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Preface

FUN with Algorithms is dedicated to the use, design, and analysis of algorithms and data
structures, focusing on results that provide amusing, witty, yet original and scientifically
profound contributions to the area. Donald Knuth’s famous quote captures this spirit
nicely:“.... pleasure has probably been the main goal all along. But I hesitate to admit it,
because computer scientists want to maintain their image as hard-working individuals who
deserve high salaries. Sooner or later, society will realize that certain kinds of hard work are
in fact admirable, even though they are more fun than just about anything else”.

The previous FUNs were held in Elba Island, Italy; in Castiglioncello, Tuscany, Italy; in
Ischia Island, Italy; in San Servolo Island, Venice, Italy; in Lipari Island, Sicily, Italy; in La
Maddalena Island, Sardinia, Italy; and in Island of Favignana, Sicily, Italy. Special issues of
Theoretical Computer Science, Discrete Applied Mathematics, and Theory of Computing
Systems were dedicated to them.

This volume contains the papers that will be presented at the 12th International Confer-
ence on Fun with Algorithms 2024, that will take place on June 4–8, 2024, on La Maddalena
Island, Italy. The call for papers attracted 69 submissions from all over the world, addressing
a wide variety of topics. These were reviewed by 18 Program Committee members. After
a careful reviewing process and a thorough discussion, the committee decided to accept 31
papers. Extended versions of selected papers will appear in a special issue. This year, FUN
will also host 4 talks in the Computer Science Salon des Refusés. This special track aims to
be a “salon” in two senses of the word: First, “salon” as an exhibition of ideas in Computer
Science that in their infancy were rejected from a major venue but later proven to be highly
influential, and second “salon” as a meeting of convivial people getting together to share
both amusement and learning. Finally, the program features invited talks by Paolo Ferragina
and John Iacono.

We thank our invited speakers, Paolo Ferragina and John Iacono, all authors who submit-
ted their work to FUN 2024, all Program Committee members for their expert assessments
and the ensuing discussions, and all external reviewers for their kind assistance. We used
EasyChair (http://www.easychair.org/), that greatly facilitated the entire preparation of the
conference, for handling submissions, reviews, the selection of papers, and the production
of this volume. Warm thanks also go to Michael Wagner and the LIPIcs team for carefully
overseeing the proceedings’ publication in the LIPIcs series. Finally, we appreciate the
financial support from Università di Pisa under the “PRA – Progetti di Ricerca di Ateneo”
(Institutional Research Grants) – Project no. PRA_2022_81.

April, 2024

Paolo Boldi
Andrei Z. Broder

Giuseppe Prencipe
Tami Tamir
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Abstract
We consider the computational complexity of constant-area levels of games which allow an unlimited
number of objects in a fixed region. We discuss how to prove that such games are RE-hard (and in
particular undecidable) and capable of universal computation, even on constant-area levels. We use
the puzzle game Baba is You as a case study, showing that 8 × 17 levels are capable of universal
computation by constructing a particular small universal counter machine within Baba is You.
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1 Introduction

There has recently been a surge of computational complexity results for games, especially
video games [18, 1, 10, 9, 6]. Most commonly, games (technically, decision problems of the
form “given a level of this game, is it possible to win?”) are shown to be NP- or PSPACE-
complete, and frameworks have been developed to simplify such proofs [14, 18, 1, 7, 5]. There
is not as much infrastructure for other complexity classes, so proofs of e.g. EXP-hardness
are more bespoke, from more “primitive” problems like formula games [17].

In this paper, we work towards resolving this infrastructure gap for RE-hardness. We are
aware of only a few RE-hardness (which implies undecidability) results for single-player video
games: Braid [13], Recursed [8] New Super Mario Bros. [2], and very recent work extending
the latter to other Mario games [12]. The result for Recursed uses a fundamentally different
approach, but the others use counter machines, inspiring this work on Baba is You. Ani [2]
begins to develop a framework for RE-hardness proofs, by extending the motion-planning
gadget framework [7] to allow gadgets with infinitely many states, which can act as registers
for a counter machine.

In this paper, we focus on constant-area levels, meaning instances of a game that have a
fixed size in the game world, but may contain any number of objects. To obtain any kind
of hardness in this setting, we need a reduction that encodes information in the number of
objects present in a small area – for us, in a single cell. In particular, we explain how – and
demonstrate with Baba is You – to prove RE-hardness for two decision problems:
1. Given a constant-area level, is it possible to win?
2. For a specific constant level, given a sequence of inputs, is it possible to win after

performing those inputs?

These decision problems are always in RE (the class of recognizable problems), for
reasonable single-player games (including Baba is You): we can enumerate over all possible
input sequences, test whether each results in victory, and accept if so.
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1:2 Baba Is Universal

Figure 1 An introductory level from Baba is You. How many different solutions can you find?

Prior undecidability results use levels that scale with the size of the counter machine being
constructed, and don’t consider hardness on constant-area levels. However, the techniques
we use can easily be applied to any similar proof (including Braid [13] and New Super
Mario Bros. [2]), provided (for the first decision problem) that we allow levels to start with
arbitrarily many objects in the same place – indeed, this has very recently been done for
several Mario games [12].

The key idea to making counter-machine proofs work on constant-area levels is to reduce
from a specific universal counter machine instead of a family of counter machines. The inputs
are encoded in the initial state of the counter machine, which translate to starting the level
with large piles of objects (which take constant space) or an input sequence that initializes
the counters correctly.

1.1 Baba is You
Baba is You is a 2019 puzzle game by Hempuli in the genre of Sokoban. The player (typically)
controls a white creature called BABA in a square grid, and can interact with the world
by pushing objects. The main gimmick in Baba is You is that almost all of the rules are
represented inside the game world, and can be pushed to change the game mechanics. A
typical level, such as the one in Figure 1 will have rules like the following.

BABA IS YOU: the player controls BABA with the arrow keys.
FLAG IS WIN: the player wins if an object they control (e.g. BABA) touches a FLAG.
WALL IS STOP: nothing can move into a WALL.
ROCK IS PUSH: an object moving into a ROCK will push it.
DOOR IS SHUT, KEY IS OPEN: if a KEY touches (or is pushed into) a DOOR, both are
destroyed.

However, there is no fundamental difference between (non-text) objects; any “noun” can
be paired with any “adjective”, and the challenge in a typical level is to construct useful
rules by rearranging the available words.

Baba is You has a feature for sharing custom levels: each uploaded level is given a unique
8-character identifier, and can then be downloaded and played by anyone with the game. We
have uploaded all levels in this paper; level codes are given with each level.
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Figure 2 The rules needed to reduce Pull!-*F [3] to Baba is You, and a level based on a gadget
that proves PSPACE-hardness [4]. Level code: VMN9-1J93.

1.2 Prior work on Baba

In addition to being a video game, Baba is You is a programming language: with the right
set of rules, you can embed all sorts computational system in it. Within weeks of the game’s
release in March 2019, players had constructed Conway’s game of life,1 the Rule 110 cellular
automaton,2 and a Turing machine.3. Often, these constructions are accompanied by a claim
that Baba is You is “Turing-complete”, a term that doesn’t have a precise definition in this
context.

From a complexity theory perspective, these constructions are reductions to (decision
problems about) Baba is You. They show that Baba is You with infinite space is capable of
arbitrary computation. In particular, provided they trigger victory under some appropriate
condition, they show that the decision problem “can you win this level of infinite-space Baba
is You” – or even “do you eventually win this fully deterministic level of infinite-space Baba
is You” – is RE-hard.

However, levels in Baba is You are finite, and in complexity theory we typically gener-
alize to large but still finite instances. This is especially problematic when extending the
construction to an infinite level would require (without other changes) the level starting with
infinitely many objects, as is the case for some of the above constructions.

For finite Baba is You, constructing one of these “Turing-complete” systems typically
proves PSPACE-hardness – but Rule 110, a perennial favorite due to its simplicity, is not
known to be PSPACE-hard, so constructing it doesn’t prove much in terms of complexity.

If the goal is PSPACE-hardness, it is simpler to reduce from a problem more similar
to Baba is You: Figure 2 demonstrates an easy reduction to Baba is You from Pull!-*F, a
PSPACE-complete block-pulling game [3]. But formally proving hardness generally isn’t the
goal of constructions like those above – rather, they showcase the expressive power of Baba
is You by pushing limits on what can be done from within the game.

Geller [11] explicitly considers Baba is You on an infinite board, and proves RE-hardness
(though they don’t use that word) of determining whether a level is winnable using a reduction
from the Post correspondence problem. The proof requires a finite region plus a two-cell-high
empty infinite strip.

1 https://www.youtube.com/watch?v=YH0NR1kmMUo
2 https://twitter.com/mattar0d/status/1109987662608384000
3 https://www.youtube.com/watch?v=hsXpLx4soQY
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Figure 3 A screenshot of Baba is You, after creating more than 2000 objects.

1.3 Our contributions
We consider Baba is You on bounded levels, and even on constant-area levels.

Unfortunately, the actual game has a practical limitation that puts Baba is You in
PSPACE:4 there can only be six instances of an object in a single cell, and any additional
copies will be destroyed. This means the total number of objects is bounded by a polynomial,
so the game can be simulated by a polynomial-space nondeterministic machine. Thus Baba
is You is in NPSPACE=PSPACE [16].

The this constraint seems to be present for practical reasons, e.g. to prevent memory
leaks or lag. But in an idealized theoretical version of Baba is You, there wouldn’t be any
limit on the number of copies of each object – this limit doesn’t fit naturally with the other
rules of the game, and it’s never relevant to the levels in the game or taught to the player.5

We think that the more natural game to consider from a theoretical perspective is Baba
is You without this limit. In particular, we believe this is a more natural generalization than
infinite boards, so our undecidability result sticks to the spirit of the game better than the
prior results which require unlimited space.

There is an additional limitation on constructing levels in practice: levels are described by
three layers, and each layer can have only one object in each cell. So we are unable to make
a level that starts with more than three objects in the same place. This is not a problem for
constructing our counter machines, but it means a constant-area level can’t encode the input
to a counter machine as a large stack. This restriction seems to exist to make the interface
for editing levels more convenient, but again we think the most natural generalization of
Baba is You to study allows any pile of objects, even at the start of the level.

Finally, there is another rare practical failsafe in the game. If there are more than 2000
objects (or any of a few similar conditions are met), the entire level is replaced by the screen
in Figure 3. While it demonstrates a surprising amount of self-awareness, this feature is
inelegant for the same reasons as the limit to 6 copies.

For the remainder of this paper, we consider the version of Baba is You without any of
these artificial limitations, which we call Unlimited Baba is You – however, with the exception
of initialized registers, our levels use at most three objects per cell and thus can be built
in the actual game. Our main result is Theorem 1: that Unlimited Baba is You is capable
of universal computation, even on 8 × 17 levels. We prove this by constructing a specific
universal counter machine called U22 [15] in Baba is You.

4 Baba is You has randomness, which complicates this – it’s not even obvious what the decision problem
should be in the presence of randomness. Here we consider the deterministic fragment of Baba is You.

5 We only learned of its existence when we started building counter machines, and they failed in mysterious
ways.
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As a consequence of building U22, we obtain Corollaries 2 and 4, that the two decision
problems mentioned above are RE-complete for Baba is You.

Beyond Baba, the ideas we use can likely be applied to many games that allow arbitrarily
many objects in a bounded region, and we hope to see many similar results for other games
in the future.

1.4 Baba is You mechanics
We now describe the specific mechanics of Baba is You that our reductions use. We do not
attempt to cover all of the mechanics in the game, or even to define the ones we need in
full detail. The game contains text objects, which have a single word. These words can be
read left-to-right or top-to-bottom to form rules, which affect the game. The words in Baba
is You can (roughly) be partitioned into nouns, verbs, adjectives, and prepositions, which
approximately correspond to the usual meanings of those terms.

Nouns refer to kinds of objects, most of which are interchangeable. Verbs are the cores of
rules; by far the most common is IS, which usually assigns an adjective to a noun. Adjectives
represent mechanics, which affect the behavior of nouns the apply to. Prepositions are used
to make noun phrases like “BABA ON FRUIT”, which define a new set of objects and are used
in mostly the same way as nouns.

We use n, a, and N as variables for nouns, adjectives, and noun phrases (including nouns),
respectively. In addition to nouns (which are listed in Figure 6), our constructions use the
words in Table 1.

In Section 2, we discuss counter machines and how they can be used to prove RE-hardness,
even for constant-area instances of a problem like Unlimited Baba is You. In Section 3, we
construct counter machines in Unlimited Baba is You, and obtain RE-hardness for 8 × 17
levels.

2 Count is Universal

A counter machine is a finite state machine with access to a constant number of registers
which each store an arbitrary nonnegative integer. A counter machine interacts with its
registers via instructions such as “add 1” or “transition to a different state depending on
whether the register is 0”.

For instance, Figure 4 shows a simple counter machine with four registers which multiplies
two numbers. The four registers are called 0 through 3. It uses two kinds of instructions
which act on a particular register:

Increment (inc): increase the register by 1.
Jump if zero and decrement (dec): go to one state if the register is positive and a different
state if it’s 0, and decrease it by 1 in the former case.

Korec [15] calls these RiP and RiZM, respectively.
We draw increment instructions as rectangles and jump-and-decrement instructions as

diamonds. The outgoing path from a diamond marked with a 0 is the one taken when
the register is 0. To make them convenient to build in Baba is You, we draw our counter
machines so that paths go straight through increment instructions, go straight through
jump-and-decrement instructions to take the zero branch, and turn to take the nonzero
branch. We write Ri for the value of register i.

To understand the counter machine in Figure 4, start the registers with R1 = m, R2 = n,
and C = D = 0. The machine runs the main loop n times, decrementing R2 on each loop
and stopping when R2 = 0. Each time, it moves R1 to both R0 and R3, then moves R3 back
to R1, for a net effect of increasing R0 by m. When it stops, R0 = mn.
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Table 1 The words in Baba is You we use other than specific nouns.

Word Part of speech Behavior

IS verb
The “rule N IS a” applies the mechanic corresponding to
a to all instances of N . The rule “N IS n” replaces each
instance of N with an n.

MAKE verb Each time step, the rule “N MAKE n” creates an n in each
cell with an N that doesn’t already have an n.

YOU adjective
This object is controlled by the player’s inputs. There can
be zero or multiple such objects. The player can also choose
to pass, which lets other rules process one time step.

WIN adjective If this object is in the same cell as an object that’s YOU, the
player wins.

MOVE adjective

Each time step, this object moves one unit in the direction
it’s facing. If it can’t move forward (e.g. because it’s the
edge of the level), it bounces off (the details won’t matter
for our reduction).

SHIFT adjective
Each time step, move all other objects in the same cell one
unit in the direction this object is facing, and set their facing
directions to match.

FLOAT adjective
This object is on a second “layer”, which is independent
of the default layer for some adjectives including WIN and
SHIFT.

STOP adjective Other objects can’t move into the cell containing this object.

PUSH adjective If another object attempts to move into the cell containing
this object, this object is pushed in the same direction.

PULL adjective This object is STOP, and if an object adjacent to it moves
away, this object follows.

OPEN
SHUT

adjectives

If an OPEN object is in the same cell as a SHUT object, destroy
both. This always destroys objects in pairs – it will destroy
the same number of OPEN and SHUT objects, up to whichever
there are fewer of.

ON preposition The noun phrase “n ON n′” refers to each n which is in the
same cell as an n′.

AND preposition

The noun phrase “n AND n′” refers to both each n and each
n′, and similarly for conjunctions of more than two nouns.
AND can also be used to combine adjectives, e.g. “BABA IS
YOU AND FLOAT”.

NOT preposition The noun phrase “NOT n” refers to object that aren’t n. A
rule of the form “n IS NOT a” overrules the rule “n IS a”.

TEXT noun Refers to all text objects.

There are many possible instructions we can allow counter machines to use. From the
perspective of using counter machines to prove undecidability, there is a tradeoff between
simplicity and efficiency: more powerful instruction sets require more work to implement, but
may allow us to use a counter machine that has fewer registers or states, or that simulates a
Turing machine more efficiently.

Korec [15] constructs explicit universal counter machines for a variety of instruction sets
at different points on this tradeoff. For Baba is You, we will use counter machines with the
two instructions described above.
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dec 2

dec 1 inc 0

inc 3

dec 3 inc 1

0

0

0

start stop

Figure 4 A counter machine which inputs two numbers A and B and outputs their product
on register D. Rectangles are increment instructions; diamonds are jump if zero and decrement
instructions, with 0 indicating the branch to take when the register is 0.
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dec 5
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dec 6 inc 5 dec 7

inc 1

dec 6 inc 6 dec 4 dec 5

dec 5

dec 5

inc 4

dec 2 dec 0

dec 3

inc 0 inc 3

inc 2

dec 4stop

0

0

0

0

0

0 0 0

0 0

0

0

0

Figure 5 Korec’s strongly universal counter machine U22 [15].

The counter machine we will use is the 22-state machine U22 [15], which is shown in
Figure 5 laid out in a way that suits our purposes. This machine is strongly universal,
meaning the following. Let Φi be an enumeration of partial computable functions N → N,
e.g. as Turing machines. There is a computable function g such that, if we run U22 starting
from R1 = g(i), R2 = n, and all other registers 0, it halts if and only if Φi(n) is defined, and
if so when it halts R0 = Φi(n). That is, if we input g(i) and n, this machine computes Φi(n).

We now attempt to summarize how U22 works. The input on register 1 is actually a
description of a particular kind of counter machine with three very specific instructions,
which U22 simulates – the first step of computing g is to convert your Turing machine into
such a counter machine. Registers 0, 2, and 3 are for the simulated machine. The description
and current state of the simulated machine are kept in registers 1 and 4, respectively. The
left half of U22 parses these two registers, unpacking the encoding of the counter machine at
the current state. The result is that R5 encodes both the next instruction to execute (which
determines where the machine exits the loop with three dec 5 instructions) and the next
state to switch to (which becomes R4). The bottom right section carries out the instruction,
possibly decrementing R4 to allow the simulated machine to branch, before moving to the
next step or halting.
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2.1 Game Make Count
Consider a game capable of building counters in bounded space, typically by stacking
arbitrarily many objects in the same place. Suppose that we can also implement the
instructions used by U22, or some other sufficiently powerful instruction set. Games that fit
these criteria include Braid [13], several Mario games [10, 12], and Baba is You (as we will
show).

After designing these components, it is straightforward to prove RE-hardness for such a
game: convert any Turing machine to an appropriate counter machine, and then construct
the counter machine in the game. But we can do better, by using a universal counter machine
to obtain results for constant-area levels.

Specifically, construct a level which simulates U22 (or another universal counter machine).
Then that level is capable of universal computation: if it is initialized with the appropriate
set of objects to represent R1 = g(i) and R2 = n, when it halts it will encode R0 = Φi(n).

To prove RE-hardness for constant-area levels, we need two additional conditions: the
counter machine terminating should trigger victory, and the initial state of a level must be
allowed to have arbitrarily many objects to encode an arbitrary initial register value. Then
we can reduce from the halting problem. Given a number encoding a Turing machine i and
an input n, build the level that simulates U22 initialized as above, so the player wins if and
only if Φi(n) is defined.

For RE-hardness of a constant level after a given sequence of inputs, we must build
something that allows the player to choose the initial values of the input registers. Then
we can again reduce from the halting problem: start by making a sequence of moves that
initializes the counter machine as described above and then transitions to deterministically
simulating the machine. After this sequence, the player will win if and only if Φi(n) is
defined.

In the next section, we will do all of this for Unlimited Baba is You. We will build counter
machines by representing each register as the number of copies of an object in a single cell.
Then we will describe a level that runs U22 with no player choices, and a version of it that
allows the player to set input values during the initialization phase.

3 Baba is Count

We now start building counter machines in Unlimited Baba is You. There are many possible
approaches to doing this; we choose one which is space-efficient and will result in levels
visually matching diagrams like Figure 4.

In our construction, the player will never be able to make choices – nothing will be YOU
until the frame the player wins, so all the player can do is wait for the counter machine. We
will never move text or have rules change. Each register will be represented by a particular
objects, with the number of copies matching the current value. All of these registers will
be in the same cell, and will move around the counter machine together. When the pile
encounters certain other objects, it will gain or lose register objects and be redirected to
simulate the counter machine.

The moving pile will be “carried” by a CART, with the rule “CART IS MOVE”. It will be
routed using BELTs, with “BELT IS SHIFT”. We will decrement registers by using a GATE to
consume an item, with ’GATE IS SHUT’.

Each register will use three types of object, which we call REG, INC, and DEC to explain a
generic register. REG is the object that forms a pile to keep track of the value of the register.
We have the rule “REG ON CART IS MOVE” so that it follows the cart, but other instances of
REG waiting to be picked up stay where they are.
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To increment, we have “INC MAKE REG”. Each copy of INC will have one REG sitting on it,
and if the CART drives over that cell the REG will be added to the pile. The facing direction
of the waiting REG matches that of the INC, so we need place the INC facing the direction
the CART will cross it.

To decrement, we have “DEC MAKE GATE” and “REG ON DEC IS OPEN”. When the pile of
registers crosses DEC, the GATE on it will consume exactly one REG. Having REG only be OPEN
when on DEC ensures that we won’t consume an item from the wrong register.

To branch, we again use DEC. We have the rule “DEC ON REG IS SHIFT”, with the DEC
facing a direction orthogonal to the direction the CART is moving. If the register is zero, the
DEC is not on a REG, so the CART continues straight. Otherwise, the DEC deflects it.

There is a potential conflict between decrementing and branching: if the pile MOVEs onto
the DEC and is immediately SHIFTed, it fails to consume one of the REGs–SHIFT is applied
before OPEN and SHUT. We can avoid this by having a BELT directly into every DEC, so that
the pile MOVEs onto the BELT, is SHIFTed onto the DEC, and then the GATE can consume a
REG (but the pile’s direction will change to match the DEC if the register is nonzero).

When the counter machine halts, the CART arrives at a FLAG. So that this results in
victory, we have the rules “CART ON FLAG IS YOU” and “FLAG IS WIN”.

To summarize: the objects we use are CART, BELT, GATE, FLAG, and three objects (REG,
INC, DEC) for each register. The rules are

CART IS MOVE
BELT IS SHIFT
GATE IS SHUT
CART ON FLAG IS YOU
FLAG IS WIN
For each register:

REG ON CART IS MOVE
INC MAKE REG
DEC MAKE GATE
REG ON DEC IS OPEN
DEC ON REG IS SHIFT

Figure 6 shows these objects, including the objects we’ll use for the eight registers of U22.
Figure 7 shows an Unlimited Baba is You level implementing the simple counter machine

from Figure 4. The actual counter machine in is the top left, below it are the “generic” rules,
and to the right is a square of rules for each of the four registers. The CART is facing up, and
start by driving into the top belt and then the SWORD (it needs a bit of space at the start so
the SWORD has time to MAKE a GATE).

To supply inputs, we start the level with a pile of m ROBOTs and n LEVERs in the same
cell as the CART – for readability, the figure shows m = n = 0. The CART will eventually
reach the FLAG carrying mn PAPERs (and still m ROBOTs), at which point the player wins.

It’s somewhat inelegant that we have to encode the input in the level: if a player simply
wants to know what the product of two numbers is, they have to load up the level editor
and stick in some ROBOTs and LEVERs (which in practice requires adding more space). We
modify the level as shown in Figure 8 to allow the player to choose the inputs to the counter
machine.

We have changed the rules a bit, added a TILE above the CART and created the cage on
the left. Now the counter machine doesn’t start running immediately, and the player doesn’t
win when it halts. Instead, the player controls BABA, who is stuck in the cage.
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Figure 6 The Baba is You objects used in our counter machines. The objects at the top are not
connected to a specific register, and each register 0 through 7 uses the items in one of the rows, listed
in the order REG, INC, and DEC. The DECs are chosen so that the direction they’re facing is visible –
all objects have a facing direction, but some don’t have directional sprites. We have attempted to
use semantically-related items to make the registers somewhat intuitive, but the limited inventory of
objects makes this challenging.

Figure 7 A counter machine that multiplies two numbers (Figure 4) built in Unlimited Baba is
You. Level code: EUQT-TCZJ.
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Figure 8 The same Unlimited Baba is You counter machine as in Figure 7, but with infrastructure
that lets the player choose inputs. Level code: Q1V8-PRIE.

The player will eventually create CART IS MOVE, which starts the counter machine and
requires putting MAKE somewhere it can’t be used. Before this, the player chooses the inputs
to R1 and R2, which are the initial numbers of ROBOTs and LEVERs, respectively. They do so
by creating TILE MAKE ROBOT and TILE MAKE LEVER for any desired number of time steps:
push TILE down, and then push the nouns on the right down three times, waiting in between
for the appropriate number of steps while the created objects SHIFT off the TILE. The player
can use a slightly different sequence to make either or both registers start at 0 – the cage
gives just enough freedom to allow this without letting the player create any unintended
rules or MAKE any more objects after starting the counter machine.

To read out the product the machine computes, the player must be attentive when the
CART reaches the FLAG: it turns into SCISSORS, which create GATEs to consume one PAPER
each time step – they decrement register 0. The WALL prevents the SCISSORS from SHIFTing
the pile of counters away. The player receives the desired product by counting how many
times they hear the distinctive noise of mutual annihilation of OPEN and SHUT.

Finally, the player moves to the FLAG at the top of their cage. This allows them to
complete the level after it multiplies the numbers of their choosing, or to abandon it early
should they decide to use a more efficient calculator.

3.1 U22 in Baba
Since we’ve described how to construct general counter machines in Unlimited Baba is You,
we can build Korec’s U22 [15]. This is shown in Figure 9. The actual counter machine is
about a third of the space of the level, with the rest being taken up by rules.

As before, the input is given as a stack of ROBOTs and LEVERs on the cart, representing
the initial values of R1 and R2, respectively. If we wish to compute Φi(n), we should set up
the level with g(i) ROBOTs and n LEVERs. Then the player wins exactly when Φi(n) exists,
and if so the number of PAPERs on the CART just before victory is Φi(n). We now apply the
construction we used to create Figure 8, to allow us to perform computation in a level that
is not only constant-area, but truly constant. This level is shown in Figure 10.
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Figure 9 U22 (Figure 5) in Unlimited Baba is You. Level code: 7LKG-WKBJ (initialized with one
ROBOT so that it terminates).

The cage is now in the top right, and we have moved some rules to make space. There
are two differences from the cage in Figure 8: there isn’t an accessible FLAG, and the CART
becomes BABA (instead of SCISSORS) when it reaches the FLAG, triggering victory.

As before, the player can choose how many ROBOTs and LEVERs to start the counter
machine with, setting the initial values of R1 and R2. Once the player makes CART IS WIN,
there is nothing of use they can do but wait, and will eventually win if the counter machine
halts on the provided input.

3.2 Smaller levels
We now compact our counter machine construction to show RE-hardness for smaller constant-
area levels. The actual counter machine in Figure 9 is already pretty compact; our goal here
is to make the rules take less space. In addition to leaving less empty space, there are a few
tricks we employ:

We place rules in the same region as the counter machine. We need TEXT IS FLOAT so
that text isn’t affected by BELTs, and TEXT IS NOT PUSH so that it isn’t affected by the
moving CART.
Multiple words can go in the same cell: to write ROCKET MAKE GATE and SWORD MAKE
GATE, we have cell with both words ROCKET and SWORD in front of MAKE GATE.
Another way to make that pair of rules is with AND: the rule ROCKET AND SWORD MAKE
GATE is more efficient than having both rules separately.
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Figure 10 The same construction of U22 as in Figure 9, but now the player can control BABA to
specify inputs to the counter machine. Level code: ZFGG-WH6Z.

Combining the two previous points, we make rules like SWORD/ROCKET AND FISH/BUNNY
MAKE GATE, which is parsed as four separate rules of the form X AND Y MAKE GATE. We
end up with multiple copies of SWORD MAKE GATE – this is fine for MAKE, but is an issue
for other verbs like MOVE, where two copies of CART IS MOVE means the CART moves two
cells per time step.

The level editor allows us to place multiple objects in the same cell using layers, but there is
a limit of 3 objects per cell.

The result is the unreadable mess in Figure 11, which is an 8 × 17 level. It behaves the
same as in Figure 9. In particular, inputs are given as piles of left-facing ROBOTs and LEVERs
in the seventh row, and the output is the number of PAPERs when the player wins.

▶ Theorem 1. An 8 × 17 level of Unlimited Baba is You is capable of universal computation,
where inputs and outputs are encoding as the number of identical objects in a single cell.

By universal computation, we mean that with the inputs g(i) and n in the format specified
for some computable function g, the output is Φi(n), again in the format specified.

▶ Corollary 2. Deciding whether an 8 × 17 level of Unlimited Baba is You is solvable is
RE-complete (and in particular undecidable).

We can also compactify the level in Figure 10, which lets the player specify inputs to the
counter machine. The only additional complication is that we need TEXT IS NOT PUSH to
not exist until after the player is done initializing. We also place the TILE under the CART to
avoid needing TILE IS SHIFT.
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Figure 11 U22 in Baba is You (Figure 9), after compactifying at the cost of clarity. Level code:
4ZGV-BPQ3 (initialized with one ROBOT so that it terminates).

Figure 12 U22 in Baba is You with inputs given by the player (Figure 10), after compactifying in
the same way as Figure 11. Level code: 7GG1-1PTH.

▶ Corollary 3. There is a specific 8 × 21 level of Unlimited Baba is You which is capable of
universal computation, where inputs are given by a sequence of moves the player makes and
the output is the number of identical objects in a single cell when the player wins.

To compute Φi(n), the player performs a fixed sequence of moves to make TILE MAKE
ROBOT, waits g(i) − 1 times, performs another fixed sequence of moves to destroy that
rule and create TILE MAKE LEVEL, waits n − 1 times, and finally destroys that rule as well
while creating CART IS MOVE. If g(i) or n is zero, the player must use a slightly different
initialization sequence.

▶ Corollary 4. There is a specific 8×21 level of Unlimited Baba is You for which the decision
problem “if the player starts by performing a given sequence of inputs, can they go on to win
(without undoing)?” is RE-complete.

Results about constant-area levels have another small advantage: our levels are buildable
in the Baba is You level editor, which has a maximum size of 33 × 18 (and three objects per
cell) – and you can play them at the level codes given. If you enter initial values for the
levels where that’s possible (Figures 8, 10 and 12), you can then run the counter machine
the level simulates, with only the caveat that the values of registers are capped at 6.
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Abstract
We propose a generalization of positional games, supplementing them with a restriction on the order
in which the elements of the board are allowed to be claimed. We introduce poset positional games,
which are positional games with an additional structure – a poset on the elements of the board.
Throughout the game play, based on this poset and the set of the board elements that are claimed
up to that point, we reduce the set of available moves for the player whose turn it is – an element of
the board can only be claimed if all the smaller elements in the poset are already claimed.

We proceed to analyze these games in more detail, with a prime focus on the most studied
convention, the Maker-Breaker games. First we build a general framework around poset positional
games. Then, we perform a comprehensive study of the complexity of determining the game outcome,
conditioned on the structure of the family of winning sets on the one side and the structure of the
poset on the other.
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1 Introduction

1.1 General motivation
Positional games. Positional games are a class of combinatorial games that have been
extensively studied in recent literature – see books [6] and [12] for an overview of the field.
They include popular recreational games like Tic-Tac-Toe, Hex and Sim. Structurally, a
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positional game is a pair (X,F), where X is a (finite) set that we call the board, and F ⊆ 2X

is a collection of sets that we call the winning sets. The pair (X,F) is referred to as the
hypergraph of the game. The game is played in the following way: two players alternately
claim unclaimed elements of the board, until all the elements are claimed. There are several
standard conventions, defining the way the winner is determined: Maker-Maker games,
Maker-Breaker games, Avoider-Enforcer games, etc.

In Maker-Maker games, also known as strong making games, players compete to fill
up one of the winning sets i.e. claim all its elements, and whoever does it first wins. If
there is no winner by the time all the board elements are claimed, the game is declared
a draw. Tic-Tac-Toe (“3-in-a-line”) is a notable representative of this type of games and
every child knows the game ends in a draw, provided that both players play optimally. It
can be generalized to the n × n board, going under the name “n-in-a-line”, and it is also
known to be a drawn game [6] for all n ≥ 3. More generally, Tic-Tac-Toe can be played on
the hypercube [n]d, where the winning sets are all the geometric lines of cardinality n. The
Hales-Jewett Theorem [11] states that, for every n, there exists a positive number d, also
called the Hales-Jewett number HJ(n), such that for all k ≥ d, the game [n]k is a first player
win.

Generally speaking, the strong making games are natural to introduce and study, and
many recreational games are of this type. Hence, it is no wonder that numerous questions
about them have been asked in the literature. Yet, it may come as a surprise that the
majority of those questions remain unanswered. The thing is, in a typical strong making
game, each player’s goal can be seen as two-fold: they are simultaneously trying to claim a
winning set and to block their opponent’s attempts at claiming a winning set. This makes
most such games notoriously hard to analyze, and hardly any general tools are known for
this purpose. As a consequence, there are very few published results about this convention,
when compared to Maker-Breaker games.

In Maker-Breaker games, we call the players Maker and Breaker, and they have different
goals – Maker wins if she fills up a winning set, while Breaker wins otherwise, i.e. if he claims
at least one element in each winning set. Note that no draw is possible in this convention.
Maker-Breaker games are the most researched convention of positional games, ever since
Erdős and Selfridge [9] first introduced them in 1973. Looking at Tic-Tac-Toe on the standard
3 × 3 board in the Maker-Breaker convention, it is straightforward to convince oneself that
Makers wins when playing first.

The main problem on positional games consists in determining the outcome i.e. the
identity of the player who has a winning strategy (possibly depending on who starts), if
there is one, assuming that both players are playing optimally. The study of the complexity
of computing the outcome of a given positional game can be traced back to Schaefer [14],
who was first to prove that Maker-Breaker games are PSPACE-complete, even when the
winning sets are of size at most 11. This was later improved by Rahman and Watson [13],
requiring only winning sets of size 6. On the other hand, Galliot et al. [10] proved that the
outcome of any Maker-Breaker game with winning sets of size at most 3 can be determined
in polynomial time. Maker-Maker games are also known to be PSPACE-complete, as shown
by Byskov in [7].

Poset positional games. Let us now take a closer look at a popular recreational game,
Connect-4, which has a lot in common with the Tic-Tac-Toe family of positional games. In
Connect-4, two players play on a board that is 7-wide and 6-high. They move alternately by
placing a token of theirs in a column of their choice. Each placed token drops down with
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“gravity”, landing on top of the last previously placed token in that column, or heading all
the way to the bottom of the column if it is empty. The first player with tokens on four
consecutive positions in a line (vertical, horizontal or diagonal) wins, and, if neither of the
players manages to do that by the time all the columns are full, then a draw is declared.
Although the game is similar to Tic-Tac-Toe at first glance, there is one crucial difference –
the players cannot choose freely from all the empty positions of the board, as at any point a
column offers at most one available position (the lowest token-free position).

The outcome of the game is known as a first player win, as shown by Allis in [3], and
independently by Allen [1] who later wrote a whole book [2] about this game. Connect-4
was solved in [17] for some nonstandard board sizes, and for some others in [16].

Recently, Avadhanam and Jena [4] studied Connect-Tac-Toe, where they introduce a
restriction on which unclaimed elements can be claimed, combining the nature of Connect-4
with the positional game of Tic-Tac-Toe. They also look at the generalized [n]d Connect-Tac-
Toe, played on a hypercube [n]d, relating it to the restricted version of the [n]d Tic-Tac-Toe.
Additionally, they give a lower bound on an analogue of the Hales-Jewett number, HJ(n), in
this setting.

In the present paper, we propose a new framework which, in full generality, enables us to
combine the move restrictions with positional games (like it is done in Connect-4). Namely,
we introduce poset positional games, which are positional games with an additional structure
– a poset on the elements of the board. Throughout the game play, based on this poset and
the set of elements that are claimed up to that point, we reduce the set of available moves for
the player whose turn it is – an element of the board can only be claimed if all the smaller
elements (in the poset) are already claimed.

We proceed to analyze these games in more detail, with a prime focus on the most studied
convention, the Maker-Breaker games. After setting out a formal introduction of poset
positional games, we go on to build a general framework around them. Then, we perform a
comprehensive study of the complexity of determining the game outcome, conditioned on
the structure of the family of winning sets on the one side and the structure of the poset on
the other.

1.2 Framework of poset positional games
A poset P on a set X is defined by a partial order relation ≤. On top of that, we use < to
denote the same relation acting on distinct elements. In this paper, posets will be depicted
by directed graphs in the usual way, where the elements are vertices, and two elements x
and y satisfy x ≤ y if and only if there exists a directed path from x to y. Two elements are
deemed incomparable if there exists no directed path between them.

In addition, we will use the following standard definitions about posets. A chain is a
set of elements that are pairwise comparable. An antichain is a set of elements that are
pairwise incomparable. The height of a poset is the cardinality of its longest chain. The
width of a poset is the cardinality of its largest antichain. Given an element x, we say that y
is a predecessor (resp. a successor) of x if y < x (resp. x < y) and there is no other element
between x and y. An element x is said to be maximal (resp. minimal) in the poset if it has
no successor (resp. no predecessor).

We are now able to formally define a poset positional game as follows. A poset positional
game is a triple (X,F , P ) where X is a finite set of elements (also called vertices), F is a
collection of subsets of X corresponding to the winning sets, and P is a poset on X.

The game is played by two players that alternately claim an unclaimed vertex x of X such
that all vertices smaller than x have already been claimed. The rest stays the same as before.
In the Maker-Maker convention, the first player that fills up a winning set S ∈ F wins. If
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no player manages to fill up a winning set, the game ends in a draw. In the Maker-Breaker
convention, Maker wins if she fills up a winning set at some point during the game, otherwise
Breaker wins. During a game, when a player claims a single vertex, we call that a move,
whereas a round corresponds to a pair of moves made successively by both players.

Note that a standard positional game is a poset positional game where all the vertices
are pairwise incomparable. Furthermore, in poset positional games, from any given position,
the set of moves that are available to the next player forms an antichain of the poset. In
particular, there are at most w available moves at any point of a game, where w is the width
of the poset.

It is a well-known result that, for any standard positional game played in the Maker-Maker
convention, the second player cannot have a winning strategy, so that the only possible
outcomes are a first player win FP or a draw D. Similarly, for any standard positional game
played in the Maker-Breaker convention, there are only three possible outcomes (if we do
not specify who starts):

M if Maker has a winning strategy no matter who starts the game,
B if Breaker has a winning strategy no matter who starts the game,
N if the next player (i.e. the player whose turn it is) has a winning strategy.

When switching to the framework of poset positional games, the property asserting that
the second player never wins is not true any more. As a consequence, there are game positions
for which the next player may have interest in skipping their turn. The corresponding outcome
will be denoted by P (standing for “Previous player wins”, or equivalently meaning that the
second player has a winning strategy). Such phenomena are generally called zugzwangs in
the literature of combinatorial games [8].

From now on, unless explicitly stated, we will only consider the Maker-Breaker convention
of poset positional games. Though the computation of the outcome is generally the main issue
when investigating such games, this study can, under certain circumstances, be reduced to
the case of a particular player starting the game. Indeed, starting with a game G = (X,F , P )
where Maker (resp. Breaker) is the first player and claims a vertex x, we get a resulting game
G′ = (X ′,F ′, P ′) where Breaker (resp. Maker) is the first player, defined by X ′ = X − x,
P ′ = P − x and F ′ = {W \ {x}| W ∈ F} (resp. F ′ = {W | W ∈ F , x ̸∈ W}). Therefore,
when studying a class of games which is stable under Maker’s (resp. Breaker’s) moves in
terms of that update, we may freely assume that Breaker (resp. Maker) is the first player,
up to considering all possibilities for their opponent’s first move otherwise. In this paper, all
studied classes will be stable under Breaker’s moves, so we will always assume that Maker
is the first player. Therefore, the decision problem that will be mainly investigated is the
following:

MB Poset Positional Game
Input: A poset positional game G = (X,F , P ).
Output: The player having a winning strategy (i.e. Maker or Breaker) when Maker starts.

Since standard positional games are included in poset positional games, the problem MB
Poset Positional Game is PSPACE-complete from a result of Schaefer [14].

1.3 Exposition of the results
The main objective of this paper is to consider the complexity of MB Poset Positional
Game related to some parameters of the instance. More precisely, we have chosen to focus
on the properties of the poset, as it is the main distinctiveness of the current contribution,
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comparing the results we obtain to the previous results about standard positional games.
In Section 2, we will firstly examine the problem depending on the height of the poset. As
it is already known that, even for height 1 (i.e. all the elements are pairwise incomparable)
and winning sets of size 6, the problem is PSPACE-complete [13], we will also refine our
classification according to the number and/or the size of the winning sets. The main
contribution of this section addresses the case where there is only one winning set of size 1.
By adding such a condition, the problem admits a complexity jump between instances of
height 2, proved to be polynomial, and height 3, proved to be NP-hard.

Section 3 deals with the width of the poset. As the case of width 1 is straightforward (P
is made of only one chain, so the order of the moves is completely predetermined), we start
by considering instances with width 2. We show that MB Poset Positional Game is
PSPACE-hard in this case, even if all the winning sets are of size 3. This illustrates a major
difference with standard positional games, which are known to be tractable in this setting.
We then give a polynomial-time algorithm that solves the general case where the width of
the poset and the number of winning sets are fixed.

Section 4 is devoted to the case where the poset is a union of disjoint chains. This case is
a direct generalization of the game Connect-4. Our first result is a full characterization of
the outcome when all the winning sets are of size 1. When the winning sets are of size at
most 2, things are more tricky, but we do provide a polynomial-time algorithm when the
width of the poset (i.e. the number of chains in the union) is fixed. Finally, by adding the
restriction that the height of each chain is at most 2, we get a polynomial-time algorithm
regardless of the number of chains.

Table 1 summarizes all the results about the complexity of MB Poset Positional
Game, referring either to the literature of standard positional games, or to results proved
in the current paper. In the table, recall that the complexity class XP defines the class of
problems parameterized by a parameter k and that can be solved in time O(|X|f(k)), where
|X| is the size of the instance and f is a computable function.

In order to satisfy the page limit, some of our statements are given without a proof. All
the proofs are available in the full version of our paper [5].

2 Posets of small height

2.1 Posets of height 2

We first look at what happens when all the winning sets are of size 1. This case is rarely
straightforward, and often deserves to be studied depending on some parameters of the poset.
In addition, it is closely correlated to the case where there is a unique winning set (of any
size). The following remark explains the link between both situations.

▶ Remark 1. Up to switching the roles of the players, a poset positional game with a single
winning set of size k is equivalent to a poset positional game with k winning sets of size 1.

In the above remark, the equivalence means that the two games have the same outcome.
Indeed, Maker wins when there is a single winning set of size k if and only if she manages to
claim all the elements of this set. In the second game, a win of Breaker consists in claiming
all the winning sets (of size 1), thus corresponding to the equivalence. Note that Breaker is
starting in one of the two games, but this is not a pitfall since both these classes are stable
under Breaker’s moves.
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Table 1 Complexity of MB Poset Positional Game depending on some parameters of the
poset and of the collection of winning sets.

winning
sets

poset
general height h width w disjoint chains

general PSPACE-c [13] h = 1:
PSPACE-c [13]

w = 1: P
w = 2:

PSPACE-c
(Th. 7)

h = 1:
PSPACE-c [13]

size s

s = 3:
PSPACE-c

(Th. 7)

h = 1, s = 6:
PSPACE-c [13]
h = 2, s = 3:
NP-h (Th. 5)

w = 2, s = 3:
PSPACE-c

(Th. 7)

s = 1:
P (Th. 11)

s = 2:
XP by w

(Th. 14)
h = 2, s = 2:
P (Th. 15)

number m
NP-hard
(Th. 6)

m = 1, h = 3:
NP-hard (Th. 6) XP (Th. 8)

m = 1:
P (Th. 11

and Remark 1)

number m

and size s

m = 1, s = 1:
NP-hard
(Th. 6)

h = 2, m = 1, s = 1:
P (Th. 3)

h = 3, m = 1, s = 1:
NP-hard (Th. 6)

XP (Th. 8) XP (Th. 8)

We continue with a minor result which is useful when dealing with winning sets of size
1. Given a poset P and a vertex x, we denote by p(x) the number of vertices that are not
greater or equal to x i.e. p(x) := |X| − |{y| y ≥ x}|. This quantity is used in the following
lemma, which yields a necessary and sufficient condition for Maker to win when there is a
unique winning set of size 1.

▶ Lemma 2. Let G = (X, {{x}}, P ) be a poset positional game. Suppose that, after some
rounds of play in G, all predecessors of x have been claimed apart from one, which we denote
by y. Then, in this position, Maker wins if and only if p(y) is odd.

▶ Theorem 3. MB Poset Positional Game can be solved in polynomial time when: the
poset is of height 2, there is only one winning set, and this winning set is of size 1.

Sketch of the proof. Let {x} be the winning set. We partition the predecessors of x into
two sets M and B, where M (resp. B) contains the predecessors y of x such that p(y) is
even (resp. odd). Then Maker wins if and only if |M | ≤ |B|. ◀

The situation is already much more complicated with two winning sets of size 1 – we leave
this as an open problem. However, for winning sets of size 1 and a poset of height 2 whose
nonminimal elements are all winning sets, one can compute the outcome in polynomial time,
as we now show. Note that the same situation is PSPACE-complete in the Maker-Maker
convention (see the full version [5]).

▶ Theorem 4. MB Poset Positional Game can be solved in polynomial time when: the
poset is of height 2, all the winning sets are of size 1, and all nonminimal elements are
winning sets.
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Sketch of the proof. Let P be a poset of height 2 on a set X. We say the minimal elements
of P are the “bottom” vertices, and the others are the “top” vertices. We say that x is a
private predecessor of y if y is the only successor of x.

The poset positional game we consider is G = (X, {{y}, y top vertex}, P ). We prove that
Maker wins if and only if (1) |X| is odd or (2) there exists a top vertex y which does not
have more private predecessors than non-private ones.

If (1) holds then, since Maker starts, she also plays last, which means she can win by
waiting for Breaker to claim the last predecessor of some top vertex. If (2) holds, then Maker
can ensure that all the private predecessors of y are claimed before all the non-private ones
are, after which she waits for Breaker to claim the last predecessor of y. She might have to
claim it herself, but that will make at least two top vertices available at once, meaning she
will win with her next move.

If none of the conditions hold, then Breaker can maintain the property that “all the top
vertices have strictly more private predecessors that non-private ones” during the game. This
allows Breaker to claim all the top vertices, meaning he wins. ◀

For posets of height h = 2, as the size s of the winning sets increases, the value s = 3 is
the smallest one for which we have identified an algorithmic complexity jump.

▶ Theorem 5. MB Poset Positional Game is NP-hard, even when restricted to instances
where the poset has height 2 and all the winning sets are of size 3.

Sketch of the proof. The proof is a reduction from 3-SAT. Let ϕ be a 3-SAT formula. We
build a poset positional game G = (X,F , P ) with P of height 2 and winning sets of size 3 as
follows:

For any variable xi of ϕ, we add four vertices ui, vi, vi and ṽi in X.
For any clause Cj = lj1 ∨ lj2 ∨ lj3 in ϕ, we add the winning set Sj with, for 1 ≤ k ≤ 3,
vjk

∈ Sj if ljk
= xjk

, and vjk
∈ Sj if ljk

= ¬xjk
.

For any variable xi of ϕ, we add the relations ui < vi, ui < vi and ui < ṽi in P .

We prove that ϕ is satisfiable if and only if Breaker has a winning strategy in G. ◀

2.2 Posets of height 3
We now consider posets of height 3. Using Lemma 2, we prove that MB Poset Positional
Game is NP-hard even if there is only one winning set and that winning set is of size 1. The
reduction is done from the problem Set Cover.

▶ Theorem 6. MB Poset Positional Game is NP-hard even when restricted to instances
where: the poset has height 3, there is only one winning set, and that winning set is of size 1.

3 Posets of bounded width

In this section, we consider posets of bounded width. For width 1, all moves are forced, so
the outcome is obviously computed in polynomial time. However, for width 2, we prove that
MB Poset Positional Game is already PSPACE-hard even if the winning sets are of size
3.

▶ Theorem 7. MB Poset Positional Game is PSPACE-complete even when restricted to
instances where the poset is of width 2 and the winning sets are of size 3.
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v1 v1

v2 v2

v3 v3

v4 v4

u1

u2

u3

Figure 1 The poset positional game obtained by reduction of ∀x1∃x2∀x3∃x4(x1 ∨ x2 ∨ x3) ∧
(¬x2 ∨ x3 ∨ ¬x4).

Sketch of the proof. The reduction is done from 3-QBF, which has been proved PSPACE-
complete by Stockmeyer and Meyer [15]. In 3-QBF, the input is a formula of the form
ψ = ∀x1∃x2 . . . ∀x2n−1∃x2n ϕ(x1, . . . , x2n) where ϕ is a 3-CNF formula. The ouput is the
truth value of ψ. We build a poset positional game G = (X,F , P ) as follows:

For any 1 ≤ i ≤ 2n, we add two vertices vi and vi in X.
For any 1 ≤ i ≤ 2n− 1, we also add a vertex ui.
For any clause Cj = li1 ∨ li2 ∨ li3 in ϕ, we add a winning set Sj ∈ F . For 1 ≤ k ≤ 3, we
have vik

∈ Sj if lik
= xik

and vik
∈ Sj if lik

= ¬xik
.

For any 1 ≤ i ≤ 2n − 1, we add in P the relations vi < ui, vi < ui, ui < vi+1 and
ui < vi+1.

See Figure 1 for an example. It can be proved that ψ is True if and only if Breaker wins
in G. ◀

If the number of winning sets is also bounded (by m), we give an algorithm running in
time O(|X|w2mw4).

▶ Theorem 8. MB Poset Positional Game can be decided in time O(|X|w2mw4) for
instances where the poset is of width at most w and there are at most m winning sets.

Sketch of the proof. The proof uses a dynamic approach. We characterize the games that
can be reached from a game played on G = (X,F , P ) using an antichain Y of X, that
represents the current available moves, and a boolean vector B = (b1, ..., bm) ∈ {0, 1}m that
represents, for each winning set, if Maker has claimed all its elements below Y (and thus can
still hope to claim it entirely). ◀

4 Posets made of pairwise disjoint chains

In this section, motivated by the game Connect-4, we consider posets made of pairwise
disjoint chains. In the rest of this section, we give positive results for poset positional
games on pairwise disjoint chains with very small winning sets (but an unbounded number of
them). We will often use parity arguments when discussing games on posets made of pairwise
disjoint chains. Therefore, we introduce the following framework, which will be useful in this
section. Consider a poset positional game G = (X,F , P ) where P is made of pairwise disjoint
chains C1, ..., Cw. The elements of the chain Ci are denoted as xi,1 > xi,2 > ... > xi,ℓi . This
numbering of the vertices from top to bottom is best adapted to define the following coloring:
a vertex xi,j is colored white if j has same parity as |X|, otherwise it is colored black.
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4.1 Winning sets of size 1
The next two lemmas give sufficient conditions for Maker to win under particular conditions
that are based on the above coloring. They can be proved with simple parity arguments.
Combined together in the next theorem, they allow to have a complete characterization of
the general case where all the winning sets are of size 1.

▶ Lemma 9. If {u} ∈ F for some white vertex u, then Maker wins.

▶ Lemma 10. If |X| is odd and {u}, {v} ∈ F for some black vertices u and v sitting on
different chains, then Maker wins.

▶ Theorem 11. Let G = (X,F , P ) be a poset positional game where P is made of pairwise
disjoint chains and all elements of F are of size 1. Maker wins G if and only if at least one
of the following conditions hold:

there is a winning set that is a minimal element; or
there is a white winning set; or
|X| is odd and there are two black winning sets on different chains.

In particular, MB Poset Positional Game can be solved in linear time for such games.

Sketch of the proof. The “only if” direction is the one that remains to be proved. For even
|X|, we show that Breaker can claim all the nonminimal black vertices. For odd |X|, we
show that Breaker can claim all the nonminimal black vertices of any given chain. ◀

Using this result, we can solve a basic case of w×h Connect-k in Maker-Breaker convention,
which is the poset positional game played on w chains of height h where the winning sets
are the alignments of k consecutive vertices (horizontal, vertical or diagonal). Note that the
game is easily solved if k ≤ 2, or if k > w, or if k > h and wh is even.

▶ Corollary 12. Let k,w, h be integers with 3 ≤ k ≤ w and h > 1. If w and h are both odd,
then Maker wins the w × h Connect-k game in Maker-Breaker convention.

4.2 Winning sets of size at most 2
Things become more complicated when the winning sets are not all of size 1. In the presence
of a black winning set of size 1, we can simplify the game. Using the same notations as
before, assume that there exists a winning set {xi,j} for some nonminimal black vertex xi,j

with j ≥ 3. We define a reduced game G′ = (X ′,F ′, P ′) as follows.
If |X| is even, then define Y = {xi,1, ..., xi,j−1}, otherwise define Y = {xi,1, ..., xi,j−2}.

In both cases, let X ′ = X \ Y and let P ′ be the poset induced by P on X ′. Note that, since
xi,j is black, we have removed an even number of vertices in both cases. In particular, the
coloring of the vertices is the same for (X ′, P ′) as for (X,P ). We now define the winning
sets of G′ as follows. Let S ∈ F . If S ⊆ X ′, then S ∈ F ′. If S only intersects Y on white
vertices, then S ∩ X ′ ∈ F ′. Otherwise, i.e. if S contains a black vertex greater than xi,j ,
then we ignore S. See Figure 2 for an illustration in the case where |X| is odd.

▶ Lemma 13. Assume that G has no winning set containing only white vertices that are
greater than xi,j. Then the two games G and G′ have the same outcome when Maker starts.

Sketch of the proof. We prove that, if a player has a winning strategy in G′, then that player
has also a winning strategy in G. The idea is the same for both players: they follow their
strategy in G′, as long as possible. When xi,j is claimed (by Breaker, otherwise Maker wins
immediately), Maker can ensure to claim all the white vertices above xi,j , thus completing a
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x1,1

x1,2

x1,3

x1,4

x1,5

x1,6

x1,7

x2,1

x2,2

x2,3

x2,4

x2,5

x2,6

Y

G ⇔
x1,5

x1,6

x1,7

x2,1

x2,2

x2,3

x2,4

x2,5

x2,6

G ′

Figure 2 Reduction of a game G containing a black winning set of size 1 to a game G′. The
winning set {x1,4, x2,2} disappears since it contains a black vertex in Y . The winning set {x1,3, x2,3}
becomes the winning set {x2,3} in G′ since x1,3 is white. By Lemma 13, the two games have the
same outcome. In this case, since G′ has a white winning set of size 1, both games are winning for
Maker.

winning set she would have filled up in G′. If she cannot fill up a winning set of G′ (i.e. if
Breaker wins G′), then Breaker can claim all the black vertices above xi,j and thus claim a
vertex in all the winning sets of G. ◀

Now equipped with this reduction, we can provide an algorithm when all the winning sets
have size at most 2. Our algorithm is based on a dynamic programming approach. Thanks
to Lemmas 9 and 13, we can reduce the number of sub-positions to consider. Indeed, we can
assume that each chain contains at most one (black) winning set of size 1. Our algorithm
dynamically computes the outcome of all these “useful” positions.

▶ Theorem 14. MB Poset Positional Game can be solved in time O(h2(w+1)) for
instances where the poset consists of w pairwise disjoint chains of height at most h and all
winning sets have size at most 2.

