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Abstract
Card-based cryptography studies the problem of implementing cryptographic algorithms in a visual
way using physical cards to demonstrate their security properties for those who are unfamiliar with
cryptography. In this paper, we initiate the study of card-based implementations of differentially
private mechanisms, which are a standard privacy-enhancing technique to publish statistics of
databases while protecting the privacy of any particular individual. We start with giving the
definition of differential privacy of card-based protocols. As a feasibility result, we present three
kinds of protocols using standard binary cards for computing the sum of parties’ binary inputs,
f(x1, . . . , xn) =

∑n

i=1 xi for xi ∈ {0, 1}, under differential privacy. Our first protocol follows the
framework of output perturbation, which provides differential privacy by adding noise to exact
aggregation results. The protocol needs only two shuffles, and the overheads in the number of cards
and the error bound are independent of the number n of parties. Our second and third protocols are
based on Randomized Response, which adds noise to each input before aggregation. Compared to
the first protocol, they improve the overheads in the number of cards and the error bound in terms
of differential privacy parameters at the cost of incurring a multiplicative factor of n. To address a
technical challenge of generating non-uniform noise using a finite number of cards, we propose a
novel differentially private mechanism based on the hypergeometric distribution, which we believe
may be of independent interest beyond applications to card-based cryptography.
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1 Introduction

With the rapid development of cryptography, various kinds of cryptographic primitives have
been proposed and allowed secure data processing on sensitive data. However, most of
these primitives are supposed to be implemented by computers and, as such, often lead to
complicated algorithm design. As a result, there remains a gap in non-experts’ understanding
of the security properties, which may prevent active social implementations.
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To address this problem, card-based cryptography [7, 6] studies the problem of implement-
ing cryptographic algorithms in a visual way using physical cards and demonstrates their
security properties for those who are unfamiliar with cryptography. So far, many card-based
cryptographic protocols have been proposed to implement secure multiparty computation
(e.g., [6, 16, 19, 22]) and zero-knowledge proofs [18, 11].

Recently, the concept of differential privacy [10] has been attracting a lot of attention as
the gold standard for rigorous privacy guarantees. Differential privacy is a mathematical
concept introduced in [8, 9] to quantify the privacy loss associated with any publication of
statistics of databases. For example, consider the simplest task of computing the sum of n

parties’ private inputs. If the exact aggregation result is published, an adversary colluding
with n − 1 parties can deduce the input of the remaining party from the result, which in
principle cannot be prevented only by secure computation techniques. Differentially private
mechanisms make results untraceable back to individuals by perturbing them with the
addition of noise. Due to its strong privacy and robustness guarantees, many differentially
private mechanisms have been proposed and deployed in privacy-preserving data analysis of,
e.g., users’ location information [2, 26] and social network data [21].

We note that differentially private mechanisms were previously supposed to be imple-
mented using computers in the literature. This seems to be in part because the mechanisms
usually need complicated processes to generate noise drawn from non-uniform probability
distributions (e.g., Laplace or Bernoulli distribution [10]). Towards the further deployment
of privacy-enhancing techniques, it is important to demonstrate differentially private mech-
anisms in an easier-to-understand way. However, the problem of implementing differentially
private mechanisms using cards has never been considered prior to this work.

1.1 Our Results
In this paper, we initiate the study of card-based implementations of differentially private
mechanisms. We start with giving the definition of differential privacy of card-based protocols.
Our definition is inspired by the framework of [3] defining differential privacy of (non-card-
based) distributed protocols. As a feasibility result, we present three kinds of protocols
using standard binary cards for computing the sum of parties’ binary inputs, f(x1, . . . , xn) =∑n

i=1 xi for xi ∈ {0, 1}, under differential privacy. Computing the binary sum function is
one of the most fundamental problems within the context of differential privacy [3, 4, 10, 24].

Our first protocol is based on output perturbation, which provides differential privacy
by adding noise to exact aggregation results. The protocol needs only two shuffles, and
the overheads in the number of cards and a bound on the mean squared error (MSE) are
independent of the number n of inputs. A technical challenge is how to generate non-uniform
noise using a finite number of cards. Along the way, we propose a novel differentially private
mechanism based on the hypergeometric distribution, which we believe may be of independent
interest beyond applications to card-based cryptography.

Our second and third protocols are based on input perturbation, which adds noise to
each input before aggregation. Compared to the above protocol, they improve the overheads
in the number of cards and the error bound in terms of differential privacy parameters at the
cost of incurring a multiplicative factor of n. Our third protocol even reduces the number of
shuffles to one. While not apparent in asymptotic notations, we empirically show that the
second protocol ensures a smaller number of cards and a smaller MSE in concrete parameter
settings. The detailed comparison is shown in Table 1 and Section 6.

We note that our first protocol can be described in the traditional model of card-based
protocols introduced in [16]. On the other hand, our second and third protocols assume
that parties apply private reveals to cards, which is not allowed in the model of [16]. While
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Table 1 Comparison of our card-based protocols.

Protocol MSE # cards # shuffles

ΠHG
k,ℓ (Section 4) O(ϵ−4 ln δ−1) n + O(ϵ−5 ln δ−1) 2

ΠRR
k,ℓ (Section 5.1) O(ϵ−2n) O(ϵ−1n) n

ΠRR′
k,ℓ (Section 5.2) O(ϵ−2n) O(ϵ−1n) 1

ϵ, δ denote differential privacy parameters and n denotes the number of parties (see Section 2 for the definition).
We show the asymptotic performance when ϵ tends to 0 and use the approximation eϵ ≈ 1 + ϵ + ϵ2/2.

such private operations could be easily implemented in practice and are assumed by a prior
work [13], constructing protocols without any private operations has been considered as
theoretically important in the literature. For that, we show that private operations in our
second and third protocols can be removed at the cost of doubling the number of cards and
requiring n more shuffles.

1.2 Overview of Our Techniques
We here provide an overview of our protocols. More detailed descriptions and security proofs
are given in the following sections.

Our protocols assume standard binary cards with ♡ and ♣. A framework to guarantee
differential privacy is roughly categorized into output perturbation and input perturbation:
The former first computes an exact result privately and then perturbs it with the addition of
noise; The latter first perturbs private inputs and then computes a target function on the
noisy values.

