
Polyamorous Scheduling
Leszek Gąsieniec #

University of Liverpool, UK

Benjamin Smith #

University of Liverpool, UK

Sebastian Wild #

University of Liverpool, UK

Abstract
Finding schedules for pairwise meetings between the members of a complex social group without
creating interpersonal conflict is challenging, especially when different relationships have different
needs. We formally define and study the underlying optimisation problem: Polyamorous Scheduling.

In Polyamorous Scheduling, we are given an edge-weighted graph and try to find a periodic
schedule of matchings in this graph such that the maximal weighted waiting time between consecutive
occurrences of the same edge is minimised. We show that the problem is NP-hard and that there is
no efficient approximation algorithm with a better ratio than 4/3 unless P = NP. On the positive
side, we obtain an O(log n)-approximation algorithm; indeed, an O(log ∆)-approximation for ∆

the maximum degree, i.e., the largest number of relationships of any individual. We also define a
generalisation of density from the Pinwheel Scheduling Problem, “poly density”, and ask whether
there exists a poly-density threshold similar to the 5/6-density threshold for Pinwheel Scheduling
[Kawamura, STOC 2024]. Polyamorous Scheduling is a natural generalisation of Pinwheel Scheduling
with respect to its optimisation variant, Bamboo Garden Trimming.

Our work contributes the first nontrivial hardness-of-approximation reduction for any periodic
scheduling problem, and opens up numerous avenues for further study of Polyamorous Scheduling.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Scheduling algorithms

Keywords and phrases Periodic scheduling, Pinwheel scheduling, Edge-coloring, Chromatic index,
Approximation algorithms, Hardness of approximation

Digital Object Identifier 10.4230/LIPIcs.FUN.2024.15

Related Version Full Version: https://arxiv.org/abs/2403.00465

Funding Sebastian Wild: Engineering and Physical Sciences Research Council grant EP/X039447/1.

Acknowledgements We are grateful to Viktor Zamaraev for setting us on the right track with
the chromatic-index problem, and for several fruitful initial discussions. We also wish to thank
Casper Moldrup Rysgaard, Justin Dallant, and Oliver Kim for their helpful contributions; especially
Casper, who acted as our rubber duck for a brutally unpolished version of the original hardness-of-
approximation reduction.

1 Introduction

We study a natural periodic scheduling problem faced by groups of regularity-loving polyamor-
ous people: Consider a set of persons and a set of pairwise relationships between them, each
with a value representing its neediness, importance, or emotional weight. Find a periodic
schedule of pairwise meetings between couples that minimizes the maximal weighted waiting
time between such meetings, given that each person can meet with at most one of their
partners on any particular day.

Before formally defining the Polyamorous Scheduling Problem (Poly Scheduling for short),
we illustrate some features of the problem on an example. Figure 1 shows an instance
using the natural graph-based representation: We have vertices for people and weighted

© Leszek Gąsieniec, Benjamin Smith, and Sebastian Wild;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Fun with Algorithms (FUN 2024).
Editors: Andrei Z. Broder and Tami Tamir; Article No. 15; pp. 15:1–15:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:l.a.gasieniec@liverpool.ac.uk
https://orcid.org/0000-0003-1809-9814
mailto:b.m.smith@liverpool.ac.uk
https://orcid.org/0000-0003-2306-3461
mailto:wild@liverpool.ac.uk
https://orcid.org/0000-0002-6061-9177
https://doi.org/10.4230/LIPIcs.FUN.2024.15
https://arxiv.org/abs/2403.00465
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Polyamorous Scheduling

¥

¥

¥

¥

¥

¥

¥

¥

AA

BB

CC

DD

EE

FF

GG

HH

40♡
80♡

16♡20♡

40♡

40♡
40♡ 80♡

16♡80♡

¥

¥

¥

¥

¥

¥

¥

¥

AA

BB

CC

DD

EE

FF

GG

HH

4♡
2♡

10♡8♡

4♡

4♡
4♡ 2♡

10♡2♡

Day A–B A–D A–F B–C C–D D–E D–G E–F E–H F–G

0 ♥ ♥ ♥ ♥

1 ♥ ♥ ♥

2 ♥ ♥ ♥

3 ♥ ♥

4 ♥ ♥ ♥ ♥

5 ♥ ♥

6 ♥ ♥ ♥

7 ♥ ♥

Figure 1 An example Optimisation Polyamorous Scheduling instance with 8 persons: Adam,
Brady, Charlie, Daisy, Eli, Frankie, Grace, and Holly. Top left: Graph representation with edge
labels showing the weight (desire growth rates) of each pairwise relationship. Bottom: An optimal
schedule for the instance. On each day, a set of meetings is scheduled as indicated by ♥s. The
schedule has a period of 8 days: after day 7, we start from day 0 again. Top right: A decision
version of the instance obtained for heat 160. The edge labels here are the frequencies with which
edges have to be scheduled stay below heat 160.

(undirected) edges for relationships. It is easy to check that the schedule given at the bottom
of Figure 1 never schedules more than one daily meeting for any of the 8 persons in the
group; in the graph representation, the set of meetings for each day must form a matching.
Each day the mutual desire for a meeting experienced by each couple grows by the weight or
desire growth rate of that relationship1 – that is, until a meeting occurs and their desire is
reset to zero. We will refer to the highest desire ever felt by any pair when following a given
schedule as the heat of the schedule. The heat of the schedule in Figure 1 is 160: as the
reader can verify, no pair ever feels a desire greater than 160 before meeting and resetting
their desire to zero. Desire 160 is also attained; e.g., Adam and Daisy are scheduled to see
each other every other day, but over the period of 2 days between subsequent meetings, their
desire grows to 2 · 80 = 160.

For the instance in Figure 1, it is easy to show that no schedule with heat < 160 exists.
For that, we first convert from desire growth rates to required frequencies: Under a heat-160
schedule, a pair with desire growth rate g must meet at least every ⌊160/g⌋ days. The
top-right part of Figure 1 shows the result. It is easy to check that the given schedule
indeed achieves these frequencies. However, any further reduction of the desired heat to

1 “Remember, absence makes the heart grow fonder” [10].
(https://getyarn.io/yarn-clip/ae628721-c1d1-49d1-bd7c-78cbffceabf0)

https://getyarn.io/yarn-clip/ae628721-c1d1-49d1-bd7c-78cbffceabf0

L. Gąsieniec, B. Smith, and S. Wild 15:3

160 − ε would leave, e.g., Adam hopelessly overcommitted: the relation with Daisy would get
frequency ⌊(160 − ε)/80⌋ = 1, forcing them to meet every day; but then Brady and Frankie,
each with frequency ⌊(160 − ε)/40⌋ ≤ 3 cannot be scheduled at all.

While local arguments suffice for our small example, in general, Poly Scheduling is
NP-hard (as shown below). We therefore focus this paper on approximation algorithms and
inapproximability results.

1.1 Formal Problem Statement
We begin by defining a decision version of Poly Scheduling. In the Decision Polyamorous
Scheduling Problem, we are given a set of people and pairwise relationships with “attendance
frequencies” fi,j , and we are trying to find a daily schedule of two-person meetings such
that each couple {i, j} meets at least every fi,j days. The only constraint on the number of
meetings that can occur on any given day is that each person can only participate in at most
one of them. A Decision Polyamorous Scheduling instance can naturally be modelled as a
graph of people with the edges representing their relationships. Because each person can
participate in at most one meeting per day, the edges scheduled on any given day must form
a matching in this graph.

▶ Definition 1 (Decision Polyamorous Scheduling (DPS)). A DPS instance Pd = (P, R, f) (a
“decision polycule”) consists of an undirected graph (P, R) where the vertices P = {p1, . . . , pn}
are n persons and the edges R are pairwise relationships, with integer frequencies f : R → N
for each relationship.

