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Abstract
We study the Solo-Chess problem which has been introduced in [Aravind et al., FUN 2022]. This
is a single-player variant of chess in which the player must clear all but one piece from the board
via a sequence captures while ensuring that the number of captures performed by each piece does
not exceed the piece’s budget. The time complexity of finding a winning sequence of captures has
already been pinpointed for several combination of piece types and initial budgets. We contribute to
a better understanding of the computational landscape of Solo-Chess by closing two problems left
open in [Aravind et al., FUN 2022]. Namely, we show that Solo-Chess is hard even when all pieces
are restricted to be only rooks with budget exactly 2, or only knights with budget exactly 11.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Mathematics of computing → Combinatorics

Keywords and phrases solo chess, puzzle games, board games, NP-completeness

Digital Object Identifier 10.4230/LIPIcs.FUN.2024.4

1 Introduction

Solo-Chess is a puzzle game available on chess.com [9]. The game is played by a single
player on a 8 × 8 chessboard that initially contains an arrangement of chess pieces. All the
pieces have the same color but they are otherwise allowed to capture each other following
the standard capturing rules of chess. Each move performed by the player is required to
be a capture and the goal is that of removing all but one piece from the board. Moreover,
each piece has an associated budget that limits the number of captures it can make. More
precisely, all the initial budgets are 2, and only pieces with positive budget are allowed to
capture by spending one unit of their budget.1

The problem of finding a winning sequence of captures has been first studied from the
computational point of view in [1], where the authors generalize the chessboard to an arbitrary
size and allow each piece to have an arbitrary non-negative initial budget. More precisely,
given a set of piece types P ⊆ {p,r,n,b,k,q} and a collection of allowed budgets
B ⊆ N, we denote by Solo-Chess(P , B) the problem in which all pieces on the board have
some type in P and an initial budget in B.2

1 In the chess.com version of the game, there is at most one king on the chessboard and, if a king exists,
it must be the last remaining piece.

2 To lighten the notation, we sometimes write Solo-Chess(t, B) instead of Solo-Chess({t}, B).
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Aravind et al. [1] focus on instances containing pieces of a single type, and show that
Solo-Chess(r, {0, 1, 2}), Solo-Chess(b, {0, 1, 2}), and Solo-Chess(q, {2}) are NP-
hard, while Solo-Chess(p, {0, 1, 2}) and Solo-Chess({p,r,n,b,k,q}, {0, 1}) can
be solved in polynomial time. They also consider the Solo-Chess(r, {0, 1, 2}) problem
played 1D boards (i.e., boards with a single row/column) and provide a polynomial-time
algorithm. Among others, [1] explicitly mentions the following two open problems:

What is the computational complexity of Solo-Chess(r, {2})?
What can be said about the complexity of Solo-Chess played by knights alone?

Our results. In this paper we answer these two questions by showing that both the above
problems are NP-hard. In particular, Solo-Chess played by only knights remains NP-hard
even when all knights have the same constant budget. Formally, we prove the NP-hardness of
Solo-Chess(r, {2}) and Solo-Chess(n, {11}) by providing polynomial-time reductions
from (suitable versions of) the vertex cover and Hamiltonian path problems.

An interactive demonstration of our reductions can be found at https://www.isnphard.
com/g/solo-chess/.

Other related work. The Solo-Chess problem has also been studied in [4], where the special
case in which the number of captures of each piece is unrestricted was considered, and it
shown that it is polynomial-time solvable whenever ∣P ∣ = 1, while the problem becomes
NP-hard for any choice of P with ∣P ∣ ≥ 2. The authors also consider the case in which
exactly one of the pieces cannot be captured (and hence it must be the last piece of the
board in any solution), and all other (capturable) pieces are of the same type (which might
or might not coincide with type of the uncapturable piece). Almost all possible combinations
of types are shown to be either NP-complete or polynomial-time solvable.

Aravind et al. [1], also study a variant of Solo-Chess that is played on a graph, where
vertices represent pieces, and edges represent the available captures. Solo-Chess is also close
in spirit to other problem that require capturing pieces in order to clear a board, such as peg
solitaire and its variants [11, 8, 3].

Finally, we mention that the classical 2-player chess game is known to be EXPTIME-
complete or PSPACE-complete depending on whether the number of allowed moves is upper-
bounded by a polynomial [5, 10].

Structure of the paper and notation. The NP-Hardness of Solo-Chess(n, {11}) is
discussed in Section 2, while Solo-Chess(r, {2}) is considered in Section 3. Throughout
the paper, we use the notation p → p

′ to denote a move in which piece p captures piece
p
′. Sometimes, it will be more convenient to refer to the squares occupied by the pieces

instead. If p and p′ are on squares q and q′, respectively, all of the following will also denote
move p → p

′: (i) p → q
′, (ii) q → p

′, and (iii) q → q
′. We also shorten a sequence of

k consecutive captures of the form p1 → p2, p2,→ p3, . . . , pk−1 → pk by simply writing
p1 → p2 → p3 → . . . pk−1 → pk.

2 Solo-Chess with only knights

In this section we establish the NP-hardness of Solo-Chess(n, {11}). In order to do so, we
first show that the more general Solo-Chess(n, {0, 2, 11}) problem is NP-hard, and then,
in Section 2.3, we argue that knights with budgets 0 and 2 can be simulated by only using
knights with budget 11. In the rest of this section, we refer to a knight with budget b as a
b-knight.

https://www.isnphard.com/g/solo-chess/
https://www.isnphard.com/g/solo-chess/
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Figure 1 (a) And instance G of rhp. (b) The corresponding planar orthogonal grid drawing
D of G, where the segments ℓ

′
u,v are shown in red. (c) A sketch of the chessboard obtained from

D, where the tiles corresponding to the segments ℓ
′
u,v are highlighted with a red band along the

direction of the segment.

Our reduction to Solo-Chess(n, {0, 2, 11}) is from a restriction of the Hamiltonian
path problem to a suitable class of input graphs, which we name rhp. The Hamiltonian
path problem is a well-known NP-hard problem that asks to decide whether a given input
graph G = (V,E) contains a simple path that traverses all vertices in V . In rhp we restrict
ourselves to instances in which G is planar, V contains exactly two vertices s, t with degree
1, and all other vertices have degree 3 (see Figure 1 (a)). We call s the start vertex and t the
end vertex of G. Clearly, G contains a Hamiltonian path iff it contains a Hamiltonian path
from its start to its end vertex.

Notice that the rhp problem is NP-hard. Indeed, [7] shows that the Hamiltonian cycle
problem is NP-hard when the instances are restricted to planar cubic graphs (i.e., graphs
in which every vertex has degree exactly three) by providing a reduction from the 3-SAT
problem. A closer inspection of such a reduction shows that the resulting graphs G′ contain
some special edge e = (u, v) such that if G′ admits a Hamiltonian path P then P must
traverse e.3 We can then obtain an instance G of rhp by deleting e from G

′ and replacing it
with two new vertices s, t along with the edges (s, u) and (u, t).

