
Advanced Spikes ‘n’ Stuff: An NP-Hard Puzzle
Game in Which All Tutorials Are Efficiently
Solvable
Christian Ikenmeyer # Ñ

University of Warwick, UK

Dylan Khangure #

University of Warwick, UK

Abstract
We adjust Alan Hazelden’s 2017 polynomial time solvable puzzle game Spikes ‘n’ Stuff: We obtain
the NP-complete puzzle game Advanced Spikes ‘n’ Stuff with 3 trap types so that each strict subset
of the traps results in a polynomial time solvable puzzle game. We think of this as a “hard game in
which all tutorial levels are easy”. The polynomial time algorithms for solving the tutorial games
turn out to be quite different to each other.

While numerous papers analyze the complexity of games and which game objects make a game
NP-hard, our paper is the first to study a game where the NP-hardness can only be achieved by a
combination of all game objects, assuming P differs from NP.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases computational complexity, P vs NP, motion planning, games

Digital Object Identifier 10.4230/LIPIcs.FUN.2024.18

1 Motivation

By a tutorial for a game we mean the game with some of its parts removed. The exact notion
of what constitutes a “removable part” of a game is arbitrary, but for many games there
are natural choices. For games such as Alan Hazelden’s 2017 puzzle game Spikes ‘n’ Stuff
[1], where the player navigates through a maze with different types of traps, the natural
removable parts are the different types of traps. In a very similar manner, natural tutorials
have been investigated for example in [9], where the removable parts are the interactive
objects (which are not necessarily traps) in a level of the computer game Portal. One main
observation in [9] is that many of the interactive objects in Portal are NP-hard on their
own, i.e., in these cases the tutorial in which only one type of interactive object is present is
already NP-hard. We list many more such examples from the literature in Section 3.

The original Spikes ‘n’ Stuff game is a turn-based game that is solvable in polynomial
time (in the size of the level), because each level only has a state space of polynomially
bounded size. We adjust this game slightly so that we get the NP-hard game Advanced
Spikes ‘n’ Stuff, which is a game that is polynomial-time solvable if levels contain only two
of the three traps, see Figure 1. The main technical difficulty that we overcome in this paper
is that at least one trap type has to result in a superpolynomially large state space, but this
trap type is not allowed to make the game NP-hard on its own or combined with any one of
the other two trap types. This is the first NP-hard game that we know for which all tutorials
are solvable in polynomial time.

Note that artificial NP-hard “games” in which all tutorials are easy can readily be created
for example as follows (with two removable “game” parts instead of three): The game is to
solve a 3SAT instance, and the two removable parts are negation of variables and disjunction.

© Christian Ikenmeyer and Dylan Khangure;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Fun with Algorithms (FUN 2024).
Editors: Andrei Z. Broder and Tami Tamir; Article No. 18; pp. 18:1–18:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christian.ikenmeyer@warwick.ac.uk
https://www.dcs.warwick.ac.uk/~u2270030/
https://orcid.org/0000-0003-4654-177X
mailto:dylan.khangure@warwick.ac.uk
https://doi.org/10.4230/LIPIcs.FUN.2024.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 An NP-Hard Puzzle Game in Which All Tutorials Are Efficiently Solvable

NP-C P

P
P

P

P
P

spike trap

horizontal crossbow

vertical crossbow

Figure 1 If all three trap types in Advanced Spikes ‘n’ Stuff are present, the game is NP-complete.
Otherwise it is solvable in polynomial time.

While 3SAT is NP-complete, if we remove the negation of variables, the problem becomes
trivial, whereas when we remove disjunctions, then all clauses have length 1, which also
trivializes the problem.

Our point is that Advanced Spikes ‘n’ Stuff is only a slight variation of the fun game
Spikes ‘n’ Stuff, and therefore our techniques (or refinements thereof) may have implications
on actual game design approaches in the future. As a first insight, we can say that the fact
that all tutorials are easier to solve than the complete game forces the player to rethink their
strategies (that they have developed while playing through tutorial levels) when playing the
complete game. Forcing the player to re-think established assumptions is usually a desirable
property in puzzle games.

