
Coordinating “7 Billion Humans” Is Hard
Alessandro Panconesi #

Sapienza University of Rome, Italy

Pietro Maria Posta #

Sapienza University of Rome, Italy

Mirko Giacchini #

Sapienza University of Rome, Italy

Abstract
In the video game “7 Billion Humans”, the player is requested to direct a group of workers to various
destinations by writing a program that is executed simultaneously on each worker. While the game
is quite rich and, indeed, it is considered one of the best games for beginners to learn the basics of
programming, we show that even extremely simple versions are already NP-Hard or PSPACE-Hard.

2012 ACM Subject Classification Theory of computation → Complexity classes

Keywords and phrases video games, computational complexity, NP, PSPACE

Digital Object Identifier 10.4230/LIPIcs.FUN.2024.26

1 Introduction

In a world where robots have occupied every possible job position, humans are finally free to
dedicate themselves to their favourite pastimes. However, in this utopian world, the work
ethic of yesteryear reigns supreme and the only thing humans desire is good-paying jobs. To
appease them, the robots construct one colossal building, so colossal to be visible from outer
space, and hire all 7 billion humans living on Earth as well-paid white-collar workers. Now,
robots are faced with the challenge of coordinating the human workforce to keep them all
constantly entertained.

It is in such a world that “7 Billion Humans” takes place. Released in 2018 as the
successor of “Human Resource Machine”, “7 Billion Humans” is a puzzle video game praised
by tech reviewers as one of the best games to learn the basics of programming [16, 17, 18].
The player, who takes on the role of the robots in the story, must coordinate a group of
workers by specifying their actions by means of an ad-hoc programming language. While
the programming language in the game is quite rich, also containing “if” statements and
“go-to” commands, in this paper, we will focus on the core mechanic of the game: moving
the workers. In particular, the goal is to move the workers into an accepted configuration
by writing a program that is executed simultaneously by each one of them. While moving,
the workers will have to navigate through walls, desks, plants, and other objects that block
their movement, as well as holes where workers can fall through. This extremely limited set
of commands and objects constitutes the core of the game since they appear in essentially
all the game levels. Even under these limitations, we show that the player (and hence the
robots) will have a hard time coordinating the humans.

Our work falls within the rich area of video-game computational complexity. In recent
years, several extremely popular video games have been proven to be NP-Hard or PSPACE-
Hard, such as Super Mario Bros. and other Nintendo games [3, 6], Portal and several other
3D games [5], Trainyard [1, 2], Candy Crush [9], and many others [10, 14].

Let us now describe the game “7 Billion Humans” and our contributions.
© Alessandro Panconesi, Pietro Maria Posta, and Mirko Giacchini;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Fun with Algorithms (FUN 2024).
Editors: Andrei Z. Broder and Tami Tamir; Article No. 26; pp. 26:1–26:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ale@di.uniroma1.it
https://orcid.org/0000-0002-2169-3067
mailto:posta.1966929@studenti.uniroma1.it
https://orcid.org/0009-0004-2997-5538
mailto:giacchini@di.uniroma1.it
https://orcid.org/0009-0009-5704-098X
https://doi.org/10.4230/LIPIcs.FUN.2024.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Coordinating “7 Billion Humans” Is Hard

1.1 Our Contributions

A level of “7 Billion Humans” consists of a grid of cells containing workers and objects.
The player must write a program, which is executed by every worker simultaneously, in
order to satisfy the requests of the level designer. We consider only the most basic kind
of request: the workers must be moved from their starting configuration into an accepted
configuration. More precisely, some cells of the grid are accepting cells and to solve a level,
all the workers must be standing on an accepting cell after executing the program. There are
many commands at the disposal of the user to write the program, but we make use only of
the most basic one: step {direction}, which is used to move the workers (all at the same
time) by one cell in a given direction, which can be one of up, down, left, right, up-left,
up-right, down-left, or down-right. A cell can either be empty or contain an object.1 The
simplest type of objects are the walls and, as one might expect, stepping into a wall results
in a non-movement.2

We show in figure 1a an example of a level. We abbreviate the command to step in
one direction with u, d, l, r, (ul), (ur), (dl), (dr), and a sequence of steps in the same
direction using exponentiation (e.g., r4 instead of rrrr). For a generic finite alphabet Σ, we
denote with Σ∗ the set of all finite strings consisting of symbols of Σ. A program is therefore
represented as a string over the alphabet {u, d, l, r, (ul), (ur), (dl), (dr)}. For simplicity,
when a program π ∈ {u, d, l, r, (ul), (ur), (dl), (dr)}∗ solves a level, we also say that the
level accepts the string π.

: a wall : a hole : the starting cell of a worker : an accepting cell

(a) This level can be solved, for example, by the
program u2r3uru or by the program ru2r3ur. In-
stead, ruru does not solve the level because only one
worker reaches an accepting cell.

(b) This level can be solved by the program ru2r3ur.
Instead, the program u2r3uru does not work any-
more because one of the two workers would get stuck
in a hole.

Figure 1 Two examples of game levels. The level on the left contains only walls and empty cells,
while the one on the right also contains holes. We assume that the grids are surrounded by walls.

The decision problem that we consider is: given a level of “7 Billion Humans”, say if the
level is solvable or not. Since we included only the essential elements of the game, we call
this problem 7BH-Essential. We will show that even this extreme simplification is already
NP-Hard.

