf was successfully proven
NP-complete using one of these, despite the lack of any overt requirement to construct a path
or loop in the puzzle’s rules. Therefore, HP3G and HC3G seem to be at least moderately
broadly applicable problems that should be taken seriously as candidates for future such
reductions – certainly, at least, when proofs using common choices such as 3SAT are not
forthcoming.

8.2 Restricted puzzle versions
In general, we find it interesting to consider whether a given puzzle remains NP-complete
when the set of available puzzle instances is restricted in some way. We explored this in
Section 7 for Dotchi Loop. In deliberately making the task difficult by eliminating the means
to create easy walls, we became forced to find an alternative approach using the loop’s path
itself. Similar such results may be available for the other puzzles. For example, we may
consider Linesweeper without the use of 0-cells (despite footnote 8). We suspect that HP3G
and HC3G can still serve as bases for reductions to these restricted puzzles, but the task gets
more challenging the more tools we deprive ourselves of using to (for example) build walls.

Restricted versions of puzzles compare to the original versions in a way analogous to
how 3SAT compares to SAT, or HP3G and HCG3 respectively compare to the Hamiltonian
path and cycle problems on arbitrary graphs. As potential bases for reductions in future
NP-completeness proofs, they require the construction of fewer gadgets than the originals.
But even in the likely scenario that no future NP-completeness proofs use these particular
puzzles as bases for reductions, we still find the possibility of nontrivially restricted versions
being NP-complete inherently interesting.

8.3 HP4G and HC4G
As a side remark, we are grateful for the existence of Theorem 1 and Corollary 1, which have
allowed us to give reductions without needing to construct degree-4 rooms. Had we been
forced to construct such rooms in addition to the others, our task would have been rather
harder. While a degree-4 room is in some cases very simple to construct after seeing the
lower-degree rooms, in other cases their design is not so trivial. Dotchi Loop, Chains, and
Arukone3 are easy cases (see Figure 36(a)-(c)). Linesweeper is more challenging, but could
be done as in Figure 36(d), if the lower-degree rooms are appropriately padded with 0s to
match the dimensions. But Araf and Restricted Dotchi Loop bear no constructions we have
been able to find. For Araf, the lower-degree rooms do not fit a clear pattern that can be
straightforwardly extrapolated to degree 4, and overall we simply have not found any design
that works. For Restricted Dotchi Loop, such a pattern very clearly does exist, but a naive
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attempt to design degree-4 rooms this way allows a loop to enter and exit the same degree-4
room twice, resulting in some non-Hamiltonian graphs getting mapped to solvable puzzle
instances. (By contrast, the rooms in Figure 36 all prevent this.) Although these last two
puzzles are provably NP-complete anyway, and degree-4 rooms are of course possible to build
“the long way” by reducing HP4G → HP3G → Araf and HC4G → HC3G → Restricted DL,
we wonder as a matter of pure curiosity whether these puzzles admit “direct” degree-4 room
designs – i.e., ones as small and natural as those of the lower-degree rooms.

a a 0 0 0 0 0 0
b b

c c 0 0
d d e f g h

1 1 e f g h 0 0 0 0 0
3

1 1 i j k k
i j l l m n

m n 0 0 0 0 0
o o
n n 0 0

0 0 0 0 0 0

(a) (b) (c) (d)

Figure 36 Degree-4 rooms of Dotchi Loop, Chains, Arukone3, and Linesweeper. Rooms (b)
and (c) can be made terminal by inserting an appropriate number in the center. Room (d) is given
with two of six solutions shown.

References
1 Aaron B. Adcock, Erik D. Demaine, Martin L. Demaine, Michael P. O’Brien, Felix Reidl,

Fernando Sánchez Villaamil, and Blair D. Sullivan. Zig-Zag Numberlink is NP-complete.
Journal of Information Processing, 23(3):239–245, 2015. doi:10.2197/IPSJJIP.23.239.

2 Aviv Adler, Jeffrey Bosboom, Erik D. Demaine, Martin L. Demaine, Quanquan C. Liu, and
Jayson Lynch. Tatamibari is NP-complete. In Martin Farach-Colton, Giuseppe Prencipe,
and Ryuhei Uehara, editors, 10th International Conference on Fun with Algorithms (FUN
2021), volume 157 of Leibniz International Proceedings in Informatics (LIPIcs), pages 1:1–
1:24, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.FUN.2021.1.

