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Abstract
Elo rating systems measure the approximate skill of each competitor in a game or sport. A
competitor’s rating increases when they win and decreases when they lose. Increasing one’s rating
can be difficult work; one must hone their skills and consistently beat the competition. Alternatively,
with enough money you can rig the outcome of games to boost your rating. This paper poses a
natural question for Elo rating systems: say you manage to get together n people (including yourself)
and acquire enough money to rig k games. How high can you get your rating, asymptotically in
k? In this setting, the people you gathered aren’t very interested in the game, and will only play
if you pay them to. This paper resolves the question for n = 2 up to constant additive error, and
provides close upper and lower bounds for all other n, including for n growing arbitrarily with k.
There is a phase transition at n = k1/3: there is a huge increase in the highest possible Elo rating
from n = 2 to n = k1/3, but (depending on the particular Elo system used) little-to-no increase for
any higher n. Past the transition point n > k1/3, the highest possible Elo is at least Θ(k1/3). The
corresponding upper bound depends on the particular system used, but for the standard Elo system,
is Θ(k1/3 log(k)1/3).
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1 Introduction

The Elo Rating system was proposed by Arpad Elo in the mid 20th century to estimate
the relative skill of chess players [2]. It was quickly adopted by the international chess
community, and in the decades since has seen adoption in many competitive contexts. This
paper considers a simple combinatorial question about the Elo system. To the author’s
knowledge, this is the first time this question has been posed in print: given n players
starting with equal rating, what is the highest a player could be rated after a
total of k games are played?

We begin with a definition of the system then provide its motivation. Each player is
given some “rating” value (measured in “points” or simply “Elo”), which updates as they
play games. These rating points are somewhat analogous to poker chips: when player A and
player B play a game, they each place some of their rating points into a pot. In the case of a
draw, the players split the pot evenly. If one player wins, they take the entire pot. The heart
of the Elo system is dictating how many points each player must ante up. To do so, each
implementation of the system specifies a “pot function” σ satisfying
1. σ is non-negative and monotonically increasing, and (1)
2. σ(z) + σ(−z) = 1 for all z ∈ R.
Let rA and rB be the ratings of players A and B respectively. When players A and B play,
the number of points they ante up are K · σ(rA − rB) and K · σ(rB − rA) respectively, for
a total pot size of K. Players are allowed to go into debt if they don’t have the required
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29:2 Achieving the Highest Possible Elo Rating

points, i.e. negative ratings are perfectly fine. The value of K itself is a parameter of the
system. The resulting rating updates for different outcomes of a game between A and B are
as follows:

A wins A and B draw B wins

r′
A = rA + K · σ(rB − rA) rA + K

2 · (σ(rB − rA) − σ(rA − rB)) rA − K · σ(rA − rB)

r′
B = rB − K · σ(rB − rA) rB + K

2 · (σ(rA − rB) − σ(rB − rA)) rB + K · σ(rA − rB)

(2)

The motivation for this system comes from thinking of the outcome of a game as a random
variable. For some symmetric random variable η, the event rA − rB + η > 0 is recorded as a
victory for A, rA − rB + η < 0 as a victory for B, and rA − rB + η = 0 as a draw. Set

σ(z) = Pr(η < z) + 1
2 Pr(η = z) (3)

so that σ is a kind of “symmetrized” cumulative distribution function of η (which coincides
with the usual cumulative distribution function when η has no atoms). Given η, setting
σ to satisfy (3) guarantees it satisfies (1). Conversely, given any σ satisfying (1), one can
define a symmetric random variable η satisfying (3), if some of the mass of η is allowed to
be at infinity (i.e. limz→∞ Pr(η ≤ z) need not be 1 and limz→−∞ Pr(η < z) need not be
0). Under this probabilistic model, observe that E(r′

A) = rA and E(r′
B) = rB . So one gains

points for performing “better than expected” and loses points for performing “worse than
expected”. One additional natural assumption is that η has a finite expectation, though it is
not required.

Given some real-world game, one should attempt to pick η so that these estimated
probabilities match the empirical win-loss rates observed. The proposal by Elo in the 1960s
was to take η to be Gaussian, citing the ubiquity of the normal distribution in nature [1].
However, the community soon decided a logistic random variable was more suitable, leading
to the pot function of σ(z) = 1

1+e−cz for some constant c [2]. The International Chess
Federation (FIDE) has long used c = log(10)/400 ≈ 5.76 × 10−3 [4, Chapter B02], though
recent analysis suggests c = 5

6 · log(10)/400 ≈ 4.80 × 10−3 reflects real-world chess data much
better [6]. Depending on various factors, FIDE uses K in the range of 10 to 40. The range
of ratings exhibited by human players is roughly 0 to 3000 [4, 3]. This paper considers a
generic pot function σ, and applies the results to several specific families of pot functions
listed in Table 1.

There are additional complications in real-world implementations of Elo. For legibility
and practicality, fractional and negative rating points are avoided by scaling and shifting
points up and rounding to the nearest integer, and by imposing an artificial floor on possible
ratings (by gifting a player points if they would otherwise dip below the floor). The total
size of the pot K may also vary depending on various factors, such as how many games
each player has played before. For example, K may be large for a new player to facilitate
faster convergence of their rating to their true skill level, and may decrease over time to
reduce arbitrary fluctuations for experienced players. Sometimes rating updates are batched.
That is, one accumulates their pot winnings and losses over several games, and updates
their rating once at the end. Often times all the games played at a single tournament are
batched together in that manner. All these details and even more complications are outlined
thoroughly by different organizations implementing Elo; one may read about them in, for
example, the FIDE Handbook [4].
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1.1 Setting and results
This paper considers n players starting with equal ratings. Players’ ratings update on a
game-by-game basis according to (2) with K = 1 kept fixed. In particular, both fractional
and negative points are possible and rating updates are not batched. Since the dynamics
depend only on the difference between ratings, we can take everyone’s initial rating to be
0 without loss of generality. Asymptotically in k, we seek the highest one of the n players
may be rated after a total of k games are played amongst all of them. This question is
interesting both for fixed n, and for n allowed to grow with k. We find a phase transition at
n = k1/3: there is a huge increase in the highest possible Elo rating from n = 2 to n = k1/3,
but (depending on σ) little-to-no increase for any higher n. This paper is organized into four
main sections.
Section 2: the highest Elo problem for n = 2 is resolved up to constant additive error.
Section 3: a lower bound is provided for each n by finding a family of strategies which

achieve a highest rating of Θ
(
min(n, k1/3)

)
for any pot function. Note the bound does

not improve past n = Ω
(
k1/3)

.
Section 4: an upper bound on the highest possible rating for each n is provided with a mild

natural assumption on σ.
Section 5: open questions and a surprising connection to the maximum overhang problem

are discussed.
The gap between the upper and lower bounds depends on which σ is used. In particular,
the key quantity is the left-tail behavior of σ. A quickly decaying tail corresponds both to a
small asymptotic rate in the case of n = 2, and to nearly matching upper and lower bounds
for general n. Our main result is stated in terms of the following function, which quantifies
the rate of decay of the left-tail of σ:

f(x) =
∫ x

0

1
σ(−τ) dτ (4)

Note that faster the left tail of σ decays to 0, the faster f diverges to infinity. Note that
non-negativity and monotonicity of σ means that f is increasing and convex. This main
theorem summarizes the results from each section.

