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Abstract
There was a mix-up in Escher’s bar and n customers sitting at the same table have each received a
beer ordered by somebody else in the party. The drinks can be rearranged by swapping them in
pairs, but the eccentric table shape only allows drinks to be exchanged between people sitting on
opposite sides of the table. We study the problem of finding the minimum number of swaps needed
so that each customer receives its desired beer before it gets warm.

Formally, we consider the Colored Token Swapping problem on complete bipartite graphs.
This problem is known to be solvable in polynomial time when all ordered drinks are different
[Yamanaka et al., FUN 2014], but no results are known for the more general case in which multiple
people in the party can order the same beer. We prove that Colored Token Swapping on complete
bipartite graphs is NP-hard and that it is fixed-parameter tractable when parameterized by the
number of distinct types of beer served by the bar.
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1 Introduction

A party of n theoretical computer scientists walks into Escher’s bar, which is renowned for
its tasty beers and its tables with eccentric geometric shapes. One of their papers just got
accepted to an important conference1 and they want to celebrate with a toast. They sit at a
table shaped like the one in Figure 1 (a), and each of them orders one of the k beers from
the bar’s selection. The waiter brings the order to the table but, unfortunately, it delivers
the drinks to the patrons in a mixed order. The scientists decide to rectify the situation by
swapping pairs of drinks, so that everybody eventually ends up with their beer of choice.
However the table’s shape prevents some of these swaps: two people sitting on the same side
of the table cannot easily swap their drinks, while people sitting on opposite sides of the table
can do that by sliding their beers across. To avoid the disastrous waste of beer that would

1 The reader might have already guessed the name of the conference. It suffices to say that it is held in a
beautiful island, and that it is known for its entertaining talks.
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Figure 1 The interior of Escher’s bar with its eccentric tables. (a) a complete bipartite table;
(b) a cycle table; (c) a clique table; (d) a path table; (e) a square of a path table; (f) a star table;
(g) a complete split table; (h) a lollipop table; (i) a broom table. Notice that (h) and (i) are
actually obtained by joining two different tables, as it might happen when large parties need to be
accommodated.

result if two pints were to crash, they adopt the safe strategy of only performing one such
swap at a time. As nobody likes their beer warm (see, e.g., [5]), the above rearrangement
process should be completed as quickly as possible.

This can be formalized as an instance of the Colored Token Swapping (CTS) problem
on complete bipartite graphs. In this problem we are given an integer k ∈ {1, . . . , n}, and an
n-vertex graph G = (V, E) (whose vertices represent scientists, and whose edges represent
the swaps allowed by the table shape), in which each vertex v has an associated color
c(v) ∈ {1, . . . , k}, and hosts a token of color t(v) ∈ {1, . . . , k} (the colors represent the
beers in the bar’s selection). A move (or swap) consists in selecting an edge (u, v) ∈ E and
swapping the tokens placed on u and v. The goal is that of finding a shortest sequence of
swaps needed to place each token on a vertex of the same color.

The CTS problem is known to be NP-Hard for any k ≥ 3 even for planar (non-complete)
bipartite graphs with maximum degree 3, while it is solvable in polynomial time when k = 2
[15]. If one considers special classes of graphs, the problem has been shown to be polynomial
time solvable on stars and paths [3]. On cliques, CTS remains NP-hard and, assuming the
exponential time hypothesis (ETH) [7], it does not admit any 2o(n)-time algorithm [3]. On
the positive side, it is fixed-parameter tractable when parameterized by k [15].

The CTS problem is a generalization of the Labeled Token Swapping (TS) problem,
which corresponds to the case in which k = n and there is exactly one vertex and one token
of each color (i.e., scientists order distinct drinks). This special case has received extensive
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Table 1 State of the art of the CTS problem and of the TS problem (which corresponds to the
case k = n when there is exactly one vertex and one token of each color). References to results in
this paper are in bold. ∆ denotes the maximum degree of the input graph while results marked
with “(ETH)” hold unless the exponential time hypothesis fails.

Graph class # of colors (k) Status Ref.
General k = 2 Solvable in polynomial time [15]
General Part of the input Solvable in time 2O(n log n) [11]
General Part of the input 4-approximable [11]
Trees Part of the input 2-approximable [11]
Stars Part of the input Solvable in polynomial time [3]
Paths Part of the input Solvable in polynomial time [3]
Planar bipartite, ∆ = 3 Any fixed k ≥ 3 NP-Hard [15]
Cliques Part of the input Solvable in time O(f(k) · poly(n)) [15]
Cliques Part of the input NP-Hard [3]
Cliques Part of the input No 2o(n)-time algorithm (ETH) [3]
Complete bipartite Part of the input Solvable in time O(f(k) + n) Thm. 14
Complete bipartite Part of the input NP-Hard Thm. 17
Complete bipartite Part of the input No 2o(n)-time algorithm (ETH) Thm. 18

∆ = O(1) k = n (TS) APX-Hard [11]
Trees k = n (TS) NP-Hard [1]
Cliques k = n (TS) Solvable in polynomial time [4]
Cycles k = n (TS) Solvable in polynomial time [8]
Brooms k = n (TS) Solvable in polynomial time [13, 10]
Lollipops k = n (TS) Solvable in polynomial time [10]
Square of paths k = n (TS) Solvable in polynomial time [6]
Complete split k = n (TS) Solvable in polynomial time [17]
Complete bipartite k = n (TS) Solvable in polynomial time [16]

attention in the literature and it is known to be APX-Hard on bounded-degree graphs [11]
and NP-Hard on trees [1]. Similarly to the colored case, TS has been considered on special
classes of graphs and, besides those mentioned above, polynomial-time algorithms are also
known for cliques [4], cycles [8], brooms [13, 10], lollipop graphs [10], squares of paths [6],
and complete split graphs [17] (see Figure 1 for the corresponding table shapes, and Table 1
for a summary).

TS is also known to be polynomial-time solvable on complete bipartite graphs [16], where
the complexity status of the more general CTS is still unknown. This is exactly the focus
of this work, where we show that CTS is NP-Hard for general k, while it can be solved in
time O(φ(k) + n) for a suitable function φ(·) depending only on k, i.e., it is fixed-parameter
tractable w.r.t. k.2 Moreover, we show that no 2o(n)-time algorithm exists unless the ETH
fails [7].