3 Michael Buro. Simple Amazons endgames and their connection to Hamilton circuits in cubic
subgrid graphs. In T. Anthony Marsland and Ian Frank, editors, Computers and Games,
Second International Conference, CG 2000, Hamamatsu, Japan, October 26-28, 2000, Revised
Papers, volume 2063 of Lecture Notes in Computer Science, pages 250–261. Springer, 2001.
doi:10.1007/3-540-45579-5_17.

4 Erik D. Demaine, Jayson Lynch, Mikhail Rudoy, and Yushi Uno. Yin-Yang Puzzles are NP-
complete. In Meng He and Don Sheehy, editors, Proceedings of the 33rd Canadian Conference
on Computational Geometry, CCCG 2021, August 10-12, 2021, Dalhousie University, Halifax,
Nova Scotia, Canada, pages 97–106, 2021.

5 Marnix Deurloo. On the NP-completeness of Dotchi Loop and restricted sets thereof. Bachelor’s
thesis, Utrecht University, 2023.

6 Mitchell Donkers. The NP-completeness of pen and paper puzzles. Bachelor’s thesis, Utrecht
University, 2021. URL: https://studenttheses.uu.nl/handle/20.500.12932/1383.

https://doi.org/10.2197/IPSJJIP.23.239
https://doi.org/10.4230/LIPIcs.FUN.2021.1
https://doi.org/10.4230/LIPIcs.FUN.2021.1
https://doi.org/10.1007/3-540-45579-5_17
https://studenttheses.uu.nl/handle/20.500.12932/1383


M. Deurloo, M. Donkers, M. Maarse, B. G. Rin, and K. Schutte 11:25

7 Markus Holzer and Oliver Ruepp. The troubles of interior design–A complexity analysis of
the game Heyawake. In Pierluigi Crescenzi, Giuseppe Prencipe, and Geppino Pucci, editors,
Fun with Algorithms, 4th International Conference, FUN 2007, Castiglioncello, Italy, June
3-5, 2007, Proceedings, volume 4475 of Lecture Notes in Computer Science, pages 198–212.
Springer, 2007. doi:10.1007/978-3-540-72914-3_18.

8 Otto Janko and Angela Janko. Araf. Accessed on 2024-02-20. URL: https://www.janko.at/
Raetsel/Araf/index.htm.

9 Otto Janko and Angela Janko. Arukone. Accessed on 2024-02-20. URL: https://www.janko.
at/Raetsel/Arukone/index.htm.

10 Otto Janko and Angela Janko. Arukone2. Accessed on 2024-02-20. URL: https://www.janko.
at/Raetsel/Arukone-2/index.htm.

11 Otto Janko and Angela Janko. Arukone3. Accessed on 2024-02-20. URL: https://www.janko.
at/Raetsel/Arukone-3/index.htm.

12 Otto Janko and Angela Janko. Dotchi loop. Accessed on 2024-02-20. URL: https://www.
janko.at/Raetsel/Dotchi-Loop/index.htm.

13 Otto Janko and Angela Janko. Ketten. Accessed on 2024-02-20. URL: https://www.janko.
at/Raetsel/Ketten/index.htm.

14 Otto Janko and Angela Janko. Ketten, nr. 7. Accessed on 2024-02-20. URL: https://www.
janko.at/Raetsel/Ketten/007.a.htm.

15 Otto Janko and Angela Janko. Linesweeper. Accessed on 2024-02-20. URL: https://www.
janko.at/Raetsel/Linesweeper/index.htm.

16 Otto Janko and Angela Janko. Linesweeper, nr. 082. Accessed on 2024-02-20. URL: https:
//www.janko.at/Raetsel/Linesweeper/082.a.htm.

17 Richard Kaye. Minesweeper is NP-complete. The Mathematical Intelligencer, 22:9–15, 2000.
doi:10.1007/BF03025367.

18 Jonas Kölker. Kurodoko is NP-complete. Journal of Information Processing, 20(3):694–706,
2012. doi:10.2197/ipsjjip.20.694.

