
Variations on the Tournament Problem
Fabrizio Luccio #

University of Pisa, Italy

Linda Pagli #

University of Pisa, Italy

Nicola Santoro #

Carleton University, Ottawa, Canada

Abstract
In 1883, Lewis Carrol wrote a newspaper article to criticize how the second best player was determined
in a tennis tournament, and to suggest how such a task could be done correctly. This article has
been taken by Donald Knuth as the inspiration for efficiently determining the smallest t elements of
a totally ordered set of size n using k-comparisons. In the ensuing research, optimal algorithms for
some low values of k and t have been established, by Knuth and Aigner; for k = 2 and t ≤ 3, a few
new bounds have been established for special values of n. Surprisingly, very little else is known on
this problem, in spite of its illustrious pedigree and its relationship to other classical problems (e.g.,
selection and sorting with k-sorters). Enticed by the undeniable beauty of the problem, and the
obvious promise of fun, we have joined the investigative quest. The purpose of this paper is to share
some new results obtained so far. We are glad to report advances in two directions.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Computing methodologies → Parallel algorithms; Mathematics of computing → Discrete mathematics

Keywords and phrases algorithms, parallel algorithms, tournament, selection, ranking

Digital Object Identifier 10.4230/LIPIcs.FUN.2024.20

Funding This research has been supported in part by the Natural Sciences and Engineering Research
Council of Canada under the Discovery Grant program.

1 Introduction

Lewis Carrol, the poet, mathematician, photographer, and beloved author of Alice’s Ad-
ventures in Wonderland, was also known to be a tennis enthusiast and to have followed
many important matches. He did observe that, in the single-elimination tournaments usually
adopted for tennis matches, the selection of the winner was fair while that of the runner-up
was not [4]. Indeed, in this type of tournaments, the player defeated in the final match is
declared second, with the implicit meaning of “second best in the tournament”, while s/he is
the true second only with a probability close to half. If, for instance, the true second belongs
to the same part of the board as the champion, s/he does not have any possibility to emerge.
Lewis Carrol also explained with an example how to determine the true second and third,
without however specifying a real algorithm [4]; furthermore, his proposal required a high
number of matches, most of which are actually not needed for this determination. A well
known presentation and discussion of Lewis Carroll’s proposal has been provided by Donald
Knuth [5].

In the game of tennis a match involves two players; in general, the problem of determining
the ranking of the players in tournaments can be formulated as the following combinat-
orial problem: given a set of n elements and a comparison operation on k elements (k
-comparison) that returns the linear ordering of them, we want to calculate the number of
k-comparisons needed to find the top t elements. We shall call this problem t-TopFinding
in k-TrackRacing (t-T-k-T); see Figure 1.

© Fabrizio Luccio, Linda Pagli, and Nicola Santoro;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Fun with Algorithms (FUN 2024).
Editors: Andrei Z. Broder and Tami Tamir; Article No. 20; pp. 20:1–20:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Fabrizio.Luccio@unipi.it
mailto:linda.pagli@unipi.it
mailto:santoro@scs.carleton.ca
https://doi.org/10.4230/LIPIcs.FUN.2024.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Variations on the Tournament Problem

Let C(n, k, t), with t < n, be the number of k-comparisons of an algorithm that determines
the first t elements among n (upper bound), and let S(n, k, t) be the minimum number of
k-comparisons required to solve the problem (lower bound). For k = 2 and t = n the problem
corresponds to traditional sorting with binary comparisons. Optimal algorithms for some
low values of k and t have been established by Knuth [5] and, a decade later, by Aigner [1],
namely:

▶ Fact 1 ([5]).

C(n, 2, 1) = S(n, 2, 1) = n − 1
C(n, 2, 2) = S(n, 2, 2) = n + ⌈log2 n⌉ − 2

S(n, k, 1) = ⌈n − 1
k − 1 ⌉

▶ Fact 2 ([1]). Let n = 2s + r, where 0 ≤ r ≤ 2s−1. Then

C(n, 2, 3) = S(n, 2, 3) =

(n − 3) + ⌈log2 n⌉ if r = 0,
(n − 3) + ⌈log2 n⌉ + 1 if 1 ≤ r ≤ 2s−2,
(n − 3) + ⌈log2 n⌉ + 2 otherwise.