4.3 Winning sets of size at most 2, chains of height at most 2
The algorithm from Theorem 14 is not efficient for posets of unbounded width. However,
when restricting the problem to posets of height at most 2, we do get a polynomial-time
algorithm in this case also. Since the chains are of height at most 2, we will simply use
the “top/bottom” terminology already adopted in the proof of Theorem 4, rather than the
coloring previously used in this section.

▶ Theorem 15. MB Poset Positional Game can be solved in time O(|X|4) for instances
where the poset on X consists of pairwise disjoint chains of height at most 2 and all winning
sets are of size at most 2.

Sketch of the proof. Let x1, . . . , xt, y1, . . . , yt be the vertices of the chains of height 2, with
xi < yi for all 1 ≤ i ≤ t. Let xt+1, . . . , xw be the other vertices if there are any. We say
the xi are the “bottom” vertices and the yj are the “top” vertices. The proof distinguishes
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two cases depending on the parity of |X|. When |X| is odd, there are several possibilities,
but each of them is a straightforward win for one of the two players. When |X| is even, the
situation is more tricky. In that case, the key argument is based on two reductions R1 and
R2 that preserve the outcome:
R1: Assume there exists a winning set of the form {xi, xj} that is disjoint from all the other

winning sets. Then remove xi and xj .
R2: Assume there exists a nonempty set of indices I ⊆ {1, . . . , t} such that all the winning

sets that contain some xi with i ∈ I also contain some yj with j ∈ I. Then remove all
the vertices with indices in I. ◀

5 Conclusion and future work

The current work introduces a new framework that opens the door to a variety of perspectives.
Our analysis with respect to the parameters of the poset led to a first classification of the
complexity of MB Poset Positional Game, which is a step towards a better understanding
of the boundary between tractability and hardness. The results presented here directly
induce a list of open problems that arise naturally in order to refine this boundary. Among
them, we have identified the following two questions that seem the most relevant for us:

When there is exactly one winning set of size 1, the height of the poset makes a difference
between tractability (h = 2) and NP-hardness (h = 3). Therefore, when h = 2, it is
worthwhile to examine how the conditions on the number m of winning sets and their
size s impact the algorithmic complexity. A next study would be to investigate the case
m = 2 and s = 1.
In the case of disjoint chains, an analysis of the complexity according to their width
(i.e. the number of chains) is a natural perspective. In particular, one may focus on the
case w = 2, even when restricted to s ≤ 3 (since we have a polynomial-time algorithm for
s = 2). It would also be interesting to obtain a hardness results for disjoint chains.

Going back to our initial motivation of giving a general framework for Connect-k games,
one could also examine the case of boards of even size for this game. For example, the
famous case (k,w, h) = (4, 7, 6), is known to be a Maker win in the Maker-Breaker convention
since it a first player win in the Maker-Maker convention. However, a direct proof for the
Maker-Breaker convention could be considered, that could also be extended to other sizes.

Finally, while we mostly studied the poset positional games in the Maker-Breaker conven-
tion, our definition can be transposed to all other conventions of positional games. It would
therefore be interesting to perform a similar analysis for Maker-Maker or Avoider-Enforcer
poset positional games.
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We revisit the classic game of Snake and ask the basic data structural question: how many bits does
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1 Introduction

The classic game of Snake involves players navigating a grid with a growing line (themed
as a snake) while avoiding collisions with itself and the boundary. As the line increases
in length, the game gets progressively harder. The game originated in the 1976 arcade
video game Blockade and later evolved into a single-player version (see the history overview
of the game [11]). In 1988, the game largely became responsible for introducing mobile
phone gaming to the world after being included with the Nokia 6110 cellular phone [12].
Subsequently, the Snake game has appeared in several different versions on Nokia phones
and elsewhere. From a CS perspective, the Snake game has been studied in the context of
motion-planning problems [9] and deep learning [1, 8, 10]. Surprisingly, the game has not
been studied from a data structural perspective. In this paper, we ask the basic question:
how many bits does it take to represent the state of a snake game so that it can be updated
in constant time? Our main result uses asymptotically optimal bits of space and constant
time per operation. To achieve our results, we introduce several interesting data structural
techniques, including a decomposition technique for the problem, a tabulation scheme for
encoding small subproblems, and a dynamic memory allocation scheme.
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3:2 Snake in Optimal Space and Time

1.1 Setup and Results
Consider a u× u grid G. A snake S is a sequence of n distinct points s1, . . . , sn in G such
that any two consecutive points are adjacent in either the vertical or horizontal direction. We
call sn and s1 the head and the tail of S, respectively. Our goal is to maintain S dynamically
and compactly while supporting the following operations:

extend(d): where d is a direction (up, down, left, or right). Add a new point to S adjacent
to the head in the direction d. If the new point is already a point on the S or outside of
G, we terminate and report a collision.
reduce(): remove the tail from S.

There are two immediate solutions to this problem. The first solution is to explicitly
store the grid as a bit string of length u2 with 1’s at all positions containing a point of S
and 0’s elsewhere. We additionally maintain the positions of the head and tail of S. To
implement the operations, we use the bit string to check for collisions and update the bit
string and head and tail pointers accordingly. This solution uses O(u2 + log u) = O(u2) bits
of space and implements both operations in constant time. Alternatively, we can store the
head and tail of S separately plus all points in S in a balanced search tree, where the points
in S are sorted in lexicographical order. To implement the operations, we search the tree for
the collision check and update the snake by insertions and deletions in the tree.

This solution uses O(n log u) bits and supports operations in O(log n) time. Using
exponential search trees [2], we can improve the time of this solution to O(

√
log n/ log log n),

or if we allow randomization, to constant time with high probability [3–7]. All of the above
solutions work on a standard word RAM model of computation. Each word can store the
location of a coordinate in the grid and hence the word length w ≥ log u. In the same model,
we show the following result.

▶ Theorem 1. We can represent a snake of length n in O(n + log u) bits and support extend
and reduce operations in constant time.

Note that this improves all of the above combinations of time and space bounds. Any
solution must use at least Ω(n + log u) bits.

Techniques. To obtain the results of Theorem 1, we introduce and combine several inter-
esting data structural techniques. We first present a simple solution using O(n log u) bits of
space and constant time for operation. This solution is based on a partitioning of the grid
into square subgrids of size log u× log u, called tiles. The main component of this structure
is a standard balanced binary search tree that stores all of the non-empty tiles (i.e., the tiles
intersected by the snake). For each such tile, we then store a bit string of length log2 u that
encodes the positions of the snake within the tile. This uses O(n log u) bits of space.

To support the operations in constant time, we show how to efficiently schedule and
buffer operations. Intuitively, since the tiles have size log u× log u and the snake only moves
a single position in each operation, we can schedule the needed traversals and updates of the
balanced binary search tree using constant additional time at each operation.

Next, we extend our solution to add another level of tiles of doubly logarithmic size
“nested” within the first level. The new level also maintains balanced binary search trees
of non-empty tiles and an encoding of the snake within each such tile. We show how to
maintain the structure as above in constant time per operation. Here, the key challenge
is achieving and implementing the structure in optimal space. First, we cannot afford to
explicitly encode a tile at level 2 as above. Instead, we show how efficiently encode the
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snake within these tiles and tabulate the operations. Secondly, we cannot afford to explicitly
store log u pointers between different components of the data structure (such as the balanced
binary search trees at the lowest level). Instead, we present a new memory allocation scheme
that efficiently packs together components of the data structure such that the entire structure
fits on O(n + log u) bits of space.

2 Fast Snake with O(n log u) Bits of Space

As a warm-up, we first demonstrate an approach that uses O(n log u) bits of space and
constant time for each operation. Our solution relies upon tilings of the grid G.

▶ Definition 2. Given a parameter τ > 1, we partition G into
⌊
u2/τ

⌋
squares called tiles,

of size τ × τ (the bottom row and rightmost column may be smaller). We call this a τ -tiling
of G. A tile v is empty if it does not contain a point of S. Otherwise, it is non-empty. The
τ -tile set for S, denoted by T τ

S , is the set of non-empty tiles in a τ -tiling of G.

Since S is a collection of consecutively adjacent points in G, we may immediately conclude:

▶ Lemma 3. For all snakes of length n, for all τ , |T τ
S | ≤ 4⌈n

τ ⌉.

2.1 Data Structure

We construct a tiling for G with parameter τ = log u. Let S be a snake of length n. Our
data structure consists of the following components (Figure 1):
1. A direction string D of length n− 1 that stores for each position in S, except the head h,

the direction of its successor. It also stores the relative coordinates of h and t.
2. A head and tail scope. The head scope stores a pointer to the τ -tile v ∈ T that contains

h, the relative coordinates of the head h in v, and the up to eight non-empty τ -tiles
incident to v. The tail scope stores a pointer to each of the τ -tiles intersected by the last
τ/2 points of S, the coordinates of the tail t, and the coordinates of the point tτ = sτ . If
n < τ then tτ = h.

3. A balanced binary search tree B containing the tile set T τ
S . The tiles in B are ordered by

their top-left coordinates in lexicographical order.
4. An insert and delete buffer. The insert buffer stores up to the last four τ -tiles that were

empty before the head entered them (these tiles are not yet in B). The delete buffer
stores up to the first four τ -tiles that became empty after the tail left them (these tiles
are not yet deleted from B).

5. For each τ -tile v ∈ T τ
S ,

a. A counter recording |S ∩ v|.
b. A bit string E(v) that stores a single bit for each position in v, indicating if the position

is empty or non-empty.

The direction string D uses O(n) bits, as we encode each direction with two bits. The
head and tail scope use O(log u) bits as they store O(1) pointers. The counters use O(n) bits
in total, as the total number of counters is at most O(n/τ) and each counter is at most 2 log τ

bits. The binary search tree uses O(n) bits as by Lemma 3, |T τ
S | ∈ O(n/τ) and each pointer

uses at most τ = log u bits. A single bitstring E(v) uses τ2 bits as each tile v contains τ2

points. Thus the total space for the bitstrings is O(τ2(n/τ)) = O(n log u).
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1. t = (2, 3) h = (5, 5). . .

2. tail + head scope = +

4. insert + delete buffer = +

5 (a) v = ⇒ |S ∩ v| = 10

5 (b) v = ⇒ E(v) = 0010000100001110111101000

Figure 1 On the left we show a grid G, tiled with τ -tiles for τ = 5. There is a snake in green.
The red indicates the previous positions of the snake, which are no longer occupied. On the left, we
show the components of our data structure.

2.2 The extend Operation
We now explain how to implement the extend operation. Let h be the head of S before the
operation, and let h′ be the new position of the head. Also, let v and v′ be the τ -tiles in the
grid that contain h and h′, respectively. We proceed as follows:

Step 1: Check for Collisions. We check if there is a collision of h′ with a point on S. Given
h, D, and the head scope, we first identify v′ and compute the relative coordinates of h′ in
constant time. We can test whether v′ is empty using its pointer to the head scope in O(1)
time. There are two cases depending on whether v′ is empty or not:

(i) If v′ is empty, there is no collision. We then construct E(v′) in O(1) time. We set the
corresponding counter to one. We then check if v′ is in the delete buffer (in this case,
we may be in the process of deleting v′ from our data structure). If it is and it is not
the first tile in there, we remove it from the delete buffer. Otherwise, we add v′ to the
back of the insert buffer.

(ii) If v′ is non-empty, we use E(v′) and the relative coordinates of h′ in v′ to check if
there is a collision. If so, we stop and output this. Otherwise, we update E(v′) and the
corresponding counter in O(1) time.

Finally, we update D in constant time.

Step 2: Update Search Tree and Buffers. We move τ -tiles from the insert buffer into B.
To do so, we do a constant amount of work towards inserting the first τ -tile x in the insert
buffer into B. We do enough work to ensure that after τ/8 extend and reduce operations,
x is fully inserted into B. Since an insertion or a deletion in B takes O(τ) time, this can
be obtained by doing O(1) work for each operation. When the tile is fully inserted into B,
we remove it from the insert buffer. Similarly, we do a constant amount of work towards
deleting the first τ -tile x in the deletion buffer from B. By Lemma 3, it follows that there
can be no more than 4 tiles in each of the buffers at any point in time.

Step 3: Update Scopes. The head scope is a set of 3× 3 tiles centered at the τ -tile that
contains h. To maintain the invariant that the scope is in memory at all times, we store
slightly more than the scope. Consider the set of 7 × 7 tiles centered at the τ -tile that
contains h and denote it by Nh. Each non-empty x ∈ Nh is either in B (which supports
lookups in O(τ) time) or in the insert/delete buffer (which have constant size). Each time
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we perform extend, we do constant work towards a lookup for each tile in Nh. If we finish a
lookup and find a τ -tile z, we add z to our head scope list. If a tile z′ ∈ Nh is in the head
scope list and z′ ̸∈ Nh′ , we delete z′ from the list. This way, we maintain that the head
scope is always in the head scope list whilst having O(1) τ -tiles in the head scope list at
all times. Note that this does not change the asymptotic space of the data structure. By
Lemma 3, if |S| > τ , the tail scope remains unchanged. Else, we add v′ to the tail scope if
v ̸= v′ and update tτ .

2.3 The reduce Operation
We show how to implement the reduce operation. Let t be the tail of S before the operation
and let v be the τ -tile in the grid that contain t. We proceed as follows:

Step 1: Update Search Trees and Buffers. Given t and the tail scope, we identify v in
O(1) time. Given the relative coordinates of t in v, we update E(v) and the corresponding
counter in O(1) time. If v is now empty, we first check if it is in the insert buffer. If v is in
the insert buffer and it is not the first tile in there, then we remove it from the insert buffer.
Otherwise, we add it to the delete buffer. Using t, tτ and D we update the tail t and tτ

to their new positions. As in the extend operation, we then do a constant amount of work
towards inserting the first tile from the insert buffer into B and deleting the first τ -tile x in
the delete buffer from B.

Step 2: Update Tail Scope. Let the extended tail scope Nt be the set of tiles intersected
by the last τ points of the snake. As with the head scope, we will maintain a set of tiles,
including all the tiles in the tail scope and possibly some of the tiles in Nt that are not in
the tail scope. Let v′ be the τ -tile containing tτ . If v′ is already in our tail scope list, we do
nothing. Otherwise, we do a constant amount of work towards the search for each of the tiles
in the extended tail scope Nt that are not yet in the tail scope list. We do this fast enough
to ensure that we have finished the search for v′ when it belongs to the tail scope. When
we have finished the search, we add v′ to the tail scope list. By Lemma 3, there can be at
most 4 tiles in the extended tail scope, and thus, we never search for more than 4 tiles at
a time. Note that this does not change the asymptotic space of the data structure. Since
a search in B takes O(τ) time, this can be done with a constant amount of work for each
reduce operation.

2.4 Summary
In summary, the space of the data structure is O(n log u) bits, and each of the operations
uses constant time. Hence, we have the following result.
▶ Lemma 4. We can represent a snake S of length n in O(n log u) bits and support extend
and reduce operations in constant time.

In the following sections, we improve our solution to obtain the result of Theorem 1. We
first show how to efficiently tabulate small subproblems for tiles of size log log n in Section 3.
In Section 4, we then extend the above solution to a two-level data structure with nested
tilings of sizes log n and log log n and apply the tabulation at the lowest level. Unfortunately,
naively storing our data structure would use log u pointers between different components,
which we can not afford within our space bound of O(n + log u) bits. In Section 5, we
show how to dynamically allocate all components of the data structure compactly leading to
Theorem 1.
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3 Tabulation

We now show how to efficiently tabulate τ -tiles for τ = log log n. This will be a key component
in our multi-level data structure. Intuitively, we consider all possible ways a snake S can
intersect a tile v of dimension τ × τ , together with all placements of the (future) head of S,
and store for each combination the outcome after executing the update. Formally, fix any
snake S and let v be any τ × τ square. We define two concepts:

▶ Definition 5. We denote for any τ × τ square v by δv all vertices of the grid that are in v

and incident to the boundary of v, in the clockwise direction.

▶ Definition 6. We define a marked grid as any τ × τ square X that marks each point in the
tile as either {empty, occupied, head, tail}. For each snake S and τ -tile v we immediately
have a corresponding marked grid S ∩ v. Finally, for any pair of marked grids X, Y , we
denote X ≃ Y whenever the two marked grids are identical.

3.1 Tabulation Code
We define what we call our tabulation code encS(v) which is the concatenation of four strings
α(v), β(v), γ(v), ϵ(v). To this end, we note that S uniquely corresponds to a rectilinear curve
that is obtained by connecting consecutive grid points in S by an edge. For any rectilinear
curve S and any square v, we intuitively define the set of maximally connected subcurves in
S ∩ v. We define:

The string α(v) is defined by traversing the vertices x ∈ δv in order and denoting a 1
whenever x ∈ S and a zero otherwise.
The string β(v) considers all maximal subcurves S′ ⊂ S ∩ v that intersect δv sorted by
their first point of intersection with δv. The string β(v) concatenates for each maximal
subcurve S′ a string β(S′). The string β(S′) denotes for all x ∈ S′ the direction of its
successor by using two bits, followed by a symbol that denotes the end of S′.
There are at most two subcurves in S′ ⊂ S ∩ v that do not intersect δv; these must
contain the head and/or tail of S and are considered at the end. If the head and tail of S

are not in v then γ(v) denotes a null symbol. Otherwise, γ(v) uses 2 log τ bits to specify
the relative position of h (and/or t) in v.
If the string γ(v) is not null, the string ϵ(v) considers the maximal subcurve S′ of S ∩ v

that contains the head (or tail) and denotes for all x ∈ S′ the direction of its successor
by using two bits, followed by a symbol that denotes the end of S′.

▶ Lemma 7. For any snake S and any τ -tile v, |encS(v)| ≤ 4τ + 2|S ∩ v| ≤ 2τ2 + 4τ and∑
v∈T τ

S
|encS(v)| ∈ O(n).

Proof. The strings α(v) and γ(v) contain together fewer than 4τ bits. The strings β(v) and
ϵ(v) contain fewer than four times the number of points in S ∩ v. It immediately follows
that encS(v) has fewer than τ + 2|S ∩ v| ≤ 2τ2 + 4τ bits. By Lemma 3, there are at most
O(n/τ) non-empty τ -tiles and thus

∑
v∈T τ

S
|encS(v)| ∈ O(n). ◀

▶ Lemma 8. For any pair of snakes S, S′ and any pair of τ -tiles v, v′ if encS(v) = encS′(v′)
then S ∩ v ≃ S′ ∩ v′.

Lemma 8 allows us to define the inverse of an encoding:

▶ Definition 9. For any string s of at most 4(τ2 + τ) bits, we denote by enc−1(s) the
unique marked grid X such that for all snakes S and τ -tiles v with encS(v) = s, X ≃ S ∩ v.
enc−1(s) is null whenever there exist no snakes S and τ -tiles v with encS(v) = s.
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3.2 Constructing Tables
Given our encoding scheme, we define tables Mcoll, Mhead, and Mtail to check for collisions,
update the head, and update the tail in constant time:

Each entry in Mcoll corresponds to an encoding string s and a position p and stores a
single bit that indicates whether or there is a collision with p and enc−1(s).
Each entry in Mhead corresponds to an encoding string s and a position p adjacent to the
head of s and stores the encoding string s′ resulting from moving the head to position p.
Each entry in Mtail corresponds to an encoding string s and stores the encoding string s′

resulting from reduce the tail.
If an entry to a table is not a valid input, i.e., the encoding string e does encode a valid
snake or the position p in Mhead is not adjacent to the head of the snake, the entry stores an
arbitrary value. We use the tables to simulate the extend and reduce operations in constant
time. Initially, when we first enter a tile v, we fetch the corresponding initial encoding from
the table and store it in the search tree for v. All subsequent new encoding strings for v are
obtained from the above tables, and hence, it inductively follows that we only access entries
corresponding to valid input in the tables.

The space for the tables is dominated by the space Mhead that has 24(τ2+τ)+2 log τ

entries each storing O(τ2) bits. Thus, in total we use O(τ2 · 2(4τ2+τ)) = O((log log n)2 ·
24(log log n)2+log log n) = O(n) bits of space. We can compute an entry in O(τ2) =
O((log log n)2) time, and hence construct the tables in O((log log n)22(4(log log n)2+log log n)) =
O(n) time. We use a standard global rebuilding with deamortization to construct the tables
for exponentially increasing values of n as the length of the snake changes. I.e., we assume
that n ∈ [ 1

2 N, 2N ] and set τ = log log N . Since we can construct the tables in linear time,
the overhead of rebuilding our tabulation before n leaves [ 1

2 N, 2N ] is constant (see also
Section 4.3 for a detailed description of the deamortization).

4 Fast Snake Using Two Levels

We now describe our two-level data structure.

4.1 Data Structure
Let S be a snake of length n. For now, we assume that n ∈ [ 1

2 N, 2N ] for some given N (we
show how to lift this assumption later). Let τ1 = log N and τ2 = log log N . We construct
tilings T1 = T τ1

S and T2 = T τ2
S for G. Our data structure stores the following components for

each Ti where i ∈ {1, 2}.

(a) A direction string D of length n− 1 that stores for each position in S, except the head
h, the direction of its successor. It also stores the relative coordinates of h and t in their
τi-tiles.

(b) A head and tail scope. The head scope stores a pointer to the τi-tile v ∈ T that contains
h, the relative coordinates of h in v, and the up to eight non-empty τi-tiles incident to v.
The tail scope stores a pointer to each of the τi-tiles intersected by the last τi/2 points
of S, the coordinates of the tail t, and the coordinates of the point tτi

= sτi
. If n < τi

then tτi = h.
(c) An insert and delete buffer. The insert buffer stores up to the last four τi-tiles that were

empty before the head entered them. The delete buffer stores up to the last four τi-tiles
that became empty after the tail left them.
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3:8 Snake in Optimal Space and Time

(d) If i = 1, we store for all vj ∈ T1 a counter recording kj = |S ∩N(vj)| where N(vj) is the
tile vj plus the at most four tiles immediately above, left, right or below vj .
If i = 2, we store for all wl ∈ T2 a counter recording k′

l = |S ∩ wl|.
(e) If i = 1 we store one balanced binary tree B on all τ1 tiles in T1. If i = 2 we maintain

for each v ∈ T1 a balanced binary search tree Bv storing v ∩ T2 in lexicographical order.
(f) If i = 1, we maintain for each v ∈ T1 a pointer to the set N(v): the tile v plus the at

most four non-empty τ1-tiles immediately above, left, right or below v.
(g) If i = 2, we store for each tile v ∈ T2 the tabulation code encS(v).

4.2 Operations

We implement the extend operation as in Section 2.2. Instead of querying and updating an
explicit bit string for a tile v on the lowest level we use the corresponding tables and encS(v).
Note that we can query, update, and replace encS(v) in constant time using our tabulation.
Since the scope at level 2 is fully included in the scope of level 1, we can maintain the scope
at level 2 in constant time using the same technique as in Section 2.2. Similarly, we can
implement the reduce operation in constant time.

4.3 Lifting the Assumption

Since our data structure has O(1) update time, we may trivially lift the assumption that
n ∈ [ 1

2 N, 2N ] using standard deamortization techniques. Suppose that n starts out as N . If
n = 3

2 N , we make a copy S′ of the current S and start building a second copy of our data
structure on S′ with N ′ = 3

2 N . Whilst n remains greater than 3
2 N but smaller than 2N , we

perform our updates on S as regular. In the meantime, we do eight extend operations per
operation on S per update on S. Each update instruction on S gets additionally recorded in
a queue. If we have our data structure on S′, we perform eight updates in the queue on S′

per operation on S. This way, when |S| = 2N , it must be that S′ = S. We make the copy
of our data structure our primary data structure (setting N ← N ′). By doing a symmetric
procedure for when |S| < 2

3 N , we may always assume that |S| ∈ [ 1
2 N, 2N ].

5 Achieving O(n + log u) Bits

Naively, pointers take up a word and thus use O(log u) bits. Even with more clever pointer
management dependent on the input size, a collection of pointers that point to n arbitrary
objects in memory require Ω(log n) bits per pointer for O(n log n) bits in total. We show,
through clever pointer management, that our data structure can be implemented using
Θ(n + log u) bits instead. This is asymptotically tight, since the input size is n, and all data
requires at least one word.

Storing components (a),(b), and (c). For both T1 and T2, we store components (a), (b),
and (c) in an arbitrary contiguous set of memory. The direction string requires O(n) bits.
We require O(1) pointers to this string (specifying its start, end, and the location required
by the tail buffer) which take O(log u) bits. Components (b) and (c) each have constant size,
storing these objects plus a pointer to their location thus requires O(log u) bits and so these
components can trivially be stored using O(n + log u) bits.
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Storing components (d),(e), (f) and (g). We store components (d),(e), (f) and (g) through
a two-level definition: where we first store the data structure of T1 and then the data structure
on T2 within it. Our approach is dependent on the following geometric lemma:

▶ Lemma 10. For any snake S, for any vj ∈ T1, the number of τ2-tiles in vj is at most
4kj/τ2.

Proof. We illustrate the proof by Figure 2. Recall that S uniquely corresponds to a rectilinear
curve and consider the set Z of maximal subcurves of S in S ∩ vj . We can construct a snake
S′ by connecting all curves Z with a path along the boundary, so that S′ intersects a minimal
number of grid points. Note that the number of points |S ∩ vj | is at least the number of
points in S′ since S is a connected curve. We may now apply Lemma 3 to note that:

|T2 ∩ vj | ≤ 4|S′|/τ2 ≤ 4|S ∩N(vj)|/τ2 = 4kj/τ2 ◀

▶ Corollary 11. We may store for each vj , for all wl ∈ T2 ∩ vj a constant number of values
of O(τ2) = O(log log N) bits each, using at most O(kj) = O(|S ∩ vj |) bits.

Z = +vj + +

S′ =vj

Figure 2 Left we show a snake S intersecting a τ1-tile vj in orange. We show N(v) as the orange
and purple τ1-tiles. The set Z are all maximally connected curves in S ∩ vj . We construct a snake
S′ by connecting Z using a minimal number of points.

5.1 Technical overview
Before we state our argument, we first provide a technical overview.

First, we show a static algorithm to store a snake S of size N in O(N) space. We view
memory as a contiguous interval of 1000N bits denoted by [1, 1000N ]. We assume that
N > 1000 (else, we have constant input size and may deploy a trivial polynomial dynamic
solution). A consequence of this assumption is that any pointer to a location in [1, 1000N ]
uses 2 log N = 2τ1 bits.

Each v ∈ T1 requires two types of memory as it wants to store:
1. Constantly many pointers and counters of O(log N) bits each,
2. The set T2 ∩ v, which we store using O(|S ∩N(v)|) bits.
By Lemma 3, we have at most N/τ tiles in T1 and so storing these pointers takes O(N) bits
of space. However, storing T2 ∩ v using O(|S ∩N(v)|) bits is considerably more difficult:

Each w ∈ T2 ∩ v requires two types of memory as it wants to store:
1. Constantly many counters, pointers, and the strings αS(w), γS(w) of component (g).
2. The strings βS(w), ϵS(w) of component (g) which have O(|S ∩ w|) bits.
If we manage to store T2 ∩ v in at most O(log2 N) bits of contiguous memory, pointers to
locations within that memory require at most O(log log N) bits. We can restrict our counters
to have size O(log log N) and the strings αS(w), γS(w) have O(log log N) bits each. It follows
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by Corollary 11 that, if we can store T2 ∩ v in a contiguous interval in memory, we can store
w ∈ T2∩v using O(|S∩N(v)|) bits. Statically, guaranteeing that we store data in contiguous
intervals is trivial and this leads to a static algorithm to store our data structure using O(N)
bits and time.

From static to dynamic. To dynamically maintain our data structure we use our deamort-
ization rebuilding technique. We execute N

200 updates without ever deallocating memory.
After N

100 updates, we apply the deamortization technique. We set N ′ ← |S| and run our
static algorithm at 200 operations per update to store our data structure using O(N ′) bits,
at which point we release our previous memory. This way, our analysis only has to show
that during N

100 extend operations, our data structure still fits within 1000N bits. The reduce
operation is thus for free. To illustrate this fact, consider for example N

200 consecutive reduce
updates. Afterwards, N ′ = N − N

200 and so our rebuilt data structure will be considerably
smaller.

To make sure that during the first N
100 extend operations all data structure components stay

within their allotted memory, we recursively apply the deamortization technique. However,
to apply this technique we must be very careful: Each tile has two types of objects which
require a different order of space. Indeed consider a tile v ∈ T1 where O(|S ∩ N(v)|) is
constant. The tile v still requires pointers of size O(log N) each. If we then double |S ∩N(v)|
using O(1) extend operations, we have neither the time nor the space to make a copy of these
pointers. So, we split our data into these two types and store (and double) them separately.
Similarly, the data corresponding to each w ∈ T2 must be stored and treated by two separate
categories, as they grow at different rates.

Our solution is to partition our memory into three types, indicated by the color red,
green and yellow (see Figure 3). Red memory contains all pointers and counters. We only
allocate red memory whenever tiles get added to either T1 or T2 which requires Ω(N/ log N)
and Ω(N/ log log N) extend operations, respectively. Green memory contains data (either
the set T2 ∩ v or the strings βS(w) + ϵS(w)). We allocate more green memory each extend
operation, and must thus carefully to only allocate O(1) data per update. Yellow intervals
are search trees that for any tile v ∈ T1 or w ∈ T2 can return two pointers: indicating the
location of its data in the red and green interval. These pointers again take up non-constant
space; and are only allocated during tile inserts.

5.2 A static algorithm to allocate space

Given are N = |S|, τ1 = log N , τ2 = log log N and the set T1 = (v1, v2, . . .) (sorted
lexicographical order by their top-left coordinate) where each vj ∈ T1 stores:

A pointer to each τ1-tile in the set N(vj).
An integer counter kj recording |S ∩N(vj)|,
The set of τ2-tiles vj ∩ T2 in lexicographical order where each wl ∈ T2 stores:

the integer kl = |S ∩ wl| and the string encS(wl).

Space allocation. We allocate a contiguous set of 1000N bits in memory. For brevity, we
consider memory as an interval in R1 and thus our memory is [1, 1000N ]. For any integer a

and interval [b, c] we denote by a + [b, c] the interval [a + b, a + c]. We assume that N > 1000.
Therefore, pointers that point within [1, 1000N ] have a size of at most 2 log N bits.
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′
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Figure 3 An illustration for how we allocate memory.

We define our memory allocation and then prove that our data structure fits. We store:

1. In [1, 100N ] for all vj ∈ T1 an interval [pj , qj ]. Specifically, [p1, q1] = [1, 10 log N ] and
[pj , qj ] = qj−1 + [1, 10 log N ]. [50N, 100N ] remains empty. Each [pj , qj ] stores:

Components (d) and (f) of vj ∈ T1.
2. In [100N, 950N ] for all vj ∈ T1 an interval [aj , bj ]. Specifically, [a1, b1] = 100N +[1, 104k1]

and [aj , bj ] = bj−1 + [1, 104kj ]. The interval [650N, 950N ] remains empty. [aj , bj ] stores:
i. In aj + [1kj , 32kj ] for all wl ∈ T2 ∩ vj an interval [p′

l, q′
l]. [p′

1, q′
1] = aj + [1, 8 log log N ]

and [p′
l, q′

l] = q′
l−1 + [1, 8 log log N ]. Each interval [p′

l, q′
l] stores:

Component (d) of wl ∈ T2∩vj and from Component (g) the strings αS(wl)+γS(wl).
In aj + [32kj , 64kj ] we keep empty space (for now).

ii. In aj + [64kj , 68kj ] for all wl ∈ T2 ∩ vj an interval [a′
l, b′

l] of size 4k′
l. Specifically,

[a′
1, b′

1] = aj + 64kj + [1, 4kj ] and [a′
l, b′

l] = b′
l−1 + [1, 4kj ]. Each interval [a′

l, b′
l] stores:

From component (g) the strings βS(wl) + ϵS(wl) plus 2k′
l bits of empty space.

In aj + [68kj , 72kj ] we store empty space (for now).
iii. In aj + [72kj , 88kj ] component (e): a balanced binary tree Bvj

over T1 ∩ vj .
Each node storing wl also stores a pointer to the location of p′

l and a′
l.

In aj + [88kj , 104kj ] we store empty space (for now).
3. In [950, 100N ] component (e): a balanced binary tree B over T1. Each node storing vj

also stores pointers to the locations of pj and aj . [450N, 500N ] remains empty.

▶ Lemma 12. Components (d), (e), (f) and (g) fit within their allocated memory. Moreover,
given our input as specified we can allocate our data structure in O(N) time.

Proof. We prove the statement in order:
We allocate intervals [pj , qj ] for vj ∈ T1 of 10 log N bits. By Lemma 3, there are at most
4⌈N/τ1⌉ = 4⌈N/ log N⌉ τ1-tiles vj in T τ1

S . So,
∑

vj∈T1

4 log N ≤ 40N and
⋃

j [pj , qj ] ⊂ [1, 40N ].

Each interval [pj , qj ] stores components (d) and (f) of vj . The counter kj is at most
log((τ1)2) ≤ 2 log N bits and four pointers in [0, 1000N ] use fewer than 8 log N bits.

We allocate intervals [aj , bj ] of width 104kj . ∀si ∈ S, there are at most 5 τ1-tiles with
si ∈ N(vj). Thus,

∑
j

104kj =
∑
j

104|S ∩N(vj)| ≤ 5 ·
∑

si∈S

104 ≤ 520N . For each [aj , bj ]:
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i. We allocate intervals [p′
l, q′

l] for wl ∈ T2 ∩ vj of 8 log log N bits. By Lemma 10, there
are at most 4kj/τ2 = 4kj/ log log N τ2-tiles in T2 ∩ vj . So,

∑
wl∈T2∩vj

8 log log N ≤ 32kj .

Thus
⋃

[p′
l, q′

l] has a width of at most 32kj and an interval of width 32kj remains empty.
Each interval [p′

l, q′
l] stores component (d) of w′

l and of component (g) α(wl) + γ(wl).
The counter k′

l is at most log((τ2)2) ≤ 2 log log N bits. By Lemma 7, these strings
use 4 log log N bits. So the total takes 6 log log N < 8 log log N bits.

ii. We allocate [a′
l, b′

l] for wl ∈ T2 ∩ vj of 4k′
l bits.

∑
wl∈T2∩vj

4k′
l = 4

∑
wl∈T2∩vj

|S ∩ w| ≤ 4kj .

Thus, we may leave an interval of 4kj bits empty.
By the proof of Lemma 7, the strings βS(wl) and ϵS(wl) of encS(wl) use 2k′

l bits
and so [a′

l, b′
l] has 2k′

l empty bits remaining.
iii. By Lemma 10, |T2 ∩ vj | ≤ 4kj/ log log N . We store component (e), a balanced binary

tree Bvj where each node representing wl stores a pointer to the location of p′
l and a′

l

of at most 2 log log N bits. Moreover, |T2 ∩ vj | ≤ (log N)2. Thus, we may construct a
balanced binary tree on T2 ∩ vj using 16kj bits in total, leaving 16kj bits empty.

By Lemma 3, there are at most 4⌈N/τ1⌉ = 4⌈N/ log N⌉ τ1-tiles in T1. We store compon-
ent (e) as a balanced binary tree where nodes store two pointers of at most 2 log N bits.
Thus, the balanced binary tree fits within an interval of width 10N .

Since the input is already sorted, the whole allocation can trivially be done in O(N) time. ◀

5.3 Dynamically maintaining our space allocation
We dynamically maintain our space allocation as follows. For N

100 updates, we never deallocate
any space. Thus, the reduce operation has no effect on our storage. For any extend operation
during this time, we allocate additional space: filling up the pre-allocated empty space in our
memory. Whenever a pre-allocated empty interval is half full, we allocate a new interval of
twice the size and start copying the data into the new interval. We prove that this way, we
never store data in an interval that is empty. We first introduce some additional concepts:

Denote for each τ1-tile vj ∈ T1 a counter K∗
j = [aj , bj ].

There are two ways this counter can be stored. Firstly this counter never exceeds
2 log N bits and store it alongside kj in [pi, qj ] by increasing our space by a small
constant factor. If the reader is hesitant towards increasing space any further, this
counter may always be computed from [aj , bj ] in O(1) time.

We describe the compounded effect of extend and reduce operations through five events:
1. In the mini-spawn event, we add a τ2-tile wl to T2 with wl ⊂ vj ∈ T1.

Denote by [p, q] and [a, b] the empty set of bits in aj + [16kj , 32kj ] and aj + [64kj , 72kj ].
We allocate [p′

l, q′
l] = q + [1, 8 log log N ] and [a′

l, b′
l] = b + [1, 4kj ] in [a, b] (shrinking

[p, q] and [a, b] accordingly). Then we insert wl into Bvj
.

2. In the spawn event, we add a τ1-tile vj to T1.
Denote by [p, q] the remaining space in [1, 100N ]. We allocate [pj , qj ] = q +[1, 10 log N ]
and shrink [p, q] accordingly. Similarly let [a, b] be the remaining space in [650N, 950N ].
We allocate [aj , bj ] = b + [1, 104kj ] and shrink [a, b] accordingly. Finally, we insert vj

into the balanced binary tree B, allocating 4 log log N bits in [950N, 1000N ].
3. In the mini-double event for wl ∈ T2, [a′

l, b′
l] has three quarters of its bits allocated.

Conceptually, we set [x′
l, y′

l]← [a′
l, b′

l].
Let [a, b] be the empty space in a space in aj + [68kj , 72kj ]. We allocate a new interval
[a′

l, b′
l] = a + [1, 2 · |[x′

l, y′
l]|] to wl and reduce [a, b] accordingly.

We refer to [x′
j , y′

j ] as the shadow of [a′
j , b′

j ].
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4. In the double event for vj ∈ T1, the empty half of the red, green or yellow interval
in [aj , bj ] has at least half of its bits allocated. I.e., either aj + [32K∗

j , 64K∗
j ], or,

aj + [68K∗
j , 72K∗

j ], or, aj + [88K∗
j , 104K∗

j ] has at least half of its bits allocated.
Conceptually, we set [xj , yj ]← [aj , bj ].
Let [a, b] be the empty space in [550N, 950N ]. We allocate a new interval [aj , bj ] =
b + [1, 104kj ] to vj and reduce [a, b] accordingly.
We refer to [xj , yj ] as the shadow of [aj , bj ] and set K∗

j ← 2K∗
j .

5. In the mega-double-event, the empty half of the red, green or yellow interval in
[1, 1000N ] has at least half of its bits allocation. I.e., one of the tree intervals: [50N, 100N ],
[650N, 950N ] or [984N, 1000N ] has at least half of its bits allocated.

▶ Lemma 13. For any wl ∈ T2, it takes at least |[a′
l, b′

l]|/2 extend operations (where the head
is in wl) before we trigger a mini-double event for wl.

Proof. By Lemma 7, the length of the substrings βS(wl) + ϵS(wl) of encS(wl) have at most
2k′

l bits. When [a′
l, b′

l] was created let |S ∩ wl| = X. Per definition, the width of [a′
l, b′

l] was
4X with 2X bits remaining empty and so the lemma follows. ◀

▶ Lemma 14. For any vj ∈ T2, it takes at least K∗
j /4 extend operations (with the head in

N(vj)) before we trigger a double event for vj.

Proof. We do a case distinction on what triggered the event:
Suppose that aj + [32K∗

j , 64K∗
j ] has at least half of its bits allocated (this is the empty

space of the red interval). We only allocate memory in these intervals during a mini-spawn
event in vj . At a mini-spawn event, we allocate 8 log log N bits in the red interval. Thus,
by the time that we have filled 16K∗

j bits, we must have triggered 2K∗
j / log log N mini-

spawn events. By Lemma 3, it takes at least log log N extend operations in N(vj) to
trigger four mini-spawn events in vj and so the lemma follows.
Suppose that aj + [88K∗

j , 104K∗
j ] has at least half its bits allocated (this is the empty

space of the yellow interval). We only allocate memory in these intervals during a
mini-spawn event. At a mini-spawn event, we allocate 4 log log N bits. Thus, by the
time that we have filled 8K∗

j bits we must have triggered K∗
j / log logN mini-spawn

events. By Lemma 3, it takes at least log log N extend operations in N(vj) to trigger four
mini-spawn events in vj and so the lemma follows.
Suppose that aj + [68K∗

j , 72K∗
j ] has at least half of its bits allocated (this is the empty

space of the green interval). If this memory was (largely) allocated through mini-spawn
events, then since each such event allocates O(1) bits in this range and requires at least
one extend operation. Thus, the lemma trivially follows. So suppose that this memory
was allocated through mini-double events instead.
For any wl ∈ T2 ∩ vj denote [a′

l(1), b′
l(1)] = [a′

l, b′
l] whenever [a′

l, b′
l] ⊂ aj + [68K∗

j , 72K∗
j ].

I.e., consider the current interval associated to wl if it is stored in the empty half of
the green interval. We recursively define the intervals [a′

l(t), b′
l(t)] as the shadow of

[a′
l(t− 1), b′

l(t− 1)]. We note two facts: Firstly, our assumption implies that the intervals
[a′

l(t), b′
l(t)] use at least 2K∗

j bits in aj + [68K∗
j , 72K∗

j ]. Secondly, for all l, for all t,
|[a′

l(t), b′
l(t)]| = 1

2 |[a
′
l(t− 1), b′

l(t− 1)]|. It follows from the geometric series that:∑
wl∈T2∩vj

∑
t

|[a′
l(t), b′

l(t)]| ≥ 2K∗
j ⇒

∑
wl∈T2∩vj

|[a′
l(1), b′

l(1)]| ≥ K∗
j .

The interval [a′
l(1), b′

l(1)] can only have been created through a mini-double event on
[a′

l(2), b′
l(2)]. By Lemma 13, it takes 1

2 |[a
′
l(2), b′

l(2)]| ≥ 1
4 |[a

′
l(1), b′

l(1)| extend operations
in wl before this event is triggered and so the lemma follows. ◀
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▶ Lemma 15. It takes at least N/100 extend operations to trigger a mega-double event.

Proof. The proof is analogous to Lemma 14 as a case distinction on the event trigger:
Suppose that [50N, 100N ] has at least half of its bits allocated (this is the empty space
of the red interval). We only allocate memory in these intervals during a spawn event.
At a spawn event, we allocate 10 log log N bits in the red interval. Before we filled 25N

bits, we must have triggered 2N/ log log N spawn events. By Lemma 3, it takes at least
log log N extend operations to trigger four spawn events and so the lemma follows.
Suppose that [984N, 1000N ] has at least half its bits allocated (this is the empty space of
the yellow interval). We only allocate memory in these intervals during a spawn event.
At a spawn event, we allocate 4 log log N bits. Thus, by the time that we have filled 40N

bits we must have triggered 10N/ log logN spawn events. By Lemma 3, it takes at least
log log N extend operations to trigger four spawn events and so the lemma follows.
Suppose that [650N, 950N ] has at least half of its bits allocated (this is the empty space
of the green interval). The space required by 1

10 N spawn events may be charged to all
the other space in memory (since each spawn event allocates memory proportional to
how much memory is already in space). Thus, we may suppose that this memory was
allocated through double events.
For any vj ∈ T1 denote [aj(1), bj(1)] = [aj , bj ] whenever [aj , bj ] ⊂ [650N, 950N ]. I.e.,
consider the current interval associated to vj if it is stored in the empty half of the green
interval. We recursively define [aj(t), bj(t)] as the shadow of [aj(t− 1), bj(t− 1)].
We note two facts: Firstly, our assumption implies that the intervals [aj(t), bj(t)] use at
least 150N bits in [650N, 950N ]. Secondly, for all l, for all t, |[aj(t), bj(t)]| = 1

2 |[aj(t−
1), bj(t− 1)]|. It follows from the geometric series that:∑

vj∈T1

∑
t

|[aj(t), bj(t)]| ≥ 150N ⇒
∑

vj∈T1

|[aj(1), bj(1)]| ≥ 75N.

[aj(1), bj(1)] can only have been created through a double event on [aj(2), bj(2)]. By
Lemma 14, it takes 1

8 K∗
j ≥ 1

8·104 |[aj(1), bj(1)]| extend operations in N(vj) before this
event is triggered.1 Each extend operation occurs in N(vj) for at most five tiles in T1.
This implies that at least 75

8·104·5 ≥
N

100 extend operations must have occurred. ◀

5.3.1 Proving our main theorem
We are now ready to prove:

▶ Theorem 1. We can represent a snake of length n in O(n + log u) bits and support extend
and reduce operations in constant time.

Proof. We assume that n ∈ [0.5N, 2N ] and that we have built our data structure with τ1 =
log N and τ2 = log log N . On a macro-level, we use the standard rebuilding deamortization
technique. For the first N

200 updates, we update our data structure in O(1) worst-case time
using our update strategy of Section 4.2; allocating space until we trigger a mini-double or
double event.

Whenever we trigger a mini-double event for a tile wl ∈ T2, we reallocate the new
memory [a′

l, b′
l] in O(1) time. Over the next |[a′

l, b′
l]|/10 updates that change S ∩Wl, we

perform ten times the work to both execute the work in the shadow of [a′
l, b′

l] and copy all

1 Indeed, it took 1
4 K∗

j extend operations to trigger a double event, after which K∗
j was doubled. Moreover,

per definition, [aj , bj ] is 104K∗
j bits wide.
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info from its shadow into [a′
l, b′

l] (whilst queueing updates not executed in [a′
l, b′

l]). When we
have successfully copied the shadow of [a′

l, b′
l] we dequeue updates at four times the pace we

are queueing them so that our interval [a′
l, b′

l] is up to date before its shadow is full.
Whenever we trigger a double event for a tile vj ∈ T1, we reallocate the new memory

[al, bl] in O(1) time. Over the next K∗
j /10 updates that change S ∩ v, we perform ten times

the work to both execute the update in the shadow of [aj , bj ] and copy all info from its shadow
into [al, bl] (whilst queueing updates not executed in [aj , bj ]). When we have successfully
copied the shadow of [aj , bj ] we dequeue updates at four times the pace we are queueing
them so that our interval [aj , bj ] is up to date before its shadow is full.

This way, we maintain our data structure in O(1) time for the first N
200 updates. By

Lemma 15, we cannot trigger a mega-double event in this time and thus everything fits well
within memory. At this point, we set N = n and we reallocate a new interval of 1000N bits.
Over the next N

200 updates, we do four times the work: executing updates on our original
interval whilst copying the info from our original interval into the new interval (queuing
updates in the process). When we have successfully copied the original interval into the new
interval, we dequeue the updates at four times the pace that we are queuing them so that
the new copy is up to date before we reach N

200 updates in the first interval. Thus, we never
trigger a mega-double event and we always fit within O(N) bits. ◀
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Abstract
We study the Solo-Chess problem which has been introduced in [Aravind et al., FUN 2022]. This
is a single-player variant of chess in which the player must clear all but one piece from the board
via a sequence captures while ensuring that the number of captures performed by each piece does
not exceed the piece’s budget. The time complexity of finding a winning sequence of captures has
already been pinpointed for several combination of piece types and initial budgets. We contribute to
a better understanding of the computational landscape of Solo-Chess by closing two problems left
open in [Aravind et al., FUN 2022]. Namely, we show that Solo-Chess is hard even when all pieces
are restricted to be only rooks with budget exactly 2, or only knights with budget exactly 11.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Mathematics of computing → Combinatorics

Keywords and phrases solo chess, puzzle games, board games, NP-completeness
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1 Introduction

Solo-Chess is a puzzle game available on chess.com [9]. The game is played by a single
player on a 8 × 8 chessboard that initially contains an arrangement of chess pieces. All the
pieces have the same color but they are otherwise allowed to capture each other following
the standard capturing rules of chess. Each move performed by the player is required to
be a capture and the goal is that of removing all but one piece from the board. Moreover,
each piece has an associated budget that limits the number of captures it can make. More
precisely, all the initial budgets are 2, and only pieces with positive budget are allowed to
capture by spending one unit of their budget.1

The problem of finding a winning sequence of captures has been first studied from the
computational point of view in [1], where the authors generalize the chessboard to an arbitrary
size and allow each piece to have an arbitrary non-negative initial budget. More precisely,
given a set of piece types P ⊆ {p,r,n,b,k,q} and a collection of allowed budgets
B ⊆ N, we denote by Solo-Chess(P , B) the problem in which all pieces on the board have
some type in P and an initial budget in B.2

1 In the chess.com version of the game, there is at most one king on the chessboard and, if a king exists,
it must be the last remaining piece.

2 To lighten the notation, we sometimes write Solo-Chess(t, B) instead of Solo-Chess({t}, B).
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Aravind et al. [1] focus on instances containing pieces of a single type, and show that
Solo-Chess(r, {0, 1, 2}), Solo-Chess(b, {0, 1, 2}), and Solo-Chess(q, {2}) are NP-
hard, while Solo-Chess(p, {0, 1, 2}) and Solo-Chess({p,r,n,b,k,q}, {0, 1}) can
be solved in polynomial time. They also consider the Solo-Chess(r, {0, 1, 2}) problem
played 1D boards (i.e., boards with a single row/column) and provide a polynomial-time
algorithm. Among others, [1] explicitly mentions the following two open problems:

What is the computational complexity of Solo-Chess(r, {2})?
What can be said about the complexity of Solo-Chess played by knights alone?

Our results. In this paper we answer these two questions by showing that both the above
problems are NP-hard. In particular, Solo-Chess played by only knights remains NP-hard
even when all knights have the same constant budget. Formally, we prove the NP-hardness of
Solo-Chess(r, {2}) and Solo-Chess(n, {11}) by providing polynomial-time reductions
from (suitable versions of) the vertex cover and Hamiltonian path problems.

An interactive demonstration of our reductions can be found at https://www.isnphard.
com/g/solo-chess/.

Other related work. The Solo-Chess problem has also been studied in [4], where the special
case in which the number of captures of each piece is unrestricted was considered, and it
shown that it is polynomial-time solvable whenever ∣P ∣ = 1, while the problem becomes
NP-hard for any choice of P with ∣P ∣ ≥ 2. The authors also consider the case in which
exactly one of the pieces cannot be captured (and hence it must be the last piece of the
board in any solution), and all other (capturable) pieces are of the same type (which might
or might not coincide with type of the uncapturable piece). Almost all possible combinations
of types are shown to be either NP-complete or polynomial-time solvable.

Aravind et al. [1], also study a variant of Solo-Chess that is played on a graph, where
vertices represent pieces, and edges represent the available captures. Solo-Chess is also close
in spirit to other problem that require capturing pieces in order to clear a board, such as peg
solitaire and its variants [11, 8, 3].

Finally, we mention that the classical 2-player chess game is known to be EXPTIME-
complete or PSPACE-complete depending on whether the number of allowed moves is upper-
bounded by a polynomial [5, 10].

Structure of the paper and notation. The NP-Hardness of Solo-Chess(n, {11}) is
discussed in Section 2, while Solo-Chess(r, {2}) is considered in Section 3. Throughout
the paper, we use the notation p → p

′ to denote a move in which piece p captures piece
p
′. Sometimes, it will be more convenient to refer to the squares occupied by the pieces

instead. If p and p′ are on squares q and q′, respectively, all of the following will also denote
move p → p

′: (i) p → q
′, (ii) q → p

′, and (iii) q → q
′. We also shorten a sequence of

k consecutive captures of the form p1 → p2, p2,→ p3, . . . , pk−1 → pk by simply writing
p1 → p2 → p3 → . . . pk−1 → pk.

2 Solo-Chess with only knights

In this section we establish the NP-hardness of Solo-Chess(n, {11}). In order to do so, we
first show that the more general Solo-Chess(n, {0, 2, 11}) problem is NP-hard, and then,
in Section 2.3, we argue that knights with budgets 0 and 2 can be simulated by only using
knights with budget 11. In the rest of this section, we refer to a knight with budget b as a
b-knight.

https://www.isnphard.com/g/solo-chess/
https://www.isnphard.com/g/solo-chess/
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Figure 1 (a) And instance G of rhp. (b) The corresponding planar orthogonal grid drawing
D of G, where the segments ℓ

′
u,v are shown in red. (c) A sketch of the chessboard obtained from

D, where the tiles corresponding to the segments ℓ
′
u,v are highlighted with a red band along the

direction of the segment.

Our reduction to Solo-Chess(n, {0, 2, 11}) is from a restriction of the Hamiltonian
path problem to a suitable class of input graphs, which we name rhp. The Hamiltonian
path problem is a well-known NP-hard problem that asks to decide whether a given input
graph G = (V,E) contains a simple path that traverses all vertices in V . In rhp we restrict
ourselves to instances in which G is planar, V contains exactly two vertices s, t with degree
1, and all other vertices have degree 3 (see Figure 1 (a)). We call s the start vertex and t the
end vertex of G. Clearly, G contains a Hamiltonian path iff it contains a Hamiltonian path
from its start to its end vertex.

Notice that the rhp problem is NP-hard. Indeed, [7] shows that the Hamiltonian cycle
problem is NP-hard when the instances are restricted to planar cubic graphs (i.e., graphs
in which every vertex has degree exactly three) by providing a reduction from the 3-SAT
problem. A closer inspection of such a reduction shows that the resulting graphs G′ contain
some special edge e = (u, v) such that if G′ admits a Hamiltonian path P then P must
traverse e.3 We can then obtain an instance G of rhp by deleting e from G

′ and replacing it
with two new vertices s, t along with the edges (s, u) and (u, t).

The high-level idea of our reduction is that of embedding the graph G on a chessboard.
Since all vertices in V \ {s, t} have degree 3, finding a Hamiltonian path in G can be thought
of as the problem of deleting exactly one edge incident to each vertex of degree 3. To achieve
this, each “edge” in our reduction will be equipped with a suitable edge deletion gadget. Once
the selected edges have been deleted, the rest of the board encodes the sought Hamiltonian
path, but it still contains some knights that need be cleared along the Hamiltonian path.
This will be done by tracing the Hamiltonian path using a knight that is initially placed in s,
while capturing all remaining knights along the way. Actually, in order to keep the budgets
small, this traversal will not be performed by a single knight but rather by a collection of
knights that use suitable gadgets as relay stations.

We now describe the technical details of our reduction to Solo-Chess(n, {0, 2, 11}): we
start by finding a planar orthogonal grid drawing D of G, i.e., a mapping that associates each
vertex v ∈ V to a distinct point pv having integer coordinates, and each edge (u, v) ∈ E to a
non self-intersecting polyline ℓu,v connecting pu to pv and consisting of the union of alternating
(and non-empty) horizontal and vertical segments such that (i) all the segments’ endpoints

3 Such an edge can be found in polynomial-time. In fact, the reduction of [7] even uses a special gadget
for the exact purpose of forcing an edge to be in all Hamiltonian paths of G

′.
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are at integer coordinates, (ii) ℓu,v does not contain any point pw with w ∈ V \ {u, v}, and
(iii) the polylines of different edges do not intersect (except possibly at their endpoints).
Suppose w.l.o.g. that the x-coordinates (resp. y-coordinates) used by the drawing range from
1 to w (resp. from 1 to h). A drawing D with w ⋅h = O(n2) can be found in polynomial time
w.r.t. ∣V ∣ (see [12] and the references in Section 5.3 of [2]). We further assume that each
polyline ℓu,v between two distinct vertices u, v ∈ V \ {s, t} contains at least one horizontal or
vertical segment ς with a length of at least 5,4 and we choose a contiguous portion ℓ

′
u,v of ς

that has length 3, starts and ends at integer coordinates, and does not include the endpoints
of ς (see Figure 1 (b)).

