Arimaa Is PSPACE-Hard

Benjamin G. Rin' =
Utrecht University, The Netherlands

Atze Schipper =2
Utrecht University, The Netherlands

—— Abstract

Arimaa is a strategy board game developed in 2003 by Omar Syed, designed to be hard for Al to
win because of its large branching factor. In this paper, its theoretical complexity is considered.
We prove that Arimaa (suitably generalized to an n x n board) is PSPACE-hard. This result is
found by reducing a known PSPACE-hard variant of Generalized Geography to a variant of Arimaa
that we call Arimaa’, which in turn is then reduced to (n X m) Arimaa. Since the game is easily
seen to be solvable in exponential time, it follows that its complexity lies somewhere between being
PSPACE-complete and EXPTIME-complete.
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1 Introduction

Arimaa is a two-player strategy game played on an 8 x 8 board. Like chess, checkers, and Go,
it is a perfect-information, deterministic, turn-based game with at most one winner. Arimaa
has been a focus of much attention in applied AI research, as it was originally designed
purposely to be difficult for computers to play [18]. The present paper considers the more
theoretical question, “Given a position in Arimaa and specified player, does that player have a
winning strategy?” We call this the Arimaa decision problem. As with chess and checkers, this
question is trivially solvable in constant time if the game is played on a standard 8 x 8 board
(albeit for an impractically large constant). Accordingly, we focus instead on the question
for the generalized case of an n x n board (cf. [8], [11], [12], [13]). For the aforementioned
strategy games, the corresponding question is known to be PSPACE-hard.? The present
paper shows that the same is true for Arimaa. We prove this result by reduction from
the known PSPACE-hard problem Generalized Geography, adapting a technique from [16]
originally used to show the PSPACE-hardness of n x n chess.> We do not prove here that

Corresponding author. Authors listed alphabetically.

Results showing PSPACE-hardness of strategy and puzzle games continue to be produced to this day,
with some recent examples including [1], [3], and [4]. Depending on the details of how the game is
generalized — e.g., concerning rules such as the 50-move rule in chess — the question may in fact be
shown to be EXPTIME-hard (see, e.g., [8], [12], and [13]).

Our proof has its origins in the bachelor thesis of the second author, written under supervision of the
first [15].
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n X n Arimaa is in PSPACE. However, it is not hard to see that it falls in EXPTIME.*
In fact, we suspect it is EXPTIME-complete (see Conjecture 1), which we leave for future
research.

1.1 History

In the last twenty-five years, Al has been increasingly defeating humans in strategy games
such as chess and Go. This emerging trend inspired computer engineer Omar Syed to design
Arimaa as a game intentionally hard for computers while still relatively easy to understand
and fun to play for humans. It is played on a chess board with chess pieces, but the mean
branching factor is around 17,000 moves per turn [9] (compared to about 35 for chess).

In 2003, the game was ready and published in The International Computer Games
Association (ICGA) Journal [18], together with a prize of $10,000 USD for the first person
or organization to create a computer program that could beat the best human players before
the year 2020.5 The challenge sparked much research into the development of Arimaa bots
and the practical complexity of Arimaa from people like Brian Haskin [9], Christ-Jan Cox [5]
and experienced Go programmer David Fotland [6]. Fotland had won the Arimaa computer
tournament five times, but could never manage to win the contest against the best human
players. Many approaches were tried by different people, resulting in numerous academic
papers, theses and technical reports before the challenge was finally completed (e.g., [7], [17],
[19]). In 2015, David Wu with his bot SHARP [22] did the unthinkable and defeated the top
human players. The March 2015 ICGA Journal issue [20] was themed around the Arimaa
challenge being won.

All this research is on the practical complexity of making a machine play Arimaa well.
But its theoretical complexity is relatively unexplored. As the editorial board of ICGA wrote
in the March 2015 issue:

The last scientific challenge, establishing the game-theoretical value of Arimaa, is
still waiting for its solution. Arimaa is now in the class of games in which computers
outperform the best human players, just like chess. Yet, the ultimate question is: can
we solve the game? As readers of this Journal know we distinguish between weakly
solving and strongly solving a game (introduced by Allis, 1994). So, we would like to
encourage all researchers to continue the development of advanced techniques to find
the ultimate truth of Arimaa. [20]

1.2 Main theorem

The present paper proves the following result.

» Theorem 1. The Arimaa decision problem is PSPACE-hard.

In [8] it is stated that m x m chess is decidable in exponential time by brute force. A similar case can be
made for n x n Arimaa. There is an upper bound 13" on the number of possible board states, since
each of the n? squares must be empty or occupied by one of the six pieces of either player. Since each
position is caused by one of two players, and since a position can occur no more than three total times
2

in a game (by the threefold repetition rule), the game tree has not more than 6 - 13™ nodes, which is
exponential in the number n? of squares. Optimal moves can then be found by, for example, alpha-beta
pruning.

5 The prize was later raised to $12,000 USD [2].
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We will reduce a known PSPACE-hard variant of Generalized Geography, which we call
6

AGG 1, to a variant of Arimaa we call Arimaa’, which is then reduced to n x n Arimaa®.

These reductions are both computable in polynomial time, so it will follow that Arimaa is
PSPACE-hard.

The proof in this paper follows in the footsteps of Storer in [16] for nxn chess. Unlike chess,
however, Arimaa has no pieces that can move long distances in a single turn. Accordingly,
one of the main challenges of our proof, and arguably one of its main contributions, is in
showing how to apply Storer’s proof method for games with only short-range pieces like
Arimaa.

Since it is straightforward to see that the Arimaa decision problem is in EXPTIME for
reasons similar to those for chess (see fn. 4), it follows that the complexity of Arimaa lies
somewhere between PSPACE- and EXPTIME-completeness. In the future, we hope to settle
the following conjecture.

» Conjecture 1. The Arimaa decision problem is EXPTIME-complete.

