
You Can’t Solve These Super Mario Bros. Levels:
Undecidable Mario Games
MIT Hardness Group1

CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Hayashi Ani #

CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Erik D. Demaine #

CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Holden Hall #

CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Ricardo Ruiz #

CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Naveen Venkat #

CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
We prove RE-completeness (and thus undecidability) of several 2D games in the Super Mario Bros.
platform video game series: the New Super Mario Bros. series (original, Wii, U, and 2), and both
Super Mario Maker games in all five game styles (Super Mario Bros. 1 and 3, Super Mario World,
New Super Mario Bros. U, and Super Mario 3D World). These results hold even when we restrict to
constant-size levels and screens, but they do require generalizing to allow arbitrarily many enemies
at each location and onscreen, as well as allowing for exponentially large (or no) timer.

In our Super Mario Maker reductions, we work within the standard screen size and use the
property that the game engine remembers offscreen objects that are global because they are supported
by “global ground”. To prove these Mario results, we build a new theory of counter gadgets in
the motion-planning-through-gadgets framework, and provide a suite of simple gadgets for which
reachability is RE-complete.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases video games, computational complexity, undecidability

Digital Object Identifier 10.4230/LIPIcs.FUN.2024.22

Related Version Full Version: https://arxiv.org/abs/2405.10546

Supplementary Material
Software (ROM Files): https://github.com/65440-2023/mario-hardness-gadgets

Acknowledgements This paper was initiated during open problem solving in the MIT class on
Algorithmic Lower Bounds: Fun with Hardness Proofs (6.5440) taught by Erik Demaine in Fall
2023. We thank the other participants of that class for helpful discussions and providing an inspiring
atmosphere. Portions of this paper originally appeared in Ani’s master’s thesis [2]. Several community
level editors and emulators were very helpful in building and testing counters:

Reggie! by the NSMBW Community – https://github.com/NSMBW-Community/
Reggie-Updated
CoinKiller by Arisotura – https://github.com/Arisotura/CoinKiller
Miyamoto by aboood40091 – https://github.com/aboood40091/Miyamoto

1 Artificial first author to highlight that the other authors (in alphabetical order) worked as an equal
group. Please include all authors (including this one) in your bibliography, and refer to the authors as
“MIT Hardness Group” (without “et al.”).

© MIT Hardness Group, Hayashi Ani, Erik D. Demaine, Holden Hall, Ricardo Ruiz, and
Naveen Venkat;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Fun with Algorithms (FUN 2024).
Editors: Andrei Z. Broder and Tami Tamir; Article No. 22; pp. 22:1–22:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joshuaa@mit.edu
mailto:edemaine@mit.edu
https://orcid.org/0000-0003-3803-5703
mailto:hhall314@mit.edu
mailto:ruizr@mit.edu
mailto:nvenkat@mit.edu
https://doi.org/10.4230/LIPIcs.FUN.2024.22
https://arxiv.org/abs/2405.10546
https://github.com/65440-2023/mario-hardness-gadgets
https://github.com/NSMBW-Community/Reggie-Updated
https://github.com/NSMBW-Community/Reggie-Updated
https://github.com/Arisotura/CoinKiller
https://github.com/aboood40091/Miyamoto
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Undecidable Mario Games

Dolphin by the Dolphin Emulator Project – https://dolphin-emu.org/
Cemu by Team Cemu – https://cemu.info/
Citra by Citra Emu – https://github.com/citra-emu/citra

1 Introduction

In 2014, Hamilton [10] proved that solving a (bounded-size) level in the 2008 video game
Braid is RE-complete (the same difficulty as the halting problem, and thus undecidable),
even without its famous time-travel mechanic. The reduction is from counter machines
[15, 16, 13]: a finite-state machine with a constant number of natural-number counters
equipped with increment, decrement, and jump-if-zero instructions. The central idea was
to represent the value of each counter in a Braid level by the number of enemies occupying
a particular location in the level, exploiting that this number can be arbitrarily large even
in a bounded-size level. The same paper conjectured that many other video games were
amenable to this approach.

In this paper, we prove that this approach extends to several 2D games in the Super Mario
Bros. platform video game series,2 when we generalize them to remove any limits on time,
the total number of enemies, or the number of enemies at each location. Most of these games
(even the original Super Mario Bros. from 1985) have mechanics for spawning arbitrarily many
enemies over time, but it is difficult to find the right combination of mechanics to implement
the specific functionality of an increment/decrement/jump-if-zero counter. Specifically, we
show that the following games are RE-complete by building computer machines where the
number of enemies in a particular location represents the value of each counter:
1. The New Super Mario Bros. series (Section 3): New Super Mario Bros., New Super Mario

Bros. Wii, New Super Mario Bros. U, and New Super Mario Bros. 2. One reduction
covers all four games, using their powerful “event” game mechanic, where Mario’s location
can toggle the existence of blocks. We build an entire universal counter machine within a
single screen of the the Wii version, so solving even a single-screen level is RE-complete.

2. The Super Mario Maker series (Section 4): Super Mario Maker 1 in all four game styles
(Super Mario Bros. 1, Super Mario Bros. 3, Super Mario World, and New Super Mario
Bros. U) and Super Mario Maker 2 in all five game styles (the same four, plus Super
Mario 3D World).

All of these games are in RE: if a level is solvable, then there is a finite algorithm to
solve them, by trying all possible sequences of inputs to the game, and simulating the result.
Because any solvable level is (by definition) solvable in finite time, and the state in the game
after any finite time is finite, this algorithm is finite. Thus, to prove RE-completeness, it
remains to prove RE-hardness.

To simplify the process of proving such games RE-hard using counter machines, we develop
in Section 2 a new theory of “counter gadgets” which shows that a single gadget diagram
suffices to prove RE-hardness in a one-player game like Super Mario Bros. This framework
builds on the motion-planning-through-gadgets framework developed in recent years
[8, 3, 6, 5, 4, 5, 14, 11], starting with FUN 2018 [7]. In the single-player version of this
framework, one agent (Mario) traverses an environment consisting of local “gadgets”, with
the locations of the gadgets connected together in a graph (representing freely traversable
connections). Each gadget has a finite set of states and a finite set of possible transitions,

2 After all, “Braid is a postmodern Super Mario Bros.” [12].

https://dolphin-emu.org/
https://cemu.info/
https://github.com/citra-emu/citra

MIT Hardness Group, H. Ani, E. D. Demaine, H. Hall, R. Ruiz, and N. Venkat 22:3

where a transition (q, a) → (r, b) means that, when the gadget is in state q, the agent can
enter at location a and leave at location b, while changing the state of the gadget to r. We
generalize this framework to allow for infinite-state gadgets called counter gadgets, where
the states are the natural numbers and the traversals are among common operations such
as increment, decrement, traversable-if-zero, and traversable-if-nonzero. Specifically, we
show that any one of the following counter gadgets suffices to prove RE-completeness of the
reachability problem (can the agent get from one location to another?):
1. Inc-Dec-JZ: One traversal path that increments the counter value, another that decre-

ments the counter value unless it is already zero, and a third that leads the agent to two
different locations depending on whether the counter value is zero.