▶ Theorem 1. Let R(n, k) be the highest possible Elo rating achievable with k games and n

players starting with 0 Elo points. Fix any pot function σ and let f be as in (4). Then
1
2f−1(2k) ≤ R(2, k) ≤ 1

2f−1(2k − 2) + 5
2 .

Now assume that supz z σ(−z) < ∞. Fix n = h(k). If h(k) = Ω(k1/3), then there exists
constants C1, C2 such that for sufficiently large k, one has

C1k1/3 ≤ R(h(k), k) ≤ C2k1/3f−1(k)1/3.

Furthermore, if h(k) = o(k1/3) then

C1h(k) ≤ R(h(k), k) ≤ C2h(k)f−1(k/h(k)).

Proof. R(2, k) handled in Section 2. The lower bounds for R(h(k), k) are in Section 3 and
the upper bounds are in Section 4. ◀

▶ Remark 2. The results hold even if the players all start with distinct ratings, provided
that all the initial ratings fall into some bounded interval independent of n and k, and that
there’s some point around which the inital ratings are symmetric. That is, there exists some
value r0 such that for every player rated r there’s one rated 2r0 − r.

FUN 2024



29:4 Achieving the Highest Possible Elo Rating

Table 1 lists the value of f−1 for several natural families of σ and names the corresponding
η where appropriate. For the logistic pot function, f−1 is logarithmic and Theorem 1 implies

R(2, k) = 1
2c

log(2k) + O(1) and R(n, k) = Θ̃
(

min
(

n, k1/3
))

where Θ̃ suppresses log factors. For any pot function that eventually hits 0 (for example, the
“uniform” pot function max(0, min(1, cz + 1/2))), let x be such that σ(−x) = 0 and note f

has a vertical asymptote at x. This means f−1 is bounded, so Theorem 1 implies

R(n, k) = Θ
(

min
(

n, k1/3
))

where Θ only suppresses constant factors. At the other extreme, σ need not converge to 0 at
all. In this case, f−1(k) = Θ(k). The upper bounds in Theorem 1 no longer hold, but just by
noticing the total pot size for each game is bounded, one sees R(n, k) = Θ(f−1(k)) = Θ(k)
anyway.

Table 1 The value of f−1 for some selected families of pot functions. Most of the families are
parameterized by some constant c, which correlates with the slope of each σ at 0. The logistic pot
function in the top row is the usual one used by real-world implementations of Elo.

η σ(z) f−1(k)

Logistic 1
1+e−cz

1
c

log(ck) · (1 + O(1/k))

– 1
2

cz

(1+|cz|p)1/p + 1
2

(
1

2cp · p+1
p

) 1
p+1 · k

1
p+1 · (1 + o(1))

Gaussian 1
2 erf(cz/

√
2) + 1

2
1
c

√
log k · (1 + o(1))

Uniform min
(
1, max

(
0, cz + 1

2

))
1
2c

− e−ck

2c

Cauchy 1
π

arctan(cz) + 1
2

√
2/cπ · k1/2 + O(1)

– c
2 sign(x) + 1

2
2

1−c
· k

2 Case of n = 2

When there are only two players, H and L, as their ratings rH and rL grow further apart, the
fewer rating points the higher player H can earn from the lower L each time. If σ(−x) = 0
for some x, the difference in the ratings of H and L cannot exceed x + 2. To see this, observe
that a game can only increase the value of rH − rL if |rH − rL| < x, and furthermore, rH

and rL can each change by at most one point in each game. Since rH + rL = 0 is invariant,
this immediately implies

rH ≤ x

2 + 1

independently of how many games are played. On the other hand, if σ(−z) > 0 for all z,
then rH − rL will diverge. To see this first note monotonicity of σ means σ is bounded away
from 0 on each compact interval. Then, note H beating L will change the value of rH − rL

by applying the map g : z 7→ z + 2σ(−z). The orbit can only converge if σ(−gj(z)) converges
to 0, which cannot happen for bounded z by assumption. In the former case, we may still
ask how quickly the bound rH ≤ z

2 + 1 is achieved, and in the latter case we ask how quickly
the orbit diverges. Intuitively, the faster σ(−z) decays to 0 as z → ∞, the slower the rate.
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Indeed, as the next theorem makes explicit, there is a simple expression for the rate in terms
of the f defined in (4). Note f is only well defined for {x : σ(−x) > 0}. Nevertheless, it’s
continuous and strictly increasing, and its range is all of R. This implies for any σ that it
has a well defined inverse f−1 defined on all of R. The following theorem takes advantage of
that fact to unify the analysis for every σ.

▶ Theorem 3. Fix any pot function σ. Let r(t) be the highest possible rating after t games
with two players. Then

f−1(2t)
2 ≤ r(t) ≤ f−1(2t − 2)

2 + 5
2 .

Proof. Since the ratings of the two players sum to zero, it suffices to keep track of just the
higher rated player. Call the players H and L for “higher” and “lower”. Let r(t) be the rating
of H after t games. Then −r(t) is the rating of L after t games. Under the assumption that
H wins every game, we have the simple recurrence

r(0) = 0 r(t + 1) = r(t) + σ(−r(t) − r(t))
= r(t) + σ(−2r(t)).

This can be viewed as running Euler’s method on the differential equation

y(0) = 0 y′ = σ(−2y)

with a step size of 1. Since y′ is positive and monotonically decreasing in y, the Euler
approximation upper bounds the exact solution. That is,

r(t) ≥ y(t).

Using separate and integrate, one sees the exact solution to the differential equation is

y(t) = 1
2f−1(2t).

