
How to Covertly and Uniformly Scramble the 15
Puzzle and Rubik’s Cube
Kazumasa Shinagawa #

Ibaraki University, Japan
National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

Kazuki Kanai #

National Institute of Technology, Kure College, Hiroshima, Japan

Kengo Miyamoto #

Ibaraki University, Japan

Koji Nuida #

Institute of Mathematics for Industry (IMI), Kyushu University, Fukuoka, Japan
National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

Abstract
A combination puzzle is a puzzle consisting of a set of pieces that can be rearranged into various
combinations, such as the 15 Puzzle and Rubik’s Cube. Suppose a speedsolving competition for a
combination puzzle is to be held. To make the competition fair, we need to generate an instance
(i.e., a state having a solution) that is chosen uniformly at random and unknown to anyone. We call
this problem a secure random instance generation of the puzzle. In this paper, we construct secure
random instance generation protocols for the 15 Puzzle and for Rubik’s Cube. Our method is based
on uniform cyclic group factorizations for finite groups, which is recently introduced by the same
authors, applied to permutation groups for the puzzle instances. Specifically, our protocols require
19 shuffles for the 15 Puzzle and 43 shuffles for Rubik’s Cube.

2012 ACM Subject Classification Security and privacy → Information-theoretic techniques

Keywords and phrases Card-based cryptography, Uniform cyclic group factorization, Secure random
instance generation, The 15 Puzzle, Rubik’s Cube

Digital Object Identifier 10.4230/LIPIcs.FUN.2024.30

Funding Kazumasa Shinagawa: This work was supported in part by JSPS KAKENHI Grant
Numbers 21K17702 and 23H00479, and JST CREST Grant Number MJCR22M1.
Kengo Miyamoto: This work was supported in part by JSPS KAKENHI Grant Numbers 20K14302
and 23H00479.
Koji Nuida: This work was supported in part by JSPS KAKENHI Grant Number JP19H01109.

1 Introduction

1.1 Secure Random Instance Generation Problem
A combination puzzle is a puzzle that consists of a set of pieces that can be rearranged into
various combinations, such as the 15 Puzzle and Rubik’s Cube. Suppose we want to hold a
speedsolving competition for a combination puzzle. For the competition, we need to generate
an instance (i.e., a state having a solution) of the puzzle. It must be chosen uniformly at
random from all instances, since otherwise some players may predict the instance. In an
actual speedsolving competition, an instance is chosen randomly by a computer program, and
a person called the scrambler applies the corresponding scrambling procedure to the puzzle.
An obvious drawback of this method is that the scrambler, who should know the chosen
instance, cannot fairly participate in the competition. One solution to this problem could be
to use a robot that generates a uniformly random instance of the puzzle, but verifying the
correctness of the robot’s behavior is not easy in general.

© Kazumasa Shinagawa, Kazuki Kanai, Kengo Miyamoto, and Koji Nuida;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Fun with Algorithms (FUN 2024).
Editors: Andrei Z. Broder and Tami Tamir; Article No. 30; pp. 30:1–30:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kazumasa.shinagawa.np92@vc.ibaraki.ac.jp
https://orcid.org/0000-0002-5219-1975
mailto:k-kanai@kure-nct.ac.jp
https://orcid.org/0009-0005-2997-1390
mailto:kengo.miyamoto.uz63@vc.ibaraki.ac.jp
https://orcid.org/0000-0001-8748-9328
mailto:nuida@imi.kyushu-u.ac.jp
https://orcid.org/0000-0001-8259-9958
https://doi.org/10.4230/LIPIcs.FUN.2024.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 How to Covertly and Uniformly Scramble the 15 Puzzle and Rubik’s Cube

From this background, we need to generate an instance of the puzzle that satisfies the
following conditions:

It is chosen uniformly at random from all instances.
It is hidden from all players, including the scrambler, until the competition starts.
It is arranged by human hands without electronic devices (such as a robot).

We call this problem a secure random instance generation problem of the puzzle.
For the 15 Puzzle, the problem might seem to be trivial at first glance, because the

structure of an ordinary 15 Puzzle board allows taking out the 15 blocks, turning them
face-down, and scramble them randomly. However, there is actually an issue; a completely
random arrangement of blocks may have no solution. Precisely1, it is well-known that when
the blocks are arranged according to a permutation σ in the symmetric group S15, a solution
exists if and only if σ is in the alternating group A15, which happens only with probability
1/2 for a uniformly random σ. Therefore, we need to scramble the blocks in a way that only
permutations in A15 can appear, which is a non-trivial task.

For Rubik’s Cube, similar to the 15 Puzzle, we need to covertly and uniformly generate a
permutation of the Rubik’s Cube group R, which is a subgroup of the 48th symmetric group
S48, but the situation is more complicated than for the 15 Puzzle (not just because the group
R is more complicated than A15). First, unlike the 15 Puzzle, each piece of the cube cannot
be “face-down.” Second, since all pieces are mechanically connected, applying a permutation
to the cube is a non-trivial task.

In this paper, we consider the secure random instance generation problem for the first
time and solve the problem for the 15 Puzzle and Rubik’s Cube. For both puzzles, we need
to covertly and uniformly generate a permutation from a finite group. A similar problem has
been studied in the research area of card-based cryptography.

1.2 Card-Based Cryptography
Card-based cryptography [3, 5, 14] is a research area within cryptography, which is based
on physical cards; cryptographic protocols such as secure computation protocols and zero-
knowledge proof protocols are implemented by a deck of cards without electronic devices.

A shuffle is an operation to rearrange a card sequence covertly and randomly. Formally,
a shuffle for a sequence of n cards is defined by a pair of a set of permutations Π ⊆ Sn,
where Sn denotes the n-th symmetric group, and a probability distribution F on Π, which
is denoted by (shuffle, Π, F). For a sequence c⃗ := (c1, c2, . . . , cn) of face-down cards, it
chooses a permutation π ∈ Π according to F covertly, and rearranges it into the sequence
π(c⃗) = (cπ−1(1), cπ−1(2), . . . , cπ−1(n)). Here, it is assumed that no player (including the player
who actually operates the shuffle operation) can guess which permutation π was chosen
beyond the fact that it was chosen according to F . A shuffle (shuffle, Π, F) is said to be
uniform if F is the uniform distribution on Π, closed if Π is a subgroup of Sn, and uniform
closed if both conditions hold. Hereinafter, for a uniform shuffle (shuffle, Π, F), we write it
as (shuffle, Π) and call it the Π-shuffle.

Although the definition of shuffles allows for an arbitrary permutation set Π and an
arbitrary distribution F , how to physically implement a shuffle (shuffle, Π, F) given Π and F
is quite non-trivial. In the literature on card-based cryptography, five shuffles – a random cut,
a random bisection cut, a pile-shifting shuffle, a complete shuffle, and a pile-scramble shuffle

1 We assume that an instance of the 15 Puzzle always has the empty square placed at the bottom right
(as well as the default instance of the puzzle), therefore an arrangement of the puzzle corresponds to a
permutation in S15 rather than S16.