The chessboard of our instance of Solo-Chess(n, {0, 2, 11}) has size (14h+1)×(14w+1)
and consists of h × w tiles, i.e., contiguous sub-chessboards of size 15 × 15, such that each
tile corresponds to a point at integer coordinates in D and any two horizontally or vertically
adjacent tiles share 15 squares along their common edge (see Figure 1 (c)). Each of these tiles
is either empty or it hosts a (portion of) some gadget. Gadgets are arrangements of knights
which span an integral number of connected tiles. We will make use of six gadget types, five
of which span exactly one tile, while the remaining one spans 4 consecutive tiles (either
horizontally or vertically). More precisely, we use a start gadget and an end gadget for the
tiles corresponding to s and t, respectively; a straight edge gadget for each tile corresponding
to a point that lies on some polyline ℓu,v but is neither in {pu, pv} nor on ℓ

′
u,v (if any); a

corner edge gadget for each tile corresponding to an endpoint of a segment of some polyline
ℓu,v, except for the endpoints pu, pv of ℓu,v itself; and a cubic vertex gadget for each tile
corresponding to a point pv for v ∈ V \ s, t. The sixth and final gadget type is the edge
deletion gadget. We use an edge deletion gadget for each edge (u, v) ∈ E with u, v ∈ V \ s, t
and we place it on the four tiles corresponding to the points of integer coordinates in ℓ

′
u,v.

Our gadgets will interact with one another by sharing 0-knights placed on their perimeter.
The squares hosting these knights are marked with a × symbol in our figures and will be
referred to as input/output (I/O) squares. An I/O square q of a gadget acts as an input if
some (b+ 1)-knight that is not in one of the gadget’s squares captures the 0-knight originally
placed on q. In this case, we say that the gadget takes a b-knight as an input. An I/O square
q of a gadget acts as an output whenever some b-knight that is in one of the gadget’s squares
captures a knight on q. In such a case we say that the gadget outputs a (b − 1)-knight. The
gadgets are designed to ensure that, in any winning sequence of moves, no I/O square can
be the target of two distinct captures, and hence it cannot act as both an input and as an
output (although it might play different roles in different winning sequences).

In the following, all squares marked with ●, ○, ⭑, or × contain 0-knights, the ones
marked with ▪ contain 2-knights, and the ones marked with n contain 11-knights. We say
that a b-knight is lively if b ≥ 6 and lazy if b ≤ 5. We now discuss our gadgets.

Start and end gadgets

The start and end gadgets are shown in Figure 2 (a) and Figure 2 (b), respectively, and have
a single I/O square each. The start gadget corresponds to vertex s and is meant to output a
single 7-knight (and no b-knight with b > 7 can be output).

The end gadget corresponds to vertex t and is meant to be played at the end of any
winning sequence. Since the knight initially at ⭑ has budget 0 and can only be captured
from exactly one of the ● squares, any winning sequence must necessarily place the last
remaining knight on ⭑, which we name the goal square. It is possible to clear all but a single
night from the end gadget iff the gadgets takes a b-knight with b ≥ 7 as input.

4 This can always be guaranteed, e.g., by “scaling up” the drawing by a factor of 5.
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(a) (b)
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⭑

Figure 2 (a) The arrangement of knights in the start gadget. (b) The arrangement of knights in
the end gadget.

n n n

(a) (b) (c) (d)

n

Figure 3 (a) The arrangement of knights in a straight edge gadget. (b) A sequence of moves
that allows the gadget to output a 3-knight from the right I/O square when a 3-knight is input in
the left I/O square. Red moves are played before blue moves. (c) A sequence of moves that allows
the gadget to output a 7-knight from the right I/O square when a 7-knight is input in the left I/O
square. (d) The arrangement of knights in a corner edge gadget.

Straight edge gadgets

Each of these gadgets corresponds to a portion of either a horizontal or a vertical segment
of some polyline ℓu,v connecting pu to pv in D, as long as such portion does not lie in ℓ

′
u,v

(which is handled by the edge deletion gadget). In the following we discuss how knights are
arranged in the case of a horizontal segment. The vertical case is obtained by rotating the
discussed gadget by 90 degrees (either clockwise or counterclockwise).

The arrangement of knights in the gadget is shown in Figure 3 (a). If a b-knight with
b ≥ 3 is input in one of the I/O squares, then it is possible to output a 3-knight from the
opposite I/O square (see Figure 3 (b)). Similarly, when a 7-knight is input in one of the I/O
squares, it is possible to output a 7-knight from the opposite I/O square (see Figure 3 (c))
but it is not possible to output any b-knight with b > 7.

Moreover, if a lazy knight is input in one of the I/O squares, there exists no winning
sequence of captures that allows the gadget to output a lively knight. Finally, it is impossible
for any sequence of moves to use both I/O locations as outputs, or for any winning sequence
of moves to use both I/O locations as inputs (since this would isolate some knight in the
gadget from the goal square).

Essentially, this gadget allows to “teleport” either a 3-knight or a 7-knight from an I/O
square to the opposite one, while clearing all but the latter square. By chaining together
multiple straight edge gadgets it is possible to move a 3-knight or a 7-knight across any
horizontal or vertical segment of a polyline.
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n n

n n

Figure 4 The arrangement of knights in an edge deletion gadget.

Corner edge gadgets

A corner edge gadget allows to connect an horizontal segment of a polyline to an adjacent
vertical segment, or vice-versa, and is shown in Figure 3 (d). We only discuss one possible
orientation of the gadget, as the others are obtained by a 90-, 180-, or 270-degree rotation.
The gadget is almost identical to the straight edge gadget of Figure 3 (a), as the only
differences are the positions of a square marked ●, and that of the rightmost I/O square
which has been relocated to the bottom edge of the gadget. Neither of these changes affects
the threat relationships between the pieces, hence our discussion of the straight edge gadgets
also applies to corner edge gadgets.

By chaining together a combination of straight edge and corner edges gadgets it is possible
to move a 3-knight or a 7-knight across any portion of a polyline.

Edge deletion gadgets

We use exactly one edge deletion gadget per edge (u, v) ∈ E with u, v /∈ {s, t}. Such a
gadget spans 4 consecutive tiles either horizontally or vertically (i.e., a 15 × 57 or 57 × 15
sub-chessboard) and is placed in the tiles corresponding to the portion ℓ′u,v of the polyline ℓu,v.

As for the straight edge gadget, in the following we only discuss the horizontal version
of the gadget, shown in Figure 4, since the vertical version can be obtained by a 90-degree
rotation.

The gadget has two I/O squares on opposite sides and there are two intended ways to
play the gadget, which are shown in Figure 5, and we name them traversal mode and deletion
mode. In traversal mode a lively knight is input in one of the I/O squares and a 7-knight is
output from the opposite I/O square. In deletion mode each of the two I/O squares outputs
a 3-knight.

No winning sequence of moves can use both I/O squares as inputs (since this would
isolate some knight in the gadget from the goal square). Moreover, if a lazy knight is input
in one I/O square, then it is impossible for a winning sequence to output a lively knight from
the opposite I/O square. To see this, let k1, k2, k3, k4 and q1, q2, q3, q4 respectively be the
11-knights and the squares marked with ○ in Figure 4, from left to right. Assume w.l.o.g.5

that a lively knight is output by the rightmost I/O square q∗, and notice that this implies
that the 0-knight on q

∗ is captured by k4, which cannot clear q4. Then, q4 must be cleared
by k3 and, in turn, q3 must be cleared by k2, and q2 must be cleared by k1. This means the
input knight k on the leftmost I/O square must clear q1, i.e., k must have a budget of at
least 6.

5 A symmetric argument holds when the I/O square used as an output is the leftmost one (once ki is
renamed in k5−i and the appropriate symmetric squares for q1, . . . , q4 are chosen).
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Figure 5 Top: the sequence of moves played when an edge deletion gadget is used in traversal
mode in order to output a 7-knight from the right I/O square when a lively knight is input in the
left I/O square. Bottom: the sequence of moves played when an edge deletion gadget is used in
deletion mode in order to output a 3-knight from each of the two I/O squares. In both figures the
order of the moves is: red, blue, green, purple, and teal (if any).

Cubic vertex gadgets

Each vertex v ∈ V \ {s, t} corresponds to a tile (namely, the tile associated to coordinates pv)
which contains (a suitable rotation of) the cubic edge gadget of Figure 6 (a). This gadget
has 3 I/O squares, each of which corresponds to a distinct edge incident to v.

In the intended operation of the gadget, any two I/O squares are used as inputs while
the remaining one is an output. In details, if the gadget takes two knights with budgets at
least 3 and 7 as input then it can be used to output a 7-knight. Figures 6 (b)–(d) show how
this can be done for any combination of the intended input/outputs, up to symmetries.

No winning sequence of moves can use all the I/O squares as inputs. Moreover, if the
gadget outputs a lively knight then it must take at least one lively knight as input. Indeed,
the lively knight output from the gadget must necessarily be the only 11-knight k initially
placed in the gadget itself (notice that any input knight placed on some I/O square must
perform at least 6 captures to reach another I/O square), which implies that k cannot clear
the square q marked with ○. Hence, q must be cleared by some input knight k′, but this
requires k′ to perform at least 6 captures.

A similar reasoning shows that, in any winning sequence moves, the gadget cannot output
two ore more lively knights. Indeed, for this to happen, there needs to be an output lively
knight k′ ≠ k, which must necessarily be also an input knight. Then, (a) k must be the other
lively output knight and, since k′ cannot clear q (as this would require at least 6 captures,
resulting in a budget of at most 5, (b) k must clear q. However, it is impossible for both (a)
and (b) to happen.

Finally, we point out that it is possible to play the gadget in the following unintended
way: whenever two knights with budget at least 3 as used as inputs, a 3-knight can be output
form the remaining I/O square. However, as we argue in more details later, our edge deletion
gadgets ensures that doing so always results in a losing configuration.
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(a) (b) (c) (d)

n nn n

Figure 6 (a) The arrangement of knights in a cubic vertex gadget. (b)–(d) each show a sequence
of moves that outputs a 7-knight from one of the I/O squares when two knights having budgets at
least 3 and 7 are input in the other two I/O squares. Red moves are performed fist, followed by blue
moves, and then by green moves.

2.1 One direction
Let P be a Hamiltonian path of G = (V,E) that starts in s and ends in t. Let EP be
the edges in P and EP = E \ EP , and recall that the edges connecting s and t to their
sole neighbors must belong to EP . The following sequence of moves wins the instance of
Solo-Chess(n, {0, 2, 11}). For each edge (u, v) ∈ Ep we play the edge deletion gadget gu,v

corresponding to (u, v) in deletion mode in order to output two 3-knights: one on the u-side
and one on the v-side of (u, v); then, we play all the straight edge and corner edge gadgets
that connect gu,v to u (resp. v), in this order, which has the effect of placing a 3-knight on the
input of the cubic vertex gadget corresponding to u (resp. v) while clearing all other squares
of the played gadgets. After this step, the only unplayed gadgets are (i) the start and end
gadgets, (ii) the cubic vertex gadgets corresponding to the vertices in V , and (iii) the straight
edge, corner edge, or edge deletion gadgets corresponding to the edges in EP . We can play
all these gadgets in the same order as vertices and edges are encountered in P : we start by
outputting a 7-knight from the start gadget, then we play the sequence of straight/corner
edge gadgets (possibly none) until we reach the cubic vertex gadget gu corresponding to the
vertex u that follows s in P . This brings a 7-knight to one of the I/O squares of gu, while a
3-knight was already on some other I/O square. We use the 3-knight and the 7-knight as
inputs for gu in order to output a 7-knight on the only remaining I/O square of gu, which
corresponds to the edge (u, v) following u in P . We then play the gadgets associated with
(u, v) so as to place a 7-knight on an I/O square of the cubic vertex gadget gv of v. Notice
that, in addition to straight/corner edge gadgets, playing the gadgets associated with (u, v)
also involve playing a single edge deletion gadget in traversal mode. We repeat this process
until a 7-knight is output from the cubic vertex gadget gz corresponding to the vertex z

immediately preceding t in P . Finally, we play the straight/corner edge gadgets associated
with (z, t) to place a 7-knight on the input of the end gadget which, at this point, is the only
gadget containing non-empty squares. To complete the winning sequence it suffices to play
the end gadget using the input 7-knight.

2.2 The other direction
Fix a winning sequence σ and consider a gadget g that is not the start gadget. In order for g
to output a lively knight from some I/O square in σ, it is necessary for g to receive a lively
knight as input from another I/O square. Moreover, in σ, no gadget can output more than
one lively knight and the end gadget must take a lively knight as input.
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We define a directed graph Hσ whose vertex set is the set of gadgets in our instance
of Solo-Chess(n, {0, 2, 11}) and such that Hσ contains a directed edge (g, g′) iff there a
move that causes a lively knight to be output from g and be input into g′. The previous
observations imply that the out-degree of all vertices of Hσ is at most 1, that all vertices
with out-degree 1 have in-degree at least 1 except for the start gadget, and that the in-degree
of the end gadget is 1.

Then, Hσ must contain a path P from the start gadget to the end gadget. Moreover, P
must traverse all cubic vertex gadgets. Indeed, suppose towards a contradiction that there is
some cubic vertex gadget g, corresponding to a vertex u ∈ V , that is not in P .

If g does not take any lively knight as input then the only way to clear all squares of g
results in g outputting a lazy knight from an I/O square associated with some edge (u, v) ∈ E,
where v /∈ {s, t}.6 Then, our instance of Solo-Chess(n, {0, 2, 11}) has an edge deletion
gadget g′ associated with (u, v). Since the I/O square q on “u’s side” of g′ cannot be used as
input in traversal mode (as no lively knight can be input from q), g′ must output a knight
on q and this causes one or mode knights placed on the (straight or corner) edge gadgets
used to encode the portion of the polyline ℓu,v between pu and ℓ

′
u,v to become disconnected

from the goal knight, a contradiction.
Otherwise g takes a lively knight as input, which means that there must exist a path P

′

from the start gadget to g in Hσ. Let g′ be the last vertex of P ′ that is also in P , and notice
that g′ must have out-degree at least 2 in Hσ, i.e., it must output at least two lively knights,
a contradiction.

If a graph obtained from G by performing edge subdivisions7 contains a simple path
spanning V , then G contains a Hamiltonian path. Let G′ be the graph obtained from G by
subdividing each edge (u, v) into a path containing as many internal nodes as the number
of gadgets placed in the tiles corresponding to the internal points of the polyline ℓu,v (that
is, ∣ℓu,v∣ − 1 if u ∈ {s, t} or v ∈ {s, t}, and ∣ℓu,v∣ − 4 if u, v /∈ {s, t}). There is an injective
homomorphism between the undirected version of Hσ and G′ such that each start, end, and
cubic vertex gadget in Hσ is mapped to the corresponding vertex in G′. Since P is a (simple)
path that spans all start, end, and cubic vertex gadgets in Hσ, there is some (simple) path
in G

′ that spans all vertices in V , hence G contains a Hamiltonian path.

2.3 Uniform budgets
Given a configuration c and a knight k, we denote by τc(k) the number of knights in c that
are threatened by k.

We start by proving the following two lemmas which provide some “local” rules that
allow us to perform some captures without compromising the solvability the configuration.

▶ Lemma 1. Let C be a configuration containing a b-knight k that threatens only a single
knight k′. Assume further that either (i) b = 1, or (ii) b ≥ 2 and τc(k′) = 2. If C is solvable
then it admits a wining sequence of moves that starts with k → k

′.

Proof. Let q and q
′ be the squares containing k and k

′ in C, respectively, and let σ =

⟨m1,m2, . . . ⟩ be any winning sequence of moves for C. We prove the claim by showing that
σ can be transformed into a winning sequence that starts with k → k

′.

6 The only I/O square of the start gadget must be used as output, and the only I/O square of the end
gadget must take lively knight as input.

7 The subdivision of an edge (u, v) into a path with ℓ ≥ 1 internal nodes consists in inserting of the new
vertices w1, w2, . . . , wℓ, deleting (u, v), an adding the edges in {(u, w1), w(wℓ, v)} ∪ {(wi, wi+1) ∣ i =

1, . . . , ℓ − 1}.
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We start by ensuring that σ contains a move of the form k → q
′. If this is not already the

case, then it must contain q
′
→ k and such a capture must necessarily be the last move of

σ (since q′ → k clears square q′ and isolates the knight on q from any other knight in the
resulting configuration). Then, replacing q′ → k with k → q

′ also results in winning sequence
of moves.

Let i be the index of move k → q
′ in σ. We now argue that, if mi is not already the first

move, then swapping it with its preceding move mi−1 still results into a winning sequence.
The claim follows by iteratively performing such a swap until k → q

′ becomes the first move.
If m does not involve square q nor square q′ then performing either of ⟨m1, . . . ,mi−1,mi⟩
and ⟨m1, . . . ,mi−2,mi,mi−1⟩ from c results in the same configuration. Otherwise, since
mi−1 cannot clear q′, it must necessarily be of the form k

′′
→ q

′ for some knight k′′ ≠ k. If
(i) holds, then the configurations obtained from C by performing ⟨m1, . . . ,mi−1,mi⟩ and
⟨m1, . . . ,mi−2,mi,mi−1⟩ are identical except, possibly, for the budget of the knight on q

′

which is exactly 0 in the former case and at least 0 in the latter. If (ii) holds then, after move
mi−1, the only remaining knights are on squares q and q′ and mi is the last move of σ. Then
moving mi immediately before mi−1 also results in a winning sequence. ◀

A repeated application of Lemma 1 shows that a knight k0 that either has budget 0, or
has τc(k0) = 1 and a budget in {1, . . . , 10}, can be simulated by setting the budget of k0 to
11 and adding a retinue of η = 11 − b additional 11-knights k1, . . . , kη such that each ki with
i = 1, . . . , η − 1 threatens only ki−1 and ki+1, while kη threatens only kη−1.

To show that Solo-Chess(n, {11}) is NP-hard, we adapt our reduction of Section 2 as
follows: instead of using tiles of size 15×15 we use super-tiles of size 57×57 and corresponding
super-gadgets. Each super-tile can be thought of as a 5 × 5 grid of (regular) tiles. We first
discuss how the start, end, straight edge, corner edge, and cubic vertex gadgets can be turned
into super-gadgets. Each such super-gadget is obtained by first placing the corresponding
regular gadget g in the center tile of the super-tile, and then using suitable straight edge
gadgets to “connect” the I/O squares of g to the perimeter of the super-tile.8 Finally, we
simulate each 0-knight by setting its budget to 11 and adding a retinue of eleven 11-knights
as discussed above.9

The super gadget g∗ corresponding to the edge-deletion gadget spans 4 super-tiles. To
obtain the horizontal version of g, we arbitrarily choose one of these super-tiles t and we
place knights in the other three super tiles as in the horizontal version of the super straight
edge gadget.10 We arrange the knights in t as follows: first we place an edge deletion gadget
g spanning 4 of the 5 tiles in the middle row of t, so that one of the I/O squares of g lies on
one side of t; then, we place a straight edge gadget in the missing tile of the middle row in
order to “connect” the other I/O square of g to the opposite side of t. Finally, we replace the
three 2-knights in g, along with all 0-knights in both g and the straight edge gadget, with
11-knights and we add the corresponding retinues, as discussed above.

All the 11-knights resulting from the above transformations will be entirely contained
within the same super-gadget as the original knight. Moreover, none of the additional knights
will introduce any inter-cluster threat. In fact, the reason for using super-tiles in place of

8 Two of the straight edge gadgets used in the super cubic vertex gadgets are rotated by 180 degrees.
9 This causes the knights placed on the I/O squares belonging to two super-gadgets to have two retinues

each (one for each of the two gadget). Although one retinues would suffice, using one retinue per gadget
simplifies the description of the reduction.

10 Defining the super edge deletion gadget in order to only span a single super-tile t would be sufficient to
obtain a reduction to Solo-Chess(n, {11}). We employ four super-tiles in order to re-use the same
construction described for the non-uniform case.
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regular tiles is having enough free space around the gadgets to fit these new knights. Due
to space limitations, the figures showing the resulting super-gadgets are omitted from this
manuscript and can be found in the full version of the paper.

We have therefore proved the main results of this section, namely:

▶ Theorem 2. Solo-Chess(n, {11}) is NP-hard.

3 Solo-Chess with only rooks

In this section we establish the NP-hardness of Solo-Chess(r, {2}). Our construction is
similar to the one employed by [1] to show the NP-Hardness of Solo-Chess(r, {0, 1, 2}).
Roughly speaking, we would like to simply increase the budget of all rooks to 2, but this
allows for some rook capture that were previously forbidden and breaks the reduction. To
circumvent this, we are forced to place additional rooks with budget 2, which in turn can
perform even more captures. The main technical challenge lies in showing that we force
arbitrary winning strategies to follow the intended scheme of the reduction.

We start by proving the NP-hardness of an auxiliary problem named
Solo-Chess∗(r, {0, 2}), and then we show (see Section 3.3) how an instance of such
a problem can be first transformed into an equivalent instance of Solo-Chess∗(r, {2})
which, in turn, can be converted into another equivalent instance of Solo-Chess(r, {2}).
In the following we will refer to a rook with budget b as a b-rook.

The auxiliary problem Solo-Chess∗(r, {0, 2}) is similar to Solo-Chess(r, {0, 2})
except for the following two variations:

we refer to the topmost row (resp. rightmost column) of an instance I of
Solo-Chess∗(r, {0, 2}) as the goal row (resp. goal column), and to the square on
their intersection of the goal row and the goal column as the goal square. The goal square
must initially contain a special rook called the goal rook, and any winning sequence of
moves for I is required to leave the last remaining rook on the goal square;11

the goal column contains no rook other than the goal rook. Similarly, any column
containing a 0-rook r, contains no rook other than r.

Our reduction for Solo-Chess∗(r, {0, 2}) is from the (decision version of the) vertex
cover problem (vc for short), which a well-known NP-hard problem [6]. The input of vc
consists of a graph G = (V,E) and of an integer k, and the goal is that of deciding whether
there exists a set S ⊆ V of size at most k such that at least one endvertex of each edge in E

lies in S.
We build our instance of Solo-Chess∗(r, {0, 2}) in two steps: first we construct a

(m+ 1)× (n+m) chessboard, and then we augment it by inserting some additional columns.
We start by describing the (m + 1) × (n + m) chessboard. Let V = {v1, . . . , vn} and

E = {e1, . . . , em}. We associate the j-th of the first n columns with vertex vj . Moreover,
we associate the (i + 1)-th row with edge ei, and we refer to the topmost row as the goal
row and we denote it with γ. To improve readability, we often refer to the squares of the
chessboard using the row and column names instead of their integer coordinates, e.g., square
(e3, v2) is at coordinates (4, 2) and square (γ, v5) is at coordinates (1, 5). The goal row
contains a 2-rook on each of the n columns v1, . . . , vn, and for each edge ei = (vh, vj) we
place three 2-rooks: an incidence rook ri,h on square (ei, vh), another incidence rook ri,j

11 The budget of the goal rook is irrelevant since any winning sequence of moves cannot clear the goal
square.
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Figure 7 (a) An instance of the (decision version of) vertex cover problem for k = 3. The
vertices of a possible vertex cover are highlighted in red. (b) The corresponding (m + 1) × (n + m)
chessboard constructed in the first step of our reduction. (c) The corresponding instance of
Solo-Chess∗(r, {0, 2}), where 0-rooks are in red and ∆ = 1.

on square (ei, vj), and a final collector rook ci on row ei and column n + i. Essentially,
the sub-chessboard consisting of rows e1, . . . , em corresponds to the juxtaposition of the
(transposed) incidence matrix of G with a m×m identity matrix, where each non-zero entry
corresponds to a 2-rook. See Figure 7 (a) for an example instance of vc and Figure 7 (b) for
the corresponding (m + 1) × (m + n) chessboard.

We now augment the above board. For each edge ei = (vh, vj) we add a new column βi

between vh and vj and a blocker 0-rook on square (ei, βi). Next, let ∆ = 2k − n and add
∣∆∣ + 1 new columns z1, . . . , z∣∆∣, z

∗ to the right of the board. Each of the squares (γ, zi)
for i = 1, . . . , ∣∆∣ contains a 2-rook if ∆ > 0 and a 0-rook if ∆ < 0. Finally, we place the goal
rook on square (γ, z∗). See Figure 7 (c) for an example.

3.1 One direction
Before discussing how a vertex cover of G can be turned into a winning sequence of moves for
our instance of Solo-Chess∗(r, {0, 2}), we restate the following characterization from [1]
for the solvability of instances on one-dimensional boards. We define the potential of a rook
with budget b to be b − 1 and the overall potential of a collection of rooks to be the sum of
their potentials (where an empty collection of rooks has potential 0). We say that an instance
of Solo-Chess(r, N) is (i, j)-solvable if it can be solved with the additional constraint that
the last remaining rook must be placed on square at coordinates (i, j).

▶ Lemma 3 ([1], reformulated). Consider an instance of Solo-Chess(r, N) on a board of
size 1×n, and let ϕ(j1, j2) denote the overall potential of the rooks on columns j1, j1+1, . . . , j2.
The instance is (1, j)-solvable iff j contains a rook, ϕ(1, j − 1) ≥ 0, and ϕ(j + 1, n) ≥ 0.

If S is a vertex cover of G of size at most k then the following is a winning strategy for our
instance of Solo-Chess∗(r, {0, 2}). For each edge ei, we choose an endvertex vh of ei such
that vh ∈ S, we let vj be the other endvertex (which might or might not be in S), and we
perform the horizontal captures ri,j → bi → ri,h (see Figure 8 (a) and Figure 8 (b)), followed
by ci → (ei, vh) (see Figure 8 (c)). After these captures, each edge row contains only a single
1-rook on a column associated to a vertex in S. Then, for each column vi ∈ S, we examine
all the edge rows ei in increasing order of i, and for each such row ei containing a 1-rook
in square (ei, vi), we perform the vertical capture (ei, vi) → (γ, vi). We are now left with a
chessboard where the only non-empty row is the goal row γ (see Figure 8 (d)). In particular,
the goal row contains one rook on each column v1, . . . , vn and at most k of these rooks have
budget 0 (i.e., those resulting from the previous vertical captures), while the others (not
involved in vertical captures) are 2-rooks. The remaining rooks are the ∣∆∣ rooks on columns
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Figure 8 Notable configurations encountered in an winning sequences of moves for the instance of
Figure 7 (c). Red columns corresponding to vertices in the vertices in a vertex cover of size 3. 2-rooks,
1-rooks, and 0-rooks are shown in black, greens, and red, respectively. (a) The configuration after all
blocker rooks have been captured. (b) The configuration after all the squares initially containing the
blocker rooks have been cleared. (c) The configuration after all collector rooks capture some rook on
a red column. (d) The configuration after all squares in non-goal rows have been cleared. A winning
sequence of moves from configuration (d) is (γ, v2) → (γ, v1) → (γ, v3), (γ, v5) → (γ, v4) → (γ, v3),
(γ, z1) → (γ, v3) → (γ, z

∗).

z1, . . . , z∣∆∣, with overall potential ∆ = 2k − n, and the goal rook (on the rightmost column).
Hence the sum of the potentials of all non-goal rooks is at least 0 ⋅ k + (n− k) ⋅ 2− n+∆ ≥ 0
and Lemma 3 implies that this configuration is (γ, z∗)-solvable.

3.2 The other direction
Here we show that a winning sequence of moves for our instance of Solo-Chess∗(r, {0, 2})
implies the existence of a vertex cover of G of size at most k.

We start by introducing the notions of depleted row and disconnected configuration, and
we argue that any sequence of moves that results in a configuration that is either disconnected
or creates a depleted row cannot be winning.

A row is depleted if it is not γ, it contains only a single 0-rook, and it contains no 1-rooks
or 2-rooks. A configuration C is disconnected if the graph whose nodes are non-empty
squares in C, and such that two distinct squares are linked by an edge iff they share the same
row or the same column, is disconnected. It is immediate to verify that no disconnected
configuration is solvable.

▶ Lemma 4. Let σ = ⟨m1,m2, . . . ⟩ be a winning sequence of moves. All configurations
encountered during σ contain no depleted row.

Proof. Let Cℓ be the configuration obtained after performing the first ℓ moves of σ. Suppose
towards a contradiction that some configuration Ch contains some depleted row ei, and that
all Ch′ with h′ > h contain no depleted rows. Let (ei, vj) be the square containing the unique
0-rook on row ei in Ch.12

12 The 0-rook in ei must necessarily be on a column vj where vj is an endvertex vj , since otherwise Ch

would be disconnected.
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Since (ei, vj) must eventually be cleared by σ, there is some configuration Ch′ with h′ ≥ h
and some 2-rook r in Ch′ such that move mh′+1 is the capture r → (ei, vj). Since ei contains
no 2-rooks in Ch′ , r → (ei, vj) must be a vertical capture. We split the proof depending on
whether r is on the goal row or in some row ei′ (with ei′ ∈ E \ {ei}) in Ch′ .

Suppose that r is in row ei′ in Ch′ and focus on row ei′ in Ch′+1 (whose square (ei′ , vj) is
empty), which falls in one of the following three cases:

If (ei′ , βi′) contains a 0-rook in Ch′+1 then, among moves mh′+2,mh′+3, . . . , there is some
2-rook r′ ≠ r on ei′ that first captures (ei′ , βi′) and then captures the only other remaining
rook on ei′ . This results in a configuration Ch′′ with h

′′
> h

′
≥ h where ei′ is depleted,

which is a contradiction.
If (ei′ , βi′) contains a 1-rook in Ch′+1 then there is some 2-rook r

′
≠ r on ei′ such that

some move among m1, . . . ,mh′ is the capture r
′
→ (ei′ , βi′) and some move among

mh′+2,mh′+3, . . . consists of r′ capturing the only remaining rook on ei′ . Hence there is a
configuration Ch′′ with h

′′
> h

′
≥ h where ei′ is depleted, which is a contradiction.

If (ei′ , βi′) is empty in Ch′+1 then, in moves m1, . . . ,mh′ , the blocker ci′ must have been
captured by some 2-rook r

′ on ei′ which then captured some other rook r
′′ on row ei′

other than r
′. This can only happen if r, r′, and r

′′ are the leftmost incidence rook, the
rightmost incidence rook, and the collector of row ei′ , respectively. Then, ei′ is depleted
in Ch′+1 since its only rook is a 0-rook in square (ei′ , βi′), and this provides the sought
contradiction.

Suppose now that r is on the goal row in Ch′ . Then, in Ch′+1, r is a 1-rook on (ei, vj)
and either r captures a rook on column vj , or there must be some 2-rook that first captures
r and then captures some other rook on column vj . In any case, at least one move among
mh′+1,mh′+2, . . . is a vertical capture performed by a 1-rook on column vj . Let mh′′ be the
last such move and let (ei′ , vj) be its target square, where ei′ ∈ E, so that (ei′ , vj) contains a
0-rook in Ch′′ .

We describe the state of row ei′ with a 4-tuple t ∈ {0, 1, 2,□, ?}4 whose entries represent
the contents of the left incidence square of ei′ , (ei′ , βi′), the right incidence square of ei′ , and
the collector square of ei′ , in this order. More precisely, 0, 1, and 2 respectively denote a
0-rook, a 1-rook, and a 2-rook, □ denotes an empty square, and ? denotes any of the above.
Moreover, we underline the entry corresponding to the square on column vj .

If (ei′ , βi′) is empty in Ch′′ , then the state of ei′ must be (0,□,□, ?) or (□,□, 0, ?). In
any case, some move mh′′′ with h

′′′
> h

′′ clears square (ei′ , vj). Since this cannot be a
horizontal move (as it would result in ei′ being depleted), it must be a vertical move (of a
1-rook), which contradicts our choice of h′′.
If (ei′ , βi′) contains a 0-rook in Ch′′ , then the state of ei′ must be (0, 0, ?, ?) or (?, 0, 0, ?).
Since (ei′ , βi′) must be cleared by a 2-rook (on row ei′) that first captures (ei′ , βi′) and
then captures another rook on ei′ , the state of ei′ resulting from this latter capture is one
of (a) (0,□,□, ?), (b) (?,□,□, 0), (c) (□,□, 0, ?), and (d) (0,□,□,□). However (a) and
(c) lead to a contradiction by using analogous arguments to the ones of the previous case,
(d) implies that ei′ is depleted in some configuration Ch′′′ with h

′′′
> h

′′
> h

′
≥ h, and in

(b) row ei′ cannot be cleared since capturing the 0-rook on the cleaner square results in a
disconnected configuration.
If (ei′ , βi′) contains a 1-rook r′ in Ch′′ , then the state of ei′ must be either (0, 1,□, ?) or
(□, 1, 0, ?). Either r′ captures some other rook in ei′ , in which case the resulting state of
ei′ is one of (0,□,□, ?), (?,□,□, 0), and (□,□, 0, ?), thus the same arguments as above
apply, or some 2-rook (on row ei′) first captures on (ei′ , βi′) and then captures another
rook on ei′ , leaving ei′ in state (0,□,□,□) which corresponds to a depleted row. ◀
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We now consider an arbitrary winning sequence of moves and we perform two consecutive
transformations, each of which will result in another winning sequence that follows some
desirable pattern of moves and is easier to analyze.

First transformation

To perform our first transformation, we observe that each square (ei, βi) that initially contains
a 0-rook and must be cleared, which means that there must be some 2-rook r that performs
the capture r → (ei, βi). Moreover, r must be on row ei and cannot be the collector ci, since,
after capture ci → (ei, βi), either the only non-empty square on row ei is (ei, βi), or there are
two non-empty squares (ei, βi) and (ei, vj) where vj is an endvertex of ei. In the former case
(ei, βi) is disconnected from the goal square, while in the latter case neither (ei, vj) → (ei, βi)
nor (ei, βi) → (ei, vj) are possible since they would yield either a disconnected configuration
or single 0-rook on row ei (which is not solvable by Lemma 4). We conclude that r is one of
the two incidence rooks on row ei, which is still in its original square.

We now argue that rearranging the moves so that r → (ei, βi) becomes the first capture
still results in a winning sequence. Indeed, we can iteratively swap r → (ei, βi) with its
preceding move m since, if m involved square (ei, βi) then the configuration obtained after
performing all moves up to r → (ei, βi) would be disconnected.

Performing the above rearrangement for each row ei with i = 1, . . . ,m, and executing the
first m moves yields a solvable configuration C

′ in which the goal row is identical to that of
the initial configuration, and each row ei contains its collector ci, exactly one incidence rook,
and a 1-rook on square (ei, βi). See Figure 8 (a) for an example.

Second transformation

For the second transformation, consider a generic edge ei ∈ E and recall that row ei contains
a single incidence rook ri,j on some square (ei, vj) (where vj is an endvertex of ei).

We first argue that no winning sequence of moves from C
′ contains a capture that targets

square (ei, βi). Indeed, if that were the case, there would also be some 2-rook r that performs
the capture r → (ei, βi) (since (ei, βi) must eventually be cleared). The rook r must be
either ri,j or the collector ci. In the former case, the configuration resulting from the move
ri,j → (ei, βi) is disconnected. In the latter case, immediately after ci → (ei, βi), row ei

contains a 1-rook on (ei, βi) and possibly another rook on (ei, vj), hence the only possible
moves result in either a disconnected configuration or in a single 0-rook on row ei.

Since (ei, βi) must be cleared and the rook r on (ei, βi) is never captured, the sequence
must include the move r → (ei, vj) (the only other option is r → ci which results in a
configuration where (ei, βi) cannot be cleared). Similarly to the previous transformation,
we now argue that r → (ei, vj) can be performed as the first move of a winning sequence
by iteratively swapping it with the previous move m. Indeed, if m targets (ei, vi) then the
configurations obtained by (i) performing all the moves up to r → (ei, vj) and (ii) swapping
r → (ei, vj) with m and then performing all the moves up to m, are identical except possibly
for the budget of the rook in (ei, vj) which is 0 in the former case and at least 0 in the latter.

Performing the above rearrangement for each row ei with i = 1, . . . ,m, and executing the
first m moves yields a solvable configuration C

′′ in which the goal row is identical to that
of initial configuration, and each row ei contains its collector ci and exactly one 0-rook on
some square (ei, vj) where vj is an endvertex of ei. As a consequence the set S containing
all vertices vj ∈ V such that there exists at least one row ei for which (ei, vj) is non-empty
is a vertex cover of G. See Figure 8 (b) for an example.
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Concluding the proof

We are now ready to conclude the proof, by showing that S has size at most k via a potential
argument. More precisely, given a configuration C, we assign a potential ψj(C) to each
column j ≠ z

∗ as follows:
ψj(C) = 1 if (γ, j) contains a 2-rook and there is no other rook on column j;
ψj(C) = −1 if (γ, j) is non-empty and either it contains a 0-rook, or there exists some
ei ∈ E such that (ei, j) is non-empty in C (possibly both);
ψj(C) = 0 in the remaining cases.

We also let ψz∗(C) = 0 and we define the potential ψ(C) of C as the sum of ψj(C) over all
columns j.

Fix any winning sequence of moves that starts from configuration C
′′ and let Cℓ be the

configuration resulting from performing the first ℓ moves of the sequence.

▶ Lemma 5. ψ(Cℓ) is non-increasing w.r.t. ℓ.

Proof. First of all, notice that no rook on row γ ever performing any vertical capture, since
this would result in a disconnected configuration, and the same holds for horizontal captures
that target a column containing a collector. Of the remaining captures, only those that target
a square on the goal row can affect ψ(⋅). We consider these captures separately depending
on whether they are vertical or horizontal and we study how the potential of the affected
column(s) changes as a result of the move.

Any vertical capture from some configuration Cℓ that targets a square (γ, j) results in a
0-rook on square (γ, j) in configuration Cℓ+1. Therefore ϕj(Cℓ) = ϕj(Cℓ+1) = −1.

Consider now an horizontal capture (γ, j) → (γ, j ′) performed by a b-rook from some
configuration Cℓ and observe that (γ, j) must be the only non-empty square in column j. If
b = 2 then ψj(Cℓ) = 1, ψj(Cℓ+1) = 0, ψj ′(Cℓ) ≥ −1, and ψj ′(Cℓ+1) ≤ 0. If b = 1 and j

′
≠ z

∗

then ψj(Cℓ) = ψj(Cℓ+1) = 0, ψj ′(Cℓ) ≥ −1 and ψj ′(Cℓ+1) = −1. Finally, if b = 1 and j
′
= z

∗

then ψj(Cℓ) = ψj(Cℓ+1) = ψj ′(Cℓ) = ψj ′(Cℓ+1) = 0. ◀

For the configuration C ′′ we have n−∣S∣+max{0,∆} columns j ≠ j∗ with ψj(C ′′) = 1 and
∣S∣+max{0,−∆} columns j ≠ j∗ with ψj(C ′′) = −1, hence ψ(C ′′) = n−2∣S∣+∆ = 2k−2∣S∣.
For the final configuration C∗ (which contains a single rook in column j∗) we have ψ(C∗) = 0.
Using Lemma 5 we have 2k − 2∣S∣ = ψ(C ′′) ≥ ψ(C∗) = 0, which implies ∣S∣ ≤ k.

3.3 Uniform budgets
Here we show that the 0-rooks in the instances of Solo-Chess∗(r, {0, 2}) resulting from the
previous reduction can be simulated with 2-rooks, thus showing that Solo-Chess∗(r, {2})
is NP-hard, and then we reduce Solo-Chess∗(r, {2}) to Solo-Chess(r, {2}).

Given a configuration C and a rook r, we denote with τC(r) the number of rooks r′ ≠ r
that are on the same row or on the same column as r.

▶ Lemma 6. Let C be a configuration containing a b-rook r such that τC(r) = 1 and let r′

be the only rook threatened by r. Assume further that neither r nor r′ are on the goal square,
and that either (i) b = 1, or (ii) b = 2 and τC(r′) = 2. If C is solvable then it admits a wining
sequence of moves that starts with the capture r → r

′.

Proof. Let q and q
′ be the squares containing r and r

′ in C, respectively. Any winning
sequence of moves σ = ⟨m1,m2, . . . ⟩ for C cannot contain q

′
→ r, since q is not the goal

square and hence such a move would result in a disconnected configuration. Then, some
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Figure 9 (a) The instance of Solo-Chess∗(r, {2}) by applying our transformation to the
instance of Solo-Chess∗(r, {0, 2}) of Figure 7 (c). Red squares contains the 2-rooks replacing
the original 0-rooks. (b) A sketch of the instance I1,2 of Solo-Chess(r, {2}) obtained from the
instances I1,I2 of Solo-Chess∗(r, {2}).

move mi of σ is the capture r → q
′. We show that, if i ≠ 1, swapping mi with mi−1 still

results in a winning sequence. Indeed, mi−1 cannot involve q and it cannot clear q′ (as mi

would then be illegal).
If (ii) holds, then mi−1 cannot involve q′ (ifmi−1 targeted q′ then the resulting configuration

would be disconnected) and ⟨m1, . . . ,mi⟩ and ⟨m1, . . . ,mi−2,mi,mi−1⟩ result in the same
configuration.

If (i) holds, then either mi−1 does not involve q
′, or mi−1 targets q

′. In any case,
the configurations obtained by performing ⟨m1, . . . ,mi⟩ and ⟨m1, . . . ,mi−2,mi,mi−1⟩ are
identical except possibly for the budget of the rook in q′, which is 0 in the former configuration
and at least 0 in the latter. ◀

Notice that all the (non-goal) 0-rooks used in our reduction are on columns that do
not contain any other rook. Then, to simulate a (non-goal) 0-rook on square (i, j) we first
sets its budget to 2, then we insert new row i + 1 immediately below i and a new column
j + 1 immediately to the right of j, and finally we add two 2-rooks in squares (i + 1, j) and
(i + 1, j + 1). See Figure 9 (a) for an example instance of Solo-Chess∗(r, {2}) resulting
from the above process. Clearly, if the original instance is solvable so is the one obtained
after these 0-rooks have been replaced using the above strategy (since it is always possible to
“recover” the original configuration, except for some additional empty rows and column, by
performing two captures for each 0-rook that has been replaced), and a repeated application
of Lemma 6 shows that the converse also holds.

We now reduce Solo-Chess∗(r, {2}) to Solo-Chess(r, {2}).
Let I1, I2 be two instances of Solo-Chess∗(r, {2}) whose chessboards have sizes h1×w1

and h2 ×w2, respectively. We construct a new instance I1,2 of Solo-Chess(r, {2}), whose
chessboard has size (h1 + h2 + 1) × (w1 + w2 − 1), as follows (see Figure 9 (b)):

the sub-chessboard of size h1 × w1 consisting of the intersection of rows 1, 2, . . . , h1 and
columns 1, 2, . . . , w1 − 1, w1 + w2 − 1 of I1,2 is a copy of chessboard of I1 in which the
goal-rook is replaced with a 2-rook;
the sub-chessboard of size h2 × w2 consisting of the intersection of rows h1 + 2, h1 +
3, . . . , h1 + h2 + 1 and columns w1, w2, . . . , w1 +w2 − 1 of I1,2 is a copy of the chessboard
of I2 in which the goal-rook is replaced with a 2-rook;
square (h1 + 1, w1 + w2 − 1) contains a 2-rook.
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▶ Lemma 7. If both I1 and I2 are solvable then I1,2 is solvable. If I1,2 is solvable then at
least one of I1 and I2 is solvable.

Proof. Let R1 be the set of rows 1, 2, . . . , h1, and R2 be the set of rows h1+2, . . . , h1+h2+1.
Let q1 = (1, w1 +w2 −1), q2 = (h1 +2, w1 +w2 −1), and q∗ = (h1 +1, w1 +w2 −1). Moreover,
let r1, r2, and r

∗ be the rooks initially on q1, q2, and q
∗ in I1,2, respectively.

If both I1 and I2 are solvable then a winning sequence of moves for I1,2 is obtained by:
(i) performing all moves in any winning sequence for I1, where any capture r → (1, w1)
targeting (1, w1) in I1 is replaced with the capture r → q1 in I1,2; (ii) performing all moves
in any winning sequence for I2, where any capture (i, j) → (i′, j ′) in I2 is replaced with
the capture (h1 + 1 + i, w1 − 1 + j) → (h1 + 1 + i

′
, w1 − 1 + j

′) in I1,2; (iii) performing the
captures by r∗ → q1 → q2.

To show that if I1,2 is solvable then at least one of I1 and I2 is solvable, let σ =

⟨m1,m2, . . . ⟩ be a winning sequence of moves I1,2. Moreover, let ℓ be the smallest index
such that mℓ is a vertical capture on column w1 + w2 − 1 (such an index must exist) and
notice that there is some h ∈ {1, 2} such that mℓ is either the capture qh → q

∗ or the capture
r
∗
→ qh. We consider these two cases separately.
If mℓ is the capture qh → q

∗, then rh performs no capture in moves m1, . . . ,mℓ−1.
Moreover, after move mℓ, all squares belonging to the rows in Rh must be empty (since
otherwise the configuration would be disconnected). Since no move among m1, . . . ,mℓ−1
can simultaneously involve both a square of a row in R1 and a square of a row in R2, the
sub-sequence of moves obtained from ⟨m1, . . . ,mℓ−1⟩ by selecting all moves that involve a
square in Rh is a winning sequence of moves for Ih.

If mℓ is the capture r∗ → qh, then let ℓ′ > ℓ the only other index such that mℓ′ is a vertical
capture on column w1+w2−1. Such a capture is either qh → q3−h or q3−h → qh. In the former
case, the capture qh → q3−h has the effect of clearing square qh and replacing the b-rook in
q3−h (where b ∈ {0, 1, 2}) with a 0-rook. Since no move mt with t /∈ {ℓ, ℓ′} can simultaneously
involve both a square of a row in R1 and a square of a row in R2, the sub-sequence of moves
of σ that involve a squares of a row in R3−h is a winning sequence of moves for I3−h. In the
latter case, after capture q3−h → qh, all squares belonging to rows in R3−h must be empty,
and the sub-sequence of moves obtained from ⟨m1, . . . ,mℓ−1,mℓ+1, . . . ,mℓ′−1⟩ by selecting
all moves that involve a square in R3−h is a winning sequence of moves for Ih. ◀

Then, if I is an instance of Solo-Chess∗(r, {2}), we can perform the above transfor-
mation with with I1 = I2 = I to obtain an instance I1,2 of Solo-Chess(r, {2}) that is
solvable iff I is solvable, as ensured by Lemma 7 (see Figure 10). We have thus proved the
following:

▶ Theorem 8. Solo-Chess(r, {2}) is NP -hard.
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Abstract
There was a mix-up in Escher’s bar and n customers sitting at the same table have each received a
beer ordered by somebody else in the party. The drinks can be rearranged by swapping them in
pairs, but the eccentric table shape only allows drinks to be exchanged between people sitting on
opposite sides of the table. We study the problem of finding the minimum number of swaps needed
so that each customer receives its desired beer before it gets warm.

Formally, we consider the Colored Token Swapping problem on complete bipartite graphs.
This problem is known to be solvable in polynomial time when all ordered drinks are different
[Yamanaka et al., FUN 2014], but no results are known for the more general case in which multiple
people in the party can order the same beer. We prove that Colored Token Swapping on complete
bipartite graphs is NP-hard and that it is fixed-parameter tractable when parameterized by the
number of distinct types of beer served by the bar.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Mathe-
matics of computing → Combinatoric problems; Theory of computation → Problems, reductions
and completeness

Keywords and phrases Colored Token Swapping, Complete Bipartite Graphs, Labeled Token
Swapping, FPT Algorithms, NP-Hardness
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1 Introduction

A party of n theoretical computer scientists walks into Escher’s bar, which is renowned for
its tasty beers and its tables with eccentric geometric shapes. One of their papers just got
accepted to an important conference1 and they want to celebrate with a toast. They sit at a
table shaped like the one in Figure 1 (a), and each of them orders one of the k beers from
the bar’s selection. The waiter brings the order to the table but, unfortunately, it delivers
the drinks to the patrons in a mixed order. The scientists decide to rectify the situation by
swapping pairs of drinks, so that everybody eventually ends up with their beer of choice.
However the table’s shape prevents some of these swaps: two people sitting on the same side
of the table cannot easily swap their drinks, while people sitting on opposite sides of the table
can do that by sliding their beers across. To avoid the disastrous waste of beer that would

1 The reader might have already guessed the name of the conference. It suffices to say that it is held in a
beautiful island, and that it is known for its entertaining talks.
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(a)

(d)

(e)

(f)

(b) (c)

(g)

(h) (i)

Figure 1 The interior of Escher’s bar with its eccentric tables. (a) a complete bipartite table;
(b) a cycle table; (c) a clique table; (d) a path table; (e) a square of a path table; (f) a star table;
(g) a complete split table; (h) a lollipop table; (i) a broom table. Notice that (h) and (i) are
actually obtained by joining two different tables, as it might happen when large parties need to be
accommodated.

result if two pints were to crash, they adopt the safe strategy of only performing one such
swap at a time. As nobody likes their beer warm (see, e.g., [5]), the above rearrangement
process should be completed as quickly as possible.

This can be formalized as an instance of the Colored Token Swapping (CTS) problem
on complete bipartite graphs. In this problem we are given an integer k ∈ {1, . . . , n}, and an
n-vertex graph G = (V, E) (whose vertices represent scientists, and whose edges represent
the swaps allowed by the table shape), in which each vertex v has an associated color
c(v) ∈ {1, . . . , k}, and hosts a token of color t(v) ∈ {1, . . . , k} (the colors represent the
beers in the bar’s selection). A move (or swap) consists in selecting an edge (u, v) ∈ E and
swapping the tokens placed on u and v. The goal is that of finding a shortest sequence of
swaps needed to place each token on a vertex of the same color.

The CTS problem is known to be NP-Hard for any k ≥ 3 even for planar (non-complete)
bipartite graphs with maximum degree 3, while it is solvable in polynomial time when k = 2
[15]. If one considers special classes of graphs, the problem has been shown to be polynomial
time solvable on stars and paths [3]. On cliques, CTS remains NP-hard and, assuming the
exponential time hypothesis (ETH) [7], it does not admit any 2o(n)-time algorithm [3]. On
the positive side, it is fixed-parameter tractable when parameterized by k [15].

The CTS problem is a generalization of the Labeled Token Swapping (TS) problem,
which corresponds to the case in which k = n and there is exactly one vertex and one token
of each color (i.e., scientists order distinct drinks). This special case has received extensive
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Table 1 State of the art of the CTS problem and of the TS problem (which corresponds to the
case k = n when there is exactly one vertex and one token of each color). References to results in
this paper are in bold. ∆ denotes the maximum degree of the input graph while results marked
with “(ETH)” hold unless the exponential time hypothesis fails.

Graph class # of colors (k) Status Ref.
General k = 2 Solvable in polynomial time [15]
General Part of the input Solvable in time 2O(n log n) [11]
General Part of the input 4-approximable [11]
Trees Part of the input 2-approximable [11]
Stars Part of the input Solvable in polynomial time [3]
Paths Part of the input Solvable in polynomial time [3]
Planar bipartite, ∆ = 3 Any fixed k ≥ 3 NP-Hard [15]
Cliques Part of the input Solvable in time O(f(k) · poly(n)) [15]
Cliques Part of the input NP-Hard [3]
Cliques Part of the input No 2o(n)-time algorithm (ETH) [3]
Complete bipartite Part of the input Solvable in time O(f(k) + n) Thm. 14
Complete bipartite Part of the input NP-Hard Thm. 17
Complete bipartite Part of the input No 2o(n)-time algorithm (ETH) Thm. 18

∆ = O(1) k = n (TS) APX-Hard [11]
Trees k = n (TS) NP-Hard [1]
Cliques k = n (TS) Solvable in polynomial time [4]
Cycles k = n (TS) Solvable in polynomial time [8]
Brooms k = n (TS) Solvable in polynomial time [13, 10]
Lollipops k = n (TS) Solvable in polynomial time [10]
Square of paths k = n (TS) Solvable in polynomial time [6]
Complete split k = n (TS) Solvable in polynomial time [17]
Complete bipartite k = n (TS) Solvable in polynomial time [16]

attention in the literature and it is known to be APX-Hard on bounded-degree graphs [11]
and NP-Hard on trees [1]. Similarly to the colored case, TS has been considered on special
classes of graphs and, besides those mentioned above, polynomial-time algorithms are also
known for cliques [4], cycles [8], brooms [13, 10], lollipop graphs [10], squares of paths [6],
and complete split graphs [17] (see Figure 1 for the corresponding table shapes, and Table 1
for a summary).

TS is also known to be polynomial-time solvable on complete bipartite graphs [16], where
the complexity status of the more general CTS is still unknown. This is exactly the focus
of this work, where we show that CTS is NP-Hard for general k, while it can be solved in
time O(φ(k) + n) for a suitable function φ(·) depending only on k, i.e., it is fixed-parameter
tractable w.r.t. k.2 Moreover, we show that no 2o(n)-time algorithm exists unless the ETH
fails [7].

Other related work. The approximation of the CTS problem has been also studied, and a 4-
and 2-approximation algorithms have been designed for general graphs and trees, respectively
[11]. The same paper also shows that the problem can be solved in time 2O(n log n). Stars

2 We assume that the algorithm does not have to check the validity of the input instance which, for CTS
instances, can be done in time linear in the size of G.
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a b c d

u v w
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3

43

12

1

4

4

31

21

a b c d

u v w

(a) (b) (c) (d)

a b c d

u v w

a b c d

u v w

Figure 2 An instance of CTS on a complete bipartite graph with X = {a, b, c, d} and Y = {u, v, w}
is shown in (a). The corresponding moves graph is shown in (b) while (c) shows a possible swapping
plan P with one self-loop, one X-cycle, no Y -cycles, and one XY -cycle, hence f(P) = 1. A better
swapping plan P ′ with f(P ′) = 3 is shown in (d). P ′ consists of one self-loop, no X- or Y -cycles,
and two XY -cycles.

and paths can be solved in polynomial time even for the weighted version of CTS, where
each color has an associated weight and a the cost of a swap is given by the sum of the
color-weights of the two tokens involved [2]. A generalization of the CTS problem, called
subset token swapping, where each token has a subset of destination vertices it can be placed
on, has been studied in [3]. Finally, a parallel version of both CTS and TS, where tokens
can be simultaneously swapped over a matching in a single round, and the objective is to
minimize the number of rounds (see for example [1] and the references therein).

Structure of the paper. In Section 2 we discuss a useful connection between solutions
of the CTS problem on complete bipartite graphs and cycle-covers of a suitable auxiliary
graph. As a warm-up, Section 3 is devoted to the special case k = 3, where we show how
to solve the problem in polynomial time. We do not concern ourselves with finer grained
complexity considerations since a O(n)-time algorithm for this case follows from our more
general O(φ(k) + n)-time algorithm for the general case, which is described in Section 4.
Finally, in Section 5 we establish the NP-hardness of CTS on complete bipartite graphs and
show that no 2o(n)-time algorithm exists unless the ETH fails.

2 Swapping plans and optimal solutions

In this section we argue that the problem of finding an optimal sequence of swaps can be
rethought as the problem of finding a suitable (vertex-disjoint) cycle cover of an auxiliary
moves graph.

The moves graph associated with an instance of swapping colored tokens on bipartite
graphs is a directed graph M with vertex set V that contains edge (u, v) iff t(u) = c(v),
where u and v are not necessarily distinct (see Figure 2 (a) and Figure 2 (b) for an example).

A swapping plan is a feasible assignment of tokens to vertices of the same color. Formally,
a swapping plan is a collection P = {C1, . . . , Ch} of vertex-disjoint cycles in M such that
each vertex is part of exactly one cycle. A partial swapping plan is a swapping plan for a
vertex-induced subgraph of M . We can show the following useful lemma:

▶ Lemma 1. Let P ′ be a partial swapping plan that spans a subset of vertices U of the moves
graph M . Then, the subgraph of M induced by all the vertices that are not in U admits a
swapping plan P ′′. Furthermore, P = P ′ ∪ P ′′ is a swapping plan for M .

