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Abstract
We revisit the classic game of Snake and ask the basic data structural question: how many bits does
it take to represent the state of a snake game so that it can be updated in constant time? Our main
result is a data structure that uses optimal space (within constant factors). To achieve our results,
we introduce several interesting data structural techniques, including a decomposition technique for
the problem, a tabulation scheme for encoding small subproblems, and a dynamic memory allocation
scheme.
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1 Introduction

The classic game of Snake involves players navigating a grid with a growing line (themed
as a snake) while avoiding collisions with itself and the boundary. As the line increases
in length, the game gets progressively harder. The game originated in the 1976 arcade
video game Blockade and later evolved into a single-player version (see the history overview
of the game [11]). In 1988, the game largely became responsible for introducing mobile
phone gaming to the world after being included with the Nokia 6110 cellular phone [12].
Subsequently, the Snake game has appeared in several different versions on Nokia phones
and elsewhere. From a CS perspective, the Snake game has been studied in the context of
motion-planning problems [9] and deep learning [1, 8, 10]. Surprisingly, the game has not
been studied from a data structural perspective. In this paper, we ask the basic question:
how many bits does it take to represent the state of a snake game so that it can be updated
in constant time? Our main result uses asymptotically optimal bits of space and constant
time per operation. To achieve our results, we introduce several interesting data structural
techniques, including a decomposition technique for the problem, a tabulation scheme for
encoding small subproblems, and a dynamic memory allocation scheme.
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1.1 Setup and Results
Consider a u× u grid G. A snake S is a sequence of n distinct points s1, . . . , sn in G such
that any two consecutive points are adjacent in either the vertical or horizontal direction. We
call sn and s1 the head and the tail of S, respectively. Our goal is to maintain S dynamically
and compactly while supporting the following operations:

extend(d): where d is a direction (up, down, left, or right). Add a new point to S adjacent
to the head in the direction d. If the new point is already a point on the S or outside of
G, we terminate and report a collision.
reduce(): remove the tail from S.

There are two immediate solutions to this problem. The first solution is to explicitly
store the grid as a bit string of length u2 with 1’s at all positions containing a point of S
and 0’s elsewhere. We additionally maintain the positions of the head and tail of S. To
implement the operations, we use the bit string to check for collisions and update the bit
string and head and tail pointers accordingly. This solution uses O(u2 + log u) = O(u2) bits
of space and implements both operations in constant time. Alternatively, we can store the
head and tail of S separately plus all points in S in a balanced search tree, where the points
in S are sorted in lexicographical order. To implement the operations, we search the tree for
the collision check and update the snake by insertions and deletions in the tree.

This solution uses O(n log u) bits and supports operations in O(log n) time. Using
exponential search trees [2], we can improve the time of this solution to O(

√
log n/ log log n),

or if we allow randomization, to constant time with high probability [3–7]. All of the above
solutions work on a standard word RAM model of computation. Each word can store the
location of a coordinate in the grid and hence the word length w ≥ log u. In the same model,
we show the following result.

▶ Theorem 1. We can represent a snake of length n in O(n + log u) bits and support extend
and reduce operations in constant time.

Note that this improves all of the above combinations of time and space bounds. Any
solution must use at least Ω(n + log u) bits.

Techniques. To obtain the results of Theorem 1, we introduce and combine several inter-
esting data structural techniques. We first present a simple solution using O(n log u) bits of
space and constant time for operation. This solution is based on a partitioning of the grid
into square subgrids of size log u× log u, called tiles. The main component of this structure
is a standard balanced binary search tree that stores all of the non-empty tiles (i.e., the tiles
intersected by the snake). For each such tile, we then store a bit string of length log2 u that
encodes the positions of the snake within the tile. This uses O(n log u) bits of space.

To support the operations in constant time, we show how to efficiently schedule and
buffer operations. Intuitively, since the tiles have size log u× log u and the snake only moves
a single position in each operation, we can schedule the needed traversals and updates of the
balanced binary search tree using constant additional time at each operation.

Next, we extend our solution to add another level of tiles of doubly logarithmic size
“nested” within the first level. The new level also maintains balanced binary search trees
of non-empty tiles and an encoding of the snake within each such tile. We show how to
maintain the structure as above in constant time per operation. Here, the key challenge
is achieving and implementing the structure in optimal space. First, we cannot afford to
explicitly encode a tile at level 2 as above. Instead, we show how efficiently encode the



P. Bille, M. Farach-Colton, I. L. Gørtz, and I. van der Hoog 3:3

snake within these tiles and tabulate the operations. Secondly, we cannot afford to explicitly
store log u pointers between different components of the data structure (such as the balanced
binary search trees at the lowest level). Instead, we present a new memory allocation scheme
that efficiently packs together components of the data structure such that the entire structure
fits on O(n + log u) bits of space.

2 Fast Snake with O(n log u) Bits of Space

As a warm-up, we first demonstrate an approach that uses O(n log u) bits of space and
constant time for each operation. Our solution relies upon tilings of the grid G.

▶ Definition 2. Given a parameter τ > 1, we partition G into
⌊
u2/τ

⌋
squares called tiles,

of size τ × τ (the bottom row and rightmost column may be smaller). We call this a τ -tiling
of G. A tile v is empty if it does not contain a point of S. Otherwise, it is non-empty. The
τ -tile set for S, denoted by T τ

S , is the set of non-empty tiles in a τ -tiling of G.

Since S is a collection of consecutively adjacent points in G, we may immediately conclude:

▶ Lemma 3. For all snakes of length n, for all τ , |T τ
S | ≤ 4⌈n

τ ⌉.