2 Background

2.1 Game rules

Arimaa is played on a chess board using chess pieces, but otherwise has little to do with
chess. The pieces are renamed as follows to make it easier to remember their hierarchy (listed
in order of decreasing strength): elephant for king, camel for queen, horse for rook, dog for
bishop, cat for knight, and rabbit for pawn. The 8 x 8 board remains the same except for the
squares c3, c6, f3 and 6. These squares are trap squares, where pieces can be captured.

2.1.1 Setup

» Definition 2. The home ranks of a player are the first two ranks on the board from that
player’s perspective.

» Definition 3. The goal rank of a player is the first home rank of his opponent.

The board starts empty, with Gold being the first player to choose the setup in which
he” would like to start the game. After he has positioned his pieces (this is visible to Silver),
Silver may choose her starting setup. Both players may place their 16 pieces in any order
they want on their home ranks. After the setup, Gold will be the first player to make a move.

2.1.2 Playing

» Definition 4. A position describes all piece locations and which player is next to mowve.
Switching pieces of the same team and strength does not result in a different position.

Figure 1 shows a sample Arimaa position. The game is shown from Gold’s point of view.
Traps are represented by X symbols. For readability, we use numbers to denote the different
pieces in figures throughout this paper. The numbers correspond to the pieces’ places in the
hierarchy — e.g., an elephant is denoted by the number 6, a camel by 5, etc. Hereafter, let us
call the 1s, 2s, and 3s the weak pieces and the 4s, 5s, and 6s the strong pieces.

6 Hereafter, we may refer to n x n Arimaa simply as Arimaa, if confusion is unlikely.
7 For referential convenience, in this paper we (alphabetically) use “he” for Gold and “she” for Silver.
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Figure 1 An example Arimaa position from [21].

All pieces move the same way, one step at a time and only in cardinal directions. The
only exception to this rule is the rabbit: like the pawn in chess, the rabbit cannot move itself
backward. The only way a rabbit can move back is by being pushed or pulled by an enemy
piece (see below). The biggest difference from other board games such as chess, checkers,
and Go is that players are allowed to distribute up to four moves per turn over their pieces.
For example, one may let four pieces move one step, one piece move four steps, or anything
in between, as long as the turn ends with a net change to the position. Pieces can only step
onto an adjacent square if it is not occupied by another piece, unless the piece making the
move is pushing the other piece away.

Pieces may push or pull a single enemy piece that is strictly lower in the strength hierarchy.
This costs two steps, as two pieces are moving one square, and the piece performing the
push or the pull must be directly adjacent to the enemy piece. Any square in one of the
cardinal directions of the piece being pushed can be chosen to push that piece onto as long
as it is able to move, and the pushing piece will move on to the square previously occupied
by the pushed piece. Observe the position depicted in Figure 1. The gold dog on a6 could,
for example, push the silver rabbit on a7 to a8, moving to a7 itself. Pulling is similar: the
piece performing the pull can move to any square it is allowed to move to, and the pulled
piece will move to the square previously occupied by the pulling piece. For example, the
gold elephant on d3 could pull the silver rabbit on d2 to d3, and could then pull it to d4,
ending the turn on e4 itself.

Another game mechanic is freezing. Any piece that is next to an enemy piece that is
higher in hierarchy is frozen and therefore not allowed to move (thus also not allowed to
push or pull). It follows automatically that the elephant, the highest ranked piece, cannot be
frozen. A piece that is currently not frozen is allowed to move to a square next to a bigger
enemy piece, resulting in freezing itself. As an exception, a piece can protect itself from being
frozen by being next to a friendly piece. In that case, neither piece can be frozen. Likewise,
a piece can unfreeze a currently frozen friendly piece by moving to a square next to it. In
the example position in Figure 1, the pieces on a7, b7 and d6 are currently frozen, while the
piece on cl is not.

Another way to immobilize a piece is to blockade it. A piece is blockaded when it is
surrounded by pieces it cannot push. Examples include the ¢3 rabbit in Figure 1 and the
elephants in Figure 5. So, while an elephant can never be frozen, it can be blockaded if
surrounded by two pieces in each direction.

The trap squares are the only way for pieces to be removed from the board (captured).
Trap squares can be controlled by having at least one friendly piece next to it, meaning your
pieces are safe to stand in the trap square without being captured. However, as soon as all
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four squares next to the trap are either unoccupied or are occupied by enemy pieces, any
friendly piece standing in the trap will be removed from the game. Shared trap control is
thus also possible, when both friendly and enemy pieces are standing around a trap, resulting
in the trap square being safe to occupy for both players.

All consequences of moving pieces are effective immediately, not at the end of the turn.

For example: if a piece is frozen after making a certain move, the player is not allowed to
make any more moves with that piece, even if not all four moves in the current turn are

used yet. However, pushing and pulling are moves considered to happen simultaneously.

This means that a player can, for instance, move a friendly piece onto an uncontrolled trap
square while pulling a weaker enemy piece. Although this results in the friendly piece getting
captured, the pull still gets to be completed. See, for example, the gold dog on b3: the
moment it moves south next to the silver horse on c¢2 to pull the c3 silver rabbit west, it is
frozen, but the pull gets completed anyway.

The final movement rule is the threefold repetition rule: a player may not end a turn
having created the same position as one that he or she has previously created twice.

2.1.3 Winning conditions

There are three ways for a player to win the game:

1. Ending a turn with at least one of the player’s rabbits on the goal rank.

2. Making the other player lose all his or her rabbits. If both players lose their last rabbit
in the same turn, the player who took the turn wins.

3. Giving the other player no legal moves to play (say, by freezing and/or blockading all his
or her pieces).

2.2 Generalization to n X n Arimaa

As already discussed, 8 x 8 is trivially computable in constant time, so we generalize to
an n x n board. However, stretching the board to variable dimensions raises an important
decision on how to place the trap squares. Standard Arimaa has four trap squares on an 8 x 8
board, placed on squares c3, c6, £3 and f6. We have opted to generalize this by concatenating
copies of the standard board (with standardly placed trap squares) in all directions, resulting
in an arbitrarily large board with many groups of four trap squares (see Figure 5 for an
example). More on trap placement can be found in Section 4, where we discuss other ways
of distributing trap squares over a large board.