1.2.1 Our Protocol Based on the Hypergeometric Distribution
Our first protocol is based on output perturbation. The private computation of the sum
f(x) =

∑
i∈[n] xi of binary inputs is straightforward: If parties submit face-down cards

following the encoding rule ♡ = 1, ♣ = 0, then the number of ♡s in a resulting sequence of
cards is equal to f(x). A main technical challenge is thus how to implement the addition of
noise providing differential privacy using cards. One of the most common choices for the
noise distribution is the binomial distribution Bin(k, 1/2) with the number of trials k and
the success probability 1/2 [1]. A naïve card-based implementation of binomial distributions
would be that for each i = 1, 2, . . . , k, parties uniformly permutes a pair of two cards with ♡
and ♣, and adds one of them to the above sequence in a face-down manner. Although it
indeed generates binomial samples, this naïve implementation needs a large number of shuffle
operations proportional to k. A state-of-the-art analysis [1] shows that k should be chosen
as k = Ω(ϵ−2 ln δ−1) to guarantee (ϵ, δ)-differential privacy. Concretely, k should be larger
than 2000 for ϵ = 0.5 and δ = 10−6, and even larger than 20000 for ϵ = 0.1 and δ = 10−6.

To reduce the number of shuffles, we prepare a supplementary sequence of randomly
shuffled cards containing equal numbers of ♡s and ♣s, and choose k cards from it without
replacement. Intuitively, if the number of ♡s in the sequence is sufficiently larger than
k, then the number of ♡s in the k draws approximately follows the binomial distribution
Bin(k, 1/2). Since we sample cards without replacement, our method requires only a single
shuffle to prepare the supplementary sequence for generating noise. It is important to note
that the number of ♡s in the sequence is actually a finite value. A technical challenge
is thus that the noise does not exactly follow the binomial distribution but follows the
hypergeometric distribution, which precisely describes the distribution of the number of ♡s in
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k draws without replacement from a sequence of cards containing equal numbers of ♡s and
♣s1. We present for the first time the differential privacy guarantee of a mechanism adding
noise drawn from the hypergeometric distribution, and also present a utility guarantee in
terms of the mean squared error (MSE). We believe that differentially private mechanisms
based on the hypergeometric distribution may be of independent interest beyond applications
to card-based cryptography.

1.2.2 Our Protocols Based on Randomized Response

Our second and third protocols are based on input perturbation. Specifically, we focus on a
traditional mechanism called Randomized Response [10, 24], which guarantees differential
privacy by having parties flip their input bits with a probability p = 1/(eϵ + 1). A technical
challenge here is how to implement biased coins using cards.

Our first realization is a direct implementation of the above procedure: We prepare n

supplementary sequences of ℓ cards each consisting of randomly permuted k ♡s and ℓ− k ♣s
such that p ≈ k/ℓ and let the i-th party privately open a card in the i-th sequence and flip his
input if and only if he draws ♡. In Section 5.1, we carefully analyze the impact of the finite
approximation of the probability p on differential privacy, which is not a straightforward
problem as there are known attacks on naïve implementations of algorithms assuming real
arithmetic [14].

A possible drawback of the above implementation is that the number of shuffle operations
grows linearly in the number n of parties since n supplementary sequences should be
independently prepared. To reduce the number of shuffles, we propose an alternative
implementation: We prepare one supplementary sequence consisting of randomly permuted
k ♡s and ℓ− k ♣s such that p ≈ k/ℓ and let the i-th party privately open the i-th card in
the sequence and flip his input if and only if he draws ♡. This method allows us to prepare
the supplementary sequence with only a single shuffle. On the other hand, a more careful
analysis of privacy and utility is necessary since the states of cards drawn by parties are no
more independent. Note that this kind of challenge has not been encountered in the prior
computer-based implementations of Randomized Response or its variants [24, 10, 23] where
parties can locally generate independent randomness.

Finally, both of the above implementations require parties to apply private reveals to
cards. While such private operations could be easily implemented in practice, it has also been
considered as theoretically important to construct protocols without any private operations
(i.e., those following the traditional model of card-based protocols [16]). We also show that
private operations can be removed by emulating the local computations done by parties with
card-based secure computation protocols. In the above implementations, parties need to
privately compute the XOR of their inputs and the states of cards drawn from supplementary
sequences. We emulate these computations with an efficient card-based XOR protocol
without any private operations [17]. As a result, we obtain variant protocols removing private
operations at the cost of doubling the number of cards and requiring n more shuffles. Note
that our first protocol based on the hypergeometric distribution can be described following
the model of [16] as it assumes no private operation.

1 The hypergeometric distribution can be defined in a more general setting where a sequence contains
different numbers of ♡s and ♣s.
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2 Preliminaries

Notations. For n ∈ N, define [n] = {i ∈ Z : 1 ≤ i ≤ n}. If a random variable z follows a
probability distribution D, we write z ← D. Let ln x denote the base-e logarithm of x, where
e is the Napiers constant.

2.1 Card-based Protocols
Card. In this paper, we use binary cards whose front sides are either ♣ or ♡ and back
sides are both ? . We assume that two cards with the same symbol are indistinguishable.
We use the encoding ♣ = 0 and ♡ = 1 throughout the paper except in Section 7.

Shuffle. A shuffle is an operation that applies a random permutation to a sequence of
face-down cards, where the permutation is chosen by some probability distribution. It is
assumed that no party guesses which permutation is chosen from the shuffle.

A complete shuffle is a shuffle that applies a uniformly random permutation to a sequence
of face-down cards, which is denoted by [·]. For example, a complete shuffle for a sequence of
three cards results in one of the six sequences each with probability 1/6 as follows:[ 1

?
2

?
3

?
]
→

1

?
2

?
3

? or
1

?
3

?
2

? or
2

?
3

?
1

? or
2

?
1

?
3

? or
3

?
1

?
2

? or
3

?
2

?
1

? .

A pile-scramble shuffle [12] is a shuffle that divides a sequence of cards into multiple piles
of the same number of cards and applies a random permutation to a sequence of piles, which
is denoted by [·| · · · |·]. For example, a pile-scramble shuffle for a sequence of three piles each
having two cards results in one of the six sequences each with probability 1/6 as follows:

[ 1

?
2

?
∣∣∣ 3

?
4

?
∣∣∣ 5

?
6

?
]
→



1

?
2

?
3

?
4

?
5

?
6

?
1

?
2

?
5

?
6

?
3

?
4

?
3

?
4

?
5

?
6

?
1

?
2

?
3

?
4

?
1

?
2

?
5

?
6

?
5

?
6

?
1

?
2

?
3

?
4

?
5

?
6

?
3

?
4

?
1

?
2

?

.

