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Abstract
Sampled String Matching is presented as an efficient solution to the string matching problem, aiming
to tackle the space constraints of indexed string matching while purportedly reducing search times
for online solutions. Despite the problem’s inception dating back to 1991, practical solutions have
only recently emerged. These purportedly accelerate online searches by up to 35 times compared to
conventional methods, achieved through a partial index occupying a mere 5% of the text size.
This paper delves into the intricacies of one of the latest and most effective text sampling techniques,
character distance sampling, which revolves around sampling distances between characters of a
selected alphabet within the text. Specifically, we introduce fake samples while remaining honest!
In other words, the study reveals that, interestingly, strategically introducing fake samples within
the sampled sequence slashes the required index space by almost half, just avoid compromising
the algorithm’s correctness. Additionally, since efficiency is everything, this approach, in turn,
purportedly enhances the algorithm’s efficiency under specific conditions.
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1 Introduction

In the intricate world of computer science, the pursuit of pinpointing patterns within a text
stands as a formidable challenge, spanning across diverse fields such as natural language
processing, information retrieval, and computational biology. This endeavor, dubbed string
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matching in academic circles, involves the task of identifying every occurrence of a given
pattern x, spanning a length of m, within a text y, stretching to a length of n. Both sequences
are crafted from characters drawn from an alphabet Σ of size σ.

While the methods for storing data may vary, textual data remains a stalwart pillar of
information storage. This reliance is particularly evident in literature and linguistics, where
data take the form of vast corpora and extensive dictionaries. Yet, this reliance extends into
the realm of computer science, where vast volumes of data are stored in linear files. Even in
the domain of molecular biology, where biological entities are often simplified to sequences of
nucleotides or amino acids, the need for swift text-searching solutions persists, propelling
researchers to seek ever-faster methodologies.

Applications necessitate two distinct approaches: online and offline string matching. The
former contends with unprocessed text, demanding real-time scrutiny during the search
operation. Its worst-case time complexity clocks in at Θ(n), a milestone initially conquered by
the venerable Knuth-Morris-Pratt (KMP) algorithm [16]. However, the holy grail of average
time complexity, Θ(n logσ m

m ) [20], finds its manifestation in the Backward-Dawg-Matching
(BDM) algorithm [4], a gem in the algorithmic crown.

While legions of string matching algorithms strive for sub-linear performance in practice [5],
the Boyer-Moore-Horspool algorithm [2,13] deserves a standing ovation for its resounding
success and the avalanche of subsequent research it has inspired.

On the flip side, solutions embracing the second approach aim to expedite searches through
judicious preprocessing, erecting data structures that render search operations a breeze, at
least proportional to the pattern’s length. Dubbed indexed searching, this methodology
enjoys a cornucopia of efficient solutions. Notable mentions include those leveraging suffix
trees [1], boasting a O(m + occ) worst-case time, suffix arrays [17], offering a respectable
O(m+log n+occ) [17], and the formidable FM-index [12] (Full-text index in Minute space), a
compressed titan born of the Burrows-Wheeler transform, deftly balancing input compression
with swift substring queries.

But ah, the catch! Despite their dazzling time performance2, the voracious appetite for
space exhibited by full-index data structures, such as suffix-trees and suffix-arrays, dwarfs
that of the text itself, ranging from 4 to 20 times its girth. And while the FM-Index appears
leaner, often weighing in at less than the text’s own bulk, its construction demands almost
as much space as a full-index, leaving many practical applications gasping for breath.

Fear not, for the sampled string matching emerges as the solution to our space-hungry
conundrum, offering a ray of hope amidst the darkness of bloated data structures!

1.1 Sampled String Matching
A more apt remedy for the quandary lies in the realm of sampled string matching, first
delineated by Vishkin in 1991 [19]. Here, the strategy involves fashioning a succinct sampled
version of the text and then applying any online string matching algorithm directly onto
this trimmed version. While this technique may unearth potential pattern occurrences more
swiftly, the caveat is that each discovery within the sampled text necessitates subsequent
validation within the original corpus. Nonetheless, a sampled-text approach flaunts several
virtues: firstly, it often boasts ease of implementation, standing head and shoulders above its
more labyrinthine counterparts. Secondly, it exhibits a penchant for parsimony, requiring

2 A fast offline solution’s search speed is as swift as a cheetah’s sprint, typically under 1 millisecond per
query.
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only a trifling amount of additional space. Moreover, it’s no slouch in the speed department,
often zipping through searches. Furthermore, it’s not averse to updates, allowing for swift
alterations to the underlying data structure.

