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Abstract
The celebrated Floyd-Warshall algorithm efficiently computes the all-pairs shortest path, and its
simplicity made it a staple in computer science classes. Frequently, students discover a variant of this
Floyd-Warshall algorithm by mixing up the loop order, ending up with the incorrect APSP matrix.
This paper considers a computational problem of computing this incorrect APSP matrix. We will
propose efficient algorithms for this problem and prove that this incorrect variant is APSP-complete.
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1 Introduction

The Floyd-Warshall algorithm computes the all-pairs shortest path (APSP) in a directed
weighted graph [4, 9, 2]. Known in the computer science community for over 60 years,
Floyd-Warshall is still one of the most efficient algorithms for the APSP problem, where
it has a runtime of O(n3) for a graph with n vertices. No algorithms have improved this
runtime by a polynomial factor in general graphs, which motivates the APSP Conjecture by
[10].

Another remarkable characteristic of this algorithm is its simplicity - the standard
implementation of this algorithm is a short triply nested loop, as shown below:

Algorithm 1 The Floyd-Warshall Algorithm (KIJ Algorithm).

A← Adjacency matrix of the graph
Ensure: A[i, i] = 0 for all 1 ≤ i ≤ n

Ensure: G has no negative cycles
for k ← 1, 2, . . . , n do

for i← 1, 2, . . . , n do
for j ← 1, 2, . . . , n do

A[i, j]← min(A[i, j], A[i, k] + A[k, j])

Unfortunately, due to the algorithm being too simple, some students write a variant of
the Floyd-Warshall algorithm, either by mistake or as a deliberate attempt to rectify the
loop order into a natural lexicographic order. 1

1 We are unaware of any publication over this variant except [7], but some Internet forums and even the
lecture material discuss it. Examples are:
https://www.quora.com/Why-is-the-order-of-the-loops-in-Floyd-Warshall-algorithm-important-to-its-
correctness, https://cs.stackexchange.com/questions/9636/why-doesnt-the-floyd-warshall-algorithm-work-if-
i-put-k-in-the-innermost-loop, https://codeforces.com/blog/entry/20882, https://cs.nyu.edu/~siegel/JJ10.
pdf.
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Algorithm 2 The Variant of Floyd-Warshall Algorithm (IJK Algorithm).

A← Adjacency matrix of the graph G

Ensure: A[i, i] = 0 for all 1 ≤ i ≤ n

Ensure: G has no negative cycles
for i← 1, 2, . . . , n do

for j ← 1, 2, . . . , n do
for k ← 1, 2, . . . , n do

A[i, j]← min(A[i, j], A[i, k] + A[k, j])

Algorithm 2 do not compute the correct APSP matrix. For example, let A be the
adjacency matrix, and the M1 and M2 be the resulting matrix computed by Algorithm 1
and Algorithm 2 on A. The following choice of A makes M1[2, 1] and M2[2, 1] different:

A =


0 ∞ ∞ ∞
∞ 0 ∞ 1
1 ∞ 0 ∞
∞ ∞ 1 0

 , M1 =


0 ∞ ∞ ∞
3 0 2 1
1 ∞ 0 ∞
2 ∞ 1 0

 , M2 =


0 ∞ ∞ ∞
∞ 0 2 1
1 ∞ 0 ∞
2 ∞ 1 0


Since Algorithm 2 cannot compute the APSP correctly, it is natural to regard it as a

novice mistake and move on. But we encounter surprisingly nontrivial questions when we try
to understand what’s happening. For example, in a sparse graph with no negative edges, we
can compute the APSP problem using Dijkstra’s algorithm [3] for computing a single-source
shortest path in each vertex. Using the Fibonacci heap from [5] yields an O(nm + n2 log n)
time algorithm for n-vertex, m-edge graphs. Hence, we have an efficient way to obtain the
resulting matrix by Algorithm 1, but for Algorithm 2, despite being a seemingly novice
version, it is unclear how to obtain such matrix efficiently. To this end, we formally define
the Incorrect-APSP problem as follows:

▶ Definition 1 (Incorrect-APSP). Given a weighted graph with n vertices without negative
cycles, compute the matrix returned by Algorithm 2.