The goal is to find an infinite schedule S : N0 → 2R, such that
(1) (no conflicts) for all days t ∈ N0, S(t) is a matching in Pd, and
(2) (frequencies) for all e ∈ R and t ∈ N0, we have e ∈ S(t) ∪ S(t + 1) ∪ · · · ∪ S(t + f(e) − 1);
or to report that no such schedule exists. In the latter case, Pd is called infeasible.

We write fi,j and fe as shorthands for f({pi, pj}) resp. f(e). An infinite schedule exists
if and only if a periodic schedule exists, i.e., a schedule where there is a period T ∈ N such
that for all t, we have S(t) = S(t + T): any feasible schedule corresponds to an infinite walk
in the finite configuration graph of the problem (see Section 3), implying the existence of a
finite cycle. A periodic schedule can be finitely described by listing S(0), S(1), . . . , S(T − 1).

By relaxing the hard maximum frequencies of meetings between couples to “desire growth
rates”, we obtain the Optimisation Polyamorous Scheduling (OPS) Problem. Our objective
is to find a schedule that minimizes the “heat”, i.e., the worst pain of separation ever felt in
the polycule by any couple.

▶ Definition 2 (Optimisation Polyamorous Scheduling). An OPS instance (or “optimisation
polycule”) Po = (P, R, g) consists of an undirected graph (P, R) along with a desire growth
rate g : R → R>0 for each relationship in R. An infinite schedule S : N0 → 2R is valid if,
for all days, t ∈ N0, S(t) is a matching in Po.

The goal is to find a valid schedule that minimizes the heat h = h(S) of the schedule
where h(S) = max

e∈R
he(S) and

he(S) = sup
d∈N

{
(d + 1) · g(e) ∃t ∈ N0 : e /∈ S(t) ∪ S(t + 1) ∪ · · · ∪ S(t + d − 1);
g(e) otherwise.

As for DPS, S can be assumed to be periodic without loss of generality, meaning that S

is finitely representable.

FUN 2024

15:4 Polyamorous Scheduling

1.2 Related Work
Polyamorous Scheduling itself has not been studied to our knowledge. Other variants of
periodic scheduling have attracted considerable interest recently [24, 18, 1], including FUN [4].

The simplest periodic scheduling problem is arguably Pinwheel Scheduling. In Pinwheel
Scheduling [19] we are given k positive integer frequencies f1 ≤ f2 ≤ · · · ≤ fk, and the
goal is to find a Pinwheel schedule, i.e., an infinite schedule of tasks 1, . . . , k such that any
contiguous time window of length fi contains at least one occurrence of i, for i = 1, . . . , k,
(or to report the non-existence of such a schedule).

Pinwheel Scheduling is NP-hard [22], but unknown to be in NP [24], (see [14] for more
discussion). Poly Scheduling inherits these properties.

The density of a Pinwheel Scheduling instance is given by d =
∑k

i=1 1/fi. It is easy to
see that d ≤ 1 is a necessary condition for A to be schedulable, but this is not sufficient,
as the infeasible instance (2, 3, M) with d = 5

6 + 1/M , for any M ∈ N shows. However,
there is a threshold d∗ so that d ≤ d∗ implies schedulability: Whenever d ≤ 1

2 , we can
replace each frequency fi by 2⌈lg(fi)⌉ without increasing d above 1; then a periodic Pinwheel
schedule always exists using the largest frequency as period length. A long sequence of
works [19, 6, 20, 26, 7, 13, 11, 14] successively improved bounds on d∗, culminating very
recently in Kawamura’s proof [24] that it is indeed a sharp threshold, d∗ = 5

6 , confirming
the corresponding conjecture of Chan and Chin from 1993 [20]. Generalizations of Pinwheel
Scheduling have also been studied, e.g., with jobs of different lengths [17, 12].

Pinwheel Scheduling is a special case of DPS, where the underlying graph (P, R) is a
star, i.e., a centre connected to k pendant vertices with edges of frequencies f1, . . . , fk. Note
that it is not generally possible to obtain a polyamorous schedule by combining the local
schedule of each person2; see for example a triangle with edge frequencies 2: In the DPS
instance ({A, B, C}, {A−B, B−C, A−C}, f) with f(e) = 2 for all edges, the local problem
for each person is feasible by alternating between their two partners, but the global DPS
instance has no solution. This example also shows that the simple strategy of replacing fi by
2⌈lg(fi)⌉ is not sufficient to guarantee the existence of a schedule for Poly Scheduling. Indeed,
it is unclear whether any such constant-factor scaling of frequencies exists which applies to
all Poly Scheduling instances.

There are two natural optimisation variants of Pinwheel Scheduling. In Windows Sched-
uling [3] tasks with frequencies are given and the goal is to find a perpetual scheduling that
minimizes the number of tasks that need to be done simultaneously while respecting all
frequencies (i.e., the number of channels or servers needed to schedule all tasks). Efficient
constant-factor approximation algorithms are known that use the connection to Bin Pack-
ing [2] (where we bin tasks by used channels), even when the sets of tasks to schedule changes
over time [8].

The Bamboo Garden Trimming (BGT) Problem [16, 15] retains the restriction of one task
per day, but converts the frequencies into growth rates g1 ≤ · · · ≤ gk (of k bamboo plants
1, . . . , k) and asks to find a perpetual schedule that minimizes the height ever reached by
any plant. BGT also allows efficient constant-factor approximations whose approximation
factor has seen a lively race of successively improvements over last few years: from 2 [16]
over 12

7 ≈ 1.71 [28], 1.6 [15], and 1.4 [18], down to the current record, 4
3 ≈ 1.33, again by

Kawamura [24]. As for the Windows Scheduling problem, no hardness of approximation
results are known. It remains open whether it is possible to obtain a PTAS for the Bamboo
Garden Trimming Problem [15] or the Windows Scheduling Problem. We show that the
same is not true for Poly Scheduling (see Theorem 3 below).

2 The current state-of-the-art approach in practice, usually via Google Calendar.

L. Gąsieniec, B. Smith, and S. Wild 15:5

As for Pinwheel Scheduling and DPS, Bamboo Garden Trimming is the special case of
OPS on star graphs. Although BGT can be approximated well, since it is in general not
possible to combine local schedules into a global schedule for a polycule (as noted above), it
is not clear whether Poly Scheduling allows an efficient constant-factor approximation.

All mentioned problems above have simple fractional counterparts that are much easier
to solve and hence provide necessary conditions. Indeed, this is the motivation for density
in Pinwheel Scheduling: if we allow a schedule to spend arbitrary fractions of the day on
different tasks, we obtain a schedule if and only if the density is at most 1. (Spending a 1/fi

fraction on task i each day is best possible). For Windows Scheduling, any valid schedule
must partition the tasks into bins (channels/servers), so that each bin admits a Pinwheel
schedule. Relaxing the latter constraint to “density at most 1” yields a standard bin packing
problem, to which we can apply existing techniques; (packing bins only up to density 5/6
guarantees a Pinwheel schedule, at the expense of a 6/5 factor increase in channels). For
Bamboo Garden Trimming, the optimal fractional schedule spends a G/gi fraction of each
day with task i, where G is the sum of all growth rates, thus achieving height exactly G.
For Poly Scheduling, we can similarly define a fractional problem, but its structure is much
richer (see Section 6).

There are further periodic scheduling problems with less direct connections to Poly
Scheduling that received attention in the literature. Patrolling problems typically involve
periodic schedules: for example, [1] finds schedules for a fleet of k identical robots to patrol
(unweighted) points in a metric space, whereas the “Continuous BGT Problem” [15] sends
a single robot to points with different frequencies requirements; [25] tasks k robots with
patrolling a line or a circle. The underlying geometry in these problems requires different
techniques from our work. The Point Patrolling Problem studied in [25] can be seen as a
“covering version” of Pinwheel Scheduling: each day, we have to assign one of n workers to
a single, daily recurring task, where worker i requires a break of ai days before they can
be made to work again. Yet another twist on a patrolling problem is the Replenishment
Problems with Fixed Turnover Times given in [5], where vertices in a graph have to be visited
with given frequencies, but instead of restricting the number of vertices that can be visited
per day, the length of a tour to visit them (starting at a depot node) shall be minimized.