K. Shinagawa, K. Kanai, K. Miyamoto, and K. Nuida 30:3

– are considered easy to implement. This is because the first three shuffles are performed
by random cyclic shifting and the last two shuffles are performed by completely random
scrambling. (See also Ueda et al. [23] for how to implement a random cut, a random bisection
cut, and a pile-shifting shuffle.) In this paper, we call these five shuffles practical shuffles.

From this context, there is a line of research to implement a class of shuffles from practical
shuffles with the use of “helping cards”. Saito et al. [20] showed that any shuffle (shuffle, Π, F)
can be implemented by three practical shuffles (one random cut, one pile-shifting shuffle, and
one pile-scramble shuffle) with helping cards if every probability of F is a rational number.
Although it is very general and important work, it requires at least n · |Π| helping cards; it is
inefficient in terms of the number of cards when |Π| is large. Another important example
of previous work is the result by Koch [11]. He showed that any uniform closed shuffle
(shuffle, Π) can be implemented by pile-shifting shuffles. However, it requires O(|Π|) shuffles;
it is inefficient in terms of the number of shuffles when |Π| is large. In summary, up until
now, there is no efficient implementation of a shuffle when |Π| is large.

1.3 Our Contribution
In this paper, we propose physical protocols for secure random instance generation of the 15
Puzzle and Rubik’s Cube. Let G be the permutation group corresponding to the set of all
instances of the puzzle. We divide the problem into the following problems:

How to implement a G-shuffle from practical shuffles?
How to apply a G-shuffle to the puzzle physically?

For the first problem, we utilize a decomposition of a finite group into cyclic subgroups
called a uniform cyclic group factorization (UCF), which is recently proposed by the au-
thors [10] (see Section 3.1). We show that if a group G has a UCF of length k, a G-shuffle
can be implemented by a sequence of k cyclic group shuffles, which are C-shuffles for some
cyclic group C, with no additional cards. This is an efficient method to implement a G-shuffle
from practical shuffles since k is considerably smaller than |G|. Up until now, it is known
that all solvable groups have a UCF [10] but whether any finite group has a UCF or not is
still open. Fortunately, the alternating group and the Rubik’s Cube group R have a UCF.
Based on the UCF, the A15-shuffle and the R-shuffle can be implemented by a sequence
of 19 and 43 cyclic group shuffles, respectively. In addition, these cyclic group shuffles are
practical shuffles: random cuts, random bisection cuts, and pile-shifting shuffles. Note that
since |A15| = 653837184000 and |R| = 43252003274489856000, the existing methods [11,20]
require a large number of cards or a large number of shuffles at least these numbers.

For the 15 Puzzle, the second problem is almost trivial: Turn the blocks face-down and
apply the A15-shuffle to the sequence of face-down blocks just like a sequence of cards. Thus,
the secure random instance generation problem of the 15 Puzzle is solved.

For Rubik’s Cube, the second problem is more complicated than that of the 15 Puzzle
because there are two obstacles: (1) since each piece of the cube cannot be “face-down”, how
to hide an instance of the cube is non-trivial; (2) since all pieces are mechanically connected,
how to apply a permutation to the cube is non-trivial. To solve (1) and (2), we propose two
methods for the construction of a secure random instance generation of Rubik’s Cube.

The first solution requires color stickers, which are concealed by peelable films: The
faces of the cube are hidden by stickers and films, as a solution to (1), and a permutation is
applied to a sequence of color stickers instead of the cube, as a solution to (2). The protocol
proceeds as follows. First, an R-shuffle is applied to a sequence of color stickers. Then, each

FUN 2024

30:4 How to Covertly and Uniformly Scramble the 15 Puzzle and Rubik’s Cube

sticker is placed on each face of the cube. Finally, just before the competition starts, all
films are peeled off. We call it a protocol in the free permutation model since it applies a
permutation freely. The protocol flow is summarized as Figure 1.

Figure 1 The flow of our protocol for Rubik’s Cube in the free permutation model.

The second solution requires a piece of cloth: The cube is covered by a piece of cloth,
as a solution to (1), and standard operations of Rubik’s Cube (i.e., F, B, U, D, L, and R)
are applied from under the cloth, as a solution to (2). The protocol proceeds as follows.
First, cover the solved cube by a large piece of cloth. Then, apply a sequence of standard
operations repeatedly until the player who scrambles the puzzle cannot remember how many
times it has been repeated (just like a Hindu cut of the playing card) from under the cloth.
Finally, just before the competition starts, the cloth is removed. We call it a protocol in the
restricted permutation model since the permutations applied to the puzzle is restricted to the
standard operations.

In summary, we propose three protocols for secure random instance generation of the
15 Puzzle and Rubik’s Cube. For the 15 Puzzle, we propose a protocol with 19 practical
shuffles (7 random cuts, 7 random bisection cuts, and 5 pile-shifting shuffles). For Rubik’s
Cube, our protocol in the free permutation model applies 43 practical shuffles (22 random
bisection cuts and 21 pile-shifting shuffles) to the sequence of color stickers, and one in the
restricted permutation model applies a sequence of standard operations to the cube directly.

1.4 Related Work
Mathematics of the 15 Puzzle. It is NP-hard to determine whether an instance of the
generalized 15 Puzzle can be solved at most k moves for a given integer k [17,18]. It is shown
that the length of shortest solutions ranges from 0 to 80 single-tile moves [1] or 43 multi-tile
moves [16]. For the generalized 15 Puzzle with an n × n puzzle board, it is shown that the
asymptotic mixing time is O(n4 log n) when random moves are made [2].

Mathematics of Rubik’s Cube. It is NP-complete to determine whether an instance of the
generalized n × n × n Rubik’s Cube can be solved at most k moves for a given integer k [4].
It is shown that the minimum number of steps required to solve any instance of Rubik’s
Cube called God’s Number is 20 [19].

Card-Based Cryptography. There is a line of research to implement somewhat complicated
shuffles from practical shuffles. There are several studies on generating a derangement, which
is a permutation without fixed points, covertly and uniformly at random [3,6, 8, 9]. It can be
seen as a uniform shuffle whose permutation set is the set of all derangements. Hashimoto
et al. [7] proposed a secure grouping protocol that generates a random permutation with
some conditions, which has an application to the Werewolf game. Also, it can be seen
as a kind of uniform shuffle. Miyamoto and Shinagawa [12, 21] constructed a protocol for
implementing graph shuffles, which is a class of uniform closed shuffles whose permutation
set is the automorphism group of a graph, from pile-scramble shuffles.

K. Shinagawa, K. Kanai, K. Miyamoto, and K. Nuida 30:5

Secure Computation Using the 15 Puzzle. Mizuki, Kugimoto, and Sone [13] showed that
secure computation can be done by the use of the 15 Puzzle. In particular, they showed
that any 4-variable Boolean function and any 14-variable Boolean symmetric function are
securely computed by using the 15 Puzzle.