2.1 Data Structure

We construct a tiling for G with parameter τ = log u. Let S be a snake of length n. Our
data structure consists of the following components (Figure 1):
1. A direction string D of length n− 1 that stores for each position in S, except the head h,

the direction of its successor. It also stores the relative coordinates of h and t.
2. A head and tail scope. The head scope stores a pointer to the τ -tile v ∈ T that contains

h, the relative coordinates of the head h in v, and the up to eight non-empty τ -tiles
incident to v. The tail scope stores a pointer to each of the τ -tiles intersected by the last
τ/2 points of S, the coordinates of the tail t, and the coordinates of the point tτ = sτ . If
n < τ then tτ = h.

3. A balanced binary search tree B containing the tile set T τ
S . The tiles in B are ordered by

their top-left coordinates in lexicographical order.
4. An insert and delete buffer. The insert buffer stores up to the last four τ -tiles that were

empty before the head entered them (these tiles are not yet in B). The delete buffer
stores up to the first four τ -tiles that became empty after the tail left them (these tiles
are not yet deleted from B).

5. For each τ -tile v ∈ T τ
S ,

a. A counter recording |S ∩ v|.
b. A bit string E(v) that stores a single bit for each position in v, indicating if the position

is empty or non-empty.

The direction string D uses O(n) bits, as we encode each direction with two bits. The
head and tail scope use O(log u) bits as they store O(1) pointers. The counters use O(n) bits
in total, as the total number of counters is at most O(n/τ) and each counter is at most 2 log τ

bits. The binary search tree uses O(n) bits as by Lemma 3, |T τ
S | ∈ O(n/τ) and each pointer

uses at most τ = log u bits. A single bitstring E(v) uses τ2 bits as each tile v contains τ2

points. Thus the total space for the bitstrings is O(τ2(n/τ)) = O(n log u).

FUN 2024



3:4 Snake in Optimal Space and Time

1. t = (2, 3) h = (5, 5). . .

2. tail + head scope = +

4. insert + delete buffer = +

5 (a) v = ⇒ |S ∩ v| = 10

5 (b) v = ⇒ E(v) = 0010000100001110111101000

Figure 1 On the left we show a grid G, tiled with τ -tiles for τ = 5. There is a snake in green.
The red indicates the previous positions of the snake, which are no longer occupied. On the left, we
show the components of our data structure.

2.2 The extend Operation
We now explain how to implement the extend operation. Let h be the head of S before the
operation, and let h′ be the new position of the head. Also, let v and v′ be the τ -tiles in the
grid that contain h and h′, respectively. We proceed as follows:

Step 1: Check for Collisions. We check if there is a collision of h′ with a point on S. Given
h, D, and the head scope, we first identify v′ and compute the relative coordinates of h′ in
constant time. We can test whether v′ is empty using its pointer to the head scope in O(1)
time. There are two cases depending on whether v′ is empty or not:

(i) If v′ is empty, there is no collision. We then construct E(v′) in O(1) time. We set the
corresponding counter to one. We then check if v′ is in the delete buffer (in this case,
we may be in the process of deleting v′ from our data structure). If it is and it is not
the first tile in there, we remove it from the delete buffer. Otherwise, we add v′ to the
back of the insert buffer.

(ii) If v′ is non-empty, we use E(v′) and the relative coordinates of h′ in v′ to check if
there is a collision. If so, we stop and output this. Otherwise, we update E(v′) and the
corresponding counter in O(1) time.

Finally, we update D in constant time.

Step 2: Update Search Tree and Buffers. We move τ -tiles from the insert buffer into B.
To do so, we do a constant amount of work towards inserting the first τ -tile x in the insert
buffer into B. We do enough work to ensure that after τ/8 extend and reduce operations,
x is fully inserted into B. Since an insertion or a deletion in B takes O(τ) time, this can
be obtained by doing O(1) work for each operation. When the tile is fully inserted into B,
we remove it from the insert buffer. Similarly, we do a constant amount of work towards
deleting the first τ -tile x in the deletion buffer from B. By Lemma 3, it follows that there
can be no more than 4 tiles in each of the buffers at any point in time.

Step 3: Update Scopes. The head scope is a set of 3× 3 tiles centered at the τ -tile that
contains h. To maintain the invariant that the scope is in memory at all times, we store
slightly more than the scope. Consider the set of 7 × 7 tiles centered at the τ -tile that
contains h and denote it by Nh. Each non-empty x ∈ Nh is either in B (which supports
lookups in O(τ) time) or in the insert/delete buffer (which have constant size). Each time
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we perform extend, we do constant work towards a lookup for each tile in Nh. If we finish a
lookup and find a τ -tile z, we add z to our head scope list. If a tile z′ ∈ Nh is in the head
scope list and z′ ̸∈ Nh′ , we delete z′ from the list. This way, we maintain that the head
scope is always in the head scope list whilst having O(1) τ -tiles in the head scope list at
all times. Note that this does not change the asymptotic space of the data structure. By
Lemma 3, if |S| > τ , the tail scope remains unchanged. Else, we add v′ to the tail scope if
v ̸= v′ and update tτ .

2.3 The reduce Operation
We show how to implement the reduce operation. Let t be the tail of S before the operation
and let v be the τ -tile in the grid that contain t. We proceed as follows:

Step 1: Update Search Trees and Buffers. Given t and the tail scope, we identify v in
O(1) time. Given the relative coordinates of t in v, we update E(v) and the corresponding
counter in O(1) time. If v is now empty, we first check if it is in the insert buffer. If v is in
the insert buffer and it is not the first tile in there, then we remove it from the insert buffer.
Otherwise, we add it to the delete buffer. Using t, tτ and D we update the tail t and tτ

to their new positions. As in the extend operation, we then do a constant amount of work
towards inserting the first tile from the insert buffer into B and deleting the first τ -tile x in
the delete buffer from B.