Protocol. Suppose that there are n parties each having an input xi ∈ D, where the input
domain D is a finite set. A card-based protocol consists of three phases: the setup phase,
the computation phase, and the output phase. In the setup phase, supplementary cards are
prepared. Using shuffles, they are drawn from a probability distribution independent of
parties’ inputs. Here, the front sides of them are hidden from all parties. In the computation
phase, parties repeat one of the following operations:

Input: Each party submits a face-down card according to his/her input. They are called
main cards. If necessary, it is allowed to perform private reveals for a subset of the
supplementary cards (e.g., [13, 20, 25]), where a designated party privately reads the
symbol of a face-down card.
Shuffle: A random permutation is applied to the current sequence of cards consisting of
the main cards and the supplementary cards. It is assumed that no party guesses which
permutation is chosen from the shuffle.
Insertion: Some of the supplementary cards are inserted to the main cards.
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In the output phase, parties open all cards in the current sequence and determine the output
value. Note that if parties do not perform private reveals, then a protocol can be described
in the traditional model of card-based protocols [16].

We evaluate the space complexity of a card-based protocol Π by the total number of
cards used to execute Π, which we denote by #Card(Π). We also evaluate the computational
complexity of Π by the total number of shuffle operations since shuffling is the most costly
operation in practice [15]. We denote it by #Shuffle(Π).

2.2 Differential Privacy
Following the terminology in [3], we say that two n-dimensional vectors x = (xi)i∈[n],
x′ = (x′

i)i∈[n] are T -neighboring for a subset T ⊆ [n] if xi = x′
i for any i ∈ T and xi ̸= x′

i for
at most one i /∈ T . If x and x′ are ∅-neighboring, we simply say that they are neighboring.
For a finite set D, we define the sensitivity of a function f : Dn → Z as

∆ = max
x,x′∈Dn:

neighboring

|f(x)− f(x′)|.

We say that two probability distributions D1,D2 over a set U are (ϵ, δ)-DP close if for any
subset S ⊆ U , it holds that Pr[y ← D1 : y ∈ S] ≤ eϵ · Pr[y ← D2 : y ∈ S] + δ.

3 Differentially Private Card-based Protocols

We start with giving the definition of differential privacy of card-based protocols. Our
definition is inspired by the framework of [3] defining differential privacy of (non-card-based)
distributed protocols. In this paper, we consider an adversary corrupting a set T of at
most n − 1 parties. We assume that the adversary is semi-honest, that is, she tries to
learn information from her view during the protocol but does not deviate from the protocol
specifications. Let ViewΠ,T (x) denote the view of the adversary during the execution of
a card-based protocol Π on input x = (x1, . . . , xn), which consists of the inputs of the
corrupted parties and the information (e.g., the states of cards) that they can learn during
the execution of Π.

▶ Definition 1. Let ϵ, δ be non-negative numbers. We say that a card-based protocol Π is
(ϵ, δ)-differentially private if for any set T of at most n− 1 parties and any pair (x, x′) of
T -neighboring vectors, ViewΠ,T (x) and ViewΠ,T (x′) are (ϵ, δ)-DP close.

We evaluate the utility of a protocol Π with respect to a function f : Dn → Z by its
mean squared error (MSE) defined as

MSEf (Π) = max
x∈Dn

E
[
|Π(x)− f(x)|2

]
,

where Π(x) is a random variable corresponding to the output of Π on input x.
In this paper, we focus on the setting in which every party has a bit xi ∈ {0, 1} and they

compute the binary sum f(x1, . . . , xn) = x1 + · · · + xn. Note that the sensitivity of f is
∆ = 1.

4 Our Protocol Based on the Hypergeometric Distribution

The hypergeometric distribution is a probability distribution of the number Z of ♡s in k

cards chosen uniformly at random from a sequence consisting of m− ℓ ♣s and ℓ ♡s. Formally,
we define the distribution as follows:
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▶ Definition 2. Let k, ℓ, m be positive integers such that k ≤ ℓ and k + ℓ ≤ m. A random
variable Z follows the hypergeometric distribution HG(m, ℓ, k) if its probability mass function
is given by

Pr[Z = z] = pHG(z) =
(

ℓ
z

)(
m−ℓ
k−z

)(
m
k

) , z = 0, 1, . . . , k.

First, we show that hypergeometric distributions are able to provide differential privacy.

▶ Proposition 3. Let k, ℓ be positive integers such that k < ℓ, and α, β be real numbers such
that

α ≥ ℓ

ℓ− k
and β > 1.

Let f : Dn → Z be a function with sensitivity ∆. Let ϵ and δ be real numbers such that

ϵ ≥ ∆ ln (αβ) and δ ≥ exp
(
−k

2

(
β − 1
β + 1 −

2∆
k

)2
)

. (1)

Define a randomized algorithm M as

M(x) = f(x) + z, z ← HG(2ℓ, ℓ, k).

Then, for any pair (x, x′) of neighboring vectors, M(x) and M(x′) are (ϵ, δ)-DP close.

Proof. It is sufficient to show that

Pr[M(x) ∈ S] ≤ eϵ · Pr[M(x′) ∈ S] + δ

for any subset S ⊆ Z. Let y = f(x), y′ = f(x′). We assume that y ≤ y′. The case of
y ≥ y′ can be dealt with similarly. Since z ← HG(2ℓ, ℓ, k) takes values between 0 and k,
we may assume that S ⊆ {s ∈ Z : y ≤ s ≤ y′ + k}. Letting z0 = k/(β + 1), we decompose
S into three subsets: S1 = {s ∈ S : s ≤ y′ + z0}, S2 = {s ∈ S : y′ + z0 < s ≤ y + k}, and
S3 = {s ∈ S : y + k < s ≤ y′ + k}. We will show that

Pr[M(x) ∈ S1] ≤ δ and Pr[M(x) = s] ≤ eϵ · Pr[M(x′) = s] (∀s ∈ S2).

If this is shown, since Pr[M(x) ∈ S3] = Pr[z ← HG(2ℓ, ℓ, k) : z > k] = 0, we obtain that

Pr[M(x) ∈ S] ≤ Pr[M(x) ∈ S1] +
∑
s∈S2

Pr[M(x) = s]

≤ δ +
∑
s∈S2

eϵ · Pr[M(x′) = s]

≤ eϵ · Pr[M(x′) ∈ S] + δ.

First, since y′ ≤ y + ∆ and the mean of HG(2ℓ, ℓ, k) is kℓ/(2ℓ) = k/2, the Chernoff
inequality [5] implies that

Pr[M(x) ∈ S1] ≤
∑

0≤z≤∆+z0

pHG(z) ≤ exp(−2t2k),

where

t = 1
2 −

∆ + z0

k
= 1

2

(
β − 1
β + 1 −

2∆
k

)
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We thus obtain that

Pr[M(x) ∈ S1] ≤ exp
(
−k

2

(
β − 1
β + 1 −

2∆
k

)2
)
≤ δ.

