
PackIt!: Gamified Rectangle Packing
Thomas Garrison #

Carnegie Mellon University, Pittsburgh, PA, USA

Marijn J. H. Heule #

Carnegie Mellon University, Pittsburgh, PA, USA

Bernardo Subercaseaux #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
We present and analyze PackIt!, a turn-based game consisting of packing rectangles on an n× n

grid. PackIt! can be easily played on paper, either as a competitive two-player game or in solitaire
fashion. On the t-th turn, a rectangle of area t or t+ 1 must be placed in the grid. In the two-player
format of PackIt! whichever player places a rectangle last wins, whereas the goal in the solitaire
variant is to perfectly pack the n× n grid. We analyze necessary conditions for the existence of a
perfect packing over n×n, then present an automated reasoning approach that allows finding perfect
games of PackIt! up to n = 50 which includes a novel SAT-encoding technique of independent
interest, and conclude by proving an NP-hardness result.

2012 ACM Subject Classification Mathematics of computing → Combinatorics; Theory of compu-
tation → Discrete optimization

Keywords and phrases PackIt!, rectangle packing, SAT, NP-hardness

Digital Object Identifier 10.4230/LIPIcs.FUN.2024.14

Related Version Full Version: https://arxiv.org/abs/2403.12195

Supplementary Material
Software (Code associated to the paper): https://github.com/bsubercaseaux/packit

archived at swh:1:dir:4b7a9bb37e64301305bf01082703a27c23cae84f

Funding The authors are partially supported by the National Science Foundation (NSF) grant
CCF-2108521.

Acknowledgements We thank FUN2024 reviewers for their feedback and suggestions. We also thank
Richard Green, for his comments and his blog post about our paper. The last author thanks Abigail
Kamenenetsky for her help with a web implementation of the game.

1 Introduction

Pen-and-paper games have not only stimulated bored high school students for centuries, but
also attracted the attention of mathematicians and computer scientists alike. From Tic-Tac-
Toe to Conway’s Sprouts [10], passing through Dots and Boxes [6], Sudoku, Hangman [1],
and Nim [4], simple pen-and-paper games have had a long lasting impact in combinatorial
game theory (e.g., the Sprague-Grundy theorem) and have offered landmark computational
challenges (e.g., Sudokus require 17 clues to have a unique solution [13]). In this paper
we introduce a new pen-and-paper game, PackIt!, and explore both mathematical and
computational challenges concerning it.

1.1 Definition of PackIt!
The game proceeds by turns, and takes place over an n × n grid that we shall denote G. The
main principle of PackIt! is very simple: on turn t (starting from 1), a rectangle rt of area
t or t + 1 must be placed into G without intersecting any of the already placed rectangles.

© Thomas Garrison, Marijn J. H. Heule, and Bernardo Subercaseaux;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Fun with Algorithms (FUN 2024).
Editors: Andrei Z. Broder and Tami Tamir; Article No. 14; pp. 14:1–14:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tgarrison@andrew.cmu.edu
https://orcid.org/0009-0009-0324-8785
mailto:mheule@andrew.cmu.edu
https://orcid.org/0000-0002-5587-8801
mailto:bsuberca@andrew.cmu.edu
https://orcid.org/0000-0003-2295-1299
https://doi.org/10.4230/LIPIcs.FUN.2024.14
https://arxiv.org/abs/2403.12195
https://github.com/bsubercaseaux/packit
https://archive.softwareheritage.org/swh:1:dir:4b7a9bb37e64301305bf01082703a27c23cae84f;origin=https://github.com/bsubercaseaux/packit;visit=swh:1:snp:a9e8e1023f8ce88a494363663863daa007c241a5;anchor=swh:1:rev:67f750b3f11ffe5faa505836ba7470973114de32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 PackIt!: Gamified Rectangle Packing

1 2 3 4 5

1 2 3 4 5

2 3 4 5

6 6 6 4 5

6 6 6 4 5

(a) An imperfect game of PackIt!.

1 1 2 4 5

3 3 2 4 5

3 3 2 4 5

6 6 6 4 5

6 6 6 4 5

(b) A perfect game of PackIt!.

Figure 1 Illustration of a couple of games of PackIt!. Each rectangle at is labeled with t and
depicted in a different color.

Formally, at the beginning of the game one defines the set of used cells of the grid as U0 := ∅.
On turn t, the corresponding player chooses rt = (ht, vt, xt, yt), with ht · vt ∈ {t, t + 1}, and
0 ≤ xt, yt < n. Define the cells used by this rectangle as the set

At := {xt, xt+1, . . . , xt+ht−1} × {yt, yt+1, . . . , yt+vt−1},

so that the requirement for a valid turn is that At ∩ Ut−1 = ∅. After a valid turn, one sets
Ut := Ut−1 ∪ At. Figure 1 illustrates some examples.

PackIt! as a game. PackIt! can be played as a solitaire game, where the goal of the game
is to complete a perfect packing, that is, to play so that after a valid sequence of turns it
holds that Ut = {0, . . . , n − 1} × {0, . . . , n − 1}. As depicted in Figure 1, we say the final
board of such a game corresponds to a perfect game of PackIt!. For two players, it suffices
to alternate turns and when a player cannot play a valid turn, he or she is declared the loser.
At this point, we suggest the reader to directly experiment with PackIt!. A version of the
game is available for solitaire mode at https://packit.surge.sh.

Organization. The main question about PackIt! is:

for which values of n the n × n grid admits a perfect game of PackIt!?

Section 2 presents arithmetic results that represent the initial steps toward answering this
question. Then, Section 3 discusses the complexity of PackIt!, showing that a particular
version of the solitaire game is NP-hard. Finally, Section 4 is devoted to analyzing this question
from a computational perspective. We present an initial backtracking implementation, which
is then improved by a more complicated approach leveraging a novel SAT encoding.

2 Arithmetic Results

A perfect game of PackIt! can be conceptually divided into two aspects:
(Rectangle selection) As we denote by |At| the area of the rectangle used in turn t, it
must hold that in a perfect game of PackIt! we have∑

t

|At| = n2.

