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Abstract
We prove that Hamiltonicity in maximum-degree-3 grid graphs (directed or undirected) is ASP-
complete, i.e., it has a parsimonious reduction from every NP search problem (including a polynomial-
time bijection between solutions). As a consequence, given k Hamiltonian cycles, it is NP-complete
to find another; and counting Hamiltonian cycles is #P-complete. If we require the grid graph’s
vertices to form a full m × n rectangle, then we show that Hamiltonicity remains ASP-complete
if the edges are directed or if we allow removing some edges (whereas including all undirected
edges is known to be easy). These results enable us to develop a stronger “T-metacell” framework
for proving ASP-completeness of rectangular puzzles, which requires building just a single gadget
representing a degree-3 grid-graph vertex. We apply this general theory to prove ASP-completeness
of 37 pencil-and-paper puzzles where the goal is to draw a loop subject to given constraints: Slalom,
Onsen-meguri, Mejilink, Detour, Tapa-Like Loop, Kouchoku, Icelom; Masyu, Yajilin, Nagareru,
Castle Wall, Moon or Sun, Country Road, Geradeweg, Maxi Loop, Mid-loop, Balance Loop, Simple
Loop, Haisu, Reflect Link, Linesweeper; Vertex/Touch Slitherlink, Dotchi-Loop, Ovotovata, Building
Walk, Rail Pool, Disorderly Loop, Ant Mill, Koburin, Mukkonn Enn, Rassi Silai, (Crossing) Ichimaga,
Tapa, Canal View, and Aqre. The last 13 of these puzzles were not even known to be NP-hard.
Along the way, we prove ASP-completeness of some simple forms of Tree-Residue Vertex-Breaking
(TRVB), including planar multigraphs with degree-6 breakable vertices, or with degree-4 breakable
and degree-1 unbreakable vertices.
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1 Introduction

Hamiltonicity is one of the core NP-complete problems, used as the basis for countless NP-
hardness reductions. It accounts for two of Karp’s 21 NP-complete problems [22]: directed
and undirected Hamiltonian cycle. It has been shown to remain NP-complete for many
restricted graph classes: undirected maximum-degree-3 graphs [15], undirected bipartite
graphs [24], undirected 3-connected 3-regular bipartite graphs [2], undirected 2-connected
3-regular bipartite planar graphs [2], undirected 3-connected 3-regular planar graphs of
minimum face degree 5 [16], directed planar graphs with indegree and outdegree at most 2
and total degree at most 3 [29], and so on.

One of the most useful special cases of Hamiltonicity is (square) grid graphs: graphs
whose vertices are a subset of the 2D integer lattice, with an edge connecting two vertices
exactly when they have distance 1. Itai, Papadimitriou, and Szwarcfiter [19] proved that
Hamiltonicity is NP-complete in grid graphs. Papadimitriou and Vazirani [28] improved
this result by proving Hamiltonicity NP-complete in grid graphs of maximum degree 3.
Together, these results strengthen most of the special graph classes mentioned above (as grid
graphs are necessarily planar and bipartite), with a stronger geometric guarantee. Other
papers extend these results to other 2D grids [6, 10, 17]. Hamiltonicity in grid graphs is
the foundation for NP-hardness proofs of countless games and puzzles, from video games
[13, 9, 1] to pencil-and-paper puzzles [36, 3], as well as practical problems such as lawn
mowing and milling [5, 4].

But what about parsimonious reductions that preserve the number of solutions? A
particularly strong form of this notion is ASP-completeness: an NP search problem P is
ASP-complete [37] if there is a polynomial-time reduction from every NP search problem
Q to P along with a polynomial-time bijection converting every solution of P to a unique
solution of Q and vice versa. If P is ASP-complete, then the decision version of P is
NP-complete, counting solutions to P is #P-complete, and the k-ASP P problem – given
an instance of P and k solutions, find another solution – is NP-complete for any k ≥ 0 [37].

Only a few versions of Hamiltonicity are known to be ASP-complete, or weaker, #P-
complete. Liśkiewicz, Ogihara, and Toda [25] proved #P-completeness of Hamiltonicity in
undirected 3-regular planar graphs (based on [16]). Seta [30] proved ASP-completeness of
Hamiltonicity in undirected maximum-degree-3 planar graphs (based on [29]). Bosboom
et al. [8] proved ASP-completeness of Hamiltonicity in directed 3-regular (indegree 2 and
outdegree 1 or vice versa) planar graphs (based on [29]). But what about grid graphs?