Step 2: Update Tail Scope. Let the extended tail scope Nt be the set of tiles intersected
by the last τ points of the snake. As with the head scope, we will maintain a set of tiles,
including all the tiles in the tail scope and possibly some of the tiles in Nt that are not in
the tail scope. Let v′ be the τ -tile containing tτ . If v′ is already in our tail scope list, we do
nothing. Otherwise, we do a constant amount of work towards the search for each of the tiles
in the extended tail scope Nt that are not yet in the tail scope list. We do this fast enough
to ensure that we have finished the search for v′ when it belongs to the tail scope. When
we have finished the search, we add v′ to the tail scope list. By Lemma 3, there can be at
most 4 tiles in the extended tail scope, and thus, we never search for more than 4 tiles at
a time. Note that this does not change the asymptotic space of the data structure. Since
a search in B takes O(τ) time, this can be done with a constant amount of work for each
reduce operation.

2.4 Summary
In summary, the space of the data structure is O(n log u) bits, and each of the operations
uses constant time. Hence, we have the following result.
▶ Lemma 4. We can represent a snake S of length n in O(n log u) bits and support extend
and reduce operations in constant time.

In the following sections, we improve our solution to obtain the result of Theorem 1. We
first show how to efficiently tabulate small subproblems for tiles of size log log n in Section 3.
In Section 4, we then extend the above solution to a two-level data structure with nested
tilings of sizes log n and log log n and apply the tabulation at the lowest level. Unfortunately,
naively storing our data structure would use log u pointers between different components,
which we can not afford within our space bound of O(n + log u) bits. In Section 5, we
show how to dynamically allocate all components of the data structure compactly leading to
Theorem 1.

FUN 2024
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3 Tabulation

We now show how to efficiently tabulate τ -tiles for τ = log log n. This will be a key component
in our multi-level data structure. Intuitively, we consider all possible ways a snake S can
intersect a tile v of dimension τ × τ , together with all placements of the (future) head of S,
and store for each combination the outcome after executing the update. Formally, fix any
snake S and let v be any τ × τ square. We define two concepts:

▶ Definition 5. We denote for any τ × τ square v by δv all vertices of the grid that are in v

and incident to the boundary of v, in the clockwise direction.

▶ Definition 6. We define a marked grid as any τ × τ square X that marks each point in the
tile as either {empty, occupied, head, tail}. For each snake S and τ -tile v we immediately
have a corresponding marked grid S ∩ v. Finally, for any pair of marked grids X, Y , we
denote X ≃ Y whenever the two marked grids are identical.

3.1 Tabulation Code
We define what we call our tabulation code encS(v) which is the concatenation of four strings
α(v), β(v), γ(v), ϵ(v). To this end, we note that S uniquely corresponds to a rectilinear curve
that is obtained by connecting consecutive grid points in S by an edge. For any rectilinear
curve S and any square v, we intuitively define the set of maximally connected subcurves in
S ∩ v. We define:

The string α(v) is defined by traversing the vertices x ∈ δv in order and denoting a 1
whenever x ∈ S and a zero otherwise.
The string β(v) considers all maximal subcurves S′ ⊂ S ∩ v that intersect δv sorted by
their first point of intersection with δv. The string β(v) concatenates for each maximal
subcurve S′ a string β(S′). The string β(S′) denotes for all x ∈ S′ the direction of its
successor by using two bits, followed by a symbol that denotes the end of S′.
There are at most two subcurves in S′ ⊂ S ∩ v that do not intersect δv; these must
contain the head and/or tail of S and are considered at the end. If the head and tail of S

are not in v then γ(v) denotes a null symbol. Otherwise, γ(v) uses 2 log τ bits to specify
the relative position of h (and/or t) in v.
If the string γ(v) is not null, the string ϵ(v) considers the maximal subcurve S′ of S ∩ v

that contains the head (or tail) and denotes for all x ∈ S′ the direction of its successor
by using two bits, followed by a symbol that denotes the end of S′.

▶ Lemma 7. For any snake S and any τ -tile v, |encS(v)| ≤ 4τ + 2|S ∩ v| ≤ 2τ2 + 4τ and∑
v∈T τ

S
|encS(v)| ∈ O(n).

Proof. The strings α(v) and γ(v) contain together fewer than 4τ bits. The strings β(v) and
ϵ(v) contain fewer than four times the number of points in S ∩ v. It immediately follows
that encS(v) has fewer than τ + 2|S ∩ v| ≤ 2τ2 + 4τ bits. By Lemma 3, there are at most
O(n/τ) non-empty τ -tiles and thus

∑
v∈T τ

S
|encS(v)| ∈ O(n). ◀

▶ Lemma 8. For any pair of snakes S, S′ and any pair of τ -tiles v, v′ if encS(v) = encS′(v′)
then S ∩ v ≃ S′ ∩ v′.

Lemma 8 allows us to define the inverse of an encoding:

▶ Definition 9. For any string s of at most 4(τ2 + τ) bits, we denote by enc−1(s) the
unique marked grid X such that for all snakes S and τ -tiles v with encS(v) = s, X ≃ S ∩ v.
enc−1(s) is null whenever there exist no snakes S and τ -tiles v with encS(v) = s.
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3.2 Constructing Tables
Given our encoding scheme, we define tables Mcoll, Mhead, and Mtail to check for collisions,
update the head, and update the tail in constant time:

Each entry in Mcoll corresponds to an encoding string s and a position p and stores a
single bit that indicates whether or there is a collision with p and enc−1(s).
Each entry in Mhead corresponds to an encoding string s and a position p adjacent to the
head of s and stores the encoding string s′ resulting from moving the head to position p.
Each entry in Mtail corresponds to an encoding string s and stores the encoding string s′

resulting from reduce the tail.
If an entry to a table is not a valid input, i.e., the encoding string e does encode a valid
snake or the position p in Mhead is not adjacent to the head of the snake, the entry stores an
arbitrary value. We use the tables to simulate the extend and reduce operations in constant
time. Initially, when we first enter a tile v, we fetch the corresponding initial encoding from
the table and store it in the search tree for v. All subsequent new encoding strings for v are
obtained from the above tables, and hence, it inductively follows that we only access entries
corresponding to valid input in the tables.