1 We can assume that workers start in empty cells and the accepting cells are all empty.
2 In the game there are also other obstacles, such as desks and plants: since they all act the same, we will

always talk about walls. Other workers also behave as obstacles if hit. However, this will never happen
in our reductions.

A. Panconesi, P. M. Posta, and M. Giacchini 26:3

▶ Theorem 1. It is NP-Hard to check if a given level of “7 Billion Humans” is solvable, even
using only walls, empty cells, and the step command. That is, 7BH-Essential is NP-Hard.

Holes are another common object in the game. When a worker steps on a cell containing a
hole, it gets stuck for the rest of the computation. Since our goal is to have each worker on
an accepting cell, even if a single worker steps on a hole, the level is lost. An example of a
level with holes is shown in figure 1b. We call 7BH-Holes the decision problem previously
described where we add holes in addition to the already mentioned elements. Adding holes
might make the problem more difficult, in fact, 7BH-Holes is PSPACE-Hard.

▶ Theorem 2. It is PSPACE-Complete to check if a given level of “7 Billion Humans”
containing only walls, holes, empty cells, and using only the step command, is solvable.
That is, 7BH-Holes is PSPACE-Complete.

The paper is organized as follows. In Section 2 we highlight some connections between
ours and other problems. In Sections 3 and 4 we prove our two main theorems and finally, in
Section 5, we discuss some final remarks.

2 Relations with other problems

In our reductions, the game level of “7 Billion Humans” will be divided into isolated sub-levels,
each containing a single worker. Then, to solve the level, all the sub-levels must be solved
simultaneously. Moreover, in our reductions, we will prevent diagonal movements: the only
admissible directions are right, left, up, and down. This special structure of the level can
be used to draw some relations with other problems.

2.1 Simultaneous Maze Solving
Each sub-level can be interpreted as a grid maze: the worker must find a path from its
starting position to one of the accepting cells,3 avoiding the holes and navigating through
the walls. Our results, then, entail that solving multiple mazes simultaneously is NP-Hard
(Theorem 1), or PSPACE-Hard if the mazes can contain holes (Theorem 2). The only other
work on the topic, to the best of our knowledge, is the one of Funke et al. [7], which, however,
studies very special mazes that are always solvable simultaneously.

2.2 Intersection Non-Emptiness
Each sub-level can also be interpreted as a deterministic finite automaton (DFA for short).
In particular, a sub-level w × h naturally translates into a DFA with at most w · h states
(corresponding to the cells), and with the transition function on the alphabet {u, d, l, r} that
simulates the behavior of the cells. Solving all the sub-levels is equivalent to finding a string
that is accepted by a set of DFAs: this is a fundamental problem in automata theory known
as Intersection Non-Emptiness Problem [4, 12, 15] and first shown to be PSPACE-Complete
by Kozen [11]. The structure of our DFAs is very special: the undirected transition graph,
excluding self-loops, is a subgraph of the w × h grid graph. Therefore, our Theorem 2 entails
that Intersection Non-Emptiness is PSPACE-Complete even with this class of automata.

3 Note that passing upon an accepting cell is not enough: each worker must be standing on an accepting
cell at the end of the sequence of moves.

FUN 2024

26:4 Coordinating “7 Billion Humans” Is Hard

To the best of our knowledge, given the strong restrictions that we have to make on
the DFAs, our results are not derivable from existing work. As an example, in the original
PSPACE-Hardness proof of Kozen [11], the standard construction of the DFAs contains
vertices having in-degree (|Q| + |Σ| + 1)3, where Q and Σ are the set of states and input
symbols of a Turing Machine, therefore, the in-degree is at least 27 and possibly much larger.
Instead, our DFAs have an in-degree of at most 8, considering self-loops. Moreover, in such
proof, the automata use several one-way transitions; instead, the transitions of our DFAs are
reversible (except for states associated with holes).

3 NP-Hardness of 7BH-Essential

In this section we prove Theorem 1. In particular, we show a polynomial-time reduction
from Positive 1-in-3-SAT, notoriously known to be NP-Hard (see, e.g., [8, page 259, problem
LO4]), to 7BH-Essential.

▶ Definition 3 (Positive 1-in-3-SAT). The input of Positive 1-in-3-SAT consists of n boolean
variables, x1, x2, . . . , xn, and a set of m clauses, each containing exactly three distinct positive
variables (i.e., there are no negated literals). The goal is to find a truth assignment to the
variables such that each clause contains exactly one true variable.

Fixed an instance of Positive 1-in-3-SAT, we make use of three types of gadgets: (i) the
diagonal gadget, to prevent diagonal movements, (ii) the assignment gadget that, intuitively,
allows assigning truth values to the variables, and (iii) one clause gadget for each clause, to
ensure that the truth assignment satisfies the original 1-in-3 formula. Each gadget will be
built with multiple independent sub-levels that must be solved simultaneously. The final
game level is obtained by stacking the sub-levels together and isolating them via walls.

4 5

1 2

3

Figure 2 The diagonal gadget, used to prevent diagonal movements, consists of five sub-levels:
for i ∈ {1, 2, 3, 4, 5}, the i-th sub-level contains only the worker and the accepting cell labeled with i.