Other related work. The approximation of the CTS problem has been also studied, and a 4-
and 2-approximation algorithms have been designed for general graphs and trees, respectively
[11]. The same paper also shows that the problem can be solved in time 2O(n log n). Stars

2 We assume that the algorithm does not have to check the validity of the input instance which, for CTS
instances, can be done in time linear in the size of G.
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Figure 2 An instance of CTS on a complete bipartite graph with X = {a, b, c, d} and Y = {u, v, w}
is shown in (a). The corresponding moves graph is shown in (b) while (c) shows a possible swapping
plan P with one self-loop, one X-cycle, no Y -cycles, and one XY -cycle, hence f(P) = 1. A better
swapping plan P ′ with f(P ′) = 3 is shown in (d). P ′ consists of one self-loop, no X- or Y -cycles,
and two XY -cycles.

and paths can be solved in polynomial time even for the weighted version of CTS, where
each color has an associated weight and a the cost of a swap is given by the sum of the
color-weights of the two tokens involved [2]. A generalization of the CTS problem, called
subset token swapping, where each token has a subset of destination vertices it can be placed
on, has been studied in [3]. Finally, a parallel version of both CTS and TS, where tokens
can be simultaneously swapped over a matching in a single round, and the objective is to
minimize the number of rounds (see for example [1] and the references therein).

Structure of the paper. In Section 2 we discuss a useful connection between solutions
of the CTS problem on complete bipartite graphs and cycle-covers of a suitable auxiliary
graph. As a warm-up, Section 3 is devoted to the special case k = 3, where we show how
to solve the problem in polynomial time. We do not concern ourselves with finer grained
complexity considerations since a O(n)-time algorithm for this case follows from our more
general O(φ(k) + n)-time algorithm for the general case, which is described in Section 4.
Finally, in Section 5 we establish the NP-hardness of CTS on complete bipartite graphs and
show that no 2o(n)-time algorithm exists unless the ETH fails.

2 Swapping plans and optimal solutions

In this section we argue that the problem of finding an optimal sequence of swaps can be
rethought as the problem of finding a suitable (vertex-disjoint) cycle cover of an auxiliary
moves graph.

The moves graph associated with an instance of swapping colored tokens on bipartite
graphs is a directed graph M with vertex set V that contains edge (u, v) iff t(u) = c(v),
where u and v are not necessarily distinct (see Figure 2 (a) and Figure 2 (b) for an example).

A swapping plan is a feasible assignment of tokens to vertices of the same color. Formally,
a swapping plan is a collection P = {C1, . . . , Ch} of vertex-disjoint cycles in M such that
each vertex is part of exactly one cycle. A partial swapping plan is a swapping plan for a
vertex-induced subgraph of M . We can show the following useful lemma:

▶ Lemma 1. Let P ′ be a partial swapping plan that spans a subset of vertices U of the moves
graph M . Then, the subgraph of M induced by all the vertices that are not in U admits a
swapping plan P ′′. Furthermore, P = P ′ ∪ P ′′ is a swapping plan for M .

Proof. Both M and every cycle in P ′ contain as many vertices as tokens of the same color,
for every color. Hence, this also holds for the subgraph M ′ of M induced by the vertices
that are not in U . We arbitrarily match each token in M ′ with a vertex of the same color. If
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Figure 3 An example showing the merge operation of Lemma 3. The cycle C contains the edge
(u, v) while the cycle C′ contains the edge (u′, v′). The two vertices v and v′ have the same color.
We can merge C and C′ into a single cycle by substituting the edge (u, v) with the edge (u, v′) and
the edge (u′, v′) with the edge (u′, v).

a token on vertex u is matched with vertex v then t(u) = c(v) and (u, v) is an edge of M ′.
Since each vertex of M ′ has exactly one incoming and one outgoing edge in the matching,
such a matching induces a swapping plan P ′′ per M ′. Clearly, P = P ′ ∪ P ′′ is a swapping
plan for M . ◀

The CTS problem on bipartite graph is essentially that of finding a good swapping plan.
Indeed, once a swapping plan P is fixed, the problem becomes an instance of labelled TS,
where a generic token on vertex u needs to be placed on the unique vertex v such that (u, v)
is an edge of some cycle in P. The labelled version on complete bipartite graphs can be
solved optimally in polynomial time, and it has been shown that the optimal number of
swaps is n − f(P), where f(P) is a function that depends on the topologies of the cycles in
P [14]. In the rest of the paper we use X and Y to denote the two sides of the bipartition
of G, and we classify each cycle in P as either a self-loop, as an X-cycle (resp. a Y -cycle)
which has length at least 2 and contains only vertices in X (resp. Y ), or as an XY -cycle
which contains at least one vertex in X and one vertex in Y . Defining η0(P), ηX(P), ηY (P),
ηXY (P) as the number of self-loops, X-cycles, Y -cycles, and XY -cycles in P, respectively,
we have:

f(P) = η0(P) + ηXY (P) + ηX(P) + ηY (P) − 2 max{ηX(P), ηY (P)}
= η0(P) + ηXY (P) − |ηX(P) − ηY (P)|. (1)

As a consequence, the CTS problem on complete bipartite graphs can be equivalently
thought of as the problem of finding a swapping plan maximizing f(·). Figure 2 (c)and
Figure 2 (d) show two possible swapping plans with different values of f(·) for the instance
in Figure 2 (a). We say that a cycle that is either a self-loop or an XY -cycle is happy, while
X-cycles and Y -cycles are unhappy. Roughly speaking, one seeks to maximize the number of
happy cycles while keeping the number of unhappy X- and Y -cycles as balanced as possible.

It turns out that, once an optimal swapping plan for the problem has been computed,
the corresponding optimal sequence of swaps can be computed in O(n) time, as stated in the
following lemma, whose proof is given in Appendix A.

▶ Lemma 2. A swapping plan P for an instance I of CTS on complete bipartite graphs can
be converted, in time O(n), into a solution for I consisting of n − f(P) swaps.

In the following we provide two lemmas that allow us to rearrange cycles of a swapping
plan. We start with a merge operation which combines two cycles of a swapping plan that
share some color into a single cycle. We say that a color c appears in a cycle C if there exists
at least one vertex with color c in C. Equivalently, we can say that c appears in C if and
only if C contains some token of color c.

FUN 2024
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▶ Lemma 3 (Merge operation). Let P be a (partial) swapping plan, let C, C ′ be two distinct
cycles in C and let c be a color that appears in both C and C ′. Then, there exists a cycle C∗

spanning all and only the vertices in C and C ′ such that (P \ {C, C ′}) ∪ {C∗} is a (partial)
swapping plan.