We note that calling Algorithm 2 as an incorrect algorithm might be unfair. Indeed,
a recurring theme in art and fashion is to take a seemingly correct version of a piece and
twist it cleverly so that people can find something new from a familiar composition. Even in
theoretical computer science, such attempts are not new: For example, a famous Bogosort [8]
is a sorting algorithm deliberately engineered to perform worse. A more similar example where
people consider a variant of a well-known algorithm also exists [7, 6]. In this way, depending
on the inspiration we drew, we can call the Algorithm 2 as either Improvised-APSP (Jazz
music reference), Punk-APSP (Rock music reference), or Bogo-APSP (Bogosort reference).
However, we will (unfortunately) call the problem Incorrect-APSP to avoid possible
confusion.

A significant inspiration for this work is an arXiv preprint by [7], which considers the
exact problem of Incorrect-APSP . In the preprint, the authors proved that running
Algorithm 2 three times on the given adjacency matrix will compute a correct APSP distance
matrix. In other words, the Incorrect-APSP problem is not entirely incorrect - even if
the student does not know the correct loop order, they can run the algorithm three times
and obtain a correct APSP matrix. While this result itself is funny (who cares about the
loop order if you can just run three times?), it raises an intriguing question about the
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hardness of the Incorrect-APSP problem, as their result implies that Incorrect-APSP
is at least as hard as the APSP problem. In other words, a subcubic implementation of
Incorrect-APSP can imply a breakthrough! So, is this seemingly novice mistake of APSP
made the problem strictly harder? Or can we find a subcubic reduction to prove that the
Incorrect-APSP problem is equivalent to the APSP problem?

1.1 Our Results
Our results in this paper are the following:

▶ Theorem 2. Given a weighted graph with n vertices and m edges, we can solve the
Incorrect-APSP in O(nTSSSP (n, m)) time, where TSSSP (n, m) is the time to execute a
single-source shortest path (SSSP) algorithm in a graph with n vertices and m edges.

▶ Theorem 3. Incorrect-APSP is subcubic equivalent to APSP.

Theorem 2 concerns a notable special case where n iteration of single-source shortest
path (SSSP) algorithm is known to outperform the Floyd-Warshall algorithm on the APSP
problem. For the Incorrect-APSP problem, it is unclear whether it can be optimized using
the SSSP-based approach. We show this is possible and present an algorithm matching the
APSP problem’s corresponding bounds. Note that the current record for the SSSP algorithm
is TSSSP (n, m) = O(m log2 n log(nM) log log n) ([1]). Under the assumption where G do not
contain negative weight edges, TSSSP (n, m) = O(n log n + m) ([5]).

Theorem 3 implies that both Incorrect-APSP and APSP have a subcubic algorithm
or both do not, meaning that we have a new member in the list of APSP-complete problems
where the subcubic solution to any of them implies a breakthrough.

1.2 Organization of our paper
In Section 2, we list the definitions and carefully formalize Algorithm 2 in graph theoretic
notions. In Section 3, we prove that the Incorrect-APSP problem is equivalent to the
path minimization problem with certain constraints. In Section 4, we prove Theorem 2 by
solving the path minimization problem by combining single-source shortest path problem
and dynamic programming. In Section 5, we prove Theorem 3 by devising an algorithm that
solves the Incorrect-APSP in subcubic time under the subcubic APSP oracle.

2 Preliminaries

2.1 Notations
For integers i and j, we use [i, j] to denote the set {i, i + 1, . . . , j}. Let G = (V, E, w) be
a weighted directed graph, where V = [1, n] is the set of vertices, E ∈ V × V is a set of
edges where an element (i, j) ∈ E represents a directed edge from vertex i to vertex j, and
w : E → [−M, M ] is the weight function of edges. As we represent vertices as integers, we
can say that a vertex is smaller or larger than the other vertex by comparing the integer.
We heavily rely on such notation, as our algorithm iterates V in the order of these integers.