The diagonal gadget is reported in figure 2. It consists of five sub-levels that we draw
together for brevity. In particular, for i ∈ {1, 2, 3, 4, 5}, the i-th sub-level contains only
the one worker and the one accepting cell labeled with i. Suppose the program contains a
diagonal movement (i.e., (ul), (ur), (dl), or (dr)), then, worker 3 would “overlap”4 with
another worker and it would become impossible to solve all the five sub-levels of the gadget
(indeed, once two workers are overlapped in different sub-levels having the same walls, it is
impossible to separate them).

3.1 Assignment Gadget
This gadget consists of four sub-levels, reported together in figure 3. For i ∈ {1, 2, 3, 4}, the
i-th sub-level contains only the i-th worker and the accepting cells labeled with i.

4 the workers are in different sub-levels, so they “overlap” if we imagine the sub-levels on top of each other

A. Panconesi, P. M. Posta, and M. Giacchini 26:5

3 4

1 2

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

T

T

T
F

F

F

xn

x1

x2

Figure 3 Assignment Gadget. It consists of four sub-levels, drawn together for brevity. In
particular, the i-th sub-level, for i ∈ {1, 2, 3, 4}, contains only the worker with label i on the left,
and only the accepting cells with label i on the right. The workers select the truth value of the
variables by moving up or down.

By using four sub-levels, the gadget ensures that the workers cannot hit the walls, indeed,
if that happened, two workers would overlap and at least one sub-level would become
unsolvable (e.g., using the program r5, workers 1 and 2 overlap, making it impossible for
them to simultaneously stand on an accepting cell). This property will be used in the clause
gadgets.

Since the accepting cells are at the right end of the sub-levels, the workers must pass
through all the variables, and select their truth values by moving up or down. Specifically,
when the workers are in correspondence with the variable xi (that is, when the workers are
in columns 4i + 1 and 4i + 2, assuming that the columns are numbered from left to right
starting with 0 on the left wall), moving up will set xi to true in all clauses while moving
down will set it to false. Intuitively, we can think that the workers will move via a program
of the form r4σ4

1r4 . . . σ4
nr4 with σi ∈ {u, d}, and σi determines the truth value of the i-th

variable (u = True, d = False).

▶ Remark. Note that the workers have more freedom of movement than what we would like.
For example, they can move left, and in correspondence with a variable, they can move up
and down multiple times before going right. However, our clause gadgets are such that this
extra freedom does not permit cheating. More precisely, if the level can be solved, then it
can also be solved by a program of the form r4σ4

1r4 . . . σ4
nr4 with σi ∈ {u, d}.

FUN 2024

26:6 Coordinating “7 Billion Humans” Is Hard

3.2 Clause Gadgets

For each clause C = (xa, xb, xc), with a < b < c, we create a clause gadget consisting of two
sub-levels. In figure 4a, we report the sub-levels for the generic clause C. For the reader’s
convenience, we also show, in figure 4b, the gadget for the clause (x1, x2, x3). For i ∈ {1, 2},
the i-th sub-level contains only the i-th worker and the accepting cells labeled with i.

1 2

2

2

1

1

21

xa xb

xc

(a) Gadget for the generic clause (xa, xb, xc), with 1 ≤ a < b < c ≤ n.

1 2

2

2

1

1

21

x1 x2 x3 x4 xn

(b) Gadget for the clause (x1, x2, x3). We can handle all the clauses by stretching opportune sections of
the gadget (see figure 4a).

Figure 4 Figure (a) shows the Clause Gadget for the generic clause (xa, xb, xc). It consists of
two sub-levels drawn together for brevity. The i-th sub-level, i ∈ {1, 2}, contains only the worker
with label i on the left and the accepting cells with label i on the right. The columns associated
with the variables are aligned with those of the assignment gadget (figure 3). Solely for the sake of
clarity, we also show in figure (b) the gadget for the particular clause (x1, x2, x3).

Let us first argue that the flexibility of the assignment gadget cannot be exploited to
generate invalid truth assignments. Observe that the two workers of the clause gadget (of
the two distinct sub-levels) must always remain side by side, indeed, if they were to split, the
assignment gadget would become unsolvable since a worker would have hit a wall. Given that
the two workers must remain side by side, the workers in the clause gadget cannot hit a wall
horizontally (otherwise they would overlap, making the level unsolvable). This means that
using the left command is useless: in fact, it can only be used to go back to a variable and
possibly change its truth value in all the clauses. Moreover, moving up and down multiple
times when selecting a truth value does not lead to benefits either. Indeed, assuming that

A. Panconesi, P. M. Posta, and M. Giacchini 26:7

the user moves left or right only when none of the workers would hit a wall, then only the
last up or down movement is used to decide the truth value of the variable in all the clauses.
In other words, if the final game level is solvable, then it is also solvable by a program of the
form r4σ4

1r4 . . . σ4
nr4 with σi ∈ {u, d}.

Now, observe that the workers of the clause gadget for C = (xa, xb, xc) arrive at an
accepting cell if and only if they move up exactly once in correspondence with xa, xb, or
xc. Note that the vertical movement in correspondence with the other variables is ignored.
Since the up movement is associated with the “True” truth value, the clause gadget behaves
exactly like a clause of the Positive 1-in-3-SAT formula.