This establishes the lower bound. For the upper bound, we cannot assume that the optimal
strategy is for H to win every game. In particular, the function z 7→ z + σ(−2z) need not
be monotone, so we cannot exclude the possibility one can achieve a higher rating by first
losing a game and “slingshotting” to a higher rating exploiting the fact that σ(−2y) is larger
for smaller y. Construct a sequence xj based on the recurrence

x0 = 1 xj+1 = xj + σ(−2xj + 2). (5)

This sequence defines a partition of the positive real line, (0, x0], (x0, x1], (x1, x2], (x2, x3] · · · .

Again we take r(t) to be the rating of H after t games, but instead of a strict recurrence
we only have an inequality r(t + 1) ≤ r(t) + σ(−2r(t)), which is tight only when H wins
game t + 1. We now relate r(t) to xj . If r(t) ≤ 0, then r(t + 1) ≤ r(t) + 1 ≤ 1 = x0. If
r(t) ∈ (0, x0], then r(t + 1) ≤ r(t) + σ(−2r(t)) ≤ x0 + σ(−2x0 + 2) = x1. If r(t) ∈ (xj−1, xj ]
for some j, then

r(t + 1) ≤ r(t) + σ(−2r(t))
≤ xj + σ(−2xj−1)
≤ xj + σ(−2xj + 2)
= xj+1.
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29:6 Achieving the Highest Possible Elo Rating

In each case, we see that

r(t) ≤ xj =⇒ r(t + 1) ≤ xj+1.

Since r(0) = 0 < 1 = x0, we have r(t) ≤ xt regardless of the sequence of wins and losses.
Now similar to before, xt can be viewed as the result of running Euler’s method with a step
size of 1 on the differential equation

y′ = σ(−2y + 2). (6)

Using separate and integrate, see that the solution to the differential equation is

y(t) = 1
2f−1(2t) + 1.

Again the Euler approximation is an upper bound to the exact solution. That is,

xt ≥ y(t). (7)

Suprisingly, this lower bound leads us to an upper bound. We first plug the recurrence (5)
back into itself to express xt as a sum, then use (7) with monotonicity of σ.

xt = x0 +
t−1∑
j=0

σ(−2xj + 2) ≤ x0 +
t−1∑
j=0

σ(−2y(j) + 2). (8)

The summand is the same as the right hand side of the differential equation (6). Then the
sum is Reimann sum of step size 1. But since the summand is monotone, we can bound the
Reimann sum by the integral.

t−1∑
j=0

σ(−2y(j) + 2) =
t−1∑
j=0

y′(j) ≤ y′(0) +
∫ t−1

0
y′(s) ds = y′(0) + y(t − 1). (9)

Note y′(0) = 1/2 and x0 = 1, so combining (8) and (9) gives the final upper bound of

xt ≤ 1 + 1
2 + y(t − 1) = 1 + 1

2 + 1 + 1
2f−1(2t − 2). ◀

3 Lower bound for general n

This section describes two strategies for any number of players and games. The first strategy
does not depend at all on the pot function used, but requires that everyone’s initial ratings
be exactly equal. The second strategy has a small dependence on the pot function used, but
works for any symmetric list of initial ratings. Both strategies produce higher ratings for
larger n, up to n = Θ(k1/3), at which point the asymtotic highest rating in k is Θ(k1/3).
The first strategy is very simple: pick any pair of players with equal rating and have
one beat the other. Repeat until all players have a distinct rating or k games
have been played. This strategy is guaranteed to produce a player of either very high or
very low rating. If it produces a player of very low rating, simply re-do the strategy picking
the same sequence of pairs of players but have the opposite player win. Since game outcomes
are symmetric, this will produce a player of high rating instead.
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▶ Theorem 4. The aforementioned strategy achieves a highest rating of

min
(

k1/3

2 ,
n

4

)
when all players start with 0 rating points. In particular, the rating achieved is Ω(k1/3) for
n = Ω(k1/3).

Proof. Let r(j) be the multiset of player ratings after j games are played and |r(j)| its
element absolute value. We claim that every entry of r(j) is a half-integer. To see this, note
σ(0) = 1/2 for every pot function so player ratings change in increments of 1/2 and all start
at 0. We next claim∑

r∈r(j)

r2 = j/2. (10)

We argue inductively. The claim is clearly true initially when all ratings are 0. When two
players rated a points play, the increase in the functional is

∆ = (a + 1/2)2 + (a − 1/2)2 − a2 − a2 = 1/2.

Suppose the strategy terminates when k games have been played. Then
k

2 =
∑

r∈r(k)

r2 ≤ n max |r(k)|2 =⇒ max |r(k)| ≥
√

k/2n.

Now suppose the strategy terminates when all players have distinct ratings. Then since all
ratings are half integers, that means max |r(j)| ≥ n/4. Without a guarantee on which way
the strategy terminates, we get the worst of both bounds. So the maximum rating is at
least min

(√
k/2n, n/4

)
. If n ≤ 2k1/3, the minimum is n/4. If n > 2k1/3, we can rerun the

strategy ignoring all but the first 2k1/3 players, giving a bound of exactly k1/3/2. ◀

▶ Remark 5. Theorem 4 is unfortunately very brittle. If the initial ratings are perturbed
slightly, we can no longer assume all ratings are half-integers, nor can we often expect players
to have equal rating. For

σ(x) = 1
2 sign(x) + 1

2 =


1 x > 0
1/2 x = 0
0 x < 0

,

this is indeed the best we can do. If all players have slightly different ratings, no Elo can
be transferred between them. However, there’s a robust version of the strategy that works
for every other σ: first fix some δ > 0 for which σ(−δ) > 0. Pick any pair of players
whose ratings are within δ of each other and have the higher rated player beat
the lower rated player. Repeat until no two players are within δ rating points or
until k games have been played. Note for δ = 0, one recovers the original strategy. As
before, we may have to flip everyone’s rating to ensure we end with a very high rating, as
opposed to a very low rating. We need not assume that the initial ratings are all 0 anymore,
but we do need to allow ourselves this possible reflection.

▶ Theorem 6. Fix any r⃗ = (r1, · · · , rn). The aforementioned strategy achieves a highest
rating of

min
(

δ1/3σ(−δ)1/3 · k1/3,
δ

2 · n

)
for at least one choice of the initial ratings r(0) = r⃗ or r(0) = −r⃗.