Next, let s ∈ S2 and set z = s− y, z′ = s− y′. We then obtain that max{z −∆, z0} ≤
z′ ≤ z ≤ k, and

Pr[M(x) = s]
Pr[M(x′) = s] = pHG(z)

pHG(z′)

=
(

ℓ
z

)(
ℓ

k−z

)(
ℓ
z′

)(
ℓ

k−z′

)
=

∏
z′<i≤z

k + 1− i

i

∏
ℓ−k+z′<i≤ℓ−k+z

2ℓ− k + 1− i

i

≤
(

k + 1
z′ + 1 − 1

)z−z′ (
2ℓ− k + 1

ℓ− k + z′ + 1 − 1
)z−z′

≤
(

k

z0
− 1
)z−z′

αz−z′
(∵ z′ ≥ z0)

= (αβ)z−z′
.

Here, we use the fact that

ℓ ≥ α

α− 1k ≥ α

α− 1(k − 1)− α + 1
α− 1z0

and hence (ℓ− z0)/(ℓ− k + z0 + 1) ≤ α. Since αβ > 1, we obtain that

Pr[M(x) = s]
Pr[M(x′) = s] ≤ (αβ)∆ ≤ eϵ ◀

We show a protocol ΠHG
k,ℓ based on the hypergeometric distribution in Figure 1. The

following theorem shows the differential privacy, MSE and complexities of ΠHG
k,ℓ .

▶ Theorem 4. Let ϵ, δ be positive real numbers such that δ < 1/
√

e. Let k, ℓ be integers such
that

k ≥ 4
(

eϵ + 1 + ϵ

eϵ − 1− ϵ

)2
ln 1

δ
+ 2(eϵ + 1 + ϵ)

eϵ − 1− ϵ
and ℓ ≥

(
1 + 1

ϵ

)
k. (2)

Then, the protocol ΠHG
k,ℓ satisfies (ϵ, δ)-differential privacy. The MSE of ΠHG

k,ℓ with respect to
f : {0, 1}n ∋ (xi)i∈[n] 7→

∑
i∈[n] xi ∈ Z is

MSEf (ΠHG
k,ℓ ) = k(2ℓ− k)

4(2ℓ− 1) . (3)

The complexities of ΠHG
k,ℓ are

#Card(ΠHG
k,ℓ ) = n + 2ℓ = n + O

(
e2ϵ

ϵ(eϵ − 1− ϵ)2 ln 1
δ

)
and #Shuffle(ΠHG

k,ℓ ) = 2.
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Setup: Arrange a sequence of 2ℓ face-down cards consisting of ℓ ♡ s and ℓ ♣ s:

♣ ♣ · · · ♣︸ ︷︷ ︸
ℓ cards

♡ ♡ · · · ♡︸ ︷︷ ︸
ℓ cards

→ ? ? · · · ?︸ ︷︷ ︸
2ℓ cards

.

Apply a complete shuffle to the sequence:[
? ? · · · ?

]
→ ? ? · · · ? .

We set them as supplementary cards.
Input: Following the encoding rule ♣ = 0 and ♡ = 1, the i-th party submits a face-down

card corresponding to xi. Then we have the following sequence of cards:

?
x1

?
x2

· · · ?
xn

.

We set them as main cards.
Insertion: Append any k out of the 2ℓ supplementary cards (e.g., the leftmost k cards) to

the main cards:

? ? · · · ?︸ ︷︷ ︸
main cards

? ? · · · ?︸ ︷︷ ︸
k cards

.

Shuffle: Apply a complete shuffle to the sequence of the n + k cards:[
? ? · · · ?

]
→ ? ? · · · ? .

Output: Open all the n + k cards:

? ? ? ? ? · · · ? → ♡ ♡ ♣ ♡ ♣ · · · ♡ .

Output y − k/2, where y is the number of ♡ in the opened cards.

Figure 1 A protocol ΠHG
k,ℓ .

Proof. First, we show the differential privacy of the protocol ΠHG
k,ℓ . Let T be a set of

corrupted parties such that |T | ≤ n − 1, and let x = (xi)i∈[n], x′ = (x′
i)i∈[n] ∈ {0, 1}n be

T -neighboring inputs. Define Y (resp. Y ′) be random variables corresponding to the number
y computed during the execution of ΠHG

k,ℓ on input x (resp. x′). Note that xi = x′
i for all

i ∈ T and the cards opened during the protocol are a uniformly random permutation of y

♡s and n + k − y ♣s. Thus, the distributions of ViewΠHG
k,ℓ

,T (x) and ViewΠHG
k,ℓ

,T (x′) can be
simulated from Y and Y ′, respectively. From the post-processing property of differential
privacy, it is sufficient to show that Y and Y ′ are (ϵ, δ)-DP close.

If parties’ inputs are x, then the number of ♡s included in the main cards is f(x) just
after all parties submit their cards. Furthermore, the number of ♡s included in k cards
drawn from supplementary cards follows the distribution HG(2ℓ, ℓ, k). Thus, the number Y

of ♡s included in the main cards at the end of the protocol follows the same distribution as
M(x) = f(x) + z, z ← HG(2ℓ, ℓ, k). Similarly, Y ′ follows the same distribution as M(x′).
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Define α and β as α = ℓ/(ℓ− k) and β = eϵ/(1 + ϵ), respectively. Since ϵ > 0, we have
that β > 1. Furthermore, since ℓ ≥ (1 + ϵ−1)k, it holds that α ≤ 1 + ϵ. We then obtain that

αβ ≤ eϵ. (4)

We will show that

k

2

(
eϵ − 1− ϵ

eϵ + 1 + ϵ
− 2

k

)2
≥ ln δ−1. (5)

If this is shown, the condition (4) and the assumption that the sensitivity of f is ∆ = 1 imply
the condition (1), and hence it follows from Proposition 3 that Y and Y ′ are (ϵ, δ)-DP close.
Let

a = eϵ − 1− ϵ

eϵ + 1 + ϵ
, b =

√
2 ln δ−1, and t =

√
k.

Then, the condition (5) is equivalent to (at− 2/t)2 ≥ b2, i.e., at2 − bt− 2 ≥ 0. Furthermore,
it is equivalent to

k = t2 ≥ b2

2a2

(
1 +

√
1 + 8a

b2

)
+ 2

a
.