2 Advanced Spikes ‘n’ Stuff

Advanced Spikes ‘n’ Stuff is a turn-based single player puzzle game where the goal is to
move an agent from the start position to the finish position through a maze without the
agent getting killed by traps. The game is played on a square grid of tiles. Every tile is
either walkable without a spike trap, or walkable with a spike trap, or a wall, or a horizontal
crossbow trap (facing left or right), or a vertical crossbow trap (facing up or down). Each
trap has an internal state, where spike traps have three states 0, 1, 2, vertical crossbows have
two states 0, 1, and horizontal crossbows have six states 0, 1, . . . , 5. The state 0 is called the
idle state. In addition to this state, every vertical crossbow is either functional or deactivated.
Horizontal crossbows count as always functional. We define the range of a crossbow to be the
set of tiles in a direct line in front of the crossbow up to the next unwalkable tile. Figure 2
depicts an example level of Advanced Spikes ‘n’ Stuff.

On each turn, first the agent must move either horizontally or vertically from its tile p

to an adjacent walkable tile q. The direction is chosen by the player. If q is a state 1 spike
trap or q is in the range of a functional state 1 crossbow, then the agent dies and the player
loses the game. Traps in other states do not harm the agent. At this point, if the player
hasn’t lost yet, all traps that are not in their idle state or deactivated advance their state by
1, coming back to their idle state after their maximal state is reached. If p is a spike trap,
then now that spike trap’s state is set to 1. If q is in the range of an idle functional crossbow
trap, the crossbow trap’s state is now set to 1. If q is left or right of a vertical crossbow trap,
that crossbow trap is set to deactivated and its state is set to 0. At this point, the turn ends
and the player must now make the next choice in which direction to move.



C. Ikenmeyer and D. Khangure 18:3

The light gray coloured tiles are the walls, and the darker
coloured tiles are the walkable tiles. The start position is
the tile at the top-left of the level, and the finish position
is the tile at the bottom-right. The agent takes the form
of a person and can be seen near the goal position. Each
spike trap state is shown in this level. The spike trap
immediately above the agent is in state 1 and the one
immediately above that is in state 2. All other spike
traps in the level are in state 0. Similarly all states of
the horizontal crossbow trap are present. The crossbow
adjacent to the player is in state 1. Going up from
this position, the crossbows are in states 2,3,4 and 5
respectively, with the one at the very top being idle (in
state 0). Two vertical crossbows are also in this level; the
red one is functional and the blue one is deactivated. The
notion of the range of a crossbow is also highlighted in this
level using the horizontal crossbow towards the bottom.
The walkable tiles with small gold squares are precisely
those tiles which are in the range of this crossbow. These
gold squares are hidden from the player during the game,
and are merely used here for illustrative purposes.

Figure 2 Sample level of Advanced Spikes ‘n’ Stuff.

A game state of this turn-based game consists of the start and finish positions and the
tile arrangement (which do not change throughout the game), the agent’s position, the states
of all traps, and the functional/deactivated flag of all vertical crossbow traps. The game
starts with all traps in their idle state and all vertical crossbows functional. For the sake of
simplicity, we assume that

the start tile is not in range of any crossbow trap and the tiles adjacent to the start
tile are not spike traps, and (1)

the tiles left and right to of vertical crossbow traps and their adjacent tiles are not
spike traps, and they are not in range of a horizontal crossbow trap. (2)

Formally, we consider the problem ASnS(S) of deciding given an Advanced Spikes ‘n’
Stuff level satisfying (1) and (2) whether or not the player can move the agent from the start
tile to the finish tile without the agent dying by traps. The parameter S is a subset of the
set of symbols {h, s, v}, where s ∈ S indicates that the levels can have spike traps, h ∈ S

indicates that the levels can have horizontal crossbow traps, and v ∈ S indicates that the
level can have vertical crossbow traps.

▶ Theorem 2.1 (Main Theorem). ASnS({h, s, v}) is NP-complete, but ASnS(S) ∈ P for all
strict subsets S ⫋ {h, s, v}.

Theorem 2.1 is illustrated in Figure 1. Since a game cannot get harder if possible game
pieces are removed, the results ASnS({h}) ∈ P, ASnS({s}) ∈ P, ASnS({v}) ∈ P are direct
corollaries from ASnS({h, s}) ∈ P, ASnS({s, v}) ∈ P.