The space for the tables is dominated by the space Mhead that has 24(τ2+τ)+2 log τ

entries each storing O(τ2) bits. Thus, in total we use O(τ2 · 2(4τ2+τ)) = O((log log n)2 ·
24(log log n)2+log log n) = O(n) bits of space. We can compute an entry in O(τ2) =
O((log log n)2) time, and hence construct the tables in O((log log n)22(4(log log n)2+log log n)) =
O(n) time. We use a standard global rebuilding with deamortization to construct the tables
for exponentially increasing values of n as the length of the snake changes. I.e., we assume
that n ∈ [ 1

2 N, 2N ] and set τ = log log N . Since we can construct the tables in linear time,
the overhead of rebuilding our tabulation before n leaves [ 1

2 N, 2N ] is constant (see also
Section 4.3 for a detailed description of the deamortization).

4 Fast Snake Using Two Levels

We now describe our two-level data structure.

4.1 Data Structure
Let S be a snake of length n. For now, we assume that n ∈ [ 1

2 N, 2N ] for some given N (we
show how to lift this assumption later). Let τ1 = log N and τ2 = log log N . We construct
tilings T1 = T τ1

S and T2 = T τ2
S for G. Our data structure stores the following components for

each Ti where i ∈ {1, 2}.

(a) A direction string D of length n− 1 that stores for each position in S, except the head
h, the direction of its successor. It also stores the relative coordinates of h and t in their
τi-tiles.

(b) A head and tail scope. The head scope stores a pointer to the τi-tile v ∈ T that contains
h, the relative coordinates of h in v, and the up to eight non-empty τi-tiles incident to v.
The tail scope stores a pointer to each of the τi-tiles intersected by the last τi/2 points
of S, the coordinates of the tail t, and the coordinates of the point tτi

= sτi
. If n < τi

then tτi = h.
(c) An insert and delete buffer. The insert buffer stores up to the last four τi-tiles that were

empty before the head entered them. The delete buffer stores up to the last four τi-tiles
that became empty after the tail left them.

FUN 2024



3:8 Snake in Optimal Space and Time

(d) If i = 1, we store for all vj ∈ T1 a counter recording kj = |S ∩N(vj)| where N(vj) is the
tile vj plus the at most four tiles immediately above, left, right or below vj .
If i = 2, we store for all wl ∈ T2 a counter recording k′

l = |S ∩ wl|.
(e) If i = 1 we store one balanced binary tree B on all τ1 tiles in T1. If i = 2 we maintain

for each v ∈ T1 a balanced binary search tree Bv storing v ∩ T2 in lexicographical order.
(f) If i = 1, we maintain for each v ∈ T1 a pointer to the set N(v): the tile v plus the at

most four non-empty τ1-tiles immediately above, left, right or below v.
(g) If i = 2, we store for each tile v ∈ T2 the tabulation code encS(v).

4.2 Operations

We implement the extend operation as in Section 2.2. Instead of querying and updating an
explicit bit string for a tile v on the lowest level we use the corresponding tables and encS(v).
Note that we can query, update, and replace encS(v) in constant time using our tabulation.
Since the scope at level 2 is fully included in the scope of level 1, we can maintain the scope
at level 2 in constant time using the same technique as in Section 2.2. Similarly, we can
implement the reduce operation in constant time.

4.3 Lifting the Assumption

Since our data structure has O(1) update time, we may trivially lift the assumption that
n ∈ [ 1

2 N, 2N ] using standard deamortization techniques. Suppose that n starts out as N . If
n = 3

2 N , we make a copy S′ of the current S and start building a second copy of our data
structure on S′ with N ′ = 3

2 N . Whilst n remains greater than 3
2 N but smaller than 2N , we

perform our updates on S as regular. In the meantime, we do eight extend operations per
operation on S per update on S. Each update instruction on S gets additionally recorded in
a queue. If we have our data structure on S′, we perform eight updates in the queue on S′

per operation on S. This way, when |S| = 2N , it must be that S′ = S. We make the copy
of our data structure our primary data structure (setting N ← N ′). By doing a symmetric
procedure for when |S| < 2

3 N , we may always assume that |S| ∈ [ 1
2 N, 2N ].

5 Achieving O(n + log u) Bits

Naively, pointers take up a word and thus use O(log u) bits. Even with more clever pointer
management dependent on the input size, a collection of pointers that point to n arbitrary
objects in memory require Ω(log n) bits per pointer for O(n log n) bits in total. We show,
through clever pointer management, that our data structure can be implemented using
Θ(n + log u) bits instead. This is asymptotically tight, since the input size is n, and all data
requires at least one word.

Storing components (a),(b), and (c). For both T1 and T2, we store components (a), (b),
and (c) in an arbitrary contiguous set of memory. The direction string requires O(n) bits.
We require O(1) pointers to this string (specifying its start, end, and the location required
by the tail buffer) which take O(log u) bits. Components (b) and (c) each have constant size,
storing these objects plus a pointer to their location thus requires O(log u) bits and so these
components can trivially be stored using O(n + log u) bits.
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Storing components (d),(e), (f) and (g). We store components (d),(e), (f) and (g) through
a two-level definition: where we first store the data structure of T1 and then the data structure
on T2 within it. Our approach is dependent on the following geometric lemma:

▶ Lemma 10. For any snake S, for any vj ∈ T1, the number of τ2-tiles in vj is at most
4kj/τ2.