We can use another representation for the directed weighted graphs if we do not rely on
the graph’s sparsity. For a graph G = (V, E, w) with V = [1, n], an adjacency matrix A(G)
of G is a n× n matrix such that:

A(G)[i, j] =


0 if i = j

w(i, j) if i ̸= j, (i, j) ∈ E

∞ otherwise
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Note that A(G)[i, j] may not accurately represent G if it has negative-weight loops, but
this is not a problem since we will invoke Algorithm 1 or Algorithm 2 only if G has no
negative cycles. Here, ∞ is an element where ∞+ x =∞ holds for all x ∈ [−M, M ].

2.2 Definitions
Algorithm 1 and Algorithm 2 both try to recognize certain kinds of paths in a graph: Starting
from the paths with at most one edge, it tries to build up a new paths that is a concatenation
of two paths. Here, we will formalize it so that we can view it as a minimization problem
over certain types of paths. In Section 3, we will argue that there is a simple characterization
of paths realized by Algorithm 2.

We formally define a concept of path realization, a generic description of paths realized
by the algorithms above.

▶ Definition 4. A path P = {p0, p1, . . . , pm} is realized by a sequence of 3-tuple
T = {(i1, j1, k1), (i2, j2, k2), . . . , (il, jl, kl)}, if and only if m ≤ 1, or there exists a pair of
integer d, x such that:

1 ≤ d ≤ l

1 ≤ x ≤ m− 1
(id, jd, kd) = (p0, pm, px)
{p0, p1, . . . , px} is realized by {(i1, j1, k1), (i2, j2, k2), . . . , (id−1, jd−1, kd−1)}.
{px, px+1, . . . , pm} is realized by {(i1, j1, k1), (i2, j2, k2), . . . , (id−1, jd−1, kd−1)}.

We list some immediate corollaries that can be shown by structural induction on Defini-
tion 4. While the corollaries themselves are somewhat trivial, they help us to organize our
theorems in a purely mathematical way.

▶ Corollary 5. Let Tkij(n) be a sequence of length n3 consisting of 3-tuples, where the
an2 + bn + c + 1-th element in the sequence is (b + 1, c + 1, a + 1) for all 0 ≤ a, b, c ≤ n− 1.
Given a n× n adjacency matrix of G, where G has no negative cycle, Algorithm 1 will return
a matrix M , where M [i, j] is the minimum total weight of all simple paths from i to j that is
realized by Tkij(n).

Proof. It suffices to prove the statement for all paths, as the graph does not contain any
negative cycles, and we can turn any non-simple paths into simple paths without increasing
their total length.

For any path from i to j realized by T (n), M [i, j] is at most the weight of such paths.
Note that the triple nested loop in Algorithm 1 exactly iterates the list Tkij(n) and performs a
relaxation operation of A[i, j] = min(A[i, j], A[i, k]+A[k, j]) for each 3-tuple (i, j, k) ∈ Tkij(n).
Hence, we can show this by induction over Definition 4. Specifically, we can prove the following:
For all path P of length k realized by a sequence of 3-tuples of length l, M [i, j] is always at
most the weight of P after applying the relaxation operation for first l elements of Tijk(n).
Then, we can apply induction over (k, l).

Conversely, we can also prove that, for any 1 ≤ i, j ≤ n, there exists a path of weight
at most M [i, j], which is realized by T (n), which also follows the identical induction as
above. ◀

▶ Corollary 6. Let Tijk(n) be a sequence of length n3 consisting of 3-tuples, where the
an2 + bn + c + 1-th element in the sequence is (a + 1, b + 1, c + 1) for all 0 ≤ a, b, c ≤ n− 1.
Given a n× n adjacency matrix of G, where G has no negative cycle, Algorithm 2 will return
a matrix M , where M [i, j] is the minimum total weight of all simple paths from i to j that is
realized by Tijk(n).
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Proof. You can proceed identically as in Corollary 5. ◀

The following provides some characterizations of paths that we will use in the later stage
of the paper.