FUN 2024



29:8 Achieving the Highest Possible Elo Rating

Proof. The proof is very similar to the proof of Theorem 4. Again we consider the functional∑
r∈r(j) r2. In a game between players rated a < b, the change in the functional is

∆ = (b + σ(a − b))2 + (a − σ(a − b))2 − b2 − a2

= 2bσ(a − b) − 2aσ(a − b) + 2σ(a − b)2

= 2(b − a)σ(a − b) + 2σ(a − b)2.

≥ 2 σ(−δ)2
.

Suppose the strategy terminates when k games have been played. Then

2 σ(−δ) · k ≤
∑

r∈r(k)

r2 ≤ n max |r(k)|2 =⇒ max |r(k)| ≥
√

2 σ(−δ)k/n.

Now suppose the strategy terminates when no two players are within δ rating points. Since
there are a total of n players, that means max |r(j)| ≥ δn/2. As before, without a guarantee
on which way the strategy terminates, we get the worst of both bounds. When

n ≤ 2 σ(−δ)1/3

δ2/3 · k1/3,

the smaller bound is δn/2. When n is larger, one simply ignores the excess players, as
before. ◀

▶ Remark 7. The theorem is best applied with the vector of initial ratings is symmetric,
i.e. r⃗ is a permutation of −r⃗. In fact, by shifting all the points up or down by a constant
amount, they can be symmetric around any (constant valued) point, i.e. r⃗ is a permutation
of (r0, · · · , r0) − r⃗.

▶ Remark 8. This bound is stronger the heavier the tail of σ. Consider, for instance
σ(z) = 1

1+e−cz as c → ∞, or any other family of σ approaching the pathological 1
2 sign(x) + 1

2 .
The bound of Theorem 6 becomes weaker and weaker. This contrasts with the bound of
Theorem 4, which is completely independent of the pot function but requires initial ratings
be exactly equal.

4 Upper bound for general n

In this section, we wish to show the algorithm presented in Section 3 is nearly optimal. Our
strategy is to show that achieving a rating of r requires many games to be played. We
start with a relaxation of the setup: instead of considering a discrete sequence of games
resulting in a discrete sequence of player ratings, we consider a continuous path in the space
of possible player ratings. Call a path r : [0, c] → Rn valid if there exists a finite sequence
0 = t0 < · · · < tk = c such that for each j ∈ [k] there exists w, ℓ ∈ [n] with

r′(t) = ew − eℓ ∀ t ∈ (tj−1, tj)

where ew, eℓ are elementary basis vectors. For convenience, we write r′(tj−1) = ew − eℓ to
make r′ right-continuous. In other words, r has constant speed and consists of line segments
(called edges) along which only two coordinates change. The points r(tj) are referred to as
vertices. We will use the notation

A → B → C
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to denote the path with vertices A, B, C. A sequence of games corresponds naturally to a
valid path: let r(tj) be the list of the players’ ratings after game j. The indices “w” and “ℓ”
conveniently correspond to the “winner” and “loser” for each game. In the event of a draw,
the initially lower rated player is considered the winner as their rating increases. Note

tj+1 − tj = amount of Elo transferred for game j + 1. (11)

Define a weight function

W (x, y) =
{

1
σ(2−⟨x,y⟩) ⟨x, y⟩ > 0
0 ⟨x, y⟩ ≤ 0

(12)

and define the length of the path to be

len(r) =
∫ c

0
W (r′(t), r(t)) dt.

Whereas the Euclidean length of a path is simply c
√

2, the value of len(r) depends highly on
the motion of the path. When a valid path comes from a sequence of games, Lemma 9 shows
len(r) cannot be larger than k. The intuition is that ⟨r′(t), r(t)⟩ = rw(t) − rℓ(t) records
the difference in two players’ ratings, so the Euclidean length of the (j + 1)th edge is is√

2σ(− ⟨r′(tj), r(tj)⟩), which approximately cancels with W (r′(t), r(t)) resulting in constant
contribution.

▶ Lemma 9. Let r be a valid path arising from a sequence of k games. Then

len(r) ≤ k.

Proof. It suffices to show for each edge r(tj) → r(tj+1) that

len(r(tj) → r(tj+1)) ≤ 1

since summing over all edges would produce the final result. Fix any j. Let w, ℓ be the
indices such that

r′(t) = ew − eℓ ∀ t ∈ [tj , tj+1).

Let z = ⟨r′(tj), r(tj)⟩ so that by (11) we have

σ(−z) = tj+1 − tj .

Also note ⟨r′(t), r(t)⟩ = z + 2(t − tj) ≤ z + 2 σ(−z) ≤ z + 2. Then

len(r(tj) → r(tj+1)) =
∫ tj+1

tj

W (r′(t), r(t)) dt

≤
∫ tj+1

tj

1
σ(2 − ⟨r′(t), r(t)⟩) dt

≤
∫ tj+1

tj

1
σ(−z) dt

= 1. ◀

FUN 2024



29:10 Achieving the Highest Possible Elo Rating

Lemma 9 means that instead of bounding k, we can bound len(r). Directly doing so for any
valid path is difficult, so we introduce two additional notions that allow us to make some
additional restrictions on r. Call a valid path ordered if

r1(t) ≥ · · · ≥ rn(t) ∀ t ∈ [0, c].

Each valid path corresponds to an ordered valid path of the same length by doing the
following: each time r intersects a hyperplane of the form xw = xℓ, reflect the remaining part
of the path across it. This makes it possible to refer unambiguously to the pth highest rated
player. It also means ⟨r′, r⟩ does not change sign on each edge. The last notion we introduce
is that of an upset. This is when a lower rated player beats or draws with a higher rated
player. Stated in terms of valid paths, an upset is an edge for which

⟨r′, r⟩ = rw − rℓ < 0

at the starting vertex. We essentially show an optimal strategy, when converted to a ordered
valid path, does not make use of upsets. The precise statement is given in Lemma 10. The
intuition here is that upsets bring the players’ ratings closer together, whereas in order
to make one rating large you need the ratings to be spread out. The proof strategy is to
take any valid path with upsets and convert it to one achieving a higher maximum rating
without upsets. This lemma is the longest and most technical as it involves some casework
in describing this conversion procedure.

▶ Lemma 10. For each valid ordered path r : [0, c] → Rn there exists a valid ordered path
r̃ : [0, c̃] → Rn with

len(r̃) ≤ len(r) and max r̃(c̃) ≥ max r(c)

such that r′ has no upsets.