Proof. Let v and v′ be two vertices of color c belonging to C and C′, respectively. And let u

(resp. u′) be the vertex that immediately precedes v (resp. v′) in C (resp. C′). Notice that
it might be u′ = u and/or v′ = v. The cycle C∗ is obtained from C and C′ by removing the
edges (u, v) and (u′, v′) and by adding the edges (u, v′) and (u′, v) (see Figure 3). ◀

Next lemma shows that the converse also holds: a cycle contains two vertices/tokens of
the same color, it can be split into two shorter cycles.

▶ Lemma 4 (Split operation). Let C be a cycle and let u, v be two distinct vertices of C such
that c(u) = c(v) or t(u) = t(v). There exist two cycles Cu, Cv whose vertex-sets partition the
set of vertices in C and such that u is a vertex of Cu and v is a vertex of Cv.

Proof. Let C = ⟨u = w1, w2, . . . , wj−1, v = wj , wj+1, . . . , wℓ, u⟩.
In the case c(u) = c(v), we must have t(wj−1) = c(v) = c(u) and t(wℓ) = c(u) = c(v).

Then, we choose Cu = ⟨u = w1, . . . , wj−1, u⟩ and Cv = ⟨v = wj , wj+1, . . . , wℓ, v⟩. Notice
that it might be j = 1, in which case Cu is a self-loop and/or ℓ = j, in which case Cv is a
self loop.

In the case t(u) = t(v), we must have c(w2) = t(u) = t(v) and c(wj+1) = t(v) = t(u),
hence we can choose Cu = ⟨u, wj+1, . . . , wℓ, u⟩ and Cv = ⟨v, w2, . . . , wj+1, v⟩. ◀

3 Swapping tokens of 3 colors

In this section, as a warm-up, we focus on the special case of CTS on complete bipartite
graphs with k = 3 possible colors for the tokens/vertices. We introduce the main ideas that
will be used also in the next section to solve the more general case of unbounded number of
colors.

An instance is lopsided if there is some side Z ∈ {X, Y } and some color c such that all
the vertices in Z are monochromatic, i.e., they induce self-loops in the moves graph, and
have all the same color c. The following lemma shows that lopsided instances can be easily
solved, hence in the rest of this section we only consider instances that are not lopsided.

▶ Lemma 5. A lopsided instance can be solved in polynomial time.

Proof. W.l.o.g., we can assume that at least one token is misplaced, which means that not
all vertices in M induce self-loops.

Let U be the set of vertices in M that form self-loops. Let P ′ = {⟨u, u⟩ | u ∈ U} be a
partial swapping plan that contains all self-loops of M . As Z is monochromatic, we have
Z ⊆ U . Let P ′′ = {C1, . . . , Ch} be a swapping plan for the subgraph of M induced by all
the vertices of M but those of U . The existence of this swapping plan P ′′ is guarantee by
Lemma 1. Moreover, P ′′ can be computed in polynomial time as it is a cycle cover of the
vertex-induced subgraph of M .

We argue that all cycles in P ′′ can be merged into a single cycle. By construction, no
cycle in P ′′ can be a self-loop. As a consequence, given any two cycles C, C ′ ∈ P ′′, by the
pigeonhole principle there is color that appears in both C and C ′. This implies that we can
merge the two cycles into a single cycle C∗ as proved in Lemma 3. Therefore, we can assume
that P ′′ contains a single cycle.
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We divide the proof into two cases according to whether the color c of vertices in Z also
appears in the unique cycle of P ′′ or not.

The first case is when c also appears in the unique cycle of P ′′, say C ′. Let C be a self-loop
in P ′ such that c appears in C. We define P as the swapping plan obtained by the union of
P ′ \ {C} plus the cycle C∗ obtained by merging C with C ′ (Lemma 3). We argue that P
maximizes the function f defined in Equation (1). By construction, f(P) = |U |. Let P∗ be
an optimal swapping plan. Observe that η0(P∗) + ηXY (P∗) ≤ |U | as each XY -cycle must
contain at least one vertex of Z and thus of U . Therefore, f(P∗) ≤ |U |−|ηX(P∗)−ηY (P∗)| ≤
|U | = f(P).

The second case is when c does not appear in the unique cycle of P ′′. W.l.o.g., we assume
that Z = X, as the proof for the case Z = Y is similar. We argue that P = P ′ ∪ P ′′

maximizes the function f defined in Equation (1). By construction f(P) = |U | − 1 as
the unique cycle in P ′′ is unhappy because it spans a subset of vertices in Y . Let P∗

be an optimal swapping plan. As each XY -cycle must contain at least one vertex of Z

and thus of U , we have that η0(P∗) + ηXY (P∗) + ηX(P∗) ≤ |U |, from which we derive
η0(P∗) + ηXY (P∗) ≤ |U | − ηX(P∗). Furthermore, as no vertex spanned by the cycle in P ′′

has the same color c of the vertices of Z, we have that P∗ contains unhappy Y -cycles (i.e.,
those that span vertices of colors different from c). This implies that ηY (P∗) ≥ 1. Therefore,
f(P∗) ≤ η∗

0 − ηX(P∗) − |ηX(P∗) − ηY (P∗)| ≤ η∗
0 − 1 = f(P). ◀

Section 3 allows us to rule out the case in which an instance is lopsided. As the following
lemma shows, all the remaining instances have the nice properties that optimal swapping
plans consist of happy cycles only.

▶ Lemma 6. Let I be an instance that is not lopsided. All optimal swapping plans for I
contain only happy cycles.

Proof. Assume towards a contradiction that some optimal swapping plan P∗ for I contains
an unhappy cycle, and assume further that such a cycle is an X-cycle (w.l.o.g.).

Observe that no unhappy cycle C in P∗ contains any monochromatic vertex v, since
otherwise we could increase the number of happy cycles without affecting the number of
unhappy (thus increasing f(·)) by replacing C with two cycles consisting of (i) a self-loop
on v, and (ii) the cycle obtained from C by adding a directed edge (u, w) from the vertex
immediately before v to the vertex immediately after v in C, and then deleting v (notice
that t(u) = c(v) = t(v) = c(w) and that u and v might coincide).

Then, every unhappy cycle involves at least two colors and any two distinct unhappy
cycles can always be merged into a single cycle. This implies that it is impossible for P∗

to contain both an unhappy X-cycle and an unhappy Y -cycle, since they could be merged
(see Lemma 3) into a single happy XY -cycle, increasing f(·). Therefore P contains no
unhappy Y -cycle and exactly one unhappy X-cycle C (otherwise all unhappy X-cycles could
be merged into a single unhappy cycle, increasing f(·)).