▶ Definition 7. A path P = {p0, p1, . . . , pk} with k ≥ 1 is increasing if for all 1 ≤ i ≤ k it
holds that pi−1 < pi.

▶ Definition 8. A path P = {p0, p1, . . . , pk} with k ≥ 1 is decreasing if for all 1 ≤ i ≤ k it
holds that pi−1 > pi.

▶ Definition 9. A path P = {p0, p1, . . . , pk} with k ≥ 1 is valley if for all 1 ≤ i ≤ k − 1 it
holds that pi ≤ min(p0, pk).

▶ Definition 10. A path P = {p0, p1, . . . , pk} with k ≥ 1 is proper if there is no index
1 ≤ i ≤ k − 2 such that pi > min(p0, pk) and pi+1 > min(p0, pk).

3 Main Theorem

The main theorem of our paper is as follows:

▶ Theorem 11. In a graph with n vertices, a nonempty simple path P = {p0, p1, . . . , pk} is
realized by Tijk(n) if and only if one of the following holds:

p0 < pk, and there exists an index 0 ≤ i ≤ k such that {p0, p1, . . . , pi} is proper,
{pi, pi+1, . . . , pk} is increasing, and pi ≥ p0.
p0 > pk, and there exists an index 0 ≤ i ≤ k such that {p0, p1, . . . , pi} is decreasing,
{pi, pi+1, . . . , pk} is proper, and pi ≥ pk.
By combining Theorem 11 with Corollary 6, we can yield an explicit characterization for

the output of Algorithm 2.

▶ Corollary 12. Given a n × n adjacency matrix of G where G has no negative cycle,
Algorithm 2 will return a matrix M , where M [i, j] is:

If i < j, the minimum possible total weight of a path P = {p0 = i, p1, . . . , pk = j} such
that there exists an index 0 ≤ x ≤ k such that {p0, p1, . . . , px} is proper, {px, px+1, . . . , pk}
is increasing, and px ≥ p0.
If i = j, 0.
if i > j, the minimum possible total weight of a path P = {p0 = i, p1, . . . , pk = j} such
that {p0, p1, . . . , px} is decreasing, {px, px+1, . . . , pk} is proper, and px ≥ p0.

Proof. By Corollary 6, Algorithm 2 returns a matrix where M [i, j] is the minimum total
weight of all simple paths from i to j realized by Tijk(n), which is of above form by
Theorem 11. ◀

3.1 High-level ideas
Before proceeding to the proof of Theorem 11, let’s play with several examples to motivate
intuition. Recall the standard proof of Algorithm 1, where one proves the following lemma
by the induction on t:

▶ Lemma 13 (Key lemma of [4]). For all 0 ≤ t ≤ n, a path P = {p0, p1, . . . , pk} is realized
by the tn2-length prefix of Tkij(n) if and only if pi ≤ t for all 1 ≤ i ≤ k − 1.

FUN 2024
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This proof strategy surely does not work for Algorithm 2, but it does work identically for
the specific type of path, which we define as a valley path:

▶ Definition 9. A path P = {p0, p1, . . . , pk} with k ≥ 1 is valley if for all 1 ≤ i ≤ k − 1 it
holds that pi ≤ min(p0, pk).

However, while all valley paths are realized by Tijk(n), this is still not an exhaustive
characterization. Consider the path P = {3, 101, 1, 102, 2}, which is not a valley path but is
realized by Tijk(n) as the subsequence {(1, 2, 102), (3, 1, 101), (3, 2, 1)} of Tijk(n) can realize
P . The reason is that the algorithm can glue some large vertices into P before it starts to
realize the valley path. For this specific counterexample, one can observe that these large
vertices should be adjacent to small vertices to get glued inside a valley path, which motivates
the definition of a proper path.