Moreover, in order to fit every rectangle rt of dimensions ht × vt, it must hold that
max(ht, vt) ≤ n. We will say that such a sequence of choices is a valid rectangle sequence.
(Packing Aspect) Even if a sequence of area choices is valid, it can be the case that it
is not possible to use such area choices in a perfect game of PackIt!.

https://packit.surge.sh

T. Garrison, M. J. H. Heule, and B. Subercaseaux 14:3

This section focuses on studying perfect games through the lens of the first aspect, as it is
sometimes enough to determine the tileability/untileability of grids. Despite PackIt! being
originally defined for a square grid, from now on we consider m × n grids as most of our
ideas generalize nicely in that setting. Without loss of generality we will assume n ≥ m

throughout the paper.
In order to state our results, we will need a couple of definitions. We denote by Tk the

k-th triangle number, defined as Tk =
∑k

i=1 i = k(k+1)
2 . Then, for any positive integer r, we

denote by τ(r) = arg maxk{Tk | Tk ≤ r}.
An initial observation to understand whether an m × n grid admits a perfect packing is

that the number of rectangles used in perfect PackIt! games depends entirely on the grid
area m · n, and not on its precise width or height

▶ Lemma 1. For an m×n grid there is a unique number K(m, n) such that if the m×n grid
admits a perfect PackIt! game, then such a packing must use exactly K(m, n) rectangles. In
particular, K(m, n) = τ(m · n).

Proof. Assume, expecting a contradiction that for some m × n grid there are two sequences
A := (|A1|, . . . , |AK1 |) and A′ := (|A′

1|, . . . , |A′
K2

|), with K1 ̸= K2, that can be used for
perfect packings. Now, note that we must have

K1∑
t=1

|At| = m · n =
K2∑
t=1

|A′
t|. (1)

By the game rules, we have that

K1∑
t=1

|At| ≥
K1∑
t=1

t = TK1 , and
K1∑
t=1

|At| ≤
K1∑
t=1

(t + 1) = TK1+1 − 1.

Using the same analysis for A′, and Equation (1), we get

max(TK1 , TK2) ≤ m · n ≤ min(TK1+1, TK2+1) − 1.

As K1 ̸= K2, let us assume without loss of generality that K1 > K2. Using that T is an
increasing sequence, we have

TK1 ≤ m · n ≤ TK2+1 − 1. (2)

Now, as K1 is an integer, K1 > K2 implies K1 ≥ K2 + 1, from where Equation (2) becomes
TK1 ≤ m · n ≤ TK1 − 1, a clear contradiction. To obtain the second part of the lemma, note
that when K(m, n) := K1 = K2 we get

TK(m,n) ≤ m · n ≤ TK(m,n)+1 − 1,

from where it follows by the definition of τ that K(m, n) = τ(m · n). ◀

We can now define the notion of gap, which intuitively represents the number of turns t

in which a rectangle of area t + 1 must be chosen. Let us say that any turn t at which a
rectangle of area t + 1 is chosen is an expansion turn.

▶ Definition 2. For any m × n grid, we define its gap, γ(m, n), as

γ(m, n) = m · n − Tτ(m·n).

FUN 2024

14:4 PackIt!: Gamified Rectangle Packing

▶ Lemma 3. For any sequence of turns that results in a perfect packing of an m × n grid,
the number of expansion turns is exactly γ(m, n).

Proof. By Lemma 1, there must be exactly K(m, n) = τ(m · n) turns in such a sequence. If
for every turn t ∈ {1, . . . , τ(m · n)}, a rectangle of area t were to be chosen, then the total
area used would be exactly

τ(m·n)∑
t=1

t = Tτ(m·n).

Given that the total area used must be m ·n, we conclude there must be exactly m ·n−Tτ(m·n)
expansion turns. ◀

The next ingredient to analyze whether an m × n grid admits a perfect packing has to
do with prime numbers, as if the area of a rectangle is a prime number p, then the only
possibles rectangles are p × 1 or 1 × p, which can limit our ability to pack it. We define the
set P (m, n) as

P (m, n) = {p | n < p ≤ K(m, n) and p is prime}.

As the next results show, the comparison between the gap of a grid and the size of
its corresponding P set plays a crucial role in understanding whether or not it allows a
perfect packing. In particular, Theorem 4 shows how small gaps can forbid perfect packings,
whereas Theorem 5 shows how large gaps can also be problematic.

▶ Theorem 4 (Small gap). For any m × n grid, if γ(m, n) < |P (m, n)|, then the grid does
not allow a perfect game of PackIt!.

1 2 2 3 3 3

4 4 7 7 5

4 4 7 7 5

6 6 7 7 5

6 6 7 7 5

6 6 5

Figure 2 Illustration of the impossibility result for n = 6 resulting from Theorem 4. Even though
turns 1 through 6 use the minimal possible area, the choice of area 8 on turn 7 is enough to make turn
9 possible, as only 8 empty cells remain (which is invariant under the concrete choice of packing).

Before a formal proof, let us present some intuition. Theorem 4 considers a gap that is
“too small”, as the following example shows. Consider m = n = 6. One can easily check that,
τ(6 · 6) = 81, and therefore the gap results in

γ(m, n) = m · n − Tτ(m·n) = 6 · 6 − 8 · 9
2 = 0.

1 A general formula for τ(r) is not too hard to derive. In particular, τ(r) =
⌊√

8r+1
2 − 1

2

⌋
.

T. Garrison, M. J. H. Heule, and B. Subercaseaux 14:5

Then, K(m, n) = τ(m · n) = 8, and thus P (m, n) = {7}. As K(m, n) = 8, any perfect
packing of the 6 × 6 grid will consist of 8 rectangles. We claim that in turn 7, the area chosen
must be 7, or in other words, that choosing a rectangle of area 8 in turn 7 would forbid a
perfect packing. Too see this, consider expecting a contradiction that a rectangle of area 8 is
chosen on turn 7, and notice that then on the first 8 turns the smallest sum of areas we can
achieve would be

1 + 2 + 3 + 4 + 5 + 6 + 8 + 8 = 37 > 36,

a contradiction. On the other hand, given 7 is a prime number, the only rectangles of area
7 are a 1 × 7 or a 7 × 1 rectangle, neither of which can be packed into a 6 × 6 grid. As
either area choice for turn 7 leads to a contradiction, we conclude it is not possible to have a
perfect game of PackIt! over the 6 × 6 grid. This example is illustrated in Figure 2, and is
generalized in the next proof.

Proof of Theorem 4. Let p ∈ P (m, n). At turn p, one must choose between area p or area
p+1. If area p is chosen, then the rectangle must be either 1×p or p×1, due to the primality
of p. However, by the definition of the set P (m, n) we have p > n ≥ m, and thus neither
the 1 × p nor the p × 1 rectangle can be packed into the m × n grid. Assume, expecting
a contradiction, that γ(m, n) < |P (m, n)| and there exists a sequence of turns leading to
a perfect packing for the m × n grid. As a result of the previous argument, every turn
p ∈ P (m, n) must be an expansion turn. As the number of expansion turns is equal to γ(m, n)
by Lemma 3, we have γ(m, n) ≥ |P (m, n)|, which directly contradicts the assumption. ◀

▶ Theorem 5 (Large gap). For any m×n grid, let 1Kp
be the indicator variable corresponding

to whether K(m, n) + 1 is a prime number or not. Then, the condition

γ(m, n) > K(m, n) − |P (m, n)| − 1Kp

implies the m × n grid does not allow a perfect game of PackIt!.

