
A Programming Language Embedded in Magic:
The Gathering
Howe Choong Yin #

Independent Researcher, Singapore

Alex Churchill #

Independent Researcher, Cambridge, UK

Abstract
Previous work demonstrated that the trading card game Magic: The Gathering is Turing complete,
by embedding a universal Turing machine inside the game. However, this is extremely hard to
program, and known programs are extremely inefficient. We demonstrate techniques for disabling
Magic cards except when certain conditions are met, and use them to build a microcontroller with a
versatile programming language embedded within a Magic game state. We remove all choices made
by players, forcing all player moves except when a program instruction asks a player for input. This
demonstrates Magic to be at least as complex as any two-player perfect knowledge game, which we
demonstrate by supplying sample programs for Nim and the Collatz conjecture embedded in Magic.
As with previous work, our result applies to how real Magic is played, and can be achieved using a
tournament-legal deck; but the execution is far faster than previous constructions, generally one
cycle of game turns per program instruction.

2012 ACM Subject Classification Theory of computation → Representations of games and their
complexity

Keywords and phrases Programming, computability theory, Magic: the Gathering, two-player
games, tabletop games

Digital Object Identifier 10.4230/LIPIcs.FUN.2024.31

Related Version Full Version:
https://www.toothycat.net/~hologram/Magic/Magic_Microcontroller_full.pdf [5]

Supplementary Material InteractiveResource (Magic Microcontroller Simulator):
https://www.toothycat.net/~hologram/Magic/MTGProgSimulatorText.html [3]

1 Introduction and Previous Work

Magic: The Gathering (also known as Magic) is the world’s largest tabletop collectible card
game, played by hundreds of thousands of players in tournaments and by millions more
players casually. In 2020, Churchill, Biderman & Herrick published an embedding of a
universal Turing machine inside Magic [2]. This is the first widely played tabletop game to
be shown Turing complete in the format in which it is usually played, as opposed to some
infinite generalisation. For example, chess is EXPTIME-complete with infinite board and
pieces, but has a finite number of states in the 8x8 board used for tournament play. Churchill
et al. showed that the question “will this Magic game ever terminate” cannot be answered in
the general case, even for two-player Magic played with all the usual tournament restrictions.
However, this paper did not contain any concrete example computations.

The author of [1] investigated the runtime performance of this Universal Turing Machine
(UTM) embedded within Magic. He established a compilation sequence from an arbitrary
Turing machine with N states, into a 2-tag system, into the 2-state UTM(2,18), and thence
into Magic. He supplied a simple Turing machine to compute 2+3 in a unary adder. However,
he found that no simulation was able to establish how long it would take to compute 2+3

© Howe Choong Yin and Alex Churchill;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Fun with Algorithms (FUN 2024).
Editors: Andrei Z. Broder and Tami Tamir; Article No. 31; pp. 31:1–31:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:howechoongyin@gmail.com
mailto:alex.churchill@cantab.net
https://orcid.org/0009-0007-9607-4344
https://doi.org/10.4230/LIPIcs.FUN.2024.31
https://www.toothycat.net/~hologram/Magic/Magic_Microcontroller_full.pdf
https://www.toothycat.net/~hologram/Magic/Magic_Microcontroller_full.pdf
https://www.toothycat.net/~hologram/Magic/MTGProgSimulatorText.html
https://www.toothycat.net/~hologram/Magic/MTGProgSimulatorText.html
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


31:2 A Programming Language Embedded in Magic: The Gathering

in the UTM. The straightforward compiler’s output from this simple Turing machine for
computing 2+3 results in a tape over 40 million symbols long (15 million in the program
and 25 million in the data). The UTM simulation of the Turing machine needs to constantly
move between the program and data sections, resulting in absurdly inefficient computation
times. No simulation was able to establish how long it would take to compute 2+3 in the
Magic game.

The same author created an optimised unary adder Turing machine with just 2 states,
and compiled a simplified computation of 1+1. This completed in a mere 3,958,876,878
game cycles (of each of the two players taking a turn). Even after nearly 8 billion game
turns, because of the multiple steps in translating the calculation into the UTM(2,18), the
output consisted of hundreds of creature tokens, which needed to be interpreted by carefully
counting how many tokens of type Myr were mixed in among the hundreds of tokens with
type Aetherborn, all in order to retrieve the output of “2”.

In this paper we set out a different construction, which embeds a full microcontroller
within Magic: The Gathering. In Section 2 we describe at a high level some key features
of the construction, and Section 3 specifies the programming language supported by the
microcontroller. Section 4 provides the details of we implement the framework, and we work
through an example instruction in Section 5. Section 6 contains our conclusions and discussion
of the implications. Finally, Appendix A provides several sample programs, Appendix B
explains which cards we use to modify other cards, and Appendix C supplies a decklist that
could be brought to a Magic tournament to assemble the construction.

2 Outline of the Construction

The rest of this paper describes a construction that simulates a fully general programming
language within Magic: The Gathering. Compared to [2] this is also Turing complete, but is
much more efficient and easy to program, and reports its outputs much more clearly. It also
allows reading input from each of the players of the two-player Magic game in which it is
embedded, and can be programmed to terminate in a win for either player or a draw, or of
course can keep running indefinitely.

As with the Turing machine construction, we start by assuming one player, Alice, draws a
combination of cards that allows her to take over the game, draw all the rest of her deck, and
remove all cards from the hand of the opponent, Bob. After the initial setup is completed,
she removes all player choices, so that neither player has any option but to let the program
execution continue, short of conceding the game. Thus the outcome of this tournament-legal
Magic game is entirely determined by the result of the program.

The program is written in a language of 12 symbols, represented by basic land cards,
which are allowed to occur any number of times in a player’s deck. Alice’s deck needs to
start off containing a lot of other cards, but once the microcontroller is set up and she has
drawn all her cards, she returns to her deck a sequence of cards from among these 12, which
encodes the program to be executed.

The program is read one card at a time. During Alice’s combat step we put one of these
cards, which we call the “program permanent”, onto the battlefield for long enough to read it,
then move it to the bottom of Alice’s deck. We in fact make Alice have three combat steps
each turn, and in each one, a program permanent is read and possibly other game actions are
(automatically) taken. Each instruction in the programming language is a sequence of three
symbols, interpreted by some set of “instruction permanents” that do extra things during
Alice’s or Bob’s turn.



Howe C. Y. and A. Churchill 31:3

All instruction permanents that don’t apply to the current instruction are “inactive”,
i.e. have all their abilities removed. To do this we turn them into creatures with a certain
creature type (e.g. Angel), have a card which makes all Angels also Saprolings, make all
Saprolings lands, and remove abilities from all lands. Crucially, we can conditionally allow a
certain group of instruction permanents to regain their abilities by temporarily “phasing out”
the card which makes (e.g.) Angels into Saprolings. (Objects in Magic which are “phased
out” are treated by the rules as if they don’t exist.) We do this during one of Alice’s combat
steps, so those instruction permanents have their abilities during the rest of Alice’s turn
(including her later combat steps) and all of the other player Bob’s turn.

Permanents in Magic have zero or more colours, from the set of white, blue, black, red
and green. Permanents that are creatures have zero or more creature types, also drawn from
a well-defined set, but this set has over 200 types in it. We use both of these characteristics
extensively. All “inactive” permanents are made green Saproling creatures, and all green
creatures are given protection from certain creature types. We make extensive use of the
capabilities Magic offers to edit existing cards by changing colour words (using the card
Mind Bend), creature type text (using Artificial Evolution), colours (using Prismatic
Lace), and creature types (using a variety of cards according to circumstances).

