
Computational Complexity of Matching Match
Puzzle
Yuki Iburi #

The Digital Value, LTD., Tokyo, Japan

Ryuhei Uehara #Ñ

School of Information Science, Japan Advanced Institute of Science and Technology, Tokyo, Japan

Abstract
Various forms of graph coloring problems have been studied over the years in the society of graph
theory. Recently, some original puzzles are popularized in Japanese 100-yen shops, and one of
them can be formalized as a graph coloring problem in a natural way. However, this natural graph
coloring problem has not been investigated in the context of the graph theory. In this paper, we
investigate this puzzle as a graph coloring problem. We first prove that this graph coloring problem
is NP-complete even when the graph is restricted to a path or a spider. In these cases, diameter of
the graphs seems to play an important role for its difficulty. We then show that the problem can be
solved in polynomial time when the graph is restricted to some graph classes of constant diameter.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases Graph coloring, Matching Match puzzle, NP-complete, polynomial-time
solvable

Digital Object Identifier 10.4230/LIPIcs.FUN.2024.17

Funding Ryuhei Uehara: JSPS KAKENHI Grant Numbers 20H05961, 20H05964, 24H00690.

1 Introduction

Research on computational complexity of puzzles and games has a long history. One of the
reasons is that there exist some puzzles that characterize major computational complexity
classes in natural and simple ways, and hence the features of these puzzles give us some
understanding of such complexity classes [3, 6]. Especially, many NP-complete puzzles have
helped us to obtain some intuitions for the class NP. They may lead us to the solution to the
P̸=NP conjecture, which is one of the millennium prize problems.

A problem Matchsticks Solution

Figure 1 The matching match puzzle sold at Daiso.

© Yuki Iburi and Ryuhei Uehara;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Fun with Algorithms (FUN 2024).
Editors: Andrei Z. Broder and Tami Tamir; Article No. 17; pp. 17:1–17:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:iburi.yuki@digitalvalue.co.jp
mailto:uehara@jaist.ac.jp
https://www.jaist.ac.jp/~uehara/
https://orcid.org/0000-0003-0895-3765
https://doi.org/10.4230/LIPIcs.FUN.2024.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Computational Complexity of Matching Match Puzzle

In this paper, we investigate a puzzle named “Matching Match” (Figure 1). This puzzle
is designed by Rikachi, a Japanese puzzle designer, and it is a commercial product produced
by Daiso, which is one of the major 100-yen shops in Japan.1 As a commercial product,
the rule of this puzzle is simple and understandable even for children. You are given a card
and a set of “matchsticks”. On the card, a planar graph is drawn and some vertices of it
are colored. Each matchstick has its own colors on both endpoints (the colors can be the
same). The number of matchsticks is equal to the number of edges of the graph. That is,
each matchstick corresponds to an edge of the graph and vice versa. The puzzle asks us to
find an arrangement of the matchsticks on the edges so that every color matches at each
vertex of the graph. The color of an endpoint should be matched to the color on the vertex
if the vertex is colored. On the other hand, we have to assign a color to each vertex if it is
not colored. That is, at a vertex without color, all the endpoints of the matchsticks sharing
the vertex have to have the same color.

It is easy to see that the puzzle can be easily solved if every vertex of the graph on a
card has its color. Namely, for a given graph, this puzzle asks us to find a proper coloring
of the uncolored vertices in the graph for a given set of edges with pre-colored endpoints.
As you can find in Figure 1, it is a natural problem not only in the context of the puzzle,
but also as a variant of graph coloring problems. The graph coloring problem is one of
classic problems which has been widely investigated in the context of theoretical computer
science [4]. From the viewpoint of algorithmic technique, the color-coding is one of technique
for solving a graph coloring problem efficiently [1]. However, as far as the authors know,
this graph coloring problem corresponding to the matching-match puzzle has never been
investigated in the context of graph coloring. One of the reasons may be that this graph
coloring admits to color two neighbors with one color when we have an edge with endpoints
with pre-colored by the same color. In fact, we will use such edges in our reduction.