We prove ASnS({h, s}) ∈ P in Corollary 4.3, ASnS({v, s}) ∈ P in §5, and ASnS({h, v}) ∈ P
in §6, interestingly with different proof strategies: While ASnS({h, s}) ∈ P follows from
the polynomially bounded state space, the argument for ASnS({v, s}) ∈ P partitions the
exponentially large state space into polynomially large pieces and greedily traverses poly-
nomially many pieces, and ASnS({h, v}) ∈ P uses the same strategy, but with a more
involved argument, because in the presence of horizontal crossbow traps, the agent cannot

FUN 2024



18:4 An NP-Hard Puzzle Game in Which All Tutorials Are Efficiently Solvable

safely traverse a safe walk in the reverse direction (see the discussion in §6). We prove
the NP-completeness of ASnS({h, s, v}) in Theorem 7.3. We use a standard framework for
constructing a polynomial-time reduction from 3SAT to ASnS({h, s, v}), closely based on [3].
Early versions of this framework appear in the hardness proofs for games such as SOKOBAN
[10] and PushPush [8], but it has since been refined, as can be seen in the papers [2] and [7].

The original game Spikes ‘n’ Stuff

In the original Spikes ‘n’ Stuff the horizontal crossbow traps have only 4 states and the
vertical crossbow traps work in the same way as the horizontal crossbows traps (and there
are some other minor changes about arrows hitting each other mid-air and the player pulling
a treasure, which add some twists to the game, but these are not essential, so we do not
discuss them). Therefore, no crossbow trap can be deactivated, which implies that the state
space has polynomially bounded size, see Lemma 4.2. Hence, the original Spikes ‘n’ Stuff
game is solvable in time that is polynomially bounded in the size of the game board, for
example by breadth-first-search in the state space.

3 Related Work

[11] proves various theorems about the complexity of two-dimensional platform games. For
example, a level containing items for the player to collect is, on its own, polynomial-time
solvable, but adding in a time-limit immediately makes it NP-hard. Moreover, platform
games with drops longer than the maximum jump height are already NP-hard.

[13] proves that games where doors can be opened with pressure plates, but not closed,
are in P, but adding the ability to close doors makes that game NP-hard. Similarly, it is
shown that games with buttons that act on only a single door are in P, but games where a
single button may act on two or more doors are NP-hard. Moreover, if a game contains a
feature that forces the player to visit various locations, and there are single-use paths or “toll
roads” (a certain number of a specific item must be collected to pass), that game is NP-hard.

In the game Lemmings, agents can be assigned skills by the player which alter their
behaviour. For example, the Builder skill allows the Lemming to construct a bridge, and the
Digger skill allows the Lemming to dig vertically downwards (see [6], [13] and [14]). One
sensible way of defining a tutorial of Lemmings is to consider the game we get by restricting
the skills we are allowed to give to the agents (and this is indeed how the actual game is set
up). Some of these tutorials where only a single skill can be given to the agents are already
NP-hard (even in simplified models of the game): in [6] hardness is proved using only Digger
skills, and [13] presents a construction that only requires Basher or Miner skills to achieve
hardness.

In [3], we see that even if we consider classic Nintendo games with a subset of their
original features we may still get a game that is NP-hard. The original Super Mario Bros. is
NP-hard with only the following game features: Super Mushrooms to turn Mario into Super
Mario (who can break blocks but cannot fit into narrow horizontal corridors), Goombas to
turn Super Mario back to normal Mario (who can fit into narrow horizontal corridors but
cannot break blocks) vertical drops that are higher than the maximum jump height, and
Stars which provide temporary invulnerability from Firebars. Pokémon is already NP-hard if
it contains nothing other than pushable blocks, and also if pushable blocks are not present
and the only feature used is battles with enemy Trainers (in this second case, the game
is actually NP-complete). Similarly, the original Legend of Zelda is NP-hard even if block



C. Ikenmeyer and D. Khangure 18:5

pushing is the only feature that is kept. In later Zelda games, there are ice blocks. These are
blocks that when pushed, slide until they hit an obstruction. It is shown that with just this
feature, the game is in fact PSPACE-complete.