In particular, we carefully apply restrictions so that any time an ability triggers that would
normally let its controller choose a target, there is precisely one legal target (or occasionally
no targets, which prevents the ability from going on the stack at all). We ensure that all
creatures attack and block where possible using Grand Melee, but make most creatures
unable to attack or block using Stormtide Leviathan. Any time a creature is able (and
thus forced) to attack, we arrange that either it can’t be blocked at all, or there is precisely
one creature forced to block it.

3 The Programming Language

The programming language we implement has the following features:
Twelve registers r0 . . . r11, each able to contain an arbitrarily large nonnegative integer.
An unlimited number of memory slots, each addressed by a nonnegative integer address;
each memory slot can hold a single arbitrarily large nonnegative integer.
A single Boolean flag that is set by certain instructions such as comparisons. The flag can
be read by certain instructions; most notably, jump instructions can be made conditional
on whether the flag is true or false.

The program is written in a language of 12 symbols, and each instruction is a sequence of
three symbols. For example, the sequence 0 1 2 (represented by cards Plains Island Swamp)
encodes the instruction “Add 1 2”, which will result in increasing the value of register r1 by
the value of r2. We provide the following instructions in the language:

5 Y Z (Y ̸=Z) Set rY rZ Set rY to the value of rZ .
5 Y Y Zero rY Set rY to zero.
0 Y Z Add rY rZ Set rY to rY + rZ .
4 1 Z Add1 rZ Set rZ to rZ + 1.
4 2 Z Halve rZ Set rZ to half the value of rZ , rounding down. Set

the flag to the remainder from the division.
1 Y Z (Y ̸=Z) SubCond rZ rY If rZ ≥ rY , set rZ to rZ − rY and set the flag to 0.

Otherwise, set the flag to 1.
1 Z Z Sub1Cond rZ If rZ ≥ 1, set rZ to rZ − 1 and set the flag to 0.

Otherwise, set the flag to 1.
6 Y Z Mult rZ rY Set rZ (note, not rY ) to rY × rZ .

FUN 2024



31:4 A Programming Language Embedded in Magic: The Gathering

7 Y Z DivCeil rY rZ Set rY to ⌈rY /rZ⌉. If the division was exact, set the
flag to 0, otherwise set it to 1. If rZ = 0 or Y = Z,
this is undefined behaviour.

2 Y 0 AInput rY Set rY to a nonnegative integer of Alice’s choice.
2 Y 1 BInput rY Set rY to a nonnegative integer of Bob’s choice.
2 Y 2 SetF rY Set rY to the flag’s value.
2 Y 3 SetNF rY Set rY to the Boolean negation of the flag’s value

(1 if it’s 0 and vice versa).
2 Y 4 Rand6 rY Set rY to a random nonnegative integer less than 6.
2 Y 5 Rand20 rY Set rY to a random nonnegative integer less than 20.
10 Y Z NumBuild 12Y +Z Set r0 to 12Y +Z, except if the last instruction that

was executed was also a NumBuild instruction, in
which case multiply r0 by 144 and add 12Y +Z to it.
As its name suggests, this instruction can be used
repeatedly to build any nonnegative integer value in
r0, two base-12 digits at a time.

8 Y Z Store rZ rY Store the value of rY at memory address rZ .
9 Y Z Load rY rZ Load the value at memory address rZ into rY .
3 0 Z ′ JumpFwd Z ′ Jump forward by Z ′ instructions. If Z = 0, Z ′ is

r0, and otherwise, Z ′ is Z. Thus instead of a useless
command to jump 0 instructions, we gain the ability
to jump an arbitrary or computed distance.

3 1 Z ′ JumpBwd Z ′ Jump backward by Z ′ instructions. Backwards jumps
by more than the length of the program1 do nothing.

3 2 Z JumpFwdNF Z ′ Jump forward by Z ′ instructions if the flag is 0/false.
3 3 Z JumpBwdNF Z ′ Jump backward by Z ′ instructions if the flag is

0/false.
3 4 Z JumpFwdF Z ′ Jump forward by Z ′ instructions if the flag is 1/true.
3 5 Z JumpBwdF Z ′ Jump backward by Z ′ instructions if the flag is 1/true.
3 6 0 CallFwd r0 Call a function r0 instructions ahead: Jump forward

3r0 cards and push P − 3r0 onto the return stack. P
is the length of the program in cards1. If r0 = 0 or
3r0 > P , this is undefined behaviour.

3 7 Z Return Z ′ Return from a function Z ′ instructions long: Pop
a value S from the return stack, and jump forward
max(0, S −3Z ′) cards. If the return stack was empty,
end the game in a draw.

3 6 1 CallBwd r0 Call a function r0 instructions behind: Jump back-
ward 3r0 cards and push 3r0 onto the return stack.
If 3r0 ≥ P , this is undefined behaviour. May not be
used to call a function from within itself.

3 6 2 CallBwdR r0 Call a function r0 instructions behind (direct-
recursion-capable): Same as CallBwd, but push
P + 3r0, so that this may be used to call a func-
tion from within itself.

1 If the program is less than 6 cards long, P is the first multiple of the length that is at least 6.



Howe C. Y. and A. Churchill 31:5

11 Y Z (Y ̸=Z) FLess rZ rY Set the flag to 1 if rZ < rY , 0 otherwise.
Flag-combining.

11 Z Z FIsZero rZ Set the flag to 1 if rZ = 0, 0 otherwise.
Flag-combining.

4 0 0 HaltD End the game in a draw.
4 0 1 HaltA End the game with Alice winning.
4 0 2 HaltB End the game with Bob winning.

“Flag-combining” is a property used by some instructions whose only purpose is to set the
flag. It means that flag values given by subsequent instructions are combined by logical OR
instead of replacing the flag’s value. This state ends when any of the following is executed:

Any instruction that uses the flag’s value.
Any jump instruction (including calls and returns, and regardless of whether the jump is
taken or not).

For example, this can be used to check whether r0 and r1 are equal, with FLess r0 r1
followed by FLess r1 r0.

The program is cyclic, which is to say it wraps around: after passing the final instruction
(by executing it or jumping past it) execution continues with the first instruction. Similarly
you can jump backwards beyond the start of the program and end up near the end of the
program.

Encountering a sequence that does not match any of the instructions above is undefined
behaviour.

These instructions are a superset of those required for a random-access register machine
such as Melzak’s Q-machine, which is Turing complete.[9]

4 Implementation of the Microcontroller

In this section we describe the various gadgets that make up the microcontroller as described
in the previous section. We defer discussion of how to set up the board state (including
modifying card types, creature types, colours, etc) to Appendix B.

Note: The following explanation is easier to read at [6] or [5], where the same information
is presented with interactive tooltips giving reminders of the significance of various creature
types, providing card rules text, and indicating which specific card modification techniques
from Appendix B are being used.

4.1 The program
The program is a sequence of the following cards: Plains, Island, Swamp, Moun-
tain, Forest, Wastes, Snow-Covered Plains, Snow-Covered Island, Snow-Covered
Swamp, Snow-Covered Mountain, Snow-Covered Forest, and Snow-Covered
Wastes 2. We call these cards “symbol cards” and assign them numbers 0, 1, 2, . . . ,
11 in the order listed.

2 To be released on 7th June 2024. To play the Microcontroller before that date, instead use Persistent
Petitioners and Infinite Reflection as described at [6].