2. Inc-JZDec: One traversal path that increments the counter value, and another that
leads the agent to two different locations depending on whether the counter value is zero,
and if it is not, decrements the counter.

3. Inc-DecNZ-PZ: One traversal path that increments the counter value, another that
decrements the counter value but which can be traversed only if the counter is nonzero,
and a third that is traversable only if the counter value is zero.
Notably, this RE-hardness result holds even when the connections between gadgets form
a planar graph, so there is no need for a crossover gadget.

4. Inc[a, b]-DecNZ[c, d]-PZ: A generalization of the previous gadget where, when the
agent traverses an increment or decrement path, it gets to choose how much to increment
or decrement, within a range of [a, b] or [c, d], respectively, where a, c > 0. This robustness
to unknown gadget behavior is helpful for building gadgets in video games, which can
require very careful timing and alignment to force a specific number of increments or
decrements, but forcing at least one and at most some constant is relatively easy.

Specifically, we build an Inc[1, 2]-DecNZ[1, 2]-PZ gadget in the New Super Mario Bros.
series, and we build three different Inc-DecNZ-PZ gadgets for different variants of the Super
Mario Maker series. Some of our gadgets are available for download and play [17]. On the
plus side, we need to build only one main gadget for each game, together with a crossover
gadget in some cases (such as New Super Mario Bros.). On the negative side, as we will see,
that one main gadget is quite complex.

By contrast, the Braid proof [10] had six individual gadgets. We can instead combine
three of them (Lever Pull, Counter, and Branch) in a straightforward way to build an
Inc-JZDec gadget; see Figure 1. Then we only need a crossover gadget for the agent (Tim),
which is one of the three crossover gadgets in [10]; the other two are no longer necessary.

Like Hamilton, we conjecture that our counter-gadget framework can be applied to prove
RE-hardness of other video games as well. We discuss further possibilities for Super Mario
Bros. games in Section 5.

2 Counter Gadgets

In this paper, we reduce from “reachability with gadgets”, first explored in [7, 8]. We define
a gadget G = (Q, L, T) to consist of a set Q of states (not necessarily finite), a finite set
L of locations, and a set T ⊆ (Q × L)2 of allowed transitions on pairs of locations and
states, each written in the form (q, a) → (r, b) where q, r ∈ Q and a, b ∈ L.

An example of a gadget is the 1-toggle: it has a single path that the player can cross
in only one direction, and every time they do, the allowed direction flips. Figure 2 gives
a graphical representation. In this case, there are two locations L = {a, b}, two states
Q = {R, L}, and T = {(0, a) → (1, b), (1, b) → (0, a)}.

FUN 2024

22:4 Undecidable Mario Games

Nonzero

JZDec in

Inc in

Inc
out

Zero

Lever Pull Gadget

Lever Pull Gadget

Branch Gadget
(re�ected)

Counter Gadget

Figure 1 An Inc-JZDec counter gadget in Braid, built from the Level Pull, Counter, and Branch
gadgets of [10].

Figure 2 A 1-toggle, along with its state diagram on the right. When the player goes from a to
b, the arrow flips.

Here, we consider gadgets with an infinite number of states, namely, one for each natural
number. We further restrict a counter gadget to consist of counter components (see
Figure 3) that interact with each other when put in the same gadget:

Inc[a, b]. This is a directed tunnel that is always traversable. When the player traverses
it, they choose a natural number i such that a ≤ i ≤ b. The gadget’s state increments
by i.

DecNZ[a, b]. This is a directed tunnel that is traversable if and only if the gadget’s
state is at least a. When the player traverses it, they choose a natural number i such
that a ≤ i ≤ min(s, b), where s is the gadget’s state. The gadget’s state decrements by i.

Dec[a, b]. This is like DecNZ[a, b], except that it is always traversable, and if the gadget’s
state would become negative, it instead becomes 0.

Inc, DecNZ, Dec. These are short for Inc[1, 1], DecNZ[1, 1], and Dec[1, 1], respectively.

PZ. This is a directed tunnel that is traversable if and only if the gadget’s state is 0. It
does not change the state.

PNZ. This is a directed tunnel that is traversable if and only if the gadget’s state is not
0. It does not change the state. This is only defined for convenience of defining the JZ
switch below.

JZ. This is a switch formed by putting a PZ tunnel and a PNZ tunnel in the same gadget
and combining their entrances.

JZDec. This is a switch formed by putting a PZ tunnel and a DecNZ tunnel in the same
gadget and combining their entrances.

MIT Hardness Group, H. Ani, E. D. Demaine, H. Hall, R. Ruiz, and N. Venkat 22:5

Figure 3 Counter components that are allowed in counter gadgets, along with their sets T of
allowed traversals.

2.1 Undecidable Gadgets via Counter Machines
A system of gadgets consists of instances of gadgets, an initial state for each gadget, and a
graph connecting the gadgets’ locations together. In the reachability problem, we are given
a system of gadgets, a start location s, and a goal location t, and we want to know whether
the player can get from s to t by making a sequence of gadget traversals and following edges
of the connection graph.

With infinite-state gadgets, sometimes reachability is undecidable, since we can simulate
counter machines. We use the fact that the counter-machine halting problem is RE-hard [15]
as a starting point. First, we give a brief introduction to counter machines.

A counter machine is a set of counters and a sequence of instructions that run on those
counters. The instructions are:

Inc(c): Add 1 to counter c and move on to the next instruction
Dec(c): Subtract 1 from counter c, leaving its value alone if it was 0, and move on to the
next instruction.
JZ(c,i): Check if counter c is 0. If so, jump to instruction i. Otherwise, move on to the
next instruction.
Halt: Stop the machine.

It is RE-hard to determine whether a counter machine reaches a Halt instruction, even with
just two counters [15], [16, pp. 255–258].

2.2 Inc-Dec-JZ is RE-complete
The Inc-Dec-JZ gadget (Figure 4) consists of, as the name indicates, an Inc tunnel, a Dec
tunnel, and a JZ switch.