Proof. We illustrate the proof by Figure 2. Recall that S uniquely corresponds to a rectilinear
curve and consider the set Z of maximal subcurves of S in S ∩ vj . We can construct a snake
S′ by connecting all curves Z with a path along the boundary, so that S′ intersects a minimal
number of grid points. Note that the number of points |S ∩ vj | is at least the number of
points in S′ since S is a connected curve. We may now apply Lemma 3 to note that:

|T2 ∩ vj | ≤ 4|S′|/τ2 ≤ 4|S ∩N(vj)|/τ2 = 4kj/τ2 ◀

▶ Corollary 11. We may store for each vj, for all wl ∈ T2 ∩ vj a constant number of values
of O(τ2) = O(log log N) bits each, using at most O(kj) = O(|S ∩ vj |) bits.

Z = +vj + +

S′ =vj

Figure 2 Left we show a snake S intersecting a τ1-tile vj in orange. We show N(v) as the orange
and purple τ1-tiles. The set Z are all maximally connected curves in S ∩ vj . We construct a snake
S′ by connecting Z using a minimal number of points.

5.1 Technical overview
Before we state our argument, we first provide a technical overview.

First, we show a static algorithm to store a snake S of size N in O(N) space. We view
memory as a contiguous interval of 1000N bits denoted by [1, 1000N ]. We assume that
N > 1000 (else, we have constant input size and may deploy a trivial polynomial dynamic
solution). A consequence of this assumption is that any pointer to a location in [1, 1000N ]
uses 2 log N = 2τ1 bits.

Each v ∈ T1 requires two types of memory as it wants to store:
1. Constantly many pointers and counters of O(log N) bits each,
2. The set T2 ∩ v, which we store using O(|S ∩N(v)|) bits.
By Lemma 3, we have at most N/τ tiles in T1 and so storing these pointers takes O(N) bits
of space. However, storing T2 ∩ v using O(|S ∩N(v)|) bits is considerably more difficult:

Each w ∈ T2 ∩ v requires two types of memory as it wants to store:
1. Constantly many counters, pointers, and the strings αS(w), γS(w) of component (g).
2. The strings βS(w), ϵS(w) of component (g) which have O(|S ∩ w|) bits.
If we manage to store T2 ∩ v in at most O(log2 N) bits of contiguous memory, pointers to
locations within that memory require at most O(log log N) bits. We can restrict our counters
to have size O(log log N) and the strings αS(w), γS(w) have O(log log N) bits each. It follows
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by Corollary 11 that, if we can store T2 ∩ v in a contiguous interval in memory, we can store
w ∈ T2∩v using O(|S∩N(v)|) bits. Statically, guaranteeing that we store data in contiguous
intervals is trivial and this leads to a static algorithm to store our data structure using O(N)
bits and time.

From static to dynamic. To dynamically maintain our data structure we use our deamort-
ization rebuilding technique. We execute N

200 updates without ever deallocating memory.
After N

100 updates, we apply the deamortization technique. We set N ′ ← |S| and run our
static algorithm at 200 operations per update to store our data structure using O(N ′) bits,
at which point we release our previous memory. This way, our analysis only has to show
that during N

100 extend operations, our data structure still fits within 1000N bits. The reduce
operation is thus for free. To illustrate this fact, consider for example N

200 consecutive reduce
updates. Afterwards, N ′ = N − N

200 and so our rebuilt data structure will be considerably
smaller.

To make sure that during the first N
100 extend operations all data structure components stay

within their allotted memory, we recursively apply the deamortization technique. However,
to apply this technique we must be very careful: Each tile has two types of objects which
require a different order of space. Indeed consider a tile v ∈ T1 where O(|S ∩ N(v)|) is
constant. The tile v still requires pointers of size O(log N) each. If we then double |S ∩N(v)|
using O(1) extend operations, we have neither the time nor the space to make a copy of these
pointers. So, we split our data into these two types and store (and double) them separately.
Similarly, the data corresponding to each w ∈ T2 must be stored and treated by two separate
categories, as they grow at different rates.

Our solution is to partition our memory into three types, indicated by the color red,
green and yellow (see Figure 3). Red memory contains all pointers and counters. We only
allocate red memory whenever tiles get added to either T1 or T2 which requires Ω(N/ log N)
and Ω(N/ log log N) extend operations, respectively. Green memory contains data (either
the set T2 ∩ v or the strings βS(w) + ϵS(w)). We allocate more green memory each extend
operation, and must thus carefully to only allocate O(1) data per update. Yellow intervals
are search trees that for any tile v ∈ T1 or w ∈ T2 can return two pointers: indicating the
location of its data in the red and green interval. These pointers again take up non-constant
space; and are only allocated during tile inserts.

5.2 A static algorithm to allocate space

Given are N = |S|, τ1 = log N , τ2 = log log N and the set T1 = (v1, v2, . . .) (sorted
lexicographical order by their top-left coordinate) where each vj ∈ T1 stores:

A pointer to each τ1-tile in the set N(vj).
An integer counter kj recording |S ∩N(vj)|,
The set of τ2-tiles vj ∩ T2 in lexicographical order where each wl ∈ T2 stores:

the integer kl = |S ∩ wl| and the string encS(wl).

Space allocation. We allocate a contiguous set of 1000N bits in memory. For brevity, we
consider memory as an interval in R1 and thus our memory is [1, 1000N ]. For any integer a

and interval [b, c] we denote by a + [b, c] the interval [a + b, a + c]. We assume that N > 1000.
Therefore, pointers that point within [1, 1000N ] have a size of at most 2 log N bits.
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Figure 3 An illustration for how we allocate memory.