Another platform game is Celeste, where the player navigates through various levels
containing obstacles. The character they control can move in eight directions, and has
the ability to jump, dash and temporarily grab onto walls. The game contains many
different mechanics and types of obstacles, but [2] proves that even if only the following are
present, the game is already NP-hard: platforms that break when stood on, button-operated
doors, and special types of blocks that teleport the player in a straight line. [5] solves the
PSPACE-hardness for several of its tutorials.

[12] explores a tiling problem that is based on the game KPlumber. The input to the
problem is a grid of tiles, with each tile being one of six possible types (O, C, D, S, T, X),
and the goal is to rotate the tiles in order to reach a desired goal state. If the tiles C, D, S

are used, the tutorial is already NP-complete. The same holds for C, S, T . For some subsets
of {O, C, D, S, T, X} the complexity has not been classified.

Another game that has been studied which contains many natural tutorials is Tetris.
Simpler versions of the game can be obtained by, for example, restricting the size of the
gameboard, or the pieces that are available. Some of these simpler versions are proven to be
solvable in polynomial time in [4], some are NP-hard, where the tutorials are distinguished
by board size, piece size, and empty/non-empty initial board state. We have not found any
analysis in the literature about the complexity when the set of tetris pieces is restricted to a
subset.

4 The game states in Advanced Spikes ‘n’ Stuff

In this section we prove ASnS({h, s}) ∈ P.

▶ Definition 4.1. A game state is called tame if at most 2 spike traps are not in the idle
state and at most 12 crossbow traps are not in their idle state.

Note that this definition poses no constraints on the functional/deactivated flags of the
vertical crossbow traps, which means that the set of tame game states can be exponential in
size.

▶ Lemma 4.2. In a game of Advanced Spikes ‘n’ Stuff, only tame game states can be reached.

Proof. During each move the agent can only set one spike trap to state 1. Hence, during a
move only one spike trap can go from state 1 to state 2.

Similarly, during each move the agent can only trigger 2 crossbow traps, which have
6 or 2 states each, and 2 max{2, 6} = 12. ◀

▶ Corollary 4.3. ASnS({h, s}) ∈ P.

Proof. If no vertical crossbow traps are present, then the size of the set of tame game states
is polynomially bounded. By Lemma 4.2 it is sufficient to consider only this space. Hence,
a breadth-first-search in the space of tame game states solves ASnS({h, s}) in polynomial
time. ◀

FUN 2024



18:6 An NP-Hard Puzzle Game in Which All Tutorials Are Efficiently Solvable

5 ASnS({s, v}) ∈ P

We prove that ASnS({s, v}) ∈ P. First, note that

a spike trap kills an agent if and only if the agent moves from the spike trap
to an adjacent tile and immediately back on the next turn.
a functional vertical crossbow trap kills the agent if and only the agent
makes a vertical move within its range.

(3)

Let V denote the set of vertical crossbow traps. For any subset of S ⊆ V of functional
vertical crossbow traps, let RS ⊆ S denote the set of functional vertical crossbow traps the
agent can deactivate when starting at the start tile and making game moves without dying
and without deactivating any other functional vertical crossbow trap. For each fixed S, the
set RS can be determined in polynomial time using the observation in the above two bullet
points, for example by a breadth-first-search in the subset TS of the space of tame game
states that have exactly the vertical crossbows S functional. Note that the size of TS is
polynomially bounded.

The polynomial-time algorithm to solve ASnS({s, v}) initializes S0 := V . Then it loops
the following for i = 0, . . .:
1. If the game can be solved by just traversing game states in TSi , return true.
2. Determine RSi

.
3. If RSi = ∅, return false. Else, pick an arbitrary ri ∈ RSi and define Si+1 = Si \ {ri}

and continue the loop with the next i.
If true is returned, then the solution to the level is by first moving the agent to deactivate
r0, then moving the agent back to the start, then deactivating r1, then moving the agent
back to the start, and so on, until finally traversing the game states in TSi

to the finish tile.
The crucial observation here is that the properties (3) and (2) imply that going back to the
start by tracing the steps backwards will not kill the agent.