2.3 Generalized Geography variations

Our main theorem is proved by reduction from a known PSPACE-complete variant of
Generalized Geography. We present the definition of this variant in the present section.

Geography is a game in which two players take turns in naming cities. The first letter
of the next city must be the same as the last letter of the previous city, and the next city
must not have been named before. The first player who cannot think of a new city loses.
Generalized Geography (GG) is a generalized version of the game. GG is played on a directed
graph in which the two players (usually called White and Black, but we may say Gold and
Silver) each take turns placing markers on nodes. The game starts with Gold placing a
marker on the start node, after which it is Silver’s turn. The players then take turns placing
markers on nodes with an incoming edge from the last node chosen. This continues until a
player places a marker on a node already marked, after which the game ends and that player
loses.
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Figure 2 The four node shapes.

The problem of determining which player has a winning strategy in GG is proven to be
PSPACE-complete by Schaefer [14]. In [10], some restrictions to the graph are added while
preserving the complexity of the game. Storer uses this restricted definition of GG in his
proof on the complexity of chess [16], where he calls it Restricted GG (RGG). Based on
RGG, Storer defines another variant called Array GG (AGG), wherein further restrictions
are added and the winning condition is reversed: a player who marks a previously marked
node now wins the game. In detail:

» Definition 5. The AGG problem is defined as: “Given a directed graph G and start node s,
with the features described below, does Gold have a winning strategy (see rules above)?”

The nodes in G have total degree 3 or have indegree 1 and outdegree 1. The start node s
is the only exception, with indegree 0 and outdegree 1.

The nodes of G form a finite subset of Z. X Z in the Cartesian plane. Edges must be either
vertical or horizontal, and may only connect pairs of nodes that have no other nodes between
them (see Figure 3).

Other restrictions on the graph are:

The graph is planar (no crossing edges when the graph in embedded on a plane).
The graph is bipartite (no odd-length cycles).

The graph is connected.

b=

There are no self-loops.

Storer proves that AGG is PSPACE-complete in [16], by showing how to transform an
RGG problem (given an instance (G,s) of RGG) into an AGG problem. This is done by
scaling up the graph when needed by adding new nodes (preserving the original parity of
the game by adding them in pairs) and changing the length of edges. The transformation is
done in such a way that we only end up with nodes of the forms depicted in Figure 2, and
straight edges between them.

In Corollary 1.1 from Storer’s paper it is shown that AGG remains PSPACE-complete even
if we add the further restriction that every non-start node must be one of the types depicted
in Figure 2, and the nodes of each type other than the bend are also in the orientations
depicted. Let us call this restricted problem AGGy ;. This means that we need only eleven
different types of nodes, other than the starting node, to build any AGGy 1 graph: the join,
fork and pipe in one orientation each, and bends in all eight orientations (only north-to-east
is depicted here).® As in AGG, edges may be in any cardinal direction. Note that there can
be a long edge connecting two nodes that are distant in the Cartesian plane, if no node lies
between them.

8 Storer shows how a grid graph with nodes of other types can be simulated by one with only these types.
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Figure 3 An AGG;.; example graph. Node color indicates which player can mark that node.

» Remark 6. Because the graph is bipartite, and because players alternate turns choosing
nodes adjacent to previously chosen nodes, the nodes can be partitioned into two disjoint
subsets — one for each player. Since it is predefined which player will mark the start node,
each node is already determined at the beginning of the game to be potentially markable
by precisely one particularly player. And given any node, its incoming edge(s) are also

deterministically assigned as potentially usable for exactly one player before the game starts.

See Figure 3 for an example of an AGGy ; graph.

2.4 Arimaa’

To simplify the proof of the main theorem, we show that a variant of Arimaa called Arimaa’
reduces to n X n Arimaa, and we then show that this variant is PSPACE-hard. We define
Arimaa’ in the present section.

» Definition 7. A board state is an arrangement of pieces on the board, without consideration
of which player is moving next.

» Definition 8. Arimaa’ is the problem of determining whether Gold has a winning strategy

given an n X n Arimaa board state P’ under the following conditions:

1. There is a new threefold repetition rule: players may now legally cause a position to occur
for a third time, but a player who does this immediately loses.”

2. The rule making players lose when starting a turn with no movable pieces is removed.

3. The rule preventing players from passing their turn without making a net change to the
position is removed. Passing a turn in any position still counts as causing that position,

with respect to the threefold repetition rule.

9 This change is strictly to make it easier to discuss repetition, so that we may sometimes say a player
repeats the position and loses, rather than say the player cannot repeat the position.
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« rabbit prison

grid

« rabbit prison

Figure 4 Overview of an Arimaa’ position. In the area labeled “grid” is a simulated AGG1 1
graph.

4. In the board’s center is a simulated AGGy.1 graph with its start node already marked, the
details of which will be specified in the proof of Theorem 1. (We will see that Gold will
have a winning strategy in P’ iff the Gold player in the simulated AGG11 game also has
a winning strategy.) Outside this area, the board is empty, save for two gadgets called
rabbit prisons defined later. See Figure 4.

5. The most recent turn was Gold’s and was a pass. Before that, Silver moved a piece.

» Remark 9. By condition 8.3, if a player (say, Gold) moves a piece and causes a position X,
after which the opponent (Silver) passes the turn, then Gold cannot profitably pass back.
If he tries, then Silver can pass again, after which Gold cannot pass back again without
instantly losing from having caused position X to occur for the third time. Therefore, a
player’s decision to pass the turn cannot be trivially undone by the opponent. Indeed, once a
player moves a piece, the opponent can repeatedly pass and force the player to make another
piece move, for as many turns as desired.

2.4.1 Big picture

» Definition 10. The simulation grid, or simply grid, is the simulated AGGy.1 graph located
in the middle of the Arimaa’ board. The simulation is the ongoing process of players making
moves that simulate placing markers on nodes of the AGGy.1 graph.