Before the proof, let us present some intuition for Theorem 5. Consider m = n = 18 (this
example is illustrated in Figure 3). As a result, τ(18 · 18) = 24 , and therefore the gap is

γ(m, n) = m · n − Tτ(m·n) = 18 · 18 − 24 · 25
2 = 24.

We also have K(m, n) = τ(m · n) = 24, implying that any perfect packing of the 18 × 18 grid
will consist of K(m, n) = 24 rectangles. We claim that on turn 18, both choices of area, 18
and 19, lead to contradictions. Let us see what happens if area 18 is chosen on turn 18. In
this case, even if area t + 1 is chosen on every turn t ̸= 18, the maximum sum of the areas
we can achieve is

2 + 3 + . . . + 17 + 18 + 18 + 20 + . . . + 25 = 323 < 324,

implying the 324 cells of the 18 × 18 grid cannot be covered. On the other hand, if area 19 is
chosen on turn 18, we run into a different issue: as 19 is a prime number it only allows for
the rectangles 1 × 19 or 19 × 1, neither of which be can be packed into the 18 × 18 grid. As
both cases lead to an impossibility, we conclude it is not possible to have a perfect game
of PackIt! over the 18 × 18 grid. The proof for Theorem 5 generalizes this example.

FUN 2024

14:6 PackIt!: Gamified Rectangle Packing

5 5 5 5 5 5 23 23 23 23 23 23 23 23 23 23 23 23

14 4 4 4 4 4 23 23 23 23 23 23 23 23 23 23 23 23

14 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

14 12 11 11 11 11 11 11 11 11 11 11 11 11 2 2 2

14 12 7 7 7 7 7 7 7 7 24 24 24 24 24 19 19

14 12 21 21 10 22 22 20 20 20 8 24 24 24 24 24 19 19

14 12 21 21 10 22 22 20 20 20 8 24 24 24 24 24 19 19

14 12 21 21 10 22 22 20 20 20 8 24 24 24 24 24 19 19

14 12 21 21 10 22 22 20 20 20 8 24 24 24 24 24 19 19

14 12 21 21 10 22 22 20 20 20 8 6 17 17 9 9 19 19

14 12 21 21 10 22 22 20 20 20 8 6 17 17 9 9 19 19

14 12 21 21 10 22 22 20 20 20 8 6 17 17 9 9 19 19

14 12 21 21 10 22 22 18 18 18 8 6 17 17 9 9 19 19

14 12 21 21 10 22 22 18 18 18 8 6 17 17 9 9 19 19

14 12 21 21 10 22 22 18 18 18 1 6 17 17 15 15 15 15

14 12 21 21 10 22 22 18 18 18 1 6 17 17 15 15 15 15

13 13 13 13 13 13 13 18 18 18 3 3 17 17 15 15 15 15

13 13 13 13 13 13 13 18 18 18 3 3 17 17 15 15 15 15

Figure 3 Illustration of the impossibility result for n = 18 (Theorem 5). Even though almost
each rectangle t has area t + 1, except for t ∈ {18, 22} (where t + 1 > n is prime), the total area
covered by turn 24 is only 322 = 182 − 2, and naturally it is not possible to fill in the two remaining
cells in turn 25.

Proof of Theorem 5. Let p ∈ P (m, n). As p ≤ K(m, n) by definition of P (m, n), turn p − 1
is necessarily part of any perfect packing. At turn p − 1, one must choose between area p − 1
or area p. If area p is chosen, then the rectangle must be either 1 × p or p × 1, due to the
primality of p. However, by the definition of the set P (m, n) we have p > n ≥ m, and thus
neither the 1 × p nor the p × 1 rectangle can be packed into the m × n grid. We conclude
that for each p ∈ P (m, n), the turn p − 1 is not an expansion turn.

If K(m, n) + 1 is prime, then the rectangle turn K(m, n) cannot be an expansion turn.
By definition, K(m, n) + 1 ̸∈ P (m, n), so the number of turns that are not expansion turns
is at least |P (m, n)| + 1Kp

. By Lemma 1, the number of expansion turns is exactly γ(m, n),
which together with the previous fact implies that the total number of turns is at least

|P (m, n)| + 1Kp
+ γ(m, n). (3)

Suppose, expecting a contradiction that

γ(m, n) > K(m, n) − |P (m, n)| − 1Kp
, (4)

and yet there exists a sequence of turns leading to a perfect packing for the m × n grid. By

T. Garrison, M. J. H. Heule, and B. Subercaseaux 14:7

combining Equation (3) and Equation (4), the total number of turns is at least

|P (m, n)| + 1Kp
+ γ(m, n) > |P (m, n)| + 1Kp

+
(
K(m, n) − |P (m, n)| − 1Kp

)
= K(m, n),

which is a contradiction, given the total number of turns must be exactly K(m, n) according
to Lemma 1. ◀

Combining Theorem 4 and Theorem 5, we obtain a range of values for the gap of an
m × n grid in which perfect packings are a priori possible. So far, we have not found any
examples of m × n grids whose gap belongs in this range and yet no perfect packings exist.
Therefore, we pose the following conjecture

▶ Conjecture 6. Let m ≤ n be positive integers. Then, if

|P (m, n)| ≤ γ(m, n) ≤ K(m, n) − |P (m, n)| − 1Kp
,

it is possible to complete a perfect game of PackIt! for the m × n grid.

Interestingly, Theorem 4 is enough to construct infinite families of n × n grids that do
not admit perfect packings.

▶ Theorem 7. There are infinitely many positive integers n such that the n × n grid does
not admit a perfect game of PackIt!.

Proof. By Theorem 4, if suffices to show that there are infinitely many values of n such that
γ(n, n) = 1 and |P (n, n)| > 1. First, consider the following claim.

▷ Claim 8. For every n ≥ 100, we have K(n, n) ≥ 1.4n.

Proof of Claim 8. Let ℓ = ⌊1.4n⌋. It suffices to argue that Tℓ ≤ n2. As ℓ > n ≥ 100, we have
ℓ < 1

100 ℓ2, which we can use as follows.

Tℓ = ℓ2 + ℓ

2 ≤
101ℓ2

100
2 = 101ℓ2/200,

and conclude by noting that

101ℓ2/200 ≤ 101
200 ·

(
140
100n

)2
= 1 979 600

2 000 000n2 ≤ n2. ◁

Now, Schoenfeld proved in [15] that for every n > 3 · 106, there is always a prime number
between n and

(
1 + 1

16957
)

n, which applied twice gives us that there are always (at least) two
prime numbers between n and

(
1 + 1

16957
)2

n ≤ 1.4n. Therefore, for n > 3 · 106 we always
have |P (n, n)| > 1. It remains to prove that γ(n, n) = 1 infinitely often. We do this by using
the theory of generalized Pell’s equation. Indeed, the condition γ(n, n) = 1 can be written,
by using notation K := K(n, n), as

n2 − K(K + 1)
2 = 1, (5)

which after multiplying both sides by 8 and rearranging is equivalent to

8n2 − (2K + 1)2 = 7.