If false is returned, then Si is the unique maximal set of functional vertical crossbow
traps that can be reached from the start game state. But in TSi

there is no traversal to a
finish game state. This finishes the proof of ASnS({s, v}) ∈ P.

6 ASnS({h, v}) ∈ P

The proof outline is the same as in §5. The only difference is that once the agent deactivates
a vertical crossbow trap, it might not be possible to trace the same walk back to the start
without being killed, see Figure 3. First, note that the agent gets killed if it makes a vertical
step in the range of a functioning vertical crossbow trap. Now, generalize this observation
from 2 states (vertical crossbow trap) to 6 states (horizontal crossbow trap): the agent can
only make at most 4 successive horizontal moves within the range of a horizontal crossbow
trap without being killed. The following Theorem 6.1 states the “converse”.

▶ Theorem 6.1. If a level has no spike traps, then for a walk w from tile p to tile q that
does not make more than 4 successive horizontal moves within the range of a horizontal
crossbow trap and that does not make a vertical move within the range of a functional vertical
crossbow trap, there exists a walk w′ from p to q such that the agent does not get killed when
traversing w′.

Theorem 6.1 implies ASnS({h, v}) ∈ P as follows. Since the property of w of avoiding 4
successive horizontal moves in ranges of horizontal crossbow traps and avoiding vertical
moves in ranges of vertical crossbow traps is symmetric, traversing w back to the start can
be done safely by replacing it by w′ (where we use the safety assumptions (1) and (2)), which
finishes the proof of ASnS({h, v}) ∈ P.



C. Ikenmeyer and D. Khangure 18:7

Figure 3 The walk (3,4), (3,5), (3,4), (4,4), (5,4), (6,4), (7,4), (7,3), (7,2) can be safely traversed
from the agent’s current position, but attempting to traverse this walk in reverse will cause the
agent to be killed.

Proof of Theorem 6.1. First, observe that the agent cannot be killed by any horizontal
crossbow trap when making a vertical step. The reason is that if a vertical step moves the
agent into the range of a horizontal crossbow trap and the crossbow trap was in state 1
(which would kill the agent), then the agent would have set its state to 1 in the last turn. But
in the last turn the agent was not in the range (otherwise, a vertical step would move the
agent out of the range). Analogously, the agent cannot be killed by a vertical crossbow trap
when making a horizontal step. Hence, in w the player is not killed by a vertical crossbow
trap.

Now, take the walk w and adjust it as follows to obtain w′: Every move in which the
agent enters and not immediately leaves the range of a crossbow trap (this must necessarily
be a horizontal crossbow trap by assumption on w) that is in state i ∈ {0, 2, 3, 4, 5}, the
agent repeatedly takes one step back and then one step forward: once if i = 0, 0 times if
i = 2, 3 times if i ∈ {3, 4}, and 2 times if i = 5. The agent now proceeds traversing w and
enters the range with the crossbow trap in state 2, which immediately moves to state 3. The
agent can now safely make 4 horizontal steps in the range, while the state of the crossbow
trap goes to 4, 5, 0, 1. As discussed before, the new vertical steps cannot get the agent killed
by any horizontal crossbow traps, and clearly not by a vertical crossbow trap. An example
of this construction of w′ is given in Figure 4. ◀

Figure 4 The walk w = ((1, 2), (2, 2), (3, 2), (3, 3), (3, 4), (3, 5), (4, 5), (4, 4), (5, 4), (6, 4), (7, 4),
(8, 4), (8, 5), (9, 5), (9, 6)) will get the agent killed at (7, 4), but the agent survives when using
w′ = ((1, 2), (2, 2), (3, 2), (3, 3), (3, 4), (3, 5), (4, 5), (4, 4), (4,5), (4,4), (4,5), (4,4), (4,5), (4,4),
(5, 4), (6, 4), (7, 4), (8, 4), (8, 5), (9, 5), (9, 6)).

FUN 2024



18:8 An NP-Hard Puzzle Game in Which All Tutorials Are Efficiently Solvable

7 NP-completeness

▶ Theorem 7.1. ASnS({h, s, v}) ∈ NP.