In Figure 4 we see the grid in the center and the rabbit prisons (see Section 2.4.3) near
their respective goal ranks. The Gold player in Arimaa’ will simulate the actions of Gold in
the AGG1 1 game. As detailed later, the Arimaa’ players simulate the marking of a node by
moving a cat into the corresponding gadget on the board, after which it becomes captured
or otherwise made irrelevant and simultaneously frees a previously frozen enemy cat. An
AGGj 1 node marked by Gold (Silver) will therefore correspond to an Arimaa’ gadget with a
gold (silver) cat entering it and a silver (gold) cat leaving. The latter cat will then travel to
an adjacent node gadget. In case of the start node, a silver cat is leaving, so we can think of
it as being already marked by Gold.

Surrounding the grid are walls, which we describe in the next section. Outside these walls
are two rabbit prisons, whose construction and purpose we describe in the section after.
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"/ Figure 5 A part of a silver corridor containing a 90° turn.

2.4.2 Walls

» Definition 11. A free piece is a piece that is allowed to move, because it is not frozen or
blockaded by other pieces.

» Definition 12. A stable group of pieces is one containing no free piece.

A wall, as the name suggests, is a special kind of continuous line of stable pieces that
is designed to contain and constrain the motion of nearby free pieces. Specifically, walls
constrain only weak pieces (recall that this means pieces of strength 3 or less). A wall is
designed for just one color; its main function is to stop weak pieces of the appropriate color
that are on one side of the wall from crossing over to the other side. As we explain below, no
appropriately colored weak piece can get through them or break them down. Although a
wall is designed for only one color, pieces of both colors are needed to construct it. The color
of weak pieces that the wall constrains is always the opposite of the wall’s outermost pieces
(the 4s — see Figure 5). We say a wall is gold (silver) if its outer 4s are gold (silver). For
example, the walls in Figure 5 are silver walls.
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The main building block of a wall is a 6 with four enemy 5s and eight friendly 4s around
it. The 6 is unable to push or pull because of the double layer of pieces around it, and the 5s
and 4s are frozen, so the group of pieces as a whole is stable. These building blocks can be
laid out in any desired direction to build walls of various shapes.

The parallel walls in Figure 5 jointly form a corridor, inside which a free piece may move.
The inside of the corridor shown spans from row 8 to 11 and from column k to n. The 90°
turn is included for demonstrative purposes; corridors can extend in a single direction for an
arbitrary length. Straight corridors will correspond to edges in our reduction from AGGy ;.

Observe how a silver (gold) wall constrains the movement of weak gold (silver) pieces,
since the weak piece gets frozen the moment it touches any outer 4. In the case of Figure 5,
the walls depicted have gaps on squares h17 and ql18, but since each gap is only one square
wide and has 4s next to it, a weak gold piece cannot pass through it without getting frozen.
However, any strong gold piece can move through these gaps. If its strength is 5 or greater,
that piece can even destabilize the wall by pushing/pulling 4s. Furthermore, any free silver
piece can also move through the gaps and can destabilize the wall by unfreezing a 4.

It will normally hold that only weak gold (silver) pieces get free near silver (gold) walls.'?
Since we always know which player may use a given edge in AGG; 1 (see Remark 6), we can
carefully construct corridors of correct colors accordingly. All corridors will have gaps similar
to the two in Figure 5, but they are impenetrable by the weak free pieces.

In addition to color, walls can also be categorized by their parity. We define the parity of
a wall based on the color of pieces that lie on the diagonal of the upper-left /bottom-right
traps (in the groups of four traps). If the color of the pieces on that diagonal is silver, we
say the wall has standard parity (regardless of the wall’s color). Otherwise, the parity is
nonstandard. In Figure 5, the wall depicted has standard parity.

Gold walls are made in almost the same way as silver walls, but aside from reversing the
piece colors, we also shift the wall one square to maintain standard parity. This is because
reversing the piece coloring changes the wall’s parity, so the shift is done to undo that change.
We desire all walls to be built with the same parity so they can connect properly. More on
connecting corridors can be found in Section 3.2.

2.4.3 Rabbit prisons

The rabbit prisons are similar to wall building blocks, but with a 1 in place of a 4. See
Figure 6. Each player’s rabbit prison is located near that player’s goal rank. The prisons’
sole purpose is to ensure that players comply with the AGG; 1 simulation in the Arimaa’
game, by giving the opponent of a non-complying player a way to punish them.

Specifically, a player who makes a move in the Arimaa’ game that breaks the simulation
will let the other player get a loose 4 or 6. (Details are explained in Section 3.3.2.) Such
pieces are strong enough to pass through gaps in the walls and walk outside the grid. When
this happens, the loose 4 or 6 can reach the appropriate rabbit prison and unfreeze the rabbit
there, letting it step onto the goal rank and win the game.

10The only exception occurs when a player fails to uphold the simulation of the AGG1.1 game within the
Arimaa’ game. In Section 3.3.2, we see how any player who does this allows the opponent to have a
free piece near a same-colored wall, leading to a forced win for that opponent. This dynamic serves to
ensure the simulation is upheld until the end.
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Figure 6 A gold and a silver rabbit prison.

2.4.4 \Viable winning conditions

As detailed in the game rules (Section 2.1.3), there are multiple ways to win at Arimaa.
However, some winning conditions have been altered in Arimaa’. In the setup presented here,
in which Arimaa’ is used to simulate an AGG;; game, the normal method of victory has a
player move a piece into a node gadget for the second time (always a join, the only node type
with in-degree 2 — see Figure 2), which leads, as we will later see, to an eventual threefold
repetition for the opponent. As discussed above, there is also an alternative winning method
possible against an opponent who does not comply with the AGGy ; simulation.

The second Arimaa winning condition — capturing all opposing rabbits — can be disregarded
in Arimaa’. This is because, apart from all the rabbits in the simulation, the one in the
rabbit prison must also be captured. In order to do this, a player must get a free piece
outside the grid, and as soon as a player achieves that, it is equally possible to win by freeing
the player’s own imprisoned rabbit and walking it to the goal rank.