FUN 2024



31:6 A Programming Language Embedded in Magic: The Gathering

Most of the time, one of the cards in the program will be on the battlefield under Alice’s
control; we call this card the program permanent. The rest of the cards will be in Alice’s
library, with the next symbol in the program on top of the library, continuing in program
order from top to bottom, then continuing from the start of the program until the symbol
before the current symbol.

The program is made up of instructions that each consist of 3 cards. X, Y, and Z shall
refer to the numbers of the three cards that form the instruction currently being executed, in
that order. For example, the instruction “Add r1 r2” is represented by 0 1 2 (Plains Island
Swamp), and X is 0, Y is 1 and Z is 2.

4.2 Global environment control
On the battlefield is a Grand Melee (“All creatures attack each combat if able. All creatures
block each combat if able”) and a Stormtide Leviathan (“Creatures without flying or
islandwalk can’t attack”). Most creatures are unable to attack; when we want a creature to
be able to attack, we will give it flying or islandwalk. Bob’s creatures with islandwalk will
be unblockable because Alice controls the program permanent which is given type Island.

Both players have life total 1, and each has a Worship keeping their life totals at 1
through the damage they will be dealt. (Note that Worship only modifies the result of
damage; the damage itself is still dealt, so effects triggered on combat damage still trigger.)

4.3 Advancing through the program
Alice has a Vaevictis Asmadi, the Dire, whose rules text reads “Whenever Vaevictis
Asmadi, the Dire attacks, for each player, choose target permanent that player controls.
Those players sacrifice those permanents. Each player who sacrificed a permanent this way
reveals the top card of their library, then puts it onto the battlefield if it’s a permanent card.”.

We use the techniques in Appendix B to make Vaevictis Asmadi, the Dire into a
1/1 Sliver Beast Reflection. It attacks in Alice’s combat phase. Its ability is forced (see
subsection 4.6) to target the program permanent for Alice, and one particular permanent for
Bob. When it resolves, Alice sacrifices the program permanent, and Wheel of Sun and
Moon enchanting Alice sends it to the bottom of Alice’s library; then the next card (on
top of Alice’s library) is put onto the battlefield, becoming the new program permanent.
Meanwhile, Bob has been given a Tajuru Preserver stopping Bob’s permanent from being
sacrificed, and thus Bob does not reveal the top card of his library.

Alice controls Tetsuko Umezawa, Fugitive ensuring that Vaevictis Asmadi, the
Dire, and all her other creatures with power or toughness 1 or less, can’t be blocked.

4.4 Disabling and conditionally enabling permanents
For each of the 12 program cards, letting n be its number, we choose a creature type Xn. X0
is Aetherborn, X1 is Beeble, and so on through Cephalid, Drake, Eldrazi, Faerie, Gremlin,
Homarid, Illusion, Juggernaut, Kavu, and Lhurgoyf.

We have Alice control twelve token copies of Dralnu’s Crusade, whose printed rules
text reads “All Goblins get +1/+1. All Goblins are black and are Zombies in addition to
their other creature types.” However we use the techniques in Appendix B to edit each one to
instead to affect creatures with a different one of the 12 creature types Xn (n ∈ {0, 1, . . . , 11}),
and add type Saproling. Life and Limb makes Saprolings into lands, and also makes them
green, and then Blood Sun removes their abilities. So all creatures with any of the 12
creature types Xi have their abilities removed.



Howe C. Y. and A. Churchill 31:7

Each of these Dralnu’s Crusades is made into a creature with creature type Sliver,
with power and toughness 2/1, and given flying. For each of the 12 basic land cards, the
corresponding Dralnu’s Crusade is equipped with a Strata Scythe imprinted with that
basic land card (“Equipped creature gets +1/+1 for each land on the battlefield with the
same name as the exiled card”).

All twelve Dralnu’s Crusades are forced to attack, and the one corresponding to the
current program permanent will be boosted to 3/2; the previously mentioned Tetsuko
Umezawa, Fugitive ensures that the others can’t be blocked.

Bob controls a Dream Fighter (“Whenever Dream Fighter blocks or becomes blocked
by a creature, Dream Fighter and that creature phase out”) with creature type Sliver and
granted reach (so it can block creatures with flying). This blocks the 3/2 Dralnu’s Crusade,
and they both phase out, so that creatures of the type corresponding to the current program
permanent are no longer made Saprolings. We have a Shadow Sliver ensuring that only
Slivers can block these Dralnu’s Crusades.

Figure 1 After Vaevictis Asmadi, the Dire puts a Wastes onto the battlefield, the only one of
Alice’s attacking Dralnu’s Crusades which Bob’s Dream Fighter can block is the one given +1/+1
by a Strata Scythe imprinted with Wastes.

This reads the first card of an instruction; creatures of the corresponding type will regain
their abilities after Dream Fighter’s ability resolves. We also choose a thirteenth creature
type (Monkey) denoted XA, and have another Dralnu’s Crusade making XA creatures
also Saprolings, but this one is not a creature; rather we make it an artifact so Bludgeon
Brawl makes it an Equipment, and attach it to Bob’s Dream Fighter, so it will phase out
when the Dream Fighter does. This means that creatures of type XA get to regain their
abilities after the first card is read, no matter what it is, but they will lose their abilities
again when Bob’s turn starts and the Dream Fighter phases back in.

We will also often want to use this conditional mechanism on noncreature permanents; to
do that, we make token creature copies of them using Urza, Prince of Kroog, combined
with Memnarch if necessary.

4.5 Reading the second and third cards
Alice controls a Bloodthirster (“Whenever Bloodthirster deals combat damage to a player,
untap it. After this combat phase, there is an additional combat phase. Bloodthirster can’t
attack a player it has already attacked this turn.”) It is made a 1/1 Sliver Beast Reflection
and given double strike. This also attacks, can’t be blocked because of Tetsuko Umezawa,
Fugitive, and adds a second combat phase. The second combat phase is used to read the
second card, using another copy of the above setup, but with all the creatures involved
granted an additional creature type of XA so that they do not attack or block in the first
combat phase (because they don’t have their abilities at that point). So there is a second

FUN 2024



31:8 A Programming Language Embedded in Magic: The Gathering

Vaevictis Asmadi, the Dire to advance through the program, given types Sliver Beast
Reflection XA; a second Dream Fighter with reach and types Sliver XA; and another batch
of Dralnu’s Crusades for another 13 creature types Y0, Y1, . . . , Y11, and YA (Antelope,
Basilisk, Camel, Dauthi, Efreet, Fox, Gnome, Hippo, Inkling, Jellyfish, Kor, Lammasu, and
Metathran), the first 12 having Strata Scythes.

Similarly, since the Bloodthirster has double strike, it will also give Alice a third combat
phase, which is used by another copy of the setup (with creature type YA) to make another
13 creature types Z0, Z1, . . . , Z11, and ZA conditional on the third card of the instruction
(Aurochs, Brushwagg, Camarid, Druid, Elephant, Ferret, Graveborn, Hamster, Imp, Jackal,
Kithkin, Licid, and Masticore).

Figure 2 More Dralnu’s Crusades attack in the second and third combat phases, and another of
each is blocked and phases out. They couldn’t attack before because of their types XA or YA.

4.6 Constraining targets

Almost all creatures will be green; any creature that isn’t naturally green and isn’t specified
to be differently coloured is made green by Prismatic Lace. A few creatures will be red or
blue instead, but even those are made green while inactive by Life and Limb.