For k = 2 and t ≤ 3, a few new bounds have been established for special values of n [6, 3].
Surprisingly, very little else is known on this problem, in spite of its relationship to classical
problems of selection and sorting (see the nice review by Iványi and Fogarasi [8]) especially
using k-comparators (called k-sorters, e.g. [2, 9])

Enticed by the noble pedigree of the problem, the undeniable beauty of the challenge,
and the obvious promise of fun, we have started to examine t-T-k-T. The purpose of this
paper is to share some new results obtained so far. We are glad to report advances in two
directions.

In Section 2 of this paper we discuss our study of the problem, for any value of n and
k, when t = 2. We show that a standard two-phases tournament can be improved when
(n − 1)/(k − 1) is not an integer, and find a new lower bound S(n, k, 2) that matches the
upper bound C(n, k, 2) for all values of n.

In Section 3 we take a different approach which has so far received little attention. We
consider the k-comparison problem in a parallel setting, where the most significant function to
consider is the number R(n, k, t, p) of rounds played in parallel by a certain number of groups
of k competitors, where p is now the maximum number of available facilities (racetracks, or
tennis courts, or football fields, etc.). For minimum R we then minimize C(n, k, t,). We
study the problem thoroughly for k and t up to three, conjecturing what happens for larger
values.

Figure 1 A horse race: a real life instance of t-T-k-T.

F. Luccio, L. Pagli, and N. Santoro 20:3

2 Winner and runner-up using k comparisons

2.1 An introductory example
Consider n horses running on a track of k lanes, among which we want to establish the first
t = 2 with minimal number of races. After a race, a linear ordering is established among
the k horses on the track, based only on the finishing order (race time is not considered).
For n = 25 and k = 5 lanes in a track, we can find the winner and runner-up by applying
an immediate generalization of the 2-phases known tournament algorithm for k = 2. In the
first phase, the horses are divided into n/k = 5 groups of five horses each, and each group
runs in a race corresponding to a 5-comparison. Then the five winners run in a final race to
establish the champion, with a total of six races. The second phase takes place with a second
tournament between all the horses who were beaten directly (i.e. in the same race) by the
champion and ranked second in that race. Since there are five such horses, one additional
race is sufficient to award the second place, for a total of sevens races.

2.2 The upper bound
Let us review what is known on C(n, k, 2) for arbitrary values of n and k, and propose a
non-standard tournament organization by which the value of C(n, k, 2) can be lowered for
particular pairs n, k.

As stated in Fact 1, ⌈ n−1
k−1 ⌉ k-comparisons are needed in general to establish the top

element. In a standard two-phases tournament for arbitrary k, the top-element appears
in ⌈logkn⌉ k-comparisons, from which ⌈logkn⌉ elements are ranked as a possible second
and additional ⌈⌈(logkn⌉ − 1)/(k − 1)⌉ k-comparisons are used to establish the real second
one. As we have seen in the introductory example above, for n = 25 and k = 5 we have
⌈logkn⌉ = 2, ⌈⌈logkn⌉ − 1/(k − 1)⌉ = 1, and a further k-comparison is sufficient to award
second place. Therefore for a standard two-phases tournament we have:

▶ Fact 3. C(n, k, 2) = ⌈(n − 1)/(k − 1)⌉ + ⌈(⌈logkn⌉ − 1)/(k − 1)⌉ .

This upper bound is tight if (n − 1) mod (k − 1) = 0. However, should (n − 1) and (k − 1)
be coprime, in a k-comparison of the first phase, not all k entry points are needed; these
“free” entry points could be used to partially contribute to the second phase where the second
element is determined.

For example, for n = 27 and k = 5 we perform ⌈n − 1/(k − 1)⌉ = 7 comparisons for the
top-element, but one of them has two not exploited entry points that can be used in the
search for the second element. As shown in Figure 2, we can re-organize the initial phase
of a tournament on n = 27 elements, postponing the last of the seven 5-comparisons where
the winner of the first twenty-five elements is compared to elements number 26 and 27, to
include the elements x and y that must compete for the second place. So the total number of
k-comparisons is seven instead of eight, as we would get from Fact 3 if a standard two-phases
algorithm is applied.

We now transform the above considerations into a precise algorithmic form, and we
establish an upper bound for C(n, 2, 2) and any value of n and k with n > k.