We prove that reachability with this gadget is NP-hard. The proof involves duplicating
the Inc and Dec tunnels a bunch, then duplicating the JZ switch a bunch, then simulating a
counter machine using multiple of the gadget, using each set of Inc, Dec, and JZ components

FUN 2024

22:6 Undecidable Mario Games

Figure 4 The Inc-Dec-
JZ gadget, shown in states
0 and 1.

Figure 5 The Inc-DecNZ-DecNZ gadget, along with its simulation
by Inc-Dec-JZ gadgets.

as an instruction. We will show RE-hardness again, but with a different method where we
build a gadget made for flow control, and use multiple copies of that gadget along with
unaltered Inc-Dec-JZ gadgets.

▶ Theorem 1. Reachability with Inc-Dec-JZ is RE-complete.

Proof. We show this by simulating a counter machine with Inc(c), Dec(c), and JZ(c,i)
instructions, which increment counter c, decrement counter c (saturated at 0), and jump to
instruction i if c = 0, respectively.

First, we build an Inc-DecNZ-DecNZ gadget to help with flow control. We simulate
one as shown in Figure 5. If the agent enters via Inc in, they increment the top gadget
and leave. If the agent enters via DecNZi in, they eventually get stuck if the top counter
is 0. Otherwise, they increment the middle/bottom gadget, decrement the top gadget, and
decrement the gadget that they incremented before, leaving via DecNZi out.

To construct the counter machine, we use an Inc-Dec-JZ gadget c for each counter c,
and an Inc-DecNZ-DecNZ gadget i for each instruction i: · · · . At a high level, we connect
gadgets so that the agent flow works as follows:

For an instruction i:Inc(c), the agent increments instruction gadget i, increments the
counter gadget c, finds the incremented instruction gadget i and decrements it, and then
moves on to the next instruction gadget i + 1.
For an instruction i:Dec(c), the agent does the same as above, except that they decrement
the counter gadget c.
For an instruction i:JZ(c,i′), the agent increments instruction gadget i and goes to check
whether counter gadget c is in state 0. If it is, they decrement gadget i and branch to
instruction gadget i′. Otherwise, they decrement gadget i using the other decrement path
and move on to the next instruction gadget i + 1.

Figure 6 shows an example.

MIT Hardness Group, H. Ani, E. D. Demaine, H. Hall, R. Ruiz, and N. Venkat 22:7

Figure 6 The Inc-Dec-JZ gadget simulating a counter machine.

More concretely, we connect gadgets in the following ways, where a[b] denotes location b

of gadget a, I denotes the counter machine program, I[i] denotes the ith instruction, and C

denotes the set of counter gadgets:
i[Inc out] ∼ c[Inc in] for all i, c where I[i] = Inc(c).
i[Inc out] ∼ c[Dec in] for all i, c where I[i] = Dec(c).
i[Inc out] ∼ c[JZ in] for all i, c, i′ where I[i] = JZ(c,i′).
c[Inc out] ∼ i[DecNZ0 in] for all i, c where 0 ≤ i < |I| and c ∈ C.
c[Dec out] ∼ i[DecNZ0 in] for all i, c where 0 ≤ i < |I| and c ∈ C.
c[JZ out (̸= 0)] ∼ i[DecNZ0 in] for all i, c where 0 ≤ i < |I| and c ∈ C.
c[JZ out (= 0)] ∼ i[DecNZ1 in] for all i, c where 0 ≤ i < |I| and c ∈ C.
i[DecNZ0 out] ∼ (i + 1)[Inc in] for all i where 0 ≤ i < |I| − 1.
i[DecNZ1 out] ∼ i′[Inc in] for all i, c, i′ where I[i] = JZ(c,i′).

The agent starts just in front of the first instruction gadget, and any instruction gadget
that corresponds to a Halt instruction is replaced with a goal. Then the agent can win if
and only if the counter machine halts, reducing the counter machine halting problem to
reachability. ◀

2.3 Inc-JZDec is RE-complete
The Inc-JZDec gadget (Figure 7) replaces the Dec and JZ components with a single JZDec
switch. We prove that reachability with this gadget is RE-hard by simulating the Inc-Dec-JZ
gadget.

▶ Theorem 2. Reachability with Inc-JZDec is RE-complete.

Proof. We reduce from reachability with Inc-Dec-JZ by simulating the Inc-Dec-JZ gadget,
as shown in Figure 8. We use G0 and G1 to store the counter’s value. If the agent enters via
Inc in, they increment G0 and G1 and leave via Inc out. If the agent enters via Dec in, then
if the counter is 0, they nearly immediately leave via Dec out. Otherwise, they decrement
G0, increment H2, decrement G1, decrement H2, and leave via Dec out. Note that H2 has
no net change. If the agent enters via JZ in, if the counter is 0, they nearly immediately leave

FUN 2024

22:8 Undecidable Mario Games

Figure 7 The Inc-JZDec
gadget, shown in states 0
and 1.

Figure 9 The Inc-
DecNZ-PZ gadget, shown
in states 0 and 1.

Figure 8 Simulation of Inc-Dec-JZ with Inc-JZDec. Gadgets G0

and G1 store the counter’s value, while H0, H1 and H2 are used for
flow control.

via JZ out = 0. Otherwise, they decrement G1, increment H1, increment G1, decrement H1,
and leave via JZ out ̸= 0, leaving no net change (except in H0, but that gadget is just used
as a diode). So this simulation works. ◀

2.4 Inc-DecNZ-PZ is RE-complete
The Inc-DecNZ-PZ gadget (Figure 9) replaces the JZDec switch with separate DecNZ and PZ
tunnels. This gadget can easily simulate the Inc-JZDec gadget, by combining the entrances
of DecNZ and PZ.

▶ Corollary 3. Reachability with Inc-DecNZ-PZ is RE-complete.

In addition, we have a planar result. In planar reachability, we restrict to planar
systems of gadgets where the graph of connections between gadgets’ locations do not cross
gadgets or each other (except at common endpoints).

▶ Theorem 4. Planar reachability with any planar system of Inc-DecNZ-PZ gadgets is
RE-complete.

Proof. Ani et al. [3, Theorems 3.1 and 3.2] show that a crossover can be built from a
symmetric self-closing door : a gadget with two states Q = {1, 2} and two possible
traversal paths L1 → R1 and L2 → R2, where L1 → R1 is possible only in state 1, L2 → R2
is possible only in state 2, and every traversal switches the state. Figure 11 shows how
to build a symmetric self-closing door from Inc-DecNZ (and thus Inc-DecNZ-PZ) in all
cases. ◀

Thus, we do not need to build a crossover when reducing from reachability with the
Inc-DecNZ-PZ gadget, even in a planar application.