Since δ ≤ 1/
√

e, we have that a ≤ 1 and b ≥ 1. Thus, it holds that

b2

2a2

(
1 +

√
1 + 8a

b2

)
+ 2

a
≤ 2b2

a2 + 2
a

= 4
(

eϵ + 1 + ϵ

eϵ − 1− ϵ

)2
ln 1

δ
+ 2(eϵ + 1 + ϵ)

eϵ − 1− ϵ
.

The condition (5) then follows from the condition (2).
Finally, we analyze the utility of ΠHG

k,ℓ . If parties’ inputs are x, the output of the protocol
is given as y−k/2 = f(x)+z−k/2, z ← HG(2ℓ, ℓ, k). Since the mean of the hypergeometric
distribution HG(2ℓ, ℓ, k) is k/2, MSEf (ΠHG

k,ℓ ) is equal to the variance of HG(2ℓ, ℓ, k). We
therefore obtain (3). ◀

5 Our Protocols Based on Randomized Response

Randomized Response [10, 24] guarantees differential privacy by having parties flip their
input bits with a certain probability p. Specifically, for a privacy parameter ϵ > 0, let p be
such that

1
eϵ + 1 ≤ p <

1
2 . (6)

We define an algorithm Rp as follows: On input x ∈ {0, 1}, Rp chooses r ∈ {0, 1} according
to the Bernoulli distribution with parameter p, i.e.,

Pr[r = 1] = p and Pr[r = 0] = 1− p,

and then outputs y = x ⊕ r. The condition (6) implies that Pr[Rp(x) = b] ≤ eϵ ·
Pr[Rp(1− x) = b] for any x, b ∈ {0, 1}. Hence Rp(0) and Rp(1) are (ϵ, 0)-DP close.
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Setup: Arrange n sequences of ℓ face-down cards each consisting of k ♡ s and ℓ− k ♣ s:

♡ ♡ · · · ♡︸ ︷︷ ︸
k cards

♣ ♣ · · · ♣︸ ︷︷ ︸
ℓ− k cards

→ ? ? · · · ?︸ ︷︷ ︸
ℓ cards

.

Apply a complete shuffle to each of the n sequences:[
? ? · · · ?

]
→ ? ? · · · ? .

We set the whole sequence as supplementary cards, and call the i-th sub-sequence as
the i-th sequence of the supplementary cards.

Input: The i-th party performs a private reveal for any card (e.g., the leftmost one) in
the i-th sequence of the supplementary cards. Let ri ∈ {♣,♡} be the opened symbol.
Following the encoding rule ♣ = 0 and ♡ = 1, the i-th party submits a face-down card
corresponding to xi ⊕ ri. Then we have the following sequence of cards:

?
x1⊕r1

?
x2⊕r2

· · · ?
xn⊕rn

.

We set them as main cards.
Output: Open all the n cards:

? ? ? ? ? · · · ? → ♡ ♣ ♣ ♡ ♡ · · · ♣ .

Output z = y−nk/ℓ
1−2k/ℓ , where y is the number of ♡ in the opened cards.

Figure 2 A protocol ΠRR
k,ℓ .

5.1 A Direct Implementation
Our first realization, denoted by ΠRR

k,ℓ , is a direct implementation of the above procedure:
We prepare n sequences each consisting of randomly permuted k ♡s and ℓ− k ♣s such that
p ≈ k/ℓ and let the i-th party privately open a card in the i-th sequence and flip his input if
and only if he draws ♡. The formal description of ΠRR

k,ℓ is given in Figure 2.
The following theorem shows the differential privacy, MSE and complexities of ΠRR

k,ℓ .

▶ Theorem 5. Let ϵ be a positive real number. Let k, ℓ be integers such that

ℓ ≥ 3(eϵ + 1)
eϵ − 1 and 1

eϵ + 1 ≤ p := k

ℓ
≤ eϵ + 2

3(eϵ + 1) . (7)

Then, the protocol ΠRR
k,ℓ satisfies (ϵ, 0)-differential privacy. The MSE of ΠRR

k,ℓ with respect to
f : {0, 1}n ∋ (xi)i∈[n] 7→

∑
i∈[n] xi ∈ Z satisfies

MSEf (ΠRR′

k,ℓ ) = np(1− p)
(1− 2p)2 ≤

n(eϵ + 2)(2eϵ + 1)
(eϵ − 1)2 .

The complexities of ΠRR
k,ℓ are

#Card(ΠRR
k,ℓ ) = n(ℓ + 1) = O

(
neϵ

eϵ − 1

)
and #Shuffle(ΠRR

k,ℓ ) = n.
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Proof. To begin with, it holds that
eϵ + 2

3(eϵ + 1) −
1

eϵ + 1 = eϵ − 1
3(eϵ + 1) ≥

1
ℓ

.

Hence, there indeed exists integers k, ℓ satisfying the condition (7).
To see the differential privacy of the protocol ΠRR

k,ℓ , let Yi(x) denote a random variable
corresponding to the state of the card that the i-th party submits to main cards when
parties’ inputs are x. Let T be a set of corrupted parties such that |T | ≤ n − 1, and
let x = (xi)i∈[n], x′ = (x′

i)i∈[n] ∈ {0, 1}n be T -neighboring inputs. For any i ∈ [n], the
distribution of the state ri of the card that the i-th party draws from supplementary
cards is given as Pr[ri = ♣] = 1− p and Pr[ri = ♡] = p. Furthermore, since the 1-to-n-th
sub-sequences are prepared independently, r1, . . . , rn are independent. Thus, if we encode
♡ = 1,♣ = 0, then Yi(x) = Rp(xi). Similarly, we have that Yi(x′) = Rp(x′

i). We also have
that p < 1/2 since

1
2 −

eϵ + 2
3(eϵ + 1) = eϵ − 1

6(eϵ + 1) > 0.

The condition (6) is then satisfied and the differential privacy of the algorithm Rp implies that
(Yi(x))i/∈T and (Yi(x′))i/∈T are (ϵ, 0)-DP close. The adversarys view during the execution
of the protocol on input x (resp. x′) can be simulated from ((xi)i∈T , (Yi(x))i/∈T ) (resp.
((xi)i∈T , (Yi(x))i/∈T )). Since xi = x′

i (∀i ∈ T ), the post-processing property implies that ΠRR
k,ℓ

is (ϵ, 0)-differentially private.
To analyze the utility of ΠRR

k,ℓ , let x ∈ {0, 1}n. For ease of notations, we write Yi =
Yi(x), s =

∑
i∈[n] xi. Note that Yi = 1 if and only if the i-th party submits ♡ to main cards,

and Yi = 0 if and only if he submits ♣. Furthermore,
∑

i∈[n] Yi is equal to the total number
y of ♡s included in main cards.