FUN 2024

14:8 PackIt!: Gamified Rectangle Packing

Introducing the variable t := (2K + 1) we consider the following equations.

t2 − 8n2 = −7, (6)(
t(h)
)2

− 8
(

n(h)
)2

= 1. (7)

While Equation (7) presents an “homogeneous” Pell equation, for which it is well known that
infinitely many solutions exist over the positive integers (cf. the problem of square triangular
numbers [2]), Equation (6) corresponds to a “non-homogeneous” equation, less frequently
studied. Similarly to the theory of ordinary differential equations, we can obtain a set of
solutions to the non-homogeneous equation by combining one initial solution for it with a
set of solutions to its homogeneous counterpart. Indeed, assume the existence of a solution
(n0, t0) to Equation (6) over the positive integers, and

(
n

(h)
i , t

(h)
i

)
a sequence of solutions

to Equation (7) over the positive integers, whose existence is standard (see e.g., [2]).

▷ Claim 9. The sequence (ni, ti), defined as

(ni, ti) :=
(

t0t
(h)
i + 8n0n

(h)
i , t0n

(h)
i + n0t

(h)
i

)
, (8)

is an infinite family of solutions of Equation (6) over the positive integers.

Proof of Claim 9. By assumption, (n0, t0) is a solution of Equation (6), and
(

n
(h)
i , t

(h)
i

)
is a

solution of Equation (7). Thus, we have

−7 =
(
t2
0 − 8n2

0
)((

t
(h)
i

)2
− 8

(
n

(h)
i

)2
)

= (t0 +
√

8n0)(t0 −
√

8n0)
(

t
(h)
i +

√
8n

(h)
i

)(
t
(h)
i −

√
8n

(h)
i

)
=
[
(t0 +

√
8n0)

(
t
(h)
i +

√
8n

(h)
i

)]
·
[
(t0 −

√
8n0)

(
t
(h)
i −

√
8n

(h)
i

)]
=
[(

t0t
(h)
i + 8n0n

(h)
i

)
+

√
8
(

t0n
(h)
i + n0t

(h)
i

)]
·
[(

t0t
(h)
i + 8n0n

(h)
i

)
−

√
8
(

t0n
(h)
i + n0t

(h)
i

)]
=
(

t0t
(h)
i + 8n0n

(h)
i

)2
− 8

(
t0n

(h)
i + n0t

(h)
i

)2

= n2
i − 8t2

i . ◀

As we can provide an initial solution (n0, t0) := (11, 31) to Equation (6), we conclude
by Claim 9 that it has infinitely many solutions over the positive integers. We now finish the
proof by the following claim.

▷ Claim 10. Every solution (ni, ti) to Equation (6) over the positive integers with ni > 3 ·106

corresponds to a value of n such that the n×n grid does not admit a perfect game of PackIt!.

Proof of Claim 10. Let (ni, ti) be a solution to Equation (6) and let us argue that the ni × ni

does not admit a perfect game of PackIt!. First, consider that ti must be odd, as t2
i = 1+8n2

i ,
by Equation (6). Therefore (ti − 1)/2 is a positive integer. We now a argue that (ti − 1)/2
indeed matches the definition of K(ni, ni). Let us denote (ti − 1)/2 by K ′, and we will argue
that indeed K ′ = K(ni, ni). To see, this, consider that as Equation (6) has the same set of
solutions as Equation (5), it must be the case that

n2
i − K ′(K ′ + 1)

2 = 1,

T. Garrison, M. J. H. Heule, and B. Subercaseaux 14:9

implying that TK′ = n2
i − 1 ≤ n2

i . Moreover, we have that

TK′+1 = TK′ + (K ′ + 1) = n2
i + K ′ > n2

i ,

thereby confirming that K ′ = τ(n2
i) = K(ni, ni). Taking n := ni, we have by construction

that γ(n, n) = 1, and as n > 3 · 106 we have |P (n, n)| > 1. Therefore the condition
of Theorem 4 applies to n, implying the n × n grid does not admit a perfect packing. This
concludes the proof of the entire theorem. ◁

◀

Let us define notation γ−1(c) to denote the set {n ∈ N>0 | γ(n, n) = c}. The previous
proof showed that there are infinitely many values of n ∈ γ−1(1) that do not admit perfect
packings. We now show a much stronger statement.

▶ Theorem 11. For every value c ≥ 0, only a finite number of values n ∈ γ−1(c) allow for a
perfect packing of the n × n grid.

Proof. By Theorem 4, it suffices to show that for every value c ≥ 0, there are only finitely
many values of n such that

|P (n, n)| = {n < p ≤ K(n, n) | p is prime} ≤ c

We will do so by using the following improvement on Bertrand’s postulate due to Dusart.

▶ Proposition 12 ([8]). For every value of n > 3275, there exists a prime number p such that

n < p ≤ n

(
1 + 1

2 ln2 n

)
.

In particular, if we apply Proposition 12 exactly c + 1 times, we obtain that

∣∣∣∣∣
{

n < p ≤ n

(
1 + 1

2 ln2 n

)c+1 ∣∣∣ p is prime
}∣∣∣∣∣ ≥ c + 1, for every n > 3275.

Now, let us see that for every sufficiently large n it holds that

n

(
1 + 1

2 ln2 n

)c+1
≤ K(n, n),

which will be enough to conclude. Indeed, recall that by Claim 8 we have that K(n, n) ≥ 1.4n

for n ≥ 100, and hence it only remains for us to show that for sufficiently large n we have(
1 + 1

2 ln2 n

)c+1
≤ 1.4,

which must be true since the LHS is monotonically decreasing in n and its limit when n goes
to infinity is 1. ◀

▶ Theorem 13. For every even n ≥ 2, the 2 × n2

2 grid always admits a perfect game
of PackIt!.

FUN 2024

14:10 PackIt!: Gamified Rectangle Packing

1 2 2 3 3 3

4 4 4 4 5 5 5 5 5

1 1 2 2 3 3 3

4 4 4 4 5 5 5 5 5

1 1 2 2 4 4 4 4

3 3 3 5 5 5 5 5

(Initial Placement)

(Expansion Step)

(Final Swap)

Figure 4 Illustration of Case 1 for the proof of Theorem 13, for n = 4. In this case γn = 1.