We first show that the matching-match puzzle is NP-complete even if the graph is quite
restricted. Precisely, this puzzle is NP-complete even if the graph is a spider, a path, or
a cycle in general. On the other hand, when the graph is a complete graph or a star the
matching-match puzzle is polynomial-time solvable. We note that a star is a spider with
legs of length 1. That is, we have a constant B′ such that the matching-mach puzzle is
NP-complete on spiders with legs of length at least B′, and it is polynomial-time solvable
on spiders with legs of length at most B′. In this paper, we also show a polynomial-time
algorithm on spiders with legs of length at most 2. That is, we prove that B′ ≥ 2. The keen
threshold value of B′ is open.

2 Preliminaries

In this paper, we only consider a simple graph G = (V, E) with |V | = n and |E| = m. A
sequence of the vertices (v0, v1, . . . , vk) is a path of length k in G when {vi, vi+1} ∈ E for
each i = 0, . . . , k − 1. It is a cycle of size k if v0 = vk and k > 2. A graph is a tree if it is
acyclic and connected. A tree is a spider if it has only one vertex of degree greater than
2. The unique vertex of degree greater than 2 of a spider is called the body of it. A spider
consists of three or more paths sharing the body. Each path (including the body) is called
a leg of the spider. A graph is a star if it is a spider with legs of length 1. A graph is
complete if every pair of vertices are joined by an edge. A complete graph is denoted by Kn

if it consists of n vertices. For a vertex v in V , its neighbor set in G = (V, E) is defined by

1 English instruction can be found at https://www.daiso-syuppan.com/noutore/.

https://www.daiso-syuppan.com/noutore/

Y. Iburi and R. Uehara 17:3

{u | {u, v} ∈ E} and denoted by NG(v) (or N(v) if G is clear in the context). We also use a
notation NG[v] and N [v] defined by NG(v) ∪ {v}. The distance between two vertices u and
v in G is the minimum length of a path joining u and v. The diameter of G is the maximum
distance between all pairs of vertices in G. For a given graph G = (V, E), an edge set M is a
matching if no two edges share a common vertex. For a given graph G = (V, E) and a vertex
subset V ′, we call the graph G′ = (V ′, E′) with E′ = {{v, v′} | v, v′ ∈ V ′ and {v, v′} ∈ E}
an induced subgraph by V ′, and it is denoted by G[V ′]. A vertex set Q is called a clique if
G[Q] is a complete graph.

Now we turn to the definition of the matching-match puzzle. An instance of the matching-
match puzzle consists of a graph G = (V, E) with V = {v0, v1, . . . , vn−1} and a set of sticks
S = {s0, s1, . . . , sm−1}. We define the set of endpoints of sticks by U . That is, each stick si is
a pair of distinct vertices {ui, u′

i,2}, where ui, u′
i,2 ∈ U and hence |U | = 2m. We will use two

color sets C0 = {0, 1, . . . , c} and C1 = {1, . . . , c} for some positive integer c to distinguish
colors in V and U . Each vertex v in V is colored by a function C0 : V → C0 and each vertex u

in U is colored by a function C1 : U → C1. We say a vertex v in V is not colored if C0(v) = 0.
The other vertices in V and U are colored. Then the input of the matching-match puzzle is a
5-tuple (G, S, c, C0, C1). An instance (G, S, c, C0, C1) is feasible if and only if there exists a
mapping M from U to V such that (1) for each si = (ui, u′

i), {M(ui), M(u′
i)} is in E, (2)

for each u ∈ U , C1(u) = C0(M(u)) or C0(M(u)) = 0, (3) for each e ∈ E, there exists a stick
si = {ui, u′

i} with e = {M(ui), M(u′
i)}, and (4) for each v ∈ V with C0(v) = 0, there exists a

color c′ such that all vertices u ∈ U with M(u) = v satisfy C1(u) = c′. The matching-match
puzzle asks us if there exists a feasible mapping M for a given instance (G, S, c, C0, C1). That
is, we can formalize the matching-match puzzle as follows:

Matching-match puzzle
Input: A graph G = (V, E), a set S of sticks, an integer c > 0, and two functions C0 and

C1.
Output: Determine whether there exists a feasible mapping M.2

We note that we consider general graphs and they are not necessarily planar. However,
almost all graphs in this paper are planar except complete graphs (with at least 5 vertices).
Except for complete graphs, all graphs in this paper can be drawn on a plane with edges of
unit length without crossing. That is, they can be real problems in Matching Match puzzle.