2 Preliminaries

2.1 Notations
Throughout this paper, any groups are assumed to be finite. We denote the n-th symmetric
group by Sn and the n-th alternating group by An. We assume to multiply permutations
from left to right, e.g., (1, 2)(1, 3) = (1, 2, 3). Note that it is the convention used by the GAP
and the community of Rubik’s Cube.

2.2 Shuffle
A shuffle is an operation that rearranges a sequence of cards covertly and randomly (see
also Section 1.2). In Sections 4 and 5, we use random cuts, random bisection cuts, and
pile-shifting shuffles. These shuffles are special cases of cyclic group shuffles.

Cyclic Group Shuffle. A cyclic group shuffle is a G-shuffle for some cyclic group G = ⟨g⟩.
Let k be the order of G. Then it applies a permutation gr to a sequence of cards, where
r ∈ {0, 1, . . . , k − 1} is chosen uniformly at random. For example, applying a cyclic group
shuffle (shuffle, ⟨g⟩), where g = (1, 2)(3, 4, 5, 6) ∈ S6, to a sequence of six cards yields the
following result:

→
c =

1
?

2
?

3
?

4
?

5
?

6
? 7−→ π(→

c) =

1
?

2
?

3
?

4
?

5
?

6
? if π = g0 (with prob. 1/4);

2
?

1
?

6
?

3
?

4
?

5
? if π = g1 (with prob. 1/4);

1
?

2
?

5
?

6
?

3
?

4
? if π = g2 (with prob. 1/4);

2
?

1
?

4
?

5
?

6
?

3
? if π = g3 (with prob. 1/4).

Random Cut. A random cut [5] (of length k) is a cyclic group shuffle whose generator
g is a conjugate of (1, 2, . . . , k) ∈ Sn, i.e., there exists a permutation τ ∈ Sn such that
g = τ−1(1, 2, . . . , k)τ . For example, applying a random cut (shuffle, ⟨g⟩), where g = (2, 1, 4),
to a sequence of four cards yields the following result:

→
c =

1
?

2
?

3
?

4
? 7−→ π(→

c) =

1
?

2
?

3
?

4
? if π = g0 (with prob. 1/3);

2
?

4
?

3
?

1
? if π = g1 (with prob. 1/3);

4
?

1
?

3
?

2
? if π = g2 (with prob. 1/3).

Random Bisection Cut. A random bisection cut [15] (of size ℓ) is a cyclic group shuffle
whose generator is a conjugate of (1, ℓ + 1)(2, ℓ + 2) · · · (ℓ, 2ℓ) ∈ Sn. For example, applying
a random bisection cut (shuffle, g⟩), where g = (1, 4)(2, 5)(3, 6), to a sequence of six cards
yields the following result:

→
c =

1
?

2
?

3
?

4
?

5
?

6
? 7−→ π(→

c) =

1
?

2
?

3
?

4
?

5
?

6
? if π = g0 (with prob. 1/2);

4
?

5
?

6
?

1
?

2
?

3
? if π = g1 (with prob. 1/2).

FUN 2024

30:6 How to Covertly and Uniformly Scramble the 15 Puzzle and Rubik’s Cube

Pile-Shifting Shuffle. A pile-shifting shuffle [22] (of size ℓ with k piles) is a cyclic group
shuffle whose generator g is a conjugate of the following permutation:
→
c = (1, ℓ+1, 2ℓ+1, . . . , (k−1)ℓ+1)(2, ℓ+2, 2ℓ+2, . . . , (k−1)ℓ+2) · · · (ℓ, 2ℓ, 3ℓ, . . . , kℓ) ∈ Sn.

For example, applying a pile-shifting shuffle (shuffle, ⟨g⟩), where g = (1, 3, 5)(2, 4, 6), to a
sequence of six cards yields the following result:

1
?

2
?

3
?

4
?

5
?

6
? 7−→ π(→

c) =

1
?

2
?

3
?

4
?

5
?

6
? if π = g0 (with prob. 1/3);

5
?

6
?

1
?

2
?

3
?

4
? if π = g1 (with prob. 1/3);

3
?

4
?

5
?

6
?

1
?

2
? if π = g2 (with prob. 1/3).

3 Uniform Cyclic Group Factorization and Its Application to Shuffle

In this section, we recall the notion of uniform cyclic group factorizations of a finite group [10]
and show that if a group G has a uniform cyclic group factorization, the G-shuffle can be
implemented by a sequence of cyclic group shuffles with no additional cards.

3.1 Uniform Cyclic Group Factorization
Let G be a group. Let H = (H1, H2, . . . , Hk) be an ordered tuple of subsets of G. Define the
multiplication map multH : H1 × H2 × · · · × Hk → G by multH(h1, h2, . . . , hk) := h1h2 · · · hk.
H is called a factorization of G if multH is surjective. The integer k is called the length of H.
If H1, H2, . . . , Hk are proper subsets of G, then H is called a proper factorization of G.

▶ Definition 1 (Definition 2.1 in [10]). Let G be a group and H = (H1, H2, . . . , Hk) a
factorization of G.
(1) The factorization H is a uniform factorization of G if |mult−1

H (g)| does not depend on
g ∈ G. The integer t := |mult−1

H (g)| is called the multiplicity of H.
(2) The factorization H is a uniform group factorization (UGF) of G if H is a uniform

factorization of G and all H1, H2, . . . , Hk are subgroups of G.
(3) The factorization H is a uniform cyclic group factorization (UCF) of G if H is a uniform

group factorization of G and all H1, H2, . . . , Hk are cyclic subgroups of G.

When (H1, H2, . . . , Hk) is a UGF (or a UCF) of G, we write G = H1H2 . . . Hk.
We give some examples of UCF. For the n-th symmetric group Sn, by letting Hi :=

⟨(1, . . . , i + 1)⟩, the tuple H1 = (H1, H2, . . . , Hn−1) is a UCF of Sn. The length of H1 is
n − 1 and the multiplicity of H1 is 1. For the n-th dihedral group Dn = ⟨σ, τ | σn = 1, τ2 =
1, τ−1στ = σ−1⟩, the tuple H2 = (⟨σ⟩, ⟨τ⟩) is a UCF of Dn. The length of H2 is 2 and the
multiplicity of H2 is 1.

▶ Lemma 2. Let G1, G2 be groups. If G1 and G2 have UGF (resp. UCF), then the direct
product G1 × G2 and the semi-direct product G1 ⋊ G2 also have UGF (resp. UCF).