Besides Vishkin’s theoretical breakthrough, a more pragmatic incarnation of sampled
string matching has emerged, courtesy of Claude et al. [3], leveraging an alphabet reduction
technique (OTS). Their brainchild touts an extra space overhead of a mere 14% of the text’s
size, while clocking in at speeds up to 5 times faster than traditional online string matching
algorithms on English texts. It thus earns its stripes as one of the premier solutions for such
search approach.

Their ingenuity doesn’t stop there. They’ve also dabbled in indexing the sampled text,
concocting a sampled suffix array by indexing the sampled positions of the text. Although
reminiscent of the sparse suffix array [14], this variant dances to its own beat, with divergent
sampling properties birthing distinct search algorithms and performance metrics.

More recently, Faro et al. have injected a dose of innovation into the sampling sphere
with their Character Distance Sampling (CDS) approach [7–11]. In practical terms, through
sampling absolute positions of some specific characters in the text, called pivot characters,
their method has yielded speedups of up to a factor of 9 on English texts, while demanding a
mere pittance of additional space, ranging from 11% to 2.8% of the text’s size. This translates
to a whopping 50% reduction in search times compared to the previous approach (OTS).

1.2 Our Contribution

In this paper, we propose a variation of the CDS method that enhances it in terms of both
space efficiency and search performance. The ingenious tweak involves introducing a set
of additional false samples of the pivot characters, amusingly dubbed fake samples, which
marginally increase the number of elements in the partial index. Paradoxically, this leads
to a whopping three-quarters reduction in the overall space required to represent the data
structure, all while ensuring algorithmic correctness. Quite a nifty advantage, wouldn’t you
say, especially considering the significant boost in search performance it offers?

The crux of the new approach lies in storing distances between pivot characters rather
than their absolute positions within the text. This allows us to reduce the space used but
introduces the problem of direct addressing of positions within the original text. But fear
not, for we shall delve into the details in due course giving a solution to this problem.

The structure of the paper unfolds as follows: In Section 2 we briefly summarize the CDS
method as it is used to efficiently solve the string matching problem. In Section 3, we lay out
the conceptual foundation of the new sampling approach, delineating its costs and benefits.
Section 5 presents an empirical analysis comparing the new approach to the standard CDS
methodology in terms of space utilization and search time efficiency. Finally, our findings
and insights are encapsulated in Section 6.

2 Characters Distance Sampling in Brief

In this section, we embark upon a concise yet comprehensive description of the methodology
employed in crafting the partial-index built in the Character Distance Sampling (CDS).

For this purpose, let y be the input text, of length n, and let x be the input pattern, of
length m, both over an alphabet Σ of size σ. We assume that all strings can be treated as
vectors starting at position 1. Thus we refer to x[i] as the i-th character of the string x, for
1 ≤ i ≤ m, where m is the size of x.

FUN 2024
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We select a sub-alphabet C ⊆ Σ to serve as the set of pivot characters. Using this
designated pivots, we sample the text y by calculating the distances between consecutive
occurrences of any pivot character c ∈ C within y. Formally, our sampling methodology is
based on the following definition of position sampling within a text.

▶ Definition 1 (Position Sampling). Let y be a text of length n, let C ⊆ Σ be the set of pivot
characters and let nc be the number of occurrences of any c ∈ C in the input text y.

First we define the position function, δ : {1, .., nc} → {1, .., n}, where δ(i) is the position
of the i-th occurrence of any occurrence of the pivot character c in y. Formally we have

(i) 1 ≤ δ(i) < δ(i + 1) ≤ n for each 1 ≤ i ≤ nc − 1
(ii) y[δ(i)] ∈ C for each 1 ≤ i ≤ nc

(iii) y[δ(i) + 1..δ(i + 1)− 1] contains no pivot characters for each 0 ≤ i ≤ nc

where in (iii) we assume that δ(0) = 0 and δ(nc + 1) = n + 1.
Then the position sampled version of y, indicated by ẏ, is a numeric sequence, of length

nc, defined as

ẏ = ⟨δ(1), δ(2), .., δ(nc)⟩. (1)

▶ Example 2. Suppose y = “agaacgcagtata” is a sequence of length 13, over the alphabet
Σ = {a,c,g,t}. Let C = {a} be the set of pivot characters. Thus the position sampled version
of y is ẏ = ⟨1, 3, 4, 8, 11, 13⟩. Specifically the first occurrence of character “a” is at position 1
(y[1] = “a”), its second occurrence is at position 3 (y[3] = “a”), and so on.

▶ Definition 3 (Characters Distance Sampling). Let C ⊆ Σ be the set of pivot characters, let
nc ≤ n be the number of occurrences of any pivot character in the text y and let δ be the
position function of y. The characters distance function is defined by ∆(i) = δ(i + 1)− δ(i),
for 1 ≤ i ≤ nc− 1, as the distance between two consecutive occurrences of any pivot character
in y.