Proof. We prove that every level can be solved in a number of steps that is polynomially
bounded in the level size. This proves the theorem, because the step sequence gives a
polynomially sized witness for the solvability.

Consider an arbitrary level that the player can complete. Since the level is completable,
there exists some walk w that the agent is able to traverse from the start tile to the finish
tile without being killed. Let (d1, d2, . . . , dk) be the sequence of vertical crossbows that the
agent deactivates during w, in chronological order of deactivation. Note that each crossbow
can be deactivated at most once, so k cannot exceed the number of tiles of the level. For
i ∈ {0, 1, . . . , k} let Di denote the set of tame states (see Definition 4.1) in which exactly
the vertical crossbows {d1, . . . , dk} are deactivated. By assumption and by Lemma 4.2 there
exists a path p from the start game state through the space D0 ∪ D1 ∪ · · · ∪ Dk to a finish
game state in which each edge is a game move. Since k is polynomially bounded, and the
cardinality of each Di is polynomially bounded, the length of a shortest path p is polynomially
bounded. Such a path serves as the desired NP witness. ◀

7.1 NP-hardness
The construction uses one-way gadgets (where the agent can only pass through in one
direction), variable gadgets, clause gadgets, and crossover gadgets: one variable gadget for
each variable in the 3SAT instance, and one clause gadget for each clause. Each variable
gadget is connected to its clause gadgets by paths, and also to the next variable gadget, see
Figure 5.

Start

Finish

Variable
x1 ¬x1

Variable
x2 ¬x2

Variable
x3 ¬x3

x1 ¬x1 x2
Clause

x1 ¬x2 x3
Clause

Figure 5 NP-hardness framework: The agent starts at Start and tries to get to Finish, traversing
the edges. Arrows stand for one-way gadgets. Each 4-way intersection must be crossed in a straight
manner. This is ensured by crossover gadgets. Our crossover gadget is not symmetrical and care
must be taken with its placement. Colored edges of the same color belong to the same section.

The one-way gadget is constructed as depicted on the left side in Figure 6. It is easy to
see that a player can traverse this gadget from north to south by entering the range of the
crossbow to set its state to 1, backtracking one step to avoid being hit by the arrow, then
proceeding in the obvious way to the exit, which is at the south. However, if the player tries
to traverse this gadget from the south to the north, they will find themselves in the state



C. Ikenmeyer and D. Khangure 18:9

Figure 6 Left: One-way gadget, only traversable from north to south, not from south to north.
Right: Traversing one-way gadget from south to north results in agent being killed.

depicted in Figure 6 on the right side. This is clearly a losing position: moving west causes
the agent to be killed by the horizontal crossbow trap, and moving south causes them to be
killed by the spike trap.

The solvability of levels is not invariant under rotations, but for each gadget we also have
the gadgets in all four rotations, which is illustrated in Figure 7.

G = G

Figure 7 Constructing a 90◦ rotated version of a gadget G. The depicted gadget G has 1 input
on each side, but this construction obviously works for any number of inputs on any side.

The variable gadget is constructed from one-way gadgets as depicted in Figure 8.

Variable
xi ¬xi

=

Figure 8 The variable gadget consists of three one-way gadgets.

The clause gadget is also easy to build, see Figure 9. There are three entrances at the
north side of the gadget (that correspond to the three literals in the clause that this gadget
is representing). When the agent uses one of these entrances, they can unlock the gadget by
setting a vertical crossbow trap to deactivated. When the agent enters the gadget from the
east, they can traverse it to the west if and only if it is unlocked, i.e., it has been unlocked in
at least one of the northern entrances.

7.2 The Crossover gadget and its placement
The final gadget required for the construction is the crossover gadget, see Figure 10. There
are two paths, which we refer to as the north-south path and the east-west path, which cross

FUN 2024



18:10 An NP-Hard Puzzle Game in Which All Tutorials Are Efficiently Solvable

Figure 9 The clause gadget.

Figure 10 The crossover gadget in its closed state, in the can be opened at north rotation.

at the spike trap in the center. This gadget comes equipped with a state, which is closed if
the vertical crossbow is functional, and open if it is deactivated. The key properties of the
gadget are explained in the following lemma.