Proof. Both M and every cycle in P ′ contain as many vertices as tokens of the same color,
for every color. Hence, this also holds for the subgraph M ′ of M induced by the vertices
that are not in U . We arbitrarily match each token in M ′ with a vertex of the same color. If



D. Bilò, M. Fiusco, L. Gualà, and S. Leucci 5:5

u

v u′

v′

C C ′

Figure 3 An example showing the merge operation of Lemma 3. The cycle C contains the edge
(u, v) while the cycle C′ contains the edge (u′, v′). The two vertices v and v′ have the same color.
We can merge C and C′ into a single cycle by substituting the edge (u, v) with the edge (u, v′) and
the edge (u′, v′) with the edge (u′, v).

a token on vertex u is matched with vertex v then t(u) = c(v) and (u, v) is an edge of M ′.
Since each vertex of M ′ has exactly one incoming and one outgoing edge in the matching,
such a matching induces a swapping plan P ′′ per M ′. Clearly, P = P ′ ∪ P ′′ is a swapping
plan for M . ◀

The CTS problem on bipartite graph is essentially that of finding a good swapping plan.
Indeed, once a swapping plan P is fixed, the problem becomes an instance of labelled TS,
where a generic token on vertex u needs to be placed on the unique vertex v such that (u, v)
is an edge of some cycle in P. The labelled version on complete bipartite graphs can be
solved optimally in polynomial time, and it has been shown that the optimal number of
swaps is n − f(P), where f(P) is a function that depends on the topologies of the cycles in
P [14]. In the rest of the paper we use X and Y to denote the two sides of the bipartition
of G, and we classify each cycle in P as either a self-loop, as an X-cycle (resp. a Y -cycle)
which has length at least 2 and contains only vertices in X (resp. Y ), or as an XY -cycle
which contains at least one vertex in X and one vertex in Y . Defining η0(P), ηX(P), ηY (P),
ηXY (P) as the number of self-loops, X-cycles, Y -cycles, and XY -cycles in P, respectively,
we have:

f(P) = η0(P) + ηXY (P) + ηX(P) + ηY (P) − 2 max{ηX(P), ηY (P)}
= η0(P) + ηXY (P) − |ηX(P) − ηY (P)|. (1)

As a consequence, the CTS problem on complete bipartite graphs can be equivalently
thought of as the problem of finding a swapping plan maximizing f(·). Figure 2 (c)and
Figure 2 (d) show two possible swapping plans with different values of f(·) for the instance
in Figure 2 (a). We say that a cycle that is either a self-loop or an XY -cycle is happy, while
X-cycles and Y -cycles are unhappy. Roughly speaking, one seeks to maximize the number of
happy cycles while keeping the number of unhappy X- and Y -cycles as balanced as possible.

It turns out that, once an optimal swapping plan for the problem has been computed,
the corresponding optimal sequence of swaps can be computed in O(n) time, as stated in the
following lemma, whose proof is given in Appendix A.

▶ Lemma 2. A swapping plan P for an instance I of CTS on complete bipartite graphs can
be converted, in time O(n), into a solution for I consisting of n − f(P) swaps.

In the following we provide two lemmas that allow us to rearrange cycles of a swapping
plan. We start with a merge operation which combines two cycles of a swapping plan that
share some color into a single cycle. We say that a color c appears in a cycle C if there exists
at least one vertex with color c in C. Equivalently, we can say that c appears in C if and
only if C contains some token of color c.
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5:6 Swapping Mixed-Up Beers to Keep Them Cool

▶ Lemma 3 (Merge operation). Let P be a (partial) swapping plan, let C, C ′ be two distinct
cycles in C and let c be a color that appears in both C and C ′. Then, there exists a cycle C∗

spanning all and only the vertices in C and C ′ such that (P \ {C, C ′}) ∪ {C∗} is a (partial)
swapping plan.

Proof. Let v and v′ be two vertices of color c belonging to C and C′, respectively. And let u

(resp. u′) be the vertex that immediately precedes v (resp. v′) in C (resp. C′). Notice that
it might be u′ = u and/or v′ = v. The cycle C∗ is obtained from C and C′ by removing the
edges (u, v) and (u′, v′) and by adding the edges (u, v′) and (u′, v) (see Figure 3). ◀

Next lemma shows that the converse also holds: a cycle contains two vertices/tokens of
the same color, it can be split into two shorter cycles.

▶ Lemma 4 (Split operation). Let C be a cycle and let u, v be two distinct vertices of C such
that c(u) = c(v) or t(u) = t(v). There exist two cycles Cu, Cv whose vertex-sets partition the
set of vertices in C and such that u is a vertex of Cu and v is a vertex of Cv.

Proof. Let C = ⟨u = w1, w2, . . . , wj−1, v = wj , wj+1, . . . , wℓ, u⟩.
In the case c(u) = c(v), we must have t(wj−1) = c(v) = c(u) and t(wℓ) = c(u) = c(v).

Then, we choose Cu = ⟨u = w1, . . . , wj−1, u⟩ and Cv = ⟨v = wj , wj+1, . . . , wℓ, v⟩. Notice
that it might be j = 1, in which case Cu is a self-loop and/or ℓ = j, in which case Cv is a
self loop.

In the case t(u) = t(v), we must have c(w2) = t(u) = t(v) and c(wj+1) = t(v) = t(u),
hence we can choose Cu = ⟨u, wj+1, . . . , wℓ, u⟩ and Cv = ⟨v, w2, . . . , wj+1, v⟩. ◀

3 Swapping tokens of 3 colors

In this section, as a warm-up, we focus on the special case of CTS on complete bipartite
graphs with k = 3 possible colors for the tokens/vertices. We introduce the main ideas that
will be used also in the next section to solve the more general case of unbounded number of
colors.

An instance is lopsided if there is some side Z ∈ {X, Y } and some color c such that all
the vertices in Z are monochromatic, i.e., they induce self-loops in the moves graph, and
have all the same color c. The following lemma shows that lopsided instances can be easily
solved, hence in the rest of this section we only consider instances that are not lopsided.

▶ Lemma 5. A lopsided instance can be solved in polynomial time.

Proof. W.l.o.g., we can assume that at least one token is misplaced, which means that not
all vertices in M induce self-loops.

Let U be the set of vertices in M that form self-loops. Let P ′ = {⟨u, u⟩ | u ∈ U} be a
partial swapping plan that contains all self-loops of M . As Z is monochromatic, we have
Z ⊆ U . Let P ′′ = {C1, . . . , Ch} be a swapping plan for the subgraph of M induced by all
the vertices of M but those of U . The existence of this swapping plan P ′′ is guarantee by
Lemma 1. Moreover, P ′′ can be computed in polynomial time as it is a cycle cover of the
vertex-induced subgraph of M .

We argue that all cycles in P ′′ can be merged into a single cycle. By construction, no
cycle in P ′′ can be a self-loop. As a consequence, given any two cycles C, C ′ ∈ P ′′, by the
pigeonhole principle there is color that appears in both C and C ′. This implies that we can
merge the two cycles into a single cycle C∗ as proved in Lemma 3. Therefore, we can assume
that P ′′ contains a single cycle.
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We divide the proof into two cases according to whether the color c of vertices in Z also
appears in the unique cycle of P ′′ or not.

The first case is when c also appears in the unique cycle of P ′′, say C ′. Let C be a self-loop
in P ′ such that c appears in C. We define P as the swapping plan obtained by the union of
P ′ \ {C} plus the cycle C∗ obtained by merging C with C ′ (Lemma 3). We argue that P
maximizes the function f defined in Equation (1). By construction, f(P) = |U |. Let P∗ be
an optimal swapping plan. Observe that η0(P∗) + ηXY (P∗) ≤ |U | as each XY -cycle must
contain at least one vertex of Z and thus of U . Therefore, f(P∗) ≤ |U |−|ηX(P∗)−ηY (P∗)| ≤
|U | = f(P).

The second case is when c does not appear in the unique cycle of P ′′. W.l.o.g., we assume
that Z = X, as the proof for the case Z = Y is similar. We argue that P = P ′ ∪ P ′′

maximizes the function f defined in Equation (1). By construction f(P) = |U | − 1 as
the unique cycle in P ′′ is unhappy because it spans a subset of vertices in Y . Let P∗

be an optimal swapping plan. As each XY -cycle must contain at least one vertex of Z

and thus of U , we have that η0(P∗) + ηXY (P∗) + ηX(P∗) ≤ |U |, from which we derive
η0(P∗) + ηXY (P∗) ≤ |U | − ηX(P∗). Furthermore, as no vertex spanned by the cycle in P ′′

has the same color c of the vertices of Z, we have that P∗ contains unhappy Y -cycles (i.e.,
those that span vertices of colors different from c). This implies that ηY (P∗) ≥ 1. Therefore,
f(P∗) ≤ η∗

0 − ηX(P∗) − |ηX(P∗) − ηY (P∗)| ≤ η∗
0 − 1 = f(P). ◀

Section 3 allows us to rule out the case in which an instance is lopsided. As the following
lemma shows, all the remaining instances have the nice properties that optimal swapping
plans consist of happy cycles only.

▶ Lemma 6. Let I be an instance that is not lopsided. All optimal swapping plans for I
contain only happy cycles.

Proof. Assume towards a contradiction that some optimal swapping plan P∗ for I contains
an unhappy cycle, and assume further that such a cycle is an X-cycle (w.l.o.g.).

Observe that no unhappy cycle C in P∗ contains any monochromatic vertex v, since
otherwise we could increase the number of happy cycles without affecting the number of
unhappy (thus increasing f(·)) by replacing C with two cycles consisting of (i) a self-loop
on v, and (ii) the cycle obtained from C by adding a directed edge (u, w) from the vertex
immediately before v to the vertex immediately after v in C, and then deleting v (notice
that t(u) = c(v) = t(v) = c(w) and that u and v might coincide).

Then, every unhappy cycle involves at least two colors and any two distinct unhappy
cycles can always be merged into a single cycle. This implies that it is impossible for P∗

to contain both an unhappy X-cycle and an unhappy Y -cycle, since they could be merged
(see Lemma 3) into a single happy XY -cycle, increasing f(·). Therefore P contains no
unhappy Y -cycle and exactly one unhappy X-cycle C (otherwise all unhappy X-cycles could
be merged into a single unhappy cycle, increasing f(·)).

We now argue that C can be merged with some happy cycle containing a vertex in Y ,
thus decreasing the number of unhappy cycles to 0 without affecting the number of happy
cycles, which is a contradiction. Since the vertices in C have at least two distinct colors and
I is not lopsided, we can always find some vertex v ∈ Y such that at least one of c(v) and
t(v) coincides with the color c of a vertex u in C. Then color c appears both in C and in
the happy cycle C ′ of P∗ that contains v, which implies that C and C ′ can be merged (see
Lemma 3). ◀

As a consequence of Lemma 6, we can restrict our attention to finding swapping plans
with only happy cycles. However, such cycles could potentially be too long. However, it
turns out that one can instead consider a relaxed version of the problem where the goal is

FUN 2024



5:8 Swapping Mixed-Up Beers to Keep Them Cool

that of finding a partial swapping plan that maximizes the number of happy cycles, and
such version results in short happy cycles. Clearly, the value of an optimal partial swapping
plan, i.e., number of its happy cycles, is an upper bound to the value f(P∗) of an optimal
swapping plan P∗. We prove that the converse also holds, and we show how to convert an
optimal partial swapping plan into an optimal swapping plan.

We now formalize the above relation between the two problems. With a slight abuse of
notation we let f(P̃) be the number of happy cycles in a partial swapping plan P̃.

▶ Lemma 7. Let P̃ be an optimal partial swapping plan for a non-lopsided instance I. We
can compute an optimal swapping plan P for I with f(P) = f(P̃) in polynomial time.

Proof. We say that a vertex is uncovered if it does not belong to any of the cycles in P̃ . We
consider the case in which there exists at least one uncovered vertex, since otherwise the
claim is trivial. We assume w.l.o.g., that such uncovered vertex is in X.

Observe that P̃ contains no monochromatic uncovered vertex, since otherwise we could
add a self-loop to P̃ increasing f(·). Complete P̃ into a swapping plan P ′ by partitioning
the uncovered vertices in an arbitrary set of additional cycles (Lemma 1 ensures that this is
always possible), and notice that the optimality of P̃ implies that each such cycle is unhappy.

Since each unhappy cycle contains vertices with at least two different colors any two such
cycles can always be merged (see Lemma 3). In particular, any unhappy X-cycle can always
be merged with any unhappy Y -cycle in P ′ resulting in an happy XY -cycle. However, any
such merge would contradict the optimality of P̃ , which implies that P ′ contains no unhappy
Y -cycles.

We can then merge all unhappy X-cycles in P ′ into a single cycle C. Since I is not
lopsided, C can be further merged with some (happy) cycle containing a suitable vertex from
Y by using analogous arguments to the ones employed in the proof of Lemma 6. This results
in a swapping plan P with f(P) ≥ f(P̃), which implies f(P) = f(P̃). ◀

The following lemma provides another important key ingredient that allows us to find
optimal solutions of our problem instance. In particular, the lemma states that we can focus
on partial swapping plans containing only very short happy cycles.

▶ Lemma 8. There exists an optimal partial swapping plan containing only happy cycles
having a length of at most 4.

Proof. In the rest of this proof we name the three distinct colors red, green, and blue.
W.l.o.g., we can assume that the optimal partial swapping plan contains only happy cycles
as unhappy cycles can be discarded.

We argue that, given any happy cycle C of length 5 or more, there exists another happy
cycle C ′ of length at most 4 that contains only a subset of the vertices of C. The existence
of an optimal partial swapping plan with cycles of length at most 4 follows by starting from
any optimal partial swapping plan and iteratively replacing any long happy cycle C with a
short happy cycle C ′ that spans only (a subset of) vertices of C, while discarding the vertices
that are in C but not in C ′.

Given two vertices u, v, we say that they are complementary if c(u) = t(v) and t(u) = c(v).
In the rest of the proof we assume that C contains no monochromatic vertices, since otherwise
we can choose C ′ as the self-loop consisting of a single monochromatic vertex from C. We
can also assume that there are no two complementary vertices u, v of C on different sides of
the bipartition, otherwise we choose C ′ = ⟨u, v, u⟩.

Since C has length of at least 5, there exists one side of the bipartition, say X, that
contains 3 vertices of C. If any two of these three vertices have the same color, or host tokens
of the same color then, by Lemma 4, we can split C into two cycles such that at least one
the two cycles must include a vertex on the opposite side of the bipartition, i.e., it is happy.
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As a consequence, we consider the case in which all vertices in X have different colors and
host tokens of different colors as well. Let u ∈ X and z ∈ Y such that c(z) = c(u), and let
v, w two other vertices in X. W.l.o.g. (i.e., up to renaming of the colors), c(u) = c(z) is red,
t(u) = c(v) is blue, and c(w) is green. Notice that t(v) cannot be blue (since v would be
monochromatic) and cannot be red (since w would be monochromatic), hence t(v) is green,
and t(w) is red. Then C̄ = ⟨u, v, w, u⟩ is a cycle. We have that t(z) cannot be red (since z

would be monochromatic) and it cannot be green (since z and w would be complementary).
Then t(z) is blue, and we can choose C ′ = ⟨z, v, w, z⟩, which is happy. ◀

We now show how to find an optimal partial swapping plan fulfilling the conditions of
Lemma 8 in polynomial time. The idea is that of encoding the problem as an integer linear
program (ILP) with a constant number of variables and a constant number of constraints,
and then using Lenstra’s algorithm [9] (whose running time is super-exponential in the
number of variables and polynomial in the number of constraints) to solve such ILP.3

We define the type τv of a vertex v as the tuple (c(v), t(v),1x∈X) where 1x∈X = 1 if
x ∈ X and 0 otherwise, and we let Tvertex be the set of all possible vertex types. Notice that
two vertices of the same type are copies of one-another, hence we can describe any happy
cycle by counting the number of nodes of each type. Given a cycle C, we define the type
γC of C as as tuple that has one entry γC(τ) for each vertex type τ ∈ Tvertex. The value of
γC(τ) is the number of occurrences of vertices of type τ in C. Notice that there are only a
constant number of distinct types γ that can be associated to happy cycles of length at most
4 (see Lemma 8), and we denote the set of all such types with Thappy.

Given a cycle type γ we denote by γ(τ) and nτ (I) the number of nodes of type τ in
γ and in the input instance I, respectively. Our ILP has one variable hγ ∈ N (where N
denotes the set of all non-negative integers) for each type γ ∈ Thappy that represents the
number of occurrences of happy cycles of type γ that are part of a partial swapping plan.
The constraint associated to a type τ ∈ Tvertex ensures that the partial swapping plan spans
at most nτ (I) vertices of type τ .

max
∑

γ∈Thappy

hγ

s.t.
∑

γ∈Thappy

γ(τ)hγ ≤ nτ (I) ∀τ ∈ Tvertex,

hγ ∈ N ∀γ ∈ Thappy.

Once an optimal solution for the above ILP has been found, we can convert it into an
optimal partial swapping plan P̃ in polynomial time, which, using Lemma 7 can be further
converted into an optimal P for I, and then into optimal sequence of swaps (see Lemma 2).
We have therefore shown the following:

▶ Theorem 9. The CTS problem on complete bipartite graphs and k = 3 colors can be solved
in polynomial time.

4 Arbitrary number of colors

We extend the ideas used in Section 3 for instances with k = 3 colors to solve CTS problem
on complete bipartite graphs with k colors in time O(φ(k) + n), for some function φ that
depends only on k.4

3 See [12] for a recent improvement over Lenstra’s algorithm.
4 We assume that the input graph G is a complete bipartite graph and that the sides X and Y of the

bipartition can be found in time O(n). This is the case, e.g., when G is represented using adjacency lists.
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We will solve the problem instance via an ILP formulation with a number of variables
and constraints that depends only on k. Unfortunately, some of the nice properties we
have proved for the 3-color case, as the existence of optimal swapping plans containing
only happy cycles (Lemma 6) and the existence of partial swapping plans maximizing the
number of happy cycles and containing only short happy cycles (Lemma 8), are no longer
true. Therefore, we need to find alternative structural properties of some optimal solutions
for our problem instances.

We say that a cycle is long if its length is at least 2k + 1, and short otherwise. We first
show the existence of optimal swapping plans with few long happy cycles.

▶ Lemma 10. There exists an optimal swapping plan in which the number of happy cycles
that are long is at most k.

Proof. Given a generic swapping plan P , we define Φ(P) as a vector, sorted in non-decreasing
order, that contains one entry with value equal to the length |C| of C for each long cycle C

in P.
We show that, if P has ℓ ≥ k + 1 happy long cycles, then we can transform it into

another swapping plan P ′ that has the same number of self-loops, X-cycles, Y -cycles, and
XY -cycles and either has ℓ − 1 happy long cycles, or is such that Φ(P ′) is greater than
Φ(P) in lexicographic order. Since there are only finitely many possible vectors Φ(·), a
repeated application of the above transformation eventually results in a swapping plan P∗

with f(P∗) = f(P) and at most k happy long cycles.
Assume than that P has ℓ ≥ k + 1 happy long cycles. For each such cycle C, the

pigeonhole principle guarantees that we can find a pair {u, v} of vertices in C that are both
on the same side of the bipartition and such that c(u) = c(v). We label C with the color of
c(u) = c(v) of these vertices.5 Since there are ℓ ≥ k + 1 cycles but at most k distinct labels,
another invocation of the pigeonhole principle ensures that we can find two cycles C ′, C ′′

with the same label c. Assume w.l.o.g. that |C ′| ≤ |C ′′| and let {u′, v′} and {u′′, v′′} be the
pairs of vertices chosen for C ′ and C ′′, respectively.

By Lemma 4 we can partition the vertices of C ′ into two cycles Cu′ , Cv′ , where Cu′

contains u′ and Cv′ contains v′. Since u′ and v′ are on the same side and C is happy, at least
one cycle C∗ ∈ {Cu, Cv} must also be happy. Let C̄ the unique cycle in {Cu, Cv} \ {C∗}.

We choose P ′ as the swapping plan obtained from P by deleting C and C ′ and replacing
them with C∗ and the cycle obtained by merging C̄ with C ′′ (see Lemma 3, and notice that
vertex u′′ in C ′′ has the same color c of some vertex in C̄, which is either u′ or v′).

To relate Φ(P) to Φ(P ′), we observe that the entry with value |C ′′| corresponding to C in
Φ(P) is replaced with an entry of value |C ′′| + |C̄| > |C ′′| in Φ(P ′), the entry corresponding
to C ′ decreases, and all other entries are unaffected. ◀

The following lemma considers optimal swapping plans with a few long happy cycles and
shows the existence of such a swapping plan that additionally contains few unhappy cycles.

▶ Lemma 11. There exists an optimal swapping plan P with at most k happy long cycles,
ηX(P) ≤ k/2, and ηY (P) ≤ k/2.

This is needed since we obtain an algorithm with a running time of O(n) for k = O(1), but complete
bipartiteness cannot be tested in time o(n2).

5 Notice that there might be multiple such pairs of vertices for C, and that different choices can result in
different labels for C. In this case, we arbitrarily choose one of the pairs.
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Proof. Among all optimal swapping plans having most k happy long cycles, let P be one
that minimizes max{ηX(P), ηY (P)} (the existence of P is guaranteed by Lemma 10) and
assume towards a contradiction that max{ηX(P), ηY (P)} > k.

The optimality of P ensures that no unhappy cycle C ∈ P contains any monochromatic
vertex v, otherwise we could replace C with a self-loop on v (which is a short happy cycle),
and an unhappy-cycle that spans all other vertices of C. This either increases the number of
happy cycles by 1 without affecting the number of unhappy X- and Y -cycles (when |C| > 2)
thus increasing f(·) by 1, or it increases the number of happy short cycles by 2 and removes
exactly one unhappy cycle (when |C| = 2), thus increasing f(·) by at least 1.

In the rest of the proof we focus on the case ηX(P) ≥ ηY (P) since the complementary
case is symmetric.

Since each X-cycle C in P contains vertices of at least two different colors, the pigeonhole
principle ensures that we can find two vertices of the same color that belong to two distinct
X-cycles C ′

X and C ′′
X . Then C ′

X and C ′′
X can be merged into a single cycle C∗

X (see Lemma 3).
If ηX(P) > ηY (P), the swapping plan (P \ {C ′

X , C ′′
X}) ∪ {C∗

X} has the same number
of self-loops, XY -cycles, and Y -cycles as P but one less X-cycle, which contradicts the
optimality of P.

Consider then ηX(P) = ηY (P). Using analogous counting arguments as the ones used for
X-cycles, we can find two Y -cycles C ′

Y , C ′′
Y that can be merged into a single cycle C∗

Y . Then
P∗ = (P \ {C ′

X , C ′′
X , C ′

Y , C ′′
Y }) ∪ {C∗

X , C∗
Y } has the same set of self-loops and XY -cycles as

P, one less X-cycle, and one less Y -cycle. Hence we simultaneously have that (i) P∗ has
at most k happy long cycles, (ii) f(P) = f(P∗) which implies that P∗ is optimal, and (iii)
max{ηX(P∗), ηY (P∗)} = ηX(P∗) = ηX(P) − 1 = max{ηX(P), ηY (P)} − 1. This contradicts
our choice of P. ◀

As we will see, Lemma 11 allows us to model long happy cycles and unhappy cycles of
an optimal swapping plan using a few additional variables in our ILP. However, as some of
these cycles might be long, it is not clear how to guess the types of such long cycles. To deal
with this issue, we introduce the concept of base cycles that will allow us to re-think of these
long cycles as if they were short.

We say that a cycle of C is a base cycle if it does not contain two distinct vertices u, v

of same type, i.e., τu = τv. Given a collection B of base cycles, we say that B is connected
if the directed graph H(B) that has one vertex for each vertex type that appears in some
cycle in B, and an edge (τ, τ ′) iff the token color of type τ is the same as the vertex color of
type τ ′, is strongly connected. We now provide two useful lemmas that show the connection
between cycles and base cycles of the moves graphs.

▶ Lemma 12. Given a cycle C, there exists a connected collection B of base cycles spanning
the vertices in C such that each vertex in C is part of exactly one cycle in B.

Proof. We build B by starting with B = {C} and then iteratively replacing any cycle C̄

in B containing two distinct vertices with the same color, with two (shorter) cycles that
together span all and only the vertices in C̄ exactly once (see Lemma 4). Notice that {C} is
connected and that the above operation preserves the connectedness property. ◀

▶ Lemma 13. Given a connected collection of base cycles B, there exists a cycle C that
spans all and only the vertices in B.

Proof. We maintain a collection of cycles B′ which initially coincides with B and we prove
the claim by iteratively merging pairs of cycles in B′ until B′ contains a single cycle C.
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We now show that, as long as |B′| ≥ 2, there always exist two distinct cycles C ′, C ′′ ∈ B′

that can be merged. Let C ′ be an arbitrary cycle in B′ and call TC′ and TB the set of all
types of the vertices in C ′ and in (the cycles of) B, respectively. If TC′ = TB then C ′ can be
merged with any other cycle in B′ (see Lemma 3) and we are done. Otherwise, let (τ, τ ′) be
some edge of H(B) such that τ ∈ TB \ TC′ and τ ′ ∈ TC′ . Such an edge always exist since
H(B) is strongly connected. Let C ′′ ≠ C ′ be any cycle in B′ that contains a vertex u of
type τ , let v be the vertex that immediately follows u in C ′′ (possibly v = u), and let w be a
vertex of type τ ′ in C ′. Our choice of vertices ensures that t(u) = c(v) and that t(u) = c(w),
hence c(v) = c(w), and Lemma 3 implies that C ′ and C ′′ can be merged. ◀

Let Ts-happy to be the set of all possible types of short happy cycles, and let Tbase be the
set of all possible types of base cycles. The cardinalities of s-happy and Tbase depend only
on k since they contain only cycles of length at most 2k and 2k2, respectively.

Given a cycle type γ ∈ Tbase, we denote by βγ(B) the number of base cycles of type γ in
B. Given a collection B of base cycles, the signature σ(B) of B is the set containing all types
γ ∈ Tbase such that there is at least one cycle of type γ in B. Notice that since |Tbase| only
depends on k, the same also holds for the number of the possible distinct signatures σ(B).

We guess the values ℓ∗, η∗
X and η∗

Y corresponding to number of long happy cycles, X-cycles
ηX(P∗) and Y -cycles ηY (P∗) of an optimal swapping plan P∗. Thanks to Lemmas 10 and 11,
we can restrict ourselves to ℓ∗ ∈ {0, . . . , k} and η∗

X , η∗
Y ∈ {0, . . . , ⌊k/2⌋}.

Then, we look for a swapping plan that, (i) has exactly ℓ∗ happy long cycles C1, C2, . . . ,
(ii) has exactly η∗

X X-cycles CX
1 , CX

2 . . . , (iii) has exactly η∗
Y Y -cycles CY

1 , CY
2 , . . . , and (iv)

maximizes the number of short happy cycles.
Instead of searching for a generic long happy cycle Ci, X-cycle CX

i , or Y -cycle CY
i ,

Lemmas 12 and 13 together allow us to look for connected collections Bi, BX
i , or BY

i of base
cycles, respectively.

To this aim we further guess the signatures σi, σX
i , and σY

i of each collection Bi, BX
i , BY

i ,
respectively. In particular, σi must be some connected signature that involves at least one
vertex type for each side of the bipartition, while σX

i and σY
i must be connected signatures

in which all types are on side X and Y , respectively. We can now write an integer linear
program that has:

one variable hγ ∈ N for each type γ ∈ Ts-happy;
one variable hi,γ ∈ N+ associated to each type γ ∈ σi which counts the number of base
cycles of type γ in Bi (here N+ denotes the set of all positive integers);
one variable xi,γ ∈ N+ associated to each type γ ∈ σX

i which counts the number of base
cycles of type γ in BX

i ; and
one variable yi,γ ∈ N+ for each type γ ∈ σY

i which counts the number of base cycles of
type γ in BY

i .
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max ℓ∗ + |η∗
X − η∗

Y | +
∑

γ∈Thappy

hγ

s.t.
ℓ∗∑

i=1

∑
γ∈σi

γ(τ)hi,γ +
η∗

X∑
i=1

∑
γ∈σX

i

γ(τ)xi,γ

+
η∗

Y∑
i=1

∑
γ∈σY

i

γ(τ)yi,γ +
∑

γ∈Thappy

γ(τ)hγ = nτ (I) ∀τ ∈ Tvertex,

hγ ∈ N ∀γ ∈ Ts-happy,

hi,γ ∈ N+ ∀i ∈ {1, . . . , ℓ∗} ∀γ ∈ σi,

xi,γ ∈ N+ ∀i ∈ {1, . . . , η∗
X} ∀γ ∈ σX

i ,

yi,γ ∈ N+ ∀i ∈ {1, . . . , η∗
Y } ∀γ ∈ σY

i .

Similarly to Section 3, we once again solve the above ILP using Lenstra’s algorithm [9],
whose running time is upper bounded by a function of the number and variables and of the
number of constraints of the ILP, both of which depend only on k.

After an optimal solution for the above ILP has been found, it needs to be converted into
a corresponding swapping plan. We will now argue that this can be done in time O(φ(k)+n),
for some function φ(·) that depends only on k.

We first create a collection of buckets βτ , with τ ∈ Tvertex, where βτ contains all vertices
of G of type τ . We now assign the vertices of G to each of the

∑
γ∈Thappy

hγ short happy
cycles, and to each base cycle in the collections Bi, BX

i , BY
i corresponding to the ℓ∗ long

happy cycles Ci, η∗
X unhappy X-cycles CX

i , and η∗
Y unhappy Y -cycles CY

i . This can be
done by drawing the vertices of the needed types from the corresponding bucket. Once this
assignment is complete each of the above cycles can be built by brute-force from the assigned
vertices in a time that depends only on k.

It remains to transform each (connected) collection of base cycles into a single cycle the
spans the same vertices (whose existence is guaranteed by Lemma 13). It is not hard to come
up with an algorithm that performs this task in time O(k + nB) for a collection spanning nB

vertices (see, e.g., Appendix B). Since there are ℓ∗ + η∗
X + η∗

Y ≤ 2k such collections, and each
vertex of G is spanned by at most one base cycle, this takes time O(φ(k) + n). By Lemma 2,
the resulting optimal swapping plan can be converted into an optimal sequence of swaps in
time O(n), thus we have:

▶ Theorem 14. The CTS problem on complete bipartite graphs with k colors can be solved in
time O(φ(k) + n) for a suitable function φ(·) that depends only on k.

5 NP-hardness of CTS on complete bipartite graphs

We show that CTS on bipartite graphs is NP-Hard by reducing from CTS on cliques, which
has been shown to be NP-Hard in [3].

Given an instance IH of CTS on a clique H with nH vertices, we create an instance IG of
CTS on a complete bipartite graph G = (V, E) with n = 2nH vertices, where V is partitioned
into two sets X and Y which correspond to the two sides of the bipartition.
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Figure 4 An example of the CTS instance IH on a clique graph with nH = 6 vertices is shown
in (a). The corresponding instance IG on a complete bipartite graph with 2nH vertices defined by
our reduction is shown in (b). In (c) and (d) we have the moves graphs of instances IH and IG,
respectively. Notice that any directed edge (u, v) in the moves graph of IH is modelled by the path
consisting of the two directed edges (u′, u′′) and (u′′, v′) in the moves graph of IG, the first one
going from a vertex of X to a vertex of Y and the second one going from a vertex of Y to a vertex
of X. Thus any swapping plan for IH corresponds to a swapping plan for IG, and vice-versa. The
bold edges depict an optimal swapping plan for IH and the corresponding swapping plan for IG.

The graph G of IG is the complete bipartite graph obtained by creating two copies v′, v′′

of each vertex v in H and placing v′ in X and v′′ in Y . The set of colors of IG consists
of all the colors in IH plus one new color cv for each vertex v of H. We set c(v′) = c(v),
t(v′) = c(v′′) = cv, and t(v′′) = t(v). Let M be the moves graph of IG.6 See Figure 4 for an
example.

▶ Lemma 15. The sets X and Y are a bipartition of M . Moreover, each vertex v′ ∈ X has
a single outgoing edge incident to it, which is the edge (v′, v′′).

Proof. Let v′ ∈ X. Our construction of IG ensures that t(v′) = cv and that the only vertex
of color cv is v′′. This implies that (v′, v′′) is in M as is the only outgoing edge of v′.

We now show that the moves graph M is bipartite by proving that there cannot be any
edge (u′′, v′′) between two vertices u′′, v′′ ∈ Y . Indeed, as each vertex v′ ∈ X has a single
outgoing edge incident to it which enters a vertex of Y , it cannot be the case that M contains
an edge between two vertices of X. Consider now a generic vertex u′′ ∈ V . Since t(u′′) is one
of the colors of IH , while each v′′ ∈ Y has color c(v′′) = cv, which is one of the colors that
has been introduced in IG but was not in IH , we conclude that (u′′, v′′) is not in M . ◀

▶ Lemma 16. There exists a swapping plan PH for IH if and only if there exists a swapping
plan PG for IG with |PG| = |PH |.

Proof. Let PH be a swapping plan for IH . The swapping plan PG for IG contains one cycle
C ′ for each cycle C ∈ PH . The cycle C ′ is obtained by renaming each vertex v of C ′ into v′

(i.e., the copy of v on side X of G) and then splitting each resulting edge (u′, v′) into the two

6 With a little abuse of notation, we use the same functions c and t to denote the colors of the vertices
and of the tokens of both instances, respectively.
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edges (u′, u′′) and (u′′, v′) via the inclusion of the intermediate vertex u′′ (see Figure 4 for an
example). As each vertex v of H is spanned by a unique cycle in PH , say C, by construction
of PG, the two vertices v′ and v′′ are spanned by the unique cycle C ′ that corresponds to C.
This implies that PG is a swapping plan for IG.

Consider now a swapping plan PG for IG. The swapping plan PH for IH contains one
cycle C for each cycle C ′ ∈ PG. Lemma 15 implies that a generic cycle C ′ ∈ PG consists
of an alternation of vertices from X and Y , where each vertex u′′ of C ′ that is in Y is
immediately preceded by vertex u′ ∈ X. The cycle C is obtained from C ′ by considering each
vertex u′′ of C that is in Y , deleting it, and replacing its two incident edges in C, namely the
incoming edge (u′, u′′) and an outgoing edge (u′′, v′) for some u′ ∈ X, with the edge (u, v).
As each vertex v′ of G is spanned by a unique cycle in PG, say C ′, by construction of PH , v

is spanned by the corresponding cycle C. Therefore PH is a swapping plan for IH . ◀

Lemma 15 implies that all cycles in M are happy. Hence, all swapping plans PG for IG

have ηX(PG) = ηY (PG) = 0 and, from Equation (1), we have f(PG) = |PG|. Therefore the
minimum number of swaps needed to solve IG is n − f(P∗

G), where P∗
G is a swapping plan

for IG that maximizes |P∗
G|.

As shown in [4], the minimum number of swaps needed to solve IH is nH − |P∗
H |, where

P∗
H is a swapping plan of maximum cardinality for IH . Lemma 16 and the above discussion

imply that |P∗
H | = |P∗

G|, and hence IG admits a solution with at most n − x swaps if and
only if IH admits as solution with at most nH − x swaps. We thus have the following:

▶ Theorem 17. The Colored Token Swapping problem on complete bipartite graphs is
NP-hard.

Moreover the CTS problem on a clique of nH vertices cannot be solved in time 2o(nH )

unless the exponential time hypothesis fails [3, 7], and our reduction ensures that n = Θ(nH),
a similar result also holds for complete bipartite graphs:

▶ Theorem 18. The Colored Token Swapping problem on complete bipartite graphs
cannot be solved in time 2o(n), unless the exponential time hypothesis fails.
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Otherwise (i.e., |C| ≥ 3 and C contains some special vertex), let u be a special vertex,
and let v, w be the two vertices that appear immediately after u in C, in this order.

Then swap the tokens on u and v. To update P replace (u, v) and (v, w) with the edges
(u, w) and (v, v). This has the effect of removing v from C (possibly resulting in a
self-loop) and creating a new self-loop on v.

2. If P contains an X-cycle C and an Y -cycle C ′, let u (resp. v) be an arbitrary vertex in
C (resp. C ′). Swap the tokens on u and v. To update P remove the two edges (u, u′)
and (v, v′) outgoing from u and v, respectively, and add the two new edges (u, v′) and
(v, u′). This causes C and C ′ to merge into a single XY -cycle.

3. Otherwise let C be any X-cycle or Y -cycle in P. Choose an arbitrary vertex u from C

and an arbitrary (singleton) vertex v from the opposite side of the bipartition. Swap the
tokens on u and v. To update P delete the edge (u, u′) outgoing from u and the self-loop
(v, v), and replace them with the edges (u, v) and (v, u′). This has the effect of merging
C and ⟨v, v⟩ into a single cycle.

We now argue that the above algorithm can be implemented to run in time O(n). We
keep track of four lists of cycles that store self-loops, X-cycles, Y -cycles, and XY -cycles,
respectively. Each C is represented by storing a doubly-linked list Lvertices of its vertices (in
order), the number of vertices of C that are in X and in Y (respectively), and a list Lspecial
of the special nodes of C. The generic element that stores a node v in Lspecial also has a
pointer to the element that stores v in Lvertices, and vice-versa. Clearly, given P, we can
initialize the above data structures in time O(n). Moreover, selecting the next rule to apply,
and updating the data structure following the changes to P dictated by such rule can be
done time O(1). Hence the overall running time is O(n + |P|) = O(n).

B Merging a connected collection of base cycles in time O(n)

In this section we argue that the cyclces of a connected collection B of base cycles can be
merged into a single cycle C∗ in time O(k + nB), where nB denotes the overall number of
vertices spanned by the base cycles in B.

We start by building an auxiliary undirected bipartite graph H ′ in which the color-vertices
on one side of the bipartition are the distinct colors of the vertices spanned by the cycles in
B, and the cycle-vertices on the other side of the bipartition are the base cycles in B. H

contains an edge (c, C) iff there is some vertex in cycle C that has color c, and this edge is
labelled with the name of any such vertex. The above auxiliary graph can be built in time
O(n).7

▶ Lemma 19. The graph H ′ is connected.

Proof. Since each color-vertex in G has at least one cycle-vertex as a neighbor, it suffices to
show that there exists a walk W in H ′ between any two distinct cycles C, C ′ ∈ B.

7 For each C ∈ B, we can find a collection LC containing exactly one vertex v with c(v) = c for each
distinct color c that appears in C. We start with LC = ∅ and we examine the vertices of C one at a
time while updating a global array of k flags. The c-th flag is set to true iff some vertex of color c has
already been encountered in C. Whenever a vertex v of a new color c is encountered, the corresponding
flag is set to true and v is added to LC . After all the vertices of C have been processes, the flags of the
colors in LC are reset to false. The overall running time is O(k + nB).
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Let τ and τ ′ denote the types of two arbitrary vertices from C and C ′, respectively. Since
H(B) is connected, there exists some (directed) path π = ⟨τ = τ1, τ2, . . . , τℓ = τ ′ between τ

and τ ′ in H(B). Let C ′
1 = C, C ′

ℓ = C ′ and, for i = 2, . . . , ℓ − 1, choose C ′
i as an arbitrary

cycle from B that contains some vertex of type τi. Moreover, let ci and ti be the colors of
the vertex and the token of type τi, respectively.

For i = 1, . . . , ℓ − 1, Ci contains a vertex of color ti = ci+1 and so does Ci+1. Hence the
two edges (Ci, ci+1) and (ci+1, Ci+1) form a walk Wi between Ci and Ci+1 in H ′. We choose
W as the composition of all walks W1, . . . , Wℓ−1, in this order. ◀

Next, we compute a spanning tree T of H rooted in an arbitrary cycle-vertex (T exists
by Lemma 19) and we iteratively (i) locate the deepest color vertex c; (ii) merge all its
neighboring cycles (i.e., the parent all the children of C) in T into a single cycle C ′ by
repeatedly performing merge operations; and (iii) delete c and all its children, and replace
the former parent of c with a new cycle-vertex corresponding to C ′. We stop this process
when T contains a single cycle C∗ as its root, and we return C∗.

Notice that the time spent to process T is proportional to the number nT of vertices in
T . Indeed the color vertices c can be listed in order of depth in time O(nT ) by a BFS visit
of T , and step (ii) can be performed in time proportional to the number of neighbors of c by
exploiting the fact that a generic edge (c, C) incident to c in T is labelled with a vertex of C

having color (see also Lemma 3). The overall time spent is therefore O(k + nT ) = O(k + nB)
since H (and hence T ) contains at most k color-vertices and nB/2 cycle-vertices.
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Rebalancing schemes for dynamic binary search trees are numerous in the literature, where the goal
is to maintain trees of low height, either in the worst-case or expected sense. In this paper we study
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additional balance information. Seidel (2009) presented a top-down randomized insertion algorithm,
where insertions take expected O

(
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)
time, and the resulting trees have the same distribution as

inserting a uniform random permutation into a binary search tree without rebalancing. Seidel states
as an open problem if a similar result can be achieved with bottom-up insertions. In this paper we
fail to answer this question.

We consider two simple canonical randomized bottom-up insertion algorithms on binary search
trees, assuming that an insertion is given the position where to insert the next element. The
subsequent rebalancing is performed bottom-up in expected O(1) time, uses expected O(1) random
bits, performs at most two rotations, and the rotations appear with geometrically decreasing
probability in the distance from the leaf. For some insertion sequences the expected depth of each
node is proved to be O(lg n). On the negative side, we prove for both algorithms that there exist
simple insertion sequences where the expected depth is Ω(n), i.e., the studied rebalancing schemes
are not competitive with (most) other rebalancing schemes in the literature.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Binary search tree, insertions, random rebalancing

Digital Object Identifier 10.4230/LIPIcs.FUN.2024.6

Related Version Full paper : https://doi.org/10.48550/arXiv.2404.08287 [12]

Funding Gerth Stølting Brodal: Supported by Independent Research Fund Denmark, grant 9131-
00113B.

1 Introduction

Binary search trees is one of the most fundamental data structures in computer science,
dating back to the early 1960s, see, e.g., Windley (1960) [28] for an early description of
binary search trees and Hibbard (1962) [20] for an analysis of random insertions and deletions.
Knuth [21, page 453] gives a detailed overview of the early history of binary search trees,
and Andersson et al. [7] an overview of later developments on balanced binary search trees.

When inserting new elements into the leaves of an unbalanced binary search tree the
height of the tree might deteriorate, in the sense that it becomes super-logarithmic in the
number of elements stored (see Figure 1). In the literature numerous rebalancing schemes
have been presented guaranteeing logarithmic height: Some are deterministic with worst-case
update bounds, like AVL-trees [1], red-black trees [19]; some deterministic with amortized
bounds, like splay-trees [26] and scapegoat trees [5, 18]; and others are randomized, like
treaps [25] and randomized binary search trees [22], just to mention a few.

In this paper we study simple randomized rebalancing schemes for sequences of insertions
into an initially empty binary search tree. The goal of this paper is to study randomized
rebalancing schemes under a set of constraints, and to study how good rebalancing schemes
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Figure 1 Unbalanced binary search trees resulting from inserting permutations of {1, . . . , 6}. The
insertion order is shown below the trees. The types of permutations are defined in Table 2.

can be achieved within these constraints. In general the proposed rebalancing schemes
in Section 2 and Section 3 are not competitive with existing rebalancing schemes in the
literature. The constraints we consider are the following:
1. The search tree should not store any balancing information, only the tree and the elements

should be stored.
2. Insertions should perform limited restructuring, say, worst-case O(1) rotations.
3. Most rotations should happen near the inserted elements.
4. Rebalancing should be based on local information (tree structure) at the insertion point

only (e.g., without knowledge of n nor the current height of the tree).
5. Rebalancing should be performed in expected O(1) time.
6. Rebalancing should use expected few random bits per insertion, say, expected O(1) bits.
7. Each node should have low expected depth, ideally O(lg n).

The constraints are motivated by the properties of the randomized treaps [25] (but treaps
need to store random priorities as balance information); that the random distribution of tree
structures achieved by treaps can be achieved without storing balancing information [24] (but
with slower insertions); and treaps can be the basis for efficient concurrent search trees [3].

1.1 Deterministic Previous Work
Red-black trees [19] are deterministic dynamic balanced binary search, with good amortized
performance. They violate constraint (1), since each node is required to store a single bit of
balance information, indicating if the node is red-black. But otherwise, red-black trees are
guaranteed to have height O(lg n), insertions at a leaf can be performed in amortized O(1) time
and perform at most two rotations, i.e., red-black trees essentially satisfy constraints (2)–(7),
if expected bounds are substituted by amortized bounds.

Brown [13, 14] showed how to encode a single bit of information in the internal nodes of a
binary tree by considering “supernodes” consisting of pairs of consecutive elements arranged
as parent-child pairs together with a pointer to an empty leaf between the two elements.
Depending of the relative placement of the two elements the encoded bit can be decoded from
the placement of the pointer to the empty leaf. Brown showed how to encode 2-3 trees [2,
Chapter 4] using this technique, achieving balanced binary search trees storing no balance
information and supporting insertions in worst-case O(lg n) time.
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Splay trees [26] are the canonical deterministic amortized efficient dynamic binary search
trees satisfying constraint (1), i.e., they do not store any additional information than the
binary tree and the elements. Splay trees support insertions in amortized O(lg n) time, i.e.,
insertions are amortized efficient. The drawback of splay trees is that they do a significant
amount of restructuring (memory updates) per insertion, since they rotate a constant fraction
of the nodes on the path from the inserted element to the root. The number of rotations
depends on what variant of splaying is applied, see [11, 26]. Albers and Karpinski [4] and
Fürer [17] considered randomized variants of splaying to reduce the restructuring cost.

Scapegoat trees are another deterministic dynamic binary search tree with good amortized
performance, independently discovered by Anderson [5, 6] and Galperin and Rivest [18].
Scapegoat trees achieve amortized O(lg n) insertions by maintaining the invariant that the
height of a tree containing n elements is O(lg n). If an insertion causes the invariant to be
violated, a local subtree is rebuild into a perfectly balanced binary tree (in the worst-case
this is the root and the full tree is rebuild). A scapegoat tree only needs to store the number
of elements n as a global integer value in addition to the binary tree and its elements.

1.2 Randomized Previous Work
Randomization and binary search trees can be addressed in two directions in the context of
insertions: Either insertions are random (e.g., the insertion sequence is a random permutation)
and we analyze the expected performance for a binary search tree with respect to the insertion
distribution; or insertions can be arbitrary but the rebalancing of the binary search tree
exploits random bits and we analyze the performance with respect to the random bits.

We call a search tree containing n elements inserted in random order without rebalancing
a random binary search tree. A classic result on random binary search trees is that each
element in the resulting tree has expected depth at most 2 ln n + O(1) [10, 20, 28]. The
important property is that the root equals each of the n elements with probability exactly 1/n,
and this property again holds recursively for the left and right subtrees. A consequence
is that all valid search trees with n ≥ 3 elements do not have the same probability. See
Panny [23] for a history on deletions in random binary search trees.

The structure of random binary search trees has been used as guideline to construct
different dynamic binary search trees where at each point of time the probability of a given
tree equals that of a random binary search tree [22, 24, 25].

Aragon and Seidel [25] introduced the treap, that with each element stores an independently
uniformly assigned random priority in the range [0, 1], and organizes the search tree such
that priorities satisfy heap order [27], i.e., the root stores the element with minimum priority.
Since each element has probability 1/n to have the smallest priority, all elements have
probability 1/n to be at the root, the property required to be random search trees. Insertions
into treaps can be done by bottom-up rotations in expected O(1) time and O(1) rotations
using O(1) random bits. After n insertions into a treap the expected shape of the treap equals
a random binary search tree. Blelloch and Reid-Miller [9] considered parallel algorithms for
the set operations union, intersection and difference on treaps. Alapati et al. [3] considered
concurrent insetions and deletions into treaps.

Martínez and Roura [22] presented a different approach denoted randomized binary search
trees to achieve the structure of a random binary search tree after n insertions. Their approach
stores at each node the size of the subtree rooted at the node, and insertions are performed
top-down in expected O(lg n) time, where the inserted element is inserted in a node with
probability 1

k+1 , where k is the size of the current subtree rooted at the node (see [22] for
details). Each insertion requires expected O(lg n) random integers in the range 1, . . . , n + 1.

FUN 2024
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Table 1 Rebalancing cost of selected binary search trees. Space refers to the space required for
additional balance information. OA, OE and O denote amortized, expected and worst-case bounds,
respectively. *Our results do not guarantee (expected) logarithmic depth.

Time Rotations Random bits Space (bits)
Red-black tree [19] OA(1) O(1) 0 1
Encoded 2-3 trees [13, 14] O(lg n) O(lg n) 0 0
Splay trees OA(lg n) OA(lg n) 0 0
Treaps [8] OE(1) OE(1) OE(1) OE(1)
Randomized BST [22] OE(lg n) OE(1) OE(lg2 n) O(lg n)
Seidel [24] OE(lg2 n) OE(1) OE(lg3 n) 0
Algorithms in this paper* OE(1) O(1) OE(1) 0

Table 2 Different sequences of length n (assuming n is even) considered in this paper.

permutation random permutation of 1, . . . , n

increasing 1, 2, 3, . . . , n

decreasing n, n − 1, n − 2, . . . , 1
converging 1, n, 2, n − 1, 3, n − 2, . . . , n

2 , n
2 + 1

pairs 2, 1, 4, 3, 6, 5, . . . , n, n − 1
bitonic 2, 4, 6, . . . , n − 2, n, n − 1, n − 3, . . . , 5, 3, 1
runs 2, 4, 6, . . . , n − 2, n, 1, 3, 5, . . . , n − 3, n − 1

Seidel [24] gave a unified presentation of [25] and [22], emphasizing the similarity of the
two approaches, and describes a variation of [22] that avoids storing subtree sizes, but the
insertion time increases to expected O

(
lg2 n

)
and uses O

(
lg3 n

)
random bits. Seidel states

it as an open problem if there exists a bottom-up rebalancing algorithm that without storing
any balancing information can obtain the structure of random binary search trees.

1.3 Results

We consider two very simple algorithms to rebalance a binary search tree after a new element
has been inserted at a leaf. Our aim is to try to meet the requirements (1)–(7), and in
particular not the ambitious goal of having the same distribution as random binary search
trees. Both our algorithms repeatedly flip a coin until it comes out head. Whenever the coin
shows tail (with probability p) we move to the parent of the current node (starting at the new
leaf, and if we reach the root, the rebalancing terminates without modifying the tree). When
the coin shows head, the first algorithm (RebalanceZig in Algorithm 1) rotates the current
node up, and the rebalancing terminates. The second algorithm (RebalanceZigZag in
Algorithm 2) does one or two rotations, depending on if it is a zig-zag or zig-zig case (inspired
by the rebalancing rules of splay trees).

Ignoring the depths of the nodes of the resulting trees, we immediately have the following
fact, since the coin tosses are independent Bernoulli trials, with an expected O(1) coin tosses
necessary (assuming a coin with constant non-zero probability for head). It follows that both
algorithms satisfy our constraints (1)–(6).

▶ Fact 1. The rebalancing done by RebalanceZig with 0 ≤ p < 1 takes expected O(1) time,
uses expected O(1) random bits, and performs at most one rotation. RebalanceZigZag
performs at most two rotations, but otherwise with identical performance.
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To study to what extend the proposed algorithms achieve logarithmic depth of the nodes,
constraint (7), we study the behavior of the algorithms on the insertion sequences listed in
Table 2.

In Section 2 we study RebalanceZig. Our first result is that RebalanceZig is sufficient
to achieve a balanced binary search tree when inserting elements in increasing order (and
symmetrically decreasing order). The below theorem follows from Lemma 9.

▶ Theorem 1. Executing RebalanceZig with 0 < p < 1 on an increasing and decreasing
sequence of n insertions results in a binary search tree, where each node has expected
depth O(lg n).

We then show that there are very simple insertion sequences where RebalanceZig
fails to achieve a balanced tree. We denote the sequence 1, n, 2, n− 1, . . . , n/2, n/2 + 1 the
converging sequence. The below theorem follows from Lemma 11.

▶ Theorem 2. Executing RebalanceZig with 0 ≤ p ≤ 1 on a converging sequence of n

insertions results in a binary search tree with expected average node depth Θ(n).

Another sequence where RebalanceZig fails to achieve logarithmic depth is on the
pairs sequence 2, 1, 4, 3, 6, 5, . . . , n, n − 1, provided p ≠ 1

2 . The following theorem restates
Lemma 12.

▶ Theorem 3. Executing RebalanceZig with 0 ≤ p < 1
2 or 1

2 < p ≤ 1 on a pairs sequence
of n insertions results in a binary search tree with expected average node depth Θ(n).

For p = 1
2 algorithm RebalanceZig behaves significantly better on pairs sequences. We

conjecture the expected average node depth to be O
(√

n
)
.

In Section 3 we study the second algorithm RebalanceZigZag. For increasing (de-
creasing) sequences, where the new leaf is always the rightmost (leftmost) node in the tree,
RebalanceZigZag is essentially identical to RebalanceZig, i.e., our result for increasing
and decreasing sequences for RebalanceZig immediately carries over to Rebalance-
ZigZag. The following theorem restates Corollary 14.

▶ Theorem 4. Executing RebalanceZigZag with 0 < p < 1 on an increasing or decreasing
sequence of n insertions results in a binary search tree where each nodes has expected
depth O(lg n).

In Section 3.2 we generalize the proof to also hold for the convergent sequence for
RebalanceZigZag (where RebalanceZig failed to achieve logarithmic depth), and more
generally finger sequences, where the next insertion always becomes the successor or prede-
cessor of the last insertion. The following theorem restates Lemma 15.

▶ Theorem 5. Executing RebalanceZigZag with 1
2

(√
5− 1

)
< p < 1 on a convergent or

finger sequence of n insertions results in a binary search tree where each nodes has expected
depth O(lg n).

On the negative side, we prove that RebalanceZigZag fails to achieve balanced trees
for pairs sequences, for all 0 ≤ p ≤ 1. The following theorem restates Lemma 16.

▶ Theorem 6. Executing RebalanceZigZag with 0 ≤ p ≤ 1 on a pairs sequence of n

insertions results in a binary search tree with expected average node depth Θ(n).

FUN 2024
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Figure 2 (Left-to-right) The right rotation of u rotates v up; note that a is moved one level up in
the tree, b remains at the same level, and c is moved down one level. (Right-to-left) the left rotation
of v rotates u up.

We complement our theoretical findings by an experimental evaluation of RebalanceZig
and RebalanceZigZag in Section 5, supporting our theoretical findings. We briefly discuss
random permutations in Section 4, but otherwise only have an experimental evaluation of
the rebalancing algorithms on inserting random permutations.

If the insights from our results can lead to an improved bottom-up randomized rebalancing
scheme for binary search trees remains open.

1.4 Notation and Terminology
Throughout this paper n denotes the number nodes in a binary search tree, i.e., the number
of insertions performed. The depth of a node is the number of edges from the node to the
root, i.e., the root has depth zero. The height of a tree is the maximum depth of a node.
Rebalancing will be done by the standard primitives of left and right rotations, see Figure 2.
Both rotate up a node one level in the tree. Since our updates are performed bottom-up, we
assume that each node v stores an element and pointers to its left child v.l, right child v.r,
and parent v.p (possibly equal to nil if no such node exists). We let lg n and ln n denote the
binary and natural logarithm of n, respectively.