In the Fair Hitting Sequence Problem [9], we are given a collection of sets S = {S1, . . . , Sm},
each consisting of a subset of the set of elements V = {v1, . . . , vn}. Each set Sj has an urgency
factor gj , which is comparable to the growth rates in BGT instances with one key difference:
A set Sj is hit whenever any vi ∈ Sj is scheduled. The goal is again similar to BGT; to
find a perpetual schedule of elements vi ∈ V that minimizes the time between visits to each
set Sj , weighted by gj . There is also a decision variant, similar to Pinwheel Scheduling in
that growth rates are replaced by frequencies. We use a similar layering technique in our
approximation algorithm (Section 5) as the O(log2 n)-approximation from [9], but we obtain
a better approximation ratio for Poly Scheduling. Their O(log n)-approximation based on
randomized rounding does not extend to Poly Scheduling since the used linear program has
exponentially many variables for Poly Scheduling (Section 6).

1.3 Our Results
Despite the recent flurry of results on periodic scheduling, Polyamorous Scheduling seems
not to have been studied before. Apart from its immediate practical applications, some
quirks make Polyamorous Scheduling an interesting combinatorial optimization problem in
its own right. The first version of this manuscript used a direct reduction from 3SAT to
introduce the following hardness-of-approximation result, which rules out the existence of a
PTAS (polynomial-time approximation scheme) for Optimisation Polyamorous Scheduling.

FUN 2024

15:6 Polyamorous Scheduling

▶ Theorem 3 (SAT Hardness of approximation). Unless P = NP, there is no polynomial-time
(1 + δ)-approximation algorithm for the Optimisation Poly Scheduling problem for any δ < 1

12 .

We retain this original proof in the appendix of the extended online version3, both for
the record and because we expect future works to expand on the methods it develops. We
have, however, since found a substantially simpler and stronger hardness-of-approximation
result, Theorem 4, by containing the 3-Regular Chromatic Index Problem as a special case.

▶ Theorem 4 (Hardness of approximation). Unless P = NP, there is no polynomial-time
(1 + δ)-approximation algorithm for the Optimisation Poly Scheduling problem for any δ < 1

3 .

Though the current form of Theorem 3 follows from Theorem 4, the direct 3SAT reduction
is significantly more versatile and we hope to improve the lower bound on the approximation
ratio in future work. The core idea of the reduction in Theorem 3 is to force any valid schedule
to have a periodic structure with a 3-day period, where edges scheduled on days t with t ≡ 0
(mod 3) represent the value True and edges scheduled on days with t ≡ 1 (mod 3) represent
False; the remaining slots, t ≡ 2 (mod 3), are required to enforce correct propagation along
logic gadgets. The appendix, available online, includes a detailed construction of all gadgets,
the proof of Theorem 3, and a worked example – the DPS instance corresponding to an
example 3-CNF formula.

Theorems 3 and 4 of course imply the NP-hardness of Polyamorous Scheduling; overall,
we have 3 independent reductions establishing this. Section 3 surveys these and shows that
the best-known upper bound for the complexity of Polyamorous Scheduling is PSPACE. We
could thus call Polyamorous Scheduling very NP-hard; yet, efficient approximation algorithms
are possible. Finding an edge colouring and using a simple round-robin schedule of its colours
yields a good approximation if both the maximum degree and the ratio between the smallest
and the largest desire growth rates are small (Theorem 5).

▶ Theorem 5 (Colouring approximation). For an Optimisation Poly Scheduling instance
Po = (P, R, g) set gmin = min

e∈R
g(e), gmax = max

e∈R
g(e), and let ∆ be the maximum degree in

(P, R) and h∗ be the heat of an optimal schedule. There is an algorithm that computes in
polynomial time a schedule S of heat h with h

h∗ ≤ min
{

∆+1
∆ · gmax

gmin
, ∆ + 1

}
.

A fully general approximation seems only possible with much weaker ratios; we provide an
O(log ∆)-approximation by applying Theorem 5 to groups with similar weight and interleaving
the resulting schedules.

▶ Theorem 6 (Layering approximation). For an Optimisation Poly Scheduling instance
Po = (P, R, g), let ∆ be the maximum degree in (P, R) and h∗ be the heat of an optimal
schedule. There is an algorithm that computes in polynomial time a schedule S of heat h

with h
h∗ ≤ 3⌈lg(∆ + 1)⌉ = O(log n), where n = |P |.

Finally, we generalize the notion of density to Polyamorous Scheduling. As discussed
above, density has proven instrumental in understanding the structure of Pinwheel Scheduling
and in devising better approximation algorithms, by providing a simple, instance-specific
lower bound. For Polyamorous Scheduling, the fractional problem is much richer, and indeed
remains nontrivial to solve. We devise a generalization of density4 for Poly Scheduling from
the dual of the Linear Program (LP) corresponding to a fractional variant of Polyamorous
Scheduling, which gives the following instance-specific lower bound.

3 extended online version at https://arxiv.org/abs/2403.00465
4 Note that poly density describes how tightly the polycule packs meetings together, not the density of

its members.

https://arxiv.org/abs/2403.00465

L. Gąsieniec, B. Smith, and S. Wild 15:7

▶ Theorem 7 (Fractional lower bound). Let Po = (P, R, g) be an OPS instance with optimal
heat h∗. For any set of values ze ∈ [0, 1], for e ∈ R, with

∑
e∈R ze = 1, we have

h∗ ≥ h̄(z) = 1
max

M∈M

∑
e∈M

ze

g(e)

with the maximum ranging over the set of all inclusion-maximal matchings (M) in (P, R).
The largest value h̄∗ of h̄(z) over all feasible z, is the poly density of Po.

The bound implies (and formally establishes) simple ad-hoc bounds such as the following,
which corresponds to the lower bound of G on the height in Bamboo Garden Trimming
(setting ze = g(e)/G).

▶ Corollary 8 (Total growth bound). Given an OPS instance Po = (P, R, g) with optimal heat
h∗, let G =

∑
e∈R

g(e) and m be the size of a maximum matching in (P, R); then h∗ ≥ G/m.

More importantly though, Theorem 7 allows us to define a poly density similarly to the
Pinwheel Scheduling Problem, and allows us to formulate the most interesting open problem
about Poly Scheduling. For a DPS instance Pd = (P, R, f), define the poly density of Pd,
h̄∗(Pd), as the poly density of the OPS instance Po = (P, R, 1/f) (see also Lemma 10).

▶ Open Problem 9 (Poly Density Threshold). Is there a constant c such that every Decision
Poly Scheduling instance Pd = (P, R, f) with poly density h̄∗(Pd) ≤ c admits a valid schedule?

2 Preliminaries

In this section, we introduce some general notation and collect a few simple facts about Poly
Scheduling used later.

We write [n..m] for {n, n+1, . . . , m} and [n] for [1..n]. For a set A, we denote its powerset
by 2A. All graphs in this paper are simple and undirected. We denote by M = M(V, E) the
set of inclusion-maximal matchings in graph (V, E), where matching has the usual meaning
of an edge set with no two edges incident to the same vertex. By ∆ = ∆(V, E), we denote the
maximum degree in (V, E). A pendant vertex is a vertex with degree 1. The chromatic index
χ1 = χ1(V, E) is the smallest number C of “colours” in a proper edge colouring of (V, E)
(i.e., the number of disjoint matchings required to cover E); by Vizing’s Theorem [29], we
have ∆ ≤ χ1 ≤ ∆ + 1 for every graph. Misra and Gries provide a polynomial-time algorithm
for edge colouring any graph using at most ∆ + 1 colours [27].