We now argue that C can be merged with some happy cycle containing a vertex in Y ,
thus decreasing the number of unhappy cycles to 0 without affecting the number of happy
cycles, which is a contradiction. Since the vertices in C have at least two distinct colors and
I is not lopsided, we can always find some vertex v ∈ Y such that at least one of c(v) and
t(v) coincides with the color c of a vertex u in C. Then color c appears both in C and in
the happy cycle C ′ of P∗ that contains v, which implies that C and C ′ can be merged (see
Lemma 3). ◀

As a consequence of Lemma 6, we can restrict our attention to finding swapping plans
with only happy cycles. However, such cycles could potentially be too long. However, it
turns out that one can instead consider a relaxed version of the problem where the goal is

FUN 2024
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that of finding a partial swapping plan that maximizes the number of happy cycles, and
such version results in short happy cycles. Clearly, the value of an optimal partial swapping
plan, i.e., number of its happy cycles, is an upper bound to the value f(P∗) of an optimal
swapping plan P∗. We prove that the converse also holds, and we show how to convert an
optimal partial swapping plan into an optimal swapping plan.

We now formalize the above relation between the two problems. With a slight abuse of
notation we let f(P̃) be the number of happy cycles in a partial swapping plan P̃.

▶ Lemma 7. Let P̃ be an optimal partial swapping plan for a non-lopsided instance I. We
can compute an optimal swapping plan P for I with f(P) = f(P̃) in polynomial time.

Proof. We say that a vertex is uncovered if it does not belong to any of the cycles in P̃ . We
consider the case in which there exists at least one uncovered vertex, since otherwise the
claim is trivial. We assume w.l.o.g., that such uncovered vertex is in X.

Observe that P̃ contains no monochromatic uncovered vertex, since otherwise we could
add a self-loop to P̃ increasing f(·). Complete P̃ into a swapping plan P ′ by partitioning
the uncovered vertices in an arbitrary set of additional cycles (Lemma 1 ensures that this is
always possible), and notice that the optimality of P̃ implies that each such cycle is unhappy.

Since each unhappy cycle contains vertices with at least two different colors any two such
cycles can always be merged (see Lemma 3). In particular, any unhappy X-cycle can always
be merged with any unhappy Y -cycle in P ′ resulting in an happy XY -cycle. However, any
such merge would contradict the optimality of P̃ , which implies that P ′ contains no unhappy
Y -cycles.

We can then merge all unhappy X-cycles in P ′ into a single cycle C. Since I is not
lopsided, C can be further merged with some (happy) cycle containing a suitable vertex from
Y by using analogous arguments to the ones employed in the proof of Lemma 6. This results
in a swapping plan P with f(P) ≥ f(P̃), which implies f(P) = f(P̃). ◀

The following lemma provides another important key ingredient that allows us to find
optimal solutions of our problem instance. In particular, the lemma states that we can focus
on partial swapping plans containing only very short happy cycles.

▶ Lemma 8. There exists an optimal partial swapping plan containing only happy cycles
having a length of at most 4.

Proof. In the rest of this proof we name the three distinct colors red, green, and blue.
W.l.o.g., we can assume that the optimal partial swapping plan contains only happy cycles
as unhappy cycles can be discarded.

We argue that, given any happy cycle C of length 5 or more, there exists another happy
cycle C ′ of length at most 4 that contains only a subset of the vertices of C. The existence
of an optimal partial swapping plan with cycles of length at most 4 follows by starting from
any optimal partial swapping plan and iteratively replacing any long happy cycle C with a
short happy cycle C ′ that spans only (a subset of) vertices of C, while discarding the vertices
that are in C but not in C ′.

Given two vertices u, v, we say that they are complementary if c(u) = t(v) and t(u) = c(v).
In the rest of the proof we assume that C contains no monochromatic vertices, since otherwise
we can choose C ′ as the self-loop consisting of a single monochromatic vertex from C. We
can also assume that there are no two complementary vertices u, v of C on different sides of
the bipartition, otherwise we choose C ′ = ⟨u, v, u⟩.

Since C has length of at least 5, there exists one side of the bipartition, say X, that
contains 3 vertices of C. If any two of these three vertices have the same color, or host tokens
of the same color then, by Lemma 4, we can split C into two cycles such that at least one
the two cycles must include a vertex on the opposite side of the bipartition, i.e., it is happy.



D. Bilò, M. Fiusco, L. Gualà, and S. Leucci 5:9

As a consequence, we consider the case in which all vertices in X have different colors and
host tokens of different colors as well. Let u ∈ X and z ∈ Y such that c(z) = c(u), and let
v, w two other vertices in X. W.l.o.g. (i.e., up to renaming of the colors), c(u) = c(z) is red,
t(u) = c(v) is blue, and c(w) is green. Notice that t(v) cannot be blue (since v would be
monochromatic) and cannot be red (since w would be monochromatic), hence t(v) is green,
and t(w) is red. Then C̄ = ⟨u, v, w, u⟩ is a cycle. We have that t(z) cannot be red (since z

would be monochromatic) and it cannot be green (since z and w would be complementary).
Then t(z) is blue, and we can choose C ′ = ⟨z, v, w, z⟩, which is happy. ◀

We now show how to find an optimal partial swapping plan fulfilling the conditions of
Lemma 8 in polynomial time. The idea is that of encoding the problem as an integer linear
program (ILP) with a constant number of variables and a constant number of constraints,
and then using Lenstra’s algorithm [9] (whose running time is super-exponential in the
number of variables and polynomial in the number of constraints) to solve such ILP.3

We define the type τv of a vertex v as the tuple (c(v), t(v),1x∈X) where 1x∈X = 1 if
x ∈ X and 0 otherwise, and we let Tvertex be the set of all possible vertex types. Notice that
two vertices of the same type are copies of one-another, hence we can describe any happy
cycle by counting the number of nodes of each type. Given a cycle C, we define the type
γC of C as as tuple that has one entry γC(τ) for each vertex type τ ∈ Tvertex. The value of
γC(τ) is the number of occurrences of vertices of type τ in C. Notice that there are only a
constant number of distinct types γ that can be associated to happy cycles of length at most
4 (see Lemma 8), and we denote the set of all such types with Thappy.