The high-level idea of our reduction is that of embedding the graph G on a chessboard.
Since all vertices in V \ {s, t} have degree 3, finding a Hamiltonian path in G can be thought
of as the problem of deleting exactly one edge incident to each vertex of degree 3. To achieve
this, each “edge” in our reduction will be equipped with a suitable edge deletion gadget. Once
the selected edges have been deleted, the rest of the board encodes the sought Hamiltonian
path, but it still contains some knights that need be cleared along the Hamiltonian path.
This will be done by tracing the Hamiltonian path using a knight that is initially placed in s,
while capturing all remaining knights along the way. Actually, in order to keep the budgets
small, this traversal will not be performed by a single knight but rather by a collection of
knights that use suitable gadgets as relay stations.

We now describe the technical details of our reduction to Solo-Chess(n, {0, 2, 11}): we
start by finding a planar orthogonal grid drawing D of G, i.e., a mapping that associates each
vertex v ∈ V to a distinct point pv having integer coordinates, and each edge (u, v) ∈ E to a
non self-intersecting polyline ℓu,v connecting pu to pv and consisting of the union of alternating
(and non-empty) horizontal and vertical segments such that (i) all the segments’ endpoints

3 Such an edge can be found in polynomial-time. In fact, the reduction of [7] even uses a special gadget
for the exact purpose of forcing an edge to be in all Hamiltonian paths of G

′.

FUN 2024
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are at integer coordinates, (ii) ℓu,v does not contain any point pw with w ∈ V \ {u, v}, and
(iii) the polylines of different edges do not intersect (except possibly at their endpoints).
Suppose w.l.o.g. that the x-coordinates (resp. y-coordinates) used by the drawing range from
1 to w (resp. from 1 to h). A drawing D with w ⋅h = O(n2) can be found in polynomial time
w.r.t. ∣V ∣ (see [12] and the references in Section 5.3 of [2]). We further assume that each
polyline ℓu,v between two distinct vertices u, v ∈ V \ {s, t} contains at least one horizontal or
vertical segment ς with a length of at least 5,4 and we choose a contiguous portion ℓ

′
u,v of ς

that has length 3, starts and ends at integer coordinates, and does not include the endpoints
of ς (see Figure 1 (b)).

The chessboard of our instance of Solo-Chess(n, {0, 2, 11}) has size (14h+1)×(14w+1)
and consists of h × w tiles, i.e., contiguous sub-chessboards of size 15 × 15, such that each
tile corresponds to a point at integer coordinates in D and any two horizontally or vertically
adjacent tiles share 15 squares along their common edge (see Figure 1 (c)). Each of these tiles
is either empty or it hosts a (portion of) some gadget. Gadgets are arrangements of knights
which span an integral number of connected tiles. We will make use of six gadget types, five
of which span exactly one tile, while the remaining one spans 4 consecutive tiles (either
horizontally or vertically). More precisely, we use a start gadget and an end gadget for the
tiles corresponding to s and t, respectively; a straight edge gadget for each tile corresponding
to a point that lies on some polyline ℓu,v but is neither in {pu, pv} nor on ℓ

′
u,v (if any); a

corner edge gadget for each tile corresponding to an endpoint of a segment of some polyline
ℓu,v, except for the endpoints pu, pv of ℓu,v itself; and a cubic vertex gadget for each tile
corresponding to a point pv for v ∈ V \ s, t. The sixth and final gadget type is the edge
deletion gadget. We use an edge deletion gadget for each edge (u, v) ∈ E with u, v ∈ V \ s, t
and we place it on the four tiles corresponding to the points of integer coordinates in ℓ

′
u,v.

Our gadgets will interact with one another by sharing 0-knights placed on their perimeter.
The squares hosting these knights are marked with a × symbol in our figures and will be
referred to as input/output (I/O) squares. An I/O square q of a gadget acts as an input if
some (b+ 1)-knight that is not in one of the gadget’s squares captures the 0-knight originally
placed on q. In this case, we say that the gadget takes a b-knight as an input. An I/O square
q of a gadget acts as an output whenever some b-knight that is in one of the gadget’s squares
captures a knight on q. In such a case we say that the gadget outputs a (b − 1)-knight. The
gadgets are designed to ensure that, in any winning sequence of moves, no I/O square can
be the target of two distinct captures, and hence it cannot act as both an input and as an
output (although it might play different roles in different winning sequences).

In the following, all squares marked with ●, ○, ⭑, or × contain 0-knights, the ones
marked with ▪ contain 2-knights, and the ones marked with n contain 11-knights. We say
that a b-knight is lively if b ≥ 6 and lazy if b ≤ 5. We now discuss our gadgets.

Start and end gadgets

The start and end gadgets are shown in Figure 2 (a) and Figure 2 (b), respectively, and have
a single I/O square each. The start gadget corresponds to vertex s and is meant to output a
single 7-knight (and no b-knight with b > 7 can be output).

The end gadget corresponds to vertex t and is meant to be played at the end of any
winning sequence. Since the knight initially at ⭑ has budget 0 and can only be captured
from exactly one of the ● squares, any winning sequence must necessarily place the last
remaining knight on ⭑, which we name the goal square. It is possible to clear all but a single
night from the end gadget iff the gadgets takes a b-knight with b ≥ 7 as input.

4 This can always be guaranteed, e.g., by “scaling up” the drawing by a factor of 5.
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Figure 2 (a) The arrangement of knights in the start gadget. (b) The arrangement of knights in
the end gadget.

n n n
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n

Figure 3 (a) The arrangement of knights in a straight edge gadget. (b) A sequence of moves
that allows the gadget to output a 3-knight from the right I/O square when a 3-knight is input in
the left I/O square. Red moves are played before blue moves. (c) A sequence of moves that allows
the gadget to output a 7-knight from the right I/O square when a 7-knight is input in the left I/O
square. (d) The arrangement of knights in a corner edge gadget.

Straight edge gadgets

Each of these gadgets corresponds to a portion of either a horizontal or a vertical segment
of some polyline ℓu,v connecting pu to pv in D, as long as such portion does not lie in ℓ

′
u,v

(which is handled by the edge deletion gadget). In the following we discuss how knights are
arranged in the case of a horizontal segment. The vertical case is obtained by rotating the
discussed gadget by 90 degrees (either clockwise or counterclockwise).

The arrangement of knights in the gadget is shown in Figure 3 (a). If a b-knight with
b ≥ 3 is input in one of the I/O squares, then it is possible to output a 3-knight from the
opposite I/O square (see Figure 3 (b)). Similarly, when a 7-knight is input in one of the I/O
squares, it is possible to output a 7-knight from the opposite I/O square (see Figure 3 (c))
but it is not possible to output any b-knight with b > 7.

Moreover, if a lazy knight is input in one of the I/O squares, there exists no winning
sequence of captures that allows the gadget to output a lively knight. Finally, it is impossible
for any sequence of moves to use both I/O locations as outputs, or for any winning sequence
of moves to use both I/O locations as inputs (since this would isolate some knight in the
gadget from the goal square).

Essentially, this gadget allows to “teleport” either a 3-knight or a 7-knight from an I/O
square to the opposite one, while clearing all but the latter square. By chaining together
multiple straight edge gadgets it is possible to move a 3-knight or a 7-knight across any
horizontal or vertical segment of a polyline.