1.1 Our Results
In this paper, we prove that Hamiltonicity in maximum-degree-3 grid graphs is ASP-complete.
Thus this popular problem can serve as a foundation for ASP-completeness proofs as well.
The same result holds for Hamiltonicity in directed maximum-degree-3 grid graphs, where
each edge has a specified direction. As mentioned above, grid graphs are bipartite and
planar, so these results roughly strengthen the ASP-completeness results mentioned above,
except that we can guarantee “maximum-degree-3” but not “3-regular”. (No grid graphs
are 3-regular; consider the top-left corner. Furthermore, undirected 3-regular graphs have
an even number of Hamiltonian cycles by Smith’s Theorem [34], so we cannot hope for
ASP-completeness in this case: the 1-ASP decision problem is trivial, while the 1-ASP
construction problem is in PPA [27].)

The basis for this result is another form of Hamiltonicity called Tree-Residue Vertex-
Breaking (TRVB) [11], previously used to analyze Hamiltonicity in grid graphs [10]. In
TRVB, we are given a graph where some vertices are breakable, and the goal is to break
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Rectangular Max-degree-3 spanning
subgraph of rectangular Max-degree-3

Undirected P [19] ASP-complete [§4.2] ASP-complete [§4.3]

Directed ASP-complete [§4.1] ASP-complete [§4.2] ASP-complete [§4.3]

Table 1 Complexity of Hamiltonicity in various types of grid graphs. Each cell shows an example
of a Hamiltonian graph of the specified type, with a darkened Hamiltonian cycle. The first and third
column concern true grid graphs, where there is an edge between each pair of vertices at distance 1.
In the first and second columns, the vertices form exactly an m × n rectangle, whereas the third
column allows an induced subgraph of a rectangular grid graph. The middle column concerns graphs
constructed from a rectangular grid graph by removing some edges (but no vertices) so that each
vertex has degree at most 3. The second and third columns have maximum degree 3.

a subset of the breakable vertices – replacing each broken degree-k vertex with k degree-1
vertices – to make the graph into a tree. This problem has a known characterization of
what degrees of breakable or unbreakable vertices make the problem polynomial vs. NP-
complete [11]. We prove that several forms of TRVB are in fact ASP-complete, including
planar multigraphs with degree-6 breakable vertices, and planar multigraphs with degree-4
breakable and degree-1 unbreakable vertices.

We also study even more geometric forms of grid-graph Hamiltonicity. Suppose instead
of allowing an arbitrary set of vertices on the square grid, we require the vertex set to be an
entire m×n rectangle of integer points. Such graphs are known as rectangular grid graphs
[19]. In this case, undirected Hamiltonicity is known to be easy [19]. But we show that
directed Hamiltonicity in rectangular grid graphs is ASP-complete. Alternatively, if the graph
is undirected but we allow removing some edges (but not vertices) from the rectangular grid
– a spanning subgraph of a rectangular grid graph – then Hamiltonicity is also ASP-complete.
Table 1 summarizes these results.

Rectangular grid graphs are useful because many (if not most) pencil-and-paper puzzles
take place on a full rectangular grid. In particular, the T-metacell framework of Tang
[32] shows how NP-hardness for a pencil-and-paper puzzle often follows from building a
single gadget, essentially representing a degree-3 vertex that must be visited at least once.
In Section 5, we extend this framework to prove ASP-completeness as well. We also extend
the framework to allow for T-metacells where some exits are directed (usable in only one
direction) and up to one exit is forced (must be used). In some cases, we need to build more
than one T-metacell to handle different orientations of directions and/or forced edges.

Finally, in Section 6, we apply this framework to prove ASP-completeness of 37 pencil-
and-paper puzzles, listed in Table 2. Five of these results use the same reduction from [32],
while the remainder involve creating new T-metacell gadget(s). For thirteen of the analyzed
puzzles, even our NP-hardness result is new.

FUN 2024
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Table 2 Our results on pencil-and-paper puzzles. All ASP-completeness results are new; some
are via an existing reduction [32] and some are via a new reduction; and some puzzles were not even
known to be NP-hard. (Puzzles known to be NP-hard have corresponding citations).

Games # New ASP-
Hardness

New
Reduction

New NP-
Hardness

Slalom/Suraromu [21, 32], Onsen-meguri [32],
Mejilink [32], Detour [31, 32], Tapa-Like Loop
[32], Kouchoku [32], Icelom [32]

7 yes no no

Masyu [14, 32], Yajilin [18, 32], Nagareru [20,
32], Castle Wall [32], Moon or Sun [20, 32],
Country Road [18, 32], Geradeweg [32], Maxi
Loop [32], Mid-loop [32], Balance Loop [32],
Simple Loop [19, 32], Haisu [31, 32], Reflect
Link [32], Linesweeper [26]

14 yes yes no

Vertex/Touch Slitherlink, Dotchi-Loop,
Ovotovata, Building Walk, Rail Pool, Dis-
orderly Loop, Ant Mill, Koburin, Mukkonn
Enn, Rassi Silai, (Crossing) Ichimaga, Tapa,
Canal View, Aqre

16 yes yes yes

2 Connections Between Problems

We collect together some useful equivalences between problems on plane graphs, which are
variously present in the literature [12, 11].