Given a cycle type γ we denote by γ(τ) and nτ (I) the number of nodes of type τ in
γ and in the input instance I, respectively. Our ILP has one variable hγ ∈ N (where N
denotes the set of all non-negative integers) for each type γ ∈ Thappy that represents the
number of occurrences of happy cycles of type γ that are part of a partial swapping plan.
The constraint associated to a type τ ∈ Tvertex ensures that the partial swapping plan spans
at most nτ (I) vertices of type τ .

max
∑

γ∈Thappy

hγ

s.t.
∑

γ∈Thappy

γ(τ)hγ ≤ nτ (I) ∀τ ∈ Tvertex,

hγ ∈ N ∀γ ∈ Thappy.

Once an optimal solution for the above ILP has been found, we can convert it into an
optimal partial swapping plan P̃ in polynomial time, which, using Lemma 7 can be further
converted into an optimal P for I, and then into optimal sequence of swaps (see Lemma 2).
We have therefore shown the following:

▶ Theorem 9. The CTS problem on complete bipartite graphs and k = 3 colors can be solved
in polynomial time.

4 Arbitrary number of colors

We extend the ideas used in Section 3 for instances with k = 3 colors to solve CTS problem
on complete bipartite graphs with k colors in time O(φ(k) + n), for some function φ that
depends only on k.4

3 See [12] for a recent improvement over Lenstra’s algorithm.
4 We assume that the input graph G is a complete bipartite graph and that the sides X and Y of the

bipartition can be found in time O(n). This is the case, e.g., when G is represented using adjacency lists.
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We will solve the problem instance via an ILP formulation with a number of variables
and constraints that depends only on k. Unfortunately, some of the nice properties we
have proved for the 3-color case, as the existence of optimal swapping plans containing
only happy cycles (Lemma 6) and the existence of partial swapping plans maximizing the
number of happy cycles and containing only short happy cycles (Lemma 8), are no longer
true. Therefore, we need to find alternative structural properties of some optimal solutions
for our problem instances.

We say that a cycle is long if its length is at least 2k + 1, and short otherwise. We first
show the existence of optimal swapping plans with few long happy cycles.

▶ Lemma 10. There exists an optimal swapping plan in which the number of happy cycles
that are long is at most k.

Proof. Given a generic swapping plan P , we define Φ(P) as a vector, sorted in non-decreasing
order, that contains one entry with value equal to the length |C| of C for each long cycle C

in P.
We show that, if P has ℓ ≥ k + 1 happy long cycles, then we can transform it into

another swapping plan P ′ that has the same number of self-loops, X-cycles, Y -cycles, and
XY -cycles and either has ℓ − 1 happy long cycles, or is such that Φ(P ′) is greater than
Φ(P) in lexicographic order. Since there are only finitely many possible vectors Φ(·), a
repeated application of the above transformation eventually results in a swapping plan P∗

with f(P∗) = f(P) and at most k happy long cycles.
Assume than that P has ℓ ≥ k + 1 happy long cycles. For each such cycle C, the

pigeonhole principle guarantees that we can find a pair {u, v} of vertices in C that are both
on the same side of the bipartition and such that c(u) = c(v). We label C with the color of
c(u) = c(v) of these vertices.5 Since there are ℓ ≥ k + 1 cycles but at most k distinct labels,
another invocation of the pigeonhole principle ensures that we can find two cycles C ′, C ′′

with the same label c. Assume w.l.o.g. that |C ′| ≤ |C ′′| and let {u′, v′} and {u′′, v′′} be the
pairs of vertices chosen for C ′ and C ′′, respectively.

By Lemma 4 we can partition the vertices of C ′ into two cycles Cu′ , Cv′ , where Cu′

contains u′ and Cv′ contains v′. Since u′ and v′ are on the same side and C is happy, at least
one cycle C∗ ∈ {Cu, Cv} must also be happy. Let C̄ the unique cycle in {Cu, Cv} \ {C∗}.

We choose P ′ as the swapping plan obtained from P by deleting C and C ′ and replacing
them with C∗ and the cycle obtained by merging C̄ with C ′′ (see Lemma 3, and notice that
vertex u′′ in C ′′ has the same color c of some vertex in C̄, which is either u′ or v′).

To relate Φ(P) to Φ(P ′), we observe that the entry with value |C ′′| corresponding to C in
Φ(P) is replaced with an entry of value |C ′′| + |C̄| > |C ′′| in Φ(P ′), the entry corresponding
to C ′ decreases, and all other entries are unaffected. ◀

The following lemma considers optimal swapping plans with a few long happy cycles and
shows the existence of such a swapping plan that additionally contains few unhappy cycles.

▶ Lemma 11. There exists an optimal swapping plan P with at most k happy long cycles,
ηX(P) ≤ k/2, and ηY (P) ≤ k/2.

This is needed since we obtain an algorithm with a running time of O(n) for k = O(1), but complete
bipartiteness cannot be tested in time o(n2).

5 Notice that there might be multiple such pairs of vertices for C, and that different choices can result in
different labels for C. In this case, we arbitrarily choose one of the pairs.
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Proof. Among all optimal swapping plans having most k happy long cycles, let P be one
that minimizes max{ηX(P), ηY (P)} (the existence of P is guaranteed by Lemma 10) and
assume towards a contradiction that max{ηX(P), ηY (P)} > k.

The optimality of P ensures that no unhappy cycle C ∈ P contains any monochromatic
vertex v, otherwise we could replace C with a self-loop on v (which is a short happy cycle),
and an unhappy-cycle that spans all other vertices of C. This either increases the number of
happy cycles by 1 without affecting the number of unhappy X- and Y -cycles (when |C| > 2)
thus increasing f(·) by 1, or it increases the number of happy short cycles by 2 and removes
exactly one unhappy cycle (when |C| = 2), thus increasing f(·) by at least 1.

In the rest of the proof we focus on the case ηX(P) ≥ ηY (P) since the complementary
case is symmetric.

Since each X-cycle C in P contains vertices of at least two different colors, the pigeonhole
principle ensures that we can find two vertices of the same color that belong to two distinct
X-cycles C ′

X and C ′′
X . Then C ′

X and C ′′
X can be merged into a single cycle C∗

X (see Lemma 3).
If ηX(P) > ηY (P), the swapping plan (P \ {C ′

X , C ′′
X}) ∪ {C∗

X} has the same number
of self-loops, XY -cycles, and Y -cycles as P but one less X-cycle, which contradicts the
optimality of P.