Then the characters-distance sampled version of the text y is a numeric sequence, indicated
by ȳ, of length nc − 1 defined as

ȳ = ⟨∆(1), ∆(2), .., ∆(nc − 1)⟩ = ⟨δ(2)− δ(1), δ(3)− δ(2), .., δ(nc)− δ(nc − 1)⟩ (2)

▶ Example 4. Let y = “agaacgcagtata” be a text of length 13, over the alphabet Σ = {a,c,g,t}.
Let C = {a} be the set of pivot characters. Thus the character distance sampling version
of y is ȳ = ⟨2, 1, 4, 3, 2⟩. Specifically ȳ[1] = ∆(1) = δ(2) − δ(1) = 3 − 1 = 2, while
ȳ[3] = ∆(3) = δ(4)− δ(3) = 8− 4 = 4, and so on.

In practical scenarios, particularly when dealing with large alphabets, the set of pivot
characters may comprise only one character. Consequently, for the sake of simplicity, we
will frequently refer to the pivot character in the singular form, rather than mentioning the
entire set of pivot characters.

The approach of sampled string matching utilizing CDS maintains a partial index, which
is represented by the position-sampled version of the text y. The size of this index is 32nc

bits, assuming that this index resides in memory and is readily available for any search
operation on the text. When there arises a need to search for a pattern x of length m within
y, a preprocessing step is executed on the pattern to compute its sampled version x̄. It can
be straightforwardly proved that an occurrence of x in y corresponds to an occurrence of x̄

in ȳ, hence it suffices to utilize any string matching algorithm to locate the occurrences of x̄

in ȳ to solve the problem. However, the reverse scenario is not necessarily true, implying
that occurrences of x̄ in ȳ may not align with occurrences of x in y. Consequently, for each
occurrence of x̄ in ȳ, referred to as a candidate occurrence, a validation check in y is required.
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Given that the validation process demands O(m) computational time, the entire search
operation will consume O(mn) time. Nonetheless, envisioning modifications to the funda-
mental procedure to ensure that the overall search operation, despite the checks, remains
linear in time is not challenging (for further details, refer to [8]).

An essential aspect to highlight in our discourse is that the CDS-based approach does not
explicitly maintain the character-distance sampled version ȳ of the text. Instead, it maintains
the position-sampled version ẏ of the text. Indeed, ȳ solely retains the distances between the
pivot characters and lacks direct ties to the original positions of these pivot characters within
the text. Consequently, directly verifying every candidate occurrence becomes impracticable.
This issue is addressed by retaining the text ẏ, which holds the positions, and computing ȳ

on-the-fly during the search. The i-th element of ȳ can indeed be computed in constant time
using the relationship ȳ(i) = ẏ(i + 1)− ẏ(i).

The CDS-based sampled string matching approach has demonstrated remarkable ef-
fectiveness in practical applications, boasting a significant reduction in search times by up
to 40 times compared to standard online exact string matching techniques. Remarkably,
this enhancement is achieved while incurring a relatively minimal cost, as it entails the
construction of a partial index merely equivalent to 2% of the text size. Moreover, sampled
string matching has exhibited exceptional flexibility, rendering it adept at addressing text
searching challenges, even in the approximate realm. Notably, Faro et al. [11] recently
introduced the run-length text sampling, tailored for approximate searches. This technique
proves well-suited, for instance, for tasks such as Order Preserving pattern matching [15].

In addition to its commendable space and time efficiency, sampled string matching offers
a plethora of other advantageous features. For instance, ease of programming stands out as
a notable advantage, with the construction of the partial index typically being a swift and
straightforward process. Moreover, the inherent flexibility of the data structure allows it to
seamlessly adapt to text variations. This means that minor alterations in the text, such as
character deletions or insertions, can be effortlessly reflected in the corresponding index.

However the one described above is not without its share of pitfalls or weaknesses. One
such challenge is the variability in performance based on the choice of pivot character.
Consequently, strategic consideration must be given to selecting the pivot character, striking
a balance between partial index size and execution times. Research indicates that in the case
of the English language the pivot character ranked 8th tends to offer best performances [8].

Another factor to consider is that if the pattern is exceptionally short and lacks occurrences
of the pivot character, resorting to a standard string search within the text becomes necessary.
Additionally, this method may not yield significant advantages when applied to texts with
small alphabets, as the benefits in terms of space efficiency may not be realized. However,
studies by Faro et al. [9, 10] have proved the efficacy of a technique leveraging condensed
alphabets to expand the underlying alphabet size and achieve markedly improved performance.