MIT Hardness Group, H. Ani, E. D. Demaine, H. Hall, R. Ruiz, and N. Venkat 22:9

Figure 11 Left: State diagram of the symmetric self-closing door. Right: Simulation of a
symmetric self-closing door, no matter the planar arrangement of tunnels in Inc-DecNZ.

Figure 12 The Inc[a, b]-
DecNZ[c, d]-PZ gadget,
shown in states 0 and c.

Figure 13 An edge duplicator built with the Inc[a, b]-DecNZ[c, d]-
PZ gadget. The player can go from e0 to e1 along two different paths
without leaking between them.

2.5 Inc[a, b]-DecNZ[c, d]-PZ, a > 0, c > 0 is RE-complete
The Inc[a, b]-DecNZ[c, d]-PZ gadget (Figure 12) replaces the Inc and DecNZ tunnels with
Inc[a, b] and DecNZ[c, d] tunnels, respectively. Recall that an Inc[a, b] tunnel allows the
player to choose an integer between a and b inclusive, and increment the gadget’s state by
that amount. A DecNZ[c, d] tunnel allows the player to choose an integer between c and d

inclusive and decrement the state by that integer, but only if the result is nonnegative.

▶ Theorem 5. Reachability with Inc[a, b]-DecNZ[c, d]-PZ is RE-hard if a > 0 and c > 0.

Proof. We simulate the Inc-DecNZ-PZ gadget. First, we build an edge duplicator (Fig-
ure 13), which allows us to duplicate Inc[a, b] and DecNZ[c, d] tunnels as many times as we
want. In the edge duplicator shown, e0 → e1 is being duplicated. If the player enters via
In0, they go from f to g c times and go through e0 to reach e1. Then since the gadget on
the right does not allow passage, they must go from h to i until the path to Out0 opens up
(that is, a times). Then they leave, and the left gadget is reset. This works symmetrically
for In1 → Out1.

Then we use two gadgets with as many Inc[a, b] tunnels, as many DecNZ[c, d] tunnels,
and as many PZ lines as we want to simulate the Inc-DecNZ-PZ gadget (Figure 14). In fact,
we use acd Inc[a, b] tunnels and abd DecNZ[c, d] tunnels in G0, and bcd Inc[a, b] tunnels and
abc DecNZ[c, d] tunnels in G1.

FUN 2024

22:10 Undecidable Mario Games

Figure 14 Simulation of Inc-DecNZ-PZ with Inc[a, b]-DecNZ[c, d]-PZ gadget. The numbers of
copies of repeated tunnels are shown in red.

Let s(G) be the state of gadget G. We say that G ⊏ [i, j] if s(G) is between i and j, and
it is possible that s(G) = i, and also possible that s(G) = j. For example, if G starts at state
0, then G ⊏ [0, 0]. If the player goes through the Inc[a, b] tunnel, then G ⊏ [a, b]. After going
through the DecNZ[c, d] tunnel, which is only possible if b − c ≥ 0, G ⊏ [max(a − d, 0), b − c].
If G ⊏ [i, j], we define min(G) = i and max(G) = j.

We maintain the invariant that max(G0) = min(G1) = abcdn, where n is state of the
simulated Inc-DecNZ-PZ gadget.

If the player crosses the simulated Inc tunnel, then max(G0) := max(G0) + b · acd =
abcd(n + 1) and min(G1) := min(G1) + a · bcd = abcd(n + 1).
If the player successfully crosses the simulated DecNZ tunnel, then because of G0, it
was the case that abcdn ≥ c · abd, meaning that n > 0, which is what we want. Then
max(G0) := max(G0)−c·abd = abcd(n−1) and min(G1) := min(G1)−d·abc = abcd(n−1).
Note that since max(G0) = min(G1), if G0’s portion was crossable, then so is G1’s portion.
If the player successfully crosses the simulated PZ tunnel, then because of G1, it was the
case that abcdn = 0, meaning that n = 0. Then max(G0) := 0 and min(G1) := 0. If G1’s
portion was crossable, then so is G0’s portion, because max(G0) = min(G1).

So this simulation works. ◀

2.6 Constant-Size Levels
Universal Turing or counter machines let us strengthen our results to need just a constant
number of gadgets. For example, Korec [13] designs a 2-counter machine U32 (consisting of
32 instructions over Inc, Dec, and JZ) that is strongly universal in the sense that there is
a computable function f such that, given any 2-counter machine M , M applied to x and
y produces the same result as U32 applies to counter values f(x) and y. By applying the
theorems above to U32, we obtain a system of a constant number of counter gadgets that
simulates U32 and thus any 2-counter machine and thus any Turing machine. Crucially,
this system must start with arbitrary specified initial states, to represent f(x) and y. This
framework and its implications are described in more depth in [1].

Applied to Mario, this means that we can prove RE-hardness of constant-size levels,
provided they can start with arbitrarily many enemies at each location.

Alternatively, if we must start with all counters in state 0, or Mario levels without any
enemies, then we need a linear number of instructions to build up the initial counter values
(by repeated addition and multiplication implemented by repeated addition).

MIT Hardness Group, H. Ani, E. D. Demaine, H. Hall, R. Ruiz, and N. Venkat 22:11

3 New Super Mario Bros. Series

An earlier version of this work [2] showed that Generalized New Super Mario Bros. is
undecidable by a reduction from reachability with the Inc-DecNZ-PZ gadget and a crossover.
In this section, we will prove undecidability for all games in the New Super Mario Bros.
series by building a similar counter with the Inc[1, 2]-DecNZ[1, 2]-PZ gadget. Specifically,
this gadget can be used in New Super Mario Bros., New Super Mario Bros. Wii, New Super
Mario Bros. U, and New Super Mario Bros. 2. We use the number of enemies called Goombas
to keep track of the counter state, and since we can simulate the Inc-DecNZ-PZ gadget by
Theorem 14 we can obtain undecidability in constant size as in Section 2.6. However, this
result is not necessarily planar, so we provide a simple crossover gadget.

In this section, we make heavy use of a mechanic in the New Super Mario Bros. games
called events, which allows the player to interact with blocks via switches and event
controllers. The functionality of events that we will use can be summarized as follows,
although exact implementations vary per game:

Each event can be either on or off.
Event controllers toggle one event based on the status of another.
Location controllers toggle an event based on the status of enemies or players in a
pre-defined location.
There are blocks which appear or disappear according to the status of an event.

▶ Theorem 6. The New Super Mario Bros. games are RE-complete.