Consider then ηX(P) = ηY (P). Using analogous counting arguments as the ones used for
X-cycles, we can find two Y -cycles C ′

Y , C ′′
Y that can be merged into a single cycle C∗

Y . Then
P∗ = (P \ {C ′

X , C ′′
X , C ′

Y , C ′′
Y }) ∪ {C∗

X , C∗
Y } has the same set of self-loops and XY -cycles as

P, one less X-cycle, and one less Y -cycle. Hence we simultaneously have that (i) P∗ has
at most k happy long cycles, (ii) f(P) = f(P∗) which implies that P∗ is optimal, and (iii)
max{ηX(P∗), ηY (P∗)} = ηX(P∗) = ηX(P) − 1 = max{ηX(P), ηY (P)} − 1. This contradicts
our choice of P. ◀

As we will see, Lemma 11 allows us to model long happy cycles and unhappy cycles of
an optimal swapping plan using a few additional variables in our ILP. However, as some of
these cycles might be long, it is not clear how to guess the types of such long cycles. To deal
with this issue, we introduce the concept of base cycles that will allow us to re-think of these
long cycles as if they were short.

We say that a cycle of C is a base cycle if it does not contain two distinct vertices u, v

of same type, i.e., τu = τv. Given a collection B of base cycles, we say that B is connected
if the directed graph H(B) that has one vertex for each vertex type that appears in some
cycle in B, and an edge (τ, τ ′) iff the token color of type τ is the same as the vertex color of
type τ ′, is strongly connected. We now provide two useful lemmas that show the connection
between cycles and base cycles of the moves graphs.

▶ Lemma 12. Given a cycle C, there exists a connected collection B of base cycles spanning
the vertices in C such that each vertex in C is part of exactly one cycle in B.

Proof. We build B by starting with B = {C} and then iteratively replacing any cycle C̄

in B containing two distinct vertices with the same color, with two (shorter) cycles that
together span all and only the vertices in C̄ exactly once (see Lemma 4). Notice that {C} is
connected and that the above operation preserves the connectedness property. ◀

▶ Lemma 13. Given a connected collection of base cycles B, there exists a cycle C that
spans all and only the vertices in B.

Proof. We maintain a collection of cycles B′ which initially coincides with B and we prove
the claim by iteratively merging pairs of cycles in B′ until B′ contains a single cycle C.
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We now show that, as long as |B′| ≥ 2, there always exist two distinct cycles C ′, C ′′ ∈ B′

that can be merged. Let C ′ be an arbitrary cycle in B′ and call TC′ and TB the set of all
types of the vertices in C ′ and in (the cycles of) B, respectively. If TC′ = TB then C ′ can be
merged with any other cycle in B′ (see Lemma 3) and we are done. Otherwise, let (τ, τ ′) be
some edge of H(B) such that τ ∈ TB \ TC′ and τ ′ ∈ TC′ . Such an edge always exist since
H(B) is strongly connected. Let C ′′ ≠ C ′ be any cycle in B′ that contains a vertex u of
type τ , let v be the vertex that immediately follows u in C ′′ (possibly v = u), and let w be a
vertex of type τ ′ in C ′. Our choice of vertices ensures that t(u) = c(v) and that t(u) = c(w),
hence c(v) = c(w), and Lemma 3 implies that C ′ and C ′′ can be merged. ◀

Let Ts-happy to be the set of all possible types of short happy cycles, and let Tbase be the
set of all possible types of base cycles. The cardinalities of s-happy and Tbase depend only
on k since they contain only cycles of length at most 2k and 2k2, respectively.

Given a cycle type γ ∈ Tbase, we denote by βγ(B) the number of base cycles of type γ in
B. Given a collection B of base cycles, the signature σ(B) of B is the set containing all types
γ ∈ Tbase such that there is at least one cycle of type γ in B. Notice that since |Tbase| only
depends on k, the same also holds for the number of the possible distinct signatures σ(B).

We guess the values ℓ∗, η∗
X and η∗

Y corresponding to number of long happy cycles, X-cycles
ηX(P∗) and Y -cycles ηY (P∗) of an optimal swapping plan P∗. Thanks to Lemmas 10 and 11,
we can restrict ourselves to ℓ∗ ∈ {0, . . . , k} and η∗

X , η∗
Y ∈ {0, . . . , ⌊k/2⌋}.

Then, we look for a swapping plan that, (i) has exactly ℓ∗ happy long cycles C1, C2, . . . ,
(ii) has exactly η∗

X X-cycles CX
1 , CX

2 . . . , (iii) has exactly η∗
Y Y -cycles CY

1 , CY
2 , . . . , and (iv)

maximizes the number of short happy cycles.
Instead of searching for a generic long happy cycle Ci, X-cycle CX

i , or Y -cycle CY
i ,

Lemmas 12 and 13 together allow us to look for connected collections Bi, BX
i , or BY

i of base
cycles, respectively.

To this aim we further guess the signatures σi, σX
i , and σY

i of each collection Bi, BX
i , BY

i ,
respectively. In particular, σi must be some connected signature that involves at least one
vertex type for each side of the bipartition, while σX

i and σY
i must be connected signatures

in which all types are on side X and Y , respectively. We can now write an integer linear
program that has:

one variable hγ ∈ N for each type γ ∈ Ts-happy;
one variable hi,γ ∈ N+ associated to each type γ ∈ σi which counts the number of base
cycles of type γ in Bi (here N+ denotes the set of all positive integers);
one variable xi,γ ∈ N+ associated to each type γ ∈ σX

i which counts the number of base
cycles of type γ in BX

i ; and
one variable yi,γ ∈ N+ for each type γ ∈ σY

i which counts the number of base cycles of
type γ in BY

i .
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max ℓ∗ + |η∗
X − η∗

Y | +
∑

γ∈Thappy

hγ

s.t.
ℓ∗∑

i=1

∑
γ∈σi

γ(τ)hi,γ +
η∗

X∑
i=1

∑
γ∈σX

i

γ(τ)xi,γ

+
η∗

Y∑
i=1

∑
γ∈σY

i

γ(τ)yi,γ +
∑

γ∈Thappy

γ(τ)hγ = nτ (I) ∀τ ∈ Tvertex,

hγ ∈ N ∀γ ∈ Ts-happy,

hi,γ ∈ N+ ∀i ∈ {1, . . . , ℓ∗} ∀γ ∈ σi,

xi,γ ∈ N+ ∀i ∈ {1, . . . , η∗
X} ∀γ ∈ σX

i ,

yi,γ ∈ N+ ∀i ∈ {1, . . . , η∗
Y } ∀γ ∈ σY

i .

Similarly to Section 3, we once again solve the above ILP using Lenstra’s algorithm [9],
whose running time is upper bounded by a function of the number and variables and of the
number of constraints of the ILP, both of which depend only on k.