3.3 Conclusion of the proof
Proof of Theorem 1. Suppose the Positive 1-in-3-SAT instance is solvable, and let αi ∈
{True, False} for i ∈ {1, . . . , n} be the truth assignment to the variables that solves the

instance. Then, letting σi =
{

u, if αi = True
d, if αi = False

the program r4σ4
1r4 . . . σ4

nr4 solves the

corresponding 7BH-Essential instance. Conversely, if the 7BH-Essential instance is solv-
able, we can assume without loss of generality that it is solved by a program of the form

r4σ4
1r4 . . . σ4

nr4 with σi ∈ {u, d}. Let αi =
{

True, if σi = u

False, if σi = d
then, as we argued, α satisfies

all the 1-in-3-SAT clauses.
Moreover, note that each sub-level of the assignment gadget contains O(n2) cells, each

sub-level of a clause gadget contains O(n) cells, and the five sub-levels of the diagonal gadget
have a constant number of cells. Therefore, the complete game level obtained by stacking all
the sub-levels contains O(n2 + nm) cells and can be constructed in polynomial time. Our
reduction is complete. ◀

4 PSPACE-Completeness of 7BH-Holes

In this section, we prove Theorem 2. For a positive integer z, we use the notation [z] =
{1, 2, . . . , z}. Let us start by showing that 7BH-Holes can be solved in polynomial space.

▶ Observation 4. 7BH-Holes ∈ PSPACE

Proof. Consider a game level n × m containing k workers. Since the workers are the only
non-static elements of the level, each cell can be in at most one of two states: either it
contains a worker, or it does not. Then, there are at most

(
nm
k

)
≤ 2nm possible configurations

for the level. Then, consider the non-deterministic Turing Machine M that, given in input
a level of 7BH-Holes, maintains the current configuration of the level and a counter of
the number of steps performed so far. If all the workers are standing on an accepting
cell, then M accepts; if instead the counter exceeds 2nm, then M rejects. In all other
cases, M guesses non-deterministically the next step in {l, r, u, d, (ul), (ur), (dl), (dr)},
updating the configuration and increasing the counter accordingly. It is evident that M

solves 7BH-Holes because if the level is solvable, there is a solution using at most 2nm

instructions. Moreover, the space required in any computation branch is O(nm+log(2nm)) =
O(nm). Therefore, we showed that 7BH-Holes ∈ NPSPACE, then, by Savitch’s theorem
[13], 7BH-Holes ∈ PSPACE. ◀

Now it remains to show that 7BH-Holes is PSPACE-Hard. We do so by exhibiting a
polynomial-time reduction from the intersection non-emptiness problem for finite automata.

FUN 2024

26:8 Coordinating “7 Billion Humans” Is Hard

4.1 Intersection Non-Emptiness Problem
Recall that a deterministic finite automaton (DFA for short) is a 5-tuple (Q, Σ, δ, q0, F),
where Q is the set of states, Σ is the alphabet, δ : Q × Σ → Q is the transition function,
q0 ∈ Q is the starting state and F ⊆ Q is the set of accepting states. The language accepted
by the DFA A, called L(A), is the set of strings x ∈ Σ∗ such that, starting from q0 and
applying δ repeatedly, A ends up in an accepting state.

The following is a classic decision problem in automata theory and it was proved to be
PSPACE-Complete by Kozen [11]:

▶ Definition 5 (Intersection Non-Emptiness Problem). Given in input a set of k DFAs
{A1, A2, . . . , Ak}, with Ai = (Qi, Σ, δi, qi

0, Fi) for i ∈ [k], say if ∩k
i=1L(Ai) ̸= ∅

To simplify the exposition, let us assume that all the DFAs have the same set of states Q

and the same starting state q0. This is without loss of generality because we can rename the
states and add fictitious extra states, without changing the languages of the automata.

4.2 Reduction Overview
Consider an instance I = {A1, A2, . . . , Ak} of the Intersection Non-Emptiness Problem, with
Ai = (Q, Σ, δi, q0, Fi) for each i ∈ [k]. Without loss of generality, from now on we assume
that |Q| = n, Q = {q0, q1, . . . , qn−1}, and |Σ| = m, Σ = {σ1, σ2, . . . , σm}. Note that our
reduction must be polynomial in k, n, and m.

We represent the computation of the DFAs using a string. Specifically, let Γ = Σ∪Q∪{#},
where # is a new symbol, and consider a string of the following form:

R1#R2# . . . Rr# ∈ Γ∗

where:

Rj = σ(j)q(1,j)q(2,j) . . . q(k,j) for j ∈ [r],

σ(j) ∈ Σ and q(i,j) ∈ Q for i ∈ [k], j ∈ [r]

Call R the set of all such strings. Intuitively, Rj contains the j-th input symbol and the
state of the DFAs after processing the first j − 1 input symbols.