Proof. The proof is constructive. Let K := K
(

2, n2

2

)
. As a first step, we place the first

n − 1 rectangles (i.e., 1 × t for t ∈ {1, . . . , n − 1}) in the first row, one after another, thus
covering the first n(n−1)

2 < n2

2 cells of the first row. Some of these rectangles will be expanded
later on in order to fill up the first row, meaning that the rectangle 1 × t, used in turn t will
be replaced by a rectangle 1 × (t + 1). The remaining K − n − 1 rectangles, for t ≥ n, will
be placed on the second row. We might have to move some rectangles from the first row
to the second row or vice-versa. The proof proceeds by cases over γ

(
2, n2

2

)
, which we will

abbreviate by γn to alleviate notation.

(Case 1: γn ≤ n
2). As introduced earlier, the first step is to place the first n − 1 rectangles

in the row one and the rest in row two. For the moment we do not care if row two is too
long or row one too short; we will deal with that in a moment. Next, expand the first γn

rectangles of row one. Originally, row one was n2

2 − n(n−1)
2 = n

2 cells too short, and after
the expansion of the first γn rectangles it is n

2 − γn cells too short. By Lemma 3, the γn

expansions in row one, guarantee that the total area of rectangles in row one and two adds
up to exactly n2. As a result, row two must be exactly n

2 − γn cells too large. If γn were to
be exactly n

2 , we would be done immediately. Otherwise, we will swap a rectangle from row
one with a rectangle from row two. Indeed, note that r n

2 +γn
, the 1 × n

2 + γn rectangle, is
still on row one, and it was not expanded. Therefore, we can swap r n

2 +γn (from row one)
with rn (from row two). As a result, row one has grown by n −

(
n
2 + γn

)
= n

2 − γn cells, and
row two has shrunk by the same amount. Therefore both rows have reached their desired
length. This case is illustrated in Figure 4.

(Case 2: n
2 < γn < n − 1). As before, placing the first n − 1 rectangles in row one makes

the first row n
2 cells too short. Then, if we place rectangles rn, . . . , rK in row two, given that

in total γn expansions are required to achieve the total desired area (Lemma 3), it must be
the case that row two is γn − n

2 cells too short. Naively, we would simply expand n
2 rectangles

in the first row, and γn − n
2 in the second row. However, the second row might contain fewer

than γn − n
2 rectangles. To address this, we will transfer a rectangle from row one to row

T. Garrison, M. J. H. Heule, and B. Subercaseaux 14:11

two, and perform more expansions on row one, which concentrates most of the rectangles.
Let us identify which rectangle will be moved from row one to row two. Let us define

i = γn − n

2 .

Transfer ri from row one to row two, and expand the first γn < n − 1 of the rectangles in
row one. Since γn expansions have been made, the total area is exactly n2

2 , and thus it only
remains to argue that the top row has exactly n2

2 cells covered. This is indeed the case as

n(n − 1)
2 + γn − i = n(n − 1)

2 + γn −
(

γn − n

2

)
= n2

2 .

(Case 3: γn ≥ n − 1). Place the first n − 1 rectangles in row one and the rest in row two.
Expanding all n − 1 rectangles in the first row, and then expand γn − (n − 1) rectangles
in the second row. Let i = n

2 − 2 (if n ∈ {2, 4}, the result can be checked manually, and
therefore we assume i ≥ 1 is a valid index for a rectangle). Move rectangle ri from row one
to row two. As in the previous case, it only remains to argue that the number of cells in the
top row is exactly n2

2 . This is indeed the case as the number is determined by

n(n − 1)
2 + (n − 1) − (i + 1) = n(n − 1)

2 + (n − 1) −
(n

2 − 1
)

= n2

2 .

Having covered all cases, we conclude the entire proof. ◀

3 Complexity Results

In turn t of a game of PackIt!, the turn in which each of the already placed rectangles was
packed into the grid is irrelevant, and therefore a partially filled grid G of dimensions n × n

can be represented as an n × n matrix over {0, 1}. We will assume this representation uses
O(n2) bits. Consider now the following problem:

PROBLEM: : SolitairePackIt!
INPUT : A partially filled grid G, and a turn number t given in

binary.
OUTPUT : Whether it is possible to complete a perfect packing for

G starting from turn t.

We will analyze the complexity of SolitairePackIt! next, but before that, let us remark that
the definition of the problem does not require the partial filling of G to be achievable in t − 1
turns. We leave the complexity of SolitairePackIt! with the additional restriction that G

must be achievable in t − 1 turns as an open problem. That being said, we can present our
main complexity result.

▶ Theorem 14. SolitairePackIt! is NP-complete.

Proof. Let n×n be the the dimensions of G. Membership in NP is easy to see: the certificate
is a description of the turns t, ..., t + m, where m = K(n, n) ≤ n2, and it suffices to check
that at each turn t + i, a rectangle of the appropriate area was placed without overlapping
with any of the previously placed rectangles. For hardness, we reduce from a variant of the
well-known 3 partition problem, proven to be NP-hard by Hulett, Will and Woeginger [12].
The overall reduction is inspired by the analysis of Tetris by Breukelaar et al. [5]. Consider
the Restricted-3-Partition problem defined as follows.

FUN 2024

14:12 PackIt!: Gamified Rectangle Packing

PROBLEM: : Restricted-3-Partition
INPUT : A set of integers, A = {α1, . . . , αn}, with n a multiple of 3,

such that if we define T :=
∑n

i=1
αi

(n/3) , then T/4 < αi < T/2
for every i ∈ [n].

OUTPUT : Whether it is possible to partition A into n/3 sets of 3
elements, all of them having sum exactly T .

Consider now the 4-Restricted-3-Partition, defined exactly as above but with the additional
restriction that all numbers αi are multiples of 4. This additional restriction preserves NP-
hardness as every 3-partition P defined as

{4α1, . . . , 4αn} P7−→ ({4αi, 4αj , 4αk} , . . . , {4αx, 4αy, 4αz})

is in a one-to-one correspondence with a 3-partition P ′ defined as

{α1, . . . , αn} P ′

7−→ ({αi, αj , αj} , . . . , {αx, αy, αz}) .

We can therefore reduce directly from 4-Restricted-3-Partition. Let A be an input instance
of 4-Restricted-3-Partition. We now show how to construct an associated instance of Soli-
tairePackIt!. First, we will present the required gadgets, which are illustrated in Figure 5.

E-gadgets. An E-gadget consists of a T × 3 grid, in which the first and third column are
completely filled, whereas the middle column is completely empty (hence E(mpty)-gadget).
An illustration is presented in Figure 5b.

S-gadgets. Given an integer α ≥ 1, an S(α)-gadget consists of a T × 3 grid, in which the
first and third column are completely filled, whereas only the bottom T − α rows of the
middle column are filled. In other words, S(α)-gadgets have a single “hole” of α × 1, hence
their name. An illustration is presented in Figure 5b.