3 NP-completeness

In this section, we prove that the matching-match puzzle is intractable even if G is quite
restricted.

▶ Theorem 1. The matching-match puzzle is NP-complete in general even if G is (1) a
spider, (2) a path, or (3) a cycle.

Proof. Let (G, S, c, C0, C1) be an instance of the matching-match puzzle. If there is a feasible
mapping M, it is easy to confirm that M is feasible. Thus the matching-match puzzle is
in NP. Therefore we show NP-hardness. To show NP-hardness, we reduce the following
3-Partition problem to our problem:

2 In the commercial puzzle, each of 40 instances has a unique solution. We do not assume it in this paper.

FUN 2024

17:4 Computational Complexity of Matching Match Puzzle

⋯ ⋯ ⋯⋯
of edges

𝑎! 𝑎"#$𝑎% ⋯

⋯ ⋯⋯

3 sticks

𝐵 sticks

𝑚′ colors
𝐺 = 𝑉, 𝐸 𝑆 = 𝑠!, 𝑠"⋯ , 𝑠#

Figure 2 Construction of a spider.

3-Partition
Input: Positive integers a1, a2, a3, . . . , a3m′ such that

∑3m′

i=1 ai = m′B for some positive
integer B and B/4 < ai < B/2 for 1 ≤ i ≤ 3m′.

Output: Determine whether we can partition {1, 2, . . . , 3m′} into m′ subsets
A1, A2, . . . , Am′ so that

∑
i∈Aj

ai = B for 1 ≤ j ≤ m′.

It is well known that the 3-Partition problem is strongly NP-complete [2].

(1) We first show a reduction to a spider. For a given instance a1, a2, a3, . . . , a3m′ of the
3-Partition problem, we construct G and S as follows (Figure 2). We use m′ + 1 colors,
namely, C0 = {0, 1, . . . , m′ + 1}. The graph G is a spider with 3m′ legs. For each i with
1 ≤ i ≤ 3m′, the ith leg is a path of length ai + 1. The body of the spider is colored by 1,
and all the other vertices are not colored. That is, C0(b) = 1 for the body vertex b ∈ V and
C0(v) = 0 for each vertex v ∈ V \ {b}. The set S consists of m = m′(3 + B) sticks. For each
j with 1 ≤ j ≤ m′, S contains B sticks s = {u, w} with C1(u) = C1(w) = j + 1 and 3 sticks
s′ = {u′, w′} with C1(u′) = 1 and C1(w′) = j + 1.

Clearly, the reduction can be done in polynomial time. Thus we show that the instance
a1, a2, a3, . . . , a3m′ of the 3-Partition problem has a solution if and only if G and S are
feasible.

We first assume that the instance a1, a2, a3, . . . , a3m′ has a solution. Then they can
be partitioned into m′ subsets A1, A2, . . . , Am′ such that

∑
i∈Aj

ai = B for 1 ≤ j ≤ m′.
Without loss of generality, we assume that A1 = {a1, a2, a3}. Then we match three sticks
s1 = s2 = s3 = {1, 2} to indicate three legs of lengths a1, a2, and a3. That is, the function
M maps each 1 to the body of the spider, and 2 to the neighbors of the body corresponding
to the three legs of lengths a1, a2, and a3. Now we match the other sticks {2, 2} to these
three legs. Since a1 + a2 + a3 = B, we can match all sticks to these legs and no sticks {2, 2}
remain. We repeat the same process for each of A2, . . . , Am′ . Since they are a solution of
the 3-Partition problem, we can match all the sticks.