Proof. Suppose that G1 = H1H2 . . . Hk and G2 = M1M2 · · · Mℓ where Hi = ⟨hi⟩ and
Mj = ⟨mi⟩. Then the direct product G1 × G2 = {(g1, g2) | gi ∈ Gi} has a UCF G1 × G2 =
Ĥ1Ĥ2 . . . ĤkM̂1M̂2 · · · M̂ℓ where Ĥi := ⟨(hi, idG2)⟩ and M̂j := ⟨(idG1 , mj)⟩. Since every
element x ∈ G1 ⋊G2 is uniquely represented by x = g1g2 for gi ∈ Gi, the semi-direct product
G1 ⋊ G2 has a UCF G1 ⋊ G2 = H1H2 . . . HkM1M2 · · · Mℓ. ◀

K. Shinagawa, K. Kanai, K. Miyamoto, and K. Nuida 30:7

Any solvable group has a UCF (Theorem 3.3 in [10]). It is an open problem whether
any group has a UCF or not. The authors showed that any group has a UCF whenever any
group has a proper UGF (Theorem 3.4 in [10]), i.e., the open problem can be affirmatively
solved if any group has a UGF.

3.2 Shuffles Based on Uniform Cyclic Group Factorization
We show that if a group G has a uniform cyclic group factorization, the G-shuffle can be
implemented by a sequence of cyclic group shuffles with no additional cards.

First, we define the equivalence between a shuffle and a sequence of shuffles. Intuitively,
they are said to be equivalent if the resultant probability distributions are the same.

▶ Definition 3. Let G, H1, . . . , Hs be subgroups of Sn. A shuffle (shuffle, G, F) is said to be
equivalent to a sequence of shuffles (shuffle, H1, F1), . . . , (shuffle, Hs, Fs) if for all g ∈ G,

F(g) =
∑

(h1,h2,...,hs)∈H1×H2×···×Hs

h1h2···hs=g

s∏
i=1

Fi(hi), (1)

where the summation is taken over all (h1, . . . , hs) ∈ H1 × · · · × Hs such that h1 · · · hs = g.

The following lemma is easy but important for implementing shuffles.

▶ Lemma 4. Let G be a group and H = (H1, H2, . . . , Hk) a factorization of G. Let FH be a
probability distribution on G defined as follows:

FH(g) = |mult−1
H (g)|∏k

i=1 |Hi|
.

Then a shuffle (shuffle, G, FH) is equivalent to a sequence of k uniform shuffles as follows:

(shuffle, H1), (shuffle, H2), . . . , (shuffle, Hk).

Moreover, if H is a uniform factorization, FH is a uniform distribution on G.

Proof. Since the probability that hi ∈ Hi is chosen by (shuffle, Hi) is 1
|Hi| and the number

of (h1, . . . , hk) ∈ H1 × · · · × Hk such that h1 · · · hk = g is |mult−1
H (g)|, the right hand side of

Eq. (1) is |mult−1
H (g)|∏k

i=1
|Hi|

which is equal to FH(g). Therefore, (shuffle, G, FH) is equivalent to the

sequence of k uniform shuffles. If H is a uniform factorization, FH is a uniform distribution
on G since |mult−1

H (g)| does not depend on g. ◀

▶ Corollary 5. Let G be a group. If G has a uniform cyclic group factorization of length k,
a uniform closed shuffle (shuffle, G) is equivalent to a sequence of k cyclic group shuffles.

Proof. Follows from Lemma 4. ◀

4 Secure Random Instance Generation of the 15 Puzzle

In this section, we propose a secure random instance generation protocol of the 15 Puzzle.
In Section 4.1, we give a UCF of the alternating group An based on the construction given
by the authors [10]. In Section 4.2, we construct a protocol based on the UCF.

FUN 2024

30:8 How to Covertly and Uniformly Scramble the 15 Puzzle and Rubik’s Cube

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Figure 2 Cells of the 15 Puzzle.

4.1 Uniform Cyclic Group Factorization of the Alternating Group
The 15 Puzzle is a sliding block puzzle consisting of a board and 15 blocks from 1 to 15 .
The backs of all blocks are identical and denoted by ? . The board has 4 × 4 cells, which
are numbered from 1 to 16 as in Figure 2. Initially, all blocks are placed on cells from 1 to
15 in a random order. A cell having no block is called a blank cell. The aim of the puzzle is
to make a board with 1 to 15 in cells from 1 to 15 in the order, by sliding blocks into the
blank cell. An arrangement of the puzzle is identified with a permutation σ ∈ S15 such that
σ(i) = j if the block j is on the cell i. It is known that a permutation σ has a solution if
and only if σ is an even permutation, thus the set of all instances of the 15 Puzzle forms the
alternating group A15.

Now we construct a UCF of An based on Proposition 5.2 in [10]. If n is odd, An

is decomposed by An = HK where H ≃ An−1 is the stabilizer fixing the point n and
K = ⟨(1, 2, 3, . . . , n)⟩ is a cyclic group. If n is even (i.e., n = 2m), An is decomposed by
An = HK1K2 where H ≃ An−1 is the stabilizer fixing the point n and K1 = ⟨(1, 2, . . . , m)(m+
1, m + 2, . . . , 2m)⟩ and K2 = ⟨(1, m + 1)(m, 2m)⟩ are cyclic groups.

From the above, we can construct a UCF of An for any n. Note that all subgroups
correspond to practical shuffles: K = ⟨(1, 2, 3, . . . , n)⟩ corresponds to a random cut, K1 =
⟨(1, 2, . . . , m)(m + 1, m + 2, . . . , 2m)⟩ corresponds to a pile-shifting shuffle, and K2 = ⟨(1, m +
1)(m, 2m)⟩ corresponds to a random bisection cut. The above discussion is summarized by
the following lemma.

▶ Lemma 6. Let n ≥ 4 and An be the set of all even permutations in Sn. If n = 2m, an
An-shuffle is equivalent to a sequence of 3m − 3 shuffles: m − 1 random cuts, m random
bisection cuts, and m − 2 pile-shifting shuffles. If n = 2m + 1, it is equivalent to a sequence
of 3m − 2 shuffles: m random cuts, m random bisection cuts, and m − 2 pile-shifting shuffles.

A UCF of A15 is given by A15 = H1H2 · · · H19 as follows:
H1 = ⟨(1, 2, 3)⟩;
H2 = ⟨(1, 3)(2, 4)⟩;
H3 = ⟨(1, 2)(3, 4)⟩;
H4 = ⟨(1, 2, 3, 4, 5)⟩;
H5 = ⟨(1, 4)(3, 6)⟩;
H6 = ⟨(1, 2, 3)(4, 5, 6)⟩;
H7 = ⟨(1, 2, 3, 4, 5, 6, 7)⟩;
H8 = ⟨(1, 5)(4, 8)⟩;
H9 = ⟨(1, 2, 3, 4)(5, 6, 7, 8)⟩;
H10 = ⟨(1, 2, 3, 4, 5, 6, 7, 8, 9)⟩;
H11 = ⟨(1, 6)(5, 10)⟩;
H12 = ⟨(1, 2, 3, 4, 5)(6, 7, 8, 9, 10)⟩;
H13 = ⟨(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)⟩;
H14 = ⟨(1, 7)(6, 12)⟩;

K. Shinagawa, K. Kanai, K. Miyamoto, and K. Nuida 30:9

H15 = ⟨(1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)⟩;
H16 = ⟨(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)⟩;
H17 = ⟨(1, 8)(7, 14)⟩;
H18 = ⟨(1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12, 13, 14)⟩;
H19 = ⟨(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)⟩.