Since x2 = x if x ∈ {0, 1}, the expectation and variance of Yi are given by

E[Yi] = 1 · Pr[Yi = 1] = (1− 2p)xi + p and
Var[Yi] = E

[
Y 2

i

]
− (E[Yi])2 = p(1− p) + (1− 2p)2xi − (1− 2p)2x2

i = p(1− p).

Since E
[
(
∑

i∈[n] Yi − np)/(1− 2p)
]

= s, the expectation of an output z of ΠRR
k,ℓ is s = f(x).

Hence, MSEΠRR′
k,ℓ

(f) is given by the variance of z. Since the 1-to-n-th sub-sequences of
supplementary cards are prepared independently, Y1, . . . , Yn are independent and

Var[z] = 1
(1− 2p)2 Var

∑
i∈[n]

Yi

 = 1
(1− 2p)2

∑
i∈[n]

Var [Yi] = np(1− p)
(1− 2p)2 .

On the other hand, g(t) := t(1− t)/(1− 2t)2 is monotonically increasing with respect to t.
We therefore conclude that Var[z] ≤ n(eϵ + 2)(2eϵ + 1)/(eϵ − 1)2. ◀

5.2 Reducing the Number of Shuffles
A possible drawback of our first realization is that the number of shuffles grows linearly in
the number of parties. In this section, we propose an alternative implementation denoted
by ΠRR′

k,ℓ : We prepare one supplementary sequence consisting of randomly permuted k ♡s
and ℓ − k ♣s such that p ≈ k/ℓ and let the i-th party privately open the i-th card in the
sequence and flip his input if and only if he draws ♡. The formal description of ΠRR′

k,ℓ is given
in Figure 3.

The following theorem shows the differential privacy, MSE and complexities of ΠRR′

k,ℓ .
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Setup: Arrange a sequence of ℓ face-down cards consisting of k ♡ s and ℓ− k ♣ s:

♡ ♡ · · · ♡︸ ︷︷ ︸
k cards

♣ ♣ · · · ♣︸ ︷︷ ︸
ℓ− k cards

→ ? ? · · · ?︸ ︷︷ ︸
ℓ cards

.

Apply a complete shuffle to the sequence:[
? ? · · · ?

]
→ ? ? · · · ? .

We set them as supplementary cards.
Input: The i-th party performs a private reveal for the i-th card in the supplementary

cards. Let ri ∈ {♣,♡} be the opened symbol. Following the encoding rule ♣ = 0 and
♡ = 1, the i-th party submits a face-down card corresponding to xi ⊕ ri. Then we have
the following sequence of cards:

?
x1⊕r1

?
x2⊕r2

· · · ?
xn⊕rn

.

We set them as main cards.
Output: Open all the n cards:

? ? ? ? ? · · · ? → ♡ ♣ ♣ ♡ ♡ · · · ♣ .

Output z = y−nk/ℓ
1−2k/ℓ , where y is the number of ♡ in the opened cards.

Figure 3 A protocol ΠRR′
k,ℓ .

▶ Theorem 6. Let ϵ be a positive real number and assume that n ≥ 2. Let k, ℓ be integers
such that

α := n

ℓ
≤ eϵ − 1

5eϵ
and 1 + αeϵ

eϵ + 1 ≤ p := k

ℓ
≤ 1 + 2αeϵ

eϵ + 1 . (8)

Then, the protocol ΠRR′

k,ℓ satisfies (ϵ, 0)-differential privacy. The MSE of ΠRR′

k,ℓ with respect to
f : {0, 1}n ∋ (xi)i∈[n] 7→

∑
i∈[n] xi ∈ Z satisfies

MSEf (ΠRR
k,ℓ ) ≤ 25n(1 + 2αeϵ)(1− 2α)(1 + 4α)eϵ

(eϵ − 1)2 .

The complexities of ΠRR′

k,ℓ are

#Card(ΠRR′

k,ℓ ) = n + ℓ = O

(
neϵ

eϵ − 1

)
and #Shuffle(ΠRR′

k,ℓ ) = 1.

Proof. To begin with, it holds that

1 + 2αeϵ

eϵ + 1 − 1 + αeϵ

eϵ + 1 ≥
1
ℓ

. (9)

Indeed, since α = n/ℓ, the inequality (9) is equivalent to n ≥ (eϵ + 1)/eϵ. Since n ≥ 2 and
2eϵ > eϵ + 1, (9) actually holds. Thus, there exists an integer k satisfying the condition (8).

To see the differential privacy of the protocol ΠRR′

k,ℓ , let T be a set of corrupted parties
such that |T | ≤ n− 1, and let x = (xi)i∈[n], x′ = (x′

i)i∈[n] ∈ {0, 1}n be T -neighboring inputs.

FUN 2024



12:14 Card-Based Cryptography Meets Differential Privacy

Let H = [n] \ T . Then xi ̸= x′
i for some i ∈ H. We assume that xi = 0, x′

i = 1. The case
of xi = 1, x′

i = 0 can be dealt with similarly. Let Hi = H \ {i}. For j ∈ [n], define Rj as a
random variable corresponding to the state rj ∈ {♣,♡} of the card that the j-th party draws
from supplementary cards. For j ∈ [n], define Yj(x) as a random variable corresponding to
the state of the card that the j-th party submits when parties’ inputs are x. Similarly, we
define Yj(x′) as a corresponding random variable when parties’ inputs are x′. For a subset
S ⊆ [n], we denote RS = (Rj)j∈S , YS(x) = (Yj(x))j∈S , YS(x′) = (Yj(x′))j∈S .

Then, the joint view of corrupted parties in T is given as ViewΠRR
k,ℓ

,T (x) = (YH(x), RT )
and ViewΠRR

k,ℓ
,T (x′) = (YH(x′), RT ). For any outcome (yH , rT ) of (YH(x), RT ), it holds that

Pr
[
ViewΠRR

k,ℓ
,T (x) = (yH , rT )

]
= Pr[RT = rT ] Pr[YH(x) = yH |RT = rT ]

= Pr[RT = rT ] ·
∑
rHi

Pr[RHi = rHi ] Pr[YH(x) = yH |RT = rT , RHi = rHi ],

where rHi
ranges over the set of all outcomes of RHi

. Since YHi
(x) is uniquely determined

by RHi , we have that

Pr
[
ViewΠRR

k,ℓ
,T (x) = (yH , rT )

]
= Pr[RT = rT ] ·

∑
rHi

Pr[RHi
= rHi

] Pr
[
Yi(x) = yi

∣∣R[n]\{i} = r[n]\{i}
]
.