Given a schedule S : N0 → 2R and an edge e ∈ R, we define the (maximal) recurrence
time r(e) = rS(e) of e in S as the maximal time between consecutive occurrences of e in S,
formally:

rS(e) = sup
d∈N

{
d + 1 ∃t ∈ N0 : e /∈ S(t) ∪ S(t + 1) ∪ · · · ∪ S(t + d − 1);
0 otherwise.

Using recurrence time, the heat h = h(S) of a schedule S in an OPS instance (P, R, g) is
h(S) = max

e∈R
g(e) · r(e). Clearly, for any schedule S : N0 → 2R, we can obtain S′ : N0 → M

by adding edges to S(t) until we have a maximal matching S′(t) ⊇ S(t); then rS′(e) ≤ rS(e)
for all e ∈ R and hence S′ is a valid schedule for any DPS instance for which S is valid, and
if S schedules an OPS instance with heat h(S) then S′ does too, with h(S′) ≤ h(S).

We use Lemma 10 to reduce OPS to DPS, and Lemma 11 to formalize how DPS solves
OPS:

FUN 2024

15:8 Polyamorous Scheduling

▶ Lemma 10 (OPS to DPS). For every combination of OPS instance Po = (P, R, g) and
heat value h, there exists a DPS instance Pd = (P, R, f) such that
(1) any feasible schedule S : N0 → 2R for Pd is a schedule for Po with heat ≤ h, and
(2) any schedule S′ for Po with heat h′ > h is not feasible for Pd.

Proof. Consider an OPS polycule Po = (P, R, g); we set Pd = (P, R, f) where f(e) =
⌊

h
g(e)

⌋
for all e ∈ R. Schedules satisfying Pd when applied to Po will allow heat of at most
max
e∈R

g(e) · f(e) = max
e∈R

g(e)⌊ h
g(e) ⌋ ≤ h.

Now consider a schedule S′ for Po with heat h′ > h. By definition, h′ = max
e∈R

rS′(e) · g(e),
where r(e) = rS′(e) is the recurrence time of e in S′. Assume towards a contradiction that
r(e) ≤ f(e) for all e ∈ R. This implies that h′ = max

e∈R
r(e) · g(e) ≤ max

e∈R
⌊ h

g(e) ⌋ · g(e) ≤ h, a
contradiction to the assumption. ◀

▶ Lemma 11 (DPS to OPS). Let Pd = (P, R, f) be a DPS instance. Set F = max
e∈R

f(e).
There is an OPS instance Po = (P, R, g) such that the following holds.
(1) If Pd is feasible, then Po admits a schedule of height h ≤ 1.
(2) If Pd is infeasible, then the optimal heat h∗ of Po satisfies h∗ ≥ F +1

F .

Proof. Consider a DPS instance Pd = (P, R, f); we set Po = (P, R, g) with g(e) = 1/f(e) for
e ∈ R. By definition, any feasible schedule S for Pd has recurrence time re = rS(e) ≤ f(e) for
all e ∈ R, so its heat in Po is given by h(S) = max

e∈R
r(e)·g(e) = max

e∈R

r(e)
f(e) ≤ 1. Conversely, if Pd

is infeasible, then for every S : N0 → 2R there exists an edge e′ ∈ R where r(e′) > f(e′), i.e.,
r(e′) ≥ f(e′) + 1. In Po, the heat h(S) must then be h(S) = max

e∈R
r(e) · g(e) ≥ r(e′) · g(e′) ≥

f(e′)+1
f(e′) ≥ F +1

F . ◀

We will often use the Normal Form of OPS instances in proofs; this can be assumed
without loss of generality but is not generally useful for algorithms unless h∗ is known:

▶ Lemma 12 (Normal Form OPS). For every OPS instance Po = (P, R, g), there is an
equivalent OPS instance P ′

o = (P, R, g′) with optimal heat 1 where g′ : R → U for U =
{1/m :∈ N≥1}, i.e., the set of unit fractions. More precisely, for every schedule S : N0 → 2R

holds: S has optimal heat h∗ in Po if and only if S has heat 1 in P ′
o. That is, any optimal

schedule S∗ for either problem is also optimal for the other problem.

Proof. Let (P, R, g) be an arbitrary OPS instance with optimal heat h∗. Setting ĝ(e) =
g(e)/h∗ yields OPS instance (P, R, ĝ) with optimal heat 1. We now start by setting g′(e) =
ĝ(e) for all e ∈ R. Consider a particular optimal schedule S∗. Suppose that for some edge
e ∈ R, we have g′(e) /∈ U . In S, there is a maximal separation r(e) = q ∈ N between
consecutive occurrences of e with q · g(e) ≤ h∗. But then, increasing g(e) to h∗/q would not
affect the heat of S. We can thus set g′(e) = 1/q. By induction, we thus obtain g′ : R → U
without affecting the heat of S. ◀

3 Computational Complexity

One proof of the NP-hardness of the Decision Poly Scheduling (DPS) Problem is that it
contains Pinwheel Scheduling as a special case, an NP-hard problem [22]. We show in
Section 4 that OPS also contains the Chromatic Index problem as a special case, which gives
another proof of the NP-hardness of DPS using the conversion in Lemma 10. Since all good
things come in threes, our inapproximability result in the appendix, available online, gives a
third independent proof of NP-hardness by reducing 3SAT to DPS.

L. Gąsieniec, B. Smith, and S. Wild 15:9

Upper bounds on the the complexity of DPS are much less clear. Similar to other periodic
scheduling problems, characterizing the computational complexity of Poly Scheduling is
complicated by the fact that there are feasible instances that require an exponentially large
schedule. It is therefore not clear whether Decision Poly Scheduling is in NP since no succinct
Yes-certificates are known; this is unknown even for the more restricted Pinwheel Scheduling
Problem [24].

The following simple algorithm shows that DPS is at least in PSPACE (see also [14], [25]):
Given the polycule Pd = (P, R, f) with |P | = n and |R| = m, construct the configuration
graph Gc = (V, E), where V consists of “countdown vectors” listing for each edge e how
many days remain before e has to be scheduled again. v ∈ V has an outgoing edge for every
maximal matching M in M(P, R), and leads to a successor configuration where all e ∈ M

have their urgency reset to f(e) and all e /∈ M have their countdown decremented. Feasible
schedules for Pd correspond to infinite walks in the finite Gc, and hence must contain a cycle.
Conversely, any cycle forms a valid periodic schedule. Our algorithm for DPS thus checks in
time O(|V | + |E|) whether Gc contains a cycle.

The configuration graph Gc has single exponential size: V = {(ue)e∈R : ue ∈ [0..f(e)]}
and E has an edge for every matching in (P, R). So |E| ≤ |V | · 2m (since we have at most
2|R| matchings) and |V | ≤

∏
e∈R f(e). To further bound this, we use that all f(e) need to be

encoded explicitly in binary in the input.
∏

e∈R f(e) ≤
∏

e∈R 2|fe| = 2
∑

|fe| ≤ 2N for N the
size of the encoding of the input.

To obtain a PSPACE algorithm, we use the polylog-space s-t-connectivity algorithm
(using Savich’s Theorem on the NL-algorithm that guesses the next vertex in the path) on
Gc, computing the required part of the graph on-the-fly when queried; this yields overall
polynomial space.

4 Unweighted Poly Scheduling & Edge Coloring

Given an OPS instance Po = (P, R, g), one can always obtain a feasible schedule from a
proper edge colouring c : E → [C] of the graph (P, R): any round-robin schedule of the
colours is a valid schedule for Po, and the number of colours becomes the separation between
visits. More formally, we can define a schedule S via S(t) = {e ∈ R : c(e) ≡ t (mod C)}. An
example is shown in Figure 2.