We next assume that we can match all the sticks in S to the edges of the spider G.
We first observe that all sticks that have an endpoint of color 1 to join legs to the body.
Therefore, we cannot use two or more colors on a leg except the edge joining the leg to the
body. Thus, each set of B sticks of the same color should be on three legs such that the
total length is B. Hence we can construct a solution of the 3-Partition problem from the
solution of the matching-match puzzle.

(2) We next show a reduction to a path. The basic idea is similar to the case (1) (Figure 3).
The graph G is a path (v0, v1, . . . , vm) of length m = m′(B + 6). It has 3m′ + 1 vertices
v with C0(v) = 1, and all the other vertices are not colored. By the vertices v with

Y. Iburi and R. Uehara 17:5

⋯

⋯ ⋯⋯

6 sticks

𝐵 sticks

𝑚ʼ colors

⋯

of edges
𝑎! 𝑎"

⋯ ⋯
𝑎#$%

⋯

⋯ ⋯ ⋯ ⋯

𝐺 = 𝑉, 𝐸 𝑆 = 𝑠!, 𝑠"⋯ , 𝑠#

Figure 3 Construction of a path.

C0(v) = 1, the path is partitioned into 3m′ subpaths since both endpoints v of the path
satisfy C0(v) = 1. The ith subpath has length ai for each i = 1, 2, . . . , 3m′. The set S

consists of m = m′(6 + B) sticks. For each j with 1 ≤ j ≤ m′, S contains B sticks s = {u, w}
with C1(u) = C1(w) = j + 1 and 6 sticks s′ = {u′, w′} with C1(u′) = 1 and C1(w′) = j + 1.
The reduction can be done in polynomial time. By using the same argument, we can show
that the instance a1, a2, a3, . . . , a3m′ of the 3-Partition problem has a solution if and only
if G and S are feasible.

(3) In the construction (2), by unifying the endpoints of the path G, we can obtain a cycle.
On the cycle, the same argument works.

Therefore, the matching-match puzzle is NP-complete in general even if G is a spider, a
path, or a cycle. ◀

By the proof of Theorem 1(1), we obtain the following corollary.

▶ Corollary 2. The matching-match puzzle is NP-complete even if G is a spider and its body
is the only colored vertex. Moreover, the matching-match puzzle is NP-complete even if G is
a spider and no vertex is colored.

Proof. The proof of Theorem 1(1) meets the first claim. Thus we focus on the case that the
vertices in G are not colored. The construction of the graph G and the set S is the same as
the proof of Theorem 1(1). The coloring of C1 is also the same, and we define C0(v) = 0 for
all vertices in V . To derive a contradiction, we assume that the body b of the spider G is
colored by the other color, say C0(b) = 2, than 1 in a solution. In the original instance of the
3-Partition problem, we can assume that m′ > 6 without loss of generality. Since we have
at most B sticks {u, u′} with C1(u) = C1(u′) = 2 to cover the legs, we have to change the
color on some legs from 2 to the other colors in the middle of the legs. To change the color,
we have to use the vertices v with C0(v) = 1. However, we have only three sticks {u, u′}
with C1(u) = 2 and C1(u′) = 1. Thus, since m′ > 6, there are at least 4 legs that should
be totally colored by 2 from the body to their leaves. However, by the assumption that
B/4 < ai < B/2, we cannot cover 4 legs by B sticks, which is a contradiction. Therefore, we
cannot color the body by any other color than 1. That is, we can assume that C0(b) = 1 for
the body vertex b without loss of generality. Thus the matching-match puzzle is NP-complete
even if no vertex in G is colored. ◀

FUN 2024

17:6 Computational Complexity of Matching Match Puzzle

4 Polynomial time algorithms

In this section, we show polynomial-time algorithms for the matching-match puzzle on some
graph classes. We first consider two simple cases that G is a complete graph and G is a star.
In these two cases, we can solve the matching-match puzzle efficiently. Next we turn to the
spider with legs of length 2. We give a polynomial-time algorithm for this case.