Let

P (yi) = Pr
[
Yi(x) = yi

∣∣R[n]\{i} = r[n]\{i}
]

and
P ′(yi) = Pr

[
Yi(x′) = yi

∣∣R[n]\{i} = r[n]\{i}
]
.

Suppose that r[n]\{i} is composed of n− 1− j ♣s and j ♡s. Since we assume that xi = 0 = ♣
and x′

i = 1 = ♡, P (♣) and P ′(♡) are equal to the probability of the event that the i-th
party draws ri = ♣ from supplementary cards, and hence we obtain that

P (♣) = P ′(♡) = ℓ− n + 1− k + j

ℓ− n + 1 .

In addition, P (♡) and P ′(♣) are equal to the probability of the event that the i-th party
draws ri = ♡ from supplementary cards, and hence we have that

P (♡) = P ′(♣) = k − j

ℓ− n + 1 .

Therefore, it holds that

P (yi)
P ′(yi)

≤ max
{

k − j

ℓ− n + 1− k + j
,

ℓ− n + 1− k + j

k − j

}
.

Since 0 ≤ j ≤ n− 1, we obtain that

P (yi)
P ′(yi)

≤ max
{

k

ℓ− n + 1− k
,

ℓ− k

k − n + 1

}
= max

{
p

(1− p)− (n− 1)/ℓ
,

1− p

p− (n− 1)/ℓ

}
≤ max

{
p

(1− p)− α
,

1− p

p− α

}
.
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On the other hand, we have that

max
{

p

(1− p)− α
,

1− p

p− α

}
≤ eϵ ⇐⇒ αeϵ + 1

eϵ + 1 ≤ p ≤ (1− α)eϵ

eϵ + 1

and

(1− α)eϵ

eϵ + 1 ≥ 1 + 2αeϵ

eϵ + 1 ⇐⇒ n

ℓ
≤ eϵ − 1

3eϵ
.

Thus, it follows from the condition (8) that P (yi) ≤ eϵ · P ′(yi). We therefore conclude that

Pr
[
ViewΠRR

k,ℓ
,T (x) = (yH , rT )

]
= Pr[RT = rT ]

∑
rHi

Pr[RHi
= rHi

]P (yi)

≤ Pr[RT = rT ]
∑
rHi

Pr[RHi
= rHi

]eϵP ′(yi)

= eϵ Pr[RT = rT ] ·
∑
rHi

Pr[RHi
= rHi

] Pr
[
Yi(x′) = yi

∣∣R[n]\{i} = r[n]\{i}
]

= eϵ Pr
[
ViewΠRR

k,ℓ
,T (x′) = (yH , rT )

]
.

To analyze the utility of the protocol, let x ∈ {0, 1}n. For ease of notations, we write
Yi = Yi(x), s =

∑
i∈[n] xi. Note that Yi = 1 if and only if the i-th party submits ♡ to main

cards, and Yi = 0 if and only if the i-th party submits ♣. Furthermore,
∑

i∈[n] Yi is equal to
the total number y of ♡s included in main cards.

The expectations of Yi and Y 2
i are

E[Yi] = 1 · Pr[Yi = 1] = (1− 2p)xi + p and E
[
Y 2

i

]
= 12 · Pr[Yi = 1] = (1− 2p)xi + p.

In particular, the expectation of an output z of ΠRR′

k,ℓ is s = f(x) and hence MSEΠRR
k,ℓ

(f) is
equal to the variance of z.

Since x2 = x if x ∈ {0, 1}, the variance of Yi is

Var[Yi] = E
[
Y 2

i

]
− (E[Yi])2 = p(1− p) + (1− 2p)2xi − (1− 2p)2x2

i = p(1− p).

For any i ̸= j, if xi = xj = 0, then

Pr[Yi = 1, Yj = 1] =
(

ℓ−2
k−2
)(

ℓ
k

) = k(k − 1)
ℓ(ℓ− 1) =: a1.

If xi = 1, xj = 0 or xi = 0, xj = 1, then

Pr[Yi = 1, Yj = 1] =
(

ℓ−2
k−1
)(

ℓ
k

) = k(ℓ− k)
ℓ(ℓ− 1) =: a2.

If xi = xj = 1, then

Pr[Yi = 1, Yj = 1] =
(

ℓ−2
k

)(
ℓ
k

) = (ℓ− k)(ℓ− k − 1)
ℓ(ℓ− 1) =: a3.

We have that

E[YiYj ] = Pr[Yi = 1, Yj = 1] = (1 − xi)(1 − xj)a1 + ((1 − xi)xj + xi(1 − xj))a2 + xixja3.
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Thus, the covariance of Yi and Yj is

Cov[Yi, Yj ] = E[YiYj ] − E[Yi]E[Yj ]

= (a1 − p2) + (−a1 + a2 − (1 − 2p)p)(xi + xj) + (a1 − 2a2 + a3 − (1 − 2p)2)xixj

= − k(ℓ − k)
ℓ2(ℓ − 1) + 2k(ℓ − k)

ℓ2(ℓ − 1) (xi + xj) − 4k(ℓ − k)
ℓ2(ℓ − 1) xixj

We thus obtain that

Var

∑
i∈[n]

Yi

 =
∑
i∈[n]

Var[Yi] +
∑
i̸=j

Cov[Yi, Yj ]

= p(1 − p)n − k(ℓ − k)
ℓ2(ℓ − 1)n(n − 1) + 4k(ℓ − k)

ℓ2(ℓ − 1) (n − 1)s − 4k(ℓ − k)
ℓ2(ℓ − 1)

∑
i ̸=j

xixj

≤ p(1 − p)n + 4p(1 − p)
ℓ

n2

≤ (1 + 2αeϵ)(eϵ − 2αeϵ)
(eϵ + 1)2 (1 + 4α)n.

On the other hand, the condition (8) implies that

1− 2p ≥ 1− 2(1 + 2αeϵ)
eϵ + 1 = eϵ − 1− 4αeϵ

eϵ + 1 ≥ eϵ − 1
5(eϵ + 1) > 0.