Proof. Given r, we start by constructing r̃ with a slightly different property than the
requirement of the theorem. We require r(c) = r̃(c̃) and that all the upsets in r̃ occur at
the end. That is, once ⟨r̃′, r̃⟩ becomes negative, it stays negative. Once we have done that,
observe that upsets only decrease the value of max r̃ so we obtain a larger maximum value
by truncating the path just before the upsets.

Fix vector u = (1, 2, · · · , n). Then each valid path r has an associated sequence S(r)
of integers S(r)j = ⟨u, r′(tj)⟩ with one integer for each edge. Since that path is ordered,
each integer is positive if and only if the corresponding edge is an upset. Equip the set of
possible values of S(r) with the lexicographic ordering. Our method for constructing r̃ is
iterative, where each iteration strictly decreases S(r) and does not increase len(r). The strict
decreasing of S(r) guarantees that this procedure terminates after at most n# edges in r steps.

We now describe one iteration. Given a path r, locate three consecutive vertices
r(tj), r(tj+1), r(tj+2) with

S(r)j > 0 and S(r)j+1 < 0.

That is, the two connecting edges are a upset followed by a non-upset. We modify the path
to obtain r̃ by either deleting the middle vertex r(tj+1) from the path and adding an edge
directly from r(tj) to r(tj+2), or replacing the middle vertex with new vertex s. If r(tj+1) is
deleted, S(r) is shortened and therefore decreased. If r(tj+1) is replaced by s, note that only
the jth and (j + 1)th entries in S(r) are affected. So requiring that

S(r̃)j < S(r)j
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suffices for S(r) to decrease overall. Note the right hand side is positive, so it suffices for
S(r̃)j to be negative. We additionally require

len(r̃) ≤ len(r).

The modification differs based on how many coordinates change on those two edges. Edge
edge modifies two coordinates, so this number can be 2, 3, or 4.

Case of 4 coordinates: this corresponds to the players of the two games being
disjoint pairs. Intuitively, the order of the games is irrelevant to the outcome. Set s =
r(tj) − r(tj+1) + r(tj+2). Then S(r̃)j = S(r)j+1 < 0 and len(r) = len(r̃). Case of 2
coordinates: this corresponds to the same two players playing in consecutive games. Let
those players be w, ℓ with w < ℓ. Let Π be the projection onto the w, ℓ coordinates. Then
for some a, b > 0,

Πr(tj) =
[
x

y

]
Πr(tj+1) =

[
x − a

y + a

]
Πr(tj+2) =

[
x − a + b

y + a − b

]
.

Our modification simply deletes r(tj+1), so S certainly decreases. The original length is

len
([

x

y

]
→

[
x − a

y + a

]
→

[
x − a + b

y + a − b

])
=

∫ b

0

1
σ(2 + (y + a − t) − (x − a + t)) dt

=
∫ b

0

1
σ(2 + y − x + 2a − 2t) dt.

=
∫ b−a

−a

1
σ(2 + y − x − 2t) dt.

If a ≥ b, the new length is 0. If a < b, then

len
([

x

y

]
→

[
x − a + b

y + a − b

])
=

∫ b−a

0

1
σ(2 + (y − t) − (x + t)) dt

=
∫ b−a

0

1
σ(2 + y − x − 2t) dt

which is strictly less than the original length since the integrand is the same with a smaller
range. Case of 3 coordinates: this corresponds to one player playing two different
opponents. Let Π be the projection onto those three coordinates in ranked order, i.e.

Πr(tj) =

x

y

z


for x ≥ y ≥ z. There are six possible sign patterns of Π(r(tj+2) − r(tj)), each with a different
selection of s.

Subcase (+, −, +): For some a, c > 0 we have

Πr(tj+2) =

 x + a

y − a − c

z + c

 .

There are three possible values of Πr(tj+1) corresponding to the three possible upsets that
can occur. No matter which one we observe, the selection of their replacement s is the same.

Πr(tj+1) =

 x

y − c

z + c

 ,

 x

y − a − c

z + a + c

 ,

x − c

y

z + c

 , s =

x + a

y − a

z
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The possible original lengths are as follows.

L1 = len

x

y

z

 →

 x

y − c

z + c

 →

 x + a

y − a − c

z + c

 =
∫ a

0

1
σ(2 + (y − c − t) − (x + t)) dt

=
∫ a

0

1
σ(2 + y − x − c − 2t) dt,

L2 = len

x

y

z

 →

 x

y − a − c

z + a + c

 →

 x + a

y − a − c

z + c

 =
∫ a

0

1
σ(2 + (z + a + c − t) − (x + t)) dt

=
∫ a

0

1
σ(2 + z − x + a + c − 2t) dt,

L3 = len

x

y

z

 →

x − c

y

z + c

 →

 x + a

y − a − c

z + c

 =
∫ a+c

0

1
σ(2 + (y − t) − (x − c + t)) dt

=
∫ a+c

0

1
σ(2 + y − x + c − 2t) dt

=
∫ a

−c

1
σ(2 + y − x − c − 2t) dt

The new length is

L4 = len

x

y

z

 →

x + a

y − a

z

 →

 x + a

y − a − c

z + c

 =
∫ a

0

1
σ(2 + (y − t) − (x + t)) dt

=
∫ a

0

1
σ(2 + y − x − 2t) dt.

By monotonicity of σ, we automatically have L3 ≥ L1 ≥ L4. We assume r is an ordered path,
so in the L2 case we have z + a + c ≤ y − a − c giving L2 ≥ L4 showing our modification did
not increase the length. Also see that r(tj) → s is not an upset so S(r̃)j < 0.

Subcase (−, +, −): For some a, c > 0 we have

Πr(tj+2) =

 x − a

y + a + c

z − c

 .

Again there are three possible values of Πr(tj+1) corresponding to the three possible upsets
that can occur, and our selection of their replacement s is the same regardless.

Πr(tj+1) =

x − a

y + a

z

 ,

x − a − c

y + a + c

z

 ,

x − a

y

z + a

 , s =

 x

y + c

z − c

 .

The original lengths are as follows.
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L1 = len

x

y

z

 →

x − a

y + a

z

 →

 x − a

y + a + c

z − c

 =
∫ c

0

1
σ(2 + (z − t) − (y + a + t)) dt

=
∫ c

0

1
σ(2 + z − y − a − 2t) dt,

L2 = len

x

y

z

 →

x − a − c

y + a + c

z

 →

 x − a

y + a + c

z − c

 =
∫ c

0

1
σ(2 + (z − t) − (x − a − c + t)) dt

=
∫ c

0

1
σ(2 + z − x + a + c − 2t) dt,

L3 = len

x

y

z

 →

x − a

y

z + a

 →

 x − a

y + a + c

z − c

 =
∫ a+c

0

1
σ(2 + (z − t) − (y + t)) dt

=
∫ a+c

0

1
σ(2 + z − y − 2t) dt,

=
∫ c

−a

1
σ(2 + z − y − 2a − 2t) dt.