▶ Definition 10. A path P = {p0, p1, . . . , pk} with k ≥ 1 is proper if there is no index
1 ≤ i ≤ k − 2 such that pi > min(p0, pk) and pi+1 > min(p0, pk).

With some modification of proofs in Lemma 13, we can see that all proper paths are
realized by Tijk(n). However, this definition is slightly strict: For example, the path
P = {1, 2, 3, 4} is realized by {(1, 3, 2), (1, 4, 3)} but does not fit in a definition of valley path.
More generally, we can append any increasing paths in the back of the proper path and
prepend any decreasing paths in the front of the proper path. By addressing these cases, we
do reach an appropriate characterization of paths realized by Tijk(n), that fits nicely to the
inductive argument given in the proof of Theorem 11.

3.2 Proof of the Main Theorem
▶ Theorem 11. In a graph with n vertices, a nonempty simple path P = {p0, p1, . . . , pk} is
realized by Tijk(n) if and only if one of the following holds:

p0 < pk, and there exists an index 0 ≤ i ≤ k such that {p0, p1, . . . , pi} is proper,
{pi, pi+1, . . . , pk} is increasing, and pi ≥ p0.
p0 > pk, and there exists an index 0 ≤ i ≤ k such that {p0, p1, . . . , pi} is decreasing,
{pi, pi+1, . . . , pk} is proper, and pi ≥ pk.

Proof (←). Let n be the number of vertices, and let Tijk(n, i, j) be the prefix of Tijk(n) up
to and including the element (i, j, n).

We first show that all proper paths from i to j are realized by Tijk(n, i, j). We perform an
induction over (i, j). Consider a proper path P = {p0, p1, . . . , pk}, and assume that there is
no index 1 ≤ i ≤ k − 1 such that pi ≤ min(p0, pk). Then, since there could be no two entries
with pi > min(p0, pk), it holds that k ≤ 2, and we are done. Otherwise, take the maximum px

such that px < min(p0, pk). By maximality, both {p0, p1, . . . , px} and {px, px+1, . . . , pk} are
proper paths, and by inductive hypothesis, they are realized in Tijk(p0, px) and Tijk(px, pk).
Hence, by Definition 4, P is realized.

As P = {p0, p1, . . . , pk} from p0 to pk are realized by Tijk(n, p0, pk), we can
see {p0, p1, . . . , pk, x} are realized by Tijk(n, p0, x) for any x > pk, and similarly,
{x, p0, p1, . . . , pk} are realized by Tijk(n, x, pk) for any x > p0. Using this fact, we can
use a similar induction to prove that we can append an increasing path in the back or a
decreasing path in the front. ◀

Proof (→). We use the induction on the length l of the prefix of Tijk(n) to show that the
path realized by a length-l prefix of T (n) is always in one of such patterns. This claim is
true for l = 0. Assume l ≥ 1 and let (i, j, k) be the last element of T (n). Note that we can
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assume i ̸= j, j ̸= k, k ̸= i, since if one of them holds, we have no new realized paths or a
non-simple path.

We list all possible cases and show we can always find such patterns. Here, we use ∗ to
denote that any index from 1 to n can be there.