▶ Theorem 3. For a given instance (G, S, c, C0, C1), the matching-match puzzle can be solved
in O(n + m) time when G is a complete graph.

Proof. We first check if G is a complete graph, and output “No” if it is not in O(n + m) time.
In the set of sticks in S, we can count the number of appearances of each color. We denote by
#(i) the number of color i in S. Precisely, #(i) =

∑
s={u,u′}∈S(δ(C1(u) = i) + δ(C1(u′) = i))

for each i ∈ {1, . . . , c}, where δ(C1(u) = i) = 1 when C1(u) = i and δ(C1(u) = i) = 0 when
C1(u) ̸= i. Then, #(i)/(n − 1) gives the number of vertices v in G with C0(v) = i after
matching by a solution M. If C0 cannot satisfy this condition by extension to C1, the answer
is “No”. Thus we assume that the given function C0 in the instance is consistent with the
condition. (Precisely, for each color i, the number of vertices with C0(v) = i is equal to or
less than #(i)/(n − 1).) Now we assign the colors to the vertices v in V with C0(v) = 0 so
that C0(v) > 0 and they are consistent with the condition. Since G is a complete graph, the
assignment can be done according to the numbers #(i)/(n − 1). After the assignment, we
check the consistency of the sticks in S. Precisely, for each edge {u, u′}, we decrease #(C0(u))
and #(C0(u′)) by 1, respectively. Then the sticks are consistent if and only if #(C0(v)) = 0
after the decreasements. Since all the vertices in G are now colored, it can be done in O(m)
time. The correctness of the algorithm is trivial. Thus we can solve it in O(m) time in total
when G is a complete graph. ◀

▶ Theorem 4. For a given instance (G, S, c, C0, C1), the matching-match puzzle can be solved
in O(n) time when G is a star.

Proof. We first check if G is a star, and output “No” if it is not. It can be done in O(n)
time since G is a star if and only if it has one vertex of degree n − 1 and n − 1 vertices of
degree 1. Assume G = (V, E) is a star and b ∈ V is the body vertex of degree n − 1. Now we
pick any stick s = {u, u′} in S. Then it should be either M(u) = b or M(u′) = b if it is a
yes-instance. We first check whether M(u) = b. In this case, all sticks s′ = {w, w′} should
satisfy C1(u) = C1(w) or C1(u) = C1(w′). If all other sticks satisfy the condition, we output
“Yes”. Otherwise, we check whether M(u′) = u in the same way. If all other sticks satisfy
the condition, we output “Yes”, otherwise, output “No”. The correctness of the algorithm is
trivial, and it can be done in O(n) time. ◀

Now we turn to the main theorem in this section:

▶ Theorem 5. For a given instance (G, S, c, C0, C1), the matching-match puzzle can be solved
in polynomial time when G is a spider with legs of length 2, and C0(v) = 0 for all v ∈ V .

Proof. Our algorithm checks all cases that C0(b) = i with i = 1, . . . , c for the body vertex b

of G. Therefore, hereafter, we fix that C0(b) = 1 and C0(v) = 0 for all vertices v ∈ V \ {b}
without loss of generality. Then the set S of sticks can be partitioned into three subsets
S1 = {{u, u′} | C1(u) = C1(u′) = 1}, S2 = {{u, u′} | C1(u) = 1 and C1(u′) ̸= 1}, and
S3 = {{u, u′} | C1(u) ̸= 1 and C1(u′) ̸= 1} (Figure 4(a)).

Y. Iburi and R. Uehara 17:7

⋯ ⋯⋯
⋯

⋯
⋯

𝑆! 𝑆" 𝑆#

𝑆

𝑃!

𝑃"

𝑃#

𝑃$

⋯
⋯

⋯
⋯

𝑏

Figure4

(a) (b)

Figure 4 Classifications of S and V .