The new length is

L4 = len

x

y

z

 →

 x

y + c

z − c

 →

 x − a

y + a + c

z − c

 =
∫ c

0

1
σ(2 + (z − t) − (y + t)) dt

=
∫ c

0

1
σ(2 + z − y − 2t) dt.

Again by monotonicity of σ, we automatically have L3 ≥ L1 ≥ L4. We assume r is an
ordered path, so in the L2 case we have y + a + c ≤ x − a − c giving L2 ≥ L4 as required.
Also see that r(tj) → s is not an upset so S(r̃)j < 0.

Subcase (+, +, −): For some a, b > 0 we have

Πr(tj+2) =

 x + a

y + b

z − a − b

 .

There is only one possible value of Πr(t2) corresponding to an upset.

Πr(tj+1) =

x − b

y + b

z

 , s

 x

y + b

z − b

 .
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The original length is

L1 = len

x

y

z

 →

x − b

y + b

z

 →

 x + a

y + b

z − a − b


=

∫ a+b

0

1
σ(2 + (z − t) − (x − b + t)) dt

=
∫ a+b

0

1
σ(2 + z − x + b − 2t) dt

=
∫ b

0

1
σ(2 + z − x + b − 2t) dt +

∫ a

0

1
σ(2 + z − x − b − 2t) dt

and the new length is

L2 = len

x

y

z

 →

 x

y + b

z − b

 →

 x + a

y + b

z − a − b


=

∫ b

0

1
σ(2 + (z − t) − (y + t)) dt +

∫ a

0

1
σ(2 + (z − b − t) − (x + t)) dt

=
∫ b

0

1
σ(2 + z − y − 2t) dt +

∫ a

0

1
σ(2 + z − x − b − 2t) dt.

Again since we assume the path is ordered, we have x ≥ y + b so L2 ≤ L1 by monotonicity
of σ. Also see that r(tj) → s is not an upset so S(r̃)j < 0.

Subcase (+, −, −): For some b, c > 0, we have

Πr(tj+2) =

x + b + c

y − b

z − c

 .

There is only one possible value of Πr(t2) corresponding to an upset.

Πr(tj+1) =

 x

y − b

z + b

 , s =

x + b

y − b

z

 .

The original length is

L1 = len

x

y

z

 →

 x

y − b

z + b

 →

x + b + c

y − b

z − c


=

∫ b+c

0

1
σ(2 + (z + b − t) − (x + t)) dt

=
∫ b+c

0

1
σ(2 + z − x + b − 2t) dt

=
∫ b

0

1
σ(2 + z − x + b − 2t) dt +

∫ c

0

1
σ(2 + z − x − b − 2t) dt
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and the new length is

L2 = len

x

y

z

 →

x + b

y − b

z

 →

x + b + c

y − b

z − c


=

∫ b

0

1
σ(2 + (y − t) − (x + t)) dt +

∫ c

0

1
σ(2 + (z − t) − (x + b + t)) dt

=
∫ b

0

1
σ(2 + y − x − 2t) dt +

∫ c

0

1
σ(2 + z − x − b − 2t) dt.

Since we assume the path is ordered, we have y − b ≥ z so L2 ≤ L1 once again. Also see
that r(tj) → s is not an upset so S(r̃)j < 0.

Subcase (−, +, +), (−, −, +): For some a, c we have

Πr(tj+2) =

 x − a

y + a − c

z + c

 .

Depending on the sign of a − c, there are two possible values of Πr(tj+1). In either case, the
selection of s is the same.

Πr(tj+1) =

x − a

y

z + a

 ,

x − c

y

z + c

 s =

x − a

y + a

z

 .

In this case, both new edges are upsets so the new length is 0, but we cannot conclude
S(r̃)j < 0 as before. Instead, let w1 < w2 < w3 be the indices of the three relevant coordinates
and note

S(r)j = w1 − w3 > S(r̃)j = w1 − w2.

Finally note the sign patterns of (+, +, +) and (−, −, −) are not possible since the sum of all
ratings is invariant. Since in all possible cases we have a decrease of S without an increase
of length, this process terminates in a path that isn’t longer and doesn’t have any upsets
followed by a non-upset. We end by truncating off any upsets at the end of the path. ◀

Lemma 10 implies we can restrict our attention to valid ordered upset-free paths. The length
of these paths can be bounded in terms of the following potential function.

▶ Definition 11. Define Φ : Rn → R by

Φ(s) = ∥s∥2 +
n−1∑
p=1

f(−2 + sp − sp+1)

where f is as in (4).

We seek to show Φ grows slowly as games are played, so that Φ of the end point of the path
is upper bounded by (a multiple of) the length of the path. Note that the first term ∥s∥2 in
this potential function is exactly the

∑
r2 expression appearing in the proofs of Theorems 4

and 6. The intuitive idea behind the second term is that when player p beats player p + 1,
the ratings sp and sp+1 move 2σ(sp+1 − sp) apart, which by the definition of f means the
corresponding f term increases by just a constant amount. Lemma 12 makes this intuition
precise.
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▶ Lemma 12. For a valid ordered upset-free path r : [0, c] → Rn one has

Φ(r(c)) − Φ(r(0)) ≤
(

2 + 2 sup
z

z σ(2 − z)
)

· len(r)

Proof. By the fundamental theorem of calculus, it suffices to show that

d
dt

Φ(r(t)) ≤
(

2 + 2 sup
z

z σ(2 − z)
)

W (r′(t), r(t)).

Since r is upset-free we have, ⟨r′(t), r⟩ ≥ 0 so by the definition of W (12),

W (r′(t), r(t)) = 1
σ(2 − ⟨r′(t), r(t)⟩) .