FUN 2024
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n n

n n

Figure 4 The arrangement of knights in an edge deletion gadget.

Corner edge gadgets

A corner edge gadget allows to connect an horizontal segment of a polyline to an adjacent
vertical segment, or vice-versa, and is shown in Figure 3 (d). We only discuss one possible
orientation of the gadget, as the others are obtained by a 90-, 180-, or 270-degree rotation.
The gadget is almost identical to the straight edge gadget of Figure 3 (a), as the only
differences are the positions of a square marked ●, and that of the rightmost I/O square
which has been relocated to the bottom edge of the gadget. Neither of these changes affects
the threat relationships between the pieces, hence our discussion of the straight edge gadgets
also applies to corner edge gadgets.

By chaining together a combination of straight edge and corner edges gadgets it is possible
to move a 3-knight or a 7-knight across any portion of a polyline.

Edge deletion gadgets

We use exactly one edge deletion gadget per edge (u, v) ∈ E with u, v /∈ {s, t}. Such a
gadget spans 4 consecutive tiles either horizontally or vertically (i.e., a 15 × 57 or 57 × 15
sub-chessboard) and is placed in the tiles corresponding to the portion ℓ′u,v of the polyline ℓu,v.

As for the straight edge gadget, in the following we only discuss the horizontal version
of the gadget, shown in Figure 4, since the vertical version can be obtained by a 90-degree
rotation.

The gadget has two I/O squares on opposite sides and there are two intended ways to
play the gadget, which are shown in Figure 5, and we name them traversal mode and deletion
mode. In traversal mode a lively knight is input in one of the I/O squares and a 7-knight is
output from the opposite I/O square. In deletion mode each of the two I/O squares outputs
a 3-knight.

No winning sequence of moves can use both I/O squares as inputs (since this would
isolate some knight in the gadget from the goal square). Moreover, if a lazy knight is input
in one I/O square, then it is impossible for a winning sequence to output a lively knight from
the opposite I/O square. To see this, let k1, k2, k3, k4 and q1, q2, q3, q4 respectively be the
11-knights and the squares marked with ○ in Figure 4, from left to right. Assume w.l.o.g.5

that a lively knight is output by the rightmost I/O square q∗, and notice that this implies
that the 0-knight on q

∗ is captured by k4, which cannot clear q4. Then, q4 must be cleared
by k3 and, in turn, q3 must be cleared by k2, and q2 must be cleared by k1. This means the
input knight k on the leftmost I/O square must clear q1, i.e., k must have a budget of at
least 6.

5 A symmetric argument holds when the I/O square used as an output is the leftmost one (once ki is
renamed in k5−i and the appropriate symmetric squares for q1, . . . , q4 are chosen).
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Figure 5 Top: the sequence of moves played when an edge deletion gadget is used in traversal
mode in order to output a 7-knight from the right I/O square when a lively knight is input in the
left I/O square. Bottom: the sequence of moves played when an edge deletion gadget is used in
deletion mode in order to output a 3-knight from each of the two I/O squares. In both figures the
order of the moves is: red, blue, green, purple, and teal (if any).

Cubic vertex gadgets

Each vertex v ∈ V \ {s, t} corresponds to a tile (namely, the tile associated to coordinates pv)
which contains (a suitable rotation of) the cubic edge gadget of Figure 6 (a). This gadget
has 3 I/O squares, each of which corresponds to a distinct edge incident to v.

In the intended operation of the gadget, any two I/O squares are used as inputs while
the remaining one is an output. In details, if the gadget takes two knights with budgets at
least 3 and 7 as input then it can be used to output a 7-knight. Figures 6 (b)–(d) show how
this can be done for any combination of the intended input/outputs, up to symmetries.

No winning sequence of moves can use all the I/O squares as inputs. Moreover, if the
gadget outputs a lively knight then it must take at least one lively knight as input. Indeed,
the lively knight output from the gadget must necessarily be the only 11-knight k initially
placed in the gadget itself (notice that any input knight placed on some I/O square must
perform at least 6 captures to reach another I/O square), which implies that k cannot clear
the square q marked with ○. Hence, q must be cleared by some input knight k′, but this
requires k′ to perform at least 6 captures.

A similar reasoning shows that, in any winning sequence moves, the gadget cannot output
two ore more lively knights. Indeed, for this to happen, there needs to be an output lively
knight k′ ≠ k, which must necessarily be also an input knight. Then, (a) k must be the other
lively output knight and, since k′ cannot clear q (as this would require at least 6 captures,
resulting in a budget of at most 5, (b) k must clear q. However, it is impossible for both (a)
and (b) to happen.

Finally, we point out that it is possible to play the gadget in the following unintended
way: whenever two knights with budget at least 3 as used as inputs, a 3-knight can be output
form the remaining I/O square. However, as we argue in more details later, our edge deletion
gadgets ensures that doing so always results in a losing configuration.

FUN 2024
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(a) (b) (c) (d)

n nn n

Figure 6 (a) The arrangement of knights in a cubic vertex gadget. (b)–(d) each show a sequence
of moves that outputs a 7-knight from one of the I/O squares when two knights having budgets at
least 3 and 7 are input in the other two I/O squares. Red moves are performed fist, followed by blue
moves, and then by green moves.

2.1 One direction
Let P be a Hamiltonian path of G = (V,E) that starts in s and ends in t. Let EP be
the edges in P and EP = E \ EP , and recall that the edges connecting s and t to their
sole neighbors must belong to EP . The following sequence of moves wins the instance of
Solo-Chess(n, {0, 2, 11}). For each edge (u, v) ∈ Ep we play the edge deletion gadget gu,v

corresponding to (u, v) in deletion mode in order to output two 3-knights: one on the u-side
and one on the v-side of (u, v); then, we play all the straight edge and corner edge gadgets
that connect gu,v to u (resp. v), in this order, which has the effect of placing a 3-knight on the
input of the cubic vertex gadget corresponding to u (resp. v) while clearing all other squares
of the played gadgets. After this step, the only unplayed gadgets are (i) the start and end
gadgets, (ii) the cubic vertex gadgets corresponding to the vertices in V , and (iii) the straight
edge, corner edge, or edge deletion gadgets corresponding to the edges in EP . We can play
all these gadgets in the same order as vertices and edges are encountered in P : we start by
outputting a 7-knight from the start gadget, then we play the sequence of straight/corner
edge gadgets (possibly none) until we reach the cubic vertex gadget gu corresponding to the
vertex u that follows s in P . This brings a 7-knight to one of the I/O squares of gu, while a
3-knight was already on some other I/O square. We use the 3-knight and the 7-knight as
inputs for gu in order to output a 7-knight on the only remaining I/O square of gu, which
corresponds to the edge (u, v) following u in P . We then play the gadgets associated with
(u, v) so as to place a 7-knight on an I/O square of the cubic vertex gadget gv of v. Notice
that, in addition to straight/corner edge gadgets, playing the gadgets associated with (u, v)
also involve playing a single edge deletion gadget in traversal mode. We repeat this process
until a 7-knight is output from the cubic vertex gadget gz corresponding to the vertex z

immediately preceding t in P . Finally, we play the straight/corner edge gadgets associated
with (z, t) to place a 7-knight on the input of the end gadget which, at this point, is the only
gadget containing non-empty squares. To complete the winning sequence it suffices to play
the end gadget using the input 7-knight.