A B

C

D

EF

G

H

Figure 2 An unweighted polyamorous scheduling instance (that is, an OPS instance where all
edges have growth rate 1). Edge colours show one optimal schedule, where every edge is visited
exactly every three days: [3, 3, 3], i.e., all red edges are scheduled on days t with t ≡ 0 (mod 3), all
blue edges when t ≡ 1 (mod 3) and green edges for t ≡ 2 (mod 3).

FUN 2024

15:10 Polyamorous Scheduling

Such a schedule can yield an arbitrarily bad solution to general instances of Po, but it
gives optimal solutions for a special case: The non-hierarchical polycule Pu, which is an OPS
polycule where all growth rates are gi,j = 1 (i.e., an unweighted graph). Recall that any
graph with maximal degree ∆ can be edge-coloured with at most ∆ + 1 colours and clearly
needs at least ∆ colours.

▶ Proposition 13 (Unweighted OPS = edge coloring). An unweighted OPS problem admits a
schedule with heat h if and only if the corresponding graph is h-edge-colourable.

Proof. First note that any k-edge-colouring immediately corresponds to a schedule that
visits every edge every k days, since we can schedule all edges e with c(e) = i on days t ≡ i

(mod C). Moreover, any schedule with height h must visit every edge at least once within
the first h days (otherwise it would grow to desire > h · 1). We can therefore assign h colours
according to these first h days of the schedule; some edges might receive more than one
colour, but we can use any of these and retain a valid colouring using h colours. ◀

Since it is NP-complete to decide whether a graph has chromatic index χ1 = ∆ (even
when the graph is 3-regular [21]) unweighted Poly Scheduling is NP-hard. This provides
a second restricted special case of the problem that is NP-hard, which also gives us the
inapproximability result stated in Theorem 4:

Proof of Theorem 4 (page 6). Assume that there is a polynomial-time algorithm A that
achieves an approximation ratio of 4

3 −ε for some ε > 0. Given an input (V, E) to the 3-Regular
Chromatic Index Problem (i.e., given a 3-regular graph, decide whether χ1(G) = ∆ = 3
or χ1(G) = ∆ + 1 = 4), we can apply A to (V, E, g), setting g(e) = 1 for all e ∈ E. By
Proposition 13, A finds an edge colouring with c ≤ (4

3 − ε) · χ1(G) colours. If χ1(G) = ∆ = 3,
then c ≤ 4 − 3ε < 4, so c = 3; if χ1(G) = 4, then c ≥ 4. Comparing c to ∆ thus determines
χ1(G) exactly in polynomial time; in particular, for every 3-regular graph, this decides
whether χ1(G) = 3. Since 3-Regular Chromatic Index is NP-complete [21], it follows that
P = NP. ◀

We close this section with the remark that there are weighted DPS instances where any
feasible schedule must “multi-colour” some edges, including the polycule shown in Figure 3.
For the general problem, we thus cannot restrict our attention to edge colourings (though
they may be a valuable tool for future work).

A

B

CD

E

3

33

3

22

Figure 3 A discrete polyamorous scheduling instance which is solvable only by assigning multiple
colours to the CD edge.

L. Gąsieniec, B. Smith, and S. Wild 15:11

5 Approximation Algorithms

In this section, we present two efficient polynomial-time approximation algorithms for Poly
Scheduling, thereby proving Theorems 5 and 6. Throughout this section, we assume a fixed
instance Po = (P, R, g) of Optimisation Polyamorous Scheduling (OPS) is given.

5.1 Lower Bounds
We first collect a few simple lower bounds used in the analysis later; note that Section 6 has
further lower bounds.

▶ Lemma 14 (Simple lower bound). Given an OPS instance Po = (P, R, g), set gmin =
mine∈R g(e), gmax = maxe∈R g(e), and ∆ = maxp∈P deg(p). Any periodic schedule for Po

has heat h ≥ max{∆ · gmin, gmax}.

Proof. The chromatic number χ1 of the unweighted graph (P, R) is χ1 ∈ {∆, ∆ + 1}.
This means that under any periodic schedule, some edge desires will grow to at least to
χ1 ·gmin ≥ ∆·gmin, since we cannot schedule any two edges incident to a degree-∆ node on the
same day. Moreover, we cannot prevent the weight-gmax edge from growing to heat gmax. ◀

A second observation is that the lower bound for any subset of the problem is also a lower
bound for the problem as a whole:

▶ Lemma 15 (Subset bound). Given two OPS instances Po = (P, R, g) and P ′
o = (P, R′, g′)

with R′ ⊆ R and g(e) = g′(e) for all e ∈ R′, i.e., P ′
o results from Po by dropping some edges.

Assume further that any schedule for P ′
o has heat at least h∗. Then, any schedule for Po also

has heat at least h∗.

Proof. Suppose there is a schedule S for Po of heat h′ < h. We obtain a schedule S′ for P ′
o by

dropping all edges e /∈ R′. (The resulting schedule may have empty days.) By construction,
when using S′ to schedule P ′

o, all edges in R′ will grow to the same heat as in Po under S,
and hence also to heat h′ < h. ◀

5.2 Approximation for Almost Equal Growth Rates
We first focus on a special case of OPS instances with “almost equal weights”, which is used
as base for our main algorithm. Let the edge weights satisfy gmin ≤ g(e) ≤ gmax for all
e ∈ R. We will show that scheduling a proper edge colouring round-robin gives a ∆+1

∆ · gmax
gmin

approximation algorithm, establishing Theorem 5.

Proof of Theorem 5 (page 6). We compute a proper edge colouring for (P, R) with ∆ + 1
colours using the algorithm from [27] and schedule these ∆ + 1 matchings in a round-robin
schedule. No edge desire will grow higher than (∆ + 1) · gmax in this schedule. Lemma 14
shows that OPT ≥ max{∆ · gmin, gmax}. The edge-colouring schedule is thus never more
than a min{ ∆+1

∆ · gmax
gmin

, ∆ + 1} factor worse than OPT. ◀

5.3 Layering Algorithm
The colouring-based algorithm from Theorem 5 can be arbitrarily bad if desire growth rates
are vastly different and ∆ is large. For these cases, a more sophisticated algorithm achieves
a much better guarantee (Theorem 6). The algorithm consists of 3 steps:
1. breaking the graph into layers (by edge growth rates),

FUN 2024

15:12 Polyamorous Scheduling

2. solving each layer using Theorem 5, and
3. interleaving the layer schedules into an overall schedule.

Let L be a parameter to be chosen later. We define layers of Po = (P, R, g) as follows.
For i = 0, . . . , L − 1, set Pi = (P, Ri, g) where

Ri =
{

e ∈ R : gmax

2i+1 < g(e) ≤ gmax

2i

}
.

Moreover, PL = (P, RL, g) with RL =
{

e ∈ R : g(e) ≤ gmax
2L

}
.

Denote by ∆i, for i = 0, . . . , L, the maximal degree in (P, Ri). Let Si be the round-
robin-(∆i + 1)-colouring schedule from Theorem 5 applied on the OPS instance Pi. If run in
isolation on Pi, schedule Si has heat hi ≤ (∆i + 1)gmax/2i ≤ (∆ + 1)gmax/2i by the same
argument as in Section 5.2. Moreover, for i < L, Si is a 2∆i+1

∆i
-approximation (on Pi in

isolation); for i = L, we can only guarantee a (∆L + 1)-approximation.
To obtain an overall schedule S for P, we schedule the L + 1 layers in round-robin

fashion, and within each layer’s allocated days, we advance through its schedule as before,
i.e., S(t) = S(t mod (L+1))

(
⌊t/(L + 1)⌋

)
. Any advance in layer i is now delayed by a factor

(L + 1). Hence S achieves heat at most

h = max
i∈[0..L]

(L + 1) · hi ≤ max
i∈[0..L]

(L + 1)(∆i + 1) · gmax

2i

Using Lemma 15 on the layers and Lemma 14, we obtain a lower bound for OPT of

h = max
{

max
i∈[0..L−1]

∆i · gmax

2i+1 , gmax

}
We now distinguish two cases for whether the maximum in h is attained for an i < L

or for i = L. First suppose h = (L + 1)(∆i + 1)gmax/2i for some i < L. Since we also have
h ≥ ∆i · gmax/2i+1, we obtain an approximation ratio of 2(L + 1) ∆i+1

∆i
≤ 3(L + 1) overall in

this case. Here, we assume that ∆i ≥ 2; otherwise we have only monogamous couples in this
layer and scheduling is trivial, giving hi = ∆i · gmax/2i.