▶ Definition 1 ([11]). The Tree-Residue Vertex-Breaking (TRVB) problem takes place
on an undirected multigraph with vertices marked as either “breakable” or “unbreakable”. The
goal is to break a subset S of the breakable vertices to leave a tree – to break a vertex of
degree d, replace it with d new leaves attached to its incident edges. In other words, the graph
obtained from G by subdividing every edge and deleting the vertices in S must be a tree.

▶ Definition 2 ([7, 12]). Given a plane multigraph, a kiki Euler tour is a cycle which
traverses every edge exactly once, such that any time the cycle enters a vertex via an edge e,
it leaves by an edge adjacent to e in the cyclic order.2

The following is a well-known result with a long history; see [33].

▶ Theorem 3. Every Eulerian plane graph where every face is a triangle, except possibly the
exterior face (a “near-triangulation”), has a proper vertex 3-coloring.

Let G be a connected 3-regular bipartite plane multigraph, and let G̃ be its plane dual. By
Theorem 3, G̃ is 3-colorable; equivalently it is possible to 3-color the faces of G so that
adjacent faces have different colors, where faces are regarded as adjacent if they share an
edge. Note that in such a 3-coloring, the three faces around a single vertex contain each
color exactly once.

2 This notion is one of two definitions of “nonintersecting” or “noncrossing Euler tour”. We avoid this
term to avoid confusion with the other definition, where an Euler tour is has a crossing if there are
four edges e, e′, f, f ′ adjacent to a single vertex so that e′ follows e and f ′ follows f in the tour, and
{e, e′} alternates with {f, f ′} in the cyclic order [33]. Noncrossing Euler tours in this sense always exist,
whereas kiki is a stricter condition.
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(a) Face 3-coloring of G. (b) Assignment of colors with
blue and white connected.

(c) Cycle containing blue faces
and not white faces.

(d) Directed graph G1. (e) Kiki Euler tour of G2. (f) Tree-Residue Vertex-
Breaking of G3.

Figure 1 Illustration of Lemma 4.

Let us fix such a coloring using the colors {white, blue, yellow} such that the exterior
face is colored white. Define the following graphs:

G1 is the directed plane multigraph obtained from G by orienting every blue face clockwise
and every white face counterclockwise. This fully determines the orientation.
G2 is the plane multigraph obtained from G by contracting every yellow face to a single
vertex.
G3 is the subgraph of G̃ induced by the non-white vertices.

▶ Lemma 4. There are bijections between the following sets:
(i) Assignments of colors {white, blue} to each yellow vertex of G̃ such that the white

induced subgraph is connected and the blue induced subgraph is also connected.
(ii) Hamiltonian cycles of G which contain all blue faces and no white faces.
(iii) Hamiltonian cycles of G which use every edge separating white faces from blue faces.

FUN 2024
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(i) (ii) (iii)

(iv)

(v)(vi)

Figure 2 The bijections we define for Lemma 4.

(iv) Directed Hamiltonian cycles of G1.
(v) Kiki Euler tours of G2.
(vi) Tree-Residue Vertex-Breakings of G3, where yellow vertices are breakable and blue

vertices are unbreakable.

Proof. Refer to Figure 1. We give explicit transformations between the sets; it can be
checked that these transformations invert each other as needed. Figure 2 summarizes the
transformations we describe, which form a strongly connected graph.

(i) → (ii): Consider an assignment of colors to faces of G. For each vertex, two of the faces
around it are one color and the third is the other color, so exactly two edges incident to
it separate blue from white. The set of all edges separating blue from white thus forms a
collection of cycles visiting each vertex once.
We claim that this is actually a single cycle. If it were multiple cycles, they would divide
the plane into more than two regions. Two of those regions must be the same color (blue
or white), violating the assumption that each color is connected.
So we have a Hamiltonian cycle separating blue from white, and since the exterior face is
white, it contains all blue faces and no white faces of G.

(ii) → (i): Given a cycle, assign blue to exactly the faces it contains. Since the cycle is
Hamiltonian, it does not intersect itself, so the blue faces are connected and the white
faces are connected.

(ii) → (iii): If C contains all blue faces and no white faces, then it must use every edge
separating white from blue.

(iii) → (iv): If C is a cycle on G1 which uses every edge separating white from blue, then
at each individual vertex it is impossible for C to reverse directions; thus it is always
consistent with the orientations, so it is a directed Hamiltonian cycle.