Proof. Our counter gadget is composed of two parts: the counter, pictured in Figure 15a,
and the tunnel, pictured in Figure 15b. Each purple area represents a defined location. The
groups of blocks associated with a letter are controlled by the event with the given letter3.
When the event with the corresponding letter changes state, the blocks also change state
between visible and invisible (where invisible blocks are also intangible). Invisible blocks are
depicted as outlined instead of filled. There are also several invisible control objects:

An enemy spawner spawns Goombas from the pipe .
A location controller activates event A when a player enters location 1.
An event controller activates event B when event A is activated.
A location controller deactivates event A when a player enters location 2.
A location controller activates event D when a player enters location 3.
An event controller activates event E when event D is activated.
A location controller deactivates event D when a player enters location 4.
A location controller activates event C when an enemy enters location 5.
An event controller deactivates event B when event C is activated.
A location controller activates event F when an enemy enters location 7.
An event controller deactivates event E when event F is activated.
An event controller activates event G if and only if an enemy is in location 6.

Inc[1, 2]. When the player enters the Inc tunnel, they encounter location 1 which enables
event A, preventing backtracking and opening the path through the tunnel. They then enter
location 2, which reverses this change, preventing backtracking. At the same time, event A
triggers event B which allows a Goomba to pass through the blocks tied to event B. That
same Goomba enters location 5 which indirectly deactivates event B. Because of the
way Goombas spread out when moving, only one or two Goombas will pass through
during this time. The incremented Goomba(s) end up in location 6.

3 In memory, events are numbered, not lettered, but we use letters to disambiguate with locations

FUN 2024

22:12 Undecidable Mario Games

5

6 7

B

E

(a) Counter (for
Goombas only).

1
AA

D

G

G D
3 4

2Inc

DecNZ

PZ

DecNZ

PZ

Inc

(b) Tunnel (for Mario only).

Figure 15 The New Super Mario Bros. counter gadget in state 0.

1

1

2

2

Figure 16 The New Su-
per Mario Bros. crossover
gadget.

DecNZ[1, 2]. The DecNZ tunnel works analogously to the Inc tunnel, instead allowing one
Goomba to pass through the blocks tied to event E. In addition, if a Goomba is not
in location 6, i.e. the counter value is zero, event G will be disabled, and blocks tied to G
will block traversal through the decrement tunnel, enforcing the NZ condition.

PZ. Similarly to how the NZ condition is enforced, if a Goomba is in location 6, event
G is active and blocks tied to G block the path through PZ.

To complete the proof, we provide a crossover gadget, as pictured in Figure 16. This
is another event-based gadget, where all blocks are controlled by one event, which is off
as pictured. Entering either location labeled 1 will enable the event, toggling the states of
all blocks and allowing traversal only between the top left and bottom right, and entering
either location labeled 2 will disable the event, returning it to the state pictured and allowing
traversal between the top right and bottom left. ◀

3.1 Constant-Size New Super Mario Bros. Wii
As described in Section 2.6, the above result implies undecidability for a level of constant
size. In fact, we have explicitly built a universal counter machine in New Super Mario Bros.
Wii within a single screen. Figure 17 depicts such a counter, as shown in the Reggie level
editor. Our level file is available to download and play [17].

Specifically, this level builds the strongly universal counter machine U32 of Korec [13],
following an approach taken for the video game Baba Is You [1]. The construction of this level
is somewhat different from the reductions we have described, making many simplifications to
fit the level on one screen. The left side of the level is devoted to the 8 registers, while the
majority of the level is devoted to traversal tunnels which control the states of the gadget.
Effectively, this is the same as the two components of our gadget featured in Theorem 6,
but with extra space removed. Branches are achieved easily by having an event controller
to check whether a Goomba is in the counter location. As pictured, the gadget has values
of 0, 0, 1, 1, 0, 0, 1, 0 for registers 0, 1, 2, 3, 4, 5, 6, 7 respectively. The goal of the level is to
traverse from the starting area (in the bottom left) to the pipe (bottom right) which leads to
the flagpole. A mini-mushroom is provided in the starting area to help the player traverse
more easily through tight tunnels, but is not essential to the functioning of the gadget.

Because this entire counter fits on one screen, it is unnecessary to generalize level size
as we have with other games. However, we still need to generalize the game in a few ways.
Specifically, the actual game features a timer, and the actual game engine will spawn a
Goomba from each pipe only if there are not already eight Goombas on screen. Both of these
limitations need to be removed to make the level fully work.

MIT Hardness Group, H. Ani, E. D. Demaine, H. Hall, R. Ruiz, and N. Venkat 22:13

Figure 17 U32 in New Super Mario Bros. Wii.

Because the functionality of events is effectively the same across the New Super Mario
Bros. series, this same counter should be able to be built in the other games, although smaller
Nintendo DS screen sizes seem to prevent making such a large screen size in the DS games.

4 Super Mario Maker

First we describe how the screen size (which we do not generalize from the implemented
size) affects local vs. global behaviors in Super Mario Maker 1 and 2. As in most Mario
games, memory and effects are typically limited to the extent of the screen – technically,
the relevant screen which extends four blocks beyond the visible screen. For example,
activating a P-switch temporarily turns coins into blocks, but only within the current relevant
screen; as Mario and this screen moves, which coins are transformed changes, which can
impact nearby enemies etc. Similarly, enemies typically spawn when the relevant screen
first overlaps their start location, and then despawn when they leave that relevant screen.

But the Super Mario Maker game engines also define a notion of global objects [9] whose
state is remembered even when it outside the relevant screen. Only a handful of objects
are inherently global; for example, One-ways spawn at the beginning of the level and never
despawn, while Yoshi spawns when reaching the screen but then never despawns. Crucially,
an object becomes global if it is on Tracks, or is on top of another global object; this principle
is called global ground. We use this property to make global any objects we want to be
remembered, such as the enemies representing the state of a counter.

The Super Mario Maker games are also unusual in that they allow level creation in multiple
(4–5) game styles, which each offer some slightly unique mechanics. Our constructions that
apply to four styles make use of only mechanics that are present in all four styles, and all
four of the styles have the same physics.

FUN 2024

22:14 Undecidable Mario Games

4.1 Super Mario Maker 1
▶ Theorem 7. All four game styles (Super Mario Bros. 1, Super Mario Bros. 3, Super Mario
World, and New Super Mario Bros. U) of Super Mario Maker 1 are RE-complete.