We define our memory allocation and then prove that our data structure fits. We store:

1. In [1, 100N ] for all vj ∈ T1 an interval [pj , qj ]. Specifically, [p1, q1] = [1, 10 log N ] and
[pj , qj ] = qj−1 + [1, 10 log N ]. [50N, 100N ] remains empty. Each [pj , qj ] stores:

Components (d) and (f) of vj ∈ T1.
2. In [100N, 950N ] for all vj ∈ T1 an interval [aj , bj ]. Specifically, [a1, b1] = 100N +[1, 104k1]

and [aj , bj ] = bj−1 + [1, 104kj ]. The interval [650N, 950N ] remains empty. [aj , bj ] stores:
i. In aj + [1kj , 32kj ] for all wl ∈ T2 ∩ vj an interval [p′

l, q′
l]. [p′

1, q′
1] = aj + [1, 8 log log N ]

and [p′
l, q′

l] = q′
l−1 + [1, 8 log log N ]. Each interval [p′

l, q′
l] stores:

Component (d) of wl ∈ T2∩vj and from Component (g) the strings αS(wl)+γS(wl).
In aj + [32kj , 64kj ] we keep empty space (for now).

ii. In aj + [64kj , 68kj ] for all wl ∈ T2 ∩ vj an interval [a′
l, b′

l] of size 4k′
l. Specifically,

[a′
1, b′

1] = aj + 64kj + [1, 4kj ] and [a′
l, b′

l] = b′
l−1 + [1, 4kj ]. Each interval [a′

l, b′
l] stores:

From component (g) the strings βS(wl) + ϵS(wl) plus 2k′
l bits of empty space.

In aj + [68kj , 72kj ] we store empty space (for now).
iii. In aj + [72kj , 88kj ] component (e): a balanced binary tree Bvj

over T1 ∩ vj .
Each node storing wl also stores a pointer to the location of p′

l and a′
l.

In aj + [88kj , 104kj ] we store empty space (for now).
3. In [950, 100N ] component (e): a balanced binary tree B over T1. Each node storing vj

also stores pointers to the locations of pj and aj . [450N, 500N ] remains empty.

▶ Lemma 12. Components (d), (e), (f) and (g) fit within their allocated memory. Moreover,
given our input as specified we can allocate our data structure in O(N) time.

Proof. We prove the statement in order:
We allocate intervals [pj , qj ] for vj ∈ T1 of 10 log N bits. By Lemma 3, there are at most
4⌈N/τ1⌉ = 4⌈N/ log N⌉ τ1-tiles vj in T τ1

S . So,
∑

vj∈T1

4 log N ≤ 40N and
⋃

j [pj , qj ] ⊂ [1, 40N ].

Each interval [pj , qj ] stores components (d) and (f) of vj . The counter kj is at most
log((τ1)2) ≤ 2 log N bits and four pointers in [0, 1000N ] use fewer than 8 log N bits.

We allocate intervals [aj , bj ] of width 104kj . ∀si ∈ S, there are at most 5 τ1-tiles with
si ∈ N(vj). Thus,

∑
j

104kj =
∑
j

104|S ∩N(vj)| ≤ 5 ·
∑

si∈S

104 ≤ 520N . For each [aj , bj ]:
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i. We allocate intervals [p′
l, q′

l] for wl ∈ T2 ∩ vj of 8 log log N bits. By Lemma 10, there
are at most 4kj/τ2 = 4kj/ log log N τ2-tiles in T2 ∩ vj . So,

∑
wl∈T2∩vj

8 log log N ≤ 32kj .

Thus
⋃

[p′
l, q′

l] has a width of at most 32kj and an interval of width 32kj remains empty.
Each interval [p′

l, q′
l] stores component (d) of w′

l and of component (g) α(wl) + γ(wl).
The counter k′

l is at most log((τ2)2) ≤ 2 log log N bits. By Lemma 7, these strings
use 4 log log N bits. So the total takes 6 log log N < 8 log log N bits.

ii. We allocate [a′
l, b′

l] for wl ∈ T2 ∩ vj of 4k′
l bits.

∑
wl∈T2∩vj

4k′
l = 4

∑
wl∈T2∩vj

|S ∩ w| ≤ 4kj .

Thus, we may leave an interval of 4kj bits empty.
By the proof of Lemma 7, the strings βS(wl) and ϵS(wl) of encS(wl) use 2k′

l bits
and so [a′

l, b′
l] has 2k′

l empty bits remaining.
iii. By Lemma 10, |T2 ∩ vj | ≤ 4kj/ log log N . We store component (e), a balanced binary

tree Bvj where each node representing wl stores a pointer to the location of p′
l and a′

l

of at most 2 log log N bits. Moreover, |T2 ∩ vj | ≤ (log N)2. Thus, we may construct a
balanced binary tree on T2 ∩ vj using 16kj bits in total, leaving 16kj bits empty.

By Lemma 3, there are at most 4⌈N/τ1⌉ = 4⌈N/ log N⌉ τ1-tiles in T1. We store compon-
ent (e) as a balanced binary tree where nodes store two pointers of at most 2 log N bits.
Thus, the balanced binary tree fits within an interval of width 10N .

Since the input is already sorted, the whole allocation can trivially be done in O(N) time. ◀

5.3 Dynamically maintaining our space allocation
We dynamically maintain our space allocation as follows. For N

100 updates, we never deallocate
any space. Thus, the reduce operation has no effect on our storage. For any extend operation
during this time, we allocate additional space: filling up the pre-allocated empty space in our
memory. Whenever a pre-allocated empty interval is half full, we allocate a new interval of
twice the size and start copying the data into the new interval. We prove that this way, we
never store data in an interval that is empty. We first introduce some additional concepts:

Denote for each τ1-tile vj ∈ T1 a counter K∗
j = [aj , bj ].