For the other case, namely h = (L + 1)(∆L + 1)gmax/2L > (L + 1) · (∆i + 1)gmax/2i for all
i < L, we do not have lower bounds on the edge growth rates. But we still know h ≥ gmax,
so we obtain a (L + 1)(∆L + 1)/2L-approximation overall in this case.

Equating the two approximation ratios suggests to choose L such that L ≈ lg(∆L+1)−lg 3;
with L = ⌈lg(∆ + 1) − lg 3⌉ and using ∆L ≤ ∆, we obtain an overall approximation ratio of
at most 3(L + 1) ≤ 3⌈lg(∆ + 1)⌉ ≤ 3⌈lg n⌉. This concludes the proof of Theorem 6.

6 Fractional Poly Scheduling

In this section, we generalize the notion of density from Pinwheel Scheduling for the Polyamor-
ous Scheduling Problem. For that, we consider the dual of the linear program corresponding
to a fractional variant of Poly Scheduling.

6.1 Linear Programs for Poly Scheduling
In the fractional Poly Scheduling problem, instead of committing to a single matching M in
(P, R) each day, we are allowed to devote an arbitrary fraction yM ∈ [0, 1] of our day to M ,
but then switch to other matchings without cost or delay for the rest of the day (a simple
form of scheduling with preemption). The heat of a fractional schedule is again defined

L. Gąsieniec, B. Smith, and S. Wild 15:13

as maxe∈R r(e)g(e), but the recurrence time r(e) now is the maximal time in S before the
fraction of days devoted to matchings containing e sum to at least 1. (For a non-preemptive
schedule with one matching per day, this coincides with the definition from Section 2.)

Schedules for the fractional problem are substantially easier because there is no need to
have different fractions yM for different days: the schedule obtained by always using the
average fraction of time spent on each matching yields the same recurrence times. We can
therefore assume without loss of generality that our schedule is given by S = S({yM }M∈M),
with yM ∈ [0, 1] and

∑
M∈M yM = 1. S schedules the matchings in some arbitrary fixed

order, each day devoting the same yM fraction of the day to M . Then, recurrence times are
simply given by rS(e) = 1

/ ∑
M∈M:e∈M yM .

With these simplifications, we can state the fractional relaxation of Optimisation Poly
Scheduling instance Po = (P, R, g) as an optimisation problem as follows:

min h̄ (1)

s. t.
∑

M∈M
yM ≤ 1 (2)

1∑
M∈M:e∈M yM

· ge ≤ h̄ ∀e ∈ R (3)

yM ∈ [0, 1] ∀M ∈ M (4)

Substituting h̄ = 1/ℓ, this is equivalent to the following linear program (LP):

max ℓ (5)

s. t.
∑

M∈M
yM ≤ 1 (6)

1
ge

∑
M∈M:e∈M

yM ≥ ℓ ∀e ∈ R (7)

yM ≥ 0 ∀M ∈ M (8)

The optimal objective value ℓ∗ of this LP gives h̄∗ = 1/ℓ∗, the optimal fractional heat.

▶ Lemma 16 (Fractional lower bound). Consider an OPS instance Po = (P, R, g) with optimal
heat h∗ and let h̄∗ = 1/ℓ∗ where ℓ∗ is the optimal objective value of the fractional-problem
LP from Equation (5). Then h̄∗ ≤ h∗.

Proof. We use the same approach as in [9, §3]: For any schedule S, h(S) is at least the heat
hT (S) obtained during the first T days only, which in turn is at least maxe g(e) · r̄(e) for r̄(e)
the average recurrence time of edge e during the first T days. A basic calculation shows
that for the fractions yM of time spent on matching M during the first T days there exists
a value 1/ℓ = h(S)(1 − o(T)), so that we obtain a feasible solution of the LP (5). Hence
1/ℓ∗ ≤ 1/ℓ = h(S)(1 − o(T)). Since these inequalities hold simultaneously for all T , taking
the limit as T → ∞, we obtain 1/ℓ∗ = h̄∗ ≤ h(S). ◀

The immediate usefulness of Lemma 16 is limited since the number of matchings can be
exponential in n.
▶ Remark 17 (Randomized-rounding approximation?). One could try to use this LP as the basis
of a randomized-rounding approximation algorithm, but since it is not clear how to obtain
an efficient algorithm from that, we do not pursue this route here. The simple route taken
in [9] cannot achieve an approximation ratio better than O(log n), so Theorem 6 already
provides an equally good deterministic algorithm.

FUN 2024

15:14 Polyamorous Scheduling

We therefore proceed to the dual LP of Equation (5):

min x (9)

s. t.
∑
e∈R

ze ≥ 1 (10)

∑
e∈M

ze

ge
≤ x ∀M ∈ M (11)

ze ≥ 0 ∀e ∈ R (12)

While still exponentially large and thus not easy to solve exactly, the dual LP yields the
versatile result from Theorem 7.

Proof of Theorem 7 (page 7). Using the given ze and x = maxM∈M
∑

e∈M
ze

g(e) , we fulfil
all constraints of Equation (9). The optimal objective value x∗ is hence x∗ ≤ x. By the
duality of LPs, we have x∗ ≥ ℓ∗ for ℓ∗ the optimal objective value of Equation (5). Together
with Lemma 16, this means h∗ ≥ h̄∗ = 1/ℓ∗ ≥ 1/x∗ ≥ 1/x. ◀

6.2 Poly Density
Theorem 7 gives a more explicit way to compute the poly density h̄∗ than the primal LP,
but it is unclear whether it can be computed exactly in polynomial time. Given the more
intricate global structure of Poly Scheduling, h̄∗ is necessarily more complicated than the
density of Pinwheel Scheduling. A particularly interesting open problem for Poly Scheduling
is whether a sufficiently low poly density implies the existence of a valid (integral) schedule.

Specific choices for ze in Theorem 7 yield several known bounds:
Setting ze = ge/G for G =

∑
e∈R ge yields Corollary 8.

Fix any subset R′ ⊆ R. Now set ze = ge/C if e ∈ R′ and 0 otherwise, where C =
∑

e∈R′ ge.
The maximum from Theorem 7 then simplifies to 1

C maxM∈M |M ∩ R′|, so

h∗ ≥
∑

e∈R′ ge

maxM∈M |M ∩ R′|
.

An immediate application of that observation with R′ being all edges incident at a person
p ∈ P yields the BGT bound:
▶ Corollary 18 (Bamboo lower bound). Given an OPS instance (P, R, g) and p ∈ P with
g1 ≥ · · · ≥ gd the desire growth rates for edges incident at p. Set Gp = g1 + · · · + gd. Any
periodic schedule for (P, R, g) has heat at least Gp.

▶ Remark 19 (Better general bounds?). For the general case, it seems challenging to obtain
other such simple bounds. The bound of G/m is easy to justify without the linear programs
by a “preservation-of-mass argument”: Assume a schedule S could achieve a heat h < G/m.
Every day, the overall polycule’s desire grows by G, and S can schedule at most m pairs to
meet, whose desire is reset to 0 from some value ≤ h. Every day, S thus removes only a total
of ≤ mh < G desire units from the polycule, whereas the overall growth is G, a contradiction
to the heat remaining bounded.