4.2 Our Protocol for the 15 Puzzle
Based on the UCF of A15, we can construct a secure random instance generation protocol
for the 15 Puzzle. From Lemma 6, our protocol requires 19 practical shuffles consisting of 7
random cuts, 7 random bisection cuts, and 5 pile-shifting shuffles. The protocol proceeds as
follows:
1. Arrange 15 blocks as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 .

2. Turn all blocks face-down as follows:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? .

3. Apply a shuffle (shuffle, Hi) for i = 1, 2, . . . , 19 as follows:

? · · · ?︸ ︷︷ ︸
15 blocks

H1−−→ ? · · · ?︸ ︷︷ ︸
15 blocks

H2−−→ ? · · · ?︸ ︷︷ ︸
15 blocks

H3−−→ · · · H19−−→ ? · · · ?︸ ︷︷ ︸
15 blocks

.

4. Place the i-th block to the i-th cell of the board for 1 ≤ i ≤ 15. The face-down blocks on
the board is a random instance of the 15 Puzzle.

5 Secure Random Instance Generation of Rubik’s Cube

In this section, we propose a secure random instance generation protocol of Rubik’s Cube.
In Section 5.1, we give a UCF of the Rubik’s Cube group R. In Section 5.2, we construct a
protocol in the free permutation model. In Section 5.3, we give a UCF of R whose generators
are written by a product of the standard generators. In Section 5.4, we construct a protocol
in the restricted permutation model.

5.1 Uniform Cyclic Group Factorization of the Rubik’s Cube Group
Rubik’s Cube consists of a number of pieces called cubies. A face of a cubie is called a facelet.
There are 6 center cubies, 8 corner cubies, and 12 edge cubies in Rubik’s Cube. By fixing the
center cubies, any instance can be regarded as a permutation of the 48 facelets, and thus the
Rubik’s Cube group R is a subgroup of S48. It is generated by the following permutations:

F := (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11);
B := (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27);
U := (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19);
D := (41, 43, 48, 46)(42, 45, 47, 44)(14, 22, 30, 38)(15, 23, 31, 39)(16, 24, 32, 40);
L := (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35);
R := (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24).

FUN 2024

30:10 How to Covertly and Uniformly Scramble the 15 Puzzle and Rubik’s Cube

1 2 3
4 5
6 7 8

9 10 11
12 13
14 15 16

17 18 19
20 21
22 23 24

25 26 27
28 29
30 31 32

33 34 35
36 37
38 39 40

41 42 43
44 45
46 47 48

U

L F R B

D

Figure 3 Facelets of Rubik’s Cube.

Here, the facelets are numbered from 1 to 48 as in Figure 3 and the above six permutations
correspond to the clockwise 90◦ rotation of the front, back, up, down, left, and right faces of
the cube, respectively. We call them the standard generators of R.

Edge cubies are represented by a pair of two indices, denoted by [α, β], as follows:
e1 := [2, 34], e2 := [4, 10], e3 := [5, 26], e4 := [7, 18], e5 := [12, 37], e6 := [13, 20], e7 := [15, 44],
e8 := [21, 28], e9 := [23, 42], e10 := [29, 36], e11 := [31, 45], and e12 := [39, 47]. Corner cubies
are represented by a tuple of three indices, denoted by [γ, δ, ϵ], as follows: c1 := [1, 35, 9],
c2 := [3, 27, 33], c3 := [6, 11, 17], c4 := [8, 19, 25], c5 := [14, 40, 46], c6 := [16, 41, 22],
c7 := [24, 43, 30], and c8 := [32, 48, 38]. For an edge cubie ei = [αi, βi], a permutation
representing a flip of the cubie is denoted by τi := (αi, βi). For a corner cubie ci = [γi, δi, ϵi],
a permutation representing the counterclockwise 120◦ rotation of the cubie is denoted by
σi := (γi, δi, ϵi). For a permutation π ∈ S12, a permutation e(π) ∈ S48 is defined as a
permutation that moves the edge cubies according to π, i.e., the i-th edge cubie ei is moved
to the π(i)-th edge cubie. For example, e((1, 2, 3)) = (2, 4, 5)(34, 10, 26). For a permutation
π ∈ S8, a permutation c(π) ∈ S48 is defined as a permutation that moves the corner cubies
according to π, i.e., the i-th corner cubie ci is moved to the π(i)-th corner cubie. For example,
c((1, 2, 3)) = (1, 3, 6)(35, 27, 11)(9, 33, 17).

The group structure of R is given by R ≃ (Z11
2 × Z7

3) ⋊ ((A8 × A12) ⋊ Z2) as follows:
The subgroup Z11

2 of R is given by:

Z11
2 = {τ b1

1 τ b2
2 · · · τ b12

12 | b1 + b2 + · · · + b12 ≡ 0 mod 2}.

It represents the group of all flippings of 12 edge cubies with the restriction that the
number of flipped cubies is even. A UCF of Z11

2 is given by Z11
2 = H1H2 . . . H11, where

Hi = ⟨τ1τi+1⟩ for 1 ≤ i ≤ 11.
The subgroup Z7

3 of R is given by:

Z7
3 = {σb1

1 σb2
2 · · · σb8

8 | b1 + b2 + · · · + b8 ≡ 0 mod 3}.

It represents the group of all rotations of 8 corner cubies, where all but one may be
rotated freely, but they determine the orientation of the last corner cubie. A UCF of Z7

3
is given by Z7

3 = H12H13 . . . H18, where H11+i = ⟨(σ1)−1σi+1⟩ for 1 ≤ i ≤ 7.
The subgroup A8 of R is given by:

A8 = {c(π) | π ∈ A8 ≤ S8}.

It represents the group of even permutations over 8 corner cubies. A UCF of A8 is given
by A8 = H19H20 · · · H27, where H18+i = ⟨c(σ′

i)⟩ for 1 ≤ i ≤ 9 and σ′
i is a generator of the

UCF of A8 given in Section 4.1.

K. Shinagawa, K. Kanai, K. Miyamoto, and K. Nuida 30:11

The subgroup A12 of R is given by:

A12 = {e(π) | π ∈ A12 ≤ S12}.

It represents the group of even permutations over 12 edge cubies. A UCF of A12 is given
by A12 = H28H29 · · · H42, where H27+i = ⟨e(σ′

i)⟩ for 1 ≤ i ≤ 15 and σ′
i is a generator of

the UCF of A12 given in Section 4.1.
The subgroup Z2 of R is given by:

Z2 = ⟨e((1, 2))c((1, 2))⟩.