A Masked Gorgon edited to give green and blue creatures protection from Reflections
means that only red creatures are legal targets for Reflections’ abilities. Similarly, a Masked
Gorgon edited to give green and red creatures protection from Beasts means that only blue
creatures are legal targets for Beasts’ abilities.

We will refer to the creature types Reflection and Beast as tR and tU respectively,
indicating their function. (“U” is the usual abbreviation for “blue” in Magic.)

As mentioned earlier, each Vaevictis Asmadi, the Dire has been made both a Beast
and a Reflection, so that green creatures, blue creatures, and red creatures are all illegal
targets for it; the intended target under Alice’s control is a noncreature land. The same
types are applied to the Bloodthirster for a different purpose, to stop it from blocking
on Bob’s turn (which is something else protection does), because it untaps itself and stays
untapped (as its own ability prevents it attacking in the later combat phases).



Howe C. Y. and A. Churchill 31:9

Spectral Guardian makes noncreature artifacts illegal targets for anything. Alice and
Bob both control a Sterling Grove to make other enchantments illegal targets for anything.
Alice’s is made an artifact so it gains shroud from Spectral Guardian. Bob’s one does
not itself have shroud, and thus it is the only legal target under Bob’s control for Vaevictis
Asmadi, the Dire, but Bob has a Tajuru Preserver so he does not sacrifice anything.
We do however give Bob’s Sterling Grove protection from blue, which will be useful later
to stop some other things from targeting it.

Alice and Bob both have Ivory Mask, making both players illegal targets for anything.

4.7 Order of continuous effects, and one more of them
The Magic Comprehensive Rules [10] specific a system of “layers” for working out what
happens when multiple effects apply to the same permanent. For example, effects that make
one permanent a copy of another object apply in layer 1. All effects that change a permanent’s
type (such as creature, land, etc) or subtype (Angel, Goblin, etc) apply in layer 4. Anything
that adds or removes abilities applies in layer 6, and so on. Within a layer, if multiple effects
try to affect the same permanent, each object or effect has a “timestamp”, generally when
that object or effect was created. Within this document, we denote timestamps with circled
numbers: an effect with timestamp 1⃝ will take effect earlier than timestamp 2⃝.

The continuous effects mentioned so far are timestamped as follows:

1⃝: Stormtide Leviathan
2⃝: Dralnu’s Crusades and Blood Sun
3⃝: Life and Limb and protection-granting and shroud-granting effects

Any other continuous effect is timestamped 1⃝ unless otherwise stated.
The exception to timestamp order is “dependency”: if two effects would apply within

the same layer, but one will change the existence of the second or which objects the second
acts on or what it does to them, the first one applies first even if the second has an earlier
timestamp. This applies to our construction where abilities that will be removed by the
Blood Sun wait for it to be applied (and thus end up not being applied themselves).

The program permanent is a land so it is granted type Island by the Stormtide Le-
viathan, but it may be a Forest as well. We do not want Life and Limb to make the
program permanent a creature. So we also have Alice control an Illusionary Terrain,
made a creature with type ZA, within timestamp 1⃝ after the Stormtide Leviathan,
turning all Islands to Islands. This is not as ineffective as it sounds: rule 305.7 [10] says that
this removes all other types, so that the program permanent’s subtype is set to Island and
no others. Note that, because there are no Saprolings before 2⃝, the Stormtide Leviathan
does not have a dependency on the Life and Limb.

By being made a ZA, this Illusionary Terrain has its abilities removed by Blood Sun
most of the time, most importantly during Alice’s upkeep. Because the effect of setting
basic lands’ types is applied in layer 4, before the abilities are removed in layer 6, it still
functions despite the abilities being removed. However, the removal of abilities does shut off
its cumulative upkeep.

4.8 Registers
There are twelve registers named r0, r1, . . . , r11, each of which holds a nonnegative integer
value.

FUN 2024



31:10 A Programming Language Embedded in Magic: The Gathering

Each register rn is a token copy of Joraga Warcaller under Bob’s control, given
copiable creature type Zn and additionally given creature type Rabbit, given indestructible
and vigilance, coloured red at timestamp 4⃝, with base power and toughness noncopiably
set to 2/2 but with two −1/−0 counters, and a number of +1/+1 counters on it equal to its
register value. (As always, see Appendix B or the tooltips in [6] for how all these changes
are accomplished.) Joraga Warcaller’s rules text says “Other Elf creatures you control get
+1/+1 for each +1/+1 counter on Joraga Warcaller”. Thus, after Z is read from the program,
the active register rZ regains its ability and adds its value to the power and toughness of
each other Elf that Bob controls. (This does not include the other registers; their Elf type is
overwritten.)

Note that each register’s power is equal to its value, whether it is rZ (having base power
2 and two −1/−0 counters) or not (having base power 1 from the Life and Limb, +1 power
from a Dralnu’s Crusade, and two −1/−0 counters).

All the registers are made red by Prismatic Lace at timestamp 4⃝, later than that
of the Life and Limb, so that they are always red even when inactive. But the inactive
registers are still Saprolings even though they’re red.

r0 also has Rhino added to its creature types; this will be useful for some instructions
that use specifically this register.

Figure 3 The first three registers. In this case r0 has value 3, r1 value 0 and r2 value 2. If Z = 0,
the Dralnu’s Crusade making Aurochs into Saprolings is phased out and Bob’s Elves get +3/+3.

For each n ∈ {0, 1, . . . , 11}, Bob has a Riders of Gavony giving Zn creatures protection
from Yetis. Each of these is made into a noncreature artifact with mana value 0 and attached
to the Dralnu’s Crusade that applies to Yn, so that they phase out together. As a result,
this means that each register except for rY has protection from Yetis. Then, a creature can
be given the types Reflection and Yeti so that it can only target rY ; we call this combination
trY .

Bob also has another Riders of Gavony giving Saprolings protection from Zubera
creatures. This means the inactive registers (those other than rZ) can’t be targeted by any
creature that’s a Zubera. Then, as above, creature types Reflection and Zubera together
mean that a creature can only target rZ ; we call this combination trZ .



Howe C. Y. and A. Churchill 31:11

4.9 Memory
We provide an unlimited number of memory slots, each addressed by a nonnegative integer
address. Each memory slot can hold a single arbitrarily large nonnegative integer.

A nonzero value V at a memory address A is represented by a Mouse token with base
power and toughness V/V under Alice’s control with A +1/+1 counters on it. A zero value
is represented by an absence of such a token.

4.10 The flag
There is a Boolean flag that some instructions use. It is represented by a card, being in Bob’s
library for 0/false and in Bob’s hand for 1/true; this card must not have any abilities that
function in those zones other than characteristic-defining abilities. We assume that Bob has
at least one such card in his deck (most lands, planeswalkers, instants and sorceries would be
suitable). We remove all other cards from Bob’s hand, library and graveyard.

Wheel of Sun and Moon enchanting Bob allows us to set the flag to 0 by making Bob
discard the card. We give Bob a Tomorrow, Azami’s Familiar, allowing us to set the
flag to 1 by making Bob draw a card, while not making Bob lose the game if the flag was
already 1.

To stop Bob from playing this card, we give Bob a Nevermore and/or an Aggressive
Mining made into an artifact as appropriate.

4.11 Further environment control
To prevent any player choice involving the program permanent’s abilities, we use Root
Maze to make each new program permanent enter the battlefield tapped and Choke to
keep them tapped (recall that they are all made Islands). Also, Bob’s Sterling Grove has
its activated ability shut off by Suppression Bonds attached to it. Stony Silence and
Cursed Totem shut off activated abilities of artifacts and creatures.