Let r = (n − 1)mod(k − 1); then the number p of entry points of a k-comparison left
free in the first tournament is p = 0 if r = 0, p = k − r − 1 otherwise. Let n′ = ⌈logkn⌉; let
n′′ = n′ − p − 1 if n′ > p, n′′ = 0 otherwise.

If r ̸= 0 and n′ ≤ p, the free entry points of the first phase can absorb all the remaining
elements among which the second element has to be determined. This is the case of the
latter example where n = 27, k = 5, ⌈logkn⌉ = 3, r = 2, and the selection of the first and
second element can be performed in a single phase. We have:

FUN 2024

20:4 Variations on the Tournament Problem

1 2 3 x c …. 25 26 27

C y

c

x y

Figure 2 Tournament for n = 27 and k = 5. The selection of the first and second element can be
accomplished in the first phase. The last comparison includes elements 26, 27, x and y. x is the second in
the first k-comparison of the champion c, and y is the second in the second comparison of c.

▶ Theorem 1. Let n > k ≥ 2. Then

C(n, k, 2) =
{

⌈(n − 1)/(k − 1)⌉ + ⌈(n′ − 1)/(k − 1)⌉ if r = 0,
⌈(n − 1)/(k − 1)⌉ + ⌈n′′/(k − 1)⌉ otherwise.

Proof. Case r = 0 is known. If r ̸= 0 run the first tournament with n + p elements with
⌈(n − 1)/(k − 1)⌉ comparisons. If n′ ≤ p + 1, then n′′ = 0 and no other comparisons is
needed. Otherwise, n′′ = n′ − p − 1 and a second tournament is run with n − p elements. ◀

2.3 The lower bound
We now show a matching lower bound S(n, k, 2) for determining the first and second elements,
recalling the definition of r and p of the previous section. .

▶ Theorem 2. Let n > k ≥ 2. Then S(n, k, 2) = C(n, k, 2).

Proof. First of all, note that for k = 2 the lower bound is the known formula S(n, 2, 2) =
n + ⌈log2 n⌉ − 2 (see Fact 1). Note that this formula has been proved by [5] selecting the
second, once the first has been found. We follow the same approach.
Further note that, for r ̸= 0 and p = 0, upper and lower bounds match.

Let k > 2; we shall consider the cases r = 0 and 0 < r < k, separately.

Case r = 0.
First observe that ⌈(n − 1)/(k − 1)⌉ is the necessary number of k-comparisons for the selection
of the top element. Let us then determine the minimal number of additional k-comparisons
required to determine the second element. In order to do so, we need not to include any
comparison among elements whose relation can be derived, by transitivity, from previous
k-comparisons. In order to minimize the number of elements ordered by transitivity, it is
sufficient to impose the following balancing rule: if, in a k-comparison, it results that xj is
less than xl, 1 ≤ j ̸= l ≤ k, then the number of elements already known to be less than xj ,

F. Luccio, L. Pagli, and N. Santoro 20:5

are less or equal than the number of elements already known to be less or equal than xl.
Let us now define as L(i) the maximum number of elements established to be less than the
champion after i k-comparisons; this knowledge can be acquired either directly, because the
elements are compared with the top one in a k-comparisons, or by the transitive property.
From the balancing rule, we have the following recursive definition:

L(i) =
{

k − 1 if i = 1
kL(i − 1) + k − 1 otherwise

whose closed formula is L(i) = ki − 1.
Since the elements less than the champion are n − 1, there exists a î such that L(̂i) =

kî − 1 = n − 1. The value î = ⌈logkn⌉ represents the number of k-comparisons done by
the champion to win the competition. The second element has to be established among
all the elements classified at the second place in a direct k-comparison with the cham-
pion, whose number is precisely î. Therefore the second element cannot be determined in
less than ⌈⌈(logkn⌉ − 1)/(k − 1)⌉ additional comparisons, for a total of ⌈(n − 1)/(k − 1)⌉ +
⌈(n′ − 1)/(k − 1)⌉.