Thus, the variance of z is upper bounded by

Var
[∑

i∈[n] Yi − np

1− 2p

]
= 1

(1− 2p)2 Var

∑
i∈[n]

Yi

 ≤ 25n(1 + 2αeϵ)(1− 2α)(1 + 4α)eϵ

(eϵ − 1)2 . ◀

6 Performance Evaluation

We evaluate our proposed protocols based on the following performance metrics:
Number of cards: The total number of main cards and supplementary cards.
Error: The mean squared error with respect to the binary sum f(x1, . . . , xn) =

∑
i∈[n] xi.

Number of shuffles: The total number of shuffles in the protocol, including the preparation
of supplementary cards.

Table 1 in Section 1.1 shows the performance of our protocols in the asymptotic setting
where ϵ → 0. Here, we use the approximation eϵ ≈ 1 + ϵ + ϵ2/2. We set k and ℓ to the
minimum integers that satisfy the conditions in Theorems 4, 5, and 6.

Figure 4 shows the performance of our protocols for concrete values of n, ϵ, and δ. We
set n ∈ {100, 1000}, ϵ ∈ {0.1, 0.2, . . . , 1, 1.2, . . . , 5.0}, and δ = 10−6, and plot the number of
cards and the MSE.

Below, we highlight the advantage of each of the protocols ΠHG
k,ℓ , ΠRR

k,ℓ , and ΠRR′

k,ℓ .

ΠHG
k,ℓ : The error and the number of shuffles do not depend on n. The additive overhead in
the number of cards, i.e., O(ϵ−5 ln δ−1), is independent of n. In contrast, ΠRR

k,ℓ and ΠRR′

k,ℓ

suffer from a larger number of cards and a larger error when n becomes larger, as shown
in Figure 4.

ΠRR
k,ℓ : When ϵ is close to 0, ΠRR

k,ℓ achieves a smaller number of cards and a smaller error
than ΠHG

k,ℓ and ΠRR′

k,ℓ , as shown in Figure 4. In addition, ΠRR
k,ℓ achieves pure differential

privacy (i.e., δ = 0).
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Figure 4 The number of cards and MSE of our protocols.

ΠRR′

k,ℓ : The number of shuffles is only one. ΠRR′

k,ℓ achieves asymptotically the same upper
bound on the number of cards and the error as ΠRR

k,ℓ . It also achieves pure differential
privacy (i.e., δ = 0).

7 Removing Private Operations

In the protocols ΠRR
k,ℓ and ΠRR′

k,ℓ , parties need to perform private reveals and privately decide
which cards to submit based on the results. While such private operations could be easily
realized in practice, it has also been considered as theoretically important to construct
protocols without any private operations in the literature (i.e., those following the traditional
model of card-based protocols [16]). In this section, we show a variant Π̃RR

k,ℓ (resp. Π̃RR′

k,ℓ ) of
ΠRR

k,ℓ (resp. ΠRR′

k,ℓ ) where parties do not perform private reveals at the cost of doubling the
number of cards and requiring n more shuffles. Note that the protocol ΠHG

k,ℓ can be described
following the model of [16] as it assumes no private operation.

Our solution is to emulate private XOR operations done by each party with an existing
XOR protocol without private reveals [17]. To this end, we first modify a way of encoding
bits: We encode 0 into a pair of cards ♣ ♡ and 1 into ♡ ♣ , instead of encoding 0 into ♣
and 1 into ♡ . To preserve the structure of encoding, we consider a pair of cards encoding a
bit as a minimum unit. In particular, we replace every complete shuffle with a pile-scramble
shuffle. That is, whenever we shuffle m cards in ΠRR

k,ℓ and ΠRR′

k,ℓ , we shuffle m pairs of cards
in such a way that the pairs are uniformly permuted but the order of cards in each pair is
preserved.
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Next, the XOR protocol in [17] allows parties to perform the following conversion of
cards:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

→ ? ?︸ ︷︷ ︸
a⊕ b

.

In the above protocol, parties do not perform any private operation, and the trace of states
of cards is independent of inputs a, b or an output a ⊕ b.2 We modify ΠRR

k,ℓ and ΠRR′

k,ℓ as
follows: Whenever a party randomizes his input bit, he first submits a pair of face-down
cards encoding xi, picks a pair of face-down cards encoding a random bit ri, and then
computes their XOR with the protocol in [17]. Since the XOR protocol in [17] requires no
additional card and only one pile-scramble shuffle, the cost for executing n instances of the
XOR protocol is n pile-scramble shuffles.

Finally, observe that the final states of odd-numbered cards in main cards in Π̃RR
k,ℓ and

Π̃RR′

k,ℓ is equal to the final states of main cards in the original protocols ΠRR
k,ℓ and ΠRR′

k,ℓ ,
respectively. We thus calculate the number y of ♡s in the odd-numbered cards and output
z = y−nk/ℓ

1−2k/ℓ .
The security of the XOR protocol ensures that the trace of states visible to parties is

simulated from that of ΠRR
k,ℓ or ΠRR′

k,ℓ . Hence, the resultant protocols Π̃RR
k,ℓ and Π̃RR′

k,ℓ achieve
the same level of differential privacy and MSE as the original protocols. On the other hand,
due to the structure of encoding and the additional shuffles to execute the XOR protocol,
the complexities of Π̃RR

k,ℓ and Π̃RR′

k,ℓ are given as follows:

#Card(Π̃RR
k,ℓ ) = 2n(ℓ + 1) = O

(
neϵ

eϵ − 1

)
, #Shuffle(Π̃RR

k,ℓ ) = 2n,

#Card(Π̃RR′

k,ℓ ) = 2(n + ℓ) = O

(
neϵ

eϵ − 1

)
, and #Shuffle(Π̃RR′

k,ℓ ) = n + 1.
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A The XOR Protocol in [17]

Mizuki and Sone [17] proposed the following four-card XOR protocol, which takes commit-
ments to a, b with the two-card encoding ♣ ♡ = 0, ♡ ♣ = 1 and outputs a commitment
to a⊕ b without additional cards:

1. Arrange the input commitments as follows:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

.

2. Rearrange the order of the sequence as follows:

? ? ? ?
@@R��	

? ? ? ? .

3. Apply a pile-scramble shuffle with two piles (also known as a random bisection cut):

[ 1

?
2

?
∣∣∣ 3

?
4

?
]
→


1

?
2

?
3

?
4

?
3

?
4

?
1

?
2

?
.

4. Rearrange the order of the sequence as follows:

? ? ? ?
@@R��	

? ? ? ? .

5. Reveal the leftmost two cards and determine the output commitment as follows:

♣ ♡ ? ?︸ ︷︷ ︸
a⊕b

or ♡ ♣ ? ?︸ ︷︷ ︸
a⊕b

.
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