We suppose that there exists a feasible mapping M from S to V , and consider conditions
that M has to satisfy. Here we color the graph G according to this mapping M, and we
suppose that each color of a vertex v in G can be referred as C(v) to simplify. Since G is
a spider with legs of length 2, we have n′ = (n − 1)/2 legs. Then, we partition these legs
(b, v1, v2) into four subsets P1 = {(b, v1, v2) | C(v1) = C(v2) = 1}, P2 = {(b, v1, v2) | C(v1) =
1 and C(v2) ̸= 1}, P3 = {(b, v1, v2) | C(v1) ̸= 1 and C(v2) = 1}, and P4 = {(b, v1, v2) |
C(v1) ̸= 1 and C(v2) ̸= 1} (Figure 4(b)).

Then we can observe that

2|P1| + |P2| = |S1|,
|P2| + 2|P3| + |P4| = |S2|,

|P4| = |S3|.

Thus, we can obtain |P4| = |S3| first. Now the size |P3| is one of 0, 1, . . . , n′. Therefore, our
algorithm checks all cases for |P3| = 0, 1, . . . , n′. Once |P4| and |P3| are fixed, |P2| and |P1|
are also determined (when one of them is negative, the case is not feasible). Therefore, our
algorithm checks if there is a feasible mapping M from S to V for given |P1|, |P2|, |P3|, and
|P4|. Intuitively, we have to make two matchings; one between S2 and S3 in P4 and another
one among S2 in P3. The remaining edges in S2 can be matched in P2 in any way.

Now we construct an auxiliary graph H = (S2 ∪ S3, E′), where

E′ = {{u, v} | two sticks u and v share a color i in {2, 3, . . . , c}}.

That is, two sticks in S2 ∪ S3 are joined by an edge in E′ if they have endpoints of the same
color (under mapping M) but not the color 1. Then we have the following observation:

▶ Observation 6. A mapping M is a feasible solution of the given instance of the matching-
match puzzle if and only if H has a matching M such that (1) M contains |P4| edges joining
a vertex in S2 and another one in S3, (2) M contains |P3| edges joining two vertices in S2,
and (3) M contains no any other edges.

Proof. We can observe that each edge in M corresponding to the central vertex v1 in each
path (b, v1, v2) on G. That is, edges in M with the condition (1) correspond to the edges
in H joining an edge in S2 of G and an edge in S3 on a leg in P4, and edges in M with
the condition (2) correspond to the edges in H joining two edges in S2 on a leg in P3. The
remaining edges in S2 are joined to edges in S1 on legs in P2. ◀(of Observation 6)

FUN 2024

17:8 Computational Complexity of Matching Match Puzzle
Figure5

⋯

⋯
⋯

𝑆" 𝑆#

𝑄%

⋯

𝑄#

⋯

𝑄"

⋯
⋯

⋯
⋯

⋯

Figure 5 Graph H ′ = (S2 ∪ S3, E′′).

By the observation, we can remove all edges in H that joins two vertices in S3, which
are not necessary to construct the desired matching M in H. Let H ′ = (S2 ∪ S3, E′′) be the
graph obtained from H by removing them (Figure 5).

Now our goal is a construction of the matching M on H ′ that satisfies the conditions of
Observation 6. We first note that H ′[S2] induces a set of cliques Qi for each color i = 2, 3, . . . , c.
That is, S2 can be partitioned into c − 1 subsets Si

2 = {{u, u′} | C1(u) = 1 and C1(u′) = i}
for each color i = 2, 3, . . . , c, and then H ′[Si

2] is a clique Qi. By the definition of H ′, we
can observe that NH′ [q] = NH′ [q′] for any q, q′ ∈ Qi. We also note that |M | = |S3| and
|S2| − |S3| = |P2|. That is, in the spider G, every stick in S3 should be joined to a stick in
S2 in a proper way and other sticks in S2 are connected to sticks in S1 in any way.