D-gadgets. Given an integer α ≥ 1, a D(α)-gadget consists of a T × 3 grid, in which the
first and third column are completely filled, and the middle column is filled only at row α + 1
and rows {2α + 2, 2α + 3, . . . , T}. In other words, D(α)-gadgets have two “holes” of α × 1,
i.e., a double hole, hence their name. An illustration is presented in Figure 5c.

With these gadgets, we can now construct a (T + n) × (T + n) grid as follows. First,
horizontally concatenate exactly n/3 identical E-gadgets. Next, concatenate an S(1)-gadget to
the right of the current construction. Then, for every odd value m such that 3 ≤ m < max(A),
concatenate a D(m)-gadget to the right of the current construction if m − 1 ̸∈ A, and instead
an S(m + 1)-gadget to the right of the current construction otherwise.

Afterwards, if the resulting grid has length T × T ′, we complete a T × (T + n) grid by
concatenating a T × (T +n−T ′) completely filled grid to the right of the current construction.
This is well-defined, meaning that T ′ < T + n, as we show next. First, consider that, as each
gadget uses exactly 3 columns, we have

T ′ = 3 · n/3 + 3 ·
∣∣{3 ≤ m < max(A) | m is odd

}∣∣
≤ n + 3

⌈
max(A) − 3

2

⌉
< n + 3max(A)

2 .

T. Garrison, M. J. H. Heule, and B. Subercaseaux 14:13

(a) An E-gadget. (b) An S(4)-gadget. (c) A D(3)-gadget.

Figure 5 Illustration of the gadgets for T = 10.

Next, consider that

T =
(∑

α∈A
α

)
/(n/3) ≤ 3 max(A).

Then, as max(A) ≤ T/2 by the definition of 4-Restricted-3-Partition, we have

T ′ ≤ n + 3 · max(A)
2 ≤ n + 3 · T

4 < T + n.

Finally, to go from the resulting T × (T + n) grid to a (T + n) × (T + n) grid it suffices to
concatenate a completely filled n × (T + n) grid at the bottom of the previous grid. This
construction is illustrated in Figure 6. We are now ready to prove the correctness of our
reduction. Let GA be the (T + n) × (T + n) grid constructed by the above process.

▶ Lemma 15. The instance (GA, 1) is a Yes-instance for SolitairePackIt! if and only if A
is a Yes-instance for 4-Restricted-3-Partition.

Proof. (⇐=) Let us start with the backward direction since it is simpler. Assume there
is a solution to the partition problem with sets S1, . . . , Sn/3, where each set has exactly 3
elements and its sum is exactly T . Then, we can complete a perfect packing of G as follows.
On each turn 1 ≤ t ≤ max(A):
Case I) If t ∈ A, then let i be the index such that t = αi, and j be the index of the set Sj

such that αi ∈ Sj . Then, on this turn we can place a rectangle of dimensions t × 1 into
the j-th E-gadget of GA.

Case II) If t = 4k for some positive integer k but t ̸∈ A, then by construction there is a
D(t + 1)-gadget, which can be filled by placing a (t + 1) × 1 rectangle on this turn, and a
(t + 1) × 1 rectangle on the next turn.

Case III) If t = 4k + 1 and t − 1 ∈ A, then by construction there is an S(t + 1)-gadget, which
can be filled by placing a (t + 1) × 1 rectangle on this turn.

Case IV) If t = 4k + 1 for some integer k, and t − 1 ̸∈ A, then this turn has been covered in
Case II).

FUN 2024

14:14 PackIt!: Gamified Rectangle Packing

.T

n

T + n

Figure 6 Illustration of the construction of GA for Theorem 14. Note that n could be larger than
T , and thus this figure is not necessarily in scale.

Case V) If t = 4k + 2 for some integer k, then by by construction there is a D(t + 1)-gadget,
which can be filled by placing a (t + 1) × 1 rectangle on this turn, and a (t + 1) × 1
rectangle on the next turn.

Case VI) If t = 4k + 3 then this turn has been covered in Case V).
As a result of the turns of Case I), every E-gadget will be completely filled since by definition,
if αi, αk, αℓ ∈ Sj , then αi + αk + αℓ = T . As there are exactly n/3 identical E-gadgets in
GA, they will all be filled. Note as well that the gadgets used in every case are different. In
particular, the only S-gadgets in the construction are for t + 1 = 4k + 2 with t − 1 ∈ A, which
are all used by Case III). Similarly, all D(m)-gadgets for m = 4k + 1 for some integer k are
used by Case II), whereas all D(m)-gadgets for m = 4k + 3 are used by Case V). Given all
gadgets are perfectly filled up, we have a perfect packing of GA.

(=⇒) For the forward direction, assume it is possible to perfectly pack the grid GA
starting from turn 1. Let GP

A be any perfect packing completing GA. Note immediately
that by construction, every rectangle placed in GP

A from turn 1 onward must have dimension
t × 1 for some positive integer t. Intuitively, we will now prove that the choices made in the
backward direction of the proof are forced.

T. Garrison, M. J. H. Heule, and B. Subercaseaux 14:15

▶ Definition 16. For any turn t ≥ 1, we say the rectangle placed in GP
A on turn t is proper

if either
1. t = 1, and the rectangle placed in GP

A on this turn was a 1 × 1 rectangle placed in the
only S(1)-gadget of GA.

2. t > 1 is odd, and t − 1 ∈ A, and the rectangle placed in GP
A on this turn was a (t + 1) × 1

placed in the only S(t + 1)-gadget of GA.
3. t > 1 is odd and t − 1 ̸∈ A, and the rectangle placed in GP

A on this turn was a t × 1 placed
in one of the two spaces of the only D(t)-gadget of GA.

4. t ∈ A, and the rectangle placed in GP
A on this turn was placed in one of the E-gadgets.

5. t is even but t ̸∈ A, and the rectangle placed in GP
A on this turn was a (t + 1) × 1 placed

in one of the two spaces of the only D(t + 1)-gadget of GA.

▷ Claim 17. Every turn t ≥ 1 where a rectangle was placed in GP
A must have been proper.

Proof of Claim 17. We prove the claim by induction on t. The base case is t = 1, for which a
single S(1)-gadget exists in the construction, and given that the 1 × 1 empty space in this
gadget must be filled in GP

A, the only turn on which it can be filled is turn 1. Therefore the
base case works. For the inductive case, assume the claim holds up to t and let us show it
holds for t + 1.