The third Arimaa winning condition has been simply removed from Arimaa’, as noted in
Definition 8.2. But note that in Arimaa’, if a player moves a piece and then ends (rather
than begins) their turn with no movable pieces, then their opponent can force a win by
passing twice and causing them to lose the game by the new repetition rule.

2.4.5 Reducing Arimaa’ to Arimaa

We now show that reducing AGG1 1 to Arimaa’ suffices to prove our main theorem.
» Lemma 2. n x n Arimaa is PSPACE-hard if Arimad’ is PSPACE-hard.

Proof. For any Arimaa’ position with board state P’, we show how to convert it to an n x n
Arimaa board state P such that Gold wins in P if and only if Gold wins in P’ (with the
same player to move). This works in polynomial time. We begin by introducing the concept
of a cat cage, seen in Figure 7. The cat cage depicted is empty, but in the actual construction
a (silver or gold) cat is placed on one of the two empty squares in the middle. A cat cage is
gold (respectively, silver) if a gold (respectively, silver) cat is put into one of the two central
empty squares.

In P, the board state is identical to that of P’ except that a gold and a silver cat cage
are placed outside the grid. By the cages’ design, a cat in one of the two middle squares of a
cage is only able to move back and forth between those squares, and all other pieces in the
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Figure 7 An empty cat cage.

cage remain immobile no matter the position of the cat. Further, note that there will never
be interaction between the pieces of the cat cages and those of the grid, because any player
who would somehow get a free piece outside the grid would just move it to the rabbit prison
to free the rabbit and win. These considerations lead us to the following definition.

» Definition 13. A grid state is an arrangement of pieces on the grid, without consideration
of which player is moving next or the caged cats’ positions. A cat cage move is a turn in
which the player simply moves the caged cat to the other accessible square and ends the turn.
Thus, a cat cage move leaves the grid state intact and changes only a caged cat’s location.

We now argue that the rule differences between n X n Arimaa and Arimaa’ described
in conditions 8.2-8.3 do not change the outcome of the game. By assumption, the Arimaa
players can play the same grid moves as the Arimaa’ players. Passing moves are not legal,
but these can be simulated by cat cage moves. The cat cages also ensure that players will
not lose the game by beginning a turn with no free pieces. Still, we must show that our
remark about Arimaa’ players losing if they end a turn with no free pieces applies to the
Arimaa game.

During the course of play, suppose the Arimaa board is in an arbitrary board state and a
player (without loss of generality, Gold) has just ended a turn with no free non-cage pieces.
We will show that Gold loses in this situation.

Assume without loss of generality that each cat is on the south square of its cage. Given
a grid state C, let C' ||} denote the board state consisting of grid state C with both caged
cats on the south square. The current position can then be written gC' ||}, denoting that
Gold has just caused board state C' |}{|. From position gC ||, Silver can make a cat
cage move (moving its cat to the north square), resulting in position sC Jf}. As Gold has
no more legal moves left in the grid, he is forced to make a cat cage move, resulting in
position gC ). Because Gold has no other options, Silver can force the following sequence:
gC || (initial position), sC {1, gC 1, sC 1}, gC Y4 (second occurrence), sC | (second
occurrence), gC M1 (second occurrence), sC 1} (second occurrence). From here, Gold has
to create position gC |}, but this is illegal in Arimaa as it repeats the position a third time.
Accordingly, Gold has no legal moves and loses by Arimaa rules.
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We now see that the presence of cat cages and the use of the repetition rule compensates
for the difference between Arimaa and Arimaa’ caused by the 8.2-8.3 rule changes. On the
other hand, while passing can be simulated by with cat cage moves, Arimaa player can
actually make cat cage moves back and forth for longer than players can pass back and forth
in Arimaa’ (compare the move sequence above in this proof with Remark 9). However, just
as in Arimaa’, players cannot trivially undo an opponent’s decision to simulate passing the
turn with cat cage moves; we have seen that if a player’s opponent insists on only cat-cage
movement, then the player must eventually progress the simulation with a move in the
grid. <

» Remark 14. In the course of play, there may arise positions in which the grid contains
arrangements of pieces that function similarly to a cat cage. That is, there may arise groups
of pieces internally within the grid such that a cat imprisoned inside is mobile, but can only

move through a fixed region of squares within. We call such a region a synthetic cat cage.

This may occur after a player uses a turn switcher gadget (see Section 3.3.2).

We observe that synthetic cages have no effect on the outcome of the game, for either
the Arimaa’ or Arimaa players discussed above. If an Arimaa player makes a synthetic cage
move, the result is equivalent to making a cat cage move.'! If an Arimaa’ player makes a
synthetic cage move, the opponent can respond with a pass, forcing the first player to do
something productive.

2.4.6 Reachability from the starting position

Before we proceed to the proof of the main theorem, we note that any simulated AGGq
position on an Arimaa and Arimaa’ board can be reached from the start of the game. This is

easy to see, as pieces can move any direction (except rabbits, which cannot move backward).

The board must be large enough that the home ranks can contain all pieces needed for the
simulation. Then the players offer each other no resistance when moving pieces to form the
simulated AGGq.; position. Excess pieces can be captured in traps.

3 Proof

In this section we present the formal proof of Theorem 1:
» Theorem 1. The Arimaa decision problem is PSPACE-hard.

It will be clear that the reduction from AGGi ; to Arimaa’, like the reduction from
Arimaa’ to Arimaa, is polynomial-time computable.

3.1 Movement through the grid

The simulation of the AGG;; game in Arimaa’ works by always having only one player,
called the active player, incentivized to move pieces, while the other player, called the inactive
player, simply passes the turn repeatedly, until the active player completes a series of moves
that simulate marking a node. This process involves a partial gadget called a turn switcher
(see Section 3.3.2). After this, the roles switch as the second player becomes incentivized to
move pieces while the first player repeatedly passes the turn, and so on. This continues until
the simulated AGG; ; game is complete.

"' The reader can verify that if both players are making (synthetic or non-synthetic) cage moves in a
sequence similar to the eight-turn sequence in the proof above, then switching mid-sequence to moving
a cat from a different cage does not help.
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Figure 8 An AGG1 .1 graph (left) and sketched representation by Arimaa’ gadgets (right).