(iv) → (ii): Suppose C is a directed Hamiltonian cycle of G1. Since C visits every vertex, it
contains at least one edge of every face. Because C contains an edge of the exterior face
its orientation must be consistently clockwise. Therefore C it encounters every blue face
on its right side and every white face on the left, meaning it contains every blue face and
does not contain any white faces.

(iii) → (v): The edges separating white and blue faces are exactly the edges of G3 remaining
after contracting the yellow faces. Let C be a Hamiltonian cycle of G containing every
white-blue edge, and let C ′ be the Euler tour of G3 obtained from C by the contraction.
It must be the case that C contains exactly half of the edges incident to each yellow face,
each of which connects two adjacent white-blue edges; so C ′ is kiki.

(v) → (iii): Suppose C ′ is a kiki Euler tour of G3. Let C be the set of edges of G consisting
of all white-blue edges, together with those that connect consecutive edges in C ′; then C

is a Hamiltonian cycle of G containing every white-blue edge.
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(ii) → (vi): Note that G3 does not have any edges between two breakable vertices, so
breaking a vertex is equivalent to removing it and all incident edges. Thus TRVB
becomes “find an induced subgraph of G3 containing all unbreakable vertices which is a
tree”.
Given a cycle C, break all yellow vertices which are outside C, or equivalently take the
induced subgraph on vertices inside C. This subgraph is clearly connected. If it has a
cycle, there is a face of G̃ inside that cycle, which corresponds to a vertex v of G. Then v

is strictly inside C. But v must touch a white face, contradicting the fact that all white
faces are outside C. Hence the induced subgraph on vertices inside C is a tree.

(vi) → (ii): Take C to be the boundary of the tree containing blue faces and nonbroken
yellow faces. Then C is a cycle because it bounds a tree, its interior contains all blue
faces (which cannot be broken) and no white faces (which are not present in G3. Finally,
C is Hamiltonian because every vertex is incident to an edge separating blue from white,
which must be in C. ◀

Furthermore, given any of the graphs Gi, equivalents to the others can be obtained by
analogous transformations. So these various problems can be regarded as equivalent.

An important special case of TRVB is when every breakable vertex has degree at most 3.
For planar graphs this condition is equivalent to requiring that every yellow face of the graph
G in the preceding discussion is a digon or triangle; it is also equivalent to kiki Euler tour with
vertices of degree at most 6. In this case, the problem can be solved in polynomial time by
reducing it to a matroid parity problem.[12][11] In the next section we will discuss breakable
vertices with higher degrees, with which the problem turns out to be ASP-complete.

3 ASP-Completeness of Tree-Residue Vertex-Breaking

Demaine and Rudoy [11] prove several NP-hardness results for TRVB using reductions
from finding Hamiltonian cycles on a max-degree-3 planar directed graph. At the time,
this Hamiltonian cycle problem was not known ASP-complete, so they did not consider
ASP-completeness.

More recently, Bosboom et al. [8] showed that finding Hamiltonian cycles on a directed
max-degree-3 planar graph is ASP-complete, using a reduction from positive 1-in-3SAT.

Several of the reductions used by Demaine and Rudoy [11] are easily verified to be
parsimonious, proving ASP-completeness. We are specifically interested in the results of
Section 4, on planar ({k}, {4})-TRVB.

They first reduce finding Hamiltonian cycles on a max-degree-3 planar directed graph to
finding Hamiltonian cycles on a planar graph where all vertices have indegree and outdegree 2
and vertices have their two in-edges and their two out-edges adjacent in the planar embedding.
This last condition is called non-alternating, because vertices are not allowed to alternate
in-edges and out-edges. The reduction is by contracting forced edges, and is straightforwardly
parsimonious.

▶ Theorem 5. Finding Hamiltonian cycles on non-alternating indegree-2 outdegree-2 planar
graphs is ASP-complete.

Next, Demaine and Rudoy reduce this problem to a version of Tree-Residue Vertex-
Breaking. Specifically, Demaine and Rudoy [11] prove NP-hardness of TRVB on a planar
graph where each unbreakable vertex has degree 4 and each breakable vertex has degree k,
for any constant k ≥ 4. This is planar ({k}, {4})-Tree-Residue Vertex-Breaking. This
reduction is a bit more complicated (see Section 4.2 and in particular Figures 11 through 13

FUN 2024
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Figure 3 Simulating a degree-4 unbreakable
vertex using degree-4 breakable vertices (white)
and degree-1 unbreakable vertices (black).

Figure 4 Simulating a degree-4 unbreakable
vertex using degree-6 breakable vertices.

of [11]) but it is again parsimonious; indeed, [11, Lemmas 4.14 and 4.15] show that there
is a bijection between Hamiltonian cycles in the input problem and solutions to the TRVB
instance.