After an optimal solution for the above ILP has been found, it needs to be converted into
a corresponding swapping plan. We will now argue that this can be done in time O(φ(k)+n),
for some function φ(·) that depends only on k.

We first create a collection of buckets βτ , with τ ∈ Tvertex, where βτ contains all vertices
of G of type τ . We now assign the vertices of G to each of the

∑
γ∈Thappy

hγ short happy
cycles, and to each base cycle in the collections Bi, BX

i , BY
i corresponding to the ℓ∗ long

happy cycles Ci, η∗
X unhappy X-cycles CX

i , and η∗
Y unhappy Y -cycles CY

i . This can be
done by drawing the vertices of the needed types from the corresponding bucket. Once this
assignment is complete each of the above cycles can be built by brute-force from the assigned
vertices in a time that depends only on k.

It remains to transform each (connected) collection of base cycles into a single cycle the
spans the same vertices (whose existence is guaranteed by Lemma 13). It is not hard to come
up with an algorithm that performs this task in time O(k + nB) for a collection spanning nB

vertices (see, e.g., Appendix B). Since there are ℓ∗ + η∗
X + η∗

Y ≤ 2k such collections, and each
vertex of G is spanned by at most one base cycle, this takes time O(φ(k) + n). By Lemma 2,
the resulting optimal swapping plan can be converted into an optimal sequence of swaps in
time O(n), thus we have:

▶ Theorem 14. The CTS problem on complete bipartite graphs with k colors can be solved in
time O(φ(k) + n) for a suitable function φ(·) that depends only on k.

5 NP-hardness of CTS on complete bipartite graphs

We show that CTS on bipartite graphs is NP-Hard by reducing from CTS on cliques, which
has been shown to be NP-Hard in [3].

Given an instance IH of CTS on a clique H with nH vertices, we create an instance IG of
CTS on a complete bipartite graph G = (V, E) with n = 2nH vertices, where V is partitioned
into two sets X and Y which correspond to the two sides of the bipartition.
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Figure 4 An example of the CTS instance IH on a clique graph with nH = 6 vertices is shown
in (a). The corresponding instance IG on a complete bipartite graph with 2nH vertices defined by
our reduction is shown in (b). In (c) and (d) we have the moves graphs of instances IH and IG,
respectively. Notice that any directed edge (u, v) in the moves graph of IH is modelled by the path
consisting of the two directed edges (u′, u′′) and (u′′, v′) in the moves graph of IG, the first one
going from a vertex of X to a vertex of Y and the second one going from a vertex of Y to a vertex
of X. Thus any swapping plan for IH corresponds to a swapping plan for IG, and vice-versa. The
bold edges depict an optimal swapping plan for IH and the corresponding swapping plan for IG.

The graph G of IG is the complete bipartite graph obtained by creating two copies v′, v′′

of each vertex v in H and placing v′ in X and v′′ in Y . The set of colors of IG consists
of all the colors in IH plus one new color cv for each vertex v of H. We set c(v′) = c(v),
t(v′) = c(v′′) = cv, and t(v′′) = t(v). Let M be the moves graph of IG.6 See Figure 4 for an
example.

▶ Lemma 15. The sets X and Y are a bipartition of M . Moreover, each vertex v′ ∈ X has
a single outgoing edge incident to it, which is the edge (v′, v′′).

Proof. Let v′ ∈ X. Our construction of IG ensures that t(v′) = cv and that the only vertex
of color cv is v′′. This implies that (v′, v′′) is in M as is the only outgoing edge of v′.

We now show that the moves graph M is bipartite by proving that there cannot be any
edge (u′′, v′′) between two vertices u′′, v′′ ∈ Y . Indeed, as each vertex v′ ∈ X has a single
outgoing edge incident to it which enters a vertex of Y , it cannot be the case that M contains
an edge between two vertices of X. Consider now a generic vertex u′′ ∈ V . Since t(u′′) is one
of the colors of IH , while each v′′ ∈ Y has color c(v′′) = cv, which is one of the colors that
has been introduced in IG but was not in IH , we conclude that (u′′, v′′) is not in M . ◀

▶ Lemma 16. There exists a swapping plan PH for IH if and only if there exists a swapping
plan PG for IG with |PG| = |PH |.

Proof. Let PH be a swapping plan for IH . The swapping plan PG for IG contains one cycle
C ′ for each cycle C ∈ PH . The cycle C ′ is obtained by renaming each vertex v of C ′ into v′

(i.e., the copy of v on side X of G) and then splitting each resulting edge (u′, v′) into the two

6 With a little abuse of notation, we use the same functions c and t to denote the colors of the vertices
and of the tokens of both instances, respectively.
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edges (u′, u′′) and (u′′, v′) via the inclusion of the intermediate vertex u′′ (see Figure 4 for an
example). As each vertex v of H is spanned by a unique cycle in PH , say C, by construction
of PG, the two vertices v′ and v′′ are spanned by the unique cycle C ′ that corresponds to C.
This implies that PG is a swapping plan for IG.

Consider now a swapping plan PG for IG. The swapping plan PH for IH contains one
cycle C for each cycle C ′ ∈ PG. Lemma 15 implies that a generic cycle C ′ ∈ PG consists
of an alternation of vertices from X and Y , where each vertex u′′ of C ′ that is in Y is
immediately preceded by vertex u′ ∈ X. The cycle C is obtained from C ′ by considering each
vertex u′′ of C that is in Y , deleting it, and replacing its two incident edges in C, namely the
incoming edge (u′, u′′) and an outgoing edge (u′′, v′) for some u′ ∈ X, with the edge (u, v).
As each vertex v′ of G is spanned by a unique cycle in PG, say C ′, by construction of PH , v

is spanned by the corresponding cycle C. Therefore PH is a swapping plan for IH . ◀

Lemma 15 implies that all cycles in M are happy. Hence, all swapping plans PG for IG

have ηX(PG) = ηY (PG) = 0 and, from Equation (1), we have f(PG) = |PG|. Therefore the
minimum number of swaps needed to solve IG is n − f(P∗

G), where P∗
G is a swapping plan

for IG that maximizes |P∗
G|.

As shown in [4], the minimum number of swaps needed to solve IH is nH − |P∗
H |, where

P∗
H is a swapping plan of maximum cardinality for IH . Lemma 16 and the above discussion

imply that |P∗
H | = |P∗

G|, and hence IG admits a solution with at most n − x swaps if and
only if IH admits as solution with at most nH − x swaps. We thus have the following:

▶ Theorem 17. The Colored Token Swapping problem on complete bipartite graphs is
NP-hard.