We say that a string R1#R2# . . . Rr# ∈ R is accepting if it describes a valid accepting
computation for all the automata, that is, if for all i ∈ [k] the following holds:

q(i,1) = q0
q(i,j+1) = δi(q(i,j), σ(j)), for all j ∈ [r − 1]
q(i,r) ∈ Fi

The main idea of our reduction is to define (i) an encoding of the alphabet Γ with strings
in {l, r, u, d}∗, and (ii) a game level G of 7BH-Holes, such that, a program solves G if and
only if it is an encoding of some accepting string in R. This will be enough to conclude our
reduction. Indeed, finding an accepting string in R is clearly equivalent to finding a string
accepted by all the DFAs. More formally:

▶ Observation 6. Given an instance {A1, A2, . . . , Ak} of the Intersection Non-Emptiness
Problem, ∩k

i=1L(Ai) ̸= ∅ ⇐⇒ ∃x ∈ R accepting

Proof. If σ1σ2 . . . σr ∈ ∩k
i=1L(Ai), then the string R1#R2# . . . Rr+1# where (i) σ(i) = σi

for i ∈ [r] and σ(r+1) is any symbol in Σ, and (ii) the states are set according to the
computation, is an accepting string. Conversely, if R1#R2# . . . Rr# ∈ R is accepting, then
σ(1)σ(2) . . . σ(r−1) ∈ ∩k

i=1L(Ai) (if r = 1, the empty string is accepted by all DFAs). ◀

A. Panconesi, P. M. Posta, and M. Giacchini 26:9

4.3 The Encoding
We first associate an integer value to each element in Q ∪ Σ = {q0, . . . , qn−1, σ1, . . . , σm},
specifically, we define num : Q ∪ Σ → N as:

num(qi) = 9 · (k + 2) · (i + 1) ∀i ∈ {0, 1, . . . , n − 1}
num(σi) = 9 · (k + 2) · (n + 2) · (i + 1) ∀i ∈ [m]

Let us now define C, the set of clockwise strings5, as:

C = {rx1dx2lx3ux4 | x1, x2, x3, x4 ≥ 6}

Our encoding will associate to each element of Γ a subset of clockwise strings, specifically,
let enc : Γ → P(C), where P(C) is the powerset of set C, be defined as:

enc(γ) =
{

rnum(γ)dnum(γ)lx3ux4 ∈ C | x3, x4 ≥ 6
}

∀γ ∈ Q ∪ Σ (1)

enc(#) = {rw#dx#ly#uz#} where: (2)
w# = 9 · (k + 2) · (n + 2) · (m + 2)
x# = 18 · (k + 2) · (n + 2) · (m + 2)
y# = w# + 4k + 3
z# = x# + 3k + 3

Note that the sets are disjoint, therefore it is possible to decode a clockwise string. In
particular, if x ∈ enc(γ), with a slight abuse of notation, we say that enc−1(x) = γ. Our
goal now is to build the game level G, such that, if γ1γ2 . . . γt ∈ R is accepting, then, the
program x1x2 . . . xt must solve the level G, where xi ∈ enc(γi). Conversely, if a program
solves G, then it must be a concatenation of clockwise strings x1x2 . . . xt such that they can
be decoded into enc−1(xi) = γi, and γ1γ2 . . . γt ∈ R is accepting.
▶ Remark. At this stage, the numbers used in the encoding might appear arbitrary and
obscure. We will point out where these numbers are used as we move forward in the proof.

4.4 The Game Level
We build several independent sub-levels, each containing a single worker. In particular, we
build 2k + 4 sub-levels: S = {CW1, CW2, CW3, enforce#} ∪ {Meven

i , Modd
i }i∈[k]. The final

game level G is created by stacking the sub-levels together and isolating them via holes.
Formally, G = stack(S).

The three sub-levels CW1, CW2, CW3, reported in figure 5, are solved by all and only
the programs that are concatenations of clockwise strings in C (note that CW1 and CW2
also prevent diagonal movements).

4.4.1 The Enforce# Sub-Level
Let us first introduce the counter gadget, in figure 6. This gadget is such that, if the worker
is standing on the cell labeled with 0, then any clockwise string in C brings the worker to
cell 1. Multiple counter gadgets can be concatenated together, and intuitively, these gadgets
can be used to skip clockwise strings that we do not need to process.

5 named after the fact that right, down, left, up is a clockwise movement

FUN 2024

26:10 Coordinating “7 Billion Humans” Is Hard

(a) CW1. (b) CW2. (c) CW3.

Figure 5 Sub-levels CW1, CW2, CW3, together they ensure that the program is a concatenation
of clockwise strings in C. Note that CW3 is needed to ensure that the very first movement is right.

0

1

Figure 6 Counter gadget. A worker starting from cell 0 that processes any clockwise string in C
ends up in cell 1.

0

1

2

k+1

k + 1 counter gadgets

w# x#

y#

z#

Figure 7 enforce# sub-level. The values w#, x#, y#, z# are defined in Equation (2). This gadget
ensures that accepting programs must be a concatenation of a multiple of k + 2 clockwise strings
each ending with the encoding of #.

A. Panconesi, P. M. Posta, and M. Giacchini 26:11

The enforce# sub-level, in figure 7, skips the first k + 1 clockwise strings using k + 1
counter gadgets, then, it forces the next clockwise string to be rw#dx#ly#uz# , which is
the only encoding of # ∈ Γ, as defined in Equation (2). Indeed, if the (k + 2)th clockwise
string was not the encoding of #, the worker would end up in a hole. After processing the
whole encoding of #, the worker will be in its starting position again (which is also the only
accepting one), ready to possibly process more clockwise strings.