3 The Cunning Hoax of Fake Samples

Let’s point out the paradox of text sampling based on position distance!
While it does indeed seek to reduce the burden of representation by sampling elements, it
naively inflates the space required for each element by a whopping factor of 4. Imagine, if you
will, the humble character of a text, typically content with a mere 8 bits for its expression,
suddenly finding itself encased in the luxurious padding of a 32-bit integer!

In the realm of extreme scenarios, where the sampled positions sprawl to encompass
more than a quarter of the input sequence, we encounter a most peculiar predicament. The
very act of sampling, intended to lighten the load, paradoxically threatens to devour more
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memory than the original text itself. Consider, for instance, the vast genomic landscape,
where the four noble bases – A, C, G, and T – hold court. Here, the uniform distribution
of these alphabetic constituents renders sampling based on position distance a pointless
endeavor, yielding a partial index that, although it manages to significantly improve search
performance, rivals the text in sheer magnitude of memory consumption. A nice scam!

In this section we present a useful strategy to avoid this unpleasant and somewhat
embarrassing situation at a very low cost in almost all practical cases. Although our
discussion focuses on the CDS sampling method, the proposed technique is suitable for any
distance-based text sampling method between sampled locations where a certain limit is
imposed on the representation space of each distance.

To do this, we assume that p1 and p2 are two consecutive sampled positions, and we also
assume that d = p2 − p1 is the distance between these two positions. We use the symbol γ

to denote the distance representation bound (DRB), a value related to the memory space
used for the representation of each individual value of the sequence. In this context each
value of the sequence of distances is represented using exactly γ bits, so that each distance
contained in the sequence should have a value between 0 and 2γ − 1.

As we have already discussed, this constraint on the representation of distances introduces
the problem of not being able to represent all those distances whose value is greater than or
equal to the limit 2γ , making it inapplicable in many practical cases.

Our solution to this problem involves the introduction of a certain additional, arbitrarily
large number of samples, which can allow us to decompose a distance d ≥ 2γ into a sequence
of distances whose value is contained within the limit imposed on us. Since these additional
samples are not foreseen in the actual sampling, we will call them fake samples, to underline
the fact that they are not sampled positions but rather fictitious and therefore incorrect
values, introduced exclusively for the purpose of ensuring that all distances can fall within
the 2γ limit that we have imposed for the representation of the sampled text.

To avoid ambiguity in the sequence representation, the decomposition should be non-
ambiguous. For this reason, among the many possible alternatives, this work proposes a
decomposition that involves the introduction of a false sample, if necessary, every 2γ − 1
characters of the original text. In other words, if two samples are at a distance d = p2−p1 ≥ 2γ ,
we introduce a false sample at position p′

1 = p1 + 2γ − 1 and we operate recursively on the
residual interval p2 − p′

1, provided that it is greater than or equal to 2γ . An interval of d

positions between two real samples will then be decomposed, as needed, into a sequence of
⌈d/2γ⌉ intervals of size 2γ − 1, made exception for the last interval whose size will be equal
to d mod (2γ). The above is achieved through the insertion of fake samples. An example of
the Sampling procedure is shown on Algorithm 1.

More formally we introduce the following definition of Fake Distance Decomposition.

▶ Definition 5 (Fake Distance Decomposition). Let d be an integer value representing the
distance between two sampled text positions. The fake distance decomposition [d]γ for a given
DRB γ is a numeric sequence

[d]γ = ⟨d0, d1, .., dk−1⟩

such that:
(a) k = ⌈d/2γ⌉;
(b) di = 2γ − 1, for 0 ≤ i < k − 1:
(c) dk−1 = d mod (2γ).



S. Faro, F. P. Marino, A. Moschetto, A. Pavone, and A. Scardace 13:7

By Definition 5 it turns out that the sum of the distances obtained from a fake distance
decomposition [d]γ results in the value of the original distance. Formally we have

∑
u∈[d]8

u =
k−1∑
i=0

di

=
k−2∑
i=0

(2γ − 1) + (d mod (2γ))

= (2γ − 1)×
⌊

d

2γ

⌋
+ (d mod (2γ))

= d

(3)

Observe also that the fake distance decomposition of a distance value d < 2γ leaves the
original sequence unchanged, since k = ⌈d/2γ⌉ = 1. This can be expressed by the relationship
[d]γ = ⟨d⟩, if d < 2γ .

▶ Example 6. Let γ = 8 be the distance representation bound which assumes a binary
representation of any distance value by using 8 bits, and therefore a maximum representable
value equal to 2γ − 1 = 255. Then, if we take into account the distance values 841, 134, 256
and 255, we have the following fake distance decompositions:

[841]8 = ⟨255, 255, 255, 76⟩

[134]8 = ⟨134⟩

[265]8 = ⟨255, 10⟩

[255]8 = ⟨255⟩

The definition of Fake Distance Decomposition given above can be easily extended in
order to decompose a distance sequence and make it representable by using γ bits for each
individual sample value. We then introduce the following definition of Faked Distance
Sampling.