» Definition 15. The key piece in the grid is the loose cat, a free cat that is the only piece
on the board able to travel. This cat is capable of moving from one gadget to the next. For as
long as the simulation is running, the active player will have a loose cat.

The simulation begins with Silver active (see Section 3.3.1). Players keep their roles until
forced to switch in a turn switcher (see Section 3.3.2). We consider two cases. If the active
player has a winning Geography strategy, the active player will have incentive to continue
making moves that progress the AGG; ; simulation. If the active player does not have a
winning strategy, the inactive player will keep passing turns and thereby force the active
player to keep making moves in the simulation. In this case, while the active player may
initially make irrelevant moves, the threat of threefold repetition will eventually force the
loose cat to make progress in the simulation. This principle ensures that the losing player
keeps moving through the corridors and turn switchers. So, in either case the simulation will
eventually reach its natural conclusion.

3.2 Connecting gadgets

Before we present the details of the gadgets representing the different nodes of the AGGj 3
game, we look at how they are stitched together to form the grid. In Figure 8 we see how
the example AGGy 1 graph from Figure 3 looks once transformed into square blocks. The
example is made out of a starting node, one fork, two joins, two pipes, and eight bends.
These blocks will become the gadgets in the reduction. For some examples, see Figure 9.
The gadgets each use 49 concatenated standard Arimaa boards, arranged in a 7 x 7 square.
The connecting corridors are all centered and have standard parity, ensuring that the gadgets
connect correctly to each other. The detailed figures in the rest of this section cut off some
of the corridor and empty space, leaving only the most critical parts of the gadgets or partial
gadgets visible.

3.3 Gadgets

All the stable structures forming the simulation are built in standard parity, except for the
turn switcher. Most gadgets in this section are depicted in just one color, but each can be
transformed by reversing the piece colors, while preserving the parity by shifting the wall
position one square as discussed in Section 2.4.2. The turn switcher poses a more difficult
challenge, as we will see in Section 3.3.2.
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Figure 9 Complete gadget examples.

3.3.1 Starting gadget

Recall that an AGG1 1 game starts with Gold marking the start node and Silver then marking
the next node. The player exiting the gadget simulating the start node should therefore be

Silver. This gadget representing the start node is nothing more than a corridor that is closed

on one side, with the other side connecting to the gadget representing the second node (see
Figure 10). In it is a loose silver cat to start the simulation. This is the only free piece at
the outset; the other pieces on the board are either part of the grid or rabbit prisons, hence

stable.

3.3.2 Turn switcher

This is the most important and complex partial gadget, responsible for switching the active
and inactive player. In broad terms, it activates when a loose cat approaches and frees a
friendly cat that then pushes an opposing rabbit down a narrow passage. At some point,
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"' Figure 10 The critical part of a starting gadget.
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" Figure 11 A turn switcher changing Gold as active player to Silver.

the inactive player will have to respond, as otherwise the second cat will be able to push all
the way through the passage and end up on the other side of the turn switcher, where it
will be able to free an elephant that can be used to win the game. Now follows a detailed
explanation.

Figure 11 shows a turn switcher, which we see is completely stable before it gets activated.
Avoiding repetition, a loose cat from Gold will eventually enter the switcher via the left
corridor, where it will have no choice but to step on the g7 trap square and free the cat on
h7. The h7 cat then has no choice but to push the silver rabbit on i7 east, causing the g7 cat
to be captured. The remaining free cat is then forced to stay east of h7, because on h7 it
would get frozen again, allowing Silver to win by repeatedly passing the turn. At some point,
Gold will have to push the silver rabbit further right to j7 (case 1), k7 (case 2), 17 (case 3),
m?7 (case 4), n7 (case 5), o7 (case 6), and/or p7 (case 7). As Gold can push the rabbit up
to twice per turn before Silver gets to move, Gold must choose which squares to allow the
rabbit to be on when Silver starts her turn. For example, if Gold wants to avoid leaving the
rabbit on m7, then Silver will necessarily have turns in which her rabbit begins on 17 and n7.
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We consider all cases below. In each case, we will assume Gold keeps the loose cat adjacent
to the silver rabbit between j7 and p7. If Gold instead decides to abandon the silver rabbit
and bring the cat back west, nothing changes in how Silver should act.

Case 1 (j7)

The silver cat on j8 is now free and can push the k8 rabbit, freeing the elephant on j10 and
allowing it to break down the wall and complicate the position. However, this series of events
would never happen, because this requires both players to cooperate; Gold would have to
choose to push the rabbit to j7 and end the turn, and Silver would then have to move the j8
cat. Whichever player has a winning strategy in the AGGy.; simulation could decline to let
this sequence of moves occur.

Case 2, 4 (k7, m7)

The silver rabbit is frozen, so Silver simply passes and soon Gold must push the rabbit again.

Case 3 (17)

Similar to cases 2 and 4. The rabbit can only move one square east before it gets frozen
again, but it will have no incentive to do so as Gold can reply by immediately starting to
pass all turns, causing Silver to lose the game. Meanwhile, the silver cat on 16 is technically
unfrozen now, but remains still unable to move because it has become blockaded.

Case 5 (n7)
Similar to case 1, with the n6 cat replacing the j8 cat.

The interesting cases are 6 and 7, as Silver will be forced to stop passing and make a
move in the simulation. At the end of case 6, the roles of active and inactive player will have
been switched. Case 7, we will see, will never occur.

Case 6 (07)

In this position, we claim that Gold is now making a game-winning threat, forcing Silver to
stop passing and instead move her now free rabbit. The threat is that if Silver passes now,
Gold can double-push the rabbit east to q7 in his next turn, after which Silver is unable to
stop Gold from going to the elephant prison and winning the game. We now explain how
Gold would accomplish this, after which we describe Silver’s answer to the threat.