▶ Lemma 7.2. If the crossover gadget is closed, then the agent can traverse east to west
and vice versa, and the agent can open the gadget from the north. If the crossover gadget is
open, then the agent can traverse from east or west to any direction, while from the north
and south the agent can only go to the north and south.

Proof. If the gadget is closed and the agent comes from the south, the vertical crossbow trap
will kill the agent. Obviously, the agent can open the gadget from the north by deactivating
the vertical crossbow trap. If the gadget is open and the agent comes from the north or
south, then the horizontal crossbow trap together with the spike traps prevents the agent to
go east or west, but north and south are possible.

Independent of the gadget’s state, the gadget can be traversed east to west or vice versa
by the agent entering the horizontal crossbow’s range, taking one step back, and then moving
across. This also works for moving to the north or south, but only if the gadget is open,
i.e., the vertical crossbow is deactivated. If the gadget is closed, the vertical crossbow is
functional, which prohibits any turning onto the north-south path. ◀



C. Ikenmeyer and D. Khangure 18:11

Recall that the crossover gadget comes in all 4 rotations, see Figure 7. We now show how
this gadget is used in our construction. Recall Figure 5. Where two paths cross, we insert a
crossover gadget in one of the four rotations, but the choice of rotation is not arbitrary.

As seen in Figure 5, we have an ordering x1, x2, . . . , xn on the set of variables in the 3SAT
instance. The edge colors in Figure 5 indicate so-called sections: The i-th section consists
of the two walks wi,0, wi,1 originating from the variable gadget for xi, one corresponding to
setting xi to 0 (false) and the other to setting it to 1 (true): These walks touch all of the
clause gadgets containing the literal they correspond to, and then go to the next variable
gadget. For each intersection of two walks, it will be important from which direction the
walks enter the intersection for the first time when traversed. To place the crossover gadgets,
first consider intersections of walks in different sections: wi,bi , wj,bj for i ̸= j, w.l.o.g. i < j.
We place the crossover gadget so that the vertical crossbow trap is at the place where wj,bj

enters the intersection for the first time when traversed. We claim that the agent can only
first enter the variable gadget 1, then section 1, then the variable gadget 2, then section 2,
and so on, until the agent has to traverse all clause gadgets and reaches the finish tile. This
can be seen as follows. Clearly, the agent has to first enter variable gadget 1 and then
section 1. The placement of the crossover gadgets guarantees that the agent cannot open any
crossover gadget of section 1 with any section j ̸= 1. Therefore, the agent must traverse to
variable gadget 2 and enter section 2. By the same argument, in section 2 the agent cannot
open any crossover gadget of section 2 with any section j > 2. However, the agent can open
the crossover gadgets of section 2 with section 1. But the placement guarantees that the
agent cannot enter section 1 from these crossover gadgets. Therefore, the agent has to enter
variable gadget 3 and section 3, and so on.

When placing crossover gadgets at the intersection of wi,0 and wi,1, we take the orientation
so that the vertical crossbow trap is at the place where wi,0 enters the intersection for the
first time when traversed. This makes sure that if the player chooses xi = 1, then the agent
only ever encounters east-west crossings of crossover gadgets, which means that the agent
cannot open these gadgets and hence cannot traverse east or west, and if the player chooses
xi = 0, then the agent only ever encounters north-south crossings of crossover gadgets, and
hence can open the gadgets, but not traverse east or west.

▶ Theorem 7.3. ASnS{h, s, v} is NP-complete.

Proof. The proof is now obvious. We have seen that in order to reach the finish tile, the
agent must traverse section 1, then section 2, and so on, and choose exactly one Boolean
value for each variable. And after choosing the variable values, the agent can traverse the
clause gadgets if and only if the agent touched each clause gadget. ◀

7.3 Full example
Figure 11 depicts the Advanced Spikes ‘n’ Stuff level built from the 3SAT instance ϕ =
(x1 ∨ ¬x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ x3). Setting each of the variables x1, x2 and x3 to true makes
ϕ evaluate to true. It can be easily verified that if the player makes these choices at the
variable gadgets, they are able to unlock both clause gadgets during their traversal, and are
hence able to complete the level.