Therefore, to be more formal, the enforce# sub-level together with {CW1, CW2, CW3},
ensures that if π is a solving program, then it must be of the form R1#R2# . . . Rr#, where
is the only encoding of #, and each Rj is a concatenation of k + 1 clockwise strings. Note
also that all the programs of such form solve these four sub-levels.

▶ Remark. The enforce# sub-level can be built if it holds (i) y# = 2 + 4(k + 1) + w# − 3 =
w# + 4k + 3, and (ii) z# = 3(k + 1) + x#. Note that both these relations are satisfied by our
encoding, as reported in Equation (2).

4.4.2 The Automata Sub-Levels
For each DFA Ai, i ∈ [k], we introduce two sub-levels: Modd

i and Meven
i . Consider a program

of the form R1# . . . Rr#, where # ∈ enc(#), and each Rj is a concatenation of k + 1
clockwise strings. Intuitively, Modd

i will ensure, for each odd j, that Rj+1 follows from Rj

according to the computation of Ai. Meven
i will guarantee the same, but for even j’s. These

sub-levels will also guarantee that the last state is an accepting one. Therefore, adding all
the sub-levels {Modd

i , Meven
i }i∈[k] will ensure that an accepting program must describe an

accepting computation for all the DFAs.
Before showing the construction of Modd

i and Meven
i , we introduce three new gadgets.

0 1 2 t

γ1

γ2

γt

num(γ1)

num(γ2)

num(γt)

num(γt)

Figure 8 The S-selector gadget for S = {γ1, γ2, . . . , γt} ⊆ Q ∪ Σ. A clockwise string reaches the
cell labeled with γℓ if it moves right and down exactly num(γℓ) times.

The S-selector gadget, in figure 8, is parametrized by a set S = {γ1, γ2, . . . , γt} ⊆ Q ∪ Σ
such that num(γj) < num(γj+1). If the worker is standing on the cell labeled with 0 of the
selector gadget, then the next clockwise string must be any encoding of any element γℓ ∈ S,
which will lead the worker to the cell labeled with γℓ. Indeed, from our encoding in Equation
(1), to verify that a clockwise string rx1dx2lx3ux4 ∈ C is an encoding of a certain element

FUN 2024

26:12 Coordinating “7 Billion Humans” Is Hard

γℓ ∈ Q ∪ Σ, it suffices to check that x1 = x2 = num(γℓ), which is what the gadget does. It
is also easy to check that the worker will fall into a hole if the clockwise string is not an
encoding of any element of S. This gadget will be useful for choosing the next input symbol
and performing different checks depending on the current state of the automaton.

0

1

num(q)

Figure 9 The q-forcer gadget for q ∈ Q. Starting from cell 0, the worker reaches cell 1 with a
clockwise string if and only if the number of d symbols is equal to num(q).

For a state q ∈ Q, the q-forcer gadget, in figure 9, forces the next clockwise string to have
a number of down steps equal num(q). Therefore, if we know that c ∈ C is an encoding of
some state, then, by using the q-forcer gadget we impose the constraint that c must be an
encoding of q ∈ Q. This gadget will be useful to force the string to respect the transition
function.

1

0

0

0

≤ y#

≤ z#

≤ x#

≤ x#

≤ x#

Figure 10 The go-back gadget. Starting from any cell 0, the clockwise string rw# dx# ly# uz# , as
described in Equation (2), brings the worker back to the cell 1. Note that more cells 0 can be added
as needed, provided that the highlighted constraints are respected.

The last gadget we need is the go-back gadget, in figure 10. Suppose the worker is in one
of the cells labeled with 0, then, by processing the only encoding of # ∈ Γ, it will go back
to cell 1. This gadget will be useful to “go back” to a selector gadget and analyze the next
chunk of the program.

A. Panconesi, P. M. Posta, and M. Giacchini 26:13

Note that these three gadgets and the counter gadget can be concatenated together. The
only precaution to take is that when concatenating a selector gadget to a counter gadget,
the cell 0 of the selector (figure 8) must coincide with the cell 1 of the counter (figure 6).
Similarly, when concatenating a go-back gadget to a selector gadget, the cell 1 of the go-back
must coincide with the cell 0 of the selector.

start

Σ-selector

σ1 σ2 σm

i− 1 counters

Q-selector

q0 q1 qn−1

k + 1 counters

δi(q0,σ1)-forcer

k − i counters

k + 1 counters

δi(q1,σ1)-forcer

k − i counters

i− 1 counters

Q-selector

q0 qn−1

k + 1 counters

δi(q0,σ2)-forcer

k − i counters

go-back

Figure 11 Modd
i sub-level associated to the DFA Ai, i ∈ [k]. The starting position of the single

worker is at the beginning of the Σ-selector (i.e., the cell 0 of the Σ-selector, taking figure 8 as a
reference). The first cell of the Σ-selector is also an accepting cell. Moreover, each branch of the
Q-selectors corresponding to an accepting state qacc ∈ Fi, contains an accepting cell after the first
k + 1 − i counters (i.e., the accepting cell is the cell labeled with 1, taking figure 6 as a reference, in
the (k + 1 − i)th of the k + 1 counters).

start

i counters

q0-forcer

k − i+ 1 counters

M odd
i

Figure 12 Meven
i sub-level associated to the DFA Ai, i ∈ [k]. The starting position of the single

worker is at the beginning of the first counter. The accepting cells are the same described for the
Modd

i sub-level.