Both players control a copy of Recycle, skipping both player’s draw steps. Mirror
Gallery disables the “legend rule”. And we give both players a Corrosive Mentor so that
black creatures controlled by either player have wither.

4.12 Instructions
Sadly length constraints prevent us including here the details of how each instruction is
implemented. See [4] for the full implementation details.

5 Example Instruction

For demonstration purposes, here is how an example turn cycle looks. Let us say the next
three cards on the top of Alice’s library are Wastes, Plains, Swamp. This triplet encodes
symbols 5 0 2, a Set instruction.

At the start of Alice’s turn, most creatures are Saprolings and therefore have no abilities.
Recall that all creatures are forced to attack and block where able, but only creatures with
flying or islandwalk are allowed to attack. In Alice’s first combat phase, twelve flying 2/1
Dralnu’s Crusades attack along with the Bloodthirster and Vaevictis Asmadi, the
Dire, whose ability puts the Wastes onto the battlefield. This makes the Dralnu’s Crusade
affecting X5 get +1/+1 from its Strata Scythe, and so it gets blocked by Bob’s first Dream
Fighter and phases out. Creatures with type X5 or XA regain their abilities (unless they
also have another type making them a Saproling such as Yn).

FUN 2024



31:12 A Programming Language Embedded in Magic: The Gathering

In the second combat phase (granted by Bloodthirster), another Vaevictis Asmadi,
the Dire and twelve more Dralnu’s Crusades attack, as their type XA is no longer causing
their flying ability to be removed. This Vaevictis’s ability puts the Wastes onto the bottom
of Alice’s library and the next card of the program in its place, the Plains. The Dralnu’s
Crusade affecting Y0 gets +1/+1 from its Strata Scythe and gets blocked by Bob’s second
Dream Fighter, whose type XA is no longer having its reach ability removed. Creatures
with type Y0 or YA regain their abilities.

In the third combat phase, Alice’s Archpriest of Iona with types X5 YA trY Cleric has
finally regained its abilities. Its ability triggers, and is forced to target r0, because its types
trY mean it can’t target any green or blue creatures or any of the other registers. r0 gains
flying, so it’ll be able to block, and gets a temporary +1/+1.

When the third set of Dralnu’s Crusades and the third Vaevictis Asmadi, the Dire
attack, Alice’s Shape Stealer with types X5 YA is also forced to attack. The Dralnu’s
Crusades all have shadow, so r0 can’t block any of them; the only creature r0 can block is
the Shape Stealer. Shape Stealer’s ability gives it base power equal to r0’s value +1,
which is why it has the −1/−0 counter so its actual power is r0’s value. It is given wither
because it is black, so the damage is dealt as −1/−1 counters, cancelling out all the +1/+1
counters on the register and setting r0’s value to 0.

In Bob’s combat phase, Halana and Alena, Partners triggers. Because it is an Elf,
its power is equal to r2’s value. And because it has types trY as well, just like with Alice’s
Archpriest of Iona, the only legal target for its trigger is r0. So it adds r2 +1/+1 counters
to rY . Then nothing else happens on the rest of Bob’s turn, and we move back to Alice’s
turn, when the three copies of Vaevictis Asmadi, the Dire will read three more cards
from the program.

Figure 4 The five steps of instruction 5 0 2, Set r0 r2.



Howe C. Y. and A. Churchill 31:13

6 Implications and Conclusion

6.1 Readability and programmability
In sharp contrast to the impenetrable millions of tokens produced by the Turing machine in
[2], the game state will be clearly readable when a program in this construction terminates.
After the computation of sample program 1 “Calculate 10 cubed” (see Appendix A), there
will be one Mouse creature token with power and toughness 1000/1000. When sample
program 2 “Prime Factors” halts, for each prime factor of the input number, there will be one
Mouse creature token with power and toughness equal to that factor. When sample program
4 “Nim” halts, the result of the Magic game will be victory for Alice or Bob according to
who won the embedded game of Nim.

The programming language provided is comparable to other microcode programming
languages and assembly languages. It has some quirks but is perfectly usable to write
moderate-sized programs. Readers are invited to write their own programs in the simulator
we wrote to test the sample programs [3].

6.2 Tournament playability
The construction uses many different Magic cards, far more than are normally included in
tournament decks. But it is legal to bring a deck with more than 60 cards to a tournament;
players sometimes play decks with over 200 cards [7]. The only restriction is that you must
be able to physically shuffle the deck in a reasonable amount of time [11].

Appendix C contains a decklist of a 360-card deck which could be brought to a Legacy
tournament. The deck’s composition breaks down as 160 land cards to be used for the
program; 136 distinct named cards used in the microcontroller; 40 cards used during setup
to edit the text and characteristics of the cards used on the microcontroller; and 24 cards
used to generate an unbounded amount of mana, draw all the remaining cards, set up the
construction and remove all Bob’s cards.

With the correct draw, a player can take control of the game as early as the first turn,
and set up the construction. Getting that correct draw is much less likely than with a 60-card
deck, but this is a theoretical result anyway; the difference between a one in a million chance
and a one in several trillion is not particularly relevant.

There are minimal constraints on Bob’s deck (one card to serve as the flag must have no
abilities that function in the graveyard or hand), which will easily be satisfied by any normal
deck. So it is perfectly possible for a hapless player to sit down expecting a tournament
Magic game, have the opponent take over and set up the Microcontroller, and find that they
can only win the game by winning (say) a game of chess instead.

6.3 Computational implications
The previous construction in [2] was Turing complete, so this does not increase the amount
of computation possible inside Magic. However, the addition of input commands during
program execution adds a lot to the programs that can be usefully written, in terms of
ability to simulate multi-player games involving choices – see e.g. sample program 4 which
implements Nim. The language is clearly powerful enough to similarly write programs for
chess, checkers, go, or any similar two-player perfect knowledge game.

A common joke upon the publication of [2] was “Now we can write Magic Online [a
digital implementation of Magic] in Magic”. With the Turing machine-based construction,
all players would have had to pre-register all their moves before computation started. By
contrast, if a digital card game were implemented using the construction in this paper, players
could choose their moves during gameplay in response to the moves made by their opponent.

FUN 2024



31:14 A Programming Language Embedded in Magic: The Gathering

Similarly, this result shows that the complexity of Magic includes any game or algorithm
which involves a finite (but potentially unbounded) sequence of choices, including responses
to another player’s choices. It is of course still not an especially practical environment to
perform any real computation.

We include sample program 3, which searches for a counterexample to the Collatz
conjecture, as a concrete demonstration of the possibility brought up in discussions of [2].
If Alice should set up the microcontroller and start this program, the game is a victory for
Bob as soon as the program finds a cycle of numbers that is a counterexample to the Collatz
conjecture. If (as is widely suspected) no such counterexample exists [8], or if it instead finds
a sequence that goes on forever without repeating, the game is a draw by infinite loop. This
provides an explicit Magic game state where all player choices have been removed but the
end result of the game is unknown to current mathematics.

6.4 Further research
It is clear that Magic is as computationally complex as it’s possible for a perfect knowledge
game to be. But not all two-player games are perfect knowledge, and Magic contains many
cards and mechanics that use hidden information. Our construction doesn’t use any of
these, but it’s possible future constructions could. This would allow embedding a wider
variety of games into Magic, such as two-player games where both players choose their moves
simultaneously.