▶ Definition 7 (Fake Distance Sampling). Let y = ⟨d0, d1, .., dn−1⟩ be a sequence of distances,
of length n, obtained from any kind of distance sampling performed on an input text. The
fake distance sampled version of y, with DRB γ, is a numeric sequence, [y]γ , obtained by the
concatenation of the fake distance decompositions of its values. Formally

[y]γ = [d0]γ + [d1]γ + .. + [dn−1]γ

▶ Example 8. Let y = ⟨3, 124, 15, 255, 7, 9, 15, 262, 9, 841, 3⟩ be a sequence of distances
obtained from any kind of sampling performed on the text y. According to Definition 7 the
fake distance sampling of y, using a DRB value equal to 8, is given by

[y]8 = ⟨3, 124, 15, 255, 7, 9, 15, 255, 7, 9, 255, 255, 255, 76, 3⟩

where we underlined the sub-sequences obtained by a fake distance decomposition.

▶ Example 9. Let y = ⟨3, 124, 15, 255, 7, 9, 32, 15, 262, 9, 841, 3⟩ be a sequence of distances
obtained from any kind of sampling performed on the text y and let x = ⟨15, 262, 9⟩ be a
sequence of distances obtained from the same kind of sampling performed on the pattern x.
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Algorithm 1 Fake-Position-Distance-Sampling(y, n, pivot).

Data: a string y, its length m and the selected pivot character
Result: The faked character distance representation of y

1 ȳ ←− ⟨⟩
2 j ←− 0
3 prev ← 0
4 for i←− 0 to n− 1 do
5 if (y[i] = pivot) then
6 a←− i− prev

7 while (a > 255) do
8 ȳ[j]←− 255
9 j ←− j + 1

10 a←− a− 255
11 end
12 ȳ[j]←− a

13 j ←− j + 1
14 end
15 return ȳ

16 end

According to Definition 5 the fake sample sequences are as follows:

[y]8 = ⟨3, 124, 15, 255, 7, 9, 32, 15, 255, 7, 9, 255, 255, 255, 76, 3⟩
[x]8 = ⟨15, 255, 7, 9⟩

Therefore with this kind of representation, if we intend to search [x]8 into [y]8, we will have
two different verify.
The first verify will be at position 7, will give negative response, due for the different original
distances in fact, the 255, 7 of the pattern was originally a 262 differently from the one in
the text. The second one at the position 12 which can also give positive response depends on
the original text and pattern. It’s noteworthy to highlight that employing solely the CDS
representation without employing the Fake Decomposition, the number of verification steps
would be reduced to just one at position 12. This consideration arises from the fact that the
occurrence at position 7 would not match the sampled pattern if it were not decomposed.

3.1 How Much Space Does This Hoax Cost?
In the realm of text sampling, the spatial demand for string matching emerges as a pivotal
consideration. It delineates the additional space, relative to the text’s size, that a given
solution consumes to tackle the task.

Let’s consider the partial index derived from our innovative approach: a clever concoction
that, despite utilizing more characters than the original technique (refer to Figure 1), owes
its efficiency to the inclusion of a certain number of fake samples. Despite the incorporation
of these fake samples, our experimental analysis conducted on an English text3 reveals only
a marginal deviation in the sizes of these two indices, maintaining a comparable character
count.

3 In our experiments, we utilized the 100MB dataset of English texts sourced from Pizza and Chili [18].
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Specifically Figure 1 compares CDS and Faked-CDS approaches. On the left we show
the number of elements contained in the two indexes depending on the rank of the pivot
character, computed as a percentage of the number of characters of the text on which the
indexes are built. We can see how the values are almost identical with very slight variations:
this suggests that only a negligible number of samples are added to the original index.

This can be attributed to the fact that only a small fraction of the distances between
occurrences of the pivot character exceed the imposed 2γ threshold. This observation is
confirmed in Figure 1, on the right, which shows the percentage of fake samples added in the
construction of the partial index in the Faked-CDS approach. As a percentage, the addition
of false samples we are compelled to include rises with the rank of the pivot character used
in index construction, albeit remaining negligible.

It is very interesting to observe how the pivot of rank 14, which is identified by the
character \s (the blank space) in our dataset, reduces the number of fake samples to 0. This
is due to the fact that this character has a more uniform distribution within the text and this
means that two occurrences of the same character are never more than 256 characters apart.

However, the devil lies in the details! Upon closer examination of the space required by
these data structures, a significant contrast becomes apparent. While the previous index
allocates 32 bits for each element, our method showcases newfound parsimony, utilizing a
mere 8 bits for distance representation. Behold the marvel: a nearly fourfold reduction in
effective space compared to its predecessor.