2.2 The other direction
Fix a winning sequence σ and consider a gadget g that is not the start gadget. In order for g
to output a lively knight from some I/O square in σ, it is necessary for g to receive a lively
knight as input from another I/O square. Moreover, in σ, no gadget can output more than
one lively knight and the end gadget must take a lively knight as input.
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We define a directed graph Hσ whose vertex set is the set of gadgets in our instance
of Solo-Chess(n, {0, 2, 11}) and such that Hσ contains a directed edge (g, g′) iff there a
move that causes a lively knight to be output from g and be input into g′. The previous
observations imply that the out-degree of all vertices of Hσ is at most 1, that all vertices
with out-degree 1 have in-degree at least 1 except for the start gadget, and that the in-degree
of the end gadget is 1.

Then, Hσ must contain a path P from the start gadget to the end gadget. Moreover, P
must traverse all cubic vertex gadgets. Indeed, suppose towards a contradiction that there is
some cubic vertex gadget g, corresponding to a vertex u ∈ V , that is not in P .

If g does not take any lively knight as input then the only way to clear all squares of g
results in g outputting a lazy knight from an I/O square associated with some edge (u, v) ∈ E,
where v /∈ {s, t}.6 Then, our instance of Solo-Chess(n, {0, 2, 11}) has an edge deletion
gadget g′ associated with (u, v). Since the I/O square q on “u’s side” of g′ cannot be used as
input in traversal mode (as no lively knight can be input from q), g′ must output a knight
on q and this causes one or mode knights placed on the (straight or corner) edge gadgets
used to encode the portion of the polyline ℓu,v between pu and ℓ

′
u,v to become disconnected

from the goal knight, a contradiction.
Otherwise g takes a lively knight as input, which means that there must exist a path P

′

from the start gadget to g in Hσ. Let g′ be the last vertex of P ′ that is also in P , and notice
that g′ must have out-degree at least 2 in Hσ, i.e., it must output at least two lively knights,
a contradiction.

If a graph obtained from G by performing edge subdivisions7 contains a simple path
spanning V , then G contains a Hamiltonian path. Let G′ be the graph obtained from G by
subdividing each edge (u, v) into a path containing as many internal nodes as the number
of gadgets placed in the tiles corresponding to the internal points of the polyline ℓu,v (that
is, ∣ℓu,v∣ − 1 if u ∈ {s, t} or v ∈ {s, t}, and ∣ℓu,v∣ − 4 if u, v /∈ {s, t}). There is an injective
homomorphism between the undirected version of Hσ and G′ such that each start, end, and
cubic vertex gadget in Hσ is mapped to the corresponding vertex in G′. Since P is a (simple)
path that spans all start, end, and cubic vertex gadgets in Hσ, there is some (simple) path
in G

′ that spans all vertices in V , hence G contains a Hamiltonian path.

2.3 Uniform budgets
Given a configuration c and a knight k, we denote by τc(k) the number of knights in c that
are threatened by k.

We start by proving the following two lemmas which provide some “local” rules that
allow us to perform some captures without compromising the solvability the configuration.

▶ Lemma 1. Let C be a configuration containing a b-knight k that threatens only a single
knight k′. Assume further that either (i) b = 1, or (ii) b ≥ 2 and τc(k′) = 2. If C is solvable
then it admits a wining sequence of moves that starts with k → k

′.

Proof. Let q and q
′ be the squares containing k and k

′ in C, respectively, and let σ =

⟨m1,m2, . . . ⟩ be any winning sequence of moves for C. We prove the claim by showing that
σ can be transformed into a winning sequence that starts with k → k

′.

6 The only I/O square of the start gadget must be used as output, and the only I/O square of the end
gadget must take lively knight as input.

7 The subdivision of an edge (u, v) into a path with ℓ ≥ 1 internal nodes consists in inserting of the new
vertices w1, w2, . . . , wℓ, deleting (u, v), an adding the edges in {(u, w1), w(wℓ, v)} ∪ {(wi, wi+1) ∣ i =

1, . . . , ℓ − 1}.
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We start by ensuring that σ contains a move of the form k → q
′. If this is not already the

case, then it must contain q
′
→ k and such a capture must necessarily be the last move of

σ (since q′ → k clears square q′ and isolates the knight on q from any other knight in the
resulting configuration). Then, replacing q′ → k with k → q

′ also results in winning sequence
of moves.

Let i be the index of move k → q
′ in σ. We now argue that, if mi is not already the first

move, then swapping it with its preceding move mi−1 still results into a winning sequence.
The claim follows by iteratively performing such a swap until k → q

′ becomes the first move.
If m does not involve square q nor square q′ then performing either of ⟨m1, . . . ,mi−1,mi⟩
and ⟨m1, . . . ,mi−2,mi,mi−1⟩ from c results in the same configuration. Otherwise, since
mi−1 cannot clear q′, it must necessarily be of the form k

′′
→ q

′ for some knight k′′ ≠ k. If
(i) holds, then the configurations obtained from C by performing ⟨m1, . . . ,mi−1,mi⟩ and
⟨m1, . . . ,mi−2,mi,mi−1⟩ are identical except, possibly, for the budget of the knight on q

′

which is exactly 0 in the former case and at least 0 in the latter. If (ii) holds then, after move
mi−1, the only remaining knights are on squares q and q′ and mi is the last move of σ. Then
moving mi immediately before mi−1 also results in a winning sequence. ◀

A repeated application of Lemma 1 shows that a knight k0 that either has budget 0, or
has τc(k0) = 1 and a budget in {1, . . . , 10}, can be simulated by setting the budget of k0 to
11 and adding a retinue of η = 11 − b additional 11-knights k1, . . . , kη such that each ki with
i = 1, . . . , η − 1 threatens only ki−1 and ki+1, while kη threatens only kη−1.

To show that Solo-Chess(n, {11}) is NP-hard, we adapt our reduction of Section 2 as
follows: instead of using tiles of size 15×15 we use super-tiles of size 57×57 and corresponding
super-gadgets. Each super-tile can be thought of as a 5 × 5 grid of (regular) tiles. We first
discuss how the start, end, straight edge, corner edge, and cubic vertex gadgets can be turned
into super-gadgets. Each such super-gadget is obtained by first placing the corresponding
regular gadget g in the center tile of the super-tile, and then using suitable straight edge
gadgets to “connect” the I/O squares of g to the perimeter of the super-tile.8 Finally, we
simulate each 0-knight by setting its budget to 11 and adding a retinue of eleven 11-knights
as discussed above.9

The super gadget g∗ corresponding to the edge-deletion gadget spans 4 super-tiles. To
obtain the horizontal version of g, we arbitrarily choose one of these super-tiles t and we
place knights in the other three super tiles as in the horizontal version of the super straight
edge gadget.10 We arrange the knights in t as follows: first we place an edge deletion gadget
g spanning 4 of the 5 tiles in the middle row of t, so that one of the I/O squares of g lies on
one side of t; then, we place a straight edge gadget in the missing tile of the middle row in
order to “connect” the other I/O square of g to the opposite side of t. Finally, we replace the
three 2-knights in g, along with all 0-knights in both g and the straight edge gadget, with
11-knights and we add the corresponding retinues, as discussed above.