i < j, k < i: We consider a path in a form of i → (decreasing) → (proper) → k →
(proper)→ (increasing)→ j. Let z be the first vertex in the increasing part of this path,
where i ≤ z (as i < j such vertex exists). The path between i to z is proper, and the
path between z to j is increasing.
i < j, i < k < j: All entries of (k, j, ∗) are not in the current prefix, so the only path
from k to j realized now is the trivial path {k, j}. We can append this in the increasing
part of our path.
i < j, j < k: All entries of (i, k, ∗) and (k, j, ∗) are not in the current prefix, so the path
we consider is exactly {i, k, j} which is proper.
j < i, k < j: We consider a path in a form of i → (decreasing) → (proper) → k →
(proper)→ (increasing)→ j. Let z be the last vertex in the decreasing part of this path,
where j ≤ z (as j < i such vertex exists). The path between i to z is decreasing, and the
path between z to j is proper.
j < i, j < k < i: All entries of (i, k, ∗) are not in the current prefix, so the only path
from i to k realized now is the trivial path {i, k}. We can prepend this in the decreasing
part of our path.
j < i, i < k: All entries of (i, k, ∗) and (k, j, ∗) are not in the current prefix, so the path
we consider is exactly {i, k, j} which is proper. ◀

4 Algorithm for Incorrect-APSP Problem

In this section, we prove the following theorem:

▶ Theorem 2. Given a weighted graph with n vertices and m edges, we can solve the
Incorrect-APSP in O(nTSSSP (n, m)) time, where TSSSP (n, m) is the time to execute a
single-source shortest path (SSSP) algorithm in a graph with n vertices and m edges.

For this, we will try to solve the optimization problem described in Corollary 12. Here, it
is useful to observe the following:

▶ Observation 14. Let rev(P ) be the reverse of the path. A path P is realized by Tijk(n) if
and only if rev(P ) is realized by Tijk(n).

Proof. If P satisfies the property from Theorem 11, the reverse also satisfies the property
from Theorem 11. ◀

By Observation 14, it suffices to find M [i, j] for all i < j, as the other case can be solved
by reversing all edges and repeating the same algorithm.

We will fix i and devise an algorithm that computes M [i, j] for all j ≥ i. To start, we
find a minimum-length proper path to all j. By the description in Corollary 12, we only
need to compute the proper path ending in j ≥ i. By Definition 10, a path is proper if it
does not contain two adjacent vertices px, px+1 of index greater than min(i, j) unless one of
the vertices is the last vertex of the path.

Since we have min(i, j) = i, this is equivalent to not using an edge where both endpoints
have an index greater than i, except where the edge is the last on the path. As we
fixed i, we can apply SSSP algorithm on G where edges with endpoints greater than i

are removed. Let ProperExceptLast[j] be the distance from i to j on such graph.

FUN 2024
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Then, for the last move, we simulate the move for all vertex. Specifically, we initialize
Proper[j] = ProperExceptLast[j] for all 1 ≤ j ≤ n, and for all edge (u, v) ∈ E, we set
Proper[v] = min(Proper[v], ProperExceptLast[u]+w(u→ v)). In the end, Proper[j]
holds the shortest proper path from i to j for all j ≥ i.

Finally, we may need to append the increasing path at the back of each proper path. We
can use dynamic programming as the increasing path consists of edges headed to the larger
indexed vertex. For computing the M [i, j], we have two choices:

Assume px = pk and simply take the shortest proper path from i to j.
Otherwise, we pick an edge (k → j) and use the edge as a final edge in the optimal path.
Here, k < j should hold, and there should be an edge (k, j) ∈ E. The remaining path
from i to k is a proper path appended with an increasing path computed by M [i, k].

In Algorithm 3, we present a pseudocode of the above algorithm.

Algorithm 3 Computing M [i, j] for fixed i, all j ≥ i.

G′ = (G without edges where both vertices have index greater than i)
Proper = SSSP(G′, i)
ProperExceptLast = Proper
for (u, v) ∈ E do

Proper[v] = min(Proper[v], ProperExceptLast[u] + w(u→ v)).
for j ← i, i + 1, . . . , n do

M [i, j] = Proper[j]
for k incident to j do

if i ≤ k < j then
M [i, j] = min(M [i, j], M [i, k] + w(k → j))

As all procedures except the SSSP use O(n + m) computation, the algorithm’s running
time is dominated by the SSSP, which leads to the runtime of O(nTSSSP (n, m)).