There are two ways this counter can be stored. Firstly this counter never exceeds
2 log N bits and store it alongside kj in [pi, qj ] by increasing our space by a small
constant factor. If the reader is hesitant towards increasing space any further, this
counter may always be computed from [aj , bj ] in O(1) time.

We describe the compounded effect of extend and reduce operations through five events:
1. In the mini-spawn event, we add a τ2-tile wl to T2 with wl ⊂ vj ∈ T1.

Denote by [p, q] and [a, b] the empty set of bits in aj + [16kj , 32kj ] and aj + [64kj , 72kj ].
We allocate [p′

l, q′
l] = q + [1, 8 log log N ] and [a′

l, b′
l] = b + [1, 4kj ] in [a, b] (shrinking

[p, q] and [a, b] accordingly). Then we insert wl into Bvj
.

2. In the spawn event, we add a τ1-tile vj to T1.
Denote by [p, q] the remaining space in [1, 100N ]. We allocate [pj , qj ] = q +[1, 10 log N ]
and shrink [p, q] accordingly. Similarly let [a, b] be the remaining space in [650N, 950N ].
We allocate [aj , bj ] = b + [1, 104kj ] and shrink [a, b] accordingly. Finally, we insert vj

into the balanced binary tree B, allocating 4 log log N bits in [950N, 1000N ].
3. In the mini-double event for wl ∈ T2, [a′

l, b′
l] has three quarters of its bits allocated.

Conceptually, we set [x′
l, y′

l]← [a′
l, b′

l].
Let [a, b] be the empty space in a space in aj + [68kj , 72kj ]. We allocate a new interval
[a′

l, b′
l] = a + [1, 2 · |[x′

l, y′
l]|] to wl and reduce [a, b] accordingly.

We refer to [x′
j , y′

j ] as the shadow of [a′
j , b′

j ].
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4. In the double event for vj ∈ T1, the empty half of the red, green or yellow interval
in [aj , bj ] has at least half of its bits allocated. I.e., either aj + [32K∗

j , 64K∗
j ], or,

aj + [68K∗
j , 72K∗

j ], or, aj + [88K∗
j , 104K∗

j ] has at least half of its bits allocated.
Conceptually, we set [xj , yj ]← [aj , bj ].
Let [a, b] be the empty space in [550N, 950N ]. We allocate a new interval [aj , bj ] =
b + [1, 104kj ] to vj and reduce [a, b] accordingly.
We refer to [xj , yj ] as the shadow of [aj , bj ] and set K∗

j ← 2K∗
j .

5. In the mega-double-event, the empty half of the red, green or yellow interval in
[1, 1000N ] has at least half of its bits allocation. I.e., one of the tree intervals: [50N, 100N ],
[650N, 950N ] or [984N, 1000N ] has at least half of its bits allocated.

▶ Lemma 13. For any wl ∈ T2, it takes at least |[a′
l, b′

l]|/2 extend operations (where the head
is in wl) before we trigger a mini-double event for wl.

Proof. By Lemma 7, the length of the substrings βS(wl) + ϵS(wl) of encS(wl) have at most
2k′

l bits. When [a′
l, b′

l] was created let |S ∩ wl| = X. Per definition, the width of [a′
l, b′

l] was
4X with 2X bits remaining empty and so the lemma follows. ◀

▶ Lemma 14. For any vj ∈ T2, it takes at least K∗
j /4 extend operations (with the head in

N(vj)) before we trigger a double event for vj.

Proof. We do a case distinction on what triggered the event:
Suppose that aj + [32K∗

j , 64K∗
j ] has at least half of its bits allocated (this is the empty

space of the red interval). We only allocate memory in these intervals during a mini-spawn
event in vj . At a mini-spawn event, we allocate 8 log log N bits in the red interval. Thus,
by the time that we have filled 16K∗

j bits, we must have triggered 2K∗
j / log log N mini-

spawn events. By Lemma 3, it takes at least log log N extend operations in N(vj) to
trigger four mini-spawn events in vj and so the lemma follows.
Suppose that aj + [88K∗

j , 104K∗
j ] has at least half its bits allocated (this is the empty

space of the yellow interval). We only allocate memory in these intervals during a
mini-spawn event. At a mini-spawn event, we allocate 4 log log N bits. Thus, by the
time that we have filled 8K∗

j bits we must have triggered K∗
j / log logN mini-spawn

events. By Lemma 3, it takes at least log log N extend operations in N(vj) to trigger four
mini-spawn events in vj and so the lemma follows.
Suppose that aj + [68K∗

j , 72K∗
j ] has at least half of its bits allocated (this is the empty

space of the green interval). If this memory was (largely) allocated through mini-spawn
events, then since each such event allocates O(1) bits in this range and requires at least
one extend operation. Thus, the lemma trivially follows. So suppose that this memory
was allocated through mini-double events instead.
For any wl ∈ T2 ∩ vj denote [a′

l(1), b′
l(1)] = [a′

l, b′
l] whenever [a′

l, b′
l] ⊂ aj + [68K∗

j , 72K∗
j ].

I.e., consider the current interval associated to wl if it is stored in the empty half of
the green interval. We recursively define the intervals [a′

l(t), b′
l(t)] as the shadow of

[a′
l(t− 1), b′

l(t− 1)]. We note two facts: Firstly, our assumption implies that the intervals
[a′

l(t), b′
l(t)] use at least 2K∗

j bits in aj + [68K∗
j , 72K∗

j ]. Secondly, for all l, for all t,
|[a′

l(t), b′
l(t)]| = 1

2 |[a
′
l(t− 1), b′

l(t− 1)]|. It follows from the geometric series that:∑
wl∈T2∩vj

∑
t

|[a′
l(t), b′

l(t)]| ≥ 2K∗
j ⇒

∑
wl∈T2∩vj

|[a′
l(1), b′

l(1)]| ≥ K∗
j .