Proof. We reduce from planar reachability with the Inc-DecNZ-PZ gadget (Theorem 4). Our
gadget uses the following elements:

Solid ground: Solid ground with no special effects.
Semisolid platforms: Platforms which can be jumped through from below
but are solid from above.
One-ways: Walls which allow entities (Mario, enemies, etc.) to pass the white bar
only in the direction of the arrows.
Brick block: Solid block which can be hit from below to defeat enemies or bounce
trampolines above it,
Coin: Transparent course element which allows Mario and enemies to pass through
freely. If Mario touches a coin, it is collected and disappears from the course.
P-switches: Switches which turn coins into brick blocks and vice versa for the
duration of a timer.
Tracks: Rails specifying periodic movement of attached entities; platforms on
tracks are global ground, meaning that they and entities on them do not despawn when
offscreen.
Spikes: Blocks which damage Mario upon contact.
Goombas: Enemies which damage Mario when he contacts from any direction but
above. Can safely walk on spikes and are defeated by being jumped on, giving Mario a
vertical boost similar to a jump. We use big (2 × 2) Goombas in this construction.
Trampoline: Item which bounces entities on it up into the air.
Pipes: Elements which periodically spawn a particular item or enemy (drawn next
to the pipe) into the course. If the pipe spawns items, it will only do so if the last element
that the pipe spawned is no longer loaded or exists. Enemies such as Goombas spawn
indefinitely. Their spawn frequency can be adjusted to one of four speeds.

The key idea in this gadget is similar to other Mario Inc-DecNZ-PZ reductions: use the
number of Goombas in a particular location to represent the value of a counter. The
gadget has infinitely many enumerated states such that, for any integer n ≥ 0, there exists a
state with a collection of n Goombas. The particular construction of the gadget determines
how to increase, decrease, and check for zero in the gadget.

The counter element of the gadget is a semisolid platform on a track . The track
makes the platform global ground, preventing the Goombas from despawning as Mario
moves away from the gadget.

Another critical element to the gadget construction is Goomba pushing. If two Goombas
are on the same y level and walk into each other, they both bounce off and move in the

opposite direction. This property is useful for building single-Goomba chambers: if there is
a one-way into a chamber with the width of a single Goomba that can only be accessed
from the side, at most one Goomba can occupy it. This is because, if any other Goombas
attempt to walk into the space, they will bounce off and be unable to pass through the
one-way.

Inc. On traversal of the increment path, the player is forced to add exactly one Goomba
to the gadget counter. Above the semisolid platform counter, there is a long horizontal

chamber with coins for a floor. At one end of the corridor, a pipe spawns Goombas

MIT Hardness Group, H. Ani, E. D. Demaine, H. Hall, R. Ruiz, and N. Venkat 22:15

Inc

Inc

PZ

DecNZ

PZ

DecNZ

Figure 18 The counter gadget for Super Mario Maker.

which immediately fall through the coin floor. At the other end of the pipe, a one-way
leads to a space wide enough for exactly one Goomba bounded by coins: a single-Goomba

chamber as described above. This chamber is level with the pipe and has a solid floor, unlike
the coin floor of the corridor.

On activation of a P-switch , the coins turn to brick blocks . Any Goombas
already in the gadget are defeated instantly, and future spawned Goombas can freely

walk towards the chamber. The coins bordering the chamber on the other side will be brick
blocks, trapping exactly one Goomba in the chamber. Once the P-switch timer expires, the
floor will transform back into coins and all the Goombas currently in the corridor will be
too low to enter the chamber. The brick blocks at the end of the chamber will turn back
into coins, allowing the Goomba to pass through and fall onto the semisolid platforms to
increment the counter. As long as the corridor length and pipe spawn frequency guarantee
that at least one Goomba reaches the chamber by the end of a P-switch cycle, every P-switch
activation guarantees a counter increment by exactly one.

An Inc traversal path can be built such that Mario is forced to hit a P-switch exactly
once. We accomplish this by spawning P-switches from a pipe in the ceiling, which
fall onto a brick block behind a one-way . Beyond the brick block, a row of coins

above a row of spikes leads to solid ground . After the solid ground, another
row of spikes below a row of brick blocks lead out to the exit port. The gadget is
constructed such that Mario must jump through a set of one-ways : one before hitting
the P-switch and another immediately after.

To traverse, Mario must jump past the one-way and land on the P-switch , then
run across the transformed brick blocks over the spikes and onto the solid ground

. Once through the one-way, Mario cannot go back and activate another P-switch. Since
the exit port is blocked by a spike row, Mario is forced to wait out the full P-switch timer,
guaranteeing that the Goomba remains loaded until it can fall onto the counter and
reach global ground.

DecNZ. At the end of the semisolid counter platform farthest from the chamber
described above, another Goomba chamber is formed by a one-way and solid ground

tiles. This guarantees that, in any state n > 0, exactly one Goomba is in the
chambered section of the counter. Below the chamber, a pipe spawns trampolines

onto a brick block which is accessible from below. Directly above the chamber, a
semisolid platform leads toward a long fall. The platform is low enough such that a
Goomba bounced up from the counter by a trampoline would land on the upper semisolid
platform , no longer in the counter. The upper semisolid platform is bounded on one side
by one-ways , and on the other it has a long fall onto a row of spikes .

FUN 2024

22:16 Undecidable Mario Games

The decrement works by having small Mario hit the brick block from below, bouncing
the trampoline upwards and allowing it to bounce a Goomba up into the air onto
the upper semisolid platform . Mario must then traverse the row of spikes , which
is too long to clear in a single jump. If the counter had more than one Goomba and the
bounce succeeded, a Goomba will fall onto the spikes, allowing Mario to jump off it to gain
extra height and clear the row, exiting the gadget. If the counter was at zero, Mario would
be unable to clear the spikes and lose a life instead. This checks that the decrement removes
at least one Goomba.

We enforce the condition that Mario can only decrement once per traversal by using
one-ways. Mario is forced to jump through a one-way , hit the brick block , then fall
through another one-way . Using this construction, Mario can only hit the brick block
once, making a tight lower bound and guaranteeing decrement of exactly one enemy.

PZ. The traverse path requires that Mario jumps through the semisolid counter platform
from below, in particular through the bottom of the single-Goomba chamber. If the

gadget is in any nonzero state, there is guaranteed to be one Goomba in the chamber.
Mario will take damage when making contact from below and lose a life. If the gadget is in a
zero state instead, the Goomba chamber will be empty and Mario will be free to traverse. ◀

4.2 Super Mario Maker 2
▶ Theorem 8. All four normal game styles (Super Mario Bros. 1, Super Mario Bros. 3, Super
Mario World, and New Super Mario Bros. U) of Super Mario Maker 2 are RE-complete.

The reduction for Super Mario Maker 1 from Section 4.1 might be adaptable to Super
Mario Maker 2, but differing mechanics in the latter game (which allows picking up items
from behind one-ways) would mean that the gadget would have to be altered for some of the
game styles in order to prevent breaking the gadget. Thus, we demonstrate here a different
gadget which works equally well for all four styles, making use of some mechanics exclusive
to Super Mario Maker 2.