To highlight this aspect, Figure 2 shows the additional amount of space required for
storing the two data structures, computed as a percentage of the space required for storing
the text on which the indexes are built. As expected, the space required by the Faked-CDS
approach is almost four times less than that required by the standard CDS approach.

0 2 4 6 8 10 12 14 160 %

2 %

4 %

6 %

8 %

CDS
FCDS

0 2 4 6 8 10 12 14 16
0 %

0.2 %

0.4 %

0.6 %

0.8 %

1 %

1.2 %

1.4 %

Figure 1 CDS and Faked-CDS approaches compared. On the left, the number of elements
contained in the two indexes, calculated as a percentage of the number of characters of the text on
which the indexes are built. On the right, the percentage of fake samples added in the construction
of the partial index in the Faked-CDS approach, calculated relative to the number of characters in
the text. In both cases, the x-axis identifies the rank of the pivot character used to construct the
two indices.
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Figure 2 CDS and Faked-CDS approaches compared in terms of additional amount of space
required for storing the two data structures. The percentage is computed as a relative to the space
required for storing the text on which the indexes are built. The x-axis identifies the rank of the
character used as a pivot in the construction of the index. The corresponding character for each
rank is showed below each rank (\s is the space charcater).

Ultimately, the new approach manages to reduce the space required to store the partial
index by a factor ranging from 69% to 73% with respect to the standard CDS approach, despite
utilizing more samples in its representation. Quite a feat, considering it also significantly
enhances search performance (see Section 5 for details). Specifically, employing the pivot of
rank 8, which yields the best search time performance [8], the new approach yields an index
occupying only 2.5% of the text size, compared to the standard CDS method’s 10%.

In Section 5, we will delve into an analysis of performance, examining both time and
space metrics.

4 The Details of the Search Algorithm

The search phase in a sampling-based searching approach entails the straightforward applic-
ation of any exact string matching algorithm. Its task? To ferret out all instances of the
sampled pattern lurking within the sampled text. For each of these candidate occurrences,
a thorough verification is then undertaken within the text. The goal? To sift through the
text and discern whether the candidate occurrence is a real occurrence or merely a cunning
impostor.

In the conventional rendition of the CDS approach, an additional amount of space was
allocated to ensure a direct mapping of each pivot character’s position within the index to
its corresponding position within the original text. In simpler terms, every index element ẏ[i]
denotes the position of the i-th pivot character within the text, facilitating swift navigation
from the sampled text. Consequently, upon identifying a candidate occurrence, one could
swiftly access the corresponding text position for verification, requiring only O(m) time.
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Algorithm 2 Search-FCDS(x, m, y, n, x̄, m̄, ȳ, n̄).

Data: a pattern x of length m, a text y of length n and their faked decomposition
Result: the number of occurrences of x in y

1 hbc← []
2 for i← 0 to Σ do
3 hbc[i]← m

4 end
5 for i← 0 to m̄ do
6 hbc[x̄[i]]← m̄− i− 1
7 end
8 s← 0
9 count← 0

10 last_position← 0
11 last_position_index← 0
12 while while(s ≤ n̄− m̄) do
13 i← 1
14 while i < m̄ and x̄[i− 1] == ȳ[s + i− 1] do
15 i = i + 1
16 end
17 if i == m̄ then
18 position← s

19 while position > last_position_index do
20 last_position = last_position + ȳ[position]
21 position = position− 1
22 end
23 count = count + verify(x, m, y, last_position)
24 end
25 s = s + hbc[ȳ[s + m̄− 1]]
26 return count
27 end

However, the advent of the novel sampling representation embraced by the Fake Decom-
position approach alters this dynamic. This approach opts to store the distances ȳ[i] between
consecutive occurrences of pivot characters rather than their positions, thereby relinquishing
the explicit mapping of pivot character positions. Consequently, the dilemma arises: how
does one access the corresponding text position to verify each candidate occurrence?

By working with the distances between consecutive positions of pivot characters, we can
derive the mapping ẏ[i] of the i-th character of the index using the following formula:

ẏ[i] =
i∑

j=0
ȳ[j]

While this approach theoretically lends itself to direct application through a linear index
scan algorithm, such as the renowned KMP algorithm [16], let’s not be too hasty in celebrating
its efficacy. Assuming we’ve computed the mapping for all positions less than i, accessing
the i-th position of the index theoretically enables us to compute the direct mapping of the
i-th pivot character using the formula ẏ[i] = ẏ[i− 1] + ȳ[i].