Note that the bound of G/m is tight for some instances, so we cannot hope for a strictly
lower bound. On the other hand, the example from Figure 4 shows demonstrates that it can
also be arbitrarily far from h∗.

Figure 4 shows the tadpole family of instances demonstrating the power of the dual-LP
approach and Theorem 7. All DPS tadpoles (as shown in the figure) are infeasible since
already the triangle A−B−C does not admit a schedule obeying the given frequencies. The
corresponding OPS instances (as given by Lemma 11) with g(e) = 1/f(e) thus have h∗ > 1;

L. Gąsieniec, B. Smith, and S. Wild 15:15

A

B

C

T1 T3 T5 T7 T9

T2 T4 T6 T8

2 3

3

F F F F F F F F F . . .
Tk

Figure 4 The tadpole family of DPS instances, defined for parameters k ≥ 0 (tail length) and
F ≥ 3 (tail frequency). The total growth rate is G = 1

2 + 2
3 + k · 1/F = 7

6 + k
F

and the size of a
maximum matching is m = 1 + ⌊(k + 1)/2⌋.

indeed h∗ = 4/3 if F ≥ 2. However, the simple lower bounds or local arguments do not
detect this: (a) All local Pinwheel Scheduling instances (any person plus their neighbours)
are feasible. (b) The mass-preservation bound (Corollary 8) is G/m < 1 for k ≥ 1. Indeed,
setting F = k and letting k → ∞, G/m = O(1/k), giving an arbitrarily large gap to h∗. By
contrast, consider the LP fractional lower bound. One can show that h̄∗ = 7

6 > 1 for any
k ≥ 1 and F ≥ 2, so Theorem 7 correctly detects the infeasibility in this example.
▶ Remark 20 (Better Pinwheel density via dual LPs?). Since Poly Scheduling is a generalization
of Pinwheel Scheduling resp. Bamboo Garden Trimming, we can apply Theorem 7 also to
these problems. However, for this special case, the optimal objective value of the dual LPs is
always x∗ = ℓ∗ = 1/G for G the G the sum of the growth rates, so we only obtain the trivial
“biomass” lower bound of G for Bamboo Garden Trimming resp. the density ≤ 1 necessary
condition for Pinwheel Scheduling. The more complicated structure of matchings in non-star
graphs makes fractional lower bounds in Poly Scheduling much richer and more powerful.

7 Open Problems & Future Directions

This paper opens up several avenues for future work. The most obvious open problem
concerns efficient approximation algorithms: We show that finding approximations with a
better ratio than 4/3 is NP-hard, and introduce an O(log n) polynomial-time approximation.
Can the gap between these be reduced, or even eliminated?

In the appendix, available online, we conjecture that further analysis of the SAT reduction
originally used to prove Theorem 3 may demonstrate better inapproximability results for
OPS in the general case. The true lower bound may even be super-constant. However, in
light of our Theorem 6, a super-constant hardness of approximation result would have to use
Poly Scheduling instances with super-constant degrees. Open Problem 9 will also have clear
implications for OPS, as well as being interesting in its own right.

There is also interesting work to be done looking at specific classes of polycules. Bipartite
polycules are particularly interesting, both for the likelihood that they will permit better
approximations than are possible in the general case and for their applications (e.g., modelling
the users and providers of some service).

Polyamorous scheduling has several interesting generalizations including Fungible Poly-
amorous Scheduling, whose decision version we define as:

▶ Definition 21 (Fungible Decision Polyamorous Scheduling (FDPS)). An FDPS instance
Pfd = (P, R, s, f) (a “(fungible decision) polycule”) consists of an undirected graph (P, R)
where the vertices P = {p1, . . . , pn} are n classes of fungible persons and the edges R are
pairwise relationships between those classes. Classes have integer sizes s : P → N and
relationships have integer frequencies f : R → N.

FUN 2024

15:16 Polyamorous Scheduling

The goal is find an infinite schedule S : N0 → 2R, such that
(1) (no overflows) for all days t ∈ N0, S(t) is a multiset of elements from P such that each

node p ∈ P appears at most s(p) times, and
(2) (frequencies) for all e ∈ R and t ∈ N0, we have e ∈ S(t) ∪ S(t + 1) ∪ · · · ∪ S(t + f(e) − 1);
or to report that no such schedule exists.

FDPS also has an optimisation version, which again allows each class p ∈ P to have at
most s(p) meetings each day. These problems have clear applications to the scheduling of
staff, locations, resources etc. in real-world applications.

Another natural generalisation is Secure Polyamorous scheduling. Suppose that Adam is
dating both Brady and Charlie, who are also dating each other. In a DPS or OPS polycule,
on any day, Adam must choose to meet with either Brady or Charlie, who each face the
same dilemma; but why can’t he meet both?5 The Secure Decision Polyamorous scheduling
problem allows this:

▶ Definition 22 (Secure Decision Polyamorous Scheduling (SDPS)). An SDPS instance
Psd = (P, R, f) (a “(secure decision) polycule”) consists of an undirected graph (P, R) where
the vertices P = {p1, . . . , pn} are n persons, and the edges R are pairwise relationships, with
integer frequencies f : R → N for each relationship.

The goal is find an infinite schedule S : N0 → 2R, such that
(1) (no third-wheels) for all days t ∈ N0, S(t) is a set of meetings between cliques of people

in P in which each person appears at most once, and
(2) (frequencies) for all e ∈ R and t ∈ N0, we have e ∈ S(t) ∪ S(t + 1) ∪ · · · ∪ S(t + f(e) − 1);
or to report that no such schedule exists.

Again, this has a natural optimisation version.
Polyamorous Scheduling also motivates the study of several restricted versions of Pinwheel

Scheduling and Bamboo Garden Trimming, including partial scheduling (wherein some portion
of the schedule is fixed as part of the problem and the challenge is to find the remainder of
the schedule), and fixed holidays (where the fixed part of the schedule consists of periodic
gaps).

References
1 Peyman Afshani, Mark de Berg, Kevin Buchin, Jie Gao, Maarten Löffler, Amir Nayyeri,

Benjamin Raichel, Rik Sarkar, Haotian Wang, and Hao-Tsung Yang. On cyclic solutions
to the min-max latency multi-robot patrolling problem. In International Symposium on
Computational Geometry (SoCG). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPICS.SOCG.2022.2.

2 Amotz Bar-Noy, Richard E Ladner, and Tami Tamir. Windows scheduling as a restricted
version of bin packing. ACM Transactions on Algorithms, 3(3):28–es, 2007. doi:10.1145/
1273340.1273344.

3 Amotz Bar-Noy, Joseph (Seffi) Naor, and Baruch Schieber. Pushing dependent data in
clients-providers-servers systems. Wireless Networks, 9(5):421–430, 2003. doi:10.1023/a:
1024632031440.

4 Davide Bilò, Luciano Gualà, Stefano Leucci, Guido Proietti, and Giacomo Scornavacca.
Cutting Bamboo down to Size. In Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei
Uehara, editors, Fun with Algorithms (FUN), volume 157 of Leibniz International Proceedings

5 A key part of polyamory [23]!

https://doi.org/10.4230/LIPICS.SOCG.2022.2
https://doi.org/10.1145/1273340.1273344
https://doi.org/10.1145/1273340.1273344
https://doi.org/10.1023/a:1024632031440
https://doi.org/10.1023/a:1024632031440

L. Gąsieniec, B. Smith, and S. Wild 15:17

in Informatics (LIPIcs), pages 5:1–5:18, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.FUN.2021.5.

5 Thomas Bosman, Martijn van Ee, Yang Jiao, Alberto Marchetti-Spaccamela, R. Ravi, and
Leen Stougie. Approximation algorithms for replenishment problems with fixed turnover times.
Algorithmica, 84(9):2597–2621, May 2022. doi:10.1007/s00453-022-00974-4.