Proof. We reduce from planar reachability with the Inc-DecNZ-PZ gadget (Theorem 4).
Figure 19 shows the gadget, and Figure 20 shows portions of a playthrough. We use some
entities already described in Section 4.1: solid ground , semisolid platforms , one-ways

, P-switches , tracks , spikes , platforms , goombas , and pipes . In
addition, we use the following entities:

Donut blocks: Semisolid blocks that begin to fall after Mario stands on them for a
short amount of time. Placing many in a vertical drop effectively slows Mario’s downward
traversal.
Note blocks: Bouncy blocks that cause any entity that walks on them to be bounced
upward.
P-blocks: These blocks flip from being outlines to being solid (or vice versa)
while the P-switch is active. In this construction, they prevent the clown car from
spawning out of the blue pipe unless the P-switch is active.
On/off switches: When hit from below, these switches flip a global on/off state,
toggling the solidity of on/off blocks: vs. .
On/off blocks: These blocks come in and out of existence based on the
state of the on/off switches : in the “on” red state , and in
the “off” blue state .

MIT Hardness Group, H. Ani, E. D. Demaine, H. Hall, R. Ruiz, and N. Venkat 22:17

PZ

DecNZ

Inc

Inc
PZ

DecNZ

Figure 19 Complete Inc-DecNZ-PZ gadget for the normal game styles of Super Mario Maker 2.

Blaster: These blasters shoot a shell in the direction of Mario if he is sufficiently
close and the corresponding barrel of the blaster is not blocked. These shells can activate
on/off switches .
Clown cars: These vehicles allow exactly one falling enemy to enter and ride them.
If a loaded clown car touches spikes , then it will panic and fly upward.
Thwomps: An enemy that charges downward if Mario is sufficiently close and at or
below the level of the Thwomp, and then resets to its original location.
Seesaws: A tilting platform that balances based on the weight on both sides
of the center. If a Thwomp pounds on one side of the seesaw, it will launch up any
enemies on the other side of the platform. This is used to get the Goombas into a
falling state so that they can be picked up by the clown car .
Conveyors: A moving platform that can slow down a shell that is moving
in the opposite direction. In this construction, it allows us to use less space to achieve
the timing for the shell that deactivates an activated on/off switch .

As before, the state of the counter gadget is the number of Goombas on the platform
on the track .

PZ. When the gadget is in state 0, there are no Goombas on the platform , allowing
the player to traverse the PZ path. When the gadget is in any state > 0, there is at least
one Goomba on the platform, preventing the player from traversing the PZ path without
taking damage (and thus dying).

Inc. When the player enters the increment path, the first tunnel is long enough that a shell
will be launched left from the blaster and bounce within the single adjacent space.

At the end of this tunnel, the leftward one-way ensures that the player cannot hit the
on/off switch without fully activating the increment, and the downward facing one-ways
and on/off blocks below ensure that the player cannot hit the on/off switch more than once.

FUN 2024

22:18 Undecidable Mario Games

(a) Inc path: The shell resets the on/off switch
after exactly one Goomba has spawned.

(b) DecNZ path: A single Goomba rides the
panicked clown car upward.

Figure 20 Screenshots from playing the gadget from Figure 19 in Super Mario Maker 2.

Once the on/off switch is triggered, the green pipe , being no longer blocked from
spawning, immediately starts spawning Goombas . At the same time, the shell , no
longer confined to a single space, starts moving left toward an on/off switch . The shell’s
distance to the switch, along with the speed of the conveyor and the spawning
speed of the green pipe , ensures that exactly one Goomba can spawn before the pipe
is again blocked from spawning by the shell hitting the on/off switch, as shown in Figure
20a. This single Goomba moves left, bouncing up from walking on note blocks , and
falls onto the platform on the track .

The rows of donut blocks that Mario must endure at the end of this path ensures
that the player keeps the Goomba loaded on screen until it is on the global ground of
the platform , so that the counter value is correct.

DecNZ. Meanwhile, when the player enters the decrement path, they fall onto a P-switch
spawned from the the left blue pipe , activating the P-switch. (Note that Mario

now blocks spawns from the pipe, so no new P-switches will spawn. And even if the player
managed to fall into the hole exactly when the P-switch was spawning, since it is a 1-wide
hole, they can never pick up the P-switch, and only fall onto it or block spawns from the
pipe.)

This causes the bottom blue pipe , no longer being blocked from spawning, to spawn
a clown car . At the same time, falling into this hole is just far enough down to trigger
the Thwomp , which repeatedly charges downward onto the seesaw . This, in
turn, causes the opposite end of the seesaw to shoot up, launching the Goombas .

Though it usually takes a few seconds for all of this to line up, eventually this results in
the Goombas being shot up while the clown car is under them, causing one Goomba
to enter the clown car while the rest fall back onto the platform . Now that it is entered,
the clown car panics from touching spikes , and flies upward until it gets stuck between
the two one-ways at the top of the spike column. Figure 20b shows the separation of a
single Goomba and panicking of the clown car.

Now the player is free to jump up to the top tunnel of the decrement path, where they
can clear the long jump over the spikes by bouncing on the Goomba in the clown
car in the middle of the jump. If the player performs an illegal decrement from state 0,
then the clown car will never fly up because it never gets entered, and Mario will not be able
to clear the long jump over the spikes. ◀

MIT Hardness Group, H. Ani, E. D. Demaine, H. Hall, R. Ruiz, and N. Venkat 22:19

Inc

PZ

Inc

PZ

DecNZ

DecNZ

Figure 21 The complete Inc-DecNZ-PZ gadget for the 3D World game style of Super Mario
Maker 2.

The 3D world style of Super Mario Maker 2 has many different mechanics from that of
the four regular styles, and so requires a different construction to show that it is RE-hard.
See the full paper for details.

▶ Theorem 9. The Super Mario 3D World style of Super Mario Maker 2 is RE-complete.

Proof. Our gadget is presented in Figure 21. The details of this gadget are covered in the
full version of our paper. ◀

5 Open Problems

Of the 2D Mario Games released since New Super Mario Bros., we have shown that all
except for Super Mario Wonder are undecidable, and a natural open question is whether it
is too. There is evidence which suggests that it might be based on the presence of events
and infinitely spawning Goombas, but the game is still very new, and more research is
needed to understand the mechanics of the game well enough to make further claims about
undecidability.