All the 11-knights resulting from the above transformations will be entirely contained
within the same super-gadget as the original knight. Moreover, none of the additional knights
will introduce any inter-cluster threat. In fact, the reason for using super-tiles in place of

8 Two of the straight edge gadgets used in the super cubic vertex gadgets are rotated by 180 degrees.
9 This causes the knights placed on the I/O squares belonging to two super-gadgets to have two retinues

each (one for each of the two gadget). Although one retinues would suffice, using one retinue per gadget
simplifies the description of the reduction.

10 Defining the super edge deletion gadget in order to only span a single super-tile t would be sufficient to
obtain a reduction to Solo-Chess(n, {11}). We employ four super-tiles in order to re-use the same
construction described for the non-uniform case.
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regular tiles is having enough free space around the gadgets to fit these new knights. Due
to space limitations, the figures showing the resulting super-gadgets are omitted from this
manuscript and can be found in the full version of the paper.

We have therefore proved the main results of this section, namely:

▶ Theorem 2. Solo-Chess(n, {11}) is NP-hard.

3 Solo-Chess with only rooks

In this section we establish the NP-hardness of Solo-Chess(r, {2}). Our construction is
similar to the one employed by [1] to show the NP-Hardness of Solo-Chess(r, {0, 1, 2}).
Roughly speaking, we would like to simply increase the budget of all rooks to 2, but this
allows for some rook capture that were previously forbidden and breaks the reduction. To
circumvent this, we are forced to place additional rooks with budget 2, which in turn can
perform even more captures. The main technical challenge lies in showing that we force
arbitrary winning strategies to follow the intended scheme of the reduction.

We start by proving the NP-hardness of an auxiliary problem named
Solo-Chess∗(r, {0, 2}), and then we show (see Section 3.3) how an instance of such
a problem can be first transformed into an equivalent instance of Solo-Chess∗(r, {2})
which, in turn, can be converted into another equivalent instance of Solo-Chess(r, {2}).
In the following we will refer to a rook with budget b as a b-rook.

The auxiliary problem Solo-Chess∗(r, {0, 2}) is similar to Solo-Chess(r, {0, 2})
except for the following two variations:

we refer to the topmost row (resp. rightmost column) of an instance I of
Solo-Chess∗(r, {0, 2}) as the goal row (resp. goal column), and to the square on
their intersection of the goal row and the goal column as the goal square. The goal square
must initially contain a special rook called the goal rook, and any winning sequence of
moves for I is required to leave the last remaining rook on the goal square;11

the goal column contains no rook other than the goal rook. Similarly, any column
containing a 0-rook r, contains no rook other than r.

Our reduction for Solo-Chess∗(r, {0, 2}) is from the (decision version of the) vertex
cover problem (vc for short), which a well-known NP-hard problem [6]. The input of vc
consists of a graph G = (V,E) and of an integer k, and the goal is that of deciding whether
there exists a set S ⊆ V of size at most k such that at least one endvertex of each edge in E
lies in S.

We build our instance of Solo-Chess∗(r, {0, 2}) in two steps: first we construct a
(m+ 1)× (n+m) chessboard, and then we augment it by inserting some additional columns.

We start by describing the (m + 1) × (n + m) chessboard. Let V = {v1, . . . , vn} and
E = {e1, . . . , em}. We associate the j-th of the first n columns with vertex vj . Moreover,
we associate the (i + 1)-th row with edge ei, and we refer to the topmost row as the goal
row and we denote it with γ. To improve readability, we often refer to the squares of the
chessboard using the row and column names instead of their integer coordinates, e.g., square
(e3, v2) is at coordinates (4, 2) and square (γ, v5) is at coordinates (1, 5). The goal row
contains a 2-rook on each of the n columns v1, . . . , vn, and for each edge ei = (vh, vj) we
place three 2-rooks: an incidence rook ri,h on square (ei, vh), another incidence rook ri,j

11 The budget of the goal rook is irrelevant since any winning sequence of moves cannot clear the goal
square.
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Figure 7 (a) An instance of the (decision version of) vertex cover problem for k = 3. The
vertices of a possible vertex cover are highlighted in red. (b) The corresponding (m + 1) × (n + m)
chessboard constructed in the first step of our reduction. (c) The corresponding instance of
Solo-Chess∗(r, {0, 2}), where 0-rooks are in red and ∆ = 1.

on square (ei, vj), and a final collector rook ci on row ei and column n + i. Essentially,
the sub-chessboard consisting of rows e1, . . . , em corresponds to the juxtaposition of the
(transposed) incidence matrix of G with a m×m identity matrix, where each non-zero entry
corresponds to a 2-rook. See Figure 7 (a) for an example instance of vc and Figure 7 (b) for
the corresponding (m + 1) × (m + n) chessboard.

We now augment the above board. For each edge ei = (vh, vj) we add a new column βi

between vh and vj and a blocker 0-rook on square (ei, βi). Next, let ∆ = 2k − n and add
∣∆∣ + 1 new columns z1, . . . , z∣∆∣, z

∗ to the right of the board. Each of the squares (γ, zi)
for i = 1, . . . , ∣∆∣ contains a 2-rook if ∆ > 0 and a 0-rook if ∆ < 0. Finally, we place the goal
rook on square (γ, z∗). See Figure 7 (c) for an example.

3.1 One direction
Before discussing how a vertex cover of G can be turned into a winning sequence of moves for
our instance of Solo-Chess∗(r, {0, 2}), we restate the following characterization from [1]
for the solvability of instances on one-dimensional boards. We define the potential of a rook
with budget b to be b − 1 and the overall potential of a collection of rooks to be the sum of
their potentials (where an empty collection of rooks has potential 0). We say that an instance
of Solo-Chess(r, N) is (i, j)-solvable if it can be solved with the additional constraint that
the last remaining rook must be placed on square at coordinates (i, j).

▶ Lemma 3 ([1], reformulated). Consider an instance of Solo-Chess(r, N) on a board of
size 1×n, and let ϕ(j1, j2) denote the overall potential of the rooks on columns j1, j1+1, . . . , j2.
The instance is (1, j)-solvable iff j contains a rook, ϕ(1, j − 1) ≥ 0, and ϕ(j + 1, n) ≥ 0.