To construct M , we first compute a maximum matching M ′ on the bipartite graph
H ′′ = (S2, S3, E′′′), where E′′′ is the set of edges joining vertices in S2 and S3 in H ′. (In
other words, we ignore the edges in the cliques Qi.) If |M ′| < |S3|, the answer is clearly
“No”. Otherwise, we choose |S3| edges in H ′ as the legs in P4. Let Q′

i be the set of cliques
induced by the vertices not matched in M ′. If

∑c
i=2 ⌊|Q′

i|/2⌋ ≥ |P3|, we have enough pairs
to construct legs in P3. Then we choose any |P3| edges in H ′[∪iQ

′
i] and add them to M ′,

which is the desired M . Once we can obtain M , we assign the remaining edges in S2 as legs
in P2. In this case, the answer is “Yes”.

The last remaining possible situation is that (1) the maximum matching M ′ has enough
edges as |M ′| ≥ |S3| and (2)

∑c
i=2 ⌊|Q′

i|/2⌋ < |P3|. In this case, some Q′
i may contain an

odd number of vertices not matched in M ′. When |Q′
i| and

∣∣Q′
j

∣∣ with i ̸= j are odd, by
changing the edges in M ′, we may make both of |Q′

i| and
∣∣Q′

j

∣∣ even and then we can increase∑c
i=2 ⌊|Q′

i|/2⌋ by one. If we can perform it repeatedly, we may achieve
∑c

i=2 ⌊|Q′
i|/2⌋ = |P3|.

This can be done if we have an alternating path P in H ′ with respect to M ′ between Q′
i and

Q′
j . Here, an alternating path P is a path (v0, v1, . . . , v2k) for some positive integer k such

that the edges on P are in M alternately. Thus, by finding an alternating path P in H ′ with
respect to M ′ and replacing M ′ by M ′ ⊕ P (swapping the members in M ′ according to P),
we can increase

∑c
i=2 ⌊|Q′

i|/2⌋ by one.

Y. Iburi and R. Uehara 17:9

For the graph H ′ = (S2 ∪ S3, E′′) and the maximum matching M ′, we have the following
lemma:

▶ Lemma 7. We assume that |Q′
i| and

∣∣Q′
j

∣∣ with i ̸= j are odd. Then there exists an
alternating path between two vertices Qi and Qj if and only if a connected component of H ′

contains both of Qi and Qj.

Proof (Outline). We first consider a vertex s = {u, w} in S3 with C1(u) = C1(w). Then
N(s) = QC1(u). For such a vertex, M ′ contains an edge {s, q} for some q ∈ QC1(u) and we
have nothing to do. Thus we focus on a vertex s = {u, w} in S3 with C1(u) ̸= C1(w). Then s

has two clique neighbors Qi and Qj when C1(u) = i and C1(w) = j. That is, N(s) = Qi ∪ Qj .
Now we prove the claim of this lemma by induction on the length of the distance between

Qi and Qj in a connected component of H ′.
The base case is that the distance between Qi and Qj is 2. In this case, there exists

a stick s = {u, w} such that C1(u) = i and C1(w) = j, and M ′ contains one of {s, qi} and
{s, qj} for some vertices qi ∈ Qi and qj ∈ Qj . Without loss of generality, we assume that
M ′ contains {s, qi}. Now, by assumption, we have an unmatched vertex qj in Qj . Then
we can construct an alternating path is (qi, s, qj). In this case, we can replace M ′ with
M ′ ∪ {{s, qj}} \ {{s, qi}}. After replacement, both of |Q′

i| and
∣∣Q′

j

∣∣ are even, and a new pair
{qi, qi′} with qi, qi′ ∈ Q′

i appears and it can be used to add a leg into P3.
We turn to the inductive step: the distance between qi ∈ Qi and qj ∈ Qj is 2k for some

k > 1 (and any pair of qi and qj). In a similar argument, we can assume that {s, qi} is
in M ′ and {s, qj} is not in M ′ for some qj in Qj . Then, we can find a shortest path P of
even length between qi and qj in H ′ when they are in the same connected component in
H ′. Since M ′ is a maximum matching, P is an alternating path and we can replace M ′ with
M ′ ⊕ P. After replacement, we can see that |Q′

i| and
∣∣Q′

j

∣∣ are even, and any other clique
Qk appearing on P does not change the parity of |Qk|. Therefore, a new pair {qi, qi′} with
qi, qi′ ∈ Q′

i appears again and it can be used to add a leg into P3.
When Qi and Qj are not in a connected component of H ′, it is trivial to see that we

cannot make any alternating path joining two vertices in Qi and Qj , which completes the
proof. ◀(of Lemma 7)