If t + 1 is odd and t ∈ A, then we claim the rectangle placed on turn t + 1 must have
been a (t + 2) × 1 rectangle in the only S(t + 2)-gadget of GA. Indeed, if this were not
the case, said gadget could only have been filled by a (t + 2) × 1 rectangle placed on turn
(t + 2), since all previous turns have been proper and thus not placed anything in the
S(t + 2)-gadget. However, given there are two empty spaces of size (t + 3) into the only
D(t + 3)-gadget of GA (which must exist since t ∈ A =⇒ t + 2 ̸∈ A as all elements of A
are multiples of 4), and no previous turns could have placed anything into them as they
are proper by inductive hypothesis, then we conclude that on turn (t + 2) a rectangle of
size (t + 3) must have been placed into the only D(t + 3)-gadget of GA.
If t + 1 is odd and t ̸∈ A, then given all the previous turns have been proper, it must be
that the only D(t + 1)-gadget of GA has only received a (t + 1) × 1 rectangle placed on
turn t, according to (5) in the definition of proper turn. Therefore, a single (t + 1) × 1
empty space remains in the only D(t + 1)-gadget of GA, and it must be that is filled on
this turn, as any posterior turns will have rectangles of area at least t + 2.
If t + 1 is even but t + 1 ̸∈ A, then given all turns so far have been proper, there are two
empty (t + 2) × 1 spaces in the only D(t + 2)-gadget of GA, and given none can be filled
after turn t + 3, and at most one can be filled in turn t + 2, we conclude that turn t + 1
must fill one.
If t + 1 ∈ A, and this turn were to be improper, then the rectangle placed on this turn
must be placed either in an S(t′)-gadget or in a D(t′)-gadget.
In either case we will reach a contradiction. Note first that t′ > t + 2: in the construction
of GA, as t is odd and t − 1 ̸∈ A, when m = t a D(t)-gadget was created, and the next
gadget created is a S(t + 3)-gadget when m = t + 2, since m − 1 ∈ A. Next, note that the
remaining empty space on the S(t′)-gadget or the D(t′)-gadget partially filled on turn
t + 1 must be at least t′ − (t + 2) > 0. If t′ − (t + 2) < t + 2, then that remaining empty
space can never be filled in posterior turns, where all rectangles have area at least t + 2,
a contradiction. Otherwise, t′ − (t + 2) > t + 1, meaning that t′ > 2t + 3. Because an
S(t′)-gadget or a D(t′)-gadget exists, we deduce from the construction that t′ ≤ max(A).
This implies that

max(A) > t′ − 1 > 2t + 2 = 2(t + 1),

FUN 2024

14:16 PackIt!: Gamified Rectangle Packing

meaning that two elements of A, namely

αi := max(A), αj := t + 1,

hold αi > 2αj . But by definition of 4-Restricted-3-Partition that would imply the
following contradiction:

T/4 < αj < αi/2 < (T/2)/2 = T/4. ◁

By Claim 17, we have that for every αt ∈ A, a rectangle of area αt has been placed inside
an E-gadget. Given that T/2 < αt < T/4 for every t, there must be exactly 3 rectangles
placed inside every E-gadget. Let α

(1)
i , α

(2)
i , α

(3)
i be the areas of the three rectangles placed

inside the i-th E-gadget. As for every i, by hypothesis, the i-th E-gadget is perfectly filled
and had t empty cells to be filled, we conclude that that α

(1)
i + α

(2)
i + α

(3)
i = T , from where

it follows that A is a Yes-instance to the 4-Restricted-3-Partition problem. This concludes
the proof of Lemma 15. ◀

Given the reduction presented above can clearly be carried out in polynomial time, we
conclude hardness from the correctness proved in Lemma 15, and consequently this finishes
the entire proof of Theorem 14. ◀

4 Computing Perfect PackIt! games

Even though Theorem 14 does not directly imply that it is hard to find perfect packings for
an n × n grid (or to decide whether such a packing exist), it arguably gives evidence for this
being a hard combinatorial challenge.

In many combinatorial problems SAT-solving can dramatically outperform backtracking
approaches. This also happens to be the case for computing perfect PackIt! games, where
even after several optimizations, a backtracking approach only allowed us to find perfect
packings up to n = 20. In contrast, by using a novel SAT encoding technique we were able
to find perfect packings up to n = 50 in under 24 hours of computation. As in Section 2, we
divide the problem into two stages: (i) finding a set of rectangles (ht, vt) such that

Their total area is n2, meaning that
∑

t ht · vt = n2.
The t-th rectangle has area t or t + 1, meaning that ht · vt ∈ {t, t + 1} for every t.
All rectangles fit into the n × n grid, meaning that max(ht, vt) ≤ n.

and (ii), packing the rectangles obtained in the previous stage without overlaps. Note that
due to the area condition, if a valid rectangle selection is packed without overlapping, then
they must cover the entire n × n grid.

For stage (i), we use a pseudo-polynomial dynamic programming approach, similar to the
one used for the standard subset sum problem. For stage (ii) we use a sophisticated SAT
encoding that uses only O(n3) many clauses as opposed to the naive O(n4) encoding. Due
to space constraints, both the dynamic programming formulation and the SAT encoding is
presented in the extended arXiv version of this paper, at https://arxiv.org/abs/2403.
12195.

4.1 Computational Results
All experiments have been run on a personal computer with the following specifications:

MacBook Pro M1, 2020, running Sonoma 14.3
16GB of RAM
8 cores (but all experiments were run in a single thread).

https://arxiv.org/abs/2403.12195
https://arxiv.org/abs/2403.12195

T. Garrison, M. J. H. Heule, and B. Subercaseaux 14:17

In terms of software, we experimented with different SAT-solvers, and obtained the best
results using the award-winning solver Kissat [3]. We tested every value of n between 5 and 50
and such that neither Theorem 4 nor Theorem 5 applies, and for every value we were able to
find a perfect game of PackIt! in under 24 hours. For each such value, we used the dynamic
programming approach to generate a valid selection of rectangles, and simply used the first
one obtained. Given the number of valid selections of rectangles is likely exponential in n,
it could be that some valid selections are significantly easier to pack than others. The fact
that we obtained perfect packings simply using the first valid rectangle selection obtained
via dynamic programming confirms the robustness of the SAT approach.

Detailed results are presented in Table 1. As it is common for families of satisfiable
formulas, the runtime is not strictly monotone with n, even though the size of the encoding
is (both the number of variables and clauses).