Case 0 < r < k.
In this case, exactly p = k − r − 1 entry points are empty and can be exploited to com-
pare elements to determine the second element. If n′ − 1 ≤ p, all these elements can be
accommodated in the empty entry points and the second element can be selected directly in
the block of comparisons needed to establish the first element. However, if n′ > p, at least
n′′ = n′ − p − 1 elements require a second phase, requiring an additional ⌈(n′′ − 1)/(k − 1)⌉
k-comparisons, fora total of ⌈(n − 1)/(k − 1)⌉ + ⌈n′′/(k − 1)⌉. ◀

Let consider, for instance, the case n = 47 k = 4. We have n′ = 3. According
to the theorem we have S(47, 4, 2) = ⌈46/3⌉ + ⌈(3 − 2 − 1)/3⌉ = 16. Computing the
two phases separatedy we would have been obtained a number of comparisons equal to:
⌈47/3⌉ + ⌈(3 − 1)/3⌉ = 16 + 1 = 17.
It is very easy to modify the tournament algorithm of Sec.2 in a way that the case that
the approximation ⌈(n − 1)/(k − 1)⌉ is not exact is also considered, in order to obtain a
matching upper bound.

3 t-T-k-T in parallel

Everything we have discussed so far reflects a standard computing approach. Let us now
look at the problem from a slightly different point of view, that is, the various operations
required may take very different times to be executed. In particular this is the case of sports
competitions such as horse racing, tennis tournaments, final stages of football championships,
where comparisons of indexes such as those appearing in while or do instructions needed
for deciding the order of the events take incomparably less time than the comparison in
if A[i] > A[j], where A[i] and A[j] are two players competing in the game.

In fact the complexity of most sorting and searching algorithms is evaluated in order of
magnitude by counting the number of comparisons between elements of the dataset, and
this is due to the observation that the number of all other operations is of the same order as
those, and each of them requires time comparable to the others. Instead we will now evaluate
the number of single sports matches because they dominate the overall time. In particular
we consider the k-comparison problem in a parallel setting, where a new function to consider

FUN 2024

20:6 Variations on the Tournament Problem

is the number R(n, k, t, p) of rounds played in parallel by a certain number of groups of k

competitors, where p is a new parameter representing the maximum number of available
facilities (racetracks, or tennis courts, or football fields). Our primary goal is minimizing the
number R of rounds (e.g. days) the tournament lasts, imagining that each competitor can
play a maximum of one game per day. For minimum R we then minimize the total number
C(n, k, t) of comparisons made (e.g., for better conservation of the facilities). As you shall
see, we study the problem in full for k and t up to three, leaving as a conjecturing what
happens for larger values.

Note that the k-comparison problem was discussed in depth in the literature without any
real attention to parallel processing. This aspect was considered in [10] in a much wider
context, evaluating the time complexity in order of magnitude as a function of n and p instead
of counting the exact number comparisons and rounds as we do. And then it was discussed
in [7], with focus on the overhead communication time for different kinds of interconnection
networks. Our approach is completely different. Let’s start with some clarifications on what
was said in the previous sections.

The results of Fact 1 are valid for any value p ≥ 1. Another result implicitly discussed in
the previous section must be better specified, namely:

▶ Fact 4. R(n, k, 1, p) = ⌈logk n⌉ is an upper and a lower bound of R for p ≥ n/k.

Note that the upper bound in Fact 4 is demonstrated directly by referring to the standard
tournament algorithm (see the proof of Theorem 2), and the lower bound is also proved by
equivalent reasoning although this is generally not underlined. In fact, for k = 2 the adversary
model used in the proof implies that in an optimal algorithm with n − 1 comparisons, when
the final winner f is engaged in a new comparison with another competitor g the following
must happen. If f and g have already been recognised as superior to other participants of
sets F and G respectively, f wins the comparison with g only if |F | ≥ |G| and F ∩ G = Φ.
Then the computation must proceed essentially as in a tournament or equivalent, where f

and g are the temporary winners of two independent sub-problems solved on disjoint subsets
of participants. This reasoning can be immediately extended to k > 2 where an optimal
algorithm requires ⌈ n−1

k−1 ⌉ k-comparisons to find the winner f , and when this is engaged in
any k-comparison with k − 1 competitors all of them must be top elements of disjoint subsets
of cardinality less or equal the one of f .