Moreover the CTS problem on a clique of nH vertices cannot be solved in time 2o(nH )

unless the exponential time hypothesis fails [3, 7], and our reduction ensures that n = Θ(nH),
a similar result also holds for complete bipartite graphs:

▶ Theorem 18. The Colored Token Swapping problem on complete bipartite graphs
cannot be solved in time 2o(n), unless the exponential time hypothesis fails.
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A Converting a swapping plan to a solution

In this section we show how a swapping plan P for and instance of CTS can be transformed
into a solution consisting of n − f(P) swaps in time O(n). This is essentially an algorithmic
rendition of the inductive proof of [14], which is constructive, and also implies the correctness
of our algorithm.

We say that a vertex v of some cycle C of a swapping plan is special if the two vertices
immediately following v in C are both on the opposite side of the bipartition compared to v.

As long as there is a cycle in P that is not a self-loop, the algorithm iteratively finds
two nodes on opposite sides of the bipartition, swaps their tokens, and updates P to be a
swapping plan for the resulting configuration. In particular, each iteration of the algorithm
executes the first of applicable rule among the following three:
1. If P contains some XY -cycle C, then choose three vertices u, v, w of C as follows:

If C contains no special vertices (this is always the case when |C| = 2), let (u, v) be an
arbitrary edge of C, and let w be the vertex that appears immediately after v in C

(possibly w = u).
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Otherwise (i.e., |C| ≥ 3 and C contains some special vertex), let u be a special vertex,
and let v, w be the two vertices that appear immediately after u in C, in this order.

Then swap the tokens on u and v. To update P replace (u, v) and (v, w) with the edges
(u, w) and (v, v). This has the effect of removing v from C (possibly resulting in a
self-loop) and creating a new self-loop on v.

2. If P contains an X-cycle C and an Y -cycle C ′, let u (resp. v) be an arbitrary vertex in
C (resp. C ′). Swap the tokens on u and v. To update P remove the two edges (u, u′)
and (v, v′) outgoing from u and v, respectively, and add the two new edges (u, v′) and
(v, u′). This causes C and C ′ to merge into a single XY -cycle.

3. Otherwise let C be any X-cycle or Y -cycle in P. Choose an arbitrary vertex u from C

and an arbitrary (singleton) vertex v from the opposite side of the bipartition. Swap the
tokens on u and v. To update P delete the edge (u, u′) outgoing from u and the self-loop
(v, v), and replace them with the edges (u, v) and (v, u′). This has the effect of merging
C and ⟨v, v⟩ into a single cycle.

We now argue that the above algorithm can be implemented to run in time O(n). We
keep track of four lists of cycles that store self-loops, X-cycles, Y -cycles, and XY -cycles,
respectively. Each C is represented by storing a doubly-linked list Lvertices of its vertices (in
order), the number of vertices of C that are in X and in Y (respectively), and a list Lspecial
of the special nodes of C. The generic element that stores a node v in Lspecial also has a
pointer to the element that stores v in Lvertices, and vice-versa. Clearly, given P, we can
initialize the above data structures in time O(n). Moreover, selecting the next rule to apply,
and updating the data structure following the changes to P dictated by such rule can be
done time O(1). Hence the overall running time is O(n + |P|) = O(n).

B Merging a connected collection of base cycles in time O(n)

In this section we argue that the cyclces of a connected collection B of base cycles can be
merged into a single cycle C∗ in time O(k + nB), where nB denotes the overall number of
vertices spanned by the base cycles in B.

We start by building an auxiliary undirected bipartite graph H ′ in which the color-vertices
on one side of the bipartition are the distinct colors of the vertices spanned by the cycles in
B, and the cycle-vertices on the other side of the bipartition are the base cycles in B. H

contains an edge (c, C) iff there is some vertex in cycle C that has color c, and this edge is
labelled with the name of any such vertex. The above auxiliary graph can be built in time
O(n).7

▶ Lemma 19. The graph H ′ is connected.

Proof. Since each color-vertex in G has at least one cycle-vertex as a neighbor, it suffices to
show that there exists a walk W in H ′ between any two distinct cycles C, C ′ ∈ B.

7 For each C ∈ B, we can find a collection LC containing exactly one vertex v with c(v) = c for each
distinct color c that appears in C. We start with LC = ∅ and we examine the vertices of C one at a
time while updating a global array of k flags. The c-th flag is set to true iff some vertex of color c has
already been encountered in C. Whenever a vertex v of a new color c is encountered, the corresponding
flag is set to true and v is added to LC . After all the vertices of C have been processes, the flags of the
colors in LC are reset to false. The overall running time is O(k + nB).
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5:18 Swapping Mixed-Up Beers to Keep Them Cool

Let τ and τ ′ denote the types of two arbitrary vertices from C and C ′, respectively. Since
H(B) is connected, there exists some (directed) path π = ⟨τ = τ1, τ2, . . . , τℓ = τ ′ between τ

and τ ′ in H(B). Let C ′
1 = C, C ′

ℓ = C ′ and, for i = 2, . . . , ℓ − 1, choose C ′
i as an arbitrary

cycle from B that contains some vertex of type τi. Moreover, let ci and ti be the colors of
the vertex and the token of type τi, respectively.

For i = 1, . . . , ℓ − 1, Ci contains a vertex of color ti = ci+1 and so does Ci+1. Hence the
two edges (Ci, ci+1) and (ci+1, Ci+1) form a walk Wi between Ci and Ci+1 in H ′. We choose
W as the composition of all walks W1, . . . , Wℓ−1, in this order. ◀

Next, we compute a spanning tree T of H rooted in an arbitrary cycle-vertex (T exists
by Lemma 19) and we iteratively (i) locate the deepest color vertex c; (ii) merge all its
neighboring cycles (i.e., the parent all the children of C) in T into a single cycle C ′ by
repeatedly performing merge operations; and (iii) delete c and all its children, and replace
the former parent of c with a new cycle-vertex corresponding to C ′. We stop this process
when T contains a single cycle C∗ as its root, and we return C∗.

Notice that the time spent to process T is proportional to the number nT of vertices in
T . Indeed the color vertices c can be listed in order of depth in time O(nT ) by a BFS visit
of T , and step (ii) can be performed in time proportional to the number of neighbors of c by
exploiting the fact that a generic edge (c, C) incident to c in T is labelled with a vertex of C

having color (see also Lemma 3). The overall time spent is therefore O(k + nT ) = O(k + nB)
since H (and hence T ) contains at most k color-vertices and nB/2 cycle-vertices.
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