It is also possible that there exist other tabletop games which support embedding this
kind of construction. But any such game would need to be in the small subset of tabletop
games which allow all of the following:

An unlimited number of player actions rather than a fixed number of turns
An unlimited number of at least one resource
Some way to constrain the actions players can perform
Enough flexibility in player choices to allow forcing one action to result in another

It may well be the case that Magic is the only widely played tabletop game meeting these
criteria which has enough depth of rules and scope for player creativity to allow this kind of
construction. If that is the case, we are very grateful to Wizards of the Coast for providing
such a versatile set of building blocks for us to play with.

References
1 Jan Biel. How to run any program in a Magic: The Gathering Turing machine, 2019. URL:

https://www.youtube.com/watch?v=YzXoFldEux4.
2 Alex Churchill, Stella Biderman, and Austin Herrick. Magic: The Gathering is Turing complete.

In 10th International Conference on Fun with Algorithms (FUN 2020), 2020.
3 Alex Churchill and Choong Yin Howe. Magic microcontroller simulator, April 2024. URL:

https://www.toothycat.net/~hologram/Magic/MTGProgSimulatorText.html.
4 Alex Churchill and Choong Yin Howe. Magic microcontroller website, April 2024. URL:

https://www.toothycat.net/~hologram/Magic/.
5 Choong Yin Howe and Alex Churchill. Magic microcontroller full version, April 2024. https:

//www.toothycat.net/~hologram/Magic/Magic_Microcontroller_full.pdf.
6 Choong Yin Howe and Alex Churchill. A more easily programmable system constructible

in Magic: The Gathering, April 2024. URL: https://cyh31.neocities.org/amepscimtg/
explanation.

https://www.youtube.com/watch?v=YzXoFldEux4
https://www.toothycat.net/~hologram/Magic/MTGProgSimulatorText.html
https://www.toothycat.net/~hologram/Magic/
https://www.toothycat.net/~hologram/Magic/Magic_Microcontroller_full.pdf
https://www.toothycat.net/~hologram/Magic/Magic_Microcontroller_full.pdf
https://cyh31.neocities.org/amepscimtg/explanation
https://cyh31.neocities.org/amepscimtg/explanation


Howe C. Y. and A. Churchill 31:15

7 William “Huey” Jensen. Retro deck highlight: Huey’s 2002 battle of
wits, June 2023. URL: https://strategy.channelfireball.com/home/
retro-deck-highlight-hueys-2002-battle-of-wits/.

8 Jeffrey C. Lagarias. The 3x+1 problem: An overview. The Ultimate Challenge: The 3x+1
Problem, pages 3–29, 2010. doi:10.48550/arXiv.2111.02635.

9 Z.A. Melzak. An informal arithmetical approach to computability and computation. Canadian
Mathematical Bulletin, 4(3):279–293, 1961. doi:10.4153/CMB-1961-031-9.

10 Wizards of the Coast. Magic: The Gathering comprehensive rules, January 2024. URL:
https://magic.wizards.com/en/rules.

11 Wizards of the Coast. Magic: The Gathering tournament rules, January 2024. URL:
https://wpn.wizards.com/en/rules-documents.

A Sample Programs

Readers are encouraged to explore the functionality of these sample programs firsthand by
executing them within the provided simulator interface [3] where they are preset options.

Sample Program 1 10 Cubed.

Symbols Instruction Comments
10 0 10 NumBuild 10 Initialise r0 to 10
5 1 0 Set r1=r0 r1 is the output
6 0 1 Multiply r1 r0 Now r1 is 100
6 0 1 Multiply r1 r0 Now r1 is 1000
4 0 0 HaltD We’re done.

The complete program is: 10 0 10 5 1 0 6 0 1 6 0 1 4 0 0 – or in cards: Snow-Covered
Forest, Plains, Snow-Covered Forest, Wastes, Island, Plains, Snow-Covered Plains, Plains,
Island, Snow-Covered Plains, Plains, Island, Forest, Plains, Plains.

After 5 of Alice’s turns and 4 of Bob’s, the game will end in a draw. Register r1 will have
1000 +1/+1 counters on it, the result of the calculation.

Sample Program 2 Prime Factors.

Symbols Instruction Comments
Register usage: r0: constant 2. r1: input number remaining to be factorised.

r2: copy of r1 for divisions. r3: current divisor. r4: how many factors found so far.
2 1 0 AInput 1 Read the input number into r1
4 1 3 Add1 r3 Initialise divisor to 1
10 0 2 NumBuild 2 Initialise r0 to constant 2

Main loop: test the next number
4 1 3 Add1 r3 Increment the divisor we’re testing
5 2 1 Set r2 r1 Prepare to test r1
7 2 3 DivCeil r2 r3 Divide and check remainder
3 5 4 JumpBwdF 4 If flag, r3 is not a factor

Found a factor: store it and the quotient
8 3 4 Store r3 r4 It is. Save r3 to a new memory slot,
4 1 4 Add1 r4 and increment number of factors found
5 1 2 Set r1 r2 Remember the new divided total
11 0 2 FLess r2 r0 Is r2 now 1?
3 3 8 JumpBwdNF 8 If not, continue. Could be another factor of r3 so recheck it.
4 0 0 HaltD If so, halt

FUN 2024

https://strategy.channelfireball.com/home/retro-deck-highlight-hueys-2002-battle-of-wits/
https://strategy.channelfireball.com/home/retro-deck-highlight-hueys-2002-battle-of-wits/
https://doi.org/10.48550/arXiv.2111.02635
https://doi.org/10.4153/CMB-1961-031-9
https://magic.wizards.com/en/rules
https://wpn.wizards.com/en/rules-documents


31:16 A Programming Language Embedded in Magic: The Gathering

After execution finishes, there will be one memory entry for each prime factor in the
input number. For example, if Alice chooses 120, the program finishes after 57 turn cycles,
and memory consists of {2, 2, 2, 3, 5}.

Sample Program 3 Collatz (3n + 1).

Symbols Instruction Comments
Register usage: r0: built numbers. r1, r2, r3: constants 1, 2, 3.

r4: source of the current chain. r6: temp read memory.
r7: current number being checked. r8: either half r7 or 3r7 + 1.

4 1 1 Add1 r1 Initialise r1 to 1
10 0 2 NumBuild 2 Create constant 2
5 2 0 Set r2 r0 Store constant 2 in r2
10 0 3 NumBuild 3 Create constant 3
5 3 0 Set r3 r0 Store constant 3 in r3
10 4 2 NumBuild 12 × 4 + 2 Start searching at 50
5 4 0 Set r4 r0 Initialise current search root
5 7 4 Set r7 r4 Start checking at current search root

Label 0: we have a new r7 to investigate
11 2 7 FLess r7 r2 Is r7 = 1?
10 1 4 NumBuild 12 × 1 + 4 Create longjump distance 16
3 4 0 JumpFwdF r0 If so, jump to label 3
9 6 7 Load r6 r7 Load memory r7 into r6
11 6 6 FIsZero r6 Is this a new number?
3 4 3 JumpFwdF 3 If so, go to label 1
11 2 6 FLess r6 r2 Is this a number that we know gets to 1?
3 4 11 JumpFwdNF 1 If so, jump to label 3
4 0 2 HaltB If not, we found a loop & disproved the Collatz conjecture!

Label 1: r7 is a number we’ve not seen before
5 8 7 Set r8 r7 Prepare to halve r8
4 2 8 Halve r8 Halve r8. Did that leave remainder?
3 2 3 JumpFwdNF 3 If not, r8 is what we want at Label 2
5 8 7 Set r8 r7 Set r8 to r7...
6 3 8 Mult r8 r3 ...×3...
4 1 8 Add1 r8 ...+1.