5 Subcubic equivalence between APSP and Incorrect-APSP

In this section, we will prove Theorem 3. For a computational problem A, B, we say A ≤3 B

if there is a subcubic reduction from A to B as in [10]. The following result is known:

▶ Theorem 15 (Theorem 1 of [7]). APSP ≤3 Incorrect-APSP.

In the first subsection, we will recite the proof of Theorem 15 from [7]. We emphasize
that this is not our original contribution: Our goal is to make this paper self-contained and
to rephrase the statement of [7] in terms of subcubic reduction.

In the second subsection, we complement Theorem 15 by proving the following theorem,
hence closing the gap:

▶ Theorem 16. Incorrect-APSP ≤3 APSP.

Given that Theorem 16 and Theorem 15 are true, the proof of Theorem 3 follows by
definition of subcubic equivalence in [10].

▶ Theorem 3. Incorrect-APSP is subcubic equivalent to APSP.
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5.1 Proof of Theorem 15
▶ Lemma 17. Let T i be a sequence T repeated for i times and P be any simple path in a
graph with n vertices. (Tijk(n))3 realizes P .

Proof. Given a path P = {p0, p1, . . . , pk}, let m be an integer in [0, k] where pm = maxk
i=0 pi.

We call pi a skyscraper, if it satisfies the following:
i < m, and there exists no j < i such that pj > pi.
i = m.
i > m, and there exists no j > i such that pj > pi.

It is helpful to observe that p0 and pk are always a skyscraper.
Let 0 = i0 < i1 < . . . < ij = m < ij+1 < . . . < il = k be a list of indices where pis

is a
skyscraper for all 0 ≤ s ≤ l. For all 1 ≤ s ≤ l, it holds that the subpath pis−1 , pis−1+1, . . . , pis

is proper - in fact, there can’t be even a single vertex with value larger than min(pis−1 , pis
)

since that will add such vertex into a list of skyscraper, contradicting our assumption that
is−1 and is are adjacent. By Theorem 11, we can see that the subpath pis−1 , pis−1+1, . . . , pis

is realized by (Tijk(n))1.
Next, we will prove that both subpath p0, p1, . . . , pm and pm, pm+1, . . . , pk are realized

in (Tijk(n))2. Given that all subpaths between pis−1 and pis
are realized in (Tijk(n))1, the

remaining skyscrapers are either increasing or decreasing according to its relative location per
pm. The statement holds as we can realize the increasing and decreasing path by Theorem 11.

Finally, to realize P in (Tijk(n))3, we need (p0, pk, pm) in Tijk(n) which we definitely
have. ◀

▶ Theorem 15 (Theorem 1 of [7]). APSP ≤3 Incorrect-APSP.

Proof. By Definition 3.1 in [10], it suffices to design a subcubic algorithm for APSP which
calls the oracle to compute Incorrect-APSP for an n×n matrix, at most a polylogarithmic
times.

We take an input graph, construct an adjacency matrix, call Incorrect-APSP, call
Incorrect-APSP again in the returned matrix, call Incorrect-APSP again in the
returned matrix, and return the output of Incorrect-APSP. This algorithm calls an oracle
for 3 times and runs in quadratic time, which satisfies all requirements to be a subcubic
reduction. The correctness follows by Lemma 17. ◀

5.2 Proof of Theorem 16
Let A⊙B be a min-plus matrix product of two n×n matrix A and B. The following lemma
shows that we can convert a proper path minimization into a valley path minimization
problem. Note that the definition of G2 is equivalent to the usual definition of graph powers,
defined as a power of adjacency matrix (here, the multiplication operator is ⊙).

▶ Lemma 18. Given a graph G, A proper path of G from i to j with weight w exists if and
only if a valley path of G2 from i to j with weight w exists. Here, G2 is a complete directed
graph on the same set of vertices with G, where the weight of the edge from i to j is the
minimum weight path from i to j using at most 2 edges.