2 Algorithm RebalanceZig

In this section we show that on increasing and decreasing sequences applying algorithm
RebalanceZig results in binary search trees where each node has expected depth O(lg n).
We also show that on the converging and pairs sequences

(
p ̸= 1

2
)

the expected average node
depth is linear.

Assume a new element has been inserted into a binary search tree as a new leaf v (before
rebalancing the tree). Algorithm RebalanceZig rebalances the tree as follows: After
inserting the new node v, we flip a coin, that with probability p is tail and 1 − p is head,
for a constant 0 ≤ p ≤ 1. If the coin is head, we rotate v up, and the insertion terminates.
Otherwise, we recursively move to the parent, i.e., set v ← v.p, flip a coin, and rotate the
parent up if the coin is head, or continue recursively at the grandparent if the coin is tail.
The rebalancing terminates when the first rotation has been performed or when we reach the
root. See the pseudo-code in Algorithm 1.

Note that p = 1 is the special case where we always move up and never rotate, i.e.,
identical to insertions without rebalancing. When p = 0 the new node is always the node
rotated up. In this case the tree is a single path containing all n nodes, since inserting a
node v as a child of u on the path, rotating up v causes v to be inserted into the path as
the parent u. See Figure 3. In the following we assume 0 < p < 1. That RebalanceZig
can not achieve the same tree distribution as random binary search trees (like treaps and
randomize binary search trees do) follows by the example in Figure 4.
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Figure 3 RebalanceZig with p = 0 always rotates up the inserted node, and maintains the
invariant that the tree is a single path. (left) insertion point of 7; (right) 7 is rotated up onto the
path.
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Figure 4 Binary search trees resulting from inserting the sequence 1, 3, 2 using RebalanceZig.
Each of the four search trees has probability 1/4 when p = 1/2. Note that the perfect balanced
binary search tree on three nodes cannot by achieved RebalanceZig on this insertion sequence.

2.1 Increasing Sequences
We let the right height of a tree denote the depth of the rightmost node in the tree. When
inserting elements in increasing order the new element will always be inserted as a rightmost
node in the tree, i.e., the right height increases by one before any rebalancing is performed. If
RebalanceZig performs a (left) rotation on the rightmost path, the right height is reduced
by one again, and the right height does not change by the insertion.

▶ Lemma 7. If the right height is d before inserting a new rightmost node and applying
RebalanceZig, then afterwards the right height is d or d + 1 with probability 1 − pd+1

or pd+1, respectively.

Proof. The right height increases if and only if no rotation is performed, i.e., we reach the
root because the coin d+1 times in a row shows tail, which happens with probability pd+1. ◀

▶ Lemma 8. After inserting n elements in increasing order using RebalanceZig, the right
height is at most ⌈(c + 1) · log1/p n⌉ with probability 1− 1/nc, for any constant c > 0.

Proof. Assume that the right height at some point of time during the insertions is d = c′ · lg n.
By Lemma 7, the probability that the next insertion increases the right height is pd+1. The
probability of any of the at most n remaining insertions increases the right height is at
most npd+1 = np1+c′ lg n ≤ npc′ lg n = n1+c′ lg p ≤ n−c for c′ ≥ −(c + 1)/ lg p. It follows that
the right height after n insertions is at most ⌈−(c + 1)/ lg p · lg n⌉ = ⌈(c + 1) log1/p n⌉ with
probability 1− 1/nc. ◀

Lemma 8 gives a high probability guarantee on the expected depth of the nodes on the
rightmost path. We now prove an expected depth for all nodes in the tree.

FUN 2024
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Algorithm 1 RebalanceZig(v).

while v.p ̸= nil and coin flip is tail do
v ← v.p

if v.p ̸= nil then
RotateUp(v)

▶ Lemma 9. After inserting n elements in increasing order using RebalanceZig, with
0 < p < 1, each node has expected depth O

(
1/p · log1/p n

)
.

Proof. Consider an element inserted in a node v during the sequence of insertions. The
element goes through the following five phases:
1. The element is not yet inserted. The less than n elements inserted before v create a tree

with right height O
(

log1/p n
)

with high probability (Lemma 8).
2. v is created as the rightmost node with depth O

(
log1/p n

)
with high probability.

3. v remains on the rightmost path for the subsequent insertions until v’s right child u

becomes the target for being rotated up. An insertion that rotates up v or an ancestor
of v will decrease the depth of v. Rotations below u do not change the depth of v.

4. v is moved out of the rightmost path by rotating up the right child u of v, making v the
left child of u. This increases the depth of v by one.

5. v is in the left subtree of a node u on the rightmost path (u can change over the subsequent
insertions, but the depth of the branching node u can never increase). Each insertion can
affect the position of v by the rotation performed:
a. No rotation is performed and the path from the root through u to v is unchanged.

The right height increases by one.
b. An ancestor of u is rotated up, where u remains the branching node to v, the depths

of both u and v decrease by one.
c. u is rotated up, where u remains the branching node to v, the depth of u decreases by

one, and the depth of v stays unchanged.
d. Rotating up the right child w of u increases the depth of v by one and w replaces u as

the branching node to v on the rightmost path (with the same depth as u had before
the rotation).

e. Rotations below the right child of u do not change the path from the root through u

and v.
From Lemma 8 it follows that the depth of v after phases 1–4 is O

(
log1/p n

)
, with high

probability. Cases 5a, 5b, 5c and 5e do not increase the depth of v. What remains is to
bound the expected number of times case 5d occurs and increases the depth of v by one. For
case 5d to happen, a coin must have been flipped at w showing head. Over all insertions in
phase 5, a subsequence of the insertions flips a coin at the child w of the current branching
node u. If an insertion flips a coin at w, there are two cases: The coin shows head with
probability 1− p and case 5d happens; or the coin shows tail with probability p, and case 5a,
5b or 5c happens. Since cases 5a, 5b and 5c at most happens O

(
log1/p n

)
times with high

probability (case 5a increases the right height; cases 5b and 5c decrease the depth of the
branching node u to v), i.e., the coin shows tail at w at most O

(
log1/p n

)
times with high

probability. Since the expected number of times we need to flip a coin to get a tail is 1/p,
the expected number of times we flip a coin at the right child w of the branching node u

to v is O
(
1/p · log1/p n

)
, with high probability. This is then also an upper bound on the

expected number of times the depth of v can increase by case 5d. It follows that with high
probability, the expected depth of v is O

(
log1/p n + 1/p · log1/p n

)
= O

(
1/p · log1/p n

)
. Since

the depth of v is at most n−1, the expected depth of v is O
(
1/p · log1/p n

)
after all insertions

is (without the high probability assumption). ◀
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The following lemma states that the node rotated up is expected to be close to the
inserted leaf, and states the number of coin flips as a function of the tail probability p.

▶ Lemma 10. The distance from the inserted node to the node rotated up by RebalanceZig
is expected at most p

1−p . The number of coin flips is at most 1
1−p .

Proof. The expected distance to the node rotated up is at most
∞∑

d=0
d(1− p)pd = (1− p)

∞∑
d=0

dpd = (1− p) p

(1− p)2 = p

1− p
,

since the new node inserted (at distance 0) is rotated up with probability 1− p, its parent
with probability p(1− p), etc. The d’th ancestor is rotated up with probability (1− p)pd,
provided a d’th ancestor exists. The number of coin flips is one plus the distance, i.e., at
most 1 + p

1−p = 1
1−p . ◀

Note that inserting n elements in decreasing order is the symmetric case to the increasing
order where the new node is inserted as the leftmost node, and at most one right rotation is
performed on the leftmost path. If follows that Lemmas 8 and 10 also apply to decreasing
sequences, by replacing the rightmost path by the leftmost path in the arguments,

2.2 Converging Sequences
Assume we have a finger into the sorted inserted sequence of elements pointing to the
most recently inserted element, and whenever a new element is inserted it must be the new
predecessor or successor of the element at the finger, i.e., we can only insert elements that are
in the interval defined by the current predecessor and successor of the element at the finger.
We call sequences satisfying this property for finger insertions. Increasing and decreasing
sequences are examples of finger insertions.

The following sequence of insertions also consists of finger insertions (for simplicity, we
assume n is even). We denote this insertion sequence the converging sequence. See Figure 1
for an illustration of n = 6.

1, n, 2, n− 1, 3, n− 2, 4, n− 3, . . . , n/2, n/2 + 1

As can be seen in the experimental evaluation in Figure 7(a,b), the average depth appears to
be linear for the nodes in a binary search tree resulting from applying RebalanceZig to
the converging sequence. The below lemma confirms this.

▶ Lemma 11. Executing RebalanceZig with insertions 1, n, 2, n − 1, . . . , n/2, n/2 + 1,
assuming n even, results in a binary search tree with an (external) leaf with expected depth at
least p(1−p)

2 n, for 0 < p < 1. For p = 0 and p = 1 the resulting tree is a single path.

Proof. For p = 1 we do no rebalancing, and the converging sequence results in a single path
(see Figure 1). For p = 0, the new node is always rotated up onto an existing single path. We
let the insertion point denote the (external) leaf, where the next insertion is going to create
a node v. Since the converging sequence is a sequence of finger insertions, the next insertion
point is always a child of the created node v (before rebalancing), i.e., each insertion increases
the depth of insertion point by one (before rebalancing). Unfortunately, the rebalancing done
by RebalanceZig does not always decrease the depth one. Consider inserting i, where
1 ≤ i ≤ n/2, that creates a node u followed by inserting n + 1 − i that creates a node v.
Assume that the rebalancing after inserting i does not rotate up u (but possibly an ancestor
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u

v
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RotateUp(v)
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Figure 5 Bad zag-zig case for RebalanceZig(v), where rotating up v does not decrease the
depth of the insertion point *.

of u has been rotated up, and possibly decreasing the depth of the insertion point by one
again), and the insertion of n+1− i causes v to be rotated up. This case is shown in Figure 5.
We borrow the terminology from splay trees that if a path branches left, we say it is a zig,
and if it branches right it is a zag. If a left branch is followed by a right branch it is a zig-zag.
We denote the case in Figure 5 the zag-zig case. In this case the insertion point moves from
being a child of v to being a child of u, but retains the same depth, i.e., the insertions and
RebalanceZig increased the depth of the insertion point by one. The probability that u

was not rotated up is p and the probability that v is rotated up is 1− p, i.e., the insertion of
i and n + 1− i causes the depth of the insertion point to increase by one with probability at
least p(1− p). It follows that after the insertion of all n elements, the expected depth of the
insertion point is at least 1

2 np(1− p). ◀

If an external leaf has depth d, then the sum of the depths of the d internal nodes on the
path to the external leaf is

∑d−1
i=0 i = 1

2 d(d− 1). The average depth of all nodes in the tree is
then at least 1

2 d(d− 1)/n, and Theorem 2 follows from Lemma 11.
It should be noted that the rotation after an insertion can happen higher in the tree,

where there is also a zag-zig case or symmetric zig-zag case, where RebalanceZig also
fails to decrease the depth of the insertion point after the insertion. This explains the gap
between the experimental constant observed in Figure 7 and the theoretical analysis.

2.3 Pairs Sequences
The pairs sequence consists of 2, 1, 4, 3, 6, 5, . . . , n, n−1. It is essentially an increasing sequence,
with pairs 2i − 1 and 2i swapped. Pair sequences are not finger sequences. Interestingly,
experiments show that RebalanceZig is challenged by this sequence. In our experimental
evaluation, Figure 7(a), it appears that p = 1

2 is a local minima for the average node depth
when rebalancing pairs sequences using RebalanceZig, with increased average node depth
for both p smaller than and larger than 1

2 . In [12] we prove the following lemma.

▶ Lemma 12. Applying RebalanceZig to the pairs sequence with n elements, for n even
and constant p ̸= 1

2 , 0 ≤ p ≤ 1, the resulting tree has expected average node depth Θ(n).

The last inserted element has expected depth Θ(n) for 0 < p < 1
2 and O(1) for 1

2 < p < 1,
so Lemma 12 does not give any bounds on the expected depth of specific elements. Lemma 12
addresses pairs sequences for p ̸= 1

2 , where the expected average node depth is linear. For
p = 1

2 we give the following conjecture, stating that the complexity is significantly different.
See [12] for an experimental and theoretical motivation of the conjecture.

▶ Conjecture 13. Applying RebalanceZig to the pairs sequence with n elements, for n

even and p = 1
2 , the resulting tree has expected average node depth O (

√
n).
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3 Algorithm RebalanceZigZag

To address the shortcomings of algorithm RebalanceZig in the case where v is in a zig-
zag or zag-zig state, we borrow terminology from splay trees [26], and apply the zig-zag
transformation to the tree (see Figure 6(right) and [26, Figure 3]) by rotating up v twice. In
the zig-zig case, instead of rotating up v, we rotate up the parent of v (see Figure 6(left)).
These two transformations ensure that everything in the subtree of v is moved one level up
in the tree when applying the transformantion at node v. The pseudo-code for algorithm
RebalanceZigZag is shown in Algorithm 2.

Algorithm 2 RebalanceZigZag(v).

while v.p ̸= nil and coin flip is tail do
v ← v.p

if v.p ̸= nil and v.p.p ̸=nil then
if (v =v.p.l and v.p=v.p.p.l) or (v =v.p.r and v.p=v.p.p.r) then

RotateUp(v.p) ▷ zig-zig or zag-zag case
else

RotateUp(v) ▷ zig-zag or zag-zig case
RotateUp(v)

3.1 Increasing Sequences
RebalanceZigZag handles increasing and decreasing sequences identical to Rebalance-
Zig, except that rotations happen one level higher, i.e., the trees are identical if ignoring the
rightmost inserted node. Equivalently, this corresponds to inserting the next element without
rebalancing, and first performing the rebalancing just before inserting the next element.
From Theorem 1 we have the following corollary.

▶ Corollary 14. For 0 < p < 1, after inserting n elements in increasing or decreasing order
using RebalanceZigZag, each node has expected depth O

(
1/p · log1/p n

)
.

3.2 Finger Sequences
We will prove that using RebalanceZigZag to rebalance finger sequences (like increasing,
decreasing and converging sequences), ensures that the resulting tree is expected to be
balanced, for p sufficiently large. Recall that a finger sequence is defined such that the
next element is always the immediate predecessor or successor of the most recently inserted
element among all elements inserted so far. In an unbalanced search tree, this means that the
next node will be a (left or right) child of the most recently inserted node, i.e., the resulting
tree is always a path. We denote the external leaf where to create the next node the insertion
point. The crucial property of the restructuring done by RebalanceZigZag in Figure 6 is
that if the insertion point is at an external leaf in the subtree rooted at v before the rotation,
then the depth of this external leaf is reduced by exactly one in both cases.

▶ Lemma 15. After inserting a finger sequence with n elements using RebalanceZigZag,
each node has expected depth O(lg n), for 1

2
(√

5− 1
)

< p < 1.

Proof. The proof follows the same idea as in Section 2.1 for the analysis of RebalanceZig
on increasing sequences. Instead of right height we consider insertion depth, i.e., the depth d

of the parent node of the insertion point. See [12] for proof details. ◀
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Figure 6 The rebalancing performed by algorithm RebalanceZigZag(v) in (left) zig-zig case
and (right) zig-zag case.

In our experiments, see Figure7(c), it shows up that RebalanceZigZag performs
better for p > 1

2 than p < 1
2 on the converging sequence, that is an example of a finger

sequence. We leave open the question what the dependency on p is for RebalanceZigZag
for 0 < p ≤ 1

2
(√

5− 1
)
.

3.3 Pairs Sequences
While RebalanceZigZag achieves better average node depth on converging sequences
compared to RebalanceZig, it fails on pairs sequences, where the expected average node
depth is linear for all values 0 ≤ p ≤ 1 (for p = 1

2 this is worse than RebalanceZig, if our
conjecture turns out to be true). In [12] we prove the following lemma.

▶ Lemma 16. Applying RebalanceZigZag to the pairs sequence with n elements, for n

even and 0 ≤ p ≤ 1, the resulting tree has expected average node depth Θ(n).

4 Random Permutations

We do not prove anything for random permutations, for neither RebalanceZig nor
RebalanceZigZag. If p = 1 no rebalancing is performed, and it is known that the
expected depth of a node is O(lg n) [10, 20, 28], whereas for p = 0, a rotation is always
performed at the inserted leaf, and the tree will always be a single path. How exactly the
average node depth depends on p is an open problem. In the experiments, see [12], it appears
that RebalanceZigZag is “about” logarithmic for p ≥ 0.7.

5 Experimental Evaluation

In this section we present an experimental evaluation of our algorithms RebalanceZig and
RebalanceZigZag. See [12] for more experimental results.

We implemented the algorithms in Python 3.12, and ran the algorithms with different
choices of p on the types of insertion sequences listed in Table 2 with sequence lengths being
powers of two. Each data point in Figure 7 is the average over 25 runs. The increasing,
decreasing and converging sequences are examples of finger insertions. Inserting the pairs,
bitonic and runs sequences into a search tree without rebalancing result in identical search
trees (see Figure 1). Note that the first half of the bitonic sequence is an increasing sequence,
whereas the second part evenly distributes the remaining elements into the created leaves
right-to-left. The runs sequences is identical to the bitonic sequences, except that the second
part is performed left-to-right.
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Figure 7 shows our main experimental findings. It shows the resulting average node
depths of running the algorithms on the different types of insertion sequences from Table 2
with insertion sequences of length between two and 1024 and various values of p in the range
zero to one. Note that for a path with n nodes, the root has depth 0 and the bottommost
node depth n− 1, i.e., the average depth is 1

n

∑n−1
d=0 = 1

n ·
n(n−1)

2 = n−1
2 . For n = 1024, an

average node depth of 511.5 implies that the tree is a path. In Figure 7(a) this explains
why all curves share the top-left point, since RebalanceZig always generates a path when
p = 0, independent of the insertion sequence, as discussed in Section 2. In Figure 7(left)
the rightmost data point (p = 1) for random permutations corresponds to the average node
depth in unbalanced binary search trees. Note that the pairs, bitonic and runs insertion
sequences end up with different average node depth characteristics for each of the three
algorithms (dashed curves in Figure 7), even that they would generate the same trees without
rebalancing.

Figure 7(a, b) clearly shows that RebalanceZig has problems with the converging
sequences (consistent with Theorem 2); Figure 7(c, d) that RebalanceZigZag has problems
with the pairs sequences (consistent with Theorem 6).

6 Conclusion and Open Problems

This paper leaves more open problems than it solves. None of the considered randomized
rebalancing algorithms meets all conditions (1)–(7) introduced in Section 1. Inspired by a
question raised by Seidel [24], we considered bottom-up randomized rebalancing schemes
for binary search trees without storing any balance information. We studied randomized
rebalancing strategies, inspired by the rebalancing primitives from splay trees [26]. They
meet conditions (1)–(6), but fail to achieve logarithmic depth on all insertion sequences. In
the experiments RebalanceZigZag appears often to have the best performance, although
it provably does not achieve expected logarithmic average depth for all insertion sequences.
It remains an open problem if a randomized bottom-up rebalancing scheme exists that can
guarantee expected logarithmic average node depths for all insertion sequences and satisfies
requirements (1)–(6), or what the best depth guarantee can be given requirements (1)–(6),
or how much these requirements need to be relaxed to enable expected logarithmic average
node depths.

We did not consider deletions at all in this paper (see [15, 16, 23] for challenges on
performing deletions in random binary search trees).
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Figure 7 (left) The average node depths in binary search trees created by RebalanceZig
and RebalanceZigZag, respectively, for various types of choices of p for insertion sequences of
length 1024; (right) similar results but for fixed coin probability p = 1

2 , and sequence lengths in the
range 1 to 1024. For p = 0 all rotations are performed at the inserted node (and RebalanceZig
always creates a path), whereas no rotations are performed when p = 1, i.e., unbalanced binary
search trees.
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Abstract
Ring signatures allow members of a group (called ring) to sign a message anonymously within the
group, which is chosen ad hoc at the time of signing (the members do not need to have interacted
before). In this paper, we propose a physical version of ring signatures. Our signature is based on
one-out-of-many signatures, a method used in many real cryptographic ring signatures. It consists of
boxes containing coins locked with padlocks that can only be opened by a particular group member.
To sign a message, a group member shakes the boxes of the other members of the group so that the
coins are in a random state (“heads” or “tails”, corresponding to bits 0 and 1), and opens their box
to arrange the coins so that the exclusive “or” of the coins corresponds to the bits of the message
they wish to sign. We present a prototype that can be used with coins, or with dice for messages
encoded in larger (non-binary) alphabets. We suggest that this system can be used to explain ring
signatures to the general public in a fun way. Finally, we propose a semi-formal analysis of the
security of our signature based on real cryptographic security proofs.
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1 Introduction

The signature is a fundamental primitive of public key cryptography that allows the owner
of a secret key to sign messages in such a way that anyone can verify the signature using a
public key. In some cases, it may be useful to allow group members to sign on behalf of the
group without revealing their personal identity. A simple solution is to agree a priori on a
public and secret key pair within the group, but this solution does not allow the signer to
dynamically choose group members without consulting them when signing the message.

In 2001, Rivest, Shamir, and Tauman introduced ring signatures in their seminal paper
“How to Leak a Secret” [13]. In this primitive, a user generates a signature on behalf of
the group using their own secret key and the public keys of the group members (which the
user can select when signing). The term “ring” refers to the method of signing used in this
pioneering paper: the signer generates a chain of values depending on the message, using
successively the public keys of all the group members except their own to encrypt the values.
Then, using their own secret key, the signer decrypts the last value in the chain to append
it to the beginning of the chain, thus closing the chain in a ring. To verify the signature,
a user verifies that the ring is correct by reproducing the successive encryptions with the
group members public keys, but cannot guess with which key the ring has been closed.

Ring signatures have always been of great interest because of their relevance to real-world
problems, both technical and societal. The first motivation for ring signatures is to protect
whistleblowers [13]. For instance, an employee of a company with illegal practices could, if
each employee had a public key, expose those practices by signing as a member of the company,
but without revealing their exact identity. Less directly, ring signatures have been used
in many protocols, such as e-voting and e-cash [17], to guarantee anonymous membership.
More recently, they have been used to anonymize certain actions on the blockchain [15], and
to prevent transactions in the Monero cryptocurrency from being traced [16].
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This primitive is therefore fundamental to many tools designed for a wide audience
without advanced computer or mathematical skills. We believe that the use of security
technology is only possible if users trust it, which is only possible if they feel that they have
understood how their data is being processed and protected. It is thus necessary to find
straightforward and convincing ways to explain the mechanisms used in ring signatures in
order to inform and reassure the people who use its applications.

In this paper we propose a physical ring signature construction based on everyday objects
such as boxes, padlocks, coins, dice, and glass. The actions to be performed are simple and
consist of opening and closing the padlocks on the boxes, shaking the boxes, or looking
through the glass to see the value of the coins and dice. Some basic calculations are also
required, such as adding small integers, which can be done with a calculator. The overall look
of the device is intriguing, and it is fun and easy enough for children to use. We believe that
this playful aspect makes it an accessible tool for popularising the concept of ring signatures
to the general public.

Technical Overview of our Contributions

Our signature mechanism is based on one-out-of-many signatures [1], which are themselves
inspired by proofs of partial knowledge [6]. This general paradigm has been widely used to
construct ring signatures, so the mechanism of our physical ring signature gives an accurate
idea of how cryptographic ring signatures are actually designed. In a nutshell, this paradigm
is based on message-randomizable signatures, i.e., signature schemes where it is possible
to construct signatures on random messages even without knowing the signer’s secret key
(on the other hand, it is impossible to construct a signature on a fixed message). To sign a
message within a group, the signer creates signatures on random values for the public key
of all the other members of the group. The signer then computes the bitwise exclusive “or”
of all the random values and the message, and signs the result with their secret key. The
ring signature is the set of signed values. To verify it, the verifier checks the signature of
each value with the public key of the corresponding group member and verifies that the
bitwise exclusive “or” of all the values is equal to the message. This method is based on
the indistinguishability of the signature made with the secret key from those generated for
random values, and on the impossibility of stumbling upon random values that will give the
message if no secret key is known.

The first building block in our construction is a physical message-randomizable signature.
To do this, we use compartmentalized boxes with a transparent top and place a coin with
two different sides in each compartment. The signer manually signs padlocks to which they
have the key and locks the boxes with these padlocks. These locked boxes are their public
keys, and they distribute them to everyone. To sign a binary message, the signer takes one
of their boxes, opens it with their key, and arranges the coins so that they correspond to
the bits in the message (we assign “heads” to 0 and “tails” to 1). Note that this operation
requires their key. They then close the box. To verify the signature, the verifier checks the
manual signature on the padlock and checks that the value of the coins matches the message
by looking through the transparent top (without opening the box). To obtain a signature on
a random message, anyone can take a box from the signer and shake it so that the coins are
disturbed and end up in random “heads” or “tails” state.

The general construction of the physical ring signature results from using the one-out-
of-many signatures method applied to our physical message-randomisable signature. As
it stands, this construction allows a user to generate ring signatures for random messages,
which can be problematic in some cases. We propose a countermeasure where the message
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must start with a given binary string. To sign longer messages, it is possible to replace
the coins with dice. Our prototype uses 30-sided dice, which can encode the letters of the
alphabet and certain punctuation marks. Finally, we highlight the security assumptions that
our material must verify for our signature to be secure, and we prove the security of our
signature in a semi-formal way using a sequence of games [14]. By semi-formal, we mean
that we try to get close to a real computational security proof. This is not entirely possible
because our assumptions are physical and not computational, whereas the ring signature
security model considers an adversary modelled by a polynomial time Turing machine.

Related Works

Many cryptographic tools have been adapted in physical form. For example, several physical
zero-knowledge proofs, mainly using cards and envelopes, have been proposed for many
logic puzzles [9, 4]. The use of cards has also been exploited to build secure multi-party
computation protocols [12]. Other works use different tools, such as coin-based secure
computation [10] or light cryptography [11], which uses light and shadows for specific secure
computation protocols. Physical secure auction protocols have also been proposed [8], one
using envelopes and the other a more complex construction using wooden boxes and padlocks.
Another example is the construction of threshold access control using padlocks and latches
placed in certain configurations [7]. However, to the best of our knowledge, no physical
ring signature has ever been proposed, none of the existing physical primitives can be easily
adapted to obtain a physical ring signature, and no physical construction uses a mechanism
similar to ours (shaking transparent boxes containing coins/dice to randomise data).

2 Technical Background

In this section we first define our notations, then recall the definition of ring signatures and
their security properties, and finally recall a property about modular additions.

▶ Notations. (xi)n−1
i=0 (resp. {xi}n−1

i=0 ) denotes the vector (resp. set) containing the idexed
elements x0, x1, · · · , and xn−1, and Zn denotes the set of integers modulo n (i.e., {i}n−1

i=0 ).
The expression y ← x denotes the affectation of the value of the variable x to the variable y,
the expression y ← Algo(x) denotes the affectation of the output of the algorithm Algo on
input x to the variable y, and the expression y

$← S denotes the affectation of a value chosen
in the uniform distribution on a set S to the variable y. The acronym p.p.t. in λ means
probabilistic polynomial time in λ (when the context is clear, we omit the parameter λ).

▶ Definition 1 (Ring Signature [2]). Let λ be a security parameter. A ring signature is a
tuple of p.p.t. algorithms (Gen, Sig, Ver) defined as follows:
Gen(λ): on input λ, returns a pair of public/secret keys (pk, sk).
Sig(sk, R, m): on input a secret key sk, a set of public keys R (containing the public key

corresponding to sk), and a message m, returns a signature σ.
Ver(R, m, σ): on input a set of public keys R, a message m, and a signature σ, returns a

bit b ∈ {accept, reject}.
Moreover, for any integers s and j such that j < s, any message m, any (pki, ski) output-
ted by Gen(λ) for all i ∈ Zs, and any σ outputted by Sig(skj , {pki}s−1

i=0 , m), the condition
Ver({pki}s−1

i=0 , m, σ) = accept is required to hold.

A secure ring signature is required to satisfy two security properties: unforgeability and
anonymity [2]. These properties are modelled by experiments that simulate the use of a ring
signature and where a p.p.t. adversary tries to perform an attack.
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Unforgeability ensures that a user who is not a member of the group cannot generate a
valid signature for a fresh message, even if they can access ring signatures for other messages.
In the unforgeability experiment, the adversary is given public keys (corresponding to secret
keys they do not know), and can query an oracle for signatures on selected messages using
these keys. Their goal is to generate a fresh valid ring signature that has not been generated
by the oracle. A ring signature is considered to be unforgeable if no adversary can succeed
in this attack with a significant (non-negligible1) probability.

▶ Definition 2 (Unforgeability [2]). Let λ be a security parameter, let RS = (Gen, Sig, Ver)
be a ring signature, and let A be a p.p.t. algorithm. For any integer s, we define the
s-unforgeability experiment on RS for A as follows:

The experiment generates s key pairs {(pki, ski)}s−1
i=0 and sends {pki}s−1

i=0 to A.
A has access to an oracle Sig(·, ·, ·) that returns a signature generated by Sig(skj , R, m)
on query (j, R, m).
A returns (R∗, m∗, σ∗). The experiment returns 1 if and only if Ver(R∗, m∗, σ∗) = 1,
R∗ ⊆ {pki}s−1

i=0 , and no query (j, R, m) satisfies (R, m) = (R∗, m∗).
RS is said to be unforgeable if for all s and all p.p.t. algorithms A, the probability that the
s-unforgeability experiment returns 1 is negligible in λ.

Anonymity ensures that it is not possible to guess which member of the group is the author
of a given signature. In the anonymity experiment, the adversary is given public/secret keys,
chooses two of them, and is given a ring signature generated from one of these two secret
keys (and whose ring contains the two public keys). The adversary tries to distinguish which
of the two keys was used with a non-negligible advantage.

▶ Definition 3 (Anonymity [2]). Let λ be a security parameter, let RS = (Gen, Sig, Ver) be a
ring signature, and let A be a p.p.t. algorithm. For any integer s and any bit b, we define
the (s, b)-anonymity experiment on RS for A as follows:

The experiment generates s key pairs {(pki, ski)}s−1
i=0 and sends {(pki, ski)}s−1

i=0 to A.
A sends (R, m, i0, i1) to the experiment. If R ⊆ {pki}s−1

i=0 and (pki0 , pki1) ∈ R2, then the
experiment computes σ ← Sig(skib

, R, m), and sends σ to A.
A returns a bit b∗.

RS is said to be anonymous if for all s and all p.p.t. algorithms A, the probability that A
returns 1 on the (s, 0)-anonymity experiment is negligibly close (in λ) to the probability that
A returns 1 on the (s, 1)-anonymity experiment.

The one-out-of-many signatures paradigm [1] presented in Section 1 uses the following result:
for any m ∈ Zn, if we randomly generate s integers (xi)s−1

i=0 whose sum modulo n is m by
choosing j ∈ Zs, by randomly drawing xi

$← Zn for all i ̸= j, and by completing with the
only possible xj , the integers (xi)s−1

i=0 and m do not reveal any information about j. For
instance, for m = 0, n = 2 and s = 2, if we randomly draw x0 then we should set x1 = x0 to
get x0 + x1 mod 2 = 0, and if we randomly draw x1 then we should set x0 = x1; both cases
return (x0, x1) = (0, 0) and (x0, x1) = (1, 1) with the same probability. On the other hand,
for m = 1, the two cases (0, 1) and (1, 0) have the same probability, no matter which element
was randomly generated. This result is generalised for vectors of integers in the following
theorem. A proof of this theorem is given in Appendix A.

1 A function f is negligible in x if for any positive polynomial p, there exists un integer x0 such that for
all x > x0, |f(x)| ≤ 1/p(x)
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Figure 1 On the left, some coins with red “heads” and blue “tails” associated with the values 0
and 1 and a padlock with its key, and on the right, a latch on a box, with and without the padlock.

▶ Theorem 4. Let N, n, and s be three integers. For any m ∈ ZN
n , any pair (i0, i1) ∈ Z2

s,
and any distinguisher D, we have:

Pr
[
∀i ∈ Zs\{i0}, xi

$← ZN
n ;

∀j ∈ ZN , xi0,j ←
(

mj −
∑s−1

i=0;i̸=i0
xi,j

)
mod n; : 1← D((xi)s−1

i=0 )
]

=

Pr
[
∀i ∈ Zs\{i1}, xi

$← ZN
n ;

∀j ∈ ZN , xi1,j ←
(

mj −
∑s−1

i=0;i̸=i1
xi,j

)
mod n; : 1← D((xi)s−1

i=0 )
]

An example of unforgeable and anonymous cryptographic ring signature based on the
BLS [3] signature that follows the one-out-of-many signatures paradigm [1] is given in [5].

3 Our Physical Ring Signature

In this section we present our physical ring signature scheme. We first introduce the material
required, then explain how to use it to design a physical message-randomisable signature,
and finally explain how a user can anonymously sign within a group using it. We illustrate
the steps involved with the help of a physical prototype that we have built.

3.1 Material
Each member of the ring/group must be provided with indelible felt-tip pens to enable them
to make indelible manual signatures on any surface. Each user must also have an unlimited
number of padlocks. Padlocks belonging to the same user must be identical and have a
single key that can be used to open them. We assume that users have access to an unlimited
number of coins whose two sides (heads and tails) are easily distinguishable. We associate
“heads” with the binary value 0 and “tails” with the binary value 1. The coins and the
padlocks we use for our prototype are shown in Figure 1.

An unlimited number of compartmentalised boxes are also available (see Figure 2), with
the following features:

The box has a lid that can be opened by a mechanism.
Each box is divided into N compartments indexed from 0 to N − 1 so that it is not
possible to move an object from one compartment to another when the box is closed.
When the box is open, a user can freely place or remove objects in each compartment.
Each compartment has the shape of a parallelepiped whose edges are larger than the
diameter of the coins. A coin in a compartment can therefore move freely within the
space of the compartment.
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7:6 Physical Ring Signature

Figure 2 A box with 9 compartments and with a slip-on lid.

The lid of the box is transparent so that the top of an object in a compartment can be
clearly seen.

The box has a latch that prevents it from being opened (see Figure 1). This latch must
be perfectly lockable with a padlock, preventing anyone from opening the box without
the padlock key.

As explained in Section 1, our ring signature is based on the one-out-of-many signatures
paradigm, which uses message-randomisable signatures. Therefore, we first present how
to generate physical message-randomisable signatures, before showing how to use them to
generate our physical ring signature.

3.2 Key Generation

We have assumed that a user has an unlimited number of identical padlocks and a single key
that can be used to open these padlocks. The user manually signs their padlocks with an
indelible felt-tip pen, so that the signature is visible and can be verified by anyone. The user
then fills the compartments of several boxes by placing a coin in each compartment. The
visible side of the coin (“heads” or “tails”) in each compartment is randomly chosen. The
user closes each of these boxes with one of their signed padlocks. These boxes containing
coins and closed by signed padlocks are their public key pk (see Figure 3) and they distribute
them to the other users. If necessary, they can create new ones at any time. Their secret key
sk is the key that opens their padlocks.

Figure 3 A padlocked box (opened then closed) corresponding to a user’s public key, and the
padlock key corresponding to their secret key.
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3.3 Message-randomisable Signature Generation and Verification
To sign a binary message (mi)N−1

i=0 of N bits, the signer takes one of their public keys (i.e., a
box divided into compartments numbered from 0 to N − 1 containing coins and closed by a
signed padlock for which they have the key), uses their key to open the padlock and the box
to arrange the coins so that the state of the coin in the i-th compartment (“heads” or “tails”)
corresponds to the i-th bit mi of the message, and then closes the padlock on the box.

To verify this signature, the verifier checks that the padlock in the box has been manually
signed by the signer (by comparing the manual signature with the manual signature on the
padlock of one of the signer’s public keys), and looks through the transparent lid to check
that the state of the coins corresponds to the bits of the message (mi)N−1

i=0 .
Without knowing the secret key (and therefore without being able to open the box), any

user can generate the signature for a random message by shaking the box: since the
diameter of the coins is smaller than the dimensions of the compartments, the coins can turn
on themselves and randomly land on one of their sides, forming a random binary message.

3.4 Ring Signature Generation
We now show how to use the physical message-randomizable signatures to create physical
ring signatures. Let s be the size of the ring/group. The signer has all the (indexed) public
keys R = {pki}s−1

i=0 of the members of the group (including their own), their secret key sk,
and wishes to sign a message m = (mi)N−1

i=0 of N bits. The index corresponding to their
public key is denoted j. Recall that public keys are closed boxes containing coins whose
visible sides are random. For each pki such that i ̸= j, the signer shakes the box so that the
coins in the compartments are randomly flipped (this is the mechanism used to generate
signatures for random messages without knowing the key, as described above).

We set ci,k to the binary value associated with the state of the coin in the k-th compartment
of the box of the i-th public key pki. Using their secret padlock key, the signer opens the
box corresponding to their public key pkj and manually arranges the coins (this is the
mechanism used to sign a given message by knowing the key described above) so that∑s−1

i=0 ci,k mod 2 = mk.
To put it in simple terms, this operation is equivalent to the following: for each bit

mi of the message, if mi = 0 (resp. mi = 1), then the signer places the coin in the i-th
compartment of their own box, so that there is an even (resp. odd) number of coins on “tails”
(corresponding to the bit 1) in the i-th compartments of all the boxes of all members.

The signer then closes the padlock on their box and arranges the boxes in random order.
The signature is the set of all the boxes of the members after these operations.

3.5 Signature Verification
The verifier receives the signature that consists on s padlocked boxes signed by the s members
of the group, and the binary message (mi)N−1

i=0 . They first check that the padlocks have all
been manually signed by a different member of the group, and that these signatures are
valid (by comparing it with the manual signatures on the padlocks of the group member’s
public keys). The verifier sets ci,k to the binary value associated with the state of the coin in
the k-th compartment of the box signed by the i-th member of the group. They check that∑N−1

i=0 ci,k mod 2 = mk for each k.
To put it in simple terms, this operation is equivalent to the following: for each bit mi of

the message, if mi = 0 (resp. mi = 1), then the verifier checks that there is an even (resp.
odd) number of coins on “tails” (corresponding to the bit 1) in the i-th compartments of all
the boxes of all members. If this is the case, they accept the signature, if not, they refuse it.
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Figure 4 Signature of M = 111111 in a ring of s = 3 users with security parameter λ = 3 and
boxes with N = 9 compartments.

3.6 Preventing the Signing of Random Messages
As it stands, it is possible to generate signatures on random messages without having any
padlock key: all you have to do is take the group member boxes and shake them. The result
is a signed message whose bits are the modulo two additions of the random values associated
to the state of the coins in each compartment. To prevent this, the following countermeasure
can be applied: given a security parameter λ, the first λ bits of the signed message must be
0, otherwise the signature is not valid. Thus, the probability of obtaining a valid signature
by shaking the boxes is 1/2λ, which is negligible in λ. On the other hand, the size of the
actual signed message becomes N − λ bits.

3.7 Example Using a Prototype
We have built a prototype of our signature using boxes with N = 9 compartments. In
Figure 4, we show all the steps to generate a ring signature of a message M = 111111 with
λ = 3 and s = 3 group members. Each group member has a different coloured padlock (blue,
orange, and pink) and we have omitted the manual signatures on the padlocks. The signer is
the owner of the key for the pink padlock. We set m = (mk)N−1

k=0 = (0, 0, 0, 1, 1, 1, 1, 1, 1) the
message that starts with λ = 3 times 0 and ends with the bits of M .
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Step A: The signer places the three public key boxes side by side. The state of the coins in
each of these boxes is associated with the respective values:

cB = (cB,k)N−1
k=0 = (1, 1, 0, 0, 1, 0, 1, 1, 0); cO = (cO,k)N−1

k=0 = (0, 1, 1, 1, 0, 1, 0, 1, 1);
cP = (cP,k)N−1

k=0 = (1, 1, 0, 1, 1, 0, 1, 0, 0);

Step B: The signer shakes the blue member box.
Step C: The signer shakes the orange member box.
Step D: At this step, the coins in each box are associated with the values:

cB = (cB,k)N−1
k=0 = (0, 0, 0, 0, 0, 0, 1, 1, 1); cO = (cO,k)N−1

k=0 = (0, 1, 0, 1, 0, 0, 0, 1, 0);
cP = (cP,k)N−1

k=0 = (1, 1, 0, 1, 1, 0, 1, 0, 0);

Step E: The signer opens the pink paddlock using their key, then opens the box.
Step F: The signer rearranges the coins in their open box in such a way that cP,k =

mk ⊕ cB,k ⊕ cO,k for 0 ≤ k < N (exclusive “or” ⊕ is equivalent to addition/substraction
modulo 2). In other words, for each index k they make the number of coins on the blue
side (corresponding to 1) even if the bit of the message mk is 0, and odd if the bit of the
message mk is 1. This results in the following configuration:

cB = (cB,k)N−1
k=0 = (0, 0, 0, 0, 0, 0, 1, 1, 1); cO = (cO,k)N−1

k=0 = (0, 1, 0, 1, 0, 0, 0, 1, 0);
cP = (cP,k)N−1

k=0 = (0, 1, 0, 0, 1, 1, 0, 1, 0);

Step G: The signer closes their box with their padlock.
Step H: The signer shuffles the boxes: the blue member’s box stays first, and the orange

and pink members’ boxes are swapped.
At the end of the signature, the coins are associated with the following binary values:

cB = (cB,k)N−1
k=0 = (0, 0, 0, 0, 0, 0, 1, 1, 1); cP = (cP,k)N−1

k=0 = (0, 1, 0, 0, 1, 1, 0, 1, 0);
cO = (cO,k)N−1

k=0 = (0, 1, 0, 1, 0, 0, 0, 1, 0);

Any user can compute: (cB,k ⊕ cP,k ⊕ cO,k)N−1
k=0 = (0 ⊕ 0 ⊕ 0, 0 ⊕ 1 ⊕ 1, 0 ⊕ 0 ⊕ 0, 0 ⊕ 0 ⊕

1, 0⊕ 1⊕ 0, 0⊕ 1⊕ 0, 1⊕ 0⊕ 0, 1⊕ 1⊕, 1⊕ 0⊕ 0) = (0, 0, 0, 1, 1, 1, 1, 1, 1), and thus verify
that (cB,k ⊕ cP,k ⊕ cO,k)λ−1

k=0 = (0, 0, 0) and (cB,k ⊕ cP,k ⊕ cO,k)N−1
k=λ = M . This is equivalent

to verifying that for each index k, the number of blue coins in the k-th compartments of
the 3 boxes is even if mk = 0 (i.e., for 0 ≤ k ≤ 2), and odd if mk = 1 (i.e., for 3 ≤ k ≤ 8).
Note that the probability of producing a valid signature without the keys (by shaking the
boxes only) is 1/2λ = 1/8 (this is the probability that the first three sums of bits give 0). Of
course, to have a more realistic probability of preventing the generation of random message
signatures, we would need to use boxes with more compartments.

3.8 Generalising on Larger Alphabets with Dice
A coin can be thought of as a two-sided die. By generalising the principle of our signature,
we could sign messages on alphabets of n symbols using n-sided dice (numbered from 1 to
n). For example, using 30-sided dice, any integer i between 1 and 26 can be associated with
the i-th letter of the Latin alphabet, and 27, 28, 29, and 30 can be respectively associated
with space, comma, dot, and a special character ’*’. Figure 5 shows our prototype used
with 30-sided dice (whose diameter is small enough for the dice to roll freely through the
compartments).
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Figure 5 Two public keys of our prototype used with 30-sided dice.

The idea remains the same: the i-th character of the signed message corresponds to the
sum modulo n of the values at the top of the dice in the i-th compartment of the boxes of
the members of the group. The first λ characters must correspond to the special character
’*’, so the probability of generating a signature for a valid random message is 1/nλ. On the
other hand, a signer who has the key to one of the padlocks will always be able to arrange
the dice to obtain a valid signature for a given message.

In Figure 6, we show all the steps to generate a ring signature of a message M = "hello."
with our prototype using 30-sided dice and with λ = 3 and s = 3. Each user has a different
coloured padlock (green, red, and yellow) and we have omitted the manual signatures
on the padlocks. The signer is the owner of the key for the yellow padlock. We set
m = (mk)N−1

k=0 = (0, 0, 0, 8, 5, 12, 12, 15, 29) the message that starts with λ = 3 times 0 (that
corresponds to the sepcial character ’*’ since 30 mod 30 = 0) and ends with the integers that
correspond to the characters ’h’, ’e’, ’l’, ’l’, ’o’, and ’.’.

Step A: The signer places the three public key boxes side by side. The dice in each of these
boxes indicate the respective values:

cG = (cG,k)N−1
k=0 = (28, 11, 29, 13, 25, 28, 30, 15, 11)

cR = (cR,k)N−1
k=0 = (9, 11, 9, 16, 27, 30, 13, 1, 8)

cY = (cY,k)N−1
k=0 = (21, 8, 21, 15, 27, 1, 16, 15, 20)

Step B: The signer shakes the green group member box.
Step C: The signer shakes the red group member box.
Step D: At this step, the dice in each of these boxes indicate the respective values:

cG = (cG,k)N−1
k=0 = (6, 1, 29, 13, 28, 20, 8, 27, 11)

cR = (cR,k)N−1
k=0 = (7, 29, 28, 14, 10, 17, 16, 19, 21)

cY = (cY,k)N−1
k=0 = (21, 8, 21, 15, 27, 1, 16, 15, 20)

Step E: The signer opens the yellow paddlock using their key, then opens the box.
Step F: The signer rearranges the dice in their open box in such a way that cY,k = mk −

cG,k − cR,k mod 30 for 0 ≤ k < N . This results in the following configuration (where 0 is
encoded by 30 on the dice, since dice are numbered from 1 to 30):
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Figure 6 Signature of M = "hello." in a ring of s = 3 users with security parameter λ = 3 and
boxes with N = 9 compartments.

cG = (cG,k)N−1
k=0 =(6, 1, 29, 13, 28, 20, 8, 27, 11)

cR = (cR,k)N−1
k=0 =(7, 29, 28, 14, 10, 17, 16, 19, 21)

cY = (cY,k)N−1
k=0 =(−6− 7 mod 30,−1− 29 mod 30,−29− 28 mod 30,

8− 13− 14 mod 30, 5− 28− 10 mod 30, 12− 20− 17 mod 30,

12− 8− 16 mod 30, 15− 27− 19 mod 30, 29− 11− 21 mod 30)
=(17, 0, 3, 11, 27, 5, 18, 29, 27)
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Step G: The signer closes their box with their padlock.
Step H: The signer shuffles the boxes: the order of the boxes changes from green then red

then yellow to red then yellow then green.

At the end of the signature, the dice are in the following configuration:

cR = (cR,k)N−1
k=0 = (7, 29, 28, 14, 10, 17, 16, 19, 21)

cY = (cY,k)N−1
k=0 = (17, 0, 3, 11, 27, 5, 18, 29, 27)

cG = (cG,k)N−1
k=0 = (6, 1, 29, 13, 28, 20, 8, 27, 11)

Any user can verify the signature by computing:

(cR,k + cY,k + cG,k mod 30)N−1
k=0

= (7 + 17 + 6 mod 30, 29 + 0 + 1 mod 30, 28 + 3 + 29 mod 30,

14 + 11 + 13 mod 30, 10 + 27 + 28 mod 30, 17 + 5 + 20 mod 30,

16 + 18 + 8 mod 30, 10 + 29 + 27 mod 30, 21 + 27 + 11 mod 30)
= (0, 0, 0, 8, 5, 12, 12, 15, 29),

and thus verify that (cR,k + cY,k + cG,k mod 30)λ−1
k=0 = (0, 0, 0) and that (cR,k + cY,k +

cG,k mod 30)N−1
k=λ = M .

Note that the probability of producing a valid signature without the keys (by shaking
the boxes only) is 1/nλ = 1/27000 (this is the probability that the first three sums give 0).

4 Security Analysis

In this section, we identify the assumptions required to ensure the security of our prototype.

▶ Assumptions. The following properties are assumed to be true:
1. It is not possible to break or force open a compartmentalised box, i.e., a box can only be

opened by its lid using the mechanism provided for this purpose.
2. It is impossible to forge a user’s manual signature without being that user.
3. Padlocks are unbreakable and cannot be opened without a key. In particular, it is

impossible to forge a key for a padlock.
4. A padlock attached to the latch of a box prevents the lid of the box from being opened

by the mechanism provided for this purpose.
5. An object cannot be moved to another compartment when a box is locked.
6. The only action that can be performed on a closed box to move the objects contained in

its compartments is to shake it.
7. Shaking the box when it contains dice is equivalent to rolling the dice. More precisely,

given a box with dice, and knowing the previous position of the dice, it is impossible to
determine whether the box has been shaken, or opened, the dice rearranged to show a
random value chosen from the uniform distribution, and the box closed again.

These assumptions allow us to claim the following two theorems. For each of them we
give an intuitive explanation of the results, then we give a security proof in a semi-formal
style: we show a sequence of games [14] that reduce to each other by hops, eliminating events
whose probability of occurrence is at most negligible under our assumptions. In our security
proofs, we consider that the physical actions of closing a padlock, opening a padlock, closing
a box, opening a box, moving an object, and shaking a box are achievable by an adversary
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(modelled by a p.p.t. algorithm) in constant time. In general, no basic physical operation
depends on the security parameter λ. We also consider that any physical action performed
by the adversary can be observed by the challenger who simulates the security experiment
for them.

▶ Theorem 5. Our physical ring signature is unforgeable under Assumption 1, 2, 3, 4, 5, 6,
and 7. More precisely, for any integer s, any security parameter λ, any p.p.t. algorithm A,
and any polynomial function q, the probability that the s-unforgeability experiment on our
physical ring signature using n-sided dice for A returns 1 is bounded by q(λ)

nλ , where q(λ) is
the number of times that a box is shaken during the experiment.

According to Assumptions 1, 2, 3, and 4, an adversary cannot manually sign a box in
place of a member of the group, and cannot break/force the box and its mechanism if it
is locked by a padlock. Nor can they open a box to manually change the value of the dice
under Assumption 5 and 6. Furthermore, according to Assumption 6 and 7, they cannot bias
the roll of the dice so that it is not uniform when they decide to shake a box. Their only
possible strategy is to hope that shaking the boxes will produce a valid signature. To do
this, the first λ dice in the boxes must match the special character ’*’, which happens with a
negligible probability of at most q(λ)

nλ where q(λ) is the number of times a box is shaken.

Proof (Theorem 5). Let s be an integer, and A be a p.p.t. algorithm. We consider the
following sequence of games.

Game G0: In this game, a challenger simulates the s-unforgeability experiment on our
physical ring signature for A. The event “A wins G0” denotes that the unfogeability exper-
mient returns 1.

Game G1: Same as G0, except that if A breaks or opens a box on an other way that
by its lid using the mechanism provided for this purpose, forge a group member’s manual
signature, or breaks or opens a padlock without its key, then the challenger returns 0.
According with Assumption 1, 2, and 3, we have that Pr[A wins G0] = Pr[A wins G1].

Game G2: Same as G1, except that if A opens the box in one of the public keys pki,
then the challenger returns 0. Note that at this step the public key boxes cannot be opened
except by their normal opening mechanism, and each box is locked with a padlock that cannot
be broken. According with assumption 4, we have that Pr[A wins G1] = Pr[A wins G2].

Game G3: Same as G2, except that if A moves one die to another compartment in the box of
a public key, then the challenger returns 0. Note that at this step the public key boxes cannot
be opened. According with assumption 5, we have that Pr[A wins G2] = Pr[A wins G3].

At this step, the only way to change the position of the dice in the boxes corresponding
to the public keys is to shake them, according to Assumption 6. In addition, according to
Assumption 7, shaking a box is equivalent to giving random values to the dice inside.

Game G4: Same as G3, except that if A returns a valid signature beginning with λ times
the special character ’*’, then the challenger returns 0. We claim that |Pr[A wins G3] −
Pr[A wins G4]| ≤ q(λ)

nλ .
In order for the k-th symbol of the message to be ’*’, we must have

∑s−1
i=0 ci,k mod n = 0,

where ci,k is the value indicated by the die in the k-th compartment of the box of the i-th
member of the group. Since the ci,k are all drawn in a uniform distribution (when the box
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is shaken), evaluating the probability of having
∑s−1

i=0 ci,k mod n = 0 is equivalent to fixing
the value ci,k of the last s − 1 dice and evaluating the probability of drawing the value
c0,k verifying

∑s−1
i=0 ci,k mod n = 0. This probability is 1/n. Moreover, the adversary must

succeed this for all 0 ≤ k ≤ λ−1, knowing that all the ci,k are randomly refreshed when a box
is shaken. Thus, the probability of drawing the values c0,k verifying

∑s−1
i=0 ci,k mod n = 0 for

all 0 ≤ k ≤ λ− 1 is 1/nλ. Since the number of times a box is shaken during the experiment
is q(λ), the adversary has at most q(λ) tries to draw the correct c0,k (we assume that the
box of each public key was shaken before being distributed). So A has a probability bounded
by q(λ)

nλ to draw all the correct c0,k together for 0 ≤ k ≤ λ− 1 during the experiment, and
so having λ times the symbol ’*’ at the beginning of its returned signing message, which
concludes the proof of the claim.

Note that in G4, A can no longer win, since a signature must begin with λ times the special
character ’*’ to be valid, so its probability of winning the game is 0. Since Pr[A wins G0] =
Pr[A wins G3], we have |Pr[A wins G0] − Pr[A wins G4]| ≤ q(λ)

nλ , so Pr[A wins G0] ≤ q(λ)
nλ .

Finally, the probability that the unforgeability experiment returns 1 is bounded by the
negligible function q(λ)

nλ , which concludes the proof. ◀

▶ Theorem 6. Our physical ring signature is anonymous under Assumption 7. More precisely,
for any integer s, any security parameter λ, and any p.p.t. algorithm A, the probability that
A returns 1 on the (s, 0)-anonymity experiment is equals to the probability that A returns 1
on the (s, 1)-anonymity experiment on our physical ring signature.

Assumption 7 ensures that it is not possible to distinguish from a physical point of view
whether a box has been shaken or whether the things in it have been moved manually, and
Theorem 4 ensures that it is not possible to distinguish from a computational point of view
which dice value have been drawn randomly and which have been chosen to complete the
sum in order to obtain the message. Thus, an adversary has no way of distinguishing which
box has been opened, and therefore the identity of the signer.

Proof (Theorem 6). Let s be an integer, and A be a p.p.t. algorithm. We consider the
following sequence of games.

Game G0: In this game, a challenger simulates the (s, 0)-anonymity experiment on our
physical ring signature for A. The event “b∗ = 1 in G0” denotes that A returns 1 at the end
of the experiment.

Game G1: Same as G0, except that when the challenger signs the message m chosen by A,
each time they are supposed to shake a box, they instead open it, manually arrange the dice
to give them a random value, and close the box again. Under Assumption 7, we have that
Pr[b∗ = 1 in G0] = Pr[b∗ = 1 in G1].

Game G2: Same as G1, except that the challenger signs with ski1 instead of ski0 . Assuming
that Pr[b∗ = 1 in G1] ̸= Pr[b∗ = 1 in G2], we will show that there exists a distinguisher D
that contradicts Theorem 4.