FUN 2024



13:12 The Great Textual Hoax: Boosting Sampled String Matching with Fake Samples

However, despite its apparent simplicity and linear execution time, let’s not overlook the
practical performance implications. The most efficient string matching approaches are those
employing forward jumps [5], allowing for the avoidance of scanning extensive text portions.
The Boyer-Moore [2] and Horspool [13] algorithms are among the most representative elements
of this family. Yet, such approaches are unable to update the mapping on the text in constant
time. Oh, the joys of theoretical elegance versus practical pragmatism!

In this study, we scrutinize two potential remedies for this dilemma:
The first approach, shown in Figure 2, entails retracing the mapping steps, starting from
the last checked position. Put simply, we retain the position v of the last index position
from which a text check was conducted. Assuming we’ve already established a direct
mapping for that position, we proceed to scan all text positions from the v-th to the
i-th to determine the direct mapping for the new verification position i. This method
boasts swift indexing during the search phase, as mapping concerns are deferred until a
candidate occurrence surfaces. However, its Achilles’ heel lies in the verification phase,
which could prove arduous if the last verification occurred significantly earlier in the text.
We will refer to this solution as Faked-CDS (FCDS).
In our second approach, shown in Algorithm 3, we aimed to integrate a technique
reminiscent of the one used in the OTS approach [3]. Much like their method, we chose to
periodically link elements in the sampled text to their positions in the original text. This
deliberate choice was made to simplify the backtracking process, sparing us the effort of
computing positions by summing distances. Furthermore, it enables quick identification
of a character’s position, assuming it has already been mapped. Consequently, computing
positions for unmapped characters is noticeably accelerated in real-world scenarios.
In a more formal sense, we define a parameter k ≥ 1 and allocate an array ρ of ⌈n/k⌉
positions, serving as a link between the sampled elements of the partial index and their
actual positions in the text. Specifically, within the partial index, one element is sampled
every k, totaling ⌈n/k⌉ elements. Consequently, the additional space required amounts
to 4 × ⌈n/k⌉ bytes. When verifying position i with v as the index of the last verified
position, it becomes necessary to backtrack the mapping, commencing from the larger
value between the mapping of v and ρ[⌊i/k⌋].
The advantage of this second approach lies in its ability to circumvent the need for
extensive backtracking through text, thereby reducing verification times. Of course, the
downside is the inevitable consumption of extra memory to accommodate the mapping
array. We will refer to this solution as Faked-CDS + Mapping (FCDS+).

5 Experimental Evaluation

In this section, we present experimental results in order to evaluate the performances of the
sampling approaches presented in this paper.

In particular, we tested the original CDS approach (CDS), the Faked-CDS approach
(FCDS) and the Faked-CDS enhanced with mapping (FCDS+) approach. The latter has been
implemented using values of k in the set {8, 16, 32, 64}. However, the experimental results for
these 4 variants are essentially identical, so we will simply unify the values of the 4 variants.
Moreover we choose to set γ = 8 to conduct our experiments, where we remember that γ is
the number of bits we use to represent each single element of the sampled text.

In all three instances, we opted for the pivot character ranked 8 within the text, identified
as the letter s, as depicted in Figure 2. This particular choice was made based on its observed
superior performance in terms of execution times, as detailed in [8].



S. Faro, F. P. Marino, A. Moschetto, A. Pavone, and A. Scardace 13:13

Algorithm 3 Search-FCDS+(x, m, y, n, x̄, m̄, ȳ, n̄, ρ, k).

Data: a pattern x of length m, a text y of length n, their sampled versions and the
mapping array

Result: the number of matches
1 hbc← []
2 for i← 0 to Σ do
3 hbc[i]← m

4 end
5 for i← 0 to m̄ do
6 hbc[x̄[i]]← m̄− i− 1
7 end
8 s← 0
9 count← 0

10 while while(s ≤ n̄− m̄) do
11 i← 1
12 while i < m̄ and x̄[i− 1] == ȳ[s + i− 1] do
13 i = i + 1
14 end
15 if i == m̄ then
16 position← ρ[s/k]
17 idx← s− (s%k)
18 while idx < s do
19 position = position + ȳ[idx]
20 idx = idx + 1
21 end
22 count = count + verify(x, m, y, position)
23 end
24 s = s + hbc[ȳ[s + m̄− 1]]
25 return count
26 end

The algorithms have been implemented using the C programming language, and have
been tested using the Smart tool [6] and executed locally on a MacBook Pro with 4 Cores,
a 2.7 GHz Intel Core i7 processor, 16 GB RAM 2133 MHz LPDDR3, 256 KB of L2 Cache
and 8 MB of Cache L3.4 During the compilation we use the -O3 optimization option.

Comparisons were conducted in terms of search times. For our experiments, we utilized
a 100MB dataset of English texts sourced from Pizza and Chili [18]. We employed various
pattern sizes ranging from 27 to 212. The space used to maintain the partial indexes and any
mapping arrays is shown in the following table.