▶ Theorem 6. Planar ({k}, {4})-TRVB is ASP-complete, for each k ≥ 4.

To further simplify our reductions, we will use a slightly simpler version of TRVB: degree-4
breakable vertices and degree-1 unbreakable vertices.

▶ Theorem 7. Planar ({4}, {1})-TRVB is ASP-complete.

Proof. It suffices to parsimoniously simulate a degree-4 unbreakable vertex. Such a simulation
is shown in Figure 3. No vertex in the simulation can be broken in a solution to TRVB. ◀

▶ Theorem 8. Planar ({6}, ∅)-TRVB is ASP-complete.

Proof. It again suffices to simulate a degree-4 breakable vertex. Such a simulation is shown
in Figure 4. If the top vertex is not broken, both others must be broken, disconnecting the
middle edge. So the top vertex must be broken, and then the other two vertices must not
be. ◀

4 Hamiltonian Cycles in Grid Graphs

In this section, we prove ASP-completeness of finding Hamiltonian cycles in several natural
classes of grid graphs. We begin by defining the types of graph that appear in our results.

▶ Definition 9. A grid graph is an induced subgraph of the square lattice. That is, its
vertices are a subset of Z2, and it has an edge between each pair of vertices at distance 1. In
a directed grid graph, each edge has a direction, so there is exactly one edge between each
pair of vertices at distance 1.

▶ Definition 10. A rectangular grid graph is one whose vertex set consists of all lattice
points within a rectangle.

▶ Definition 11. A graph is max-degree-3 if each of its vertices have degree at most 3.

▶ Definition 12. A spanning subgraph of G is a subgraph of G which contains all of the
vertices (and some subset of the edges) of G.
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Figure 5 An example showing how reductions from TRVB to Hamiltonian cycle work.

Note that grid graphs contain all possible edges: graphs that contain only some of the
edges are (spanning) subgraphs of grid graphs.

We consider three types of graph for each of undirected and undirected. Our results are
summarized in Table 1.

Most of our ASP-completeness results are by reductions from planar ({4}, {1})-TRVB,
and use the same core idea illustrated in Figure 5. This is a breakable degree-8 vertex,
with the yellow square in the middle representing the vertex itself and the blue tentacles
representing edges. We replace every vertex in the TRVB instance with a vertex like the one
shown, and connect the tentacles of adjacent vertices. By Lemma 4, Hamiltonian cycles of
the resulting graph correspond to solutions of the original TRVB instance.

This idea works equally well for directed and undirected graphs. To apply this idea to
each of the five types of graph we prove ASP-completeness for, we need to show how to draw
gadgets for degree-4 breakable and degree-1 unbreakable vertices in that type of graph, while
ensuring that the tentacles representing edges do not interfere with each other.

4.1 Rectangular Grid Graphs
▶ Theorem 13 ([19]). Finding Hamiltonian cycles on an undirected rectangular grid graph
is in P.

▶ Theorem 14. Finding Hamiltonian cycles on a directed rectangular grid graph is ASP-
complete.

Proof. We first consider directed grid graphs, and later fill in holes to make them rectangular.
Everything we need for this is shown in Figure 6. The yellow rectangles are degree-4 breakable
vertices with exactly two local solutions, and the dead end in the bottom left is a degree-1
unbreakable vertex. As before, blue is inside the loop and yellow might be inside the loop
depending on the choice made for a vertex gadget. If we ignore the gray edges, this is
essentially the same as Figure 5.

We just need to ensure that gray edges cannot be used, which we can do by orienting
them carefully. Ignoring the H-shaped construction in the center for the moment, each black
edge is either the only edge pointing towards or the only edge pointing away from some vertex
(depending on which side of the tentacle it’s on), and thus must be used in a Hamiltonian

FUN 2024
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Figure 6 TRVB gadgets for directed grid graphs, showing two breakable degree-4 vertices
connected by an edge and an unbreakable degree-1 vertex.

cycle. We call such an edge forced. Each gray edge (still ignoring the H) shares either
its source or its target with a black edge, and thus cannot be used. We call such an edge
unusable.

This requires the orientation of the gray edges relative to a tentacle to be different on the
two ends of the tentacle, which is what the H achieves: one can verify by repeatedly finding
forced edges and deleting unusuable edges that any Hamiltonian cycle must use all black
edges and no gray edges in the H. Each tentacle representing an edge between two degree-4
breakable vertices will have such an H.

This reduction proves a weaker version of the theorem: Finding Hamiltonian cycles on a
directed grid graph is ASP-complete. It remains to fill all of the unused space to make a
rectangular grid graph.