If S is a vertex cover of G of size at most k then the following is a winning strategy for our
instance of Solo-Chess∗(r, {0, 2}). For each edge ei, we choose an endvertex vh of ei such
that vh ∈ S, we let vj be the other endvertex (which might or might not be in S), and we
perform the horizontal captures ri,j → bi → ri,h (see Figure 8 (a) and Figure 8 (b)), followed
by ci → (ei, vh) (see Figure 8 (c)). After these captures, each edge row contains only a single
1-rook on a column associated to a vertex in S. Then, for each column vi ∈ S, we examine
all the edge rows ei in increasing order of i, and for each such row ei containing a 1-rook
in square (ei, vi), we perform the vertical capture (ei, vi) → (γ, vi). We are now left with a
chessboard where the only non-empty row is the goal row γ (see Figure 8 (d)). In particular,
the goal row contains one rook on each column v1, . . . , vn and at most k of these rooks have
budget 0 (i.e., those resulting from the previous vertical captures), while the others (not
involved in vertical captures) are 2-rooks. The remaining rooks are the ∣∆∣ rooks on columns
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Figure 8 Notable configurations encountered in an winning sequences of moves for the instance of
Figure 7 (c). Red columns corresponding to vertices in the vertices in a vertex cover of size 3. 2-rooks,
1-rooks, and 0-rooks are shown in black, greens, and red, respectively. (a) The configuration after all
blocker rooks have been captured. (b) The configuration after all the squares initially containing the
blocker rooks have been cleared. (c) The configuration after all collector rooks capture some rook on
a red column. (d) The configuration after all squares in non-goal rows have been cleared. A winning
sequence of moves from configuration (d) is (γ, v2) → (γ, v1) → (γ, v3), (γ, v5) → (γ, v4) → (γ, v3),
(γ, z1) → (γ, v3) → (γ, z

∗).

z1, . . . , z∣∆∣, with overall potential ∆ = 2k − n, and the goal rook (on the rightmost column).
Hence the sum of the potentials of all non-goal rooks is at least 0 ⋅ k + (n− k) ⋅ 2− n+∆ ≥ 0
and Lemma 3 implies that this configuration is (γ, z∗)-solvable.

3.2 The other direction
Here we show that a winning sequence of moves for our instance of Solo-Chess∗(r, {0, 2})
implies the existence of a vertex cover of G of size at most k.

We start by introducing the notions of depleted row and disconnected configuration, and
we argue that any sequence of moves that results in a configuration that is either disconnected
or creates a depleted row cannot be winning.

A row is depleted if it is not γ, it contains only a single 0-rook, and it contains no 1-rooks
or 2-rooks. A configuration C is disconnected if the graph whose nodes are non-empty
squares in C, and such that two distinct squares are linked by an edge iff they share the same
row or the same column, is disconnected. It is immediate to verify that no disconnected
configuration is solvable.

▶ Lemma 4. Let σ = ⟨m1,m2, . . . ⟩ be a winning sequence of moves. All configurations
encountered during σ contain no depleted row.

Proof. Let Cℓ be the configuration obtained after performing the first ℓ moves of σ. Suppose
towards a contradiction that some configuration Ch contains some depleted row ei, and that
all Ch′ with h′ > h contain no depleted rows. Let (ei, vj) be the square containing the unique
0-rook on row ei in Ch.12

12 The 0-rook in ei must necessarily be on a column vj where vj is an endvertex vj , since otherwise Ch

would be disconnected.
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4:14 Uniform-Budget Solo Chess with Only Rooks or Only Knights Is Hard

Since (ei, vj) must eventually be cleared by σ, there is some configuration Ch′ with h′ ≥ h
and some 2-rook r in Ch′ such that move mh′+1 is the capture r → (ei, vj). Since ei contains
no 2-rooks in Ch′ , r → (ei, vj) must be a vertical capture. We split the proof depending on
whether r is on the goal row or in some row ei′ (with ei′ ∈ E \ {ei}) in Ch′ .

Suppose that r is in row ei′ in Ch′ and focus on row ei′ in Ch′+1 (whose square (ei′ , vj) is
empty), which falls in one of the following three cases:

If (ei′ , βi′) contains a 0-rook in Ch′+1 then, among moves mh′+2,mh′+3, . . . , there is some
2-rook r′ ≠ r on ei′ that first captures (ei′ , βi′) and then captures the only other remaining
rook on ei′ . This results in a configuration Ch′′ with h

′′
> h

′
≥ h where ei′ is depleted,

which is a contradiction.
If (ei′ , βi′) contains a 1-rook in Ch′+1 then there is some 2-rook r

′
≠ r on ei′ such that

some move among m1, . . . ,mh′ is the capture r
′
→ (ei′ , βi′) and some move among

mh′+2,mh′+3, . . . consists of r′ capturing the only remaining rook on ei′ . Hence there is a
configuration Ch′′ with h

′′
> h

′
≥ h where ei′ is depleted, which is a contradiction.

If (ei′ , βi′) is empty in Ch′+1 then, in moves m1, . . . ,mh′ , the blocker ci′ must have been
captured by some 2-rook r

′ on ei′ which then captured some other rook r
′′ on row ei′

other than r
′. This can only happen if r, r′, and r

′′ are the leftmost incidence rook, the
rightmost incidence rook, and the collector of row ei′ , respectively. Then, ei′ is depleted
in Ch′+1 since its only rook is a 0-rook in square (ei′ , βi′), and this provides the sought
contradiction.

Suppose now that r is on the goal row in Ch′ . Then, in Ch′+1, r is a 1-rook on (ei, vj)
and either r captures a rook on column vj , or there must be some 2-rook that first captures
r and then captures some other rook on column vj . In any case, at least one move among
mh′+1,mh′+2, . . . is a vertical capture performed by a 1-rook on column vj . Let mh′′ be the
last such move and let (ei′ , vj) be its target square, where ei′ ∈ E, so that (ei′ , vj) contains a
0-rook in Ch′′ .

We describe the state of row ei′ with a 4-tuple t ∈ {0, 1, 2,□, ?}4 whose entries represent
the contents of the left incidence square of ei′ , (ei′ , βi′), the right incidence square of ei′ , and
the collector square of ei′ , in this order. More precisely, 0, 1, and 2 respectively denote a
0-rook, a 1-rook, and a 2-rook, □ denotes an empty square, and ? denotes any of the above.
Moreover, we underline the entry corresponding to the square on column vj .

If (ei′ , βi′) is empty in Ch′′ , then the state of ei′ must be (0,□,□, ?) or (□,□, 0, ?). In
any case, some move mh′′′ with h

′′′
> h

′′ clears square (ei′ , vj). Since this cannot be a
horizontal move (as it would result in ei′ being depleted), it must be a vertical move (of a
1-rook), which contradicts our choice of h′′.
If (ei′ , βi′) contains a 0-rook in Ch′′ , then the state of ei′ must be (0, 0, ?, ?) or (?, 0, 0, ?).
Since (ei′ , βi′) must be cleared by a 2-rook (on row ei′) that first captures (ei′ , βi′) and
then captures another rook on ei′ , the state of ei′ resulting from this latter capture is one
of (a) (0,□,□, ?), (b) (?,□,□, 0), (c) (□,□, 0, ?), and (d) (0,□,□,□). However (a) and
(c) lead to a contradiction by using analogous arguments to the ones of the previous case,
(d) implies that ei′ is depleted in some configuration Ch′′′ with h

′′′
> h

′′
> h

′
≥ h, and in

(b) row ei′ cannot be cleared since capturing the 0-rook on the cleaner square results in a
disconnected configuration.
If (ei′ , βi′) contains a 1-rook r′ in Ch′′ , then the state of ei′ must be either (0, 1,□, ?) or
(□, 1, 0, ?). Either r′ captures some other rook in ei′ , in which case the resulting state of
ei′ is one of (0,□,□, ?), (?,□,□, 0), and (□,□, 0, ?), thus the same arguments as above
apply, or some 2-rook (on row ei′) first captures on (ei′ , βi′) and then captures another
rook on ei′ , leaving ei′ in state (0,□,□,□) which corresponds to a depleted row. ◀
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We now consider an arbitrary winning sequence of moves and we perform two consecutive
transformations, each of which will result in another winning sequence that follows some
desirable pattern of moves and is easier to analyze.