It is a group generated by the composition of exchanging two corner cubies and exchanging
two edge cubies. Since Z2 is a cyclic group, it has a trivial UCF H43 := Z2.

From the above and Lemma 2, a UCF of R is given by R = H1H2 · · · H43 as follows:
H1 = ⟨(2, 34)(4, 10)⟩;
H2 = ⟨(2, 34)(5, 26)⟩;
H3 = ⟨(2, 34)(7, 18)⟩;
H4 = ⟨(2, 34)(12, 37)⟩;
H5 = ⟨(2, 34)(13, 20)⟩;
H6 = ⟨(2, 34)(15, 44)⟩;
H7 = ⟨(2, 34)(21, 28)⟩;
H8 = ⟨(2, 34)(23, 42)⟩;
H9 = ⟨(2, 34)(29, 36)⟩;
H10 = ⟨(2, 34)(31, 45)⟩;
H11 = ⟨(2, 34)(39, 47)⟩;
H12 = ⟨(1, 9, 35)(3, 27, 33)⟩;
H13 = ⟨(1, 9, 35)(6, 11, 17)⟩;
H14 = ⟨(1, 9, 35)(8, 19, 25)⟩;
H15 = ⟨(1, 9, 35)(14, 40, 46)⟩;
H16 = ⟨(1, 9, 35)(16, 41, 22)⟩;
H17 = ⟨(1, 9, 35)(24, 43, 30)⟩;
H18 = ⟨(1, 9, 35)(32, 48, 38)⟩;
H19 = ⟨(1, 3, 6)(35, 27, 11)(9, 33, 17)⟩;
H20 = ⟨(1, 6)(35, 11)(9, 17)(3, 8)(27, 19)(33, 25)⟩;
H21 = ⟨(1, 3)(35, 27)(9, 33)(6, 8)(11, 19)(17, 25)⟩;
H22 = ⟨(1, 3, 6, 8, 41)(35, 27, 11, 19, 22)(9, 33, 17, 25, 16)⟩;
H23 = ⟨(1, 8)(35, 19)(9, 25)(6, 43)(11, 30)(17, 24)⟩;
H24 = ⟨(1, 3, 6)(35, 27, 11)(9, 33, 17)(8, 41, 43)(19, 22, 30)(25, 16, 24)⟩;
H25 = ⟨(1, 3, 6, 8, 41, 43, 46)(35, 27, 11, 19, 22, 30, 14)(9, 33, 17, 25, 16, 24, 40)⟩;
H26 = ⟨(1, 41)(35, 22)(9, 16)(8, 48)(19, 38)(25, 32)⟩;
H27 = ⟨(1, 3, 6, 8)(35, 27, 11, 19)(9, 33, 17, 25)(41, 43, 46, 48)(22, 30, 14, 38)(16, 24, 40, 32)⟩;
H28 = ⟨(2, 4, 5)(34, 10, 26)⟩;
H29 = ⟨(2, 5)(34, 26)(4, 7)(10, 18)⟩;
H30 = ⟨(2, 4)(34, 10)(5, 7)(26, 18)⟩;
H31 = ⟨(2, 4, 5, 7, 12)(34, 10, 26, 18, 37)⟩;
H32 = ⟨(2, 7)(34, 18)(5, 20)(26, 13)⟩;
H33 = ⟨(2, 4, 5)(34, 10, 26)(7, 12, 20)(18, 37, 13)⟩;
H34 = ⟨(2, 4, 5, 7, 12, 20, 44)(34, 10, 26, 18, 37, 13, 15)⟩;
H35 = ⟨(2, 12)(34, 37)(7, 28)(18, 21)⟩;

FUN 2024

30:12 How to Covertly and Uniformly Scramble the 15 Puzzle and Rubik’s Cube

H36 = ⟨(2, 4, 5, 7)(34, 10, 26, 18)(12, 20, 44, 28)(37, 13, 15, 21)⟩;
H37 = ⟨(2, 4, 5, 7, 12, 20, 44, 28, 42)(34, 10, 26, 18, 37, 13, 15, 21, 23)⟩;
H38 = ⟨(2, 20)(34, 13)(12, 36)(37, 29)⟩;
H39 = ⟨(2, 4, 5, 7, 12)(34, 10, 26, 18, 37)(20, 44, 28, 42, 36)(13, 15, 21, 23, 29)⟩;
H40 = ⟨(2, 4, 5, 7, 12, 20, 44, 28, 42, 36, 45)(34, 10, 26, 18, 37, 13, 15, 21, 23, 29, 31)⟩;
H41 = ⟨(2, 44)(34, 15)(20, 47)(13, 39)⟩;
H42 = ⟨(2, 4, 5, 7, 12, 20)(34, 10, 26, 18, 37, 13)(44, 28, 42, 36, 45, 47)(15, 21, 23, 29, 31, 39)⟩;
H43 = ⟨(2, 4)(34, 10)(1, 3)(35, 27)(9, 33)⟩.

5.2 Our Protocol for Rubik’s Cube in the Free Permutation Model
In this section, we construct a secure random instance generation protocol of Rubik’s Cube
in the free permutation model. It requires color stickers along with a cube.

A color sticker is a sticker with one of the six colors as follows:

R B O W G Y .

Note that each letter (R, B, O, W, G, and Y) is indicated for clarity and is not actually
written. They are the same size as the facelet of the cube and can be placed on facelets. At
the beginning, all stickers are concealed by films that can be peeled off as follows:

.

All stickers are assumed to be indistinguishable when their films are not peeled off.
Our protocol requires 48 color stickers, consisting of 8 color stickers of each color, and 43

practical shuffles, consisting of 22 random bisection cuts and 21 pile-shifting shuffles. The
protocol proceeds as follows:
1. Arrange a sequence of color stickers as follows:

1

· · ·
8

︸ ︷︷ ︸
red

9

· · ·
16

︸ ︷︷ ︸
blue

17

· · ·
24

︸ ︷︷ ︸
orange

25

· · ·
32

︸ ︷︷ ︸
white

33

· · ·
40

︸ ︷︷ ︸
green

41

· · ·
48

︸ ︷︷ ︸
yellow

.

2. Apply an Hi-shuffle to the sequence for i = 1, 2, . . . , 43 as follows:

· · ·︸ ︷︷ ︸
48 stickers

H1−−→ · · ·︸ ︷︷ ︸
48 stickers

H2−−→ · · ·︸ ︷︷ ︸
48 stickers

H3−−→ · · · H43−−→ · · ·︸ ︷︷ ︸
48 stickers

.

3. Place the i-th color sticker to the i-th facelet of Rubik’s Cube for 1 ≤ i ≤ 48. The cube
concealed by films is a random instance of Rubik’s Cube.