Label 2: r8 is the next number in the sequence
8 8 7 Store r7 r8 Store r7 in memory r8
5 7 8 Set r7 r8 Now investigate r8
10 1 7 NumBuild 12 × 1 + 7 Create longjump distance 19
3 1 0 JumpBwd r0 Go back to label 0

Label 3: A number r4 got down to 1. Label the chain with 1s.
5 7 4 Set r7 r4 Restart at r4
9 6 7 Load r6 r7 Load memory r7 into r6
11 2 6 FLess r6 r2 Is r6 = 1?
3 4 3 JumpFwdF 3 If so, skip to end of the loop
8 1 7 Store r7 r1 Save 1 into r7
5 7 6 Set r7 r6 Set r7 to the number we read
3 1 6 JumpBwd 6 Go back 6
4 1 4 Add1 r4 We’re done with r4’s chain. Next number!
3 0 7 JumpFwd 7 Loop around to just before label 0



Howe C. Y. and A. Churchill 31:17

Space constraints prevent us from including Sample Program 4 “Nim” here. See [3] to
see and run this sample program and all the others.

B Card Modification Techniques

Here we detail the techniques used while setting up the microcontroller to accomplish
the various modifications to cards described in Section 4 and in the instructionse (whose
implementation is omitted from this paper for space reasons, but can be seen at [4]). We
assume Alice has generated an arbitrarily large amount of mana and drawn all the cards she
needs using Dimir Guildmage. We are able to repeatedly cast the instants and sorceries
used below by repeatedly casting Archaeomancer and bouncing it with Capsize.

Editing creature types: Artificial Evolution
Editing colour words: Mind Bend
Copiably setting creature type and/or colour and making creatures 1/1: Croaking
Counterpart combined with Artificial Evolution and Spectral Shift
Adding copiable creature types: Glasspool Mimic in conjunction with Artificial
Evolution
Non-copiably setting creature type: Use Blade of Shared Souls to temporarily make
the creature a copy of Proteus Machine. Use Backslide to turn it face down, then
turn it face up and set its creature type.
Adding non-copiable creature types: Olivia Voldaren, modified by Artificial Evolution
to change Vampire to another type.
Copiably setting power and toughness, for positive toughness: Saw in Half after adjusting
as necessary with Belbe’s Armor, Enrage, and/or Drana, Kalastria Bloodchief.
Copiably setting power and toughness to 0/0 and adding type artifact: Have an Engin-
eered Plague on Shapeshifter creatures. Cast Hulking Metamorph prototyped, and
decline to copy anything; it’s now 2/2. Cast Saw in Half on it, producing token copies
that are base 1/1, net 0/0, and then they can copy other creatures while setting base
P/T to 0/0. Grumgully, the Generous adds a +1/+1 counter to keep it alive.
Non-copiably setting power and toughness to the same number: Gigantoplasm
Copiably setting mana value to 0: Vizier of Many Faces copiably removes the mana
cost, making the mana value 0. (This is usually done so that Bludgeon Brawl does
not make this give a power boost.) We can repeat this if necessary using Lithoform
Engine to copy the Embalm ability, untapped by Twiddle.
Copiably setting card type to (only) artifact: Imposter Mech, after targeting the
original with Donate.
Adding type artifact: Memnarch
Copiably adding type creature: Urza, Prince of Kroog, in conjunction with Memnarch
if necessary, and with the creature type edited by Artificial Evolution.
Copiably adding flying: Irenicus’s Vile Duplication copiably adds flying.
Adding keyword ability counters – flying, indestructible, reach, first strike, double strike,
lifelink, deathtouch, vigilance, trample: Kathril, Aspect Warper, having used Dimir
Guildmage to discard other cards used in the construction: Healer’s Flock; Darksteel
Myr; Halana and Alena, Partners; Sylvia Brightspear; Questing Beast; and
Quartzwood Crasher. Regrowth gets back the discarded cards afterwards.
Adding protection from a colour: Have a Council Guardian enter the battlefield,
and use Ballot Broker to make sure the right colour wins the vote. Then use True
Polymorph to turn it into what it should be.

FUN 2024



31:18 A Programming Language Embedded in Magic: The Gathering

Adding islandwalk: Fishliver Oil, copied with Mythos of Illuna
Adding “Whenever this creature deals combat damage to a player, draw a card.”: Use
Blade of Shared Souls to temporarily make the creature a copy of an Ascendant
Spirit, which itself is copiably an Angel by Glasspool Mimic+Artificial Evolution,
and then activate its last ability to add this ability. Generate the snow mana with a
Snow-Covered land repeatedly untapped by Twiddle.
Removing flying: Use Blade of Shared Souls to temporarily make the creature a copy
of Mist Dragon, and use its ability to remove flying.
Adding +1/+1 counters: Kathril, Aspect Warper and Resourceful Defense
Adding −1/−0 counters: Jabari’s Influence to get the first one, and multiple copies of
Resourceful Defense to get more.
Adding +1/+0 counters: Dwarven Armorer produces +1/+0 counters. Multiple copies
of Resourceful Defense multiply the counters and then move them, as necessary.
Creating arbitrary tokens: Rotlung Reanimator with Artificial Evolution creates
tokens of arbitrary types, and Saw in Half sets their sizes after adjusting with Belbe’s
Armor.
Setting colours: Prismatic Lace
Giving Bob control of cards: Donate

Example: We make each Vaevictis Asmadi, the Dire into a 1/1 Sliver Beast Reflection
by casting Croaking Counterpart targeting a real Vaevictis Asmadi, the Dire, then
responding by casting Artificial Evolution targeting Croaking Counterpart to change
Frog to Sliver. Once the 1/1 Sliver is present, we return Artificial Evolution to our hand
using Archaeomancer. We cast Glasspool Mimic; edit it with Artificial Evolution
replacing Shapeshifter with Beast; cast Capsize with buyback on the Archaeomancer;
recast Archaeomancer using Leyline of Anticipation to get back Artificial Evolution
again; then use Artificial Evolution one more time to replace Rogue with Reflection. Then
Glasspool Mimic resolves and becomes a 1/1 Sliver Beast Reflection copy of Vaevictis
Asmadi, the Dire. We can create further token copies of this with Mythos of Illuna
(all the creature type additions are copiable), and then use Capsize to return the original
Glasspool Mimic to our hand for the next time we need to use it.

C Decklist

Table 4 on the facing page contains a decklist suitable for bringing to a Legacy tournament
which could set up the microcontroller. Adjust the number of basic lands according to
the program you wish to write; the following decklist contains enough to write the Collatz
sample program. You can also leave out cards that are only used in instructions that aren’t
present in the program you wish to write. E.g. Oubliette is only used in Call and Return
instructions.



Howe C. Y. and A. Churchill 31:19

Table 4 Decklist to play the Magic Microcontroller in a Legacy tournament.