From now on we will assume that n is a power of k without affecting the core of the
problem. In fact we can add fictitious competitors who, by default, would lose all matches
with the others, until reaching a number of competitors equal to the next power of k. This
does not affect Fact 4 where the integer approximation is no more needed. For p < n/k,
instead, the bound of Fact 4 must be increased because it will not be possible to execute in
parallel all the comparisons due in certain rounds. As an example we limit the calculation of
these bounds to k = 2 as it is not particularly interesting.

▶ Fact 5. For n = 2q, and for 2i ≤ p < 2i+1 with 0 ≤ i ≤ q − 1, R(n, 2, 1, p) = 2q−i + i − 1
is an upper bound of R.

Proof. Consider the tournament algorithm, where some rounds are divided into several
consecutive sub-rounds if needed.
(1) The two limit cases i = 0 and i = q − 1 are immediate. For i = 0 we have 20 ≤ p < 21 and
R(n, 2, 1, 1) = 2q − 1, in fact only one comparison can be made in each round. For i = q − 1
we have 2q−1 ≤ p < 2q and R(n, 2, 1, 1) = q, so that the log2 n rounds indicated in Fact 4
are executed.

F. Luccio, L. Pagli, and N. Santoro 20:7

(2) For a generic value of i with 0 < i < q − 1, some rounds of the tournament must be
performed as a sequence of sub-rounds. In fact, the 2q−1, 2q−2, . . . , 2i+1 comparisons needed
in rounds 1, 2, . . . , q − i − 1, must be divided into 2q−1−i, 2q−2−i, . . . , 21 sub-rounds played in
the p = 2i facilities. The total number of these sub-rounds is 2q−i − 2, to which the number
q − (q − i − 1) = i + 1 of undivided rounds must be added, and the bound 2q−i + i − 1
follows. ◀

For example, for n = 25 and 22 ≤ p < 23 we have i = 2 hence R(25, 2, 1, 22) = 23+2−1 = 9.
Giving a matching lower bound is open.

We now study the best way to determine in parallel the first elements of the game for the
values n = 2q, k = 2, p ≥ n/2, and t=2 (for t = 1 the problem is solved in Fact 3), and for
n = 3q, k = 3, p ≥ n/3, and t = 3. We give bounds on the function R, and then on C when
the former are satisfied. Then the solution for k > 3 and t > 3 is discussed as a conjecture.

3.1 The case k=2
We start computing R(n, 2, 2, n/2) and then C(n, 2, 2), for n = 2q. Based on the considerations
made above on the proof of Fact 4 we will use a parallel tournament to calculate the winner,
adding new comparisons in different rounds to calculate the second too. Recall that in a
binary tree representing a tournament, the vertices in each round (i.e. level of the tree) are
labelled with match winners who are known at the end of the matches, so the results cannot
be used before the next round. We have:

▶ Theorem 3. R(n, 2, 2, n/2) = log2 n + 1 is an upper and a lower bound of R, for n power
of two.

Proof. (i) Upper bound. Based on the inductive application of the following reasoning.
Consider the section of a tournament shown in figure 3-above (solid edges) where s is possible
final winner, as it will be known after the comparison between p and s is made in round
ri+2. At round ri+1, n, m are the possible candidates for the second position, where m is
the maximum element among the ones in the sub-tournanent leaded by p int round ri. A
symmetric situation holds for the pair t, q in the sub-tournament lead by s in the round ri+1.
Comparisons n vs m and t vs q can be made in round ri+2 along with p vs s, and these three
results will be usable from round rii+3 onwards.

The same situation now occurs for the element s which is the winner of the round ri+2,
and will compete in the round ri+3 for the final victory with the winner of another section
of the tournament not shown. The looser p at level ri+2, and the maximum element in the
sub-tournament lead by s in round ri+1, will compete for second position. In the example
provided, such a maximum element is q, as determined with the comparison q vs t in the
round ri+2. Note that the comparison n vs m in the round ri+2 is actually useless, but this
was not predictable in that round where the outcome of s vs p was not known.

To see how our algorithm works, refer to figure 3-below. Rounds r1 and r2 are like the
ones of a standard tournament for the winner (t = 1). Starting to round r3 a subset of
competitors are compared to determine the final winner, and for each of these comparisons,
two more comparisons are created to determine the final runner-up as shown in the figure.
The basis of the induction is shown in the first three rounds, where the runner-up competitors
in each sub-tournament of round r3 are the pairs of elements defeated by the current winner
in rounds r1 and r2.