5.3 Uniform Cyclic Group Factorization with the Standard Generators
For each O ∈ {F, B, U, D, L, R}, we denote O3 by O′. All generators of the UCF in Section 5.1
can be expressed by a product of the standard generators F, B, U, D, L, and R. For example,
(2, 34)(4, 10) = RLFU2F′RL′UB2U′F2L2U′F2R2B2D′. All generators of the subgroups Hi

(1 ≤ i ≤ 43) are expressed by a product of the standard generators as follows:
H1 = ⟨RLFU2F′RL′UB2U′F2L2U′F2R2B2D′⟩;
H2 = ⟨RUR′U′R′U′RURB′U′R2URB⟩;
H3 = ⟨U2LFUF′UL′B′R′U2RBU′LU′L′⟩;
H4 = ⟨LBDL2D′L′BD2R2F2U2F2R2DB2D⟩;

K. Shinagawa, K. Kanai, K. Miyamoto, and K. Nuida 30:13

H5 = ⟨LB′D′B2DLBDL2DF2R2U2R2F2D2⟩;
H6 = ⟨RL′FU2F′R′LDR2U2R2F2R2U2R2D′⟩;
H7 = ⟨RB′D′R2DRB′U2F2D′L2DF2UB2U⟩;
H8 = ⟨URLF′R2F′RL′UR2U2B2L2F2DL2B2U′⟩;
H9 = ⟨UBU′B′U′B′UBUR′B′U2BUR⟩;
H10 = ⟨RLF′U2FRL′U2R2L2DF2D′R2L2U2R2⟩;
H11 = ⟨B2LUBU′BL′D′R′B2RDB′LB′L′⟩;
H12 = ⟨R2U′F2UB2U′F2UB2DR′URD′R′U′R′⟩;
H13 = ⟨L2D′L2DF2U′FUL2UL2U′F⟩;
H14 = ⟨F2U′F2U′R2DR2DB2D2FDB2D′F′U2⟩;
H15 = ⟨R2D′B2U′F2UB2U′F2UR′URDR′U′R′⟩;
H16 = ⟨L2D′B2DB2U′L2UL2D2RD′L2DR′D2⟩;
H17 = ⟨R2UF2U′L2UF2U′R2UFD′B2DF′U′⟩;
H18 = ⟨B2DB2D′R2UR2U′B2U2F′UB2U′FU2⟩;
H19 = ⟨R2DB2D′F2DB2D′F2R2⟩;
H20 = ⟨RBR′F2RB′RB2U′F2DL2B2D′F2UF2⟩;
H21 = ⟨RU2R2DR2U2RB2UR2UR2U2B2D′R2⟩;
H22 = ⟨UR2UF2U2F2U′R2U′LR′F2L′R⟩;
H23 = ⟨URLD2R′L′F2U′L2U′B2UL2DR2D′⟩;
H24 = ⟨U2F2R2F2R2UR2F2R2F2U⟩;
H25 = ⟨L2UR′LF2R′L′F2UB2L2D2R2DF2DB2⟩;
H26 = ⟨RLU2RL′U2R2F2U2B2D2R2B2U2L2⟩;
H27 = ⟨URLU2D2RLU′F2R2UF2D2R2UB2L2⟩;
H28 = ⟨R2U2F2L2B2DB2L2F2U′R2⟩;
H29 = ⟨URL′U2R′LUF2UF2UF2UF2UF2⟩;
H30 = ⟨UFB′U2F′BUL2UL2UL2UL2UL2⟩;
H31 = ⟨L2FL2U2L2FUL2B2R2U′R2UDR2B2⟩;
H32 = ⟨R′U2F2U2RU2F2R2U2F2U2F2R2U2F2⟩;
H33 = ⟨L2U2F2R2B2U′L2B2R2UFUF′D′ULU′L⟩;
H34 = ⟨B2U′B2L2UL2B2L2D′U2L′B′LDL2BLB⟩;
H35 = ⟨R2F2U2FU2D2BU2D2F2D2B2L2U2D2⟩;
H36 = ⟨DUB2L2R2D2F2UL2DBDF′L′FLBR2F′⟩;
H37 = ⟨U2L2DR2F2R2UF2R2U2FD′LR′FL′FL′RU′⟩;
H38 = ⟨RDBD′R′U′L′B′LUBU′DL′D′U⟩;
H39 = ⟨R2D′R2UF2L2D′B2R2DFL′U′B2UL′R2BR2U2⟩;
H40 = ⟨L2B2L2D2UR2U′B2U2B′L2D′U′B2R′D2R2U′F2U′⟩;
H41 = ⟨D′RU2F2U2R′F2U2L2B2U2F2D2R2B2D′⟩;
H42 = ⟨DF2U′F2L2U2F2U2F2UFR2U′L2R2UF2RF2U′⟩;
H43 = ⟨UR2U′R2DR2D′F2UF2R2⟩.

We compute them by Online Rubik’s Cube Solver [24]. We remark that all of the
generators as above are of length at most 20, which is God’s Number of Rubik’s Cube.

FUN 2024

30:14 How to Covertly and Uniformly Scramble the 15 Puzzle and Rubik’s Cube

5.4 Our Protocol for Rubik’s Cube in the Restricted Permutation Model
In this section, we construct a secure random instance generation protocol of Rubik’s Cube
in the restricted permutation model.

Our protocol uses a piece of cloth, which is sufficiently large to hide a cube completely. A
player can hold a cube through his/her hand from under the cloth, and can apply a sequence
of the standard generators. During this operation, which permutation is applied to the cube
is completely hidden from other players.

Now we introduce a repetitive shuffle, which is a shuffling operation for a cube. Let
seq ∈ {F, B, U, D, L, R}∗ be a sequence of the standard generators such that the order of seq
is k, i.e., applying seq k times is equal to the identity permutation. For a cube covered with
a piece of cloth, a repetitive shuffle of seq covertly applies seqr to the cube for a uniformly
random number r ∈ {0, 1, . . . , k − 1}. Here, r is completely hidden from all players.

We give two physical implementations of repetitive shuffles. The first method is performed
by a single player: The player holding a cube through his hand from under the cloth applies
seq a sufficiently large number of times until he loses the number of times. The second
method is performed by (at least) two players: The first player holding a cube through
his hand from under the cloth applies seqr1 to the cube for a uniformly random number
r1 ∈ {0, 1, . . . , k − 1} which is generated by his mind; Then the cube is passed to the second
player, and she applies seqr2 to the cube for a uniformly random number r2 ∈ {0, 1, . . . , k−1}
which is generated by her mind. Since r := r1 + r2 mod k is distributed uniformly at random
and r is completely hidden from the both players, the second method correctly implements
the repetitive shuffle.

Our protocol requires 43 repetitive shuffles. The protocol proceeds as follows:
1. Prepare a solved cube. Cover it with a piece of cloth.
2. Apply 43 repetitive shuffles of the generators of cyclic groups given in Section 5.3. The

cube covered with a piece of cloth is a random instance of Rubik’s Cube.