We build D as follows: D simulates G2 to A, receives (R, m, i0, i1) from A, sets |R| = s′,
and receives the input (xi)s′−1

i=0 . We parse R as {pk′
i}s′−1

i=0 , m as (mk)N−1
k=0 , and xi as (xi,k)N−1

k=0
for 0 ≤ i < s′. According to the definition of D in Theorem 4 on the values N, n, s′, m, and
(i0, i1), the input (xi)s′−1

i=0 verifies mk =
∑s′−1

i=0 xi,k mod n for all 0 ≤ k < N . To forge the
signature, D opens the box corresponding to each key pk′

i and arranges the dice in such a
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way that the die in the k-th compartment of the i-th box indicates the value xi,k. Finally, D
sends the resulting signature to A, receives b∗ from A, and returns it. We have:

Pr

 ∀i ∈ Zs′\{i0}, xi
$← ZN

n ;

∀k ∈ ZN , xi0,k ←

(
mk −

s−1∑
i=0;i̸=i0

xi,k

)
mod n; : 1← D((xi)s′−1

i=0 )


= Pr[b∗ = 1 in G1];

Pr

 ∀i ∈ Zs′\{i1}, xi
$← ZN

n ;

∀k ∈ ZN , xi1,k ←

(
mk −

s−1∑
i=0;i̸=i1

xi,k

)
mod n; : 1← D((xi)s′−1

i=0 )


= Pr[b∗ = 1 in G2].

This contradicts Theorem 4 on the values N, n, s′, m, and (i0, i1) for the distinguisher D,
because Pr[b∗ = 1 in G1] ̸= Pr[b∗ = 1 in G2]. Finally, we deduce that Pr[b∗ = 1 in G1] =
Pr[b∗ = 1 in G2].

Game G3: Same as G2, except that when the challenger signs the message m chosen by A,
each time they are supposed to open a box, manually arrange the dice to give them a random
value, and close the box again, they instead shake the box. Under Assumption 7, we have
that Pr[b∗ = 1 in G2] = Pr[b∗ = 1 in G3].

We observe that in G3 the challenger simulates the (s, 1)-anonymity experiment on
our physical ring signature for A. Moreover, we have shown that Pr[b∗ = 1 in G0] =
Pr[b∗ = 1 in G3]. Finally, we deduce that the probability that A returns 1 on the (s, 0)-
anonymity experiment is equals to the probability that A returns 1 on the (s, 1)-anonymity
experiment on our physical ring signature, which concludes the proof. ◀

5 Conclusion

In this paper we have described a physical ring signature that is easy to set up and that uses
everyday objects. We have built a prototype, and we believe that it can be used to explain
in a playful way how a ring signature works to a public not familiar with cryptography.
Some ring signatures have additional properties, such as linkability (any user can link two
signatures produced by the same member) and traceability (an authority can lift anonymity
in some cases). In future work, we would like to find ways to adapt our physical ring signature,
or propose new ones, to achieve these properties.
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A Proof of Theorem 4

To prove Theorem 4, we prove the following two lemmas.

▶ Lemma 7. Let n be an integer. For any m ∈ Zn and any distinguisher D, we have:

Pr[x1
$← Zn; x0 ← m− x1 mod n; : 1← D(x0, x1)] =

Pr[x0
$← Zn; x1 ← m− x0 mod n; : 1← D(x0, x1)]

Proof. In the first case, since x1
$← Zn and x0 ← m − x1 mod n, each pair (x0, x1) ∈ Zn

such that x0 + x1 = m mod n is generated with probability 1/n. We remark that each of the
n pairs contains a different x0, so each x0 ∈ Zn appears with probability 1/n. Similarly, in
the second case, if x0

$← Zn and x1 ← m− x0 mod n, then each pair (x0, x1) ∈ Zn such that
x0 + x1 = m mod n with a different x1 is generated with probability 1/n. We deduce that
the two cases are indistinguishable, which concludes the proof. ◀

▶ Lemma 8. Let n and s be two integers. For any m ∈ Zn, any pair (i0, i1) ∈ Z2
s such that

i0 ̸= i1, and any distinguisher D, we have:

Pr
[
∀i ∈ Zs\{i0}, xi

$← Zn;
xi0 ←

(
m−

∑s−1
i=0;i̸=i0

xi

)
mod n; : 1← D((xi)s−1

i=0 )
]

=

Pr
[
∀i ∈ Zs\{i1}, xi

$← Zn;
xi1 ←

(
m−

∑s−1
i=0;i̸=i1

xi

)
mod n; : 1← D((xi)s−1

i=0 )
]

Proof. If i0 = i1, the result is trivial because the two expressions are the same. Else, by
setting:

m′ =

m−
s−1∑

i=0;i̸∈{i0,i1}

xi

 mod n,

we have:

xib
=

m−
s−1∑

i=0;i̸=ib

xi

 mod n⇔ xi0 = m′ − xi1 mod n (1)

⇔ xi1 = m′ − xi0 mod n. (2)
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We recall that in the two cases, each xi such that i ̸∈ {i0, i1} is generated at random.
Therefore, these values cannot be used to distinguish between the two cases. If xi1 is chosen
at random, then Equation 1 corresponds to the expression in the first probability in Lemma 7.
Similarly, if xi0 is chosen at random, then Equation 2 corresponds to the expression in
the second probability in Lemma 7. The values generated by these two expressions are
therefore indistinguishable according to Lemma 7. Finally, the proof of Lemma 8 follows
from Lemma 7. ◀

Lemma 8 can easily be generalized to the case where the xi are vectors of integers, which
leads directly to Theorem 4.
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In this paper, we address a natural question at the intersection of combinatorial game theory and
computational complexity: “Can a sum of simple tepid games in canonical form be intractable?”
To resolve this fundamental question, we consider superstars, positions first introduced in Winning
Ways where all options are nimbers. Extending Morris’ classic result with hot games to tepid games,
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1 Introduction

“The whole is greater than the sum of their parts” is an ancient phrase that particularly
exemplifies combinatorial game theory. As an area of mathematics dedicated to analyzing
what happens when several games are combined, the field is rich with results both in isolation
and with interdisciplinary connections. Indeed, even casually, games are often combined for
enjoyment, such as Bughouse (2 simultaneous games of Chess) and Ultimate Tic Tac Toe (9
simultaneous games of Tic Tac Toe).

While several different ways to combine games are studied, the predominant one is the
disjunctive sum of games following the normal play convention. In a disjunctive sum, players
alternate turns choosing a single game component, making a move on it, and passing the
turn over to their opponent, leaving the other components unchanged. Under normal play,
when a player is unable to make a move (because there are no moves remaining for them in
any game), then that player loses. In other words, the last player to make a move wins.

The modern forms of both combinatorial game theory and computational complexity
theory were born around half a century ago, and there are several results of the latter
about the former. Most relevant to this work, in 1981, Morris demonstrated that a sum of
(individually polynomial-time solvable games) is PSPACE-complete [10]. The hard game
sums in that reduction have several key requirements. First, they involve deeply asymmetric
games (i.e., games where the moves available to the two players are very different). Second,
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the games have exponential length (the number of turns). Third, a polynomial number
of games are included in the sums. Finally, most components of the game are hot games,
meaning that players are incentivized to play first on most games in the sum.

Later results by Yedwab [16], Mowes [9], and eventually Wolfe [15] improved the reduction
by eliminating the exponential length and reducing the branching factor size (to a smaller
constant). However, the other two limitations remain.

A more recent result in 2021 [4] demonstrated that the sum of two tractable symmetric
polynomial-length impartial games1, when combined, are PSPACE-complete. This was
accomplished using a pair of natural games known as Undirected Geography. Although
Undirected Geography positions can be solved in polynomial time [6], it is PSPACE-
complete to determine their values, as shown in [4].

Therefore, the hardness comes from finding that value rather than describing the difficulty
of performing the mathematical operation. In fact, these impartial games have a simple
polynomial algorithm to identify a winner in a sum if the game is already in its simplest
form.

This paper continues the chain of results that Morris started, finding intractible summands
with even more shallow game trees than were previously known. First, instead of hot games,
we sum components from a family of tepid games. Tepid is a term based in temperature
theory, where the temperature of a game is the number that approximates the incentive to
move in a position. Hotter games have a higher value of potentially-earned moves in the
favor of the first player to play on them. This can be by supplying moves to use later or
denying your opponent later free plays.2 Cold games use up these moves when a player plays
on them; their temperature is negative. Tepid games all have a temperature of zero: playing
on them doesn’t earn either player any moves but can influence the parity of the current
situation.

The second reason our work continues the chain of intractible sums is that, instead of the
more deeply asymmetric games that Morris used, we use a family of nearly symmetric games,
which become symmetric after a single move. Third, unlike the result with Undirected
Geography, we use a family of games that are already in canonical form, which is to say,
directly in the form of their values. And finally, this family of games is deeply related to one
whose existence traces back to the birth of the modern theory.

The main family of games we consider are called superstars3.These values naturally
occur in the game Paint Can[13], which we discuss in Section 2. We show that for sums
of superstars, it is computationally-intractable to determine which player has a winning
strategy.

▶ Theorem 1. A sum of superstars is NP-hard.

The paper is structured as follows: In Section 2 we introduce the necessary concepts
from combinatorial game theory. The proof of the main theorem is given in Section 3. The
reduction used to prove our main theorem also leads to a nice new ruleset which we call
Blackout, introduced in Section 4.

1 positions in which both players have the same options
2 For a more thorough description of temperature theory in CGT, we recommend [12].
3 There are some inconsistencies with this choice of name, which we discuss in full in Section 2.2.
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2 Superstars: Theory and Paint Can

2.1 Rising Stars: From Stars to Superstars
In this section we will give a brief introduction to concepts from combinatorial game theory
(CGT) required for this paper. For more information and a rigourous treatment of these
topics, see [2], [1], and [12].

In the game Nim, played on piles of tokens, the two players take turns choosing a pile
and removing any nonzero number of tokens. Under normal play the player to pick the last
token(s) wins.

Nim is an impartial game, meaning one in which the two players have the same possible
moves. An impartial game is denoted G = {G1, . . . , Gn}, where G1, . . . , Gn are the options
the players can move to.

When only a single pile remains in Nim, the current player will simply remove all tokens.
But when several piles remain, the optimal move is often to only take some of the tokens.
Thus all possible moves on a pile need to be considered when in a sum. To do so, we assign
a value to each pile which represents the possible moves. An empty pile, thus one in which
there are no moves, is given the value 0. The value of a pile with n tokens is the nimber ∗n.
For a consistent recursive definition, we think of 0 as the nimber ∗0. The shorthand ∗1 = ∗
is also generally used.

▶ Definition 2. The nimber ∗n is recursively defined by its options as
∗0 = 0 = ∅ (no available moves);
∗1 = ∗ = {0}
∗n = {0, ∗, ∗2, . . . , ∗(n − 1)}

The (disjunctive) sum G1 + · · ·+Gn of games G1, . . . , Gn is the game in which the players
chose a summand (or component), then make a move in it. A Nim position is naturally the
disjunctive sum of its separate piles. Many other games also naturally break into components,
but we can consider sums of any games in general.

We say that two games are equal to each other when one can be replaced with the other
in any disjunctive sum without changing the winnability. I.e., A = B whenever who wins in
A + X is the same as in B + X for any game X.

A sum of nimbers is always equal to a single nimber. Finding which nimber it is requires
only an XOR sum (also known as nim sum in CGT) and therefore is in P (solveable in
polynomial time).

In Nim, both players have the same available moves. For a game where the two players,
which we call Left and Right, have differing moves, we use the notation

{Left’s options | Right’s options}.

Such games are called partizan games, and they have four outcome (winnability) classes. A
game in

N is won by the player that moves first, no matter whether they are Left or Right;
P is won by the player that moves second, no matter whether they are Left or Right;
L is won by Left no matter who goes first; and
R is won by Right no matter who goes first.

▶ Definition 3. A superstar is a game in which all options for Left and Right are nimbers,
possibly not all the same.
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A superstar in which the options for both players are the same is a nimber. Even more
in general we have the following:

▶ Proposition 4 ([5]). The superstar

{0, ∗, . . . , ∗(n − 1), ∗x1, . . . , ∗xk | 0, ∗, . . . , ∗(n − 1), ∗y1, . . . , ∗yl},

where xi, yj > n for all i and j, is equal to the nimber ∗n.

When a sum consists of only superstars of this form, the sum is reduced to a sum of nimbers,
and is thus solvable in polynomial time. As we show in the main result of our paper in
section 3, solving a sum of superstars in NP-hard.

2.2 Naming Superstars
There is some historical overloading of the term “superstar” in two foundational CGT texts,
which share an author. In Winning Ways, first published in 1982, superstars are defined as
we use them here[2]. In On Numbers and Games, first published in 1976, the same term
is used to describe specific sums of (Winning Ways) superstars. In 2023, Silva et. al.[13]
used another term, quasi-nimbers, because they were aware of the On Numbers and Games
definition, but not the one from Winning Ways.

We do not make this choice lightly. The terminology collision was not known until parts
of this paper was presented in the Virtual Combinatorial Games Seminar4 in 2023. (No one
at the seminar was aware of both definitions beforehand.) We solicited informal advice from
the greater CGT community. Based on that, we chose to use the term “superstars”, as in
Winning Ways. Although this deviates from the first-published choice in On Numbers and
Games, we are comfortable going forward with this because:

We are still using historical terminology.
As pointed out by Neil McKay, “superstar” is nice because these games are one move
above stars (nimbers) in a game tree.
Only one published paper uses the term superstar in either context since the two books
have been published.5

This only solves the issue with superstars from Winning Ways. In order to handle the
objects described as superstars in On Numbers and Games, we propose a new term, comets,
and use that throughout. We like this term because comets are bright celestial objects
like (super)stars, but have very little mass in comparison6. Additionally, the alliteration of
“Conway Comets” works nicely.

We hope that our chosen terminology will continue to be used going forward.

2.3 The Game of Paint Can
Paint Can 7 is a pleasant combinatorial game ruleset that models superstars [13].

4 https://sites.google.com/view/virtual-cgt/seminar
5 Combinatorial Game Theory [12], a text published in 2013, references the Winning Ways version in an

exercise.
6 Although we do not provide the details of this property here, these comet positions have zero atomic

weight.
7 A playable version of Paint Can is available online at: http://kyleburke.info/DB/combGames/

paintCan.html.

https://sites.google.com/view/virtual-cgt/seminar
http://kyleburke.info/DB/combGames/paintCan.html
http://kyleburke.info/DB/combGames/paintCan.html
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▶ Definition 5 (Paint Can). Paint Can is a combinatorial game played on stacks of bricks,
each colored Red, Blue, Green, or Gray. Each turn a player chooses a brick in one stack
either of their own color or Green. (No player can choose Gray bricks.) The chosen brick
and all bricks above it are then removed from the stack. On top of each stack that has any
non-Green bricks sits a can of green paint. When any brick is taken from that stack, the can
of paint spills, coloring all the remaining bricks in the stack Green.

Under Normal Play, the last person to move on a Paint Can position wins. Every
superstar is equivalent to a Paint Can position with a single stack of bricks. Starting with
an index of zero for the bottom brick: if brick i has color Blue, then ∗i is only a Left option;
if Red, ∗i is only a Right option; if Green, ∗i is both a Left and Right option; and if Gray,
∗i is not an option for either player. For example, the game { 0, ∗2, ∗4 | ∗, ∗2 } is equal to
the stack with bricks colored (from bottom to top) Blue, Red, Green, Gray, and Blue. See
Figure 1 for an example of a position with that same stack. The entire position in the figure
is equal to { 0, ∗2, ∗4 | ∗, ∗2 } + ∗4.

Figure 1 A Paint Can position consisting of two stacks of bricks with value { 0, ∗2, ∗4 | ∗, ∗2 }
+ ∗4. In the leftmost stack, the Blue player may choose to remove either of the blue bricks or the
green brick. The Red player may choose to remove either the red or green brick. Neither player may
choose to remove the gray brick. In the rightmost stack, all bricks are already green, so no can of
paint is necessary. If the Blue player removes the top brick from the left stack, the result will be a
stack of four green bricks, as is in the right stack.

Any sum of superstars can be represented as an instance of Paint Can with each
term equivalent to a single stack of bricks. For example, to create a position equivalent to
{ 0, ∗ | 0, ∗2 } + { ∗2 | ∗3 } + { 0, ∗, ∗2 | ∗ }, we color bricks in each of three stacks corres-
ponding to which player has the nimber option that matches the index of the brick (starting
at the bottom with index 0). If both players have an option to ∗i, then brick i is green. If
only Left has an option to ∗i, then brick i is blue. If only Right has an option to ∗i, then
brick i is red. If neither player has an option to ∗i, then brick i is gray, though we do not
include gray boxes for i higher than the nimbers in either option. See Figure 2 for a position
equal to the prior sum of superstars. Thus, Paint Can is a ruleset where all superstars and
sums of superstars occur; players need to evaluate them in order to determine which player
can win.

Figure 2 A Paint Can position equal to { 0, ∗1 | 0, ∗2 } + { ∗2 | ∗3 } + { 0, ∗, ∗2 | ∗ }.

3 From Bits to Superstars: Hardness Reduction

In order to show that sums of superstars (and Paint Can) are NP-hard, we need to introduce
some additional computational problems.
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XOR-SAT [11] is a classical logical satisfiability problem consisting of a conjuction of
clauses of the XOR of boolean literals. That is to say, it takes this form: (xi ⊕ xj ⊕ · · · ⊕
xk) ∧ (xl ⊕ · · · ⊕ xp) ∧ · · · ∧ (xq ⊕ · · · ⊕ xr). It is known that XOR-SAT is polynomial-time
solvable [11].

Our next problem, which is NP-hard, is motivated by XOR-SAT. It uses multi-state
variables, which can be assigned to one of many states instead of just True and False. Each
literal of a variable is labelled with one of those states (e.g. xa,si

) and is only true if the
variable is assigned to that state. More formally, let xa be a multi-state variable with possible
states s1, s2, . . . , si, . . . , sk, then for all states si of xa we have

xa,si
=

{
True if xa is set to si,

False if xa is set to sj and j ̸= i.

Figure 3 displays a multi-state variable.

xa

s1

s2

s3

s4

Figure 3 Multi-state variable xa with four possible states: s1, s2, s3, s4. The overall color
indicates that the chosen state is s2.

▶ Definition 6. Multistate XOR-SAT is a ruleset where a position is a conjunction of clauses
consisting of the XOR of multi-state literals instead of boolean literals. In other words, the
clauses are of the form (xi,si ⊕ · · · ⊕ xj,sj ). Variables are divided between the two players, X,
and Y , and clauses may contain variables from both players, e.g. (xi,si

⊕ yj,sj
⊕ · · · ). On

their turn, the current player selects one of their unassigned variables and picks a state to
assign it to. Once both players have assigned all variables, X wins if the formula is true, and
Y wins if the formula is false. If both players have the same number of variables, then we
call it Equal-Partitioned Multistate-XORSAT, or EPMX.

We will show that EPMX is NP-hard after we show the reduction from EPMX to a sum
of super stars (AKA Paint Can).

To reduce from EPMX, we must first discuss elementary strategies in a sum of superstars.
Do aid in this, we partition superstars into six classes:

nimbers,
no-0 : neither player has 0 as one of their options,
left-0 : only Left has a move to 0,
right-0 : only Right has a move to 0,
both-0 : both players have moves to 0, and
one-sided: one player has no options while the other player does.
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First, an observation that follows directly from Proposition 4:

▶ Corollary 7 (No-0 games). A No-0 game has value 0.

Then, we will prove the following lemma:

▶ Lemma 8 (0 game win). Consider a sum of superstars with no both-0 games nor one-sided
games. If at the start of the Left player’s turn there are more left-0 games than right-0 games,
then Left wins. Similarly, if at the start of the Right player’s turn there are more right-0
games than left-0 games, then Right wins.

It is possible to prove Lemma 8 using atomic weights and the two-ahead rule, as shown
in [13]. We provide the following proof that avoids use of atomic weights.

Proof. We will call the winning player A and the losing player B, so there are more A-0
games than B-0. We will prescribe the following algorithm for A to win: they can “eliminate”
0s in the B-0 games by making a move on the game (by choosing one of their nimber options
arbitrarily). They repeatedly do this until no B-0 games remain. Now, after B’s following
turn, the remaining games include at least one A-0 game, some nimbers (maybe none), and
some no-0 games (maybe none). At this point, A should avoid playing A-0 games until there
are only A-0 games remaining, or there is exactly one A-0 game left (along with the other
types of games), whatever comes first.

If there are only A-0 games remaining, then for the first of those games, A can just bring
a game to 0, and then if there are any games left, B has to make one into a nimber, which A

can just bring to 0. This will repeat until the last A-0 game is taken this way, in which case
A wins.

If there is exactly one A-0 game (along with potential no-0 games and nimbers), then A

can identify the value of the sum of everything but the single game by XORing the nimbers
(by observation 7, the others have value 0). If the nim-sum is 0, then A may take the move
to 0 and thus wins the game. Otherwise, they can bring the nim-sum to 0 and inductively
keep it so until B plays on A-0, bringing the game to a non-zero nim sum, which A can then
win from. ◀

With this lemma, we can prove the following theorem:

▶ Theorem 9. There exists a polynomial-time reduction from Equal-Partitioned Multistate-
XORSAT (EPMX) to Sum of superstars, such that if True wins going first on EPMX, then
the outcome class of Sum of superstars is L or P (i.e. Left wins going second).

Proof. Let X be the player whose goal is to make the formula true in EPMX, Y be the
player whose goal is to make it false, and m be the number of clauses. We assume that the
EPMX formula contains literals for each state of each variable. (If it doesn’t, we can create
a dummy clause that will always be true for each missing variable missing a state. That
clause contains one copy of each state that variable can have.)

We will use the following construction: First, we will assign the tth clause an identity
zt = 2t. In other words, we use power of twos {1, 2, 4, . . . , 2m−1} to identify clauses. For the
ith variable assigned to X, we will create a Right-0 game which we will call xi, and for the
ith variable assigned to Y , we will create a Left-0 game we will call yi. Right’s options for
each xi contain only a single option of 0, and similarly, Left’s options for yi contain only 0.
Then, for each possible state of the ith variable for X, there will be a Left option in xi to a
nimber whose value is, for each clause that contains the variable at that state, the sum of
their corresponding identity values (i.e., if the tth clause is involved, then zt is included in
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8:8 A Tractability Gap Beyond Nim-Sums

the sum). Similarly, for each state of variable yi for Y , there will be a Right option in yi to
a nimber with value equal to the sum of the corresponding identity values of the involved
clauses. In addition, for each game xj , there will be an additional option of ∗2m+j . (The yi

positions do not have this extra option.)
The game we consider is then

G = x0 + . . . + xk + y0 + . . . + yℓ + ∗(2m − 1).

For example, the position (x0,a ⊕ x1,a ⊕ y0,a ⊕ y1,c) ∧ (x0,b ⊕ x1,a ⊕ y0,b ⊕ y1,a) ∧ (x1,a ⊕
x1,b) ∧ (y1,a ⊕ y1,b ⊕ y1,c) with states x0 : {a, b}, x1 : {a, b}, y0 : {a, b}, y1 : {a, b, c} reduces
to x0 + x1 + y0 + y1 + ∗15, where

x0 =

 ∗︸︷︷︸
a

, ∗2︸︷︷︸
b

, ∗16︸︷︷︸
2m+0

∣∣∣∣∣∣ 0


x1 =

 ∗7︸︷︷︸
a

, ∗4︸︷︷︸
b

, ∗32︸︷︷︸
2m+1

∣∣∣∣∣∣ 0


y0 =

{
0

∣∣∣∣∣ ∗︸︷︷︸
a

, ∗2︸︷︷︸
b

}

y1 =
{

0

∣∣∣∣∣ ∗10︸︷︷︸
a

, ∗8︸︷︷︸
b

, ∗9︸︷︷︸
c

}
In the example above, the identity of these four clauses are respectively, 1, 2, 4, and 8.

Now we demonstrate the correctness of the reduction. As mentioned in the theorem
statement, the union of L and P is equivalent to proving that Left wins going second. We
will show that the game should progress by alternating moves of Right playing on left-0s
and Left playing on right-0s. Since the options of those components are all nimbers, each of
these plays changes the whole game by removing that component and modifying the nimber
term. If this pattern is followed, then after Left plays on the final right-0, they win if and
only if the nimber term has been reduced to zero. Otherwise, Right can bring the nin-sum
to 0, and then win through following the nim strategy.

If both continue to hold to that pattern, at the beginning of each of Left’s turns, there is
one more right-0 component than left-0. Thus, Left must play on a right-0 component or
they will lose by Lemma 8. Right starts each turn with balanced left-0s and right-0s, but
they still need to follow the pattern. If Right deviates by playing on an x game, then they
will lose by Lemma 8. If Right plays on the nimber term instead, this switches the roles of
the players with respect to their ending conditions; now Right will win if and only if the
nimber term is reduced to zero when they make their final move. Left, however, can avoid
this by playing on one of the large nimber (with value at least 2m) options included in any x.
Right doesn’t have any options that can cancel out that large nimber, so the final nimber
term will always be non-zero and Right can no longer win.

Following the prescribed sequence of play, Left wins if the nimber term equals zero. Since
it started at ∗2m − 1, the sum of all nimber options chosen must also equal ∗2m − 1. If Left
has a winning strategy in EPMX, they can play on the nim values corresponding to each
variable state in their winning strategy, which must then result in a final nimsum of 0. If
they do not have a winning strategy, then note that playing on the 2m+j values can’t give
them a chance to win, since Right can stick with their EPMX strategy and the nimsum
can’t equal 0. Thus, Right can follow Y’s winning strategy of assignments to result in a
non-zero value. ◀
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Now we will show NP-hardness for EPMX.

▶ Theorem 10. There exists a polynomial-time reduction from 3SAT to EPMX.

Proof. Let X be the player whose goal is to make the formula true in EPMX, Y be the
player whose goal is to make it false. (In our reduction, Y will not make meaningful decisions
in the course of the game.) Let n be the number of variables and m will be the number of
clauses from the 3SAT instance.

Note that 3SAT is hard even if every variable appears only at most 3 times, at least
once negated and at least once unnegated. It is also hard adding on a further restriction
that there are an odd number of variables in the formula. We will assume both of these are
true in this reduction.

For each clause in 3SAT, we will create a clause in EPMX. We will also have two separate
clauses cx and cy. For each variable (xi) in 3SAT, we will create an variable (xi) in EPMX
with five states: {xia , xib

, xic , xid
, xie}. WLOG, we assume that xi appears once unnegated

and twice negated, in clauses r, s, and t in 3SAT respectively. Every state appears in cx.
In the EPMX formula, the first state (xia) appears in no other clauses. The second state,
xib

, corresponds to the unnegated appearance, and appears in clause r. The third state, xic
,

corresponds to both negated 3SAT literals, and appears in clauses s and t. The fourth state,
xid

, corresponds to only the first negated 3SAT literal, and appears only in clause s. Finally,
the fifth state, xie

, corresponds to only the second negated literal, and only appears in clause
t.

In order to be an EPMX position, we need to include the same number of y variables as
x. We can do this by creating n dummy variables with two states each: a and b. We can
include all of the states of each of the variables into cy. Note that since there are an odd
number of y variables, cy will always be true (the same is true of cx).

If there is a solution to the 3SAT formula, then a solution to EPMX can be constructed
by iterating over the variables. For each xi, if the 3SAT assignment is true, then we choose
xib

, unless the EPMX clause r has already been satisfied, in which case we choose xia
. If xi

is assigned to false, then we select the correct choice of a, c, d, and e, depending on which of
clauses r and t have already been satisfied.

The inverse direction is simpler: an assignment of xia
means it doesn’t matter what we

pick. xib
means xi must be true to satisfy the 3SAT formula, and any of the others means it

must be assigned to false. ◀

As explained in Section 2.2, we introduce the term comet to refer to the objects called
superstars in On Numbers And Games[5]. Each superstar has an associated comet. We do
not provide a full explanation of all cases of comets here. However, if the superstar, S, is a
left-0, then the comet will be ↓ + ∗ +S, where ↓= { ∗ | 0 }. If S is a right-0, then it will be
↑ + ∗ +S where ↑= { 0 | ∗ }. Finally if S is a nimber, then S is its own comet [5, 13]. Note
that ↓ + ↑= 0.

▶ Corollary 11. A sum of comets is NP-hard.

Proof. We can express our sums of superstars and a nimber resulting from the reduction
from EPMX as a sum of comets. If we replace each xi with the comet ↑ + ∗ +xi and each
yi with the comet ↓ + ∗ +yi, then sum all of those comets, all the ↑ and ↓ components will
cancel out and all of the individual ∗ will cancel each other out. Thus the game is the same
sum of superstars. ◀

A minor note is that comets have something known as atomic weight 0, which also gives
the result that sums of atomic weight 0 games can be NP-hard.
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4 From Logic to Board Game: Blackout

In this section, we use a simplified version of the logical game that appeared in our earlier
analysis to design a two-player board game, which we call Blackout. The board of this
game contains an array of light bulbs and two sets of switches, one above the light bulbs and
one below. Two players, denoted by AllOff (Left) and OneOn (Right), each control one set
of switches.

Figure 4 An Example Game of Blackout.

The AllOff player wins if all lights are off at the end of the game. They control the
switches at the top of the board. The OneOn player wins if at least one light is on in the
end. They use the switches at the bottom of the board. On their turn, a player turns one
of their unchosen switches off (red) or on (green). If they turn the switch on, then all of
the lights that switch is connected to get toggled (off becomes on and on becomes off). The
OneOn player has an easier objective, so they may have fewer switches. Once all bottom
switches are played, they can pass as long as all the lights are not out. During these final
turns, the AllOff player is searching for configuration of their remaining switches to turn all
lights off in order to win.

Blackout is in the Maker-Breaker style, but it differs from traditional Maker-Breaker
games in one crucial aspect: Even if AllOff turns all lights off at some point during the game,
if OneOn still has some unflicked switches, then the game will continue until all switches
for both players have been selected. I.e., Blackout could potentially continue even after
all light bulbs have been turned off, while Maker-Breaker games end as soon as the desired
structure has been formed (or continue until there are no moves).

Figure 4 is an illustration from our two-dimensional board layout in our Web implement-
ation, which can be found at the following link: http://kyleburke.info/DB/combGames/
blackout.html.

http://kyleburke.info/DB/combGames/blackout.html
http://kyleburke.info/DB/combGames/blackout.html
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4.1 Blackout Ruleset Formalities
In this subsection, we discuss the mathematical representation of positions and rules in
Blackout to set up our computational analysis. For Blackout games with p lights, a
position has three components P = (L, SAllOff, SOneOn):
(a) L is a Boolean vector in {0, 1}p, indicating whether each of the lights is off or on. That

is, L(i) = 1 denotes that the ith light is on.
(b) SAllOff is a Boolean matrix with p columns in which every row has at least one 1. Each

row represents a switch that AllOff can use. If the switch controls the ith bulb, then its
ith entry equals to 1.

(c) SOneOn is a Boolean matrix with p columns, in which every row has at least one 1. Each
row represents a switch that player OneOn can use. If the switch controls the ith bulb,
then its ith entry equals to 1.

In this position, we define the options as follows:
AllOff has two options for each row in SAllOff. (If the matrix is empty, then they have no
options remaining.) For their turn, AllOff selects a row r and a binary action α ∈ {0, 1}.
If the action is α = 0, then the position is moved to (L, SAllOff

−r , SOneOn), where SAllOff
−r

denotes the Boolean matrix obtained from SAllOff by removing its rth row. If the action
is α = 1, then let L′ be the entry-wise exclusive-or of L and the rth row of SAllOff, and
the position is moved to (L′, SAllOff

−r , SOneOn). Note L′ represents the result when player
AllOff activates its rth switch.
OneOn’s options depend on two cases: (1) If SOneOn is not an empty matrix, then OneOn
can select a row s and a binary action β ∈ {0, 1}. If the action is β = 0, then the position
is moved to (L, SAllOff, SOneOn

−s ), where SOneOn
−s denotes the Boolean matrix obtained from

SOneOn by removing its sth row. If the action is β = 1, then let L′ be the entry-wise
exclusive-or of L and the sth row of SOneOn, and position is moved to (L′, SAllOff, SOneOn

−s ).
Note L′ represents the result when player OneOn flicks on its sth switch. (2) If SOneOn

is an empty matrix (i.e., player OneOn has no more switches to flick), then OneOn can
make a pass move so long as there is at least one light on in L. If the lights are all out,
then they have no options available.8)

4.2 The Intractability of Blackout
We now analyze the complexity of Blackout and prove the following intractability result.

▶ Theorem 12 (Intractability of Blackout). Deciding whether or not player ALLOFF has a
winning strategy at a given Blackout position is NP-hard.

Proof. We begin by defining two decision problems, Set Cover and Exact Cover.
In Set Cover, there is a collection V containing n sets S1, S2, . . . , Sn which each contain

some subset of a ground set E = {e1, . . . , em} of m elements. There is also a given integer k,
indicating a target number of sets to choose.

A Set Cover instance is feasible if there exists a selection of k sets in V such that every
element in E is in at least one of the selected k sets. We call such selection a cover. A cover
is exact if for each element e ∈ E, e appears exactly once in the selected sets. Exact Cover
determines whether the input has an exact cover.

8 In order to prevent OneOn from making unbounded passes in the context of a game sum, they should
have a maximum number of passes at the beginning equal to the difference in heights of the matrices,
height(SAllOff) − height(SOneOn).
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In our desired problem of Pure Set Cover, we want to have a promise that if there is
a Set Cover of size k, then there is also a Exact Cover of size k.9.

Next, we note that Set Cover is NP-complete even if there are only three elements in
each set in V [7].

Now we can reduce from Set Cover with three elements in each set. For our reduction, we
will enrich the input by adding new sets for each subset of those sets. E.g., if S1 = {e1, e2, e3},
then we include the six sets {e1}, {e2}, {e3}, {e1, e2}, {e1, e3}, and {e2, e3} in our new
collection V as well. This enforces the promise, because if there is a set cover of size k, for
each overlap, for one of the overlapping sets, one can instead choose to select a subset that
doesn’t overlap. We can repeat this for all overlapping sets without changing k.

In other words, with this enrichment, we have proved that Pure Set Cover is also
NP-complete.

To reduce from Pure Set Cover to Blackout, we create a light switch for the ALLOff
player for each set in the Pure Set Cover and n − k light switches for the OneOn-player.
We create a light for each element in E.

The switches are set as the following:

(AllOff): For the n light switches controlled by the AllOff player, we connect them to
the lights corresponding to the elements contained in the sets, one for each set.

(OneOn): We connect n − k − 1 of the light switches controlled by the OneOn-player
only to the lights corresponding to the elements in S1, which the AllOff player also has a
switch for. Finally, the OneOn-player’s last light switch is connected to all of the lights.

All lights begin in the on state and OneOn goes first.
We claim that the AllOff-player has a winning strategy if and only if there exists a Set

Cover in the Pure Set Cover.
The OneOn player has n − k − 1 switches for S1, n − k − 2 of which are redundant, so

they should start by playing all of these, without the setting changing the outcome of the
game.

If there is a working k-sized cover, AllOff will spend their first n − k − 2 turns choosing to
turn off switches that are not in their pure cover and not S1. OneOn, seeing that AllOff has
a switch to negate theirs for S1, should play that again. If S1 is part of the cover, then AllOff
can choose the setting that shuts them off. Otherwise, they should choose to turn them on.
OneOn will then choose to leave all lights on (otherwise AllOff can win immediately). Now
AllOff has k turns to flip all switches in their cover of size k to turn all lights off. If OneOn
decides to activate the switch connected to all lights earlier, they should choose to leave
them all on, in which case AllOff just has extra turns to put their cover to work. No matter
what, AllOff will win.

Then, if there exists no Exact Cover of size k, then there exists no set cover of size k.
OneOn can win by saving their all-lights-switch for their last move. Since there is no set
cover of size k, there must be at least one light not covered by the AllOff player’s remaining
switches. The OneOn player can either flip or not flip the final switch to make sure that
light is on and win the game. ◀

9 We thank Neal Young for this idea.
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5 Conclusion

Going beyond winnability, Sprague-Grundy Theory [14, 8] introduced the first notion of
game values and game algebra for combinatorial games, which was later expanded to partizan
games [2, 5]. It demonstrated that every impartial game can be mathematically reduced to a
single-pile of Nim in the algebra of disjunctive sums. Because the nim sum can be computed
in linear-time in the size of the binary representations of the summands [3], Sprague-Grundy
Theory further captures the computational benefit of knowing game values of impartial
games, rather than just their game rules or winnability [4].

By showing that the winnability of the sum of superstars and comets are intractable,
our result highlights the fundamental subtlety of tepid partizan game values. It takes a
significant step beyond Morris’ [10] classical intractability result by demonstrating that
intractability happens just one step above nimbers (stars). This hardness result implies that
the Bouton-like result for Nim [3] is unlikely for superstars and comets.

Part of our proof has also inspired the design of a board game, Blackout, which enjoys
intriguing complexity based on the shape of game boards: On the one hand, if both players
have the same number of switches, which we refer to as the balanced case, then the game
can be solved in polynomial time 10. On the other hand, if players have a different number
of switches, then the game is intractable in general.

Whereas the sum of superstars has been shown to be NP-hard to solve, its precise
complexity remains open. It can be shown that the outcome class of a sum of superstars can
be computed in polynomial space in the number of bits representing the sum.11 Therefore, as
part of the next step in our future research, we would like to settle the following conjecture.

▶ Conjecture 13. A sum of superstars, and hence Paint Can, is PSPACE-complete.

It is worth noting that it seems challenging to naturally extend the current setup of
our intractability proof for this conjecture. Reducing directly from QSAT to EPMX seems
fruitless since there is no clear way to “punish” player Y from covering a variable multiple
times. For any reduction, the fundamental difficulty lies in the strong asymmetry between
players X and Y in that Y is just too powerful with options. In other words, as soon as
EPMX allows Y to be a “real” decision maker – as opposed to the construction in Theorem 10
– the game shifts dramatically in Y’s favor, and indeed, it is difficult to even find complicated
positions where X wins with a non-trival Y player. As it stands, either a different approach
is needed, or a very clever reduction to EPMX is required.
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Abstract
We introduce splitter networks, which abstract the behavior of conveyor belts found in the video
game Factorio. Based on this definition, we show how to compute the steady-state of a splitter
network. Then, leveraging insights from the players community, we provide multiple designs of splitter
networks capable of load-balancing among several conveyor belts, and prove that any load-balancing
network on n belts must have Ω(n log n) nodes. Incidentally, we establish connections between
splitter networks and various concepts including flow algorithms, flows with equality constraints,
Markov chains and the Knuth-Yao theorem about sampling over rational distributions using a fair
coin.
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1 Introduction

The transportation of materials or data within various networks represents an inexhaustible
source of mathematical problems, which has lead to almost as many solutions, theories and
algorithms. These advancements have brought about significant improvements across diverse
fields including supply chain management, logistics, network optimization. Transportation
also serves as a central component in numerous games, as evidenced by the transportation
category on BoardGameGeek which lists almost two thousand games [3]. In Factorio [24], a
video game published in 2020 by Wube Software, players must mine natural resources to
feed a rocket-building factory on an hostile planet. A major part of the gameplay involves
the movement of resources within the factory, employing various mechanism: robotic arms,
conveyor belts, drones or trains.

In this work, we study the conveyor belts of Factorio. An item placed on a belt will
move at a constant speed toward the end of the belt, until it reaches that end, or is blocked
by an item preceding it. Belts in Factorio can be combined using a splitter, connecting
one or two incoming belts to one or two outgoing belts. A splitter takes items from the
incoming belts and places them on the outgoing belts, trying to split the flow as fairly as
possible between the incident belts, while maximizing the throughput. Given the scale of
a typical Factorio game, players frequently encounter the need to balance the loads across
multiple belts, and the community has devised numerous efficient networks to address this
load-balancing problem.

An intriguing aspect of Factorio is its encouragement for players to construct vast systems
of automation, requiring intensive planning and optimization. Ultimately, the limiting factor
arises from the CPU load generated by game state updates. Consequently, players are
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Figure 1 Three splitter networks given with capacities and associated steady-states. Splitter
will be represented by circle vertices, terminals by square vertices. Each terminal is tagged by its
capacity, and each arc by its throughput. Saturated arcs are bolder than fluid arcs.

incentivized to prioritize resource efficiency, particularly concerning gameplay elements that
entail frequent computations such as splitters. This motivates the minimization of the number
of splitters in load-balancing networks.

Our goal is two-fold: first we model the steady-state of a network of splitters. The network
of conveyor belts is abstracted as a directed graph, with nodes corresponding to splitters and
arcs to belts. A steady-state is a throughput function on the arcs; a circulation with additional
constraints to capture the fact that splitters are fair and locally optimizing. We present two
polynomial-time algorithms for computing a steady-state in a splitter network. An analogy
is made with two classical maximum-flow algorithms: the blocking-flow algorithm [8] and
the push-relabel algorithm [10]. In contrast to maximum flows, the primary challenge arises
when a belt reaches full capacity, as its supplying splitter may no longer stay both fair and
maximizing. In that case, the splitter is allowed to become unfair, but that decision changes
the constraints applied to the flow, making the problem fundamentally non-convex. In a
second part, we showcase various load-balancing network designs sourced from the Internet,
formalizing concepts defined by the players community. Furthermore, we prove that those
designs approach optimality. Specifically, we prove that any balancing network on n belts
must have Ω(n log n) splitters, by exhibiting a relation with the problem of sampling the
uniform distribution over a set of n elements using only a fair coin. The core design is the
Beneš network, a circuit-switching network well-known in the field of telecommunication [1, 2].

The blocking-flow-like algorithm relies on finding circulations with equality constraints. A
circulation on a directed graph is a flow without any excess at any vertex. Given a directed
graph (G, A), we denote δ+(v) and δ−(v) the sets of outgoing and incoming arcs incident to
a vertex v. Let C= be a partition of A such that for each part C ∈ C=, there is some vertex
v with C ⊆ δ+(v). The C=-circulation problem is to decide whether there is a non-zero
circulation f that is constant within each part. While this problem can easily be solved using
linear programming, we require a good characterization of graphs admitting a C=-circulation,
Additionaly a polynomial-time algorithm is needed to either construct a C=-circulation or
identify an obstacle that prevents its existence. The algorithm relies on the computation of
a stationary distribution of an auxiliary graph. In contrast, solving maximum integral flow
problems with additional equality constraints is known to be NP-hard [17], even when the
partition is exactly the sets of leaving arcs of each vertex [23, 18].

Sorting networks [12] and Beneš networks have topologies similar to splitter networks,
with nodes of in-degree and out-degree 2. In microfluidics, mixing graphs are used to produce
droplets of specific concentration, using devices that produces two identical droplets from two
droplets of any concentration [7]. The concentration values on the arcs are subject to equality
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constraints similar to those of splitter networks, but without a maximizing constraint. The
topology of splitter networks is nonetheless more general than these examples, as splitter
networks may have directed cycles, those being necessary in particular to achieve load-
balancing with an arbitrary number of outputs.

In an answer to a question on the mathematics section of stackexchange, David
Ketcheson attempted to model and compute the throughputs of splitter networks [11].
Rather than binary categorizing each belt as full or not, each arc is assigned a density and
a velocity. The density will be monotonically increasing, and the velocity monotonically
decreasing during the run of the algorithm, until a steady-state is reached. In fact the
velocity increases only after the density reaches its maximum at one. Therefore this de-
scription is equivalent to our solution, which involves a throughput function and a set of
full belts. Unfortunately his algorithm does not always terminate, and its solutions do not
satisfy that splitters use their incoming belts fairly. Ketcheson also gave a procedure, albeit
non-polynomial, to determine whether a network (not necessarily load-balancing) may limit
throughput. Hovewer, this procedure is applicable only to networks without directed cycle.
In [15], Leue modeled splitter networks using Petri nets, and uses model checking to check
the load-balancing properties of some small networks.

The Factorio community is very active and creative. Players have designed load-balancing
networks of various sizes, with efficient embeddings into the grid while respecting the
constraints of the game. Additionally, they have developed general methods for constructing
arbitrary large load-balancing networks. They introduced the concept of balancing networks,
along with the more robust properties of being throughput unlimited or universal, and
subsequently designed networks that exhibit these characterics. A notable example is the
universal balancer presented by pocarski [20], although it uses non-fair splitters too; our
universal balancer only uses fair splitters. They also discovered the relationship with Beneš
networks. Factorio-SAT [21] is a project that uses a SAT-solver to find optimal embeddings
of splitter networks in the grid. The project VeriFactory uses a SAT-solver to check various
load-balancing properties of splitter networks [14]. Factorio belts are actually sufficiently
complex to be Turing-complete [16]. There are many implementations of various devices
inside Factorio, ranging from raytracers to programming language interpreters, using the
diverse set of available gameplay mechanisms. Factorio has been the inspiration for several
other academic works [22, 19, 4, 6, 9].

The rest of this paper presents an overview of the main concepts and results of this work.
An extended version [5] will contain more details, proofs and additional results. Splitter
networks and their steady states are defined in Section 2. Section 3 describes two algorithms
to compute the steady-state of a splitter network. The concept of balancer is defined in
Section 4, which also contains a presentation of some balancer designs. Section 5 describes
how to derive a lower bound on the number of splitters in a balancer network. Finally in
Section 6 we will present some perspectives.

2 Splitter networks and their steady-states

We start by modeling networks of conveyor belts and splitters by directed graphs, where each
single belt is an arc, and each splitter is a node (thus abstracting the length of the belts).

▶ Definition 1. A splitter network is a directed graph G (with possible loops or parallel arcs)
whose vertex set can be partitioned into three sets V (G) = I ⊎ S ⊎ O where

(i) I is the set of inputs, and d+(i) = 1, d−(i) = 0 for any input i;
(ii) O is the set of outputs, and d−(o) = 1, d+(o) = 0 for any output o;
(iii) S is the set of splitters, and d−(s) = d+(s) = 2 for any splitter s.
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We will use the word flow to informally describe the material transported by the network,
and throughput for the amount of flow going through the arcs. Our work aims to understand
the throughputs inside a splitter network at steady state, when some maximum throughputs
are forced on its inputs and its outputs, which are respectively the sources and sinks of the
flow passing through the network. To this end we will consider capacity functions on the
input and output. A capacity c on an input means that the input has an incoming flow
of throughput c. The input will try to push that much into the network, but no more. A
capacity c on an output means that the output will accept a maximum throughput of c. We
consider that the maximum throughput of any arc is 1, with all belts being identical.

A splitter can be described using two operational rules. The first rule, which takes
precedence, is to maximize the amount of flow that goes through it. The secondary rule
is to be fair. A splitter is fair relatively to its outgoing arcs: it tries to push as much flow
onto each of them. It is also fair relatively to its incoming arcs: it tries to pull as much
flow from each of them. As the maximization rule takes precedence, it will not be fair when
being unfair leads to higher throughput. For instance, consider the network in Figure 1 (a),
depicting a network with a single splitter. As one of the output has a lower capacity, it
pushes more flow toward the other output, thereby maximizing the total throughput, while
still being as fair as possible as it minimizes the difference of throughputs on its outgoing
arcs.

The throughput of an arc may reach a limit when its head is an output with a low
capacity. For example in Figure 1 (a), an output of capacity 0.4 acts as a bottleneck. In
other cases the head of an arc is a splitter, which itself is limited by what its outgoing arcs
can accept. For example in Figure 1 (b), as all the outputs have reached their capacities, the
splitter cannot accept more flow, even if the bottom input could provide even more flow. In
terms of conveyor belts, some belts will initially receive more items that they can deliver,
causing them to fill up. Once full, they can only accept from upstream as much as they
deliver downstream, which may in turn limit throughputs upstream. We say that such belts
are saturated.

The output capacities are not the only factor that limit the total throughput and create
bottlenecks. This can be observed in Figure 1 (c). There, the rightmost splitter tries to
be fair and send some of the flow back to the left. The leftmost splitter also tries to be
fair, thus accept the flow coming from the right. This results in the stabilization into the
given throughputs. This example illustrates that the throughput is not globally maximized,
contrary to the expectation of a total throughput of 1 for this network. Instead, it is only
0.5.

The following definition formalizes the notions of capacity, throughput and saturations,
as well as the behaviour of splitters related to the flow going through the network in a steady
state.

▶ Definition 2. Let G = (I ⊎ S ⊎ O, E) be a splitter network, and let c : I ∪ O → [0, 1] be
the maximal capacities of each input and output node. A steady-state for (G, c) is a pair
(t, F ) where
R1 t : E → [0, 1] is the throughput function;
R2 F ⊆ E is the set of fluid arcs, E \ F is the set of saturated arcs;
R3 for each i ∈ I with δ+(i) = {e}, t(e) ≤ c(i) and moreover if e ∈ F then t(e) = c(i);
R4 for each o ∈ O with δ−(o) = {e}, t(e) ≤ c(o) and moreover if e /∈ F then t(e) = c(o);
R5 for each s ∈ S, with δ−(s) = {e1, e2} and δ+(s) = {e3, e4}, t(e1) + t(e2) = t(e3) + t(e4);
R6 for any e1, e2 ∈ E with {e1, e2} = δ−(s) and e1 /∈ F , t(e1) ≥ t(e2);
R7 for any e1, e2 ∈ E with {e1, e2} = δ+(s) and e1 ∈ F , t(e1) ≥ t(e2);
R8 for any uv ∈ E \ F and vw ∈ F , t(uv) = 1 or t(vw) = 1.
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Figure 2 An example of steady-state in a moderately small network, and the reverse network
with its steady-state obtained by reversal. Notice that the reversed steady-state satisfies rule 8 but
not rule 9.

Rules 3 and 4 say that the throughputs are limited at each input and each ouput, and
moreover, an input pushes as much flow as allowed by its capacity on a fluid arc. Similarly
an output absorbs as much flow as allowed by its capacity from a saturated arc. Rule 5
imposes the conservation of flow. Rules 6 and 7 enforce the fairness constraints: a splitter
consumes no less flow from a saturated arc than from another incoming arc. A saturated arc
represents a belt that is full. Therefore, the splitter is not limited in how much flow it can
pull from that arc, and thus cannot pull less than from the other incoming arc. Similarly it
produces no less flow in a fluid outgoing arc than in another outgoing arc. In particular, if
both incoming arcs are saturated, or if both outgoing arcs are fluid, they must have equal
throughput, suggesting the following definition.

▶ Definition 3. Given a splitter network G = (I ⊎ S ⊎ O, E), and a set F ⊆ E of fluid arcs,
we say that two arcs e, e′ ∈ E are

in-coupled if e, e′ /∈ F and there is a splitter vertex v ∈ S with δ−(v) = {e, e′},
out-coupled if e, e′ ∈ F and there is a splitter vertex v ∈ S with δ+(v) = {e, e′},
coupled if they are in-coupled or out-coupled.

Finally rule 8 imposes the maximization of the throughput by each splitter. Indeed,
a saturated arc can provide more flow, while a fluid arc can absorb more flow. Thus, a
steady-state cannot contain a saturated arc followed by a fluid arc. The only exception is
when one of them already has a throughput of 1. We will sometimes replace rule 8 by a
stronger maximization rule :

R9 for any arcs uv ∈ E \ F and vw ∈ F , t(vw) = 1.

Rule 9 implies rule 8, and although the converse is not true, any steady-state can be
modified into a steady-state for which rule 9 also holds.

The definitions of splitter networks and steady-states exhibit a remarkable symmetry. By
reversing each arc, exchanging the role of inputs and outputs, and complementing the set of
fluid arcs, a steady-state is transformed into a steady-state of the reverse graph, as seen in
Figure 2.

For convenience, when defining or representing splitter networks, we will allow splitters
with in-degree one or out-degree one (see Figure 2 for instance). This is justified by the
fact that if a splitter s has in-degree one, we can add a dummy input node i with capacity
c(i) = 0. An arc from i to s can then be added, that will always remain fluid. Similarly
if s has out-degree one, we can add a dummy output node o with capacity c(o) = 0, and
an always-saturated arc from s to o. The throughputs on those arcs are forced to be 0.
Therefore it does not induce any new constraint on the non-dummy arcs as rules 6 and 7 are
clearly true for those arcs.

FUN 2024



9:6 The Steady-States of Splitter Networks

Additionally, for convenience, for any input i ∈ I with outgoing arc e, we note t(i) := t(e),
and similarly for any output o ∈ O with incoming arc e, t(o) := t(e). We also extend the
capacities to arcs by setting c(e) to be either c(i) if e ∈ δ+(i), i ∈ I, or c(o) is e ∈ δ−(o), o ∈ O,
or 1 otherwise.

3 Existence and computation of steady-states

Let F be a fixed set of fluid arcs. Then the set of possible throughput functions t of a
steady-state (t, F ) can be described as a polyhedron. Indeed, each of the rules 1, 3, 4, 5, 6,
7 can be encoded by linear inequations. Rule 8 is non-convex, but we will later introduce
its slight strengthening, rule 9. That stronger rule admits an encoding as a family of linear
inequations. Thanks to linear programming, finding a steady-state thus reduces to finding a
set of fluid arcs that admits a steady-state. Nevertheless, we still need to find F . We propose
two algorithms to compute a steady-state, which relates to two families of maximum flow
algorithm:

a push-relabel-like algorithm, where we relax the conservation rule 5, thus defining a
pre-steady-state by analogy with pre-flows. Given a set F , we use a linear program to
compute an optimal pre-steady-state (t, F ) (for some well-chosen objective), and prove
that either (t, F ) is a steady-state, or there is an arc e ∈ F such that (t, F \ e) is also a
(non-optimal) pre-steady-state. Then after at most |E| steps we get a steady-state;
a blocking-flow-like algorithm, where we relax the rule 3 on input capacities, removing
the requirement that an input whose throughput is less than its capacity must have a
saturated outgoing arc. This defines the notion of sub-steady-state. Given a set F , we
solve a linear system to find a sub-steady-state t, and prove once again that either (t, F )
is a steady-state or there is an arc e ∈ F such that (t, F \ e) is a sub-steady-state.

The pre-steady-state algorithm is technically simpler but requires an LP-solver. The sub-
steady-state only requires an algorithm to compute stationary distributions in directed graphs.
We defer a complete presentation and proof of these algorithms to the extended version of
this paper, and focus here on explaining the sub-steady-state algorithm.

▶ Definition 4. Given G = (I ⊎ S ⊎ O, E) a splitter network with capacities c : I ⊎ O → [0, 1],
a sub-steady-state for (G, c) is a pair (t, F ) satisfying rules 1, 2, 4, 5, 6, 7 and the strong
maximization rule 9, and for any i ∈ I and e ∈ δ+(i), t(e) ≤ c(i).

The algorithm starts with the trivial sub-steady-state (t : e → 0, E), and will improve it
iteratively until reaching a steady-state. At each iteration of the algorithm, we will be trying
to increase the throughputs of the arcs without violating any rule. Unlike in maximum flows,
we do not have the choice of which leaving arc to increase the flow on. Furthermore, rule 8
forces each splitter to send as much flow forward as possible. A non-obvious consequence is
that, when increasing the input capacities, throughputs can only increase on fluid arcs, and
can only decrease on saturated arcs. This suggests a definition of the residual graph for the
sub-steady-state (t, F ). Its vertex set is {z} ∪ S, where z is obtained by identifying all the
inputs and outputs into a single node. Its edge set contains some fluid arcs and the reverses
of some saturated arcs.

Consider the splitters in Figure 3. We examine what happens when we increase the
throughput on edge e1 by +ε, or in case (d) when we decrease t(e3) by ε. In case (a), by
rule 7, the throughputs on the two leaving arcs must stay equal, hence both increases by
ε/2. In case (b), only the throughput of the fluid leaving arc e4 can increase. In case (c),
both leaving arc are saturated, the splitter cannot push more flow downward, hence it is
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Figure 3 Four examples of throughput changes at a single splitter, depending on which arcs are
fluid.

Network:

Residual graph:

Figure 4 Configurations of splitters and the corresponding vertex in the residual graph. The
outgoing arcs from a vertex of the residual graphs are highlighted in red: notice that in a sub-steady-
state, the throughputs on these arcs must be equal.

forced to push back flow through its incoming saturated arcs. Thus t(e2) decreases while
t(e1) increases, by no more than (t(e2) − t(e1))/2 because of rule 6. Finally in case (d), if we
decrease t(e3), then t(e1) and t(e2) must decrease by half as much.