If we place each vertex gadget, H, and turn on the same parity, the construction lies
neatly on a 2 × 2 grid, and in particular the holes are made of 2 × 2 squares. Figure 6
indicates these squares in green. In addition, in each hole at least one of these squares is
adjacent to a forced edge: all black edges except a few in each H are forced,3 and each hole is
adjacent to a non-H section of tentacle provided we do not use any extremely short tentacles.

Pick one such 2 × 2 square, and add four new vertices to fill it. Assume that the adjacent
forced edge is the only outgoing edge from its source; the case where it is the only edge
pointing towards its target is similar but with directions reversed. This situation is illustrated
in Figure 7 (left), with the forced edge in blue. Now reverse the forced edge, and add new
edges as shown on the right of Figure 7 (omitting any edges between a vertex in the square
and a vertex outside it which doesn’t yet exist). It is straightforward to check that all gray
edges are unusable, so any Hamiltonian cycle must follow the blue path, which is equivalent
to the original forced edge but consumes the added vertices.

3 They all become forced after deleting some unusable edges, but it’s simpler to argue that hole filling
works with directly forced edges.
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Figure 7 Filling holes in a directed rectangular grid graph.

Figure 8 Figure 6 after some hole filling.

Filling this small portion of hole preserves the fact that every hole has a 2 × 2 square
adjacent to a forced edge, since the three relevant blue edges are forced. Thus we can repeat
this process until all holes are filled, ultimately filling each hole with paths that outline a
spanning forest of the 2 × 2 squares. Figure 8 shows what this looks like after filling (the
visible portion of) the top middle hole in Figure 6.

The result is a directed rectangular grid graph which is equivalent to the original directed
grid graph for the purposes of Hamiltonian cycles. Hence Hamiltonian cycles in the final
graph correspond to solutions to the instance of TRVB. ◀

4.2 Max-Degree-3 Spanning Subgraphs of Rectangular Grid Graphs
▶ Theorem 15. Let G be a directed max-degree-3 spanning subgraph of a rectangular grid
graph. Consider the promise problem of finding an undirected Hamiltonian cycle on G,
subject to the promise that all such cycles respect the given edge directions; that is, they would
also be valid directed Hamiltonian cycles of G. This promise problem is ASP-complete.

Proof. We modify the construction from Theorem 14 by simply removing all of the gray
edges. Inspection of Figure 8 reveals that every vertex is incident to at most three non-gray
edges: vertices along tentacles have two forced edges, and vertices in degree-4 vertex gadgets
have one forced edge and two optional red edges. Filling holes preserves the non-gray degree
of existing vertices and adds vertices with two non-gray edges.

FUN 2024
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Figure 9 Figure 8 after removing gray edges.

Figure 10 Figure 9 after forgetting directions of edges.

In the previous proofs, all of the possible solutions only used non-gray edges. Thus, we
can adapt the previous reduction by simply deleting all gray edges, obtaining a directed
max-degree-3 spanning subgraph of a rectangular grid graph. For instance, doing this to
Figure 8 yields Figure 9, which also has the advantage of being easier to read.

By the proof of Lemma 4, directed Hamiltonian cycles on G are the same as undirected
Hamiltonian cycles on G, and the set of such cycles is in bijection with solutions of the
original TRVB instance. ◀

▶ Corollary 16. Finding Hamiltonian cycles on a directed max-degree-3 spanning subgraph
of a rectangular grid graph is ASP-complete.
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Figure 11 A breakable degree-6 TRVB vertex gadget for undirected max-degree-3 spanning
subgraphs of rectangular grid graphs.

Proof. This is a special case of Theorem 15. ◀

In the undirected case, we can strengthen the assumption about forced edges. For
undirected graphs, an edge is forced if it is incident to a degree-2 vertex, since both edges
incident to such a vertex must be used in any Hamiltonian cycle. A degree-3 vertex in a
subgraph of a grid graph has two edges in opposite directions, which we call side edges, and
a third edge between them, which we call the center edge. In this case, we can assume not
only that each degree-3 vertex has a forced edge, but that this forced edge is a side edge,
further reducing the number of distinct vertices we need to simulate for an application.

▶ Theorem 17. Finding Hamiltonian cycles on an undirected max-degree-3 spanning subgraph
of a rectangular grid graph is ASP-complete, even when every degree-3 vertex has a forced
side edge.

Proof. We are not able to directly build breakable degree-4 TRVB vertices under these
constraints. However, we are able to build a breakable degree-6 vertex, so we reduce from
planar ({6}, ∅)-TRVB, which was shown ASP-complete in Theorem 8.