6 Conclusion

In this paper, we introduced the secure random instance generation problem for the first
time and designed three protocols for the 15 Puzzle and Rubik’s Cube. We left as an open
problem to achieve the same task with a smaller number of practical shuffles. Note that
our protocols are based on UCFs with multiplicity 1, but it may be possible to construct a
shorter UCF with multiplicity 2 or more. Another research direction is to design a secure
random instance generation protocol for other combination puzzles.

References
1 Adrian Brüngger, Ambros Marzetta, K. Fukuda, and Jürg Nievergelt. The parallel search

bench ZRAM and its applications. Ann. Oper. Res., 90:45–63, 1999.
2 Yang Chu and Robert Hough. Solution of the 15 puzzle problem, 2019. arXiv:1908.07106.
3 Claude Crépeau and Joe Kilian. Discreet solitary games. In Advances in Cryptology—CRYPTO’

93, volume 773 of LNCS, pages 319–330. Springer, 1994.
4 Erik D. Demaine, Sarah Eisenstat, and Mikhail Rudoy. Solving the rubik’s cube optimally is

NP-complete. In 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018,
volume 96 of LIPIcs, pages 24:1–24:13, 2018.

5 Bert Den Boer. More efficient match-making and satisfiability the five card trick. In EURO-
CRYPT 1989, volume 434 of LNCS, pages 208–217. Springer, 1990.

https://arxiv.org/abs/1908.07106

K. Shinagawa, K. Kanai, K. Miyamoto, and K. Nuida 30:15

6 Yuji Hashimoto, Koji Nuida, Kazumasa Shinagawa, Masaki Inamura, and Goichiro Hanaoka.
Toward finite-runtime card-based protocol for generating a hidden random permutation without
fixed points. IEICE Trans. Fundam., E101.A(9):1503–1511, 2018.

7 Yuji Hashimoto, Kazumasa Shinagawa, Koji Nuida, Masaki Inamura, and Goichiro Hanaoka.
Secure grouping protocol using a deck of cards. In Information Theoretic Security, volume
10681 of LNCS, pages 135–152. Springer, 2017.

8 Takuya Ibaraki and Yoshifumi Manabe. A more efficient card-based protocol for generating a
random permutation without fixed points. In Mathematics and Computers in Sciences and in
Industry (MCSI), pages 252–257, 2016.

9 Rie Ishikawa, Eikoh Chida, and Takaaki Mizuki. Efficient card-based protocols for generating
a hidden random permutation without fixed points. In Unconventional Computation and
Natural Computation, volume 9252 of LNCS, pages 215–226. Springer, 2015.

10 Kazuki Kanai, Kengo Miyamoto, Koji Nuida, and Kazumasa Shinagawa. Uniform cyclic group
factorizations of finite groups. Communications in Algebra, 2023.

11 Alexander Koch and Stefan Walzer. Foundations for actively secure card-based cryptography.
In Fun with Algorithms, volume 157 of LIPIcs, pages 17:1–17:23, 2020.

12 Kengo Miyamoto and Kazumasa Shinagawa. Graph automorphism shuffles from pile-scramble
shuffles. New Gener. Comput., 40:199–223, 2022.

13 Takaaki Mizuki, Yoshinori Kugimoto, and Hideaki Sone. Secure multiparty computations
using the 15 puzzle. In Combinatorial Optimization and Applications, volume 4616 of LNCS,
pages 255–266. Springer, 2007.

14 Takaaki Mizuki and Hiroki Shizuya. A formalization of card-based cryptographic protocols
via abstract machine. Int. J. Inf. Secur., 13(1):15–23, 2014.

15 Takaaki Mizuki and Hideaki Sone. Six-card secure AND and four-card secure XOR. In
Frontiers in Algorithmics, volume 5598 of LNCS, pages 358–369. Springer, 2009.

16 Bruce Norskog and Morley Davidson. The fifteen puzzle can be solved in 43 “moves”, 2010.
URL: http://cubezzz.duckdns.org/drupal/?q=node/view/223.

17 Daniel Ratner and Manfred K. Warmuth. Finding a shortest solution for the N × N extension
of the 15-puzzle is intractable. In Proceedings of the 5th National Conference on Artificial
Intelligence. Volume 1: Science, pages 168–172, 1986.

18 Daniel Ratner and Manfred K. Warmuth. N × N puzzle and related relocation problem. J.
Symb. Comput., 10(2):111–138, 1990.

19 Tomas Rokicki, Palo Alto, Herbert Kociemba, Morley Davidson, and John Dethridge. God’s
number is 20. URL: https://www.cube20.org/.

20 Takahiro Saito, Daiki Miyahara, Yuta Abe, Takaaki Mizuki, and Hiroki Shizuya. How to
implement a non-uniform or non-closed shuffle. In Theory and Practice of Natural Computing,
volume 12494 of LNCS, pages 107–118. Springer, 2020.

21 Kazumasa Shinagawa and Kengo Miyamoto. Automorphism shuffles for graphs and hypergraphs
and its applications. IEICE Trans. Fundam., E106.A(3):306–314, 2023.

22 Kazumasa Shinagawa, Takaaki Mizuki, Jacob C. N. Schuldt, Koji Nuida, Naoki Kanayama,
Takashi Nishide, Goichiro Hanaoka, and Eiji Okamoto. Multi-party computation with small
shuffle complexity using regular polygon cards. In Provable Security, volume 9451 of LNCS,
pages 127–146. Springer, 2015.

23 Itaru Ueda, Daiki Miyahara, Akihiro Nishimura, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki
Sone. Secure implementations of a random bisection cut. Int. J. Inf. Secur., 19(4):445–452,
2020.

24 Online rubik’s cube solver. URL: https://rubiks-cube-solver.com/.

FUN 2024

http://cubezzz.duckdns.org/drupal/?q=node/view/223
https://www.cube20.org/
https://rubiks-cube-solver.com/

	1 Introduction
	1.1 Secure Random Instance Generation Problem
	1.2 Card-Based Cryptography
	1.3 Our Contribution
	1.4 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 Shuffle

	3 Uniform Cyclic Group Factorization and Its Application to Shuffle
	3.1 Uniform Cyclic Group Factorization
	3.2 Shuffles Based on Uniform Cyclic Group Factorization

	4 Secure Random Instance Generation of the 15 Puzzle
	4.1 Uniform Cyclic Group Factorization of the Alternating Group
	4.2 Our Protocol for the 15 Puzzle

	5 Secure Random Instance Generation of Rubik's Cube
	5.1 Uniform Cyclic Group Factorization of the Rubik's Cube Group
	5.2 Our Protocol for Rubik's Cube in the Free Permutation Model
	5.3 Uniform Cyclic Group Factorization with the Standard Generators
	5.4 Our Protocol for Rubik's Cube in the Restricted Permutation Model

	6 Conclusion