Table 1 Computational results for n ∈ {5, . . . , 50}. Perfect packings for n ∈ {1, . . . , 4} are trivial.

n #vars #clauses SAT runtime

5 141 424 0.0s
(Theorem 4 applies) 6 - - -

7 297 1101 0.0s
8 375 1482 0.0s
9 510 2228 0.02s

10 611 2797 0.02s
11 780 3921 0.02s
12 904 4732 0.03s
13 1037 5673 0.19s
14 1254 7375 0.16s
15 1410 8584 0.04s
16 1661 10838 0.56s
17 1840 12397 0.20s

(Theorem 5 applies) 18 - - -
19 2327 17184 0.20s
20 2538 19339 2.47s
21 2871 23037 2.08s
22 3105 25582 2.04s

(Theorem 4 applies) 23 - - -
24 3729 33117 4.43s
25 3995 36396 2.80s
26 4410 41980 2.69s
27 4699 45737 23.21s
28 5148 52283 8.45s
29 5460 56636 17.24s

(Theorem 5 applies) 30 - - -
31 6278 69109 34.26s
32 6622 74340 48.17s
33 7153 83288 36.37s
34 7520 89207 107.23s

(Theorem 4 applies) 35 - - -
36 8475 105934 747.46s
37 8874 112997 194.33s
38 9487 124629 502.20s
39 9909 132324 442.62s
40 10556 145392 129.71s
41 11001 153969 6117.58s
42 11455 162890 2088.45s
43 12150 177744 923.03s
44 12627 187501 579.50s
45 13356 203857 3185.11s
46 13856 214540 2188.39s

(Theorem 5 applies) 47 - - -
48 15142 244107 48102.44s
49 15674 256188 23337.97s
50 16485 276182 15925.77s

FUN 2024

14:18 PackIt!: Gamified Rectangle Packing

5 Concluding Remarks

We have analyzed several aspects of PackIt!:
1. Every 2 × n2

2 grid admits a perfect PackIt! game.
2. For every n ≤ 50 such that neither Theorem 4 nor Theorem 5 applies, the n × n grid

admits a perfect PackIt! game. In other words, Conjecture 6 is true for all values of
n ≤ 50.

We hope that both our mathematical and computational techniques can be applicable to
similar packing problems. The “Mondrian Art Puzzle” [9, 14] asks for perfect packings of
n × n grids but where all rectangles must use the same area. Recently, the MIT CompGeom
Group has studied perfect packings for rectangular grids with square pieces [11]. Then, in
terms of concrete PackIt! questions, we pose the following challenges:
1. Prove or refute Conjecture 6.
2. Is there always a perfect packing of the m × n grid when γ(m, n) = K(m, n)/2? In this

case, exactly half of the turns are expansion turns. In particular, this might be easier to
show assuming m and n are even.

3. What is the complexity of PackIt! as a 2-player game? It is well known that complexity
tends to increase in 2-player formulations (see e.g., [7]), so could PackIt! be complete
for the class PSPACE?

In terms of our web implementation of PackIt!, future work includes the design of an
online multiplayer mode, and AIs that could be faced as opponents.

References
1 Jérémy Barbay and Bernardo Subercaseaux. The Computational Complexity of Evil Hangman.

In Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara, editors, 10th International
Conference on Fun with Algorithms (FUN 2021), volume 157 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 23:1–23:12, Dagstuhl, Germany, 2020. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.FUN.2021.23.

2 Edward J Barbeau. Pell’s Equation. Problem Books in Mathematics. Springer, New York,
NY, 2003 edition, January 2003.

3 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling Entering the SAT Competition 2020. In Tomas Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of
SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department
of Computer Science Report Series B, pages 51–53. University of Helsinki, 2020.

4 Charles L. Bouton. Nim, A Game with a Complete Mathematical Theory. Annals of
Mathematics, 3(1/4):35–39, 1901. doi:10.2307/1967631.

5 Ron Breukelaar, Erik D. Demaine, Susan Hohenberger, Hendrik Jan Hoogeboom, Walter A.
Kosters, and Dadvid Liben-Nowell. Tetris is Hard, Even to Approximate. International
Journal of Computational Geometry & Applications, 14:41–68, April 2004. doi:10.1142/
S0218195904001354.

6 Kevin Buchin, Mart Hagedoorn, Irina Kostitsyna, and Max van Mulken. Dots & boxes is
PSPACE-complete, 2021. arXiv:2105.02837.

7 Erik. D Demaine, William Gasarch, and Mohammad Hajiaghayi. Computational Intractability:
A Guide to Algorithmic Lower Bounds. https://hardness.mit.edu/.

8 Pierre Dusart. Autour de la fonction qui compte le nombre de nombres premiers. PhD thesis,
Université de Limoges, 1998. Thèse de doctorat dirigée par Robin, Guy Mathématiques
appliquées. Théorie des nombres Limoges 1998. URL: http://www.theses.fr/1998LIMO0007.

https://doi.org/10.4230/LIPIcs.FUN.2021.23
https://doi.org/10.2307/1967631
https://doi.org/10.1142/S0218195904001354
https://doi.org/10.1142/S0218195904001354
https://arxiv.org/abs/2105.02837
http://www.theses.fr/1998LIMO0007

T. Garrison, M. J. H. Heule, and B. Subercaseaux 14:19

9 Natalia García-Colín, Dimitri Leemans, Mia Müßig, and Érika Roldán. There is no perfect
mondrian partition for squares of side lengths less than 1001. arXiv preprint arXiv:2311.02385,
2023.

10 Martin Gardner. Mathematical games. Scientific American, 223(4):120–123, October 1970.
doi:10.1038/scientificamerican1070-120.

11 MIT CompGeom Group, Zachary Abel, Hugo A. Akitaya, Erik D. Demaine, Adam C. Hester-
berg, and Jayson Lynch. When can you tile an integer rectangle with integer squares?, 2023.
arXiv:2308.15317.

12 Heather Hulett, Todd G. Will, and Gerhard J. Woeginger. Multigraph realizations of degree
sequences: Maximization is easy, minimization is hard. Operations Research Letters, 36(5):594–
596, September 2008. doi:10.1016/j.orl.2008.05.004.

13 Gary McGuire, Bastian Tugemann, and Gilles Civario. There is no 16-clue sudoku: Solving
the sudoku minimum number of clues problem, 2013. arXiv:1201.0749.

14 Cooper O’Kuhn. The mondrian puzzle: A connection to number theory, 2018. arXiv:
1810.04585.

15 Lowell Schoenfeld. Sharper Bounds for the Chebyshev Functions θ(x) and ψ(x). II. Mathematics
of Computation, 30(134):337–360, 1976. doi:10.2307/2005976.

FUN 2024

https://doi.org/10.1038/scientificamerican1070-120
https://arxiv.org/abs/2308.15317
https://doi.org/10.1016/j.orl.2008.05.004
https://arxiv.org/abs/1201.0749
https://arxiv.org/abs/1810.04585
https://arxiv.org/abs/1810.04585
https://doi.org/10.2307/2005976

	1 Introduction
	1.1 Definition of PackIt!

	2 Arithmetic Results
	3 Complexity Results
	4 Computing Perfect PackIt! games
	4.1 Computational Results

	5 Concluding Remarks