As usual the winner is decided in round rlog2 n (r4 in the example). In the same round
two more comparisons are made to decide the two candidates for second place which, is
decided in the next round rlog2 n+1. Note that in each round the number of comparisons is
less than or equal to p = n/2 (see the next corollary).

FUN 2024

20:8 Variations on the Tournament Problem

(ii) Lower bound. To prove that log2 +1 rounds are needed note that, as we said before, the
winner can be determined in log2 n rounds only using a standard tournament or equivalent
algorithm. Two candidates x, y for the first position are compared in the last round, and all
others are divided into two subsets X, Y where so far no element of one has been compared
directly or indirectly with an element of the other. Clearly the loser between x and y, say
x, can be the runner-up, but to make this decision x must be compared to at least one
element of Y , say z, since no element of Y except y has ever been compared to the elements
of X. However the x vs z comparison cannot be done before knowing that x lost to y, so an
additional round is required after the comparison x vs y. ◀

From the algorithm reported in Theorem 3 (i) we have with simple calculations:

▶ Corollary 4. If the first and the second elements are determined in log2 n + 1 rounds,
C(n, 2, 2) = 3n/2 − 2 is an upper bound of C, for n power of two.

Note that the upper bound of Corollary 4 is higher than that of Fact 1, due to the
requirement to proceed with a minimum number of parallel rounds. Finding a corresponding
lower bound is an open problem.

Figure 3 Above: Section of a scoreboard (solid edges). s is a possible winner. n, m and q, t are the
pairs for a possible runner-up before the comparison between p and s is made. Below: Scoreboard of a
tournament of 5 rounds for 24 competitors. f is the winner, and j is the runner-up.

For p = n/2 the comparisons required in each round of the algorithm in Theorem 3 are
done in the round itself. Since it is not possible to select some participants to engage in
further comparisons before the results of the current round are known, it is not necessary
to allow p > n/2 parallel comparisons. For p < n/2, however, the initial rounds must be
divided into parts and a new value for R must be determined as done in Fact 3. Let’s leave
out the boring and uninteresting calculations involved.

3.2 The case k=3 and beyond
We now compute R(n, 3, 3, n/3) and then C(n, 3, 3), for n = 3q. Again we use a parallel
tournament to calculate the winner, adding new comparisons in different rounds to calculate
the second and the third too. For better understanding, in the scoreboard the vertices in

F. Luccio, L. Pagli, and N. Santoro 20:9

each round will be labeled x − y − z according to the resulting order in the comparison
among x, y, z (in particular the winner is shown in bold). Again this order is known at the
end of the comparison, so the result cannot be used before the next round. The proof of the
following theorem is an extension of the one given for Theorem 3. We have:

▶ Theorem 5. R(n, 3, 3, n/3) = log3 n + 2 is an upper and a lower bound of R, for n power
of three.

Proof. (i) Upper bound. Consider the section of a tournament shown in figure 3-above. In
each round the comparisons for the possible first, second, and third final elements are shown
with thick-solid lines, thin-solid lines, and dashed lines, respectively. First turn your attention
to the participants a to i in the left section of the figure. Once the result d − a − g of round
ri+1 is known, the candidates for the final second and third positions are limited to e − a and
f − b − g respectively, and these two comparisons are scheduled for round ri+2, where they
will be carried out together with the comparison among d, z, j for the first place. This last
comparison produces the ordering z − d − j, so now d can be at most the second finisher and
will be considered for this position in the next round ri+3, competing with v which emerges
as possible second from the section of the tournament led by z in the previous round ri+1.

The second position occupied by d in round ri+2 also has an important consequence on the
competition for the third place. Indeed, the possible second e now becomes a possible third,
and will compete with x and j which similarly emerge from the section of the tournament
led by z in the round ri+1. Note that no element in the tournament section led by j in round
ri+1, except j itself, can now compete for second or third position because j was third in
the comparison z − d − j in round ri+2. Furthermore, the possible third f that emerged
in round ri+2 in the comparison f − b − g is now abandoned, and that comparison has no
further consequences.