Name Index Size Mapping Size Samples Fake Samples
CDS 10.14 MB - 2536790 -
FCDS 2.53 MB - 2537048 258
FCDS+ 2.53 MB 1.26 MB 2537048 258

4 The Smart tool is available online for download at http://www.dmi.unict.it/~faro/smart/ or at
https://github.com/smart-tool/smart.
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Figure 3 Running times of three sampled string matching algorithms for searching a 100 MB
English text and averaging over 1000 different runs.

For each sequence in the dataset, we randomly selected 1000 patterns extracted from the
text and computed the average running time over these 1000 runs.

As illustrated in Figure 3, despite utilizing less space, as demonstrated in previous sections,
the Fake Decomposition method achieves superior performance in practice, particularly in
terms of searching time.

According to experimental results, it turns out that the newly proposed methods (FCDS
and FCDS+) allows a speed-up ranging between 33.7% and 55.1%. Despite the increase in
the size of the partial-index with the new method, several factors contribute to the observed
improvement in performance. Firstly, the enlarged size of the sampled pattern, a known
accelerator in classical string matching, likely plays a role, as exact string matching algorithms
generally perform better with larger patterns. Secondly, the Character Distance Sampling
algorithms, while susceptible to performance degradation in scenarios with fewer than 2
distances represented in the sampled pattern, benefit from the increased number of characters
required for the representation, thereby averting their worst-case scenario. Another notable
speed-up is observed in the searching phase, which no longer requires the computation of
distances by subtracting consecutive positions; rather, each item in our sampled text already
represents a distance itself.

While FCDS consistently demonstrates a space reduction of approximately 75%, FCDS+
utilizes an additional data structure to accommodate the position mapping, resulting in
a space reduction ranging from 62.5% (if the position mapping is stored every 8 different
characters) to 72% (with a mapping value of 32).

It is noteworthy that while both the FCDS and FCDS+ approaches demonstrate comparable
performances, nuanced disparities are discernible. Notably, FCDS exhibits marginally superior
efficacy for short patterns, whereas FCDS+ surpasses as pattern length extends. The rationale
underlying this phenomenon lies in the examination of candidate occurrences identified by
the search within the partial index.

For short patterns, the proliferation of candidate occurrences escalates, rendering the
verification times in FCDS easily justifiable. The proximity of consecutive checks minimizes
the impact of backtracking on search efficiency. Consequently, the inclusion of an additional
mapping table mildly penalizes the FCDS+ methodology.
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Figure 4 Performances of the algorithms with a 100 MB English text averaging over 1000 different
executions. Solid lines indicate running times obtained with a partial index constructed using the
8-th ranked pivot character, specifically representing the character ’s’. Dashed lines indicate running
times obtained with a partial index constructed using the the 14-th pivot character, representing
the blank space character ’\s’, which generates no fake samples.

Conversely, with longer patterns, the candidate occurrences diminish significantly, exacer-
bating the performance degradation induced by backtracking in the FCDS approach. Herein
lies the challenge: reconstructing the occurrence’s position from distant points within the
text. In contrast, FCDS+ capitalizes on the mapping table, curtailing backtracking distances
substantially.

Lastly, we venture into a comparative analysis of the two methodologies delineated in
this study, particularly examining scenarios where distinct pivot characters are employed. A
shared observation emerges regarding the potential rationale for adopting the “blank space”
character (ranked 14 within the text) as a pivot. Notably, its utilization within the FCDS
approach obviates the generation of fake samples. One might conjecture that leveraging this
character as a pivot could be pragmatically advantageous when performance metrics are
comparable, owing to its minimal impact on partial index construction.

Regrettably, the time performances are far from commensurate, as elucidated in Figure 4.
It becomes apparent that sampling predicated on the rank 8 character yields a notable 40%
to 50% reduction in processing times compared to its “blank space” counterpart.

6 Conclusions

We introduced a novel method for storing sampled versions of text and patterns based on
character distance sampling. Our approach involved an initial analysis of a new decomposition
method, which significantly reduces the space requirements for each occurrence of any
pivot character. Subsequently, we developed two distinct searching processes aimed at
outperforming the original Character Distance Sampling (CDS) algorithm. Our algorithms
demonstrate improved efficiency compared to the previous method by a factor ranging
between 33.7% and 55.1%, while achieving a space reduction ranging from 63% to 75%.
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Given the promising results achieved with this new technique, it would be interesting to
apply it to other derived versions of the CDS, such as the offline and condensed variants.
It would also be intriguing to investigate how the CDS algorithm performs when combined
with other online string matching algorithms, to explore the possibility of achieving new and
interesting performance improvements. We intend to explore these directions in our future
work.
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