Case (c) presents a challenge due to rule 6, which imposes t(e1) ≤ t(e2). When t(e1) =
t(e2), the throughput of e1 cannot increase, and the throughput of e2 cannot decrease. We
say that e1 and e2 are tight. In such a case, removing e1 from F is allowed by rule 6. Fluid
arcs e with t(e) = c(e) or saturated arc with t(e) = 0 are also tight, since we cannot modify
their throughput further. Then we define the edge-set of the residual graph to only contain
non-tight fluid arcs and reverses of non-tight saturated arcs.

Due to the conservation rule 5, any iterative change to the throughputs of the network
must be in accordance with a circulation of the residual graph. Because of rules 6 and 7, some
arcs are constrained to have the same throughput. Therefore the chosen circulation itself has
similar constraints. This is illustrated in Figure 4, where the arcs that have equal throughput
are highlighted in the residual graph. As may be readily checked, those constraints are
exactly set on the leaving arcs in the residual graph of each vertex corresponding to a splitter.
As for the special vertex z, obtained from the identification of the inputs and the outputs, we
may non-deterministically select one of its leaving arc. Then we force all other arcs leaving z

to have zero flow, by removing those arcs from the residual graph. From the residual graph,
we compute a circulation satisfying each equality constraint. First compute a stationary
distribution of a random walk on the residual graph. Then assign to each arc the probability
of being the next arc in a random walk from that distribution. This results in a so-called
stationary circulation (see Figure 5). One must be careful if the residual graph is not strongly
connected. Then either we can find a strongly connected subgraph induced by the leaving
arcs of some subset of vertices, or the residual graph contains a sink (as in Figure 6). In the
former case we can still find a circulation, while in the latter case, we will be able to remove
some arc from F .

Once a circulation is found, we increase the throughput as much as possible. This process
will result in the creation of at least one sink in the updated residual graph. We show that
when the residual graph contains a sink, some arc can be safely removed from F and becomes
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Figure 5 Starting from a trivial sub-steady-state, we compute a residual graph and a stationary
circulation in this graph (the two vertices marked z should be identified). Then we increase the
throughputs accordingly, as much as possible without violating a sub-steady-state rule, by adding
λ = 6 times the circulation at which point some edge reaches its capacity (see Figure 6).
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Figure 6 We compute a new residual graph, which does not contain the arc with throughput
1, since this arc cannot increase. Then the existence of a sink prevents us to find a stationary
circulation in this residual graph (the two vertices marked z should be identified). We remove from
F the incoming arc to the sink with highest throughput, and go to the next iteration.

saturated. This bounds the number of steps until the algorithm stops, when z itself becomes
a sink. At this point, any arc leaving an input node is either at full capacity or is saturated.
Hence rule 3 is satisfied, (t, F ) is a steady-state. Summarizing the discussion, we get:

▶ Theorem 5. There is an algorithm that given a splitter network G = (I ⊎ S ⊎ O, E) with
capacities c : I ⊎ O → [0, 1], finds a steady-state (t, F ) in time O(|S|2 + |S| sd(Gz)), where
Gz is the graph obtained by identifying I ∪ O into a single vertex z, and sd(Gz) denotes the
time to compute a stationary distribution on any orientation of a subgraph of Gz.

Steady-states are not unique: a directed cycle with no input or output can have any
constant throughput on all its arcs. Figure 7 showcases a more interesting network, having
one input, one output, and many possible steady-states. However, in this example, all steady-
states have the same throughputs on the inputs and outputs. Is there a network with two
steady-states having different throughputs on their inputs and outputs? We conjecture that
this cannot happen: steady-states are unique up to minor modifications, as in Figure 7. Those
modifications would be adding or removing some arcs from F , and adding or subtracting a
circulation from the residual graph that leaves the inputs and outputs unchanged.

4 Balancers

We now define load-balancing networks and their properties. The goal of a load-balancing
network is to divide some input flow evenly between several output belts. In the simplest
case, the output belts can receive an arbitrarily large flow (up to the capacity of the belt). In
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Figure 8 On top, the simple balancer of order 3, with a steady-state that is not balanced when
some output capacity is not 1. The capacity of each input (resp. output) is given at their left (resp.
right). Below, a simple balancer of order 2, with a steady-state with total throughput less than both
the total input capacity and the total output capacity.

more general cases, some outputs may be restricted but we still want the flow to be divided
as evenly as possible, without limiting the total throughput available. We distinguish three
properties of load-balancing networks. The first of these properties considers networks where
the output capacities are not constrained.

▶ Definition 6. A splitter network G = (I ⊎S ⊎O, E) is a balancer if for any c : I ⊎O → [0, 1]
such that for each output o ∈ O, c(o) = 1, there is a steady-state (t, F ) for (G, c) with t

constant on δ−(O). An (n, p)-balancer is defined as a balancer with |I| = n inputs and
|O| = p outputs.

When |I| = |O| = 2k, the simple balancer of order k is a balancer network. It can be
defined recursively: a simple balancer of order k + 1 is made from two simple balancers of
order k in parallel. We identify each pair of outputs with equal index from the two balancers,
creating a new splitter whose leaving arcs go to new output nodes. The recursive process is
highlighted by blue boxes in Figure 8. A drawback of the simple balancer occurs when the
output capacities are not uniformly 1. Then the balancing property is lost, as can be seen on
the network in the top half of Figure 8.
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Figure 9 A Beneš network of order 4 with the recursive structure being made explicit.

Another limitation of simple balancers is that the total throughput at steady-state
is not as much as we could expect. A simple upper bound on the total throughput is
min{c(I), c(O)}. It is reasonable to expect from a load-balancing network to always reach
that bound. However, simple balancers do not have this property, as shown by the example
on the bottom half of Figure 8. Improving over the definition of simple balancer, the concept
of throughput-unlimited balancer imposes a maximized global throughput.

▶ Definition 7. A balancer G = (I ⊎ S ⊎ O, E) is throughput-unlimited if for any c :
I ⊎ O → [0, 1], there is a steady-state (t, F ) for (G, c) such that total throughput t(I) = t(O)
is maximized at min{c(I), c(O)}.

Notice that it has to be balancing only when the output capacities are uniformly 1. Beneš
networks are throughput-unlimited networks with |O| = |I| = 2k. They can be described as
gluing two simple balancers, where the second balancer is reversed, see Figure 9. Observe
that Beneš networks are their own reverses.

On the negative side, Beneš network are still not balancing when output capacities are
not uniformly 1, for instance one could extend the steady-state in the network on the left
side of Figure 8 to a steady-state in a Beneš network with the same throughputs. This calls
for a stronger property, that a network should be load-balancing and throughput-unlimited
for any capacity function. This is the notion of universal balancer.

▶ Definition 8. A splitter network G = (I ⊎ S ⊎ O, E) is universally balancing if for each
capacity c : I ⊎ O → [0, 1], there is a steady-state (t, F ) and α, β ∈ R≥0 such that

(i) for each input i, t(δ+(i)) = min{c(i), α},
(ii) for each output o, t(δ−(o)) = min{c(o), β}.
(iii) the total throughput T := t(δ+(I)) equals min{c(I), c(O)}.

In the extended version of this work, we will show how to build a universal balancer with
|I| = |O| = 2k. From such a universal balancer, by ignoring any set of inputs and outputs
(setting their capacities to 0), we can make balancers with arbitrary numbers of inputs and
outputs. We will also prove that every balancer presented here contains Θ(n log n) splitters
where n is the number of inputs and outputs.

▶ Proposition 9. The number of splitters in the simple balancer, Beneš network and universal
network of order k are respectively S(k) = k · 2k−1, B(k) = (2k − 1) · 2k−1, and U(k) =
(k + 1)2k+2.



B. Couëtoux, B. Gastaldi, and G. Naves 9:11

5 Lower bounds on the number of splitters

Our next goal is to provide an Ω((n + p) log(n + p)) lower bound on the number of splitters
in a (n, p)-balancer. We begin with what may seem as an unrelated problem: sampling in a
discrete probability distribution. Given a fair coin that can be tossed arbitrarily often, how
to choose an outcome in {1, . . . , d}, with probabilities given by a distribution π ∈ [0, 1]d?
First, consider the case when π(i) is a rational for each i ∈ {1, . . . , d}, say π(i) = pi/q where
q is a common denominator. Then a sequence of coin tossing can be described as a (possibly
infinite) binary decision tree, with each leaf labeled with a sampled value. Here we present a
construction of such a tree. Start from a single vertex, which serves as the root. Grow the
tree in repeated iterations. At each iteration, add two children to every unlabelled leaf. As
soon as the deepest level of the tree contains at least q leaves, label pi of these leaves with i,
for each i ∈ {1, . . . , d}. Once labeled, each leaf becomes definitive and will not grow anymore.
The process goes on by once again growing the unlabelled leaves, as long (possibly infinitely)
as some unlabelled leaf exists. After the tree is completed, the tree can be optimized using a
simple trick repeated multiple times. If at any depth d, two leaves share a common label,
move them under a common parent, then replace these two leaves with a single leaf at depth
d − 1 bearing the same label. This process can be generalized to irrational probabilities, and
gives a sampling algorithm that minimizes the number of coins tossed:

▶ Theorem 10 ([13]). Let π ∈ [0, 1]d a discrete probability distribution (so 1π = 1). Then
the minimum expected number of coin tosses necessary to sample an element with probability
distribution π is

∑d
i=1

∑
k∈N

k
2k binaryk (πi). This minimum is achieved by a binary decision

tree where at each depth k and for each i ∈ J1, dK, the number of leaves with label i is
binaryk (πi) (the value of the bit of weight 2k in the binary expansion of πi).

Consider a splitter network, and think of the flow as discrete, arbitrarily small items.
An item enters the network from some input, then meets splitters repeatedly until reaching
an output. When an item arrives at a splitter with both outgoing arcs being fluid, it will
continue on any of the two outgoing arcs, without preference for one over the other because
the splitter is fair. It implies that, from the perspective of this single item, the splitter
network behaves like a coin-tossing network, with each splitter corresponding to a coin toss.
If the network is a balancer, the sampled distribution is the uniform distribution on O.

Formally, when all the arcs remains fluid, increasing a single input capacity from 0 to
1 results in a non-decreasing throughput on each arc. Because all arcs are still fluid, the
sub-steady-state algorithm performs a single iteration. Therefore the increase in throughputs
follows a single stationary circulation. As illustrated on Figure 10, it is obtained from the
embedding of a binary decision tree T onto the splitter network. The increase in throughput
on an arc e is the sum of probabilities of the edges mapped to e. Furthermore, in a balancer
network, the increase of throughput is the same on every output. This implies that, as
we progressively increase each input capacity from 0 to 1, each binary decision tree must
uniformly sample from O.

In each binary decision tree, label each edge e with the probability of its usage during
sampling. The sum of these labels represents the expected number of tosses, and can be
bounded as shown in Theorem 10. When mapped into the splitter network, for an arc e, the
sum of these labels on each edge of the tree mapped to e is the additional throughput on e.
By summing over all the binary decision tree, we get that the sum of all labels is at most the
number of outgoing arcs of all splitters, that is 2|S|. Applied on balancers, it yields:
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Figure 10 The infinite decision tree (in blue) used to sample uniformly over a three-element
set {a, b, c} can be embedded from any input into a (3, 3)-balancer. Moreover, the sum of the
probabilities of the 3 trees, one from each input, will be at most one on any arc, which shows that
this network is indeed a simple balancer.

▶ Theorem 11. Let G = (I ⊎ S ⊎ O, E) be an (n, p)-balancer, such that when all input
capacities are 1, the steady-state has no saturated arc. Then

|S| ≥ 1
2 |I||O|

∑
k∈N

k

2k
binaryk

(
1

|O|

)

For a balancer with |I| = |O| = 2k, since
∑

k∈N
k

2k binaryk

(
1

|O|

)
= k

2k , we get a lower
bound of k2k−1 splitters, matching the value of S(k). Therefore the simple balancer of order k

is optimal among all balancer networks without any saturated arcs in their steady-states. By
extending this argument to steady-states with saturated arcs, we can remove that restriction,
albeit at the cost of halving the lower bound.

Consider the various configurations of fluid and saturated arcs incident to a splitter,
illustrated in Figure 3. If a splitter has two fluid outgoing arcs, any additional flow is evenly
distributed between the two outputs, akin to the probabilities of a coin toss. If a splitter has
two incoming saturated arcs, by rule 8, its outgoing arcs are saturated or at full capacity.
In an augmenting circulation, the throughput on those arcs may only decrease by the same
quantity by rule 6: the splitter still acts as a coin toss, but on the flow that is pushed
back. Otherwise, a positive change in throughput on an incoming arc will be followed by
an increase on a single outgoing fluid arc or a decrease on a single incoming saturated arc.
Similarly a negative change of throughput on an outgoing saturated arc will impact only one
other arc. Any additional unit of flow entering the splitter would be routed deterministically.
Therefore, in the embedding of a binary decision tree into the splitter network, a node cannot
be mapped to such a vertex, and no coin toss occurs here. Thus any splitter, depending on
which of its incident arcs are fluid, acts as either a coin toss or a deterministic router. Thus,
even in the presence of saturated arcs, we can embed a binary decision tree, by mapping
each edge to a directed path in the residual graph. The inner nodes of any such path are
deterministic splitters, while its extremities are tossing splitters. As a consequence of the
sub-steady-stat algorithm, the throughput on each arc increases until it becomes saturated,
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then decreases. Therefore its throughput varies by at most 2 during the whole algorithm.
This limits the extent to which an arc can be utilized by the embeddings of binary decision
trees, leading us to the following conclusion:

▶ Theorem 12. Let G = (I ⊎ S ⊎ O, E) be an (n, p)-balancer. Then

|S| ≥ 1
4 |I||O|

∑
k∈N

k

2k
binaryk

(
1

|O|

)

6 Perspectives

We formalized splitter networks and their steady-states, and presented various load-balancing
designs. The ability to design universal balancers enables the simulation of networks with
integral capacities: each arc is replicated according to its capacity, and each splitter is
replaced by a universal balancer. A universal balancer is fair by the balancing property, and
maximizing by the unlimited-throughput property, effectively generalizing splitters. Our
definition of splitter network can also be extended to support arc capacities natively, with
most of the proofs requiring only minor modifications. In an extended version of this paper [5],
we will demonstrate how to simulate any rational capacity. Given an arbitrary rational value
between 0 and 1, we will design a splitter network, with a single input and a single output,
and achieving this value as maximal throughput. However, simulating irrational capacities is
not feasible, as the steady-state throughput is a solution to a linear system of inequations.

Although our continuous model is convenient for modeling the expected throughput
of splitter networks, Factorio’s belt systems operates discretely. Therefore, the observed
throughputs in Factorio’s splitter networks are only approximations of those theorized by
our model. Further investigation into the disparities between the discrete and continuous
splitter networks is necessary to accurately apply our findings to Factorio.

We have let several questions unanswered. The most fundamental remains regarding the
uniqueness of the steady-state throughput. While it is possible for a single splitter network
to admit multiple steady-states, we have yet to encounter a network with two steady-states
that yield different throughputs on their outputs.

Our lower bounds for the number of splitters in balancers have a constant multiplicative
gap across all designs, indicating they are not tight. For simple balancers of order k, this gap
is closed when we forbid saturated arcs in the steady-state of the balancer. Consequently,
leveraging saturation is necessary to further reduce the number of splitters in load-balancing
networks. Furthermore, it is worth investigating stronger lower bounds in the context of
universal balancers.

Factorio allows splitters to be configured to prioritize either an outgoing arc, or an
incoming arc. Utilizing this feature, the universal network described in [20] achieves a
significantly smaller size compared to our design. Our technique still establishes a lower
bound on the number of fair splitters. In general, what is the minimum size achievable for
networks utilizing these more general splitters? It is straightforward to extend the definition
of steady-state to accomodate unfair splitters. Additionally, in the extended version of this
paper, we will provide complexity results for the problem of global throughput maximization,
when we can choose which arcs to prioritize in each splitter or a subset of those splitters.

As a last series of questions, consider a network whose steady-state, when all inputs and
outputs have capacity 1, has no saturated arcs. If the augmenting flow from any single input
is uniformly distributed across the outputs, then the network is a balancer. This provides a
polynomial-time procedure for determining whether a network is a balancer, subject to the
absence of saturation. Is it feasible to devise a general procedure to decide whether a splitter
network is balancing, throughput unlimited or universal?
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observe that there exist large sets of cards with no swish, and find a construction to generate large
sets of cards without swish. More importantly, in the general case with larger cards, we prove that
Swish is NP-complete.
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1 Introduction

Swish is a pattern recognition card game designed in 2011 by Zvi Shalem and Gali Shimoni
and published by the company ThinkFun [20]. It works as the famous game SET [4, 6, 13],
each player having to find a swish among the 16 cards present on the table before their
opponents do. Swish includes 60 transparent cards where each card contains one points and
one circle, coming in four colors. Players simultaneously try to create a swish by spotting
two or more cards that can be laid on top of one another in some manner so that every point
fits in a circle of the same color as we can see in Figure 1 (no two points or circles can meet).
Create a swish, and you claim the cards used, with new cards then being laid out. Whoever
claims the most cards wins the game.

To play this game, it is important to note that the cards are transparent and can be
rotated or flipped through vertical axial symmetry, horizontal axial symmetry or central
symmetry, as described in Figure 2 where one card card be rotated or flipped in three other
positions.
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Figure 1 Swish examples: on the first line a Swish with 2 cards on the left, and a 3 cards Swish.
On the second line a 4 cards Swish and on the last line a 5 cards Swish.

Figure 2 Example of flipping and rotating a card.

1.1 Swish cards

There are 60 transparent cards in the commercial version of Swish, following a grid structure
of height 4 and width 3. The cards are obtained by placing a point in each of the four
possible positions (accounting for symmetries), and then a circle in each of the other possible
positions. For the points in the left column, the circle can be in 11 positions. For the points
in the middle column, due to axial symmetry, the circle can be in 7 positions. Note that this
only generates 36 cards, but there are 24 cards which are duplicated, reaching a total of 60
cards.

Each position of the grid is associated with a particular color. The colors represent the
position of a point or a circle (blue is for a corner, green for the middle column and the top
and bottom rows, purple for the middle column and the middle rows, orange for the middle
rows and the left and right columns), so they are here to help the player. The game can be
played with single-colored cards.
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We present all 60=16+12+12+10+10 transparent cards of the board game Swish.

Same color cards

First, we have all cards where the circle and the point are of the same color, which appear
twice in the deck (16 cards). These cards exist in double in order to form swish of size 2.

We then have cards where the point and the circle are of different colors.

12 blue point cards

We give all bicolored with a single blue point. The cards on the first row appear twice in the
deck (8 cards) and the ones on the second row appear once (4 cards) for a total of 12 cards.

12 orange point cards

We give all bicolored with a single orange point. The cards on the first row appear twice in
the deck (8 cards) and the ones in the second row appear once (4 cards) for a total of 12
cards.

FUN 2024



10:4 How Did They Design This Game? Swish: Complexity and Unplayable Positions

10 purple point cards

We give all bicolored with a single purple point. The first four cards on the left appear twice
in the deck (8 cards) and the two last cards on the right appear once (2 cards) for a total of
10 cards.

10 green point cards

We give all bicolored with a single green point. The first four cards on the left appear twice
in the deck (8 cards) and the two last ones on the right appear once (2 cards) for a total of
10 cards.

1.2 Generalizing Swish
Since the board game Swish is played on cards of height 4 and width 3, it is trivial to find
a large swish among a given set of cards with a brute-force algorithm (even though it can
be difficult for human players). Hence, we propose a generalization of Swish in order to
explore the computational complexity of the game. Creating general version of games is
a standard way of studying their complexity outside of the often small and thus solvable
standard positions, as this was done for SET itself [6, 13], and other commercial games such
as Othello [12], Scrabble [14], Hanabi [2], Kingdomino [16], Backgammon [21], The Crew [18];
but also for already complex games such as Hex [9], Chess [10], Go [15, 19, 22] or Shogi [1].
For more results on the complexity of games, either combinatorial or commercial, and either
standard or generalized, we refer the reader to [3, 5, 7, 11].
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The generalized version of Swish is played on cards of height h and width w. Cards can
have one or several symbols, which can be points or circles. For a given card C and two
integers a and b (with 1 ≤ a ≤ h and 1 ≤ b ≤ w), we denote by C[a][b] the spot in row a

and column b. Other than that, the generalized version is played the exact same way as
the board game version: from a set C of cards, the players try to create a swish, that is, a
subset S ⊆ C such that every point meets a circle, every circle meets a point, and no two
points or two circles meet. The cards can still be flipped or rotated, which can also be seen
as applying axial (vertical or horizontal) or central symmetry.

Since the cards are drawn from the deck at random, the players cannot anticipate what is
going to come next. Hence, we will assume that they will try to maximize their given score
at each round of the game. Thus, the question that we ask is the following: given a set of
cards, can we find a swish that is as large as possible? This optimization question leads to
the following decision problem:

Swish
Instance: A set C of cards, an integer k.
Question: Is there a swish S ⊆ C such that |S| ≥ k?

1.3 Contributions and outline
Our results are twofold. First, in Section 2, we study the computational complexity of Swish.
We begin with the most basic case of Swish, that is, if there is only one symbol per card:

▶ Theorem 1. Swish can be solved in polynomial time if there is one symbol per card.

We then prove that Swish is NP-complete in the general case, even with as few as three
symbols per card. The proof uses an intermediary step through a more constrained variant
of Swish.

▶ Theorem 2. Swish is NP-complete, even if there are at most three symbols per card.

This leaves only the case of two symbols per card open. Then, in the same line as [4],
we study in Section 3 how many cards there can be in a no-swish position, that is, a set
that does not contain any swish. Note that, for the base game, the rules are to play with
a set of 16 cards at a time, implying that this is enough to guarantee finding a swish, but
we found a no-swish position of 28 cards. Furthermore, we construct no-swish positions for
the generalized version of Swish with no duplicate cards, that contain a very high fraction
(depending on the parity of the width and length, roughly half in the worst case) of the total
possible cards.

2 The computational complexity of Swish

We first prove the following result, which covers the most basic case for Swish:

▶ Theorem 1. Swish can be solved in polynomial time if there is one symbol per card.

Proof of Theorem 1. The algorithm is as follows. First, associate the cards by duplicates.
Two cards are duplicates if, after applying an axial or a central symmetry to one of them,
they are identical. For any set of duplicates of size more than 4, remove duplicate cards until
there are exactly 4 of them (this is because no more than 4 duplicates can be used in the
same swish). Then, construct the compatibility graph G: each card C is a vertex, and there is
an edge CiCj if (wlog) there is a point in Ci[a][b] and a circle in Cj [a][b]. Now, we just have
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to find a maximum-size matching M of G; if |M | ≥ k, then we answer YES, otherwise, we
answer NO. Note that this only works since each card has exactly one symbol: once a card
has been paired with another card, it cannot be paired with another card, except through
flipping or rotating it if it has a duplicate.

The algorithm clearly is polynomial-time, since trimming the duplicates can be done in
linear time through a hash table, constructing the compatibility graph takes polynomial time,
and the maximum matching is polynomial-time solvable [8]. ◀

We now focus on the NP-hardness of the generalized version of Swish. We are interested
in minimizing the number of symbols per card, to get closer to the commercial version of
Swish. In order to prove Theorem 2, we are going to go through three intermediary lemmas.
First, we are going to prove that a more constrained variant, Simple-Swish, is NP-complete,
even with at most four symbols per card. Then, we are going to show how to adapt the
reduction in order to have the cards have at most three symbols. Finally, we are going to
reduce Simple-Swish to Swish.

The game Simple-Swish is a restricted variant of Swish. The rules are exactly the
same, except that we fix a top and a left side for the cards, and that we can neither flip nor
rotate them (hence, it is forbidden to apply symmetry to cards). This gives us the following
decision problem:

Simple-Swish
Instance: A set C of cards, an integer k.
Question: Is there a simple-swish S ⊆ C such that |S| ≥ k?

▶ Lemma 3. Simple-Swish is NP-complete, even if there are at most four symbols per card.

Proof. We will reduce from Max-(2,3)-SAT, a restriction of the classical MAX-SAT
problem, which was proved NP-complete in [17].

Max-(2,3)-SAT
Instance: A formula ϕ in CNF such that every clause is of size 2 and every variable
appears in at most 3 clauses, an integer k.
Question: Is there an assignment of the variables such that at least k clauses are verified?

Let ϕ be a Max-(2,3)-SAT formula with n variables x1, . . . , xn and m clauses c1, . . . , cm,
and assume that the variables are ordered within a clause (so each clause has a first variable
and a second variable). We will create a set C of cards the following way. Each card has
height h = max(m, n) and width w = 6 (note that we can assume h≫ 6).

For every variable xi, create the following cards:
A card Xi with a point in Xi[i][1] and a circle in Xi[i][3];
A card Xi with a point in Xi[i][2] and a circle in Xi[i][3].

Those two cards are called the variable cards, which represent the assignment of the
variable xi.
For each variable xi that appears in clauses cj1 , cj2 and cj3 , for each subset J ⊆ {j1, j2, j3}
(including the empty set), create a card Xi,J with a point in Xi,J [i][3] and circles in
Xi,J [j][3] for each j ∈ J .
Those eight cards are called the linkage cards, which represent which clause(s) the variable
xi satisfies.
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For each variable xi that appears positively in clauses cj for j ∈ J (we may have J = ∅),
create a card Xi,c with a circle in Xi,c[i][1] and points in Xi,c[j][4] for each j ∈ J such
that xi is the first variable of cj and in Xi,c[i][5] for each j ∈ J such that xi is the second
variable of cj .
For each variable xi that appears negatively in clauses cj for j ∈ J (we may have J = ∅),
create a card Xi,c with a circle in Xi,c[i][1] and points in Xi,c[j][4] for each j ∈ J such
that xi is the first variable of cj and in Xi,c[i][5] for each j ∈ J such that xi is the second
variable of cj .
Those two cards are called the satisfying cards, which represent the fact that the assignment
of the variable satisfies some clauses it is in.
For each clause cj , create three cards C1

j , C2
j and C1,2

j with a point in C1
j [j][6], C2

j [j][6]
and C1,2

j [j][6], and circles in C1
j [j][4], C2

j [j][5], C1,2
j [j][4] and C1,2

j [j][5].
Those three cards are called the clause cards, which represent the fact that the clause cj

is satisfied by its first, second or both variables.

The set C contains every variable, clause, linkage and satisfying card as described above,
so 12n + 3m cards in total. All those cards have at most four symbols. This reduction is
depicted on Figure 3. Let ℓ = 3n + k. We claim that there is an assignment of the variables
satisfying at least k clauses of ϕ if and only if there is a simple-swish on C of size at least ℓ.
Note that the reduction is clearly polynomial.

(⇒) Assume that there is an assignment of the variables satisfying at least k clauses of ϕ.
We construct the following simple-swish S:

For every variable xi which is assigned as True, add the variable card Xi and the satisfying
card Xi,c to S;
For every variable xi which is assigned as False, add the variable card Xi and the
satisfying card Xi,c to S;
For every variable xi, denote by J the set of indices of clauses that are satisfied by the
assignment of xi (we may have J = ∅), and add the linkage card Xi,J to S;
For every clause cj satisfied by the assignment, add the clause card C1

j (resp. C2
j , C1,2

j )
to S if cj is satisfied by its first (resp. second, both) variable.

It is clear that S is a simple-swish. First, two points and circles cannot meet. Then, every
point meets a circle and every circle meets a point: the point of each variable card meets the
circle of the associated satisfying card, the circle of each variable card meets the point of
the associated linkage card, the point of each satisfying card meets the circles of each clause
card that are satisfied by the given variable, and the point of each satisfied clause card meets
the circle of one of the linkage cards of one of the variables satisfying it. Furthermore, S

contains exactly one variable, one linkage and one satisfying card for each variable, as well
as one clause card for each satisfied clause, and hence |S| ≥ 3n + k = ℓ.

(⇐) Assume that there is a simple-swish S of size at least ℓ. Due to the construction of
the cards, S can contain at most one variable card, one linkage card and one satisfying card
for each variable, as well as at most one clause card for each clause. Hence, there are at least
k clause cards in S. For each variable xi, if Xi ∈ S assign xi as True and if Xi ∈ S assign xi

as False (if none of Xi, Xi is in S, then assign xi as True by default). Now, every clause
card Cj ∈ S can only be there if some variable card Xi (resp. Xi) such that xi ∈ cj (resp.
xi ∈ cj). This implies that, for every clause card Cj ∈ S, at least one of the two variables in
cj will be assigned in such a way that cj will be satisfied. Hence, at least k clauses of ϕ will
be satisfied. ◀
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• •

Variable cards for x1

• •

Variable cards for x2

• • •

Clause cards for c1

• • •

Clause cards for c2

• • •

Clause cards for c3

•
•

•

Satisfying cards for x1

•
•

•

Satisfying cards for x2

• • • • •
. . . . . .

Five of the eight linkage cards for x1

• • • • •. . . . . .

Five of the eight linkage cards for x2

Figure 3 An example of the reduction of Lemma 3, with c1 = (x1∨x2), c2 = (x2∨x1), c3 = (x1∨x2).

▶ Lemma 4. Simple-Swish is NP-complete, even if there are at most three symbols per
card.

Proof of Lemma 4. Assume that there are n Simple-Swish cards of height h and width w

with at most four symbols per card. We will create 4n cards with at most three symbols per
card. Those cards will be of height h + n and width w (note that we can assume h ̸= w and
h + n ̸= w).

For each card Ci with symbols on Ci[j1][k1], Ci[j2][k2], Ci[j3][k3] and Ci[j4][k4] (including
no symbol), create the four following cards:

C1
i with a point in C1

i [h + i][1], and C1
i [j1][k1] = Ci[j1][k1];

C2
i with a circle in C2

i [h + i][1], a point in C2
i [h + i][2], and C2

i [j2][k2] = Ci[j2][k2];
C3

i with a circle in C3
i [h + i][2], a point in C3

i [h + i][3], and C3
i [j3][k3] = Ci[j3][k3];

C4
i with a circle in C4

i [h + i][3], and C4
i [j4][k4] = Ci[j4][k4].

For (C, k) an instance of Simple-Swish, create a set C ′ of cards as described above, and let
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(C ′, 4k) be a new instance of Simple-Swish. Clearly, there is a simple-swish of size at least
k in C if and only if there is a simple-swish of size at least 4k in C ′, and each card in C ′ has
at most three symbols. ◀

▶ Observation 5. The reduction of Lemma 4 can start from cards with at most n symbols,
where n is a constant integer.

We are now ready to prove our main result:

▶ Theorem 2. Swish is NP-complete, even if there are at most three symbols per card.

Proof. We will reduce from Simple-Swish. Let (C, k) be a Simple-Swish position, with C

containing cards of height h and width w with at most three symbols per card. We create
the set C ′ as follows. For every card Ci ∈ C, add to C ′ four cards C1

i , C2
i , C3

i and C4
i of

height 2h and width 2w (the construction assumes that h ̸= w; if h = w, we can adapt it by
adding an empty buffer column in the middle of C1

i , C2
i , C3

i and C4
i ). Set C1

i [a][b] = Ci[a][b]
for a ≤ h and b ≤ w, and no other symbol on C1

i . Set C2
i [a][w + 1− b] = Ci[a][b] for a ≤ h

and b ≤ w, and no other symbol on C2
i . Set C3

i [h + 1− a][b] = Ci[a][b] for a ≤ h and b ≤ w,
and no other symbol on C3

i . Set C4
i [h + 1− a][w + 1− b] = Ci[a][b] for a ≤ h and b ≤ w, and

no other symbol on C4
i . In other words, each of the four cards is divided in four parts, C1

i

contains Ci in the top left, C2
i contains the vertical axial symmetry of Ci in the top right,

C3
i contains the horizontal axial symmetry of Ci in the bottom left, and C4

i contains the
central symmetry of Ci in the bottom right. We now prove that there is a simple-swish of
size at least k in C if and only if there is a swish of size at least 4k in C ′.

(⇒) Let S be a simple-swish of size at least k in C. We construct S′ by taking, for every
card Ci ∈ S, the four cards C1

i , C2
i , C3

i and C4
i . By leaving them in their original position,

we obtain a swish of size at least 4k in C.
(⇐) Let S′ be a swish of size at least 4k in C ′. First, we can assume that every card in S′

is in its original position. Indeed, using symmetry or a rotation on a card Cj
i ∈ C ′ changes it

to another card of C ′ (for instance, using vertical axial symmetry on C2
i gives C4

i ). However,
when there are two identical cards in a set, only one of them can be used in a swish without
using symmetries or rotation. Hence, if a card in S′ was used after a symmetry or a rotation,
then, we can replace it in S′ by the equivalent card with no symmetry or rotation.

Now, there are 4k cards in S′, all in their original positions (i.e., no symmetry or rotation
was applied to any card). Hence, S′ can be subdivided in four subsets S′

1, S′
2, S′

3 and S′
4,

such that S′
j = {Sj

i | Sj
i ∈ S′}. Each of the S′

j ’s is a swish, since the cards in each subset do
not interact with each other by construction. By the pigeonhole principle, at least one of the
sets S′

j is of size at least k. Let S = {Si | Sj
i ∈ S′

j}, S is a swish of size at least k in C. ◀

3 Swish has large unplayable positions

In Swish, an unplayable position, or no-swish position, is a set of cards where no swish
exists. Large no-swish positions are particularly interesting for Swish, since other games
tend to not have them (in particular, it is well-known that the commercial version of SET
has no unplayable position). In this section, we will be studying no-swish positions for both
the commercial and the generalized version of Swish. We thus focus on cards with exactly
two symbols (one circle and one point). Furthermore, for simplification, we assume that no
card appears twice (accounting for its possible configurations) in the generalized version.

Finding the largest unplayable position for the generalized version is hard, since there
are many possible combinations. However, finding the largest no-swish position for the
commercial version of the game, containing 60 cards (described in the introduction) is a more
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achievable challenge. We will present the largest no-swish position of the commercial version
of Swish, before presenting a construction of a large no-swish position for the generalized
version, of which a commercial no-swish position that we found (removing duplicates) is a
direct application.

Note that our analysis holds for rectangular cards, that is, cards where the height and
width differ. Indeed, if the height and width are the same, then there are four more operations
that can be applied to change the configuration of the card, which changes the game.

3.1 Commercial no-swish

First of all, we need to give an algorithmic-friendly representation of Swish, including cards,
rotations but also handling the definition of compatibility between two cards, at the heart
of a swish. By the nature of the game, two cards are said to be compatible if the point of
the first card meets the circle of the second card. Observe that the compatibility between
two cards, generalized to all the cards in Swish, is very close to a directed graph structure,
the nodes of the graph being the cards and the arcs being the compatibility between the
cards. Following this idea of graph structure to represent compatibility between cards, a
swish essentially corresponds to a cycle in the graph, as depicted in Figure 4.

Figure 4 Example of a swish of 3 cards, with explicit compatibility using ordinary directed graph.

At this point, the definition of a swish becomes clearer: A swish is a cycle of length 2 or
higher in a graph (that will be constructed from the compatibility relation), each node of the
cycle representing the card involved in the swish, and each arc of the cycle corresponding to
the compatibility between two consecutive cards. Such a cycle C can be written formally
as the set of traversed nodes or cards c1, . . . , cn, where for each couple of cards ci and ci+1,
there is a directed arc between ci and ci+1 (with cn+1 = c1).

However, this seemingly intuitive graph structure is not sufficient. Recall that in Swish,
a card contains four possible configurations as depicted in Figure 2, and since all four
configurations of the card are modeled as a single node, then a cycle may represent a false
swish: let c1, c2, c3 be three cards where c1 and c2 are compatible with respect to some
configuration r1 and r2, whereas c2 and c3 are compatible with respect to some configuration
r′

2 and r3 with r2 different from r′
2. Clearly, the cards c1, c2, c3 do not constitute a swish since

a swish is composed of a set of cards and a single configuration for each card composing the
swish. Hence, c1 either matches c2 using configuration r2 or c2 matches c3 using configuration
r′

2, but both statement cannot be achieved using the same configuration for c2.
To fix this issue, we rely on directed hypergraph, rather than ordinary directed graph, as

depicted in Figure 5. This has the following two major modifications: first, four nodes are
used to represent each card, one node for each configuration of the card. For the sake of
clarity, such a node representing the configuration of a card is called a configuration node.
Second, a hyper-node of the hypergraph represents a card including all its configuration
nodes. Said differently, an hyper-node corresponds to a set of exactly four configuration
nodes. We are now ready to focus on the formal hypergraph-based representation of Swish.
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Hyper-node

1

1

2

2

3

3

4

4

2 1

3

4

Figure 5 Example of a Swish-focused hypergraph containing 3 cards. Four possible swishs
(identified by numbers on the arcs) are represented.

Formalization of Swish

In Swish, a card ci is defined by the position of the point and the circle, and a card
has four possible configurations, denoted by {ri,1, ri,2, ri,3, ri,4}. Remark that among these
configuration nodes, one of them is isomorphic to ci. In order to be agnostic of the card
representation, we denote by D the domain in which a configuration node ri,j is represen-
ted. To obtain information on the compatibility between configuration nodes, we define a
Match : D ×D 7→ {true, false} algorithm allowing us to identify if two configuration nodes
ri,j and ri′,j′ match, meaning that the point in ri,j meets the circle in ri′,j′ . Obviously,
the exact definition of the Match algorithm highly depends on the representation of the
configuration node space D. We also define two configuration node manipulation algorithms
FlipLeft : D 7→ D and FlipUp : D 7→ D, allowing respectively to apply axial symmetries to a
configuration node on the left-side and on the up-side, respectively. Observe that the set of
four configuration nodes {ri,1, ri,2, ri,3, ri,4} derived from the same card ci, can be rewritten
as {ri,1, FlipLeft(ri,1), FlipUp(ri,1), FlipLeft(FlipUp(ri,1))} with ri,1 = ci.

We define a Swish-focused hypergraph G = (V, E , m) as follow:
The set V ⊆ D corresponds to the set of configuration nodes ri,j associated to the j-th
configuration of the card ci.
The set E ⊆ V × V corresponds to the set of compatibility between configuration nodes,
where each e ∈ E , described as the couple (ri,j , ri′,j′) ∈ V × V , must be read as the point
of the j-th rotation of the card ci meets the circle of the j′-th rotation of the card ci′ .
An additional mapping function m : V 7→ N which maps a configuration node ri,t to an
identifier in N. We implement m such that for a configuration node ri,j , the mapping
function m outputs i. We rely on this mapping function to identify if two configuration
nodes ri,j and ri′,j′ are representing the same card, by testing whether m(ri,j) = m(ri′,j′).

Transposing a set of cards C = {c1, . . . , cn} into a Swish-focused hypergraph can be
achieved as follow: for each card ci ∈ C, denote all four possible configurations of ci by
ri,1, ri,2, ri,3 and ri,4. The set of arcs E of the hypergraph can easily be computed by adding,
for two configuration nodes ri,j and ri′,j′ , the arc (ri,j , ri′,j′) in E if Match(ri,j , ri′,j′) returns
true. The mapping function is used in our representation to limit the use of each card at
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most once, by restricting the evaluation of m(ri,j) for every configuration node ri,j ∈ V to
return i. Observe that at most four configuration nodes can produce the same identifier i ∈ N,
since a card as at most four possible configurations. These configuration nodes associated
with the same identifier compose what we call a hypernode. In the following, we denote by
ConstructHGraph the algorithm which, from a given set of cards C, outputs the associated
Swish-focused hypergraph G = (V, E , m), working as explained above. By construction,
the ConstructHGraph algorithm has an asymptotic complexity of O(|C|2), since we have to
execute the Match algorithm for every distinct configuration nodes ri,j and ri′,j′ .

Finding a swish in such hypergraph remains very similar to searching a cycle in an
ordinary graph: in a cycle with nodes r1,j1 , . . . , rn,jn

, the point of each configuration node
ri,ji

has to meet the circle in ri+1,ji+1 , which can be checked by testing Match(ri,ji
, ri+1,ji+1).

The only one additional constraint is that the set of configuration nodes r1,j1 , . . . , rn,jn

contained in the cycle has to respect the condition that for all i, i′ ∈ {1, . . . , n} with i ̸= i′,
we have m(ri,ji) ̸= m(ri′,ji′ ), ensuring the cycle to traverse each hyper-node at most once
and hence preventing the use of the same card several times.

Computation of large no-swish positions

Thanks to the ConstructHGraph algorithm, we are able to define the NoSwishSet algorithm
which, given a set of cards C = {c1, . . . , cn}, outputs a subset C′ ⊆ C where C′ contains no
swish of any length. Following the hypergraph modelization, deciding if a given set of cards
does not contain any swish can be trivially formalized as HasNoSwish(C) = ¬HasSwish(C),
which must be read as “check if the given set of cards contains a swish and return the negation
of the result”. To verify if a set of cards C contains a swish, the set of cards will be encoded
as a Swish-focused hypergraph, since the behavior of HasSwish is to decide if there exists
some cycle in the hypergraph visiting at most once (and possibly not) each hypernode. In the
following, we denote by FindCycle the algorithm which, given a Swish-focused hypergraph
G = (V, E , m) and a starting configuration node ri,j ∈ V used to start the cycle search,
outputs a cycle C respecting the above conditions, or ⊥ if no cycle can be found.

Let us explain the internal behavior of HasSwish, taking as an input a set of cards C. First,
the algorithm constructs the Swish-focused hypergraph G ← ConstructHGraph(C) where
G = (V, E , m). Then, since we do not know in advance a configuration node being in a
cycle (if one exists), we have to test every configuration node of the G as the starting point
for a cycle, leading to repeat the FindCycle algorithm |V| times. If, for every configuration
node, no cycle can be found, then it is clear that no swish exists and hence HasSwish returns
⊥. Otherwise, one cycle has been found and we end the algorithm by returning ⊤. The
asymptotic complexity of HasSwish is O(|V|2 + |V| · (|V|+ |E|)) = O(|V|2 + |V| · |E|).

Since HasNoSwish simply negates the output of HasSwish, then the HasNoSwish algorithm
has a quadratic asymptotic complexity. However, our problem is not limited to find a swish,
but rather to find a subset C′ of the set C such that C′ does not contain any swish. Since we
are working on the commercial version of Swish, which has 60 cards in total, we can use the
naive approach consisting of checking for each possible subset C′ of C if it contains a swish,
and exclude this subset if it is the case. This exhaustive search is implemented in practice
by using divide-and-conquer: a recursive algorithm taking as parameters a current set of
cards C and the set of remaining cards R, first extracts from R a card c and calls itself a
first time with the parameters C ∪ {c} and R\ {c}, and a second time with the parameters C
and R \ {c}. When the set R is empty, then the algorithm runs HasNoSwish(C) and returns
the set {C} if it does not contain any swish, and returns ⊥ otherwise.
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Furthermore, we are able to optimize the no-swish set search using the following heuristic:
suppose that C is a set of cards such that HasNoSwish(C) fails, meaning that C contains
a swish. Then, for any set of cards C′, the execution of HasNoSwish(C ∪ C′) also fails.
This remark holds since adding a card in the set of cards C is the same as inserting new
configuration nodes and arcs in the hypergraph. As a result, possibly one or more swish are
created, but certainly do not delete any exisiting swish (i.e., cycle) from the hypergraph.
We take advantage of this remark to prune the recursive call tree, by checking during the
recursion if C contains a swish, and halt the recursion if a swish is detected.

Results

With our algorithm, we have obtained a largest no-swish position containing 28 cards, which
is close to half the number of cards in the commercial version of Swish. This no-swish
position is depicted in Figure 6. Note that it contains duplicates.

Figure 6 No-swish set of cards.

3.2 Generalized no-swish

We begin by focusing on rectangular cards. The basis of our method consists in dividing
the cards in four quarters. For one quarter, we fix a point in some position. We then lock
its four symmetric positions in the other quarters. This defines a “cross” in the middle of
the card, cornered by the four locks. We then generate one card by position in this cross,
with a circle in each. Finally, we add one circle on two of the three locks, generating two
more cards. For the odd width and height cases, we also have to manage the middle row and
column independently. We will, for each possible parity of height and width, give the total
number of cards; then explain our strategy to create a large no-swish set, and compute the
ratio between those two numbers.
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Subdivision of the cards into quarters

We assume that the cards are rectangular. Each card is divided in four quarters, each of size
hw. If h or w is odd, then, there is an additional row or column in-between the quarters.
The top left quarter is denoted by Q1, the top right by Q2, the bottom left by Q3 and the
bottom right by Q4. Note that there is a bijection between the coordinates (a, b) in Q1 and
the set {1, . . . , hw}, with i = (a− 1)w + b.

Even-even cards

Assume first that the cards have width 2w and height 2h. The set T containing all possible
cards has size:

|T | =
hw∑
i=1

(4hw − 1) = 4(hw)2 − hw.

We construct the following set S of cards. For each i ∈ {1, . . . , hw} with i = (a− 1)w + b,
we create the 4(hw − i) + 2 following cards, all with a point in C[a][b]:

For each j ∈ {i + 1, . . . , hw} with j = (c− 1)w + d, we create four cards, one with a circle
in C[c][d] (so in Q1), one with a circle in C[c][2w + 1− d] (so in Q2), one with a circle in
C[2h + 1− c][d] (so in Q3), and one with a circle in C[2h + 1− c][2w + 1− d] (so in Q4);
We create two additional cards, one with a circle in C[c][2w + 1− d] and one with a circle
in C[2h + 1− a][d].

It is easy to see that S is a no-swish set. Indeed, to create a swish using a card created at
step i = (a− 1)w + b, one cannot use any card created at step i′ > i, since none of them has
a circle in (a, b), even using the symmetries. Furthermore, there is no swish using only cards
created at step i, since there are only three of them meeting in (a, b) after some symmetries,
but they do not form a swish, and thus leave an uncovered point in (a, b). Hence, a swish
using such a card would need to use cards from some step i′ < i, but doing so will again
leave an uncovered point, which will need to be covered using a card from some step i′′ < i′,
and so on until we reach step 1, for which no card can cover the point in the corner.

The construction of S is depicted on Figure 7. Let us now evaluate its size:

|S| =
hw∑
i=1

(4(hw − i) + 2) = 2(hw)2.

Hence, the ratio |S|
|T | tends to 1

2 when h and w tend to infinity, so we constructed a no-swish
set containing roughly half of the possible cards.

Even-odd cards

Assume now that the cards have width 2w + 1 and height 2h. The set T containing all
possible cards has size:

|T | =
hw∑
i=1

(2h(2w + 1)− 1) +
h∑

i=1
(2hw + 2h− 1) = 2h2(2w2 + 2w + 1)− h(w + 1).

Note that this coincides with the described cards of the commercial version of Swish.
We construct the following set S of cards. For each i ∈ {1, . . . , hw} with i = (a− 1)w + b,

we create the 4(hw − i) + 2(h + 1− i) + 2 following cards, all with a point in C[a][b]:
For each j ∈ {i + 1, . . . , hw} with j = (c− 1)w + d, we create four cards, one with a circle
in C[c][d] (so in Q1), one with a circle in C[c][2w + 2− d] (so in Q2), one with a circle in
C[2h + 1− c][d] (so in Q3), and one with a circle in C[2h + 1− c][2w + 2− d] (so in Q4);
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h

w

Q1 Q2

Q3 Q4

• +

+ x

Figure 7 Construction of a no-swish set for even-even cards. We place a point in the dotted
position, and one card for each possible circle in the area filled with lines, as well as two cards with
circles in the two positions with a +. We repeat this for every position in Q1.

For each j ∈ {a, . . . , h}, we create two cards, one with a circle in C[j][w + 1] and one
with a circle in C[2h + 1− j][w + 1] (so both circles are in the middle column);

We create two additional cards, one with a circle in C[c][2w + 2− d] and one with a circle
in C[2h + 1− a][d].

Furthermore, for each i ∈ {1, . . . , h}, we create the 2(hw−wi) + 2(h− i) + 1 following cards,
all with a point in C[i][w + 1]:

For each j ∈ {i + 1, . . . , h} and k ∈ {1, . . . , w}, we create two cards, one with a circle in
C[j][k] (so in Q1) and one with a circle in C[2h + 1− j][k] (so in Q3);

For each j ∈ {i + 1, . . . , h}, we create two cards, one with a circle in C[j][w + 1] and one
with a circle in C[2h + 1− k][w + 1] (so both circles are in the middle column);

We create one additional card with a circle in C[2h + 1− i][w + 1].

Again, it is easy to see that S is a no-swish set (the proof follows the same arguments as
above).

The construction of S is depicted on Figure 8. Let us now evaluate its size:

|S| =
hw∑
i=1

(4(hw − i) + 2(h + 1− i) + 2)+
h∑

i=1
(2(hw − wi) + 2(h− i) + 1) = h2(w2+3w+1).

Note that, by using h = 2 and w = 1, we obtain |S| = 20, which corresponds to the optimal
no-swish position found by the NoSwishSet algorithm on the commercial version of Swish
(excluding duplicates). Hence, the ratio |S|

|T | tends to 1
4 when h and w tend to infinity, so we

constructed a no-swish set containing roughly a quarter of the possible cards.
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h

w

Q1 Q2

Q3 Q4

• +

+ x

(a) We place a point in the dotted position, and
one card for each possible circle in the area filled
with lines, as well as two cards with circles in
the two positions with a +. We repeat this for
every position in Q1.

h

w

Q1 Q2

Q3 Q4

•

+

(b) We place a point in the dotted position, and
one card for each possible circle in the area filled
with lines, as well as one card with a circle in
the position with a +. We repeat this for every
position in the first half of the middle column.

Figure 8 Construction of a no-swish set for even-odd cards. There are two sub-constructions.

Odd-odd cards

Assume finally that the cards have width 2w + 1 and height 2h + 1. The set T containing all
possible cards has size:

|T | =
hw∑
i=1

((2h + 1)(2w + 1)− 1) +
h∑

i=1
((2h + 1)w + 2h)

+
w∑

i=1
(h(2w + 1) + 2w) + wh + w + h

= 4(hw)2 + hw(4w + 4h + 3) + h(2h + 1) + w(2w + 1).

We construct the following set S of cards. For each i ∈ {1, . . . , hw} with i = (a− 1)w + b,
we create the 4(hw − i) + 2(h + 1− i) + 2w + 3 following cards, all with a point in C[a][b]:

For each j ∈ {i + 1, . . . , hw} with j = (c− 1)w + d, we create four cards, one with a circle
in C[c][d] (so in Q1), one with a circle in C[c][2w + 2− d] (so in Q2), one with a circle in
C[2h + 2− c][d] (so in Q3), and one with a circle in C[2h + 2− c][2w + 2− d] (so in Q4);
For each j ∈ {a, . . . , h}, we create two cards, one with a circle in C[j][w + 1] and one
with a circle in C[2h + 2− j][w + 1] (so both circles are in the middle column);
For each j ∈ {1, . . . , 2w + 1}, we create one card with a circle in C[h + 1][j] (so the circle
is in the middle row);
We create two additional cards, one with a circle in C[c][2w + 2− d] and one with a circle
in C[2h + 2− a][d].

Furthermore, for each i ∈ {1, . . . , h}, we create the 2(hw − wi) + 2(h− i) + w + 2 following
cards, all with a point in C[i][w + 1]:

For each j ∈ {i + 1, . . . , h} and k ∈ {1, . . . , w}, we create two cards, one with a circle in
C[j][k] (so in Q1) and one with a circle in C[2h + 2− j][k] (so in Q3);
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h

w

Q1 Q2

Q3 Q4

• +

+ x

(a) We place a point in the dot-
ted position, and one card for
each possible circle in the area
filled with lines, as well as two
cards with circles in the two po-
sitions with a +. We repeat this
for every position in Q1.

h

w

Q1 Q2

Q3 Q4

•

+

(b) We place a point in the dot-
ted position, and one card for
each possible circle in the area
filled with lines, as well as one
card with a circle in the position
with a +. We repeat this for
every position in the first half of
the middle column.

h

w

Q1 Q2

Q3 Q4

• +

(c) We place a point in the dot-
ted position, and one card for
each possible circle in the area
filled with lines, as well as one
card with a circle in the position
with a +. We repeat this for
every position in the first half of
the middle row.

Figure 9 Construction of a no-swish set for odd-odd cards. There are three sub-constructions.

For each j ∈ {i + 1, . . . , h}, we create two cards, one with a circle in C[j][w + 1] and one
with a circle in C[2h + 2− k][w + 1] (so both circles are in the middle column);
For each j ∈ {1, . . . , w + 1}, we create one card with a circle in C[h + 1][j] (so the circle
is in the middle row);
We create one additional card with a circle in C[2h + 2− i][w + 1].

Finally, for each i ∈ {1, . . . , w}, we create the 2(w − i) + 2 following cards, all with a point
in C[h + 1][i]:

For each j ∈ {i + 1, w}, we wreate two cards, one with a circle in C[h + 1][j] and one
with a circle in C[h + 1][2h + 2− j] (so both circles are in the middle row);
We create two additional cards, one with a circle in C[h + 1][2w + 2− i] and one with a
circle in C[h + 1][w + 1].

Again, using the same argument as above, S is a no-swish set.
The construction of S is depicted on Figure 9. Let us now evaluate its size:

|S| =
hw∑
i=1

(4(hw − i) + 2(h + 1− i) + 2w + 3) +
h∑

i=1
(2(hw − wi) + 2(h− i) + w + 2)

+
w∑

i=1
(2(w − i) + 2)

= hw(hw + 3h + 2w + 2) + h(h + 1) + w(w + 1).

Hence, the ratio |S|
|T | tends to 1

4 when h and w tend to infinity, so we constructed a no-swish
set containing roughly a quarter of the possible cards.

3.3 Large no-swish positions
In the above subsection, we presented how to construct large no-swish positions for the
general version of Swish with rectangular cards, up to half the total number of cards for
the even-even case. Note that the even-odd construction does give a set of the maximum
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possible size for the commercial version, as found with the NoSwishSet algorithm. However,
we only know that those positions are maximal (i.e., adding any card creates a swish), not
whether they are of maximum size. Since they do contain a very high ratio of all possible
cards, we conjecture that our method is optimal, in that no no-swish set of a size highest
than the ones we construct can exist.

Furthermore, note that the case where h = w is still open, but that in this case no-swish
positions should be of a smaller size, since more rotations and symmetries can be applied to
the cards, and thus it is easier to create a swish. We leave this case for future consideration.

4 Conclusion & Open Problems

In this work, we initiated a study of Swish and showed interesting properties. First,
by studying Swish with cards of arbitrary size with three or more symbols, we proved
that the complexity of finding a swish is NP-complete. Then, we proposed two distinct
algorithms to find large no-swish positions: an exponential algorithm to find the largest set
of commercial cards (i.e., cards of original game Swish), finding a large set of 28 cards, but
also a polynomial-time algorithm to construct a set of arbitrarily sized, rectangular cards
having two symbols, returning almost half of the possible set of cards.

Some questions remains unanswered, that we leave as open problems. The complexity
of solving Swish, being shown to be polynomial for cards of one symbol and NP-complete
for cards with three symbols, remains unclear for cards having 2 symbols. In addition, the
optimality of the returned no-swish positions using our algorithm for the generalized Swish
has not been proven and it remains open whether or not it is possible to find a larger no-swish
set. As an independent topic of interest, we still hardly understand how the game has been
constructed, in particular the motivation to duplicate some cards and not others.