All in all, in each round rj≥i+1, for each comparison for the first position, there is one
comparison for the second position and one for the third position in the round rj+1. The
winner is decided in round rlog3 n. In the same round four more comparisons are made, two
of which to decide the two candidates for second place, and the other two to decide the three
candidates for the third place. The holders of the second and third place will be respectively
determined in the rounds rlog3 n+1 and rlog3 n+2 as shown in figure 4-below. Note that in each
round the number of comparisons is less than or equal to p = n/3 (see the next corollary).

(ii) Lower bound. As in the proof of theorem 3, note that log3 n rounds are needed for
determining the winner (Fact 4), and this may happen only using a tournament or equivalent
algorithm. Refer to figure 3. In the round rlog3 n three candidates a, b, c remain for the
first position and are compared in this round. All the others are divided into three subsets
A, B, C where so far no element of one has been compared directly or indirectly with an
element of the others. Suppose the comparison for first place results in b − a − c. Then b is
the final winner, and the second place can be assigned to a or to at least one element, say v,
belonging to B. Note that v cannot belong to C, as c was third in the comparison with b

and a and all elements of C are inferior to c. So at least one comparison, say a − v, must be
made in the round rlog3 n + 1 to assign second place. Clearly the winner a in this comparison
is the second of the tournament and the loser v may be the third, but in this round there
is at least another competitor for third place, coming from one of the three sections of the
tournament led by a, b, and c in the round rlog3 n. So another round rlog3 n+2 is needed to
award the third place. ◀

FUN 2024

20:10 Variations on the Tournament Problem

From the algorithm reported in Theorem 5 we have:

▶ Corollary 6. If the first, second, and third elements are determined in log3 n + 1 rounds,
C(n, 3, 3) = 13n/18 + 1/2 is an upper bound of C, for n power of three.

Finding a corresponding lower bound for C(n, 3, 3) is an open problem.

We can now speculate on competitions with k-ary comparisons, with k > 3. We believe
that the algorithm presented in the upper-bound of the Theorems 3 and 5 can be immediately
extended, adding comparisons from the third round onwards. In particular, adding binary,
ternary, . . . k-ary comparisons in each round to determine the candidates for the second, third,
. . . k-th place. Since the proof would probably be long and tedious, we pose the following:

Strong Conjecture. R(n, t, t, n/t) = logt n + t − 1 is an upper and a lower bound of R, for
n power of t.

Figure 4 Above: Section of a scoreboard for 3q competitors. Thick-solid, thin-solid, and dashed lines
indicate comparisons for the first, second, and third place respectively. Below: The final three rounds.

References
1 Martin Aigner. Selecting the top three elements. Discrete Apllied Math., 4:247–267, 1982.
2 Richard Beigel and John Gill. Sorting n objects with a k-sorter. IEEE Transactions on

Computers, 39:714–716, 1990.
3 D.Kirkpatrick. Closing a Long-standing Complexity Gap for Selection, volume 8066. LNTCS

Springer, 2013.
4 Charles L. Dodgson. The fallacies of lown tennis tournaments. St. James Gazette, 1:5–6, 1883.
5 Donald E.Knuth. The Art of Computer Programming, Vol 3. Addison Wesley, 1973.

F. Luccio, L. Pagli, and N. Santoro 20:11

6 Jutta Eusterbrock. Errata to "selecting the top three elements by m. aigner: A result of a
computer-assisted proof search". Discrete Applied Math., 41:131–137, 1993.

7 Susumu Horiguci and Willard L. Miranker. On parallel algorithm for finding the maximum
value. Parallel Computing, 10:101–108, 1989.

8 Andras Ivanyi and Norbert Fogarasi. On partial sorting in restricted rounds. Acta Univ.
Sapientiae, Informatica, 9:17–34, 2017.

9 Bruce Parker and Ian Parberry. Costructinfg sorting networks from k-sorters. Information
Processing Letteers, 33:157–162, 1989.

10 Yo Shiloach and Uzi Vishkin. Finding the maximum, merging, and sorting in a parallel
computational model. Journal of Algorithms, 2(88):88–102, 1981.

FUN 2024

	1 Introduction
	2 Winner and runner-up using k comparisons
	2.1 An introductory example
	2.2 The upper bound
	2.3 The lower bound

	3 t-T-k-T in parallel
	3.1 The case k=2
	3.2 The case k=3 and beyond