The chain rule gives

d
dt

Φ(r(t)) = ⟨r′(t), ∇Φ(r(t))⟩ . (13)

Since r is ordered in addition to being upset-free, r′(t) is always of the form r′(t) = ej − ej+a

for positive a. That is, the winning player has a lower index than the losing player. The jth
entry of the gradient can be computed directly as

∂

∂sj
Φ(s) = 2sj + f ′(−2 + sj − sj+1) · 1j<n − f ′(−2 + sj−1 − sj) · 1j>1

= 2rj + 1j<n

σ(2 + sj+1 − sj) − 1j>1

σ(2 + sj − sj−1) ,

and in particular

⟨ej − ej+a, ∇Φ(s)⟩ =
(

∂

∂sj
Φ(s) − ∂

∂sj+a
Φ(s)

)
≤ 2(sj − sj+a) + 1j<n

σ(2 + sj+1 − sj) + 1j+a>1

σ(2 + sj+a − sj+a−1)

≤ 2(rj − rj+a) + 1j<n

σ(2 + sj+a − sj) + 1j+a>1

σ(2 + sj+a − sj)

≤ 2 supz z σ(2 − z)
σ(2 + sj+a − sj) + 2

σ(2 + sj+a − sj)

=
(

2 + 2 sup
z

z σ(2 − z)
)

· 1
σ(2 − ⟨ej − ej+a, s⟩) .

=
(

2 + 2 sup
z

z σ(2 − z)
)

· W (ej − ej+a, s).

For s = r(t) and ej − ej+a = r′(t), this is exactly what we needed to show. ◀

The last piece of the puzzle is showing Φ(s) has to be large whenever one entry of s is large.
Rapid growth of f means if any two consecutive players have a large rating difference, Φ will
be large. On the other hand, if consecutive players are close in rating, many entries of s are
close to its largest entry forcing ∥s∥2 to be large.

▶ Lemma 13. Let s be any vector such that max s = s1 and at least one entry is negative.
Then

Φ(s) ≥ s2
1 and Φ(s) ≥ s3

1/8
f−1(s2

1/4) + 2 .
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Furthermore,

Φ(s) ≥ nf
(

−2 + s1

2n

)
.

Proof. The first result is immediate from Φ(s) ≥ ∥s∥2 ≥ s2
1. By the assumption on s, there

exists m such that

sm ≥ s1/2 ≥ sm+1.

Then

∥s∥2 ≥ m

4 s2
1. (14)

By convexity of f ,
m∑

j=1
f(−2 + sj − sj+1) ≥

m∑
j=1

f

(
−2 + s1 − sm+1

m

)
≥ mf

(
−2 + s1

2m

)
. (15)

We claim (15) is monotonically decreasing in m. To see this, note f ′ is itself positive and
monotonically increasing by monotonicity of σ. Then for x > −2,

f(x) =
∫ x

0
f ′(t) dt ≤ xf ′(x) ≤ (x + 2)f ′(x) =⇒ 0 ≤ (x + 2)f ′(x) − f(x)

(x + 2)2 = d
dx

f(x)
x + 2 .

Setting x = −2 + s1/2m and noting x is itself monotonically decreasing in m establishes the
claim. m is the index of a player, so we must have m ≤ n. This immediately implies by
montonicity of (15) that

Φ(s) ≥ nf
(

−2 + s1

2n

)
.

Combining (14) and (15) yields

Φ(s) ≥ inf
m

(m

4 s2
1 + mf

(
−2 + s1

2m

))
≥ inf

m
max

(m

4 s2
1, mf

(
−2 + s1

2m

))
.

The minimum of the maximum of two functions occurs when they intersect, which in this
case is guaranteed to happen exactly once since f(−2 + s1/2m) is monotone in m and its
range contains [0, ∞) ∋ s2

1/4. Therefore the minimizing m is

m = s1/2
f−1(s2

1/4) + 2 .

The last result of the lemma follows immediately by plugging that m into (14). ◀

Assembling the above lemmas together results in Theorem 14.

▶ Theorem 14. Let r be the highest rating achieved by a group of any number of players
who play a total of k games. Suppose the pot function σ satisfies

C1 = sup
z

z σ(2 − z) < ∞.

Then

r ≤ 2n ·
(
f−1(C2 · k/n) + 2

)
.
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and

r ≤ 2 · C
1/3
2 · k1/3 ·

(
f−1(C2/4 · k) + 2

)1/3

for C2 = 2 + 2C1 + f(−2) where f is defined in (4).

Proof. We may take n ≤ k − 1 players without loss of generality by simply ignoring players
who who aren’t connected to the player achieving the highest rating via some sequence of
games. Let r : [0, c] → Rn be the valid path corresponding to the sequence of games achieving
rating r = max r(c). Perform all necessary reflections to make it ordered. Lemma 9 gives

len(r) ≤ k. (16)

Lemma 10 constructs r̃ without any upsets satisfying

r = max r(c) ≤ max r̃(c̃) (17)

and

len(r̃) ≤ len(r). (18)

Since r̃ is ordered and upset-free, Lemma 12 implies

Φ(r̃(c̃)) − Φ(r̃(0)) ≤ (2 + 2C1) len(r̃).

Note Φ(r̃(0)) = Φ(0) = (n − 1)f(−2) so

Φ(r̃(c̃)) ≤ (2 + 2C1) len(r̃) + (n − 1)f(−2). (19)

Set C2 = 2 + 2C1 + f(−2) and assemble the chain of inequalities:

Φ(r̃(c̃)) ≤
(19)

(2 + 2C1)len(r̃) + (n − 1)f(−2)

≤
(18)

(2 + 2C1)len(r) + (n − 1)f(−2)

≤
(16)

(2 + 2C1)k + (n − 1)f(−2)

≤ (2 + 2C1 + f(−2)) · k

= C2 · k (20)

The three lower bounds on Φ provided by Lemma 13 are each used in different ways. First,
the n-dependent bound implies

nf
(

−2 + r

2n

)
≤

(17)
nf

(
−2 + max r̃(c̃)

2n

)
≤
13

Φ(r̃(c̃)) ≤
(20)

C2 · k.

Since r appears only once in the equation, we can simply rearrange to solve for r. In
particular,

r ≤ 2n

(
f−1

(
C2 · k

n

)
+ 2

)
.

giving the first result of the theorem. The second n-independent bound gives

r3/8
f−1(r2/4) + 2 ≤

(17)

(max r̃(c̃))3/8
f−1((max r̃(c̃))2/4) + 2 ≤

13
Φ(r̃(c̃)) ≤

(20)
C2 · k. (21)
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This bounds k in terms of a function of r. The last application of Lemma 13 converts this
into a bound on r in terms of k.

r2 ≤
(17)

(max r̃(c̃))2 ≤
13

Φ(r̃(c̃)) ≤
(20)

C2 · k.