FUN 2024



18:12 An NP-Hard Puzzle Game in Which All Tutorials Are Efficiently Solvable

Figure 11 Advanced Spikes ‘n’ Stuff level built from ϕ = (x1 ∨ ¬x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ x3). The
situation is rotated by 90° from Figure 5. The variable gadges are on the west, x1 to x3 from south
to north. A southern traversal sets the variable to true, a northern traversal sets it to false. The
clause gadget for (x1 ∨ ¬x1 ∨ x2) is at the south east, and the clause gadget for (x1 ∨ ¬x2 ∨ x3) is at
the north east.



C. Ikenmeyer and D. Khangure 18:13

References
1 Spikes ‘n’ Stuff. https://draknek.itch.io/spikes-n-stuff, https://alan.draknek.org/

games/puzzlescript/spikes-n-stuff.php. Accessed: 25/02/2024.
2 Zeeshan Ahmed, Alapan Chaudhuri, Kunwar Shaanjeet Singh Grover, Ashwin Rao, Kushagra

Garg, and Pulak Malhotra. Classifying Celeste as NP Complete. In International Conference
on Foundations of Computer Science & Technology, Chennai, India, November 2022.

3 Greg Aloupis, Erik D Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo Games
are (Computationally) Hard. Theoretical Computer Science, 586:135–160, 2015.

4 Sualeh Asif, Michael Coulombe, Erik D Demaine, Martin L Demaine, Adam Hesterberg,
Jayson Lynch, and Mihir Singhal. Tetris is NP-hard even with O(1) rows or columns. Journal
of Information Processing, 28:942–958, 2020.

5 Lily Chung and Erik D. Demaine. Celeste is PSPACE-hard. Thai Journal of Mathematics,
21(4):671–686, December 2023.

6 Graham Cormode. The Hardness of the Lemmings Game, or Oh no, more NP-Completeness
Proofs. In Proceedings of Third International Conference on Fun with Algorithms, pages 65–76,
2004.

7 Diogo M Costa, Alexandre P Francisco, and Luís Russo. Hardness of Modern Games.
arXiv:2005.10506, 2020.

8 Erik D Demaine, Martin L Demaine, and Joseph O’Rourke. PushPush and Push-1 are NP-hard
in 2D. In Proceedings of the 12th Annual Canadian Conference on Computational Geometry
(CCCG 2000), pages 211–219, August 2000.

9 Erik D. Demaine, Joshua Lockhart, and Jayson Lynch. The Computational Complexity of
Portal and other 3D Video Games. In 9th International Conference on Fun with Algorithms
(FUN 2018), volume 100, pages 19:1–19:22, 2018.

10 Dorit Dor and Uri Zwick. SOKOBAN and other motion planning problems. Computational
Geometry, 13(4):215–228, 1999.

11 Michal Forišek. Computational complexity of two-dimensional platform games. In Fun with
Algorithms: 5th International Conference, FUN 2010, Ischia, Italy, June 2-4, 2010. Proceedings
5, pages 214–227. Springer, 2010.

12 Daniel Král, Vladan Majerech, Jiří Sgall, Tomáš Tichý, and Gerhard Woeginger. It is tough
to be a plumber. Theoretical computer science, 313:473–484, 2004.

13 Giovanni Viglietta. Gaming is a hard job, but someone has to do it! Theory of Computing
Systems, 54:595–621, 2014.

14 Giovanni Viglietta. Lemmings is PSPACE-complete. Theoretical Computer Science, 586:120–
134, 2015.

FUN 2024

https://draknek.itch.io/spikes-n-stuff
https://alan.draknek.org/games/puzzlescript/spikes-n-stuff.php
https://alan.draknek.org/games/puzzlescript/spikes-n-stuff.php

	1 Motivation
	2 Advanced Spikes `n' Stuff
	3 Related Work
	4 The game states in Advanced Spikes `n' Stuff
	5 ASnS({s,v})inP
	6 ASnS({h,v})inP
	7 NP-completeness
	7.1 NP-hardness
	7.2 The Crossover gadget and its placement
	7.3 Full example