Our breakable degree-6 vertex gadget is shown in Figure 11. Black edges are forced, and
red edges are optional. Note that vertices in tentacles all have degree 2, and each degree-3
vertex inside the vertex gadget has a forced side edge. This is equivalent to the cycle of red
edges turning at every vertex. The vertex gadget has exactly two local solutions, which each
use alternating red edges.

As before, blue tentacles are inside the cycle, and the yellow region is inside the cycle
in one of the local solutions, corresponding to not breaking the TRVB vertex. We have
new color as well: the green squares are inside the cycle in the other solution, when the
TRVB vertex is broken. It is clear by inspection that the yellow local solution connects all
six tentacles, and the green local solution disconnects them all.

Finally, we connect vertex gadgets along tentacles and fill holes in exactly the same way
as before. Filling holes uses only degree-2 vertices, so it does not introduce degree-3 vertices
without forced side edges. ◀
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Figure 12 A breakable degree-4 TRVB vertex
gadget for undirected max-degree-3 grid graphs. Re-
moving the vertices highlighted in white gives an
unbreakable degree-4 vertex gadget.

Figure 13 A breakable degree-4 TRVB
vertex gadget for directed max-degree-3
grid graphs.

4.3 Max-Degree-3 Grid Graphs
▶ Theorem 18. Finding Hamiltonian cycles on an undirected max-degree-3 grid graph is
ASP-complete, even when every vertex has a forced edge.

Proof. This proof is sketched, and its key gadget is shown, by Demaine and Rudoy [11], but
at the time TRVB was not known to be ASP-complete, so it was purely a simpler proof of
NP-hardness used to motivate the usefulness of TRVB.

Like most of our other proofs, we reduce from planar ({4}, {1})-TRVB. Our breakable
degree-4 vertex gadget is shown in Figure 12. The main difficulty in this case is that we
need the paths on each side of a tentacle to be separated by distance at least 2, so that the
cycle cannot cross between the two sides (and all tentacle edges are forced). As usual, black
edges are forced, and there are exactly two solutions which each use alternating red edges.
One solution puts the green region inside the cycle, and one puts the yellow region inside the
cycle, corresponding to breaking and not breaking the vertex, respectively.

A degree-1 unbreakable vertex can be made by simply “capping off” a tentacle. Alternat-
ively, we could reduce from ({4}, {4})-TRVB, and construct a degree-4 unbreakable vertex
gadget by removing the vertices highlighted in white from Figure 12. ◀

▶ Theorem 19. Finding Hamiltonian cycles on a directed max-degree-3 grid graph is ASP-
complete, even when every vertex has a forced edge.

Proof. The proof is extremely similar to the previous proof. We again reduce from ({4}, {1})-
TRVB. Our degree-4 breakable vertex gadget is shown in Figure 13, and a degree-1 unbreak-
able vertex can again be made by capping off a tentacle. Black edges are forced and gray
edges are unusable. We again keep the sides of a tentacle apart from each other (away from
vertex gadgets) so that a cycle cannot leak between them.

As before, there are exactly two solutions to the vertex gadget, one of which put the
yellow square inside the cycle corresponding to leaving the TRVB vertex unbroken. ◀

5 T-Metacells

Many puzzle genres which involve drawing a single loop are proven hard using reductions
from various forms of grid graph Hamiltonicity. Tang [32] described a simple “T-metacell”
framework for proving NP-hardness of these puzzles using grid graph Hamiltonicity. A
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T-metacell is a gadget which represents a single degree-3 vertex in a grid graph. Each
T-metacell is a (usually square) tile with 3 exits (on 3 of the 4 sides) such that the loop
may traverse the gadget between any pair of exits. The gadget should be reflectable and
rotatable, and the loop may travel between adjacent T-metacells only when both have exits
along their shared border. Finally, the loop must be required to visit every T-metacell.

It’s straightforward to see how T-metacells can simulate degree-3 vertices in a Hamilton-
icity reduction; Tang showed that they can also simulate degree-2 vertices. Let G be a
subgraph of a grid graph in which every vertex has degree 2 or 3. Degree-3 vertices of G can
be replaced directly with T-metacells. To handle degree-2 vertices, consider the graph H on
the same vertex set as G which has an edge between two lattice-adjacent vertices precisely
when G is missing that edge. Then H consists of degree-1 and degree-2 vertices. Orient the
edges of H into directed paths and cycles such that each vertex has a maximum indegree
and outdegree of 1. Each degree-2 vertex of G can now be replaced by a T-metacell with its
extra edge facing in the direction of the outward-pointing edge from that vertex in H. This
ensures that this extra exit will always be facing a non-exit in the adjacent cell, so only the
intended edges of G may be used by the loop.