The elephant prison is centered around the square z4. The purpose of the elephant prison
is to give the active player a way to free an elephant without freeing the opponent’s pieces.'?
In the event that Silver has not stopped the loose cat of Gold from walking all the way to p7
and pushing the silver rabbit all the way to q7, Silver now has no free pieces in this turn
switcher. This allows Gold’s cat to keep the rabbit frozen and push it into a trap at his
leisure, then move toward the gold 4 on z7. Unfreezing the 4 activates the elephant prison.
The 4 can move aside to give room to the elephant on z5 to push out the 5 on z6 (keeping it
always frozen). This 5 may be captured with any of the available traps, leaving the elephant
completely free. The silver 5s on y5 and aab stay frozen by the gold elephants below them.

12 As it turns out, this construction is more elaborate than strictly needed. It would suffice to replace the
elephant prison with normal wall, letting one of the wall’s outer 4s play the elephant’s role, as 4s are
also large enough to escape the grid and win. Still, we aesthetically favor using the strongest piece.
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After the elephant is freed, it can move through the gaps in the walls and escape from
the grid to the large empty space outside. Once there, it will go to its friendly rabbit prison
to free the rabbit there and win the game.

Returning to our initial case 6 position, Silver can and must prevent all this by moving
her rabbit from o7 to p7, which unfreezes the cat on p6 so that it can push the gold rabbit
on 06 to the o7 trap.'® The purpose of Silver pushing the gold rabbit from 06 onto 07 is to
restrict the mobility of Gold’s n7 cat. If Silver doesn’t do this, Gold’s n7 cat would have
the freedom to travel east and escape the turn switcher, which could benefit only Gold. So,
having now used three out of four movement steps this turn, Silver can either end the turn
now or move her cat back to p6 and then end the turn. Assume for simplicity that she
chooses to move now to p6, since we will see that the cat must move to p6 soon anyway.

After this turn by Silver, it is Gold to move. In this position, we claim Gold now has no
choice but to pass his turns. Observe that the rabbit now on the o7 trap square is immobile,
as it is blocked laterally and to the north, and gold rabbits can never move south. Further
observe that if Gold moves his n7 cat, this rabbit will be captured by the trap, and Gold
would only end up making irrelevant moves with his cat between i7 and n7 (moving all the
way to h7 would just get it frozen). Meanwhile, Silver would simply be able to pass the turn
repeatedly and make Gold lose the game by repetition.'* So, with Gold forced to keep his
cat and rabbit still, we see that he must pass, at which time Silver becomes the active player
and the silver cat now located on p6 becomes the loose cat. It is now free to go into the
rest of the gadget this turn switcher is a part of and continue the simulation. The gold cat,
meanwhile, stays permanently imprisoned between i7 and n7 and will never again be relevant
in the game (see Remark 14).

As an aside, note that Silver cannot leave the switcher with both her newly loose cat
and her rabbit, as each cannot free the other without freezing itself. (The useless rabbit is
anyway confined to only six squares — see fn. 13.) So there is always only one loose piece.

Case 7 (p7)

Gold will not allow this to occur. If he does, Silver wins as follows. First, Silver captures
the cat on the o7 trap by pulling the adjacent 06 rabbit with her p6 cat. Then she freezes
that rabbit by pushing it back to 06. Gold has no choice now but to pass. The silver cat
now pushes the rabbit to the o7 trap, capturing it, and travels backwards through the turn
switcher to the west side. Careful to avoid the g7 trap, it frees the frozen 3, which frees a 4,
which then escapes the grid and wins the game, similarly to gold’s threat from case 6.

» Remark 16. In the construction of turn switchers, there are some subtleties in changing
the switcher’s color and/or direction, since almost every piece in it has its own function and
since it is precisely built around and onto the trap squares. It also has an internal parity

131t would be a losing strategy for Silver to move her rabbit further east than p7, as that would allow
Gold’s cat to catch up and freeze the rabbit, move it into a trap and win via the elephant prison. In
any case, silver rabbits cannot move north, so the s6 cat will keep it forever confined to squares q7, r7,
s7, g6, r6, and gb.

M Note that even if this were an Arimaa game rather than Arimaa’, Gold would still lose the game. Tt
might seem at first glance that Gold’s initial westward movement of his cat is itself a sort of synthetic
cat cage move, making Gold the initiator (and therefore winner) of an eight-move repetition sequence
(as he shuffles his cat between m7 and n7), but this is not the case. Gold’s first movement to m7 causes
the o7 rabbit to be captured, creating a necessarily new Arimaa position and allowing Silver to be the
first to mark time in a cat cage.
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change'® where there is a double column of adjacent rabbits and elephants of the same color.
The upper left and the entire bottom side of the turn switcher in Figure 11 are of standard
parity, so they need no adjustment to connect to walls of standard parity. The upper right
corner, however, is not, so an extra gap of space is left between that part of the turn switcher
that is not of standard parity and the wall that is. The gap is not wide enough for enemy
cats to go through, as they would still be frozen by the pieces making up the wall.

Our reduction requires four types of turn switchers: rightward gold-to-silver (as in
Figure 11), leftward gold-to-silver (as in Figure 13, right turn switcher), rightward silver-
to-gold (not depicted), and leftward silver-to-gold (as in Figure 9a). All are constructed
similarly, but with the following adjustments. Changing the turn switcher’s direction requires
mirroring it over its vertical axis, resulting in a parity change. Changing its color requires
switching its piece colors and mirroring it over the horizontal axis (since gold and silver
rabbits are mirrored in their vertical movements). In all cases, a wall gap similar to the one
in s12-t12 in Figure 11 is included where needed.

3.3.3 Pipes and Bends

A pipe is easily constructed by a straight corridor with a turn switcher. A bend is similar, but
with a 90° corner. Bends can be made in any direction, with the turn switcher in whichever
of the two corridors connected by the corner is horizontal. See Figure 9a for an example.

3.3.4 Joins and Sleds

A join can be constructed from a two facing turn-switchers that feed into a common central
area that leads into a vertical corridor. Within the central area are two occurrences of a
small partial gadget that we call a sled. We now describe the workings of sleds, after which
we discuss the join itself and how it uses sleds.