6 Mee Yee Chan and Francis Chin. Schedulers for larger classes of pinwheel instances. Algorith-
mica, 9(5):425–462, 1993. doi:10.1007/BF01187034.

7 Mee Yee Chan and Francis Y. L. Chin. General schedulers for the pinwheel problem based
on double-integer reduction. IEEE Trans. Computers, 41(6):755–768, 1992. doi:10.1109/12.
144627.

8 Wun-Tat Chan and Prudence W. H. Wong. On-line windows scheduling of temporary items. In
International Symposium on Algorithms and Computation (ISAAC), pages 259–270. Springer
Berlin Heidelberg, 2004. doi:10.1007/978-3-540-30551-4_24.

9 Serafino Cicerone, Gabriele Di Stefano, Leszek Gasieniec, Tomasz Jurdzinski, Alfredo Navarra,
Tomasz Radzik, and Grzegorz Stachowiak. Fair hitting sequence problem: Scheduling activities
with varied frequency requirements. In International Conference on Algorithms and Complexity
(CIAC), pages 174–186. Springer, 2019. doi:10.1007/978-3-030-17402-6_15.

10 Larry Clemmons, Ken Anderson, and Vance Gerry. Robin hood (movie). Walt Disney
Productions, 1973.

11 Wei Ding. A branch-and-cut approach to examining the maximum density guarantee for
pinwheel schedulability of low-dimensional vectors. Real-Time Systems, 56(3):293–314, 2020.
doi:10.1007/s11241-020-09349-w.

12 Eugene A. Feinberg and Michael T. Curry. Generalized pinwheel problem. Math. Methods
Oper. Res., 62(1):99–122, 2005. doi:10.1007/s00186-005-0443-4.

13 Peter C Fishburn and Jeffrey C Lagarias. Pinwheel scheduling: Achievable densities. Algorith-
mica, 34(1):14–38, 2002. doi:10.1007/s00453-002-0938-9.

14 Leszek Gąsieniec, Benjamin Smith, and Sebastian Wild. Towards the 5/6-density conjecture
of pinwheel scheduling. In C. A. Phillips and B. Speckmann, editors, Symposium on Algorithm
Engineering and Experiments (ALENEX), pages 91–103. SIAM, January 2022. doi:10.1137/
1.9781611977042.8.

15 Leszek Gąsieniec, Tomasz Jurdziński, Ralf Klasing, Christos Levcopoulos, Andrzej Lingas,
Jie Min, and Tomasz Radzik. Perpetual maintenance of machines with different urgency
requirements. Journal of Computer and System Sciences, 139:103476, February 2024. doi:
10.1016/j.jcss.2023.103476.

16 Leszek Gąsieniec, Ralf Klasing, Christos Levcopoulos, Andrzej Lingas, Min Jie, and Tomasz
Radzik. Bamboo Garden Trimming Problem, volume 10139 of Lecture Notes in Computer
Science. Springer, 2017. doi:10.1007/978-3-319-51963-0.

17 C.-C. Han and K.-J. Lin. Scheduling distance-constrained real-time tasks. In Proceedings Real-
Time Systems Symposium. IEEE Comput. Soc. Press, 1992. doi:10.1109/REAL.1992.242649.

18 Felix Höhne and Rob van Stee. A 10/7-approximation for discrete bamboo garden trimming
and continuous trimming on star graphs. In Conference on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPICS.APPROX/RANDOM.2023.16.

19 Robert Holte, Al Mok, Al Rosier, Igor Tulchinsky, and Igor Varvel. The pinwheel: a real-
time scheduling problem. In Proceedings of the Twenty-Second Annual Hawaii International
Conference on System Sciences. Volume II: Software Track, volume 2, pages 693–702 vol.2,
1989. doi:10.1109/HICSS.1989.48075.

20 Robert Holte, Louis E. Rosier, Igor Tulchinsky, and Donald A. Varvel. Pinwheel sched-
uling with two distinct numbers. Theor. Comput. Sci., 100(1):105–135, 1992. doi:
10.1016/0304-3975(92)90365-M.

21 Ian Holyer. The np-completeness of edge-coloring. SIAM Journal on computing, 10(4):718–720,
1981.

FUN 2024

https://doi.org/10.4230/LIPIcs.FUN.2021.5
https://doi.org/10.1007/s00453-022-00974-4
https://doi.org/10.1007/BF01187034
https://doi.org/10.1109/12.144627
https://doi.org/10.1109/12.144627
https://doi.org/10.1007/978-3-540-30551-4_24
https://doi.org/10.1007/978-3-030-17402-6_15
https://doi.org/10.1007/s11241-020-09349-w
https://doi.org/10.1007/s00186-005-0443-4
https://doi.org/10.1007/s00453-002-0938-9
https://doi.org/10.1137/1.9781611977042.8
https://doi.org/10.1137/1.9781611977042.8
https://doi.org/10.1016/j.jcss.2023.103476
https://doi.org/10.1016/j.jcss.2023.103476
https://doi.org/10.1007/978-3-319-51963-0
https://doi.org/10.1109/REAL.1992.242649
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.16
https://doi.org/10.1109/HICSS.1989.48075
https://doi.org/10.1016/0304-3975(92)90365-M
https://doi.org/10.1016/0304-3975(92)90365-M

15:18 Polyamorous Scheduling

22 Tobias Jacobs and Salvatore Longo. A new perspective on the windows scheduling problem.
coRR, 2014. arXiv:1410.7237.

23 John_Threepwood. Why not both? / Why don’t we have both?, August 2011. URL:
https://knowyourmeme.com/memes/why-not-both-why-dont-we-have-both.

24 Akitoshi Kawamura. Proof of the density threshold conjecture for pinwheel scheduling. In
Symposium on Theory of Computing (STOC), 2024. URL: https://www.kurims.kyoto-u.ac.
jp/~kawamura/pinwheel/paper_e.pdf.

25 Akitoshi Kawamura and Makoto Soejima. Simple strategies versus optimal schedules in
multi-agent patrolling. Theoretical Computer Science, 839:195–206, November 2020. doi:
10.1016/j.tcs.2020.07.037.

26 Shun-Shii Lin and Kwei-Jay Lin. A pinwheel scheduler for three distinct numbers with a tight
schedulability bound. Algorithmica, 19(4):411–426, 1997. doi:10.1007/PL00009181.

27 Jayadev Misra and David Gries. A constructive proof of vizing’s theorem. In Information
Processing Letters. Citeseer, 1992.

28 Martijn van Ee. A 12/7-approximation algorithm for the discrete bamboo garden trimming
problem. Operations Research Letters, 49(5):645–649, September 2021. doi:10.1016/j.orl.
2021.07.001.

29 Vadim G Vizing. The chromatic class of a multigraph. Cybernetics, 1(3):32–41, 1965.

https://arxiv.org/abs/1410.7237
https://knowyourmeme.com/memes/why-not-both-why-dont-we-have-both
https://www.kurims.kyoto-u.ac.jp/~kawamura/pinwheel/paper_e.pdf
https://www.kurims.kyoto-u.ac.jp/~kawamura/pinwheel/paper_e.pdf
https://doi.org/10.1016/j.tcs.2020.07.037
https://doi.org/10.1016/j.tcs.2020.07.037
https://doi.org/10.1007/PL00009181
https://doi.org/10.1016/j.orl.2021.07.001
https://doi.org/10.1016/j.orl.2021.07.001

	1 Introduction
	1.1 Formal Problem Statement
	1.2 Related Work
	1.3 Our Results

	2 Preliminaries
	3 Computational Complexity
	4 Unweighted Poly Scheduling & Edge Coloring
	5 Approximation Algorithms
	5.1 Lower Bounds
	5.2 Approximation for Almost Equal Growth Rates
	5.3 Layering Algorithm

	6 Fractional Poly Scheduling
	6.1 Linear Programs for Poly Scheduling
	6.2 Poly Density

	7 Open Problems & Future Directions
	References