This can be plugged back into the left-hand side of (21),

C2 · k ≥ r3/8
f−1(r2/4) + 2 ≥ r3/8

f−1(C2/4 · k) + 2 .

Rearranging gives

r3 ≤ 8 · C2 · k ·
(
f−1(C2/4 · k) + 2

)
.

Taking cube roots establishes the final result. ◀

▶ Remark 15. The probabilistic interpretation (3) of the Elo system described in the
introduction lends itself naturally to the requirement that z σ(2−z) be bounded. In particular,
take σ(z) = Pr(η < x) + 1

2 Pr(η = x) to be the symmetrized cumulative distribution function
of a symmetric random variable η with finite expectation. Note

sup
z

z σ(2 − z) = sup
z

(2 + z) σ(−z) ≤ 2 + sup
z

z σ(−z).

It’s clear that the supremum on the right will be achieved for z ≥ 0. Since η has finite
expectation, we may apply Markov’s inequality to obtain

z σ(−z) ≤ z Pr(η ≤ −z) = 1
2 · z · Pr(|η| ≥ z) ≤ 1

2 E |η| < ∞.

This shows E |η| < ∞ is sufficient. However it isn’t strictly necessary; for instance, z σ(2 − z)
just barely does not diverge for a Cauchy random variable. However, one does need finite
(1 − ε)th moment: suppose σ(−z) ≤ c/z. Then

E |η|1−ε =
∫

Pr
(

|η|1−ε ≥ t
)

dt = 2
∫

σ
(

−t1/(1−ε)
)

dt ≤ 2
∫

t−1/(1−ε) dt < ∞

for each ε ∈ (0, 1).

5 Discussion

5.1 Remaining questions
Can one close the gap between the upper and lower bounds in the n = ω(1) regime? This
could occur by finding a better strategy than the ones in Section 3, for instance by slowly
increasing δ as games are played, or by tightening the analysis in Theorem 14. It’s possible
that for heavy-tailed σ the lower bound is too loose, but for light-tail σ the upper bound
is. Why is there a jump in the upper bound from f(k)1/3 to f(k/n) at n = k1/3? Can one
find a bound that smoothly crosses the phase transition? In Theorem 6, one cannot totally
specify the initial set of ratings, but has to allow the possibility that the initial ratings are all
flipped. This appears very strongly to be an artifact of the analysis; can one prove a version
that allows you to assign any initial ratings subject only to the constraint that the average
rating is non-negative?
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The highest Elo problem also bares a passing resemblance to the Toda lattice: players are
particles whose positions on the real line is given by their ratings; they exhibit a repulsive
force when a higher rated player beats a lower rated player and an attractive force if vice
versa. Is it possible to use tools from solid state physics to analyze this problem?

Another interesting variant is to constrain the number of rounds of games. In a tournament,
many games will be happening parallel. Each round consists of any number of games, subject
only to the constraint that each player only participates in at most one game each round.
Given n players and k rounds, what’s the highest someone may be rated after
all games have finished?

5.2 Connection to maximum overhang
One may notice the jump from log k to k1/3 as one increases n for σ(−z) = 1

1+e−z . This may
be reminiscent of the maximum overhang problem. In that problem, one places k unit-length
bricks on top of each other at the edge of a table, attempting to achieve the largest overhang
possible. The classic solution if one is restricted to placing only a single brick at each height
(the “single-wide” setting) achieves an overhang of Θ(log k) units. However, if one is allowed
to place as many bricks at each height as one likes (the “multi-wide” setting), the optimal
solution achieves an overhang of Θ(k1/3) [5]. This connection does not appear to be a
coincidence! The proof of optimality in the maximum overhang problem uses a reduction
to a “mass movement problem.” But in fact, the highest Elo problem for the particular
σ(z) = max(0, min(1, z/2 + 1/2)) can be reduced to nearly the same problem!

The mass movement problem described by [5] is as follows: consider some finite number of
piles of mass placed on the real line. A valid “move” takes some unit interval and rearranges
the mass within that interval so that the center of mass is unchanged. Negative mass is
allowed. Formally, a “signed distribution” µ is a finite linear combination of dirac delta
functions δ. A valid “move” replaces µ with µ + ν where ν is itself a signed distribution
whose support is contained in some unit interval and

∫
ν = 0. A sequence of moves ν1 · · · , νk

corresponds naturally to a sequence of signed distributions µ0, · · · , µk. They place an
additional “weight-constraint” on allowed sequences. In particular, the number of j for which
νj is allowed to have support to the right of any threshold T is at most max0≤i≤k

∫ ∞
T

µi.
The goal is to use at most k moves to move the distribution k · δ to a distribution with a
unit of mass as far right as possible.

To reduce highest Elo to mass movement, let rp(j) be the rating of player p after j games
and set

µj(x) =
∑

p

δ(x − rp(j)).

Then consider a game where p beats q. Set z = rp − rq. By the selection of σ(z) =
max(0, min(z/2 + 1/2)), this only produces a change in ratings if z ≤ 1. Then µ changes by
performing the following move:

ν(x) = δ(x − rp − σ(−z)) + δ(x − rq + σ(−z)) − δ(x − rp) − δ(x − rq). (22)

Suppose z ≥ −1. Then the support of ν is contained in [rq − σ(−z), rp + σ(−z)], which is
an interval of length z + 2 σ(−z) = 1 as required. Furthermore, ν only has support above
T when there’s a player above T Elo guaranteeing the weight-constraint. The objective is
starting with n · δ, produce via k moves a distribution with a unit of mass (i.e. at least one
player) as far right as possible (i.e. with the highest rating possible). Recall that for the
purposes of an upper bound, we make take n = k, establishing the correct objective.
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There is, however, one big discrepancy: the case of z < −1. In particular, in the highest
Elo problem it is possible for a player rated −10 to beat a player rated 10, garnering a full
point of Elo. This does not correspond to a valid move, since the support of ν would be
{−10, −9, 9, 10}. Intuitively, such moves should not ultimately help push mass far away, and
indeed in Lemma 10 we show for a different relaxation of highest Elo that they don’t help.

A second discrepancy is that mass movement places no restriction on the amount of mass
moved in each move, whereas for highest Elo we always have ∥ν∥1 = 2. This would seem
to imply an upper bound of the “k rounds” variant mentioned at the end of Section 5.1.
Can that argument be made to work? Conversely, is there a variant or generalization of
maximum overhang that can be analyzed using the proof of Theorem 14?
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