19 Kotsuma Kouichi and Takenaga Yasuhiko. NP-completeness and enumeration of Number Link
puzzle. IEICE Technical Report. Theoretical Foundations of Computing, 109(465):1–7, 2010.

20 Mieke Maarse. The NP-completeness of some lesser known logic puzzles. Bachelor’s the-
sis, Utrecht University, 2019. URL: https://studenttheses.uu.nl/handle/20.500.12932/
33867.

21 Jak Marshall. Play my puzzle game: Linesweeper. September 30, 2010. URL: https:
//103percent.blogspot.com/2010/09/play-my-new-puzzle-game.html.

22 Christos H. Papadimitriou and Umesh V. Vazirani. On two geometric problems related
to the travelling salesman problem. Journal of Algorithms, 5(2):231–246, June 1984. doi:
10.1016/0196-6774(84)90029-4.

23 Karen Schutte. The NP-completeness of three logic puzzles. Bachelor’s thesis, Utrecht
University, 2021.

24 Allan Scott, Ulrike Stege, and Iris Rooij. Minesweeper may not be NP-complete but
is hard nonetheless. The Mathematical Intelligencer, 33.4:5–17, 2011. doi:10.1007/
s00283-011-9256-x.

25 Hadyn Tang. A framework for loop and path puzzle satisfiability NP-hardness results, 2022.
arXiv:2202.02046.

26 Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another so-
lution and its application to puzzles. IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences, 86-A(5):1052–1060, 2003. URL: http:
//search.ieice.org/bin/summary.php?id=e86-a_5_1052.

FUN 2024

https://doi.org/10.1007/978-3-540-72914-3_18
https://www.janko.at/Raetsel/Araf/index.htm
https://www.janko.at/Raetsel/Araf/index.htm
https://www.janko.at/Raetsel/Arukone/index.htm
https://www.janko.at/Raetsel/Arukone/index.htm
https://www.janko.at/Raetsel/Arukone-2/index.htm
https://www.janko.at/Raetsel/Arukone-2/index.htm
https://www.janko.at/Raetsel/Arukone-3/index.htm
https://www.janko.at/Raetsel/Arukone-3/index.htm
https://www.janko.at/Raetsel/Dotchi-Loop/index.htm
https://www.janko.at/Raetsel/Dotchi-Loop/index.htm
https://www.janko.at/Raetsel/Ketten/index.htm
https://www.janko.at/Raetsel/Ketten/index.htm
https://www.janko.at/Raetsel/Ketten/007.a.htm
https://www.janko.at/Raetsel/Ketten/007.a.htm
https://www.janko.at/Raetsel/Linesweeper/index.htm
https://www.janko.at/Raetsel/Linesweeper/index.htm
https://www.janko.at/Raetsel/Linesweeper/082.a.htm
https://www.janko.at/Raetsel/Linesweeper/082.a.htm
https://doi.org/10.1007/BF03025367
https://doi.org/10.2197/ipsjjip.20.694
https://studenttheses.uu.nl/handle/20.500.12932/33867
https://studenttheses.uu.nl/handle/20.500.12932/33867
https://103percent.blogspot.com/2010/09/play-my-new-puzzle-game.html
https://103percent.blogspot.com/2010/09/play-my-new-puzzle-game.html
https://doi.org/10.1016/0196-6774(84)90029-4
https://doi.org/10.1016/0196-6774(84)90029-4
https://doi.org/10.1007/s00283-011-9256-x
https://doi.org/10.1007/s00283-011-9256-x
https://arxiv.org/abs/2202.02046
http://search.ieice.org/bin/summary.php?id=e86-a_5_1052
http://search.ieice.org/bin/summary.php?id=e86-a_5_1052

	1 Introduction
	1.1 Preliminaries
	1.2 General scheme

	2 Dotchi Loop
	3 Chains
	4 Linesweeper
	5 Arukone{}_3
	6 Araf
	7 Dotchi Loop, revisited
	8 Discussion and Future Research
	8.1 Application of HP3G and HC3G
	8.2 Restricted puzzle versions
	8.3 HP4G and HC4G