14 4 4 4 14 4 4 4 14 4 4 4

131 45 4 45 4 45 4 1B 45 4 45 4 45 4 13 45 4 45 4 45 4

12045 6545654565 120456545605 4565 12045 6545654565

uf 454565 4 6 5 4 1 4545654 65 4 nf 454565 4 6 5 4

10 4 45 4 4 10 4 45 4 4 10| 4 4 5 4 4

I ; X ) X X

8 2 8] 2 8 2 8] 2 8 213 2

71 12 2 7 2 7 2

; @ ¥ ; w@ X X BIx

5] 4 4 4 51 4 4 4 5] 4 4 4

114 5 4 45 4 45 4 44 5 4 45 4 45 4 14 5 4 45 4 45 4

356 54565 45605 4 356 545 6545654 356 545605 45654

245 4 45 4 45 4 214 5 4 45 4 45 4 214 5 4 45 4 45 4
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abcdef ghi j k1 abcdef ghi j k1 abc de f g hi j k1
(a) Before. (b) During. (c) After.

Figure 12 A sled between two walls in a corridor in different stages of use.

Sleds are built between two corridor walls. They are designed to let just a single loose
cat pass a single time. See Figure 12 for a sled in action. In 12a we can see a loose cat (b7)
traveling east inside a corridor, encountering a sled. The sled functions like a dead end for

15The reason for this internal change of parity is that the turn switcher needs to be in standard parity
both above and below the entrance — i.e., both h6 and h8 have silver pieces in Figure 11 — in order to
keep the h7 cat initially frozen. By contrast, 06 and o8 have pieces of opposite color, as do p6 and p8,
in order for the turn switcher mechanism to work.
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this cat, and eventually it will have no choice but to move onto the trap square e6, as seen
in Figure 12b. Now the cat on {6 is unfrozen and has no choice but to move east, becoming
the new loose cat as the e6 cat gets captured (see Figure 12¢). This new loose cat is free to
go north (g7) and east (h7), then continue movement through this corridor. Observe that
the sled can only be used in its intended direction and only one time.'6

Recall that the main feature of an AGGy ; join is that it is the only type of node that may
be marked twice, and subsequently the player who marked it wins the game. The Arimaa’
join gadget is designed to work similarly. In Figure 13 we see a join ready to be marked by
Gold.'™ So Gold enters this join and Silver leaves it. Without loss of generality, assume Gold
enters from the west. Silver emerges from the turn switcher and has no choice but to use the
sled on the west side. With the loose silver cat now in the middle of the join, the only place
it can go is the vertical corridor exiting the gadget toward the turn switcher of the next node
gadget (north of this join gadget), since the east sled cannot be used from this side. The next
time this join gadget is used, Gold will activate the turn switcher on the east to enter. Silver
again emerges and has no choice now but to use the eastern sled and again go to the vertical
corridor leading to the next gadget. But since the next gadget’s turn switcher cannot be
used twice (the entrance works like a sled), Silver is now unable to get past this point. Stuck
in a dead end, she will eventually run out of new moves and lose the game by repetition.

3.3.5 Forks

Forks gadgets represent nodes with indegree 1 and outdegree 2. The fork shown in Figure 14
is a gold fork. The silver loose cat that will leave the turn switcher may choose to take either
the northern or southern outgoing corridor. Backtracking at a later stage in the simulation
to also use the other direction of the fork is impossible, as each node the fork feeds into has
a turn switcher, which a cat cannot go through in reverse.

3.4 Proof conclusion

We see that every gadget works as required. This completes the proof of Theorem 1. |

16 The metaphor of a sled is imperfect, since the cat entering the contraption is not the same physical cat
as the one coming out. But it is our attempt to convey a form of uni-directional travel that (for a cat,
at least) can be used only once.

17 This depiction is modified from the one in Figure 9c, in order to show its functioning more clearly. The
official join from 9c is more compressed and has only one elephant prison that is shared by both turn
switchers.
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4 Discussion and Conclusion

4.1 Overview

The inception of the game Arimaa has inspired many researchers to explore the practical
complexity of the game when developing their bots. The result of this paper on the theoretical
complexity of the game proves that the problem of solving Arimaa is intractable (under the
assumption P C PSPACE). It also gives us a way to compare the game to other games in
terms of difficulty, and of course adds one more problem to the library of known PSPACE-hard
problems.

As remarked earlier, one notable feature of this proof is that it shows PSPACE-hardness
of a game whose pieces only move short distances in a single turn. While our reduction
strategy is largely based on that of [16] for chess, chess does not present this same challenge
because some pieces can move arbitrarily many squares per turn. In Arimaa, the strictly
local movement of pieces calls for the idea of cat cages and Arimaa’ in our reduction.

4.2 Future research

This paper shows that Arimaa is PSPACE-hard because AGG1 1 reduces to Arimaa’, which
in turn reduces to Arimaa. The reduction presented in the proof works with traps placed on
the corners of a 4 x 4 square, with four empty spaces between adjacent groups of traps and
two empty spaces separating traps within a group. However, another way to generalize the
standard 8 x 8 Arimaa board could be to place traps with two empty spaces between them
in all directions. For this alternative version of n x n Arimaa, the reduction in this paper
would no longer work, as it is impossible to create any kind of stable building block like the
one we used here for the walls. This does not rule out all other possible reductions, but at
the moment we do not know how they would look. With minor adjustments, our reduction
can work with a constant number of three or more empty squares between traps, although
that might be less in line with the spirit of the original game. In future research it would be
interesting to see a reduction for a version containing traps spaced with two squares between
them in every direction (rather than alternating gaps of two and four squares), if possible.

Further, as discussed in this paper’s introduction, we expect that it is possible to prove
Arimaa is EXPTIME-hard, perhaps using a reduction similar to that of [8]. Raising the lower
bound of Arimaa’s complexity to match the upper bound, this would make Arimaa EXPTIME-
complete, just like chess (without a generalized 50-move draw rule) [8], checkers [13], and Go
(with Japanese ko rules) [12]. However, we also consider it possible, though less likely, that
Arimaa is in PSPACE and is therefore PSPACE-complete.
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