We apply our results from Section 4 to show that solving T-metacell problems is ASP-
complete, instead of just NP-hard. We extend the framework to allow for some exits of a
T-metacell to be directed, meaning that the loop must have a consistent orientation which
agree with the directions of the exits it uses. We also allow for T-metacells to have one forced
exit through which the loop must pass. Note that when all three exits are directed, these
necessarily create a forced exit: there must be either a lone exit directed inwards or a lone
exit directed outwards, which in either case must be chosen. T-metacells with forced edges
can be classified into two categories: symmetric and asymmetric. A symmetric T-metacell
has its two unforced edges directly opposite each other, while an asymmetric T-metacell has
its two unforced edges adjacent. We use this classification to reduce the number of distinct
gadgets which need to be constructed to apply the framework.

▶ Corollary 20. Finding Hamiltonian cycles on a rectangular grid of undirected T-metacells
is ASP-complete.

Proof. We reduce from finding Hamiltonian cycles on max-degree-3 spanning subgraphs of
rectangular grid graphs (Theorem 17). Replace each vertex with a undirected T-metacell,
handling degree-2 vertices as described above. ◀

▶ Corollary 21. Finding Hamiltonian cycles on a rectangular grid of required-edge directed
T-metacells is ASP-complete.

Proof. We reduce from finding Hamiltonian cycles on directed max-degree-3 spanning
subgraphs of rectangular grid graphs (Corollary 16). Place a T-metacell for each degree-3
vertex, and handle degree-2 vertices in the same way as above. The direction of the unusable
edge on a T-metacell at a degree-2 vertex can be arbitrary. ◀

▶ Corollary 22. Finding Hamiltonian cycles on a rectangular grid of asymmetric required-edge
undirected T-metacells is ASP-complete.

Proof. In the proof of Theorem 17, every degree-3 vertex conveniently has a forced side
edge, which is equivalent to being a asymmetric undirected T-metacell. Degree-2 vertices
require a bit more care, but are not an obstruction: after deciding how to orient T-metacells
as described above, note that for each degree-2 vertex, at least one of its edges is a side edge
of the T-metacell. So we can simply place a T-metacell with that side edge forced. ◀
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▶ Corollary 23. Finding Hamiltonian cycles on a rectangular grid of required-edge directed
asymmetric T-metacells and required-edge undirected symmetric T-metacells is ASP-complete.

Proof. We reduce from the promise problem of finding a Hamiltonian cycle of a directed
max-degree-3 spanning subgraph of a rectangular grid graph, with the promise that every
undirected Hamiltonian cycle is a valid directed Hamiltonian cycle (Theorem 15). We
perform the same replacement of vertices with T-metacells as in Corollary 21, except that
the symmetric T-metacells are undirected. We claim that Hamiltonian cycles of the original
graph are in bijection with solutions to the T-metacell instance. A directed Hamiltonian cycle
of the original graph clearly solves the T-metacell instance, since it correctly passes through
the directions on the directed T-metacells. On the other hand, a solution to the T-metacell
instance is necessarily an undirected Hamiltonian cycle of the original graph; by the promise,
directed Hamiltonian cycles and undirected Hamiltonian cycles are the same. ◀

6 Applications

We apply our improved T-metacell framework to a variety of pencil-and-paper logic puzzles
implemented by the online puzzle-solving interface “puzz.link” [23]. This web resource
implements more than 240 different logic puzzles. It includes most genres published by the
Japanese publisher Nikoli, whose puzzles have a long history of analysis from a computational
complexity perspective [30] [37] [3] [35] [26] [32], as well as many others in a similar style.

We improve existing NP-hardness results for pencil-and-paper logic puzzles to ASP-
completeness, and give new ASP-completeness results. Many of the ASP-completeness proofs
consist of just a single T-metacell, demonstrating the ease of applying the framework for
proving ASP-completeness. The main additional requirement when designing a T-metacell
gadget for ASP-completeness proofs is that it be “parsimonious”: for each pair of exits, there
must be a unique local solution where the loop passes through those exits.

Full explanations for each proof can be found in the full version of this paper; due to
space constraints, we present an abridged gallery of reductions here.

Figure 14 shows the gadgets for improving prior NP-hardness results to ASP-completeness,
most of which consist of minor adjustments to existing T-metacells in [32] to ensure parsimony.
We also make similar improvements for Yajilin, Moon and Sun, and Simple Loop via direct
reductions from Hamiltonicity.

Figure 15 shows the gadgets for new NP- and ASP-completeness reuslts. We also
give similar results for Dotchi Loop, Ovotovata, and Koburin via direct reductions from
Hamiltonicity.

Finally, some puzzle genres were proved NP-complete by Tang, but we have not yet found
parsimonious adaptations of the corresponding T-metacells. These genres are Angle Loop,
Double Back, Scrin, Icebarn, and Icelom 2.
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