By Lemma 7, repeating the process, we eventually maximize
∑c

i=2 ⌊|Q′
i|/2⌋ for the

maximum matching M ′. When this maximum value
∑c

i=2 ⌊|Q′
i|/2⌋ is at least |P3|, we can

construct a desired matching M , which gives us a solution of the matching-match puzzle.
On the other hand, when the maximum value is less than |P3|, this case is not feasible.

The correctness of the algorithm follows with properties of the matroid. Using the standard
technique for finding a maximum matching in a bipartite graph based on alternating paths
(see, e.g., [5]), the algorithm can be performed in a polynomial time. ◀

Careful case analysis leads us to the following corollary:

▶ Corollary 8. For a given instance (G, S, c, C0, C1), the matching-match puzzle can be solved
in polynomial time when G is a spider with legs of length at most 2, and C0(v) = 0 for all
v ∈ V .

5 Concluding Remarks

In this paper, we introduced and investigated the matching-match puzzle in general form. It
is based on a commercial product puzzle which can be modeled as a variant of the graph
coloring problems in a natural way.

FUN 2024

17:10 Computational Complexity of Matching Match Puzzle

In the puzzle, the numbers of vertices and edges in the graph and the number of colors
are variables and it is NP-complete even if the graph is quite restricted. In the proof of
NP-completeness, the number of the colors is linear to the number of the vertices. It may be a
reasonable assumption that the number of the colors is bounded above by a constant (in fact,
the commercial product has 4 colors). For example, a natural brute force algorithm allows
us to solve the matching-match puzzle on a k-partite complete graph G = (V1, V2, . . . , Vk, E)
in O

(
c(c+n)k(c−1)

(c!)k

)
time. It is another open problem that the puzzle is fixed-parameter

tractable with respect to the number of colors. That is, is there an algorithm that runs in
O(f(c) · poly(n)) for some graph classes of graphs of n vertices with c color, where poly(n) is
a polynomial function and f(c) is a computable function?

A natural extension of Corollary 8 is the case that some vertices of a spider G of legs of
length at most 2 are pre-colored additional to the body. We consider our polynomial-time
algorithm can be extended to this case, however, case-analysis is quite complicated. (We

note that it can be solved in O

(
(c(c+n)c2

)
(c!)c

)
time by a brute force algorithm.) It is unlikely

that there exists a simple polynomial-time algorithm for solving this case. Based on this
fact, we conjecture that the matching-match puzzle is NP-complete if G is a spider with legs
of length at most 3, which is another open problem.

References
1 N. Alon, R. Yuster, and U. Zwick. Color-Coding. Journal of the ACM, 42(4):844–856, 1995.
2 Michael R. Garey and David S. Johnson. Computers and Intractability — A Guide to the

Theory of NP-Completeness. Freeman, 1979.
3 R. A. Hearn and E. D. Demaine. Games, Puzzles, and Computation. A K Peters Ltd., 2009.
4 Tommy R. Jensen. Graph Coloring Problems. John Wiley & Sons, 1994.
5 C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Dover, 1982.
6 Ryuhei UEHARA. Computational Complexity of Puzzles and Related Topics. Interdisciplinary

Information Sciences, ID 2022.R.06:1–23, 2023. doi:10.4036/iis.2022.R.06.

https://doi.org/10.4036/iis.2022.R.06

	1 Introduction
	2 Preliminaries
	3 NP-completeness
	4 Polynomial time algorithms
	5 Concluding Remarks