Card Purpose Card Purpose

4 Ancient Tomb Bootstrap 4 Lotus Petal Bootstrap
4 Grim Monolith Infinite mana 4 Power Artifact Infinite mana
4 Gemstone Array Infinite mana 4 Dimir Guildmage Draw rest of deck
13 Plains Program 13 Snow-Covered Plains Program
13 Island Program 18 Snow-Covered Island Program
13 Swamp Program 13 Snow-Covered Swamp Program
18 Mountain Program 8 Snow-Covered Mountain Program
18 Forest Program 10 Snow-Covered Forest Program
13 Wastes Program 10 Snow-Covered Wastes Program
1 Memnarch Make token copies 1 Mythos of Illuna Make token copies
1 Capsize Set up 1 Archaeomancer Set up
1 Artificial Evolution Edit cards 1 Mind Bend Edit cards
1 Prismatic Lace Edit cards 1 Spectral Shift Edit cards
1 Glasspool Mimic Add types 1 Olivia Voldaren Add types
1 Proteus Machine Set creature types 1 Backslide Set creature types
1 Argent Mutation Set up 1 Leyline of Anticipation Set up
1 Gigantoplasm Edit power/toughness 1 Croaking Counterpart Set up
1 Saw in Half Edit power/toughness 1 Belbe’s Armor Edit power/toughness
1 Enrage Edit power/toughness 1 Drana, Kalastria Bloodchief Edit power/toughness
1 Engineered Plague Edit power/toughness 1 Grumgully, the Generous Edit power/toughness
1 Hulking Metamorph Edit power/toughness 1 Vizier of Many Faces Edit mana value
1 Lithoform Engine Edit mana value 1 Twiddle Edit mana value
1 Imposter Mech Edit types 1 Donate Edit control
1 Astral Dragon Add types and abilities 1 Irenicus’s Vile Duplication Add abilities
1 Urza, Prince of Kroog Add types 1 Kathril, Aspect Warper Add abilities
1 Council Guardian Add abilities 1 Ballot Broker Add abilities
1 True Polymorph Add abilities 1 Fishliver Oil Add abilities
1 Blade of Shared Souls Change types and abilities 1 Ascendant Spirit Add abilities
1 Mist Dragon Remove abilities 1 Resourceful Defense Add counters
1 Jabari’s Influence Add counters 1 Fishliver Oil Add abilities
1 Dwarven Armorer Add counters 1 Sealock Monster Add types
1 True Polymorph Add abilities 1 Grand Melee Control combat
1 Stormtide Leviathan Control combat 1 Tetsuko Umezawa, Fugitive Control combat
1 Worship Control combat 1 Vaevictis Asmadi, the Dire Advance program
1 Wheel of Sun and Moon Advance program 1 Tajuru Preserver Advance program
1 Dralnu’s Crusade Conditional mechanism 1 Life and Limb Conditional mechanism
1 Blood Sun Conditional mechanism 1 Strata Scythe Conditional mechanism
1 Healer’s Flock Keyword abilities 1 Dream Fighter Conditional mechanism
1 Shadow Sliver Conditional mechanism 1 Bludgeon Brawl Conditional mechanism
1 Bloodthirster Advance program 1 Masked Gorgon Constrain targets
1 Spectral Guardian Constrain targets 1 Sterling Grove Constrain targets
1 Ivory Mask Constrain targets 1 Illusionary Terrain Control types
1 Joraga Warcaller Registers 1 Riders of Gavony Registers
1 Nevermore Control choices 1 Aggressive Mining Control choices
1 Root Maze Control choices 1 Tomorrow, Azami’s Familiar Flag
1 Choke Control choices 1 Suppression Bonds Control choices
1 Stony Silence Control choices 1 Cursed Totem Control choices
1 Recycle Control state 1 Mirror Gallery Control state
1 Corrosive Mentor Add abilities 1 Halana and Alena, Partners Instructions
1 Archpriest of Iona Instructions 1 Shape Stealer Instructions
1 Necrogen Mists Instructions 1 Halfdane Instructions
1 Tanuki Transplanter Instructions 1 Furtive Homunculus Instructions
1 Omnath, Locus of Mana Instructions 1 Wrathful Red Dragon Instructions
1 Belligerent Brontodon Instructions 1 Smog Elemental Instructions
1 Hornet Nest Instructions 1 Phantom Steed Instructions
1 War Elemental Instructions 1 Tocatli Honor Guard Instructions
1 Ward Sliver Instructions 1 Godhead of Awe Instructions
1 Wandering Wolf Instructions 1 Behind the Scenes Instructions
1 Spinneret Sliver Instructions 1 Quartzwood Crasher Instructions
1 Arwen, Weaver of Hope Instructions 1 Aether Flash Instructions
1 Charisma Instructions 1 Skeleton Key Instructions
1 Serpent of Yawning Depths Instructions 1 Field Marshal Instructions
1 Questing Beast Instructions 1 Vigor Instructions
1 Toralf, God of Fury Instructions 1 Gideon’s Intervention Instructions
1 Progenitor Mimic Instructions 1 Volcano Hellion Instructions
1 Artificer Class Instructions 1 Syr Elenora, the Discerning Instructions
1 Slithering Shade Instructions 1 Suntail Hawk Instructions
1 Strength-Testing Hammer Instructions 1 Ancient Gold Dragon Instructions
1 Rat Colony Instructions 1 Goblin Pyromancer Instructions
1 Celestial Convergence Instructions 1 Alert Heedbonder Instructions
1 Spiritual Sanctuary Instructions 1 Abyssal Specter Instructions
1 Catacomb Dragon Instructions 1 Taii Wakeen, Perfect Shot Instructions
1 Excruciator Instructions 1 Aegar, the Freezing Flame Instructions
1 Khorvath Brightflame Instructions 1 Sylvia Brightspear Instructions
1 Mangara’s Equity Instructions 1 Darksteel Myr Instructions
1 Ojutai, Soul of Winter Instructions 1 Angrath’s Marauders Instructions
1 Kangee, Aerie Keeper Instructions 1 Shimmer Instructions
1 Fiery Emancipation Instructions 1 Chains of Mephistopheles Instructions
1 Captain’s Claws Instructions 1 Steely Resolve Instructions
1 Reaper King Instructions 1 Akron Legionnaire Instructions
1 Discordant Spirit Instructions 1 Blinding Angel Instructions
1 Meishin, the Mind Cage Instructions 1 Bower Passage Instructions
1 Darksteel Myr Instructions 1 Moonsilver Spear Instructions
1 Spellbane Centaur Instructions 1 Melira’s Keepers Instructions
1 Spiteful Shadows Instructions 1 Empyrial Archangel Instructions
1 Lich Instructions 1 Justice Instructions
1 Rotlung Reanimator Instructions 1 Oubliette Instructions
1 Willbreaker Instructions 1 Razorjaw Oni Instructions
1 Sosuke, Son of Seshiro Instructions 1 Syphon Sliver Instructions
1 Dormant Sliver Instructions 1 Skanos Dragonheart Instructions
1 Corpsejack Menace Instructions 1 Okk Instructions
1 Bishop of Binding Instructions 1 Tamiyo, Collector of Tales Instructions
1 Shimmer Instructions 1 Sporemound Instructions
1 Polyraptor Instructions 1 Chief of the Scale Instructions
1 Gruul Ragebeast Instructions 1 Sliver Hivelord Instructions

FUN 2024


	1 Introduction and Previous Work
	2 Outline of the Construction
	3 The Programming Language
	4 Implementation of the Microcontroller
	4.1 The program
	4.2 Global environment control
	4.3 Advancing through the program
	4.4 Disabling and conditionally enabling permanents
	4.5 Reading the second and third cards
	4.6 Constraining targets
	4.7 Order of continuous effects, and one more of them
	4.8 Registers
	4.9 Memory
	4.10 The flag
	4.11 Further environment control
	4.12 Instructions

	5 Example Instruction
	6 Implications and Conclusion
	6.1 Readability and programmability
	6.2 Tournament playability
	6.3 Computational implications
	6.4 Further research

	A Sample Programs
	B Card Modification Techniques
	C Decklist