Fixed i ∈ [k], we report, in figure 11, the sub-level Modd
i , and, in figure 12 the sub-level

Meven
i . Both are represented in a schematic way. Both sub-levels use the go-back gadget,

which requires processing exactly the encoding of #: this is guaranteed by the enforce#
sub-level.

FUN 2024

26:14 Coordinating “7 Billion Humans” Is Hard

We now argue that the sub-levels {CW1, CW2, CW3, enforce#, Modd
i , Meven

i } are solved
by all and only the programs describing a valid accepting computation of DFA Ai.

We know, from {CW1, CW2, CW3, enforce#}, that a solving program π must of the form:
R1#R2# . . . Rr#, where # ∈ enc(#), and Rj = cj

1cj
2 . . . cj

k+1 is a concatenation of k + 1
clockwise strings. Let us first show that π can always be decoded:

The Σ-selector of Modd
i (resp. Meven

i) ensures that the first symbol of each Rj , for odd
j (resp. even j), is the encoding of a symbol in Σ. Therefore, for all j ∈ [r], it must be
cj

1 ∈ enc(σ), for some σ ∈ Σ.

Similarly, the Q-selectors of Modd
i (resp. Meven

i) ensure that the (i + 1)th symbol of each
Rj , for odd j (resp. even j), is the encoding of a state. Therefore, for all j ∈ [r], it must
be cj

i+1 ∈ enc(q), for some q ∈ Q.
Moreover, π describes a valid computation:

the first forcer of Meven
i ensures that the computation starts from the starting state q0:

c1
i+1 ∈ enc(q0)

Suppose that the computation is valid up to Rj , that is, the state q = enc−1(cj
i+1) is

correctly reached from q0. Let us assume that j is odd. Then, Modd
i will follow the

branch σ in the Σ-selector, for some σ ∈ Σ, and the branch q in the Q-selector. Then,
the δi(q, σ)-forcer in Modd

i forces cj+1
i+1 to be in enc(δi(q, σ)), therefore, the state reached

in Rj+1 is correct too. If instead j is even, Meven
i ensures that the state reached in Rj+1

is correct.

It is left to show that the computation described by π is accepting for Ai. Suppose r is
odd. Then, at the end of the computation, the worker of Meven

i will be at the beginning of
the Σ-selector (which is an accepting cell), and the worker of Modd

i , which is “shifted forward”
by k + 2 clockwise strings, will be at the end of the (k + 1 − i)th counter right after the
Q-selector, but note that there is an accepting cell in such position only if the worker is in a
branch corresponding to a state qacc ∈ Fi, therefore cr

i+1 ∈ enc(qacc) and the computation is
accepting. If r is even, the situation is analogous: the worker of Modd

i is at the beginning
of the Σ-selector, but the one of Meven

i is at the end of the (k + 1 − i)th counter after a
Q-selector, and therefore it must be in an accepting branch.

Moreover, one can easily see that any encoding of an accepting computation solves all
the sub-levels. Indeed, the Σ-selector allows the user to choose the input string, and then,
since the computation is accepting, one of Meven

i and Modd
i will end up in the (k + 1 − i)th

counter of an accepting branch and the other will stay at the beginning of the Σ-selector.
Therefore, all the sub-levels would be solved.

▶ Remark. Our encoding allows the construction of Modd
i and Meven

i . First, from our encoding,
we have that for j ∈ {0, 1, . . . , n−2}, num(qj+1)−num(qj) = 9(k +2), while the space actually
needed between two branches of the Q-selector is: 4(k+1)+5+4(k−i)+4+6 < 8(k+1)+11 ≤
9(k + 2) where the last 6 takes into account the overhead of the selector. Similarly, for
j ∈ [m − 1], num(σj+1) − num(σj) = 9(k + 2)(n + 2), while the space required between two
branches of the Σ-selector is at most 4(i − 1) + 9(k + 2)(n + 1) + 6 < 9(k + 2)(n + 2). To
conclude, we need only to check that the constraints for the go-back gadget are satisfied. The
width of the whole Modd

i sub-level is at most 9(k+2)(n+2)(m+2) = w# < y#. The height of
the sub-level is instead at most num(σm)+4(i−1)+num(qn−1)+4(2k+1−i)+num(qn−1)+3 ≤
18(k + 2)(n + 2)(m + 1) + 8k < 18(k + 2)(n + 2)(m + 2) = x# < z#. Therefore all the gadgets
can be concatenated together.

A. Panconesi, P. M. Posta, and M. Giacchini 26:15

4.5 Conclusion of the proof
Putting all the pieces together, we can prove the theorem.

Proof of Theorem 2. The problem is in PSPACE by Observation 4. Consider the following
reduction from the Intersection Non-Emptiness Problem: an instance I = {A1, A2, . . . , Ak}
is associated with the level G = stack({CW1, CW2, CW3, enforce#} ∪ {Modd

i , Meven
i }i∈[k]).