There are also several older 2D Mario Games which have evidence that they might be able
to build counters. In particular, any game with a Lakitu has a way of generating unlimited
numbers of Spinies, Super Mario Bros. 3 and Super Mario World 2: Yoshi’s Island both have
enemies that can be generated from pipes, and Super Mario World has enemies generated by
falling from the sky. Can we use any of the mechanics in those games to build counters? If
any of these other games are not undecidable, it would also be noteworthy if we can obtain
any other upper bounds on their complexity.

Finally, we showed that all games considered here are hard in constant-size levels, but it is
not certain exactly what that constant is. We provided an explicit example of a single-screen
counter in New Super Mario Bros. Wii, but we can definitely compact it further if we want
to build the smallest possible universal counter machine. Furthermore, we can consider the
Super Mario Maker games and whether it is possible to build a universal counter machine
that fits inside of the standard constraint on level size.

FUN 2024

22:20 Undecidable Mario Games

References
1 Zachary Abel and Della Hendrickson. Baba is universal. In Proceedings of the 12th International

Conference on Fun with Algorithms (FUN 2024), pages 31:1–31:16, La Maddalena, Italy, June
2024.

2 Hayashi Ani. Unsimulability, universality, and undecidability in the gizmo framework. Master’s
thesis, Massachusetts Institute of Technology, 2023.

3 Hayashi Ani, Jeffrey Bosboom, Erik D. Demaine, Jenny Diomidova, Della Hendrickson, and
Jayson Lynch. Walking through doors is hard, even without staircases: Proving PSPACE-
hardness via planar assemblies of door gadgets. In Proceedings of the 10th International
Conference on Fun with Algorithms (FUN 2020), pages 3:1–3:23, La Maddalena, Italy, Septem-
ber 2020.

4 Hayashi Ani, Lily Chung, Erik D. Demaine, Jenny Diomidova, Della Hendrickson, and
Jayson Lynch. Pushing blocks via checkable gadgets: PSPACE-completeness of Push-1F and
Block/Box Dude. In Proceedings of the 11th International Conference on Fun with Algorithms
(FUN 2022), pages 2:1–2:30, Favignana, Italy, May–June 2022.

5 Hayashi Ani, Erik D. Demaine, Jenny Diomidova, Della Hendrickson, and Jayson Lynch.
Traversability, reconfiguration, and reachability in the gadget framework. In Proceedings of the
16th International Conference and Workshops on Algorithms and Computation (WALCOM
2022), volume 13174 of Lecture Notes in Computer Science, pages 47–58, Jember, Indonesia,
March 2022.

6 Hayashi Ani, Erik D. Demaine, Della Hendrickson, and Jayson Lynch. Trains, games, and
complexity: 0/1/2-player motion planning through input/output gadgets. In Proceedings of
the 16th International Conference and Workshops on Algorithms and Computation (WALCOM
2022), volume 13174 of Lecture Notes in Computer Science, pages 187–198, Jember, Indonesia,
March 2022.

7 Erik D. Demaine, Isaac Grosof, Jayson Lynch, and Mikhail Rudoy. Computational complexity
of motion planning of a robot through simple gadgets. In Proceedings of the 9th International
Conference on Fun with Algorithms (FUN 2018), pages 18:1–18:21, La Maddalena, Italy, June
2018.

8 Erik D. Demaine, Della Hendrickson, and Jayson Lynch. Toward a general theory of motion
planning complexity: Characterizing which gadgets make games hard. In Proceedings of
the 11th Conference on Innovations in Theoretical Computer Science (ITCS 2020), pages
62:1–62:42, Seattle, Washington, January 12–14 2020.

9 flamewizzy21. “Don’t leave me!” — Guide to global loading. Reddit post, Janu-
ary 2020. URL: https://www.reddit.com/r/MarioMaker/comments/eobdmj/dont_leave_me_
guide_to_global_loading/.

10 Linus Hamilton. Braid is undecidable. arXiv:1412.0784, 2014. URL: http://arxiv.org/abs/
1412.0784, arXiv:1412.0784.

11 Della Hendrickson. Gadgets and gizmos: A formal model of simulation in the gadget framework
for motion planning. Master’s thesis, Massachusetts Institute of Technology, 2021.

12 Erik Kain. ‘Braid’ is a postmodern Super Mario Bros. Forbes Games
blog, June 18 2012. URL: https://www.forbes.com/sites/erikkain/2012/06/18/
braid-is-a-postmodern-super-mario-bros/.

13 Ivan Korec. Small universal register machines. Theoretical Computer Science, 168(2):267–301,
1996. doi:10.1016/S0304-3975(96)00080-1.

14 Jayson Lynch. A framework for proving the computational intractability of motion planning
problems. PhD thesis, Massachusetts Institute of Technology, 2020.

15 Marvin L. Minsky. Recursive unsolvability of Post’s problem of “Tag” and other topics
in theory of Turing machines. Annals of Mathematics, 74(3):437–455, 1961. URL: http:
//www.jstor.org/stable/1970290.

16 Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc., 1967.
17 MIT Hardness Group. Mario hardness gadgets. GitHub repository. URL: https://github.

com/65440-2023/mario-hardness-gadgets.

https://www.reddit.com/r/MarioMaker/comments/eobdmj/dont_leave_me_guide_to_global_loading/
https://www.reddit.com/r/MarioMaker/comments/eobdmj/dont_leave_me_guide_to_global_loading/
http://arxiv.org/abs/1412.0784
http://arxiv.org/abs/1412.0784
https://arxiv.org/abs/1412.0784
https://www.forbes.com/sites/erikkain/2012/06/18/braid-is-a-postmodern-super-mario-bros/
https://www.forbes.com/sites/erikkain/2012/06/18/braid-is-a-postmodern-super-mario-bros/
https://doi.org/10.1016/S0304-3975(96)00080-1
http://www.jstor.org/stable/1970290
http://www.jstor.org/stable/1970290
https://github.com/65440-2023/mario-hardness-gadgets
https://github.com/65440-2023/mario-hardness-gadgets

	1 Introduction
	2 Counter Gadgets
	2.1 Undecidable Gadgets via Counter Machines
	2.2 Inc-Dec-JZ is RE-complete
	2.3 Inc-JZDec is RE-complete
	2.4 Inc-DecNZ-PZ is RE-complete
	2.5 Inc[a,b]-DecNZ[c,d]-PZ, a > 0, c > 0 is RE-complete
	2.6 Constant-Size Levels

	3 New Super Mario Bros. Series
	3.1 Constant-Size New Super Mario Bros. Wii

	4 Super Mario Maker
	4.1 Super Mario Maker 1
	4.2 Super Mario Maker 2

	5 Open Problems