Proof. Every proper path of G translates to a valley path of G2, as all vertices that are
not i, j and have an index at most min(i, j) are either adjacent in the path or have at most
one intermediate vertex in the path. Conversely, given a valley path of G2, we can turn
it into a path in G by replacing an edge with two edges and a vertex. Those new are the
only vertex that can violate the pi ≤ min(p0, pk) condition, but they are not adjacent by
construction. ◀
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We will devise an algorithm that uses subcubic oracle for APSP-complete problems to
compute the resulting matrix M [i, j]. Note that we will only demonstrate how to compute
M [i, j] for i ≤ j - as in Observation 14, we can compute the opposite part by computing
the transpose of A(G) in quadratic time and running the same algorithm. We use the result
from [10] that APSP and min-plus matrix multiplication are subcubic equivalent.

Let’s first find a matrix for minimum proper paths in G, which by Lemma 18 is equivalent
to minimum valley paths in G2. Let Vl[i, j] be a minimum weight of the valley path from i

to j, which includes all valley paths with at most 2l edges. Note that this definition includes
all valley paths with ≤ 2l edges, but it is not limited to such valley paths - it is, however,
limited to valley paths. Here, V0 = A(G2) = A(G)2, and we can compute this using min-plus
matrix multiplication.

To compute the entry Vl[i, j], we fix the vertex k in the middle of the (imaginary) path
P . As k is in the middle of P , and since P has at most 2l edges, the path to the left and the
right of k has at most 2l−1 edges.

Let’s say a valley path from i to j is ascending if i < j and descending otherwise. The
path to the left of k can be divided into a block of descending paths, and the path to the
right of k can be divided into a block of ascending paths. To see this, consider all vertex v

such that the subpath from v to k does not have any vertex greater than v, which we refer
to as a skyscraper. Then, for each adjacent skyscraper, the subpath they form is a valley, as
otherwise, we find a skyscraper in between them.

Conversely, it’s easy to see that a concatenation of ascending valley paths, followed by
descending valley paths, forms a valley path. Hence, a valley path of at most 2l edges is
equivalent to a sequence of descending and ascending valley paths, each with at most 2l−1

edges.
The minimum path from i to j that is a sequence of descending valley paths of at most

2l−1 edges, can be computed with the APSP oracle: We can provide an adjacency matrix of
Vl−1[i, j], where all entries with i < j are overwritten to ∞. Conversely, we can compute the
sequence of ascending paths with the APSP oracle by overwriting Vl−1[i, j] with I > j to ∞.
Then, we can combine those two patterns by a single min-plus matrix multiplication.

Finally, we need to append an increasing path in the back of the path. By supplementing
the adjacency matrix of G where we overwrite all entries with i > j to ∞, we can compute
the increasing path of minimum cost for all pairs using an APSP oracle. We can obtain the
desired answer by multiplying this with the valley path matrix.

In Algorithm 4, we present a pseudocode of the above algorithm.
As we make at most O(log n) calls to the subcubic oracles, Algorithm 4 is subcubic, which

proves Theorem 16.
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Algorithm 4 Computing M [i, j] for all 1 ≤ i ≤ j ≤ n.

Ensure: A⊙B is subcubic
Ensure: APSP (G) is subcubic

V0 = A(G)⊙A(G)
for l← 1, 2, . . . , ⌈log2 n⌉ do

DescendingValley = Vl−1
AscendingValley = Vl−1
for i← 1, 2, . . . , n do

for j ← 1, 2, . . . , n do
if i < j then

DescendingValley[i, j] =∞
else if i > j then

AscendingValley[i, j] =∞
Vl = APSP (DescendingValley)⊙APSP (AscendingValley)

Valley = V⌈log2 n⌉
G′ = (G with edges u→ v such that u < v)
Answer = Valley⊙APSP (A(G′))
for i← 1, 2, . . . , n do

for j ← 1, 2, . . . , n do
if i ≤ j then

M [i, j] = Answer[i, j]
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