Suppose I can be solved, then, by Observation 6, there exists an accepting string
x1x2 . . . xt ∈ R. Consider any encoding π = y1y2 . . . yt such that yj ∈ enc(xj). Such
program can be rewritten in the form R1# . . . Rr#. Therefore, as we argued, π solves
{CW1, CW2, CW3, enforce#}, and, given that I is solved, for each i ∈ [k], π describes an
accepting computation for Ai, then, it also solves Modd

i and Meven
i . Therefore, G is solved:

all its workers will be standing on an accepting cell at the end of the program.
Suppose now that there exists a program π ∈ {l, r, u, d}∗ solving G. As we argued, such

a program can be decoded into a string R1# . . . Rr# ∈ R. Given that, for each i ∈ [k], Modd
i

and Meven
i are solved, it means that the string represents an accepting computation for Ai.

That is, letting Rj = σ(j)q(1,j) . . . q(k,j), it holds: (i) q(i,1) = q0, (ii) q(i,j+1) = δi(q(i,j), σ(j))
for j ∈ [r −1], and (iii) q(i,r) ∈ Fi. Therefore, the string in R is accepting. Using Observation
6, it follows that I is solvable.

Finally, observe that the number of cells in each sub-level is at most O(y# · z#) =
O(k2n2m2), and since there are 2k + 4 sub-levels, G has at most O(k3n2m2) cells, therefore
the reduction can be carried out in polynomial time. ◀

5 Conclusions

We analyzed the computational complexity of the video game “7 Billion Humans”. The
game involves controlling multiple workers simultaneously to direct them to some destination
cells. When each cell is either empty or contains a wall, the problem of deciding if a level is
solvable is NP-Hard, while adding holes makes the problem PSPACE-Complete. We also
observed that the simple structure of our reductions entails hardness results for the problem
of simultaneous maze solving and for the intersection non-emptiness problem.

While 7BH-Essential, the problem where levels only contain walls and empty cells, is
NP-Hard and clearly in PSPACE, it is not known whether it lies in NP. We leave this as an
interesting open problem.

References
1 Matteo Almanza, Stefano Leucci, and Alessandro Panconesi. Trainyard is np-hard. Theoretical

Computer Science, 2018. FUN with Algorithms.
2 Matteo Almanza, Stefano Leucci, and Alessandro Panconesi. Tracks from hell — when finding

a proof may be easier than checking it. Theoretical Computer Science, 2020. FUN with
Algorithms.

3 Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic nintendo games
are (computationally) hard. Theoretical Computer Science, 2015. FUN with Algorithms.

4 Emmanuel Arrighi, Henning Fernau, Stefan Hoffmann, Markus Holzer, Ismaël Jecker, Mateus
de Oliveira Oliveira, and Petra Wolf. On the Complexity of Intersection Non-emptiness for
Star-Free Language Classes. In 41st IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2021), 2021.

5 Erik D. Demaine, Joshua Lockhart, and Jayson Lynch. The computational complexity of
portal and other 3d video games. FUN with Algorithms, 2018.

FUN 2024

26:16 Coordinating “7 Billion Humans” Is Hard

6 Erik D. Demaine, Giovanni Viglietta, and Aaron Williams. Super mario bros. is harder/easier
than we thought. FUN with Algorithms, 2016.

7 Stefan Funke, André Nusser, and Sabine Storandt. The simultaneous maze solving problem.
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 2017.

8 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, 1979.

9 Luciano Gualà, Stefano Leucci, and Emanuele Natale. Bejeweled, candy crush and other
match-three games are (np-)hard. 2014 IEEE Conference on Computational Intelligence and
Games, 2014.

10 Graham Kendall, Andrew Parkes, and Kristian Spoerer. A survey of np-complete puzzles.
ICGA Journal, 2008.

11 Dexter Kozen. Lower bounds for natural proof systems. In 18th Annual Symposium on
Foundations of Computer Science (FOCS), 1977.

12 Klaus-Jörn Lange and Peter Rossmanith. The emptiness problem for intersections of regular
languages. In Mathematical Foundations of Computer Science, 1992.

13 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4(2), 1970.

14 Giovanni Viglietta. Gaming is a hard job, but someone has to do it! In Fun with Algorithms,
2012.

15 Michael Wehar. Hardness results for intersection non-emptiness. In Automata, Languages,
and Programming (ICALP), 2014.

16 Commonsense review. https://www.commonsense.org/education/reviews/
7-billion-humans. Accessed: 2024-02-26.

17 Hackr review. https://hackr.io/blog/coding-games. Accessed: 2024-02-26.
18 Hubspot review. https://blog.hubspot.com/website/best-coding-games. Accessed: 2024-

02-26.

https://www.commonsense.org/education/reviews/7-billion-humans
https://www.commonsense.org/education/reviews/7-billion-humans
https://hackr.io/blog/coding-games
https://blog.hubspot.com/website/best-coding-games

	1 Introduction
	1.1 Our Contributions

	2 Relations with other problems
	2.1 Simultaneous Maze Solving
	2.2 Intersection Non-Emptiness

	3 NP-Hardness of 7BH-Essential
	3.1 Assignment Gadget
	3.2 Clause Gadgets
	3.3 Conclusion of the proof

	4 PSPACE-Completeness of 7BH-Holes
	4.1 Intersection Non-Emptiness Problem
	4.2 Reduction Overview
	4.3 The Encoding
	4.4 The Game Level
	4.4.1 The Enforce# Sub-Level
	4.4.2 The Automata Sub-Levels

	4.5 Conclusion of the proof

	5 Conclusions