First transformation

To perform our first transformation, we observe that each square (ei, βi) that initially contains
a 0-rook and must be cleared, which means that there must be some 2-rook r that performs
the capture r → (ei, βi). Moreover, r must be on row ei and cannot be the collector ci, since,
after capture ci → (ei, βi), either the only non-empty square on row ei is (ei, βi), or there are
two non-empty squares (ei, βi) and (ei, vj) where vj is an endvertex of ei. In the former case
(ei, βi) is disconnected from the goal square, while in the latter case neither (ei, vj) → (ei, βi)
nor (ei, βi) → (ei, vj) are possible since they would yield either a disconnected configuration
or single 0-rook on row ei (which is not solvable by Lemma 4). We conclude that r is one of
the two incidence rooks on row ei, which is still in its original square.

We now argue that rearranging the moves so that r → (ei, βi) becomes the first capture
still results in a winning sequence. Indeed, we can iteratively swap r → (ei, βi) with its
preceding move m since, if m involved square (ei, βi) then the configuration obtained after
performing all moves up to r → (ei, βi) would be disconnected.

Performing the above rearrangement for each row ei with i = 1, . . . ,m, and executing the
first m moves yields a solvable configuration C

′ in which the goal row is identical to that of
the initial configuration, and each row ei contains its collector ci, exactly one incidence rook,
and a 1-rook on square (ei, βi). See Figure 8 (a) for an example.

Second transformation

For the second transformation, consider a generic edge ei ∈ E and recall that row ei contains
a single incidence rook ri,j on some square (ei, vj) (where vj is an endvertex of ei).

We first argue that no winning sequence of moves from C
′ contains a capture that targets

square (ei, βi). Indeed, if that were the case, there would also be some 2-rook r that performs
the capture r → (ei, βi) (since (ei, βi) must eventually be cleared). The rook r must be
either ri,j or the collector ci. In the former case, the configuration resulting from the move
ri,j → (ei, βi) is disconnected. In the latter case, immediately after ci → (ei, βi), row ei

contains a 1-rook on (ei, βi) and possibly another rook on (ei, vj), hence the only possible
moves result in either a disconnected configuration or in a single 0-rook on row ei.

Since (ei, βi) must be cleared and the rook r on (ei, βi) is never captured, the sequence
must include the move r → (ei, vj) (the only other option is r → ci which results in a
configuration where (ei, βi) cannot be cleared). Similarly to the previous transformation,
we now argue that r → (ei, vj) can be performed as the first move of a winning sequence
by iteratively swapping it with the previous move m. Indeed, if m targets (ei, vi) then the
configurations obtained by (i) performing all the moves up to r → (ei, vj) and (ii) swapping
r → (ei, vj) with m and then performing all the moves up to m, are identical except possibly
for the budget of the rook in (ei, vj) which is 0 in the former case and at least 0 in the latter.

Performing the above rearrangement for each row ei with i = 1, . . . ,m, and executing the
first m moves yields a solvable configuration C

′′ in which the goal row is identical to that
of initial configuration, and each row ei contains its collector ci and exactly one 0-rook on
some square (ei, vj) where vj is an endvertex of ei. As a consequence the set S containing
all vertices vj ∈ V such that there exists at least one row ei for which (ei, vj) is non-empty
is a vertex cover of G. See Figure 8 (b) for an example.
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Concluding the proof

We are now ready to conclude the proof, by showing that S has size at most k via a potential
argument. More precisely, given a configuration C, we assign a potential ψj(C) to each
column j ≠ z

∗ as follows:
ψj(C) = 1 if (γ, j) contains a 2-rook and there is no other rook on column j;
ψj(C) = −1 if (γ, j) is non-empty and either it contains a 0-rook, or there exists some
ei ∈ E such that (ei, j) is non-empty in C (possibly both);
ψj(C) = 0 in the remaining cases.

We also let ψz∗(C) = 0 and we define the potential ψ(C) of C as the sum of ψj(C) over all
columns j.

Fix any winning sequence of moves that starts from configuration C
′′ and let Cℓ be the

configuration resulting from performing the first ℓ moves of the sequence.

▶ Lemma 5. ψ(Cℓ) is non-increasing w.r.t. ℓ.

Proof. First of all, notice that no rook on row γ ever performing any vertical capture, since
this would result in a disconnected configuration, and the same holds for horizontal captures
that target a column containing a collector. Of the remaining captures, only those that target
a square on the goal row can affect ψ(⋅). We consider these captures separately depending
on whether they are vertical or horizontal and we study how the potential of the affected
column(s) changes as a result of the move.

Any vertical capture from some configuration Cℓ that targets a square (γ, j) results in a
0-rook on square (γ, j) in configuration Cℓ+1. Therefore ϕj(Cℓ) = ϕj(Cℓ+1) = −1.

Consider now an horizontal capture (γ, j) → (γ, j ′) performed by a b-rook from some
configuration Cℓ and observe that (γ, j) must be the only non-empty square in column j. If
b = 2 then ψj(Cℓ) = 1, ψj(Cℓ+1) = 0, ψj ′(Cℓ) ≥ −1, and ψj ′(Cℓ+1) ≤ 0. If b = 1 and j

′
≠ z

∗

then ψj(Cℓ) = ψj(Cℓ+1) = 0, ψj ′(Cℓ) ≥ −1 and ψj ′(Cℓ+1) = −1. Finally, if b = 1 and j
′
= z

∗

then ψj(Cℓ) = ψj(Cℓ+1) = ψj ′(Cℓ) = ψj ′(Cℓ+1) = 0. ◀

For the configuration C ′′ we have n−∣S∣+max{0,∆} columns j ≠ j∗ with ψj(C ′′) = 1 and
∣S∣+max{0,−∆} columns j ≠ j∗ with ψj(C ′′) = −1, hence ψ(C ′′) = n−2∣S∣+∆ = 2k−2∣S∣.
For the final configuration C∗ (which contains a single rook in column j∗) we have ψ(C∗) = 0.
Using Lemma 5 we have 2k − 2∣S∣ = ψ(C ′′) ≥ ψ(C∗) = 0, which implies ∣S∣ ≤ k.

3.3 Uniform budgets
Here we show that the 0-rooks in the instances of Solo-Chess∗(r, {0, 2}) resulting from the
previous reduction can be simulated with 2-rooks, thus showing that Solo-Chess∗(r, {2})
is NP-hard, and then we reduce Solo-Chess∗(r, {2}) to Solo-Chess(r, {2}).

Given a configuration C and a rook r, we denote with τC(r) the number of rooks r′ ≠ r
that are on the same row or on the same column as r.