The interval [a′
l(1), b′

l(1)] can only have been created through a mini-double event on
[a′

l(2), b′
l(2)]. By Lemma 13, it takes 1

2 |[a
′
l(2), b′

l(2)]| ≥ 1
4 |[a

′
l(1), b′

l(1)| extend operations
in wl before this event is triggered and so the lemma follows. ◀
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▶ Lemma 15. It takes at least N/100 extend operations to trigger a mega-double event.

Proof. The proof is analogous to Lemma 14 as a case distinction on the event trigger:
Suppose that [50N, 100N ] has at least half of its bits allocated (this is the empty space
of the red interval). We only allocate memory in these intervals during a spawn event.
At a spawn event, we allocate 10 log log N bits in the red interval. Before we filled 25N

bits, we must have triggered 2N/ log log N spawn events. By Lemma 3, it takes at least
log log N extend operations to trigger four spawn events and so the lemma follows.
Suppose that [984N, 1000N ] has at least half its bits allocated (this is the empty space of
the yellow interval). We only allocate memory in these intervals during a spawn event.
At a spawn event, we allocate 4 log log N bits. Thus, by the time that we have filled 40N

bits we must have triggered 10N/ log logN spawn events. By Lemma 3, it takes at least
log log N extend operations to trigger four spawn events and so the lemma follows.
Suppose that [650N, 950N ] has at least half of its bits allocated (this is the empty space
of the green interval). The space required by 1

10 N spawn events may be charged to all
the other space in memory (since each spawn event allocates memory proportional to
how much memory is already in space). Thus, we may suppose that this memory was
allocated through double events.
For any vj ∈ T1 denote [aj(1), bj(1)] = [aj , bj ] whenever [aj , bj ] ⊂ [650N, 950N ]. I.e.,
consider the current interval associated to vj if it is stored in the empty half of the green
interval. We recursively define [aj(t), bj(t)] as the shadow of [aj(t− 1), bj(t− 1)].
We note two facts: Firstly, our assumption implies that the intervals [aj(t), bj(t)] use at
least 150N bits in [650N, 950N ]. Secondly, for all l, for all t, |[aj(t), bj(t)]| = 1

2 |[aj(t−
1), bj(t− 1)]|. It follows from the geometric series that:∑

vj∈T1

∑
t

|[aj(t), bj(t)]| ≥ 150N ⇒
∑

vj∈T1

|[aj(1), bj(1)]| ≥ 75N.

[aj(1), bj(1)] can only have been created through a double event on [aj(2), bj(2)]. By
Lemma 14, it takes 1

8 K∗
j ≥ 1

8·104 |[aj(1), bj(1)]| extend operations in N(vj) before this
event is triggered.1 Each extend operation occurs in N(vj) for at most five tiles in T1.
This implies that at least 75

8·104·5 ≥
N

100 extend operations must have occurred. ◀

5.3.1 Proving our main theorem
We are now ready to prove:

▶ Theorem 1. We can represent a snake of length n in O(n + log u) bits and support extend
and reduce operations in constant time.

Proof. We assume that n ∈ [0.5N, 2N ] and that we have built our data structure with τ1 =
log N and τ2 = log log N . On a macro-level, we use the standard rebuilding deamortization
technique. For the first N

200 updates, we update our data structure in O(1) worst-case time
using our update strategy of Section 4.2; allocating space until we trigger a mini-double or
double event.

Whenever we trigger a mini-double event for a tile wl ∈ T2, we reallocate the new
memory [a′

l, b′
l] in O(1) time. Over the next |[a′

l, b′
l]|/10 updates that change S ∩Wl, we

perform ten times the work to both execute the work in the shadow of [a′
l, b′

l] and copy all

1 Indeed, it took 1
4 K∗

j extend operations to trigger a double event, after which K∗
j was doubled. Moreover,

per definition, [aj , bj ] is 104K∗
j bits wide.
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info from its shadow into [a′
l, b′

l] (whilst queueing updates not executed in [a′
l, b′

l]). When we
have successfully copied the shadow of [a′

l, b′
l] we dequeue updates at four times the pace we

are queueing them so that our interval [a′
l, b′

l] is up to date before its shadow is full.
Whenever we trigger a double event for a tile vj ∈ T1, we reallocate the new memory

[al, bl] in O(1) time. Over the next K∗
j /10 updates that change S ∩ v, we perform ten times

the work to both execute the update in the shadow of [aj , bj ] and copy all info from its shadow
into [al, bl] (whilst queueing updates not executed in [aj , bj ]). When we have successfully
copied the shadow of [aj , bj ] we dequeue updates at four times the pace we are queueing
them so that our interval [aj , bj ] is up to date before its shadow is full.

This way, we maintain our data structure in O(1) time for the first N
200 updates. By

Lemma 15, we cannot trigger a mega-double event in this time and thus everything fits well
within memory. At this point, we set N = n and we reallocate a new interval of 1000N bits.
Over the next N

200 updates, we do four times the work: executing updates on our original
interval whilst copying the info from our original interval into the new interval (queuing
updates in the process). When we have successfully copied the original interval into the new
interval, we dequeue the updates at four times the pace that we are queuing them so that
the new copy is up to date before we reach N

200 updates in the first interval. Thus, we never
trigger a mega-double event and we always fit within O(N) bits. ◀
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