▶ Lemma 6. Let C be a configuration containing a b-rook r such that τC(r) = 1 and let r′

be the only rook threatened by r. Assume further that neither r nor r′ are on the goal square,
and that either (i) b = 1, or (ii) b = 2 and τC(r′) = 2. If C is solvable then it admits a wining
sequence of moves that starts with the capture r → r

′.

Proof. Let q and q
′ be the squares containing r and r

′ in C, respectively. Any winning
sequence of moves σ = ⟨m1,m2, . . . ⟩ for C cannot contain q

′
→ r, since q is not the goal

square and hence such a move would result in a disconnected configuration. Then, some
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Figure 9 (a) The instance of Solo-Chess∗(r, {2}) by applying our transformation to the
instance of Solo-Chess∗(r, {0, 2}) of Figure 7 (c). Red squares contains the 2-rooks replacing
the original 0-rooks. (b) A sketch of the instance I1,2 of Solo-Chess(r, {2}) obtained from the
instances I1,I2 of Solo-Chess∗(r, {2}).

move mi of σ is the capture r → q
′. We show that, if i ≠ 1, swapping mi with mi−1 still

results in a winning sequence. Indeed, mi−1 cannot involve q and it cannot clear q′ (as mi

would then be illegal).
If (ii) holds, thenmi−1 cannot involve q′ (ifmi−1 targeted q′ then the resulting configuration

would be disconnected) and ⟨m1, . . . ,mi⟩ and ⟨m1, . . . ,mi−2,mi,mi−1⟩ result in the same
configuration.

If (i) holds, then either mi−1 does not involve q
′, or mi−1 targets q

′. In any case,
the configurations obtained by performing ⟨m1, . . . ,mi⟩ and ⟨m1, . . . ,mi−2,mi,mi−1⟩ are
identical except possibly for the budget of the rook in q′, which is 0 in the former configuration
and at least 0 in the latter. ◀

Notice that all the (non-goal) 0-rooks used in our reduction are on columns that do
not contain any other rook. Then, to simulate a (non-goal) 0-rook on square (i, j) we first
sets its budget to 2, then we insert new row i + 1 immediately below i and a new column
j + 1 immediately to the right of j, and finally we add two 2-rooks in squares (i + 1, j) and
(i + 1, j + 1). See Figure 9 (a) for an example instance of Solo-Chess∗(r, {2}) resulting
from the above process. Clearly, if the original instance is solvable so is the one obtained
after these 0-rooks have been replaced using the above strategy (since it is always possible to
“recover” the original configuration, except for some additional empty rows and column, by
performing two captures for each 0-rook that has been replaced), and a repeated application
of Lemma 6 shows that the converse also holds.

We now reduce Solo-Chess∗(r, {2}) to Solo-Chess(r, {2}).
Let I1, I2 be two instances of Solo-Chess∗(r, {2}) whose chessboards have sizes h1×w1

and h2 ×w2, respectively. We construct a new instance I1,2 of Solo-Chess(r, {2}), whose
chessboard has size (h1 + h2 + 1) × (w1 + w2 − 1), as follows (see Figure 9 (b)):

the sub-chessboard of size h1 × w1 consisting of the intersection of rows 1, 2, . . . , h1 and
columns 1, 2, . . . , w1 − 1, w1 + w2 − 1 of I1,2 is a copy of chessboard of I1 in which the
goal-rook is replaced with a 2-rook;
the sub-chessboard of size h2 × w2 consisting of the intersection of rows h1 + 2, h1 +
3, . . . , h1 + h2 + 1 and columns w1, w2, . . . , w1 +w2 − 1 of I1,2 is a copy of the chessboard
of I2 in which the goal-rook is replaced with a 2-rook;
square (h1 + 1, w1 + w2 − 1) contains a 2-rook.

FUN 2024
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▶ Lemma 7. If both I1 and I2 are solvable then I1,2 is solvable. If I1,2 is solvable then at
least one of I1 and I2 is solvable.

Proof. Let R1 be the set of rows 1, 2, . . . , h1, and R2 be the set of rows h1+2, . . . , h1+h2+1.
Let q1 = (1, w1 +w2 −1), q2 = (h1 +2, w1 +w2 −1), and q∗ = (h1 +1, w1 +w2 −1). Moreover,
let r1, r2, and r

∗ be the rooks initially on q1, q2, and q
∗ in I1,2, respectively.

If both I1 and I2 are solvable then a winning sequence of moves for I1,2 is obtained by:
(i) performing all moves in any winning sequence for I1, where any capture r → (1, w1)
targeting (1, w1) in I1 is replaced with the capture r → q1 in I1,2; (ii) performing all moves
in any winning sequence for I2, where any capture (i, j) → (i′, j ′) in I2 is replaced with
the capture (h1 + 1 + i, w1 − 1 + j) → (h1 + 1 + i

′
, w1 − 1 + j

′) in I1,2; (iii) performing the
captures by r∗ → q1 → q2.

To show that if I1,2 is solvable then at least one of I1 and I2 is solvable, let σ =

⟨m1,m2, . . . ⟩ be a winning sequence of moves I1,2. Moreover, let ℓ be the smallest index
such that mℓ is a vertical capture on column w1 + w2 − 1 (such an index must exist) and
notice that there is some h ∈ {1, 2} such that mℓ is either the capture qh → q

∗ or the capture
r
∗
→ qh. We consider these two cases separately.
If mℓ is the capture qh → q

∗, then rh performs no capture in moves m1, . . . ,mℓ−1.
Moreover, after move mℓ, all squares belonging to the rows in Rh must be empty (since
otherwise the configuration would be disconnected). Since no move among m1, . . . ,mℓ−1
can simultaneously involve both a square of a row in R1 and a square of a row in R2, the
sub-sequence of moves obtained from ⟨m1, . . . ,mℓ−1⟩ by selecting all moves that involve a
square in Rh is a winning sequence of moves for Ih.

If mℓ is the capture r∗ → qh, then let ℓ′ > ℓ the only other index such that mℓ′ is a vertical
capture on column w1+w2−1. Such a capture is either qh → q3−h or q3−h → qh. In the former
case, the capture qh → q3−h has the effect of clearing square qh and replacing the b-rook in
q3−h (where b ∈ {0, 1, 2}) with a 0-rook. Since no move mt with t /∈ {ℓ, ℓ′} can simultaneously
involve both a square of a row in R1 and a square of a row in R2, the sub-sequence of moves
of σ that involve a squares of a row in R3−h is a winning sequence of moves for I3−h. In the
latter case, after capture q3−h → qh, all squares belonging to rows in R3−h must be empty,
and the sub-sequence of moves obtained from ⟨m1, . . . ,mℓ−1,mℓ+1, . . . ,mℓ′−1⟩ by selecting
all moves that involve a square in R3−h is a winning sequence of moves for Ih. ◀

Then, if I is an instance of Solo-Chess∗(r, {2}), we can perform the above transfor-
mation with with I1 = I2 = I to obtain an instance I1,2 of Solo-Chess(r, {2}) that is
solvable iff I is solvable, as ensured by Lemma 7 (see Figure 10). We have thus proved the
following:

▶ Theorem 8. Solo-Chess(r, {2}) is NP -hard.
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