References
1 Hiroyuki Adachi, Hiroyuki Kamekawa, and Shigeki Iwata. Shogi on n× n board is complete in

exponential time. Trans. IEICE, 70:1843–1852, 1987.
2 Jean-François Baffier, Man-Kwun Chiu, Yago Diez, Matias Korman, Valia Mitsou, André van

Renssen, Marcel Roeloffzen, and Yushi Uno. Hanabi is np-hard, even for cheaters who look at
their cards. Theoretical Computer Science, 675:43–55, 2017.

3 Elwyn R Berlekamp, John H Conway, and Richard K Guy. Winning ways for your mathematical
plays. AK Peters/CRC Press, 2004.

4 Fábio Botler, Andrés Cristi, Ruben Hoeksma, Kevin Schewior, and Andreas Tönnis. SUPER-
SET: A (Super)Natural Variant of the Card Game SET. In Hiro Ito, Stefano Leonardi, Linda
Pagli, and Giuseppe Prencipe, editors, 9th International Conference on Fun with Algorithms
(FUN 2018), volume 100 of Leibniz International Proceedings in Informatics (LIPIcs), pages
12:1–12:17, Dagstuhl, Germany, 2018. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.FUN.2018.12.

5 Kyle Burke. Combinatorial game rulesets, 2024. URL: http://kyleburke.info/rulesetTable.
php.

6 Kamalika Chaudhuri, Brighten Godfrey, David Ratajczak, and Hoeteck Wee. On the complexity
of the game of set, 2003.

7 Erik D Demaine. Playing games with algorithms: Algorithmic combinatorial game theory. In
International Symposium on Mathematical Foundations of Computer Science, pages 18–33.
Springer, 2001.

8 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467, 1965.
9 Shimon Even and Robert Endre Tarjan. A combinatorial problem which is complete in

polynomial space. Journal of the ACM (JACM), 23(4):710–719, 1976.

https://doi.org/10.4230/LIPIcs.FUN.2018.12
http://kyleburke.info/rulesetTable.php
http://kyleburke.info/rulesetTable.php


A. Dailly, P. Lafourcade, and G. Marcadet 10:19

10 Aviezri S Fraenkel and David Lichtenstein. Computing a perfect strategy for n× n chess
requires time exponential in n. In International Colloquium on Automata, Languages, and
Programming, pages 278–293. Springer, 1981.

11 Robert A Hearn and Erik D Demaine. Games, puzzles, and computation. CRC Press, 2009.
12 Shigeki Iwata and Takumi Kasai. The othello game on an n× n board is pspace-complete.

Theoretical Computer Science, 123(2):329–340, 1994.
13 Michael Lampis and Valia Mitsou. The computational complexity of the game of set and

its theoretical applications. In LATIN 2014: Theoretical Informatics: 11th Latin American
Symposium, Montevideo, Uruguay, March 31–April 4, 2014. Proceedings 11, pages 24–34.
Springer, 2014.

14 Michael Lampis, Valia Mitsou, and Karolina Sołtys. Scrabble is pspace-complete. In Evangelos
Kranakis, Danny Krizanc, and Flaminia Luccio, editors, Fun with Algorithms, pages 258–269,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

15 David Lichtenstein and Michael Sipser. Go is polynomial-space hard. Journal of the ACM
(JACM), 27(2):393–401, 1980.

16 Viet-Ha Nguyen, Kévin Perrot, and Mathieu Vallet. Np-completeness of the game kingdomin-
otm. Theoretical Computer Science, 822:23–35, 2020.

17 Venkatesh Raman, B. Ravikumar, and S. Srinivasa Rao. A simplified np-complete maxsat prob-
lem. Information Processing Letters, 65(1):1–6, January 1998. doi:10.1016/S0020-0190(97)
00223-8.

18 Frederick Reiber. The crew: The quest for planet nine is np-complete. arXiv preprint
arXiv:2110.11758, 2021.

19 John Michael Robson. The complexity of go. Proc. IFIP, 1983, 1983.
20 G. Shimoni and Z. Shalem. Swish, 2011. URL: https://www.thinkfun.com/products/swish/.
21 R Teal Witter. Backgammon is hard. In International Conference on Combinatorial Optimiz-

ation and Applications, pages 484–496. Springer, 2021.
22 David Wolfe. Go endgames are pspace-hard. intelligence, 9(7):6, 2000.

FUN 2024

https://doi.org/10.1016/S0020-0190(97)00223-8
https://doi.org/10.1016/S0020-0190(97)00223-8
https://www.thinkfun.com/products/swish/




Hamiltonian Paths and Cycles in NP-Complete
Puzzles
Marnix Deurloo
Utrecht University, The Netherlands

Mitchell Donkers
Utrecht University, The Netherlands

Mieke Maarse
Utrecht University, The Netherlands

Benjamin G. Rin1 #

Utrecht University, The Netherlands

Karen Schutte
Utrecht University, The Netherlands

Abstract
We show that several pen-and-paper puzzles are NP-complete by giving polynomial-time reductions
from the Hamiltonian path and Hamiltonian cycle problems on grid graphs with maximum degree 3.
The puzzles include Dotchi Loop, Chains, Linesweeper, Arukone3 (also called Numberlink3), and
Araf. In addition, we show that this type of proof can still be used to prove the NP-completeness of
Dotchi Loop even when the available puzzle instances are heavily restricted. Together, these results
suggest that this approach holds promise in general for finding NP-completeness proofs of many
pen-and-paper puzzles.
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1 Introduction

Pen-and-paper puzzles are often NP-complete. Famous among such results are the NP-
completeness of Sudoku [26] and Minesweeper [17], not least because of the worldwide
popularity of these particular puzzles. But innumerable other such results exist (see,
e.g., [1], [2], [4], [7], [18], and [19], among countless others). Typically, to say a puzzle
is NP-complete means that the problem of deciding whether a given instance of the puzzle
is solvable is an NP-complete problem. Other problems regarding puzzles may also be
considered (see, e.g., [24]), but the present paper addresses only solvability problems.

Often, the proofs of NP-completeness for pen-and-paper puzzles work by reduction from
generally useful NP-complete problems such as 3SAT. However, some puzzles may resist
this approach, or at least seem more naturally suited to be proved NP-complete by other
reduction strategies. In particular, some puzzles take place on a grid and require the solver
to construct a kind of path or loop. For puzzles in this category, it seems plausibly viable to
prove their NP-completeness by reducing a variant of the Hamiltonian path or cycle problem
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s

t

Figure 1 A grid graph (left) and a grid graph with specified terminal nodes s and t (right).

to them – particularly, a variant involving grid graphs. The present paper2 considers five3

puzzles, four of which (Dotchi Loop, Chains, Linesweeper, Arukone3) directly require finding
paths or cycles on square grids. The other, Araf, requires the solver to construct regions, but
even there, our reduction shows how to force one such region to be shaped as a (Hamiltonian)
path. In all cases, we find the Hamiltonian path or cycle problem on grid graphs with
maximum degree 3 to be a successful basis for an NP-completeness proof. We surmise that
this approach is broadly applicable to a wide array of other pen-and-paper puzzles.4

1.1 Preliminaries
▶ Definition 1. A grid graph is a finite graph G = ⟨V, E⟩ whose nodes have integer coordinates,
with edges between all and only pairs of nodes with Euclidean distance 1. That is, V ⊆ Z×Z
and E = {(⟨x, y⟩, ⟨x′, y′⟩) ∈ (Z × Z) × (Z × Z) | |x − x′| + |y − y′| = 1}.

When discussing the (non-)existence of a path from a node s (the start node) to t (the
end node), we call s and t terminal nodes. Such a path is a cycle if s = t and is Hamiltonian
if it visits each node in G exactly once.

▶ Example 2. In Figure 1 we see two grid graphs. The first has Hamiltonian paths, but no
cycle. The second has a Hamiltonian path from specified node s to specified node t.

▶ Definition 3. The problem HC3G (the Hamiltonian cycle problem on grid graphs with
max. degree 3) is the problem of determining whether a given grid graph with max. degree 3
has a Hamiltonian cycle.

The problem HP3G (the Hamiltonian path problem on grid graphs with max. degree 3)
is the problem of determining whether a given grid graph with max. degree 3 and specified
nodes s and t has a Hamiltonian path from s to t.

It is well known since [22, Thm. 2] that both of these problems are NP-complete:

▶ Theorem 1 (Papadimitriou & Vazirani, see [22, Thm. 2]). HP3G is NP-complete.

2 This work has its origins in four bachelor theses completed between 2019 and 2023 by authors of this
paper under supervision of the fourth author (see [5], [6], [20], [23]).

3 In Section 7, we also consider a restricted class of Dotchi Loop instances, for a total of six NP-completeness
proofs.

4 This proof strategy is not without precedent. For example, such an approach is taken in [3] to prove
the complexity of Amazons puzzles, and [26] proves the ASP-completeness of Slitherlink. The present
paper’s earliest results, Theorems 3 and 4, were found by the third author in [20], albeit without
restricting the graphs to maximum degree 3, making the proofs more complex than needed. Later,
between the completion of the present paper and its appearance in print, we came to learn of some
recent findings posted on ArXiv by Hadyn Tang for many loop and path puzzles [25]. These findings
show that under certain conditions, puzzles can be proved NP-complete by constructing only gadgets
for grid graph nodes with degree exactly 3, removing the need for gadgets of degree 1 or 2. Indeed,
these conditions seem to obtain for at least some of the puzzles examined below, such as Dotchi Loop
and Linesweeper. Accordingly, it is possible to simplify proofs wherever such gadgets are not needed.
However, such gadgets are typically straightforward to construct anyway, and in any case we often find
their inclusion instructive. It remains unclear how many puzzles, if any, are amenable to our approach
but not Tang’s.
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(a) (b) (c) (d)

Figure 2 Four node shapes. (Rotations are also possible.)

▶ Corollary 1. HC3G is NP-complete.

While the corollary is not explicitly stated in [22], it can be proven by the same proof
method as used for Theorem 1 but with one less step.5 An explicit proof can also be found
in [3].

Although the authors of [22] may not have predicted the future explosive popularity of
pen-and-paper puzzles, nor the academic interest in their computational complexity, their
result seems almost ready-made for NP-completeness proofs of many such puzzles – or, more
precisely, NP-hardness proofs. Typically, proving that these puzzles are in NP is trivial,
as verifying the correctness of a given solution attempt is easy to do in polynomial time.
The present paper’s results are no exception. Moreover, with respect to NP-hardness, the
reader can verify that each reduction presented here is easily computable in polynomial
time. Accordingly, we focus hereafter only on presenting the reductions. The early ones have
relatively simple gadgets, but in subsequent proofs the intricacy increases.

1.2 General scheme
We call gadgets that represent nodes rooms. Rooms typically contain portions corresponding
to edges, called hallways (or corridors). Rooms are usually square, or nearly so, and are
surrounded on all sides by walls – arrangements of cells that prevent the simulated path/cycle
from passing through them. Walls are typically a key – perhaps the key – subgadget for
the success of the sorts of reductions presented in this paper. Their function is to force the
simulated path/cycle to go only in the directions we want (i.e., to adjacent rooms) rather
than wandering chaotically. On a side of a room with a hallway, the room’s wall will naturally
have a gap serving as an exit (or entrance, since the graph is undirected).

In the case of reductions from HP3G, rooms come in one of four distinct shapes (up to
rotation), depending on their degree: a given graph can have one type of degree-1 node, two
types of degree-2 node, and one type of degree-3 node (see figure 2). Additionally, a room’s
design may differ depending on whether the node it represents is the graph’s starting node s,
ending node t, or neither. However, since degree-1 nodes must always be terminal in any
Hamiltonian path, we need not design gadgets for nonterminal degree-1 nodes.6

5 The proof of Theorem 1 works by reduction from a known NP-complete variant of the Hamiltonian cycle
problem on directed graphs, wherein one of the steps involves transforming nodes of a given directed
graph into nodes of a grid graph with max. degree 3. Here, pains are taken to make the resulting grid
graph suitable for checking the presence of a certain path (from specified nodes s and t) rather than a
cycle (see [22, Fig. 2]). By dispensing with this effort and simply skipping this step (i.e., ignoring [22,
Fig. 2b] and instead transforming all nodes of the directed graph in accordance with [22, Fig. 2a]), we
obtain a proof of the NP-completeness of HC3G.

6 Trivially, the reduction can easily map a graph containing such a node to any unsolvable puzzle instance.
So we can assume the given graph contains no such nodes. On another note, for similar reasons, we can
also assume the graph is connected.
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Figure 3 A Dotchi Loop puzzle instance (left) and its solution (right) [12]. Colors indicate regions.

In the case of reductions from HC3G, we can completely ignore all degree-1 nodes, since
no graph with a degree-1 node can have a Hamiltonian cycle.7 This leaves only three types
of room to construct for such reductions, corresponding to (b)-(d) in Figure 2. That said,
degree-1 rooms are usually easy to construct, so we can just as well include such gadgets in
our proof and have our reduction transform graphs with degree-1 nodes into corresponding
puzzle instances just like any other graph, with the understanding that such instances will
necessarily be unsolvable.

2 Dotchi Loop

We begin with a proof for Dotchi Loop. The reduction is simple, but it straightforwardly
demonstrates the use of HC3G for such proofs. In Section 7, we present a more complex
proof showing Dotchi Loop to be NP-complete even when the set of possible puzzle instances
is heavily restricted in a certain way.

Dotchi Loop [12] is a Japanese pen-and-paper puzzle consisting of a grid of cells divided
into contiguous and non-overlapping regions. Some cells are empty and some contain a white
or black circle. The solver must join cells orthogonally to create a single closed loop that
passes through all white circles and avoids all black circles. (See Figure 3.) It is not necessary
to visit every empty cell. The loop is forbidden to cross or overlap itself. Within any given
region, the loop must either turn 90◦ at all white circles or pass straight through all white
circles of that region. For brevity, we call any White circle through which the loop passes
straight a straight circle. We call the others turn circles. For example, the white circle in the
northwest region is straight and the ones in the southwest region are turn circles. A region is
straight (respectively, turn) if its white circles are straight (respectively, turn).

▶ Theorem 2. Dotchi Loop is NP-complete.

Proof. We give a reduction from HC3G. Wall subgadgets are easy to construct by using
rows of black circles. With these, we can straightforwardly build rooms with appropriate
hallways. Each fits in a 3 × 3 area and contains a white circle at the center. We fill the
remaining space in each room with black circles, except for pathways toward the central cell
from every available entrance. See Figure 4. Each room is its own region. As with all these
reductions, rooms are placed in similar relative positions to those of the corresponding nodes
and edges in the input graph. An example can be seen in Figure 5.

To confirm the correctness of the reduction, observe that white circles in each room
guarantee, per the rules, that a solution’s loop will necessarily visit that room. So the
similarly shaped cycle in the given grid graph is Hamiltonian. Conversely, if the grid graph
is Hamiltonian, a similarly shaped loop can clearly cover all white cells. This completes the
proof. ◀

7 Again, such a graph can trivially be mapped to any unsolvable instance of the puzzle at hand. And,
again, we can do the same with any graph that isn’t connected.
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Figure 4 All Dotchi Loop rooms (up to rotation). The first is unnecessary (see Section 1.2).

Figure 5 A graph (left) and corresponding Dotchi Loop puzzle instance (right). Colors distinguish
neighboring regions (though distinct regions with no shared border may share colors in the figure).

▶ Example 4. The graph in Figure 5 has nine nodes. The corresponding puzzle instance has
nine rooms. Each room here is a separate Dotchi Loop region.

3 Chains

A Chains [13] puzzle instance consists of a grid of cells, some of which contain natural numbers.
The solver must join cells orthogonally such that each cell numbered i > 1 is connected by a
“line” (path) of length i to some other cell also containing i. Cells with number i = 1 must
be in lines of length 1 (i.e., to themselves). Lines cannot overlap themselves or other paths.
See Figure 6.

8 4 4 1 3 1 2 8 4 4 1 3 1 2

9 1 2 5 9 1 2 5

2 1 2 2 3 2 1 2 2 3

2 4 4 4 2 4 4 4

9 3 5 4 2 9 3 5 4 2

4 4 3 2 5 4 4 3 2 5

3 4 4 3 4 4

8 2 2 2 3 1 8 2 2 2 3 1

6 5 4 1 2 6 5 4 1 2

4 4 1 4 5 4 4 1 4 5

6 2 2 3 3 6 2 2 3 3

3 3 5 5 1 3 3 5 5 1

1 2 2 4 6 1 2 2 4 6

2 2 1 4 5 2 2 1 4 5

6 6 5 5 6 6 6 5 5 6

Figure 6 A Chains puzzle instance (left) and its solution (right) [14].

▶ Theorem 3. Chains is NP-complete.
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1 1 1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1 1 1

Figure 7 Chains nonterminal room gadgets. (Rotations are also possible.)

s

t

1 1 1 1 1 1

1 13 1

1 1 1 1

1 1 1 1 1 1 1

1 13 1

1 1 1 1 1 1 1 1 1

Figure 8 A graph (left) and equivalent Chains puzzle instance (right).

Proof. We give a reduction from HP3G. Since lines may not cross, walls are simply constructed
out of cells containing 1s. Room gadgets consist of 3 × 3 blocks of cells. The gadgets for
each nonterminal node type are presented in Figure 7. As usual, rooms are placed in relative
positions corresponding to those of the given graph’s nodes.

The rooms representing terminal nodes are constructed identically to the nonterminal
nodes, except that we add the number 3m − 2 to their central cells, where m is the number
of nodes in the graph. See Figure 8 for an example.

To verify the reduction’s correctness, first observe that if a Hamiltonian path exists between
s and t, then the two corresponding central cells can indeed connect via an identically shaped
line of length 3(m − 1) + 1 = 3m − 2, since (i) the number of cells needed to move from one
room’s central cell to the next is always three, (ii) the path from s to t uses m − 1 edges, so
the similarly shaped line in the puzzle connects m − 1 pairs of central cells from adjacent
rooms, and (iii) cell s itself must be counted in the total length.

Conversely, the puzzle instance is constructed in such a way that there is virtually no
flexibility for the solver. From the center of any room, any movement of three steps leads
to the center of another room. Therefore, a line connecting the two cells numbered 3m − 2
(which must have length 3m − 2, by the rules) visits exactly m rooms, making the similarly
shaped path from s to t in the graph Hamiltonian. ◀

▶ Example 5. The graph in Figure 8 has five nodes, so 3m − 2 = 3(5) − 2 = 13.

4 Linesweeper

Linesweeper [15], like Chains, consists of a grid of cells, some of which contain nonnegative8

integers. The solver must find a loop through the grid such that every numbered cell is
orthogonally or diagonally adjacent to precisely that number of cells visited by the loop. An
example is shown in Figure 9.

8 Note that typical instances of Linesweeper have no cells with 0s, but the puzzle’s definition does
explicitly allow them – see [21].
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2 2

6 7 6 7

3 3

8 8

5 6 5 6

2 3 2 3

Figure 9 A Linesweeper puzzle instance (left) and its solution (right) [16].

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 3 0 0 0 0

0 0 0 0 0 0 0 0 3

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

Figure 10 All Linesweeper rooms (up to rotation). Cells clearly inaccessible to the solution loop
are shaded as a visual aid. Note that we could also use only the last room and add 0s to block exits.

▶ Theorem 4. Linesweeper is NP-complete.

Proof. We give a reduction from HC3G. Walls are created by use of 0s. Under the rules, the
loop cannot touch any cells adjacent to a cell containing a 0, so each 0-cell creates a 3 × 3
impenetrable area. Room gadgets are shaped rather similarly to those of Chains and Dotchi
Loop, though larger to accommodate the peculiar needs of the degree-3 room. In or adjacent
to the center of each room is a cell with the number 1 or 3, depending on the room type.
See Figure 10.

It is straightforward to see that the gadgets other than the degree-3 room are solvable9

in exactly one way. The degree-3 room is solvable in three ways, displayed in Figure 11. A
full example of the reduction is shown in Figure 12.

To verify the reduction’s correctness, we first note that if a given graph has a Hamiltonian
cycle, the corresponding Linesweeper instance is clearly solvable by a loop of similar shape.
For the converse, suppose the puzzle instance is solvable. Observe that the 1 or 3 in each
room guarantees that the solution loop must visit that room. As noted above, every room
without degree 3 can be traversed by the loop in only one way, and so it is easy to see that
our needed cycle in the graph takes precisely the same shape traversing the corresponding
node. For the degree-3 rooms, the reader can verify that the three solutions presented

9 We acknowledge that only a puzzle instance as a whole, not a subset (such as a single room) can be
formally said to be solved or have a solution. However, as a mild abuse of terminology, we may say
throughout this paper that an indication (usually pictorial, but possibly written) of things for a puzzle
solver to do with respect to a given room is a solution to the room if the indication would describe part
of a correct solution attempt for an entire puzzle instance containing that room. We will say the room
is solved if a solution (in this sense) has been given for it.
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0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 3 0 0 3 0 0 3

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0

Figure 11 Three solutions for a degree-3 Linesweeper room.

in Figure 11 are the only possible ways to solve such rooms. Consequently, we see that
whichever direction the solution loop takes through a degree-3 room, a Hamiltonian cycle
through the input graph can take the same direction. Thus a given grid graph with max.
degree 3 is Hamiltonian if and only if the corresponding Linesweeper instance is solvable, as
required. ◀

▶ Example 6. In Figure 12 we see a full example of the reduction.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 3 0 0

0 0 3 3 0 0

0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12 A graph and its corresponding Linesweeper puzzle instance.

5 Arukone3

Arukone3 (written Arukone3 in [11]) is another puzzle consisting of a grid of blank and natural-
numbered cells, with the additional stipulation that each number that is present appears
exactly twice. This puzzle is a variant of Arukone (also called Number Link, Nanbarinku, or
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4 5 4 5

3 5 3 5

1 1

2 1 2 1

2 2

4 3 4 3

Figure 13 An Arukone3 puzzle instance (left) and its solution (right) [11].

Flow – see [9]) and Arukone2 (see [10]), which have already been considered.10 The Arukone3
variant contains just one added rule beyond Arukone2 (the 2 × 2 rule – see below), but this
rule markedly affects the nature of the puzzle.

The goal is to connect each pair of equal numbers with a path (called a line) of orthogonally
adjacent cells that never crosses itself or another line and never covers a 2 × 2 area. The
puzzle is solved when all number pairs are connected and all empty cells are filled. Figure 13
shows an example.

▶ Theorem 5. Arukone3 is NP-complete.

Proof. Our reduction for this puzzle is from HP3G. Accordingly, the grid graph should have
two distinguished terminal nodes, s and t. Recall that this makes reductions from HP3G
require the construction of more room types than in reductions from HC3G. In the case
of Arukone3, the two rooms corresponding to nodes s and t will share a number S in their
central cells. We call the line connecting the two S-cells (assuming the puzzle instance is
solvable) the Hamilton line. In this proof, there is no relevant distinction to make between
a starting room and ending room, so we have only one gadget design for, say, the degree-3
terminal room. (In the proof of Theorem 6 for Araf, such a distinction is necessary and more
room types will therefore be needed.)

In our reduction to Arukone3, the “walls” will consist of many number pairs arranged as
dominoes (see, e.g., Figure 14). Since the numbers in a given domino can only be connected
to each other, and since these dominoes are so tightly packed together, the only connection
possible for them is a line of length 2. In general, we say that two equally numbered cells are
connected directly if the line connecting them has length 2, and indirectly otherwise. In our
diagrams, wall cells are shaded for readability. Additionally, rather than display a unique
number pair for each domino within walls, we simply draw a ring (see, e.g., the bottom-right
horizontal dominoes in Figure 14) to indicate that this pair of adjacent cells must be directly
connected in any solution.11 However, not all dominoes will be displayed this way; some
(non-wall) dominoes that may be possible to connect indirectly will be shown with letters
standing for natural numbers – in the present figure, a, b, c, and d. (As discussed above, the
central S is also a natural number.) It is easy to see that the walls constructed here serve
their intended purpose sufficiently: since lines cannot intersect, the mass of directly connected
dominoes prevents another line (in particular, the Hamilton line) from getting through.

10 See [1]. Also notable is [19], which shows the NP-completeness of a further Arukone variant.
11 For most of these dominoes, the need for direct connection is obvious because they have no empty space

around them. For some – e.g., the vertical dominoes on the left of Figure 14 – direct connection is
forced because any indirect connection would violate the 2 × 2 rule.
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S
a b
a b

c c
d d

Figure 14 A degree-1 node and Arukone3 degree-1 room. Colors are only a visual aid.

Rooms in this reduction are 13 × 13 square areas, minus ten cells for each corridor out.
These cells are occupied by the adjacent room. The room in Figure 14 has one corridor,
which consists of all the empty cells in the southwest quadrant forming a rough δ-shape. The
exit is west of the cc domino. Later it will become clearer how rooms in this reduction fit
together.

One oddity in this reduction, in contrast to the rest in this paper, is that rooms in this
reduction are tilted 45◦ clockwise from the nodes they represent. For example, Figure 14
depicts a degree-1 room in which the outgoing corridor heads southwest, representing a
degree-1 node with an outgoing edge to the south.

The aforementioned non-wall dominoes in Figure 14 with numbers a, b, c, and d form
what we call pillars. The two dominoes aa and bb together comprise one pillar and the
dominoes cc and dd comprise another. In general, a pillar diagonally touching the central
cell (here, the a-b pillar) is called an inner pillar and a pillar more distant (here, c-d) is
called an outer pillar. In the present gadget, all four of these dominoes must be connected
directly (the degree-1 room bears only one possible solution, wherein pillar dominoes must
connect directly to avoid blocking the line from S). However, in other gadgets this will not
always hold. As we will see, the purpose of pillars, in rooms with more than one possible
solution, is to be able to connect indirectly and fill the cells of corridors not in use by the
Hamilton line. Since the rules of Arukone3 require that all cells be filled, pillars are a key
part of the construction that make the reduction work. We will see, furthermore, that when
a pillar domino needs to connect indirectly to fill unused corridor cells, it can do so without
breaking the 2 × 2 rule.

Figure 15(a) depicts a nonterminal straight degree-2 room with northwest and southeast
corridors, corresponding to a nonterminal straight degree-2 node with west and east edges.
Figure 15(b) depicts a nonterminal corner degree-2 room with northeast and southeast
corridors, corresponding to a nonterminal corner degree-2 node with north and east edges.

The straight room, we claim, is solvable in exactly one way, with no possibility for the
pillars to have indirect connections – similarly to the degree-1 room. In this unique solution,
the empty cells must be all filled by a single line passing completely through the room. (It
will turn out that this line is the Hamilton line.) To verify this, observe by inspection that
the central cell cannot be reached by any possible line that would indirectly connect a domino
within this room. So the central cell must be in some line extending outside the room. Since
the central cell, like any cell without a number, can never be the endpoint its line, its line
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Figure 15 Nonterminal degree-2 straight and corner Arukone3 rooms.

a b a b a b
a b c c a b c c a b c c

d d d d d d
S S S

e e e e e e
f f g h f f g h f f g h

g h g h g h

Figure 16 An Arukone3 terminal degree-2 straight room and its two solutions.

must extend out through both exits (in the process, filling both of the two corridors entirely).
In sum, this room is solved only by running a line from one exit to the other, passing through
the center cell along the way. This behavior matches that of nonterminal straight degree-2
nodes in solved HP3G instances.

The corner room is similar. Its solution requires a single line containing the center, both
exits, and (consequently) all other white cells. The only difference in the argument is in the
reason why the center is inaccessible to pillar connection lines. For the straight room, it
was because of physical inaccessibility, but in the corner room, the 2 × 2 rule plays a role
in preventing an inner pillar domino’s line from filling the center. In fact, we can see by
inspection that all pillar domino lines in the corner room must connect directly. As with
the straight room, the unique possible solution for the present gadget matches that of the
corresponding node type in solved HP3G instances.

In contrast to these two nonterminal degree-2 rooms, the terminal degree-2 rooms can
(unsurprisingly) be solved two ways, neither of which can use both corridors (because the
cell with number S cannot be a middle point of its line). The two possible solutions, shown
in Figure 16, correspond precisely to the two possible behaviors of terminal straight degree-2
nodes in solved HP3G instances. Here the use of pillars to fill otherwise empty corridor space
exemplifies our earlier description.

Figure 17 shows the terminal corner degree-2 room. We claim this room is solvable in
two ways, much like the terminal room already discussed. Note that in Figure 17 there are
two possible cells for the Hamilton line to visit in its first step from cell S. If it visits the cell
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a a a a a a
b b b b b b
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d c d c d c
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e e e e e e
f f g h f f g h f f g h

g h g h g h

(a) (b) (c)

Figure 17 An Arukone3 terminal degree-2 corner room and its two solutions.

a a a a a a
b b b b b b
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i j i j i j
k k k k k k
l l l l l l

Figure 18 An Arukone3 nonterminal degree-3 room and two of three solutions.

south of S, then it cannot also visit any cells north of the center row, as that would leave
behind white cells that pillar dominoes could never fill without breaking the 2 × 2 rule. By
a similar argument, if the line originating from S heads east, then it cannot visit any cells
south of the center row. In either case, the cells not filled by the Hamilton line can and must
be filled by the pillars, as seen in the figure.

Figure 18 displays a nonterminal degree-3 room. We claim there are precisely three
possible solutions (two, up to symmetry), in concordance with nonterminal degree-3 nodes
in solved HP3G instances. First, note that the central cell must, as before, be part of a line
that traverses precisely two of the exits. If they are the northeast and southwest exits, then
the solution must be as in Figure 18(b) (other attempts – for instance, using the three white
cells in the central column – fail for reasons similar to those previously discussed). Likewise,
if they are the northeast and southeast, the solution must be as in the third figure. The last
case (southwest and southeast) is symmetrical to this.

Finally, Figure 19 displays a terminal degree-3 room. As noted for the other terminal
rooms, the cell numbered S must be an endpoint of its line, so its line must visit precisely one
of the three cells adjacent to it. (The other two must be filled by inner pillars.) If it moves
east, then the other two cells neighboring S must be filled by inner pillars (see Figure 19(b)),
after which there is no option but to take the northeast exit (Figure 19(c)). The other two
cases – moving one cell south or west (not shown) – are similar (forcing east and south exits,
respectively). Again, in this gadget we see all, and only, the possible behaviors corresponding
to those of terminal degree-3 nodes in HP3G instances.
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Figure 19 Arukone3 terminal degree-3 room (a), a partial solution (b), and a full solution (c).

This completes the discussion of individual gadgets. An example puzzle instance showing
how they fit together is given in Figure 20. Extra walls can be added to make the instance
rectangular. This completes the proof. ◀

s

t
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a a S
b b c d e f g g

c d e f h h i j
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l l m m
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b’ c’ d’ e’
f’ f’
g’ g’ h’ h’

i’ j’ k’ k’
i’ j’ l’ l’ m’ n’

o’ o’ m’ n’

Figure 20 A graph and its corresponding Arukone3 instance. (Further walls in white space not
shown.) The instance has a 45◦ clockwise tilt compared to the graph.
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Figure 21 An Araf puzzle instance (left) and its solution (right). [8].

6 Araf

Araf, like Linesweeper and Chains, consists of a grid of cells that each may contain a natural
number. (Unlike Arukone3, Araf need not have precisely two of each present number.) The
goal is to divide the grid into contiguous regions such that (i) each cell is part of exactly one
region, (ii) each region contains exactly two numbers, and (iii) the size of each region’s area
is strictly between those two numbers. Figure 21 presents an example.

▶ Theorem 6. Araf is NP-complete.

Proof. We give a reduction from HP3G. In this reduction, it will be necessary to construct
eleven rooms, not seven as in Arukone3. This is because we have separate designs for rooms
representing start nodes and end nodes, rather than a single design for both types of terminal
node for any given node degree/shape. We will begin with the rooms for start nodes, then
present the rooms for nonterminal nodes, and then finally present the rooms for end nodes.

Let us say two cells are connected in a solution if they occupy the same region. We may
at times identify a numbered cell with its number, if no confusion arises. Thus we may say,
e.g., that the numbers a and b in a given room are connected.

In all rooms we construct, the walls are built out of dominoes that each consist of a 1
and a 3 (see Figure 22). By rule (iii), the two domino cells must be together in a region of
area exactly 2, as long as no nearby numbered cells provide other options. We construct the
rooms in such a way that no problem with this arises. Technically, while it is conceivable
that a large area filled with wall dominoes could be solved in more than one way (e.g., if a
horizontal 3-1 domino is above a horizontal 1-3 domino, these four cells can be paired off
vertically or horizontally), these differences have no meaningful effect on the puzzle solution
or our proof. In particular, the region corresponding to the grid graph’s Hamiltonian path
(hereafter, the Hamilton region) is unaffected. Accordingly, we will not distinguish between
solutions with identical Hamilton regions that differ only by small variations such as with
the 3-1 pairings.

Importantly, all the rooms in this proof are constructed in such a way that they can’t
affect each other. The sides of each room are filled with 1s and there is a 3 in each corner.
Thus the cells on the side of a room will be unable to share a region with cells on the side of
an adjacent room. Therefore, it will be impossible for a solution to have any region include
cells from two or more gadgets, with the exception of the Hamilton region.

If the grid graph has a Hamiltonian path, the size of the Hamilton region in the puzzle is
straightforward to calculate. As we will see, the start room will have nine cells available for
the Hamilton region, the end room will have seven, and the nonterminal rooms will each
have thirteen. Hence the region has 9 + 7 + 13(n − 2) = 13n − 10 cells, where n is the number
of nodes in the grid graph.
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3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 1 3 1 3 1 3 1 3 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1
1 3 1 3 1 3 3 3 1 3 1 3 1 1 3 1 3 1 3 3 3 1 3 1 3 1
1 3 1 3 1 3 b 3 1 3 1 3 1 1 3 1 3 1 3 b 3 1 3 1 3 1
1 3 1 3 1 3 a 3 1 3 1 3 1 1 3 1 3 1 3 a 3 1 3 1 3 1
1 3 1 3 1 3 3 1 3 1 3 1 1 3 1 3 1 3 3 1 3 1 3 1
1 3 1 3 1 3 3 1 3 1 3 1 1 3 1 3 1 3 3 1 3 1 3 1
1 3 1 3 1 3 3 1 3 1 3 1 1 3 1 3 1 3 3 1 3 1 3 1
1 3 1 3 1 1 1 1 3 1 3 1 1 3 1 3 1 1 1 1 3 1 3 1
1 3 1 3 3 3 3 3 1 3 3 1 1 3 1 3 3 3 3 3 1 3 3 1
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3

Figure 22 An Araf degree-1 start room (left) and solution.

We now define a = 13n − 11 and b = a + 2 = 13n − 9. The room representing the start
node will contain a domino with a and b, arranged so that these two numbers must connect
in any solution. Their region, with forced size 13n − 10, will be the Hamilton region.

Note that the rest of the numbers in the puzzle will all be 9 or less, so the numbers a

and b will be by far the greatest.
In Figure 22 the degree-1 start room is shown. There are eighty 3-1 regions and two

(large) numbers a and b, which we now argue must share a region (the Hamilton region).
Observe that b cannot connect to one of the 3s next to it – for, if it did, its region would
need to have size at least 4, which is not possible in the given room. So b must connect to a.
A similar observation will hold for the other start rooms.

Since a and b are connected, the 3s and 1s in this gadget must connect to each other. Since
each such connection yields a region of size 2 under Araf’s rules, there must be 80 · 2 = 160
cells filled. There are 13 × 13 = 169 total cells in this gadget, so the nine remaining cells,
including a and b, must be occupied by the Hamilton region.

Figure 23 shows the straight degree-2 start room. We argue that a solution for it must
contain seventy-four 3-1 regions, one 9-7 region, one 9-1 region and one 6-1 region. This
results in at least 74 · 2 + 8 + 2 + 2 = 160 filled cells.

3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 1 1 1 3 b 3 1 1 1 3 1 1 3 1 1 1 3 b 3 1 1 1 3 1 1 3 1 1 1 3 b 3 1 1 1 3 1
1 3 3 3 3 1 a 1 3 3 3 3 1 1 3 3 3 3 1 a 1 3 3 3 3 1 1 3 3 3 3 1 a 1 3 3 3 3 1

1 3 3 3 3 9 7 9 3 3 3 3 1 1 3 3 3 3 9 7 9 3 3 3 3 1 1 3 3 3 3 9 7 9 3 3 3 3 1
1 3 1 1 1 1 6 1 1 1 1 3 1 1 3 1 1 1 1 6 1 1 1 1 3 1 1 3 1 1 1 1 6 1 1 1 1 3 1
1 3 3 3 3 3 1 3 3 3 1 3 1 1 3 3 3 3 3 1 3 3 3 1 3 1 1 3 3 3 3 3 1 3 3 3 1 3 1
1 3 1 1 1 1 3 1 1 1 3 3 1 1 3 1 1 1 1 1 1 1 1 3 3 1 1 3 1 1 1 1 1 1 1 1 3 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3

(a) (b) (c)

Figure 23 An Araf degree-2 straight start room (left) and solutions.

For all 1s except those adjacent to a or 6, it is obvious that they must connect to a
neighboring 3. For each of the 1s next to a, if it would connect elsewhere then the only
options would be a 7 or 9. However, the 7 is impossible because this would block the a and b,
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3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
1 3 3 1 1 3 4 6 3 1 1 3 3 1 1 3 4 6 3 1 1 3 3 1 1 3 4 6 3 1
1 3 1 3 1 3 4 2 3 1 1 3 1 3 1 3 4 2 3 1 1 3 1 3 1 3 4 2 3 1
1 3 1 3 1 3 2 4 2 6 3 1 1 3 1 3 1 3 2 4 2 6 3 1 1 3 1 3 1 3 2 4 2 6 3 1
1 3 1 3 1 3 4 2 4 4 3 1 1 3 1 3 1 3 4 2 4 4 3 1 1 3 1 3 1 3 4 2 4 4 3 1
1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
1 3 1 3 3 1 a 1 3 3 3 3 1 1 3 1 3 3 1 a 1 3 3 3 3 1 1 3 1 3 3 1 a 1 3 3 3 3 1
1 3 1 3 1 3 b 3 1 1 1 3 1 1 3 1 3 1 3 b 3 1 1 1 3 1 1 3 1 3 1 3 b 3 1 1 1 3 1
1 3 1 3 3 3 3 3 3 3 1 3 1 1 3 1 3 3 3 3 3 3 3 1 3 1 1 3 1 3 3 3 3 3 3 3 1 3 1
1 3 3 1 1 1 1 1 1 1 3 3 1 1 3 3 1 1 1 1 1 1 1 3 3 1 1 3 3 1 1 1 1 1 1 1 3 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3

(a) (b) (c)

Figure 24 An Araf degree-2 corner start room (left) and solutions.

whose region requires far more than just two cells. Likewise for the far 9. For the close 9 (two
spaces below the 1), connecting would leave a 3 from the same quadrant as the 1 unpaired,
forcing the 3 to connect to the 7 or remaining 9. But this, even if somehow possible, would
again block off a and b. So each 1 next to a must connect to a neighboring 3.

The 7 must now connect to a 9, as it cannot connect to a 6 by the rules of Araf. The
resulting 9-7 region requires exactly eight cells. To avoid blocking the a and b, this region
must be as in Figure 23(b) or (c). All other cells in the central row must remain open to be
filled by the b-a (Hamilton) region.

We thus see that the remaining 9 cannot connect to the adjacent 3, because the resulting
region would need at least four cells, including two central row cells. Hence the 9 must
connect to the adjacent 1, forming a region that can and must use just two cells.

Finally, the 6-1 region can also only occupy two cells, because of the limited space around
it. Adding this up with the other regions, 160 cells are filled, leaving nine for the Hamilton
region. This can be done exactly two ways, depicted in Figure 23.

Figure 24 shows the corner degree-2 start room. We argue that a solution must have sixty-
nine 3-1 regions, four 4-2 regions, and two 6-4 regions. This results in 69 · 2 + 4 · 3 + 2 · 5 = 160
filled cells. So the remaining nine cells must be filled by the Hamilton region.

Here, the 6s must connect to the adjacent 4s because those 4s have no alternative. Further,
the b cannot connect to a 3 as argued previously, so it must connect to a and form the
Hamilton region. The 1 to the right of a cannot make a 1-4 region, as that blocks the east
hallway while also forcing a 2-4 region above to block the north hallway. This leaves two,
somewhat symmetrical, ways to solve the room, as seen in Figure 24.

Figure 25 shows the degree-3 start room, constructed similarly to the corner degree-2 start
room but with a southeast quadrant mirroring the northeast. Forced in its solution are fifty-
eight 3-1 regions, eight 4-2 regions, and four 6-4 regions. This results in 58 ·2+8 ·3+4 ·5 = 160
filled cells, leaving nine for the Hamilton region. In each of the two eastern quadrants, the
numbers’ regions can together fill either a 7 × 6 or 6 × 7 rectangular area, resulting in three
ways to solve the room. Two are shown in the figure. The third, with Hamilton region
heading north, mirrors the first.
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3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
1 3 3 1 1 3 4 6 3 1 1 3 3 1 1 3 4 6 3 1 1 3 3 1 1 3 4 6 3 1
1 3 1 3 1 3 4 2 3 1 1 3 1 3 1 3 4 2 3 1 1 3 1 3 1 3 4 2 3 1
1 3 1 3 1 3 2 4 2 6 3 1 1 3 1 3 1 3 2 4 2 6 3 1 1 3 1 3 1 3 2 4 2 6 3 1
1 3 1 3 3 1 4 2 4 4 3 1 1 3 1 3 3 1 4 2 4 4 3 1 1 3 1 3 3 1 4 2 4 4 3 1
1 3 1 3 b a 1 3 1 3 b a 1 3 1 3 b a
1 3 1 3 3 1 4 2 4 4 3 1 1 3 1 3 3 1 4 2 4 4 3 1 1 3 1 3 3 1 4 2 4 4 3 1
1 3 1 3 1 3 2 4 2 6 3 1 1 3 1 3 1 3 2 4 2 6 3 1 1 3 1 3 1 3 2 4 2 6 3 1
1 3 1 3 1 3 4 2 3 1 1 3 1 3 1 3 4 2 3 1 1 3 1 3 1 3 4 2 3 1
1 3 3 1 1 3 4 6 3 1 1 3 3 1 1 3 4 6 3 1 1 3 3 1 1 3 4 6 3 1
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3

(a) (b) (c)

Figure 25 An Araf degree-3 start room (left) and two of three solutions.

We now present the nonterminal rooms. As degree-1 nonterminal rooms are unnecessary,
we begin in Figures 26 and 27 with the degree-2 nonterminal rooms, which require no
comment.

3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1

1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 3 1
1 3 3 3 3 3 3 3 3 3 1 3 1 1 3 3 3 3 3 3 3 3 3 1 3 1
1 3 1 1 1 1 1 1 1 1 3 3 1 1 3 1 1 1 1 1 1 1 1 3 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3

Figure 26 An Araf degree-2 straight nonterminal room (left) and its solution.

3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
1 3 3 1 1 3 1 1 1 1 3 1 1 3 3 1 1 3 1 1 1 1 3 1
1 3 3 1 1 3 3 3 3 3 3 1 1 3 3 1 1 3 3 3 3 3 3 1
1 3 3 1 1 3 3 1 1 1 3 1 1 3 3 1 1 3 3 1 1 1 3 1
1 3 3 1 1 3 1 3 3 3 3 1 1 3 3 1 1 3 1 3 3 3 3 1
1 3 3 1 1 3 1 3 3 1 1 3
1 3 3 1 1 3 3 3 3 3 3 3 1 1 3 3 1 1 3 3 3 3 3 3 3 1
1 3 3 1 3 1 1 1 1 1 1 3 1 1 3 3 1 3 1 1 1 1 1 1 3 1
1 3 3 1 1 1 1 1 1 1 1 3 1 1 3 3 1 1 1 1 1 1 1 1 3 1
1 3 1 3 3 3 3 3 3 3 3 3 1 1 3 1 3 3 3 3 3 3 3 3 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3

Figure 27 An Araf degree-2 corner nonterminal room (left) and its solution.

The degree 3 nonterminal room, shown in Figure 28, is more complex. We claim it has
thirty-nine 3-1 regions, two 4-1 regions, seven 5-3 regions, two 6-3 regions, two 7-5 regions,
two 8-6 regions and two 6-4 regions. Two solutions are shown, and a third symmetrical to
the second is also possible.
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3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
1 3 5 3 3 1 1 3 5 3 3 1 1 3 5 3 3 1
1 3 6 3 5 7 8 4 1 1 3 6 3 5 7 8 4 1 1 3 6 3 5 7 8 4 1
1 3 5 3 6 3 1 1 3 5 3 6 3 1 1 3 5 3 6 3 1
1 3 5 3 4 6 3 1 1 3 5 3 4 6 3 1 1 3 5 3 4 6 3 1
1 3 5 3 1 3 5 3 1 3 5 3
1 3 5 3 4 6 3 1 1 3 5 3 4 6 3 1 1 3 5 3 4 6 3 1
1 3 5 3 6 3 1 1 3 5 3 6 3 1 1 3 5 3 6 3 1
1 3 6 3 5 7 8 4 1 1 3 6 3 5 7 8 4 1 1 3 6 3 5 7 8 4 1
1 3 5 3 3 1 1 3 5 3 3 1 1 3 5 3 3 1
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3

(a) (b) (c)

Figure 28 An Araf degree-3 nonterminal room (left) and two of the solutions.

Note that all cells in the west side will always be filled. In the east is some flexibility.
However, observe that all 1s must connect to the adjacent 3s and 4s. This leaves two areas
that each contain numbers 4, 5, 6, 6, 7, and 8. In each, since a 6 can never connect to 5 or
7, the 6s must connect to the 8 and 4. So the 5 must connect to 7. This yields regions of
exactly five, exactly six, and exactly seven cells.

The two 6-3 regions can fill either four or five cells and the two 4-1 regions can fill two
or three cells. This means that the total area covered by regions of numbers in the room is
between 154 and 158 cells, leaving between eleven and fifteen for the Hamilton region.

The images in Figure 28 show the intended ways to solve this room, but unlike the
previous rooms, this one offers freedom for the solver to place regions in other ways that are
at least locally acceptable within the rules. See Figure 29. We argue, however, that these
lead to global failure for solving the puzzle instance as a whole, or at any rate do not render
solvable any puzzle instances whose corresponding graphs have no Hamiltonian paths.

3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
1 3 5 3 3 1 1 3 5 3 3 1 1 3 5 3 3 1
1 3 6 3 5 7 8 4 1 1 3 6 3 5 7 8 4 1 1 3 6 3 5 7 8 4 1
1 3 5 3 6 3 1 1 3 5 3 6 3 1 1 3 5 3 6 3 1
1 3 5 3 4 6 3 1 1 3 5 3 4 6 3 1 1 3 5 3 4 6 3 1
1 3 5 3 1 3 5 3 1 3 5 3
1 3 5 3 4 6 3 1 1 3 5 3 4 6 3 1 1 3 5 3 4 6 3 1
1 3 5 3 6 3 1 1 3 5 3 6 3 1 1 3 5 3 6 3 1
1 3 6 3 5 7 8 4 1 1 3 6 3 5 7 8 4 1 1 3 6 3 5 7 8 4 1
1 3 5 3 3 1 1 3 5 3 3 1 1 3 5 3 3 1
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 3

(a) (b) (c)

Figure 29 Alternative solution attempts for Araf degree-3 nonterminal room.

First we note that since eleven or more cells are unfilled by regions of numbers in the
room itself, the Hamilton region must visit there. The only question is whether/how it
exits. But failing to exit, as in image (a), leaves the Hamilton region with at least three
endpoints: the start room, the end room, and this room. The only way for this to occur is if
there is some room (with degree 3) elsewhere whose three hallways are all used. But this is
impossible, as it would require nineteen cells for the Hamilton region (the normal thirteen
plus six more), which exceeds the maximum (fifteen) established above. Solution attempts
such as (b) and (c) can be similarly disregarded.
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Having now handled all start and nonterminal rooms, we finally turn to end rooms. All of
these except for the straight degree-2 room are constructed identically to their corresponding
start rooms, but with a 3-1 or 1-3 domino in place of a and b. Their solutions are the same
as the start rooms’, except with the two cells formerly occupied by a and b now enclosed
within a two-cell region, leaving seven (not nine) cells for occupation by the Hamilton region.
We show just one example (Figure 30).

3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 1 3 1 3 1 3 1 3 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1
1 3 1 3 1 3 3 3 1 3 1 3 1 1 3 1 3 1 3 3 3 1 3 1 3 1
1 3 1 3 1 3 1 3 1 3 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1
1 3 1 3 1 3 3 3 1 3 1 3 1 1 3 1 3 1 3 3 3 1 3 1 3 1
1 3 1 3 1 3 3 1 3 1 3 1 1 3 1 3 1 3 3 1 3 1 3 1
1 3 1 3 1 3 3 1 3 1 3 1 1 3 1 3 1 3 3 1 3 1 3 1
1 3 1 3 1 3 3 1 3 1 3 1 1 3 1 3 1 3 3 1 3 1 3 1
1 3 1 3 1 1 1 1 3 1 3 1 1 3 1 3 1 1 1 1 3 1 3 1
1 3 1 3 3 3 3 3 1 3 3 1 1 3 1 3 3 3 3 3 1 3 3 1
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3

Figure 30 An Araf degree-1 end room (left) and its solution.

For the case of the straight degree-2 end room, Figure 31 shows its layout and one of its
two solutions. The other is symmetrical. We claim that the room contains sixty-nine 3-1
regions, two 8-6 regions and two 6-4 regions. This results in 69 · 2 + 2 · 7 + 2 · 5 = 162 filled
cells, with the remaining seven cells being filled by the Hamilton region.

Observe that each 6 adjacent to an 8 must connect to the 8, because the only alternative
is to connect to a 3, which would leave a 1 optionless. The other 6s must then connect to
their neighboring 4s, since the 4s have no other option.

3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1

1 3 4 6 6 4 3 1 1 3 4 6 6 4 3 1
1 3 8 6 6 8 3 1 1 3 8 6 6 8 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 1 3 3 3 1 3 1
1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 3 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3

Figure 31 An Araf degree-2 end room (left) and one of two solutions.

Having covered all the gadgets, we conclude the proof. In Example 7 we show a full
example of an Araf puzzle instance that simulates a grid graph. ◀

▶ Example 7. The graph in Figure 32 has five nodes, so we have a = 5(13) − 11 = 54
and b = a + 2 = 56. Figure 33 gives the puzzle instance’s solution.

FUN 2024



11:20 Hamiltonian Paths and Cycles in NP-Complete Puzzles

s

t
3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 3 1 1 1 1 1 1 1 3 3 1 1 3 3 3 3 3 3 3 3 3 1 3 1
1 3 1 3 3 3 3 3 3 3 1 3 1 1 3 1 1 1 1 1 1 1 1 3 3 1
1 3 1 3 1 3 1 1 1 1 3 3 1 1 3 1 1 1 1 1 1 3 1 3 3 1
1 3 1 3 3 1 3 3 3 3 1 3 1 1 3 3 3 3 3 3 3 1 1 3 3 1
1 3 1 3 3 1 3 1 1 3 3 1
1 3 1 3 3 1 4 2 4 4 3 1 1 3 3 3 3 1 3 1 1 3 3 1
1 3 1 3 3 1 2 4 2 6 3 1 1 3 1 1 1 3 3 1 1 3 3 1
1 3 1 3 3 1 4 2 3 1 1 3 3 3 3 3 3 1 1 3 3 1
1 3 3 1 1 3 4 6 3 1 1 3 1 1 1 1 3 1 1 3 3 1
1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3

3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 4 3 3 3 3 4 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 1 1 3 1 3 1 3 3 1 1 3 3 1
1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 8 6 6 8 3 1 1 3 1 3 1 3 3 1 1 3 3 1
1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 7 6 6 7 3 1 1 3 1 3 1 3 3 1 1 3 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 5 4 4 5 3 1 1 3 1 3 3 1 3 1 1 3 3 1
1 3 1 3 56 54 3 1 1 3 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 1 1 3 3 3 3 3 3 3 1 1 3 3 1
1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 3 1 1 3 1 1 1 1 1 1 3 1 3 3 1
1 3 1 1 1 1 1 1 1 1 1 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 1 1 1 1 1 1 1 1 3 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 5 6 5 5 5 5 5 6 5 3 1 1 3 3 3 3 3 3 3 3 3 1 3 1
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3

Figure 32 Example graph and its corresponding Araf instance.

3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1
1 3 3 1 1 1 1 1 1 1 3 3 1 1 3 3 3 3 3 3 3 3 3 1 3 1
1 3 1 3 3 3 3 3 3 3 1 3 1 1 3 1 1 1 1 1 1 1 1 3 3 1
1 3 1 3 1 3 1 1 1 1 3 3 1 1 3 1 1 1 1 1 1 3 1 3 3 1
1 3 1 3 3 1 3 3 3 3 1 3 1 1 3 3 3 3 3 3 3 1 1 3 3 1
1 3 1 3 3 1 3 1 1 3 3 1
1 3 1 3 3 1 4 2 4 4 3 1 1 3 3 3 3 1 3 1 1 3 3 1
1 3 1 3 3 1 2 4 2 6 3 1 1 3 1 1 1 3 3 1 1 3 3 1
1 3 1 3 3 1 4 2 3 1 1 3 3 3 3 3 3 1 1 3 3 1
1 3 3 1 1 3 4 6 3 1 1 3 1 1 1 1 3 1 1 3 3 1
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Figure 33 Araf example solution with 56-54 region representing a Hamiltonian path.
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7 Dotchi Loop, revisited

We now come full circle to our first puzzle, Dotchi Loop. In this section we show that Dotchi
Loop remains NP-complete even when the set of available puzzle instances is restricted so
that black circles are forbidden from being orthogonally or diagonally adjacent. Let us call
the solvability problem for Dotchi Loop under these conditions Restricted Dotchi Loop. It is
easy to see that the formation of walls in Restricted Dotchi Loop is much more difficult than
in unrestricted Dotchi Loop (Section 2).

▶ Theorem 7. Restricted Dotchi Loop is NP-complete.

Proof. We again give a reduction from HC3G. Although the formation of walls in the manner
of our earlier proof is difficult or impossible, the key idea in our construction is now the use of
the loop itself to form a sort of wall. Here we make use of the fact that the loop is forbidden
to cross itself. By forcing the loop to surround each room, we give it no opportunity to
wander astray.

The degree-3 room is shown in Figure 34. Here, the letter F is not part of the gadget,
but just a label for our reference (see below). Degree-2 rooms (not shown) are constructed
similarly, but with changes we now describe.

All rooms have 6×6 regions in the corners with black circles arranged as in the figure. The
Gg-Gt-Tg-Tt square is also the same as in the figure. On a side with no exit, between the
two 6×6 regions in the corners is a rectangle like the Ga-Gf-Ta-Tf rectangle shown, rotated
appropriately. In a side with an exit, there is a rectangle resembling the Gu-Gz-Tu-Tz
rectangle shown, rotated appropriately. For example, the degree-2 corner room with hallways
north and east is identical to the degree-3 room depicted, except with its Ug-Ut-Zg-Zt
rectangle replaced by a left-rotated copy of the Ga-Gf-Ta-Tf rectangle.

a b c d e f g h i j k l m n o p q r s t u v w x y z
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F
G F F
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K F F
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N
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P F F
Q
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S
T F F
U
V
W
X
Y
Z

Figure 34 Restricted Dotchi Loop degree-3 room. There are twelve distinct regions. As in
Figure 5, colors distinguish neighboring regions, but distant regions may be shown with similar color.
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We now describe how these rooms work, using the degree-3 room as an example. We first
claim that all regions containing white circles are straight regions, except for each room’s
large central light gray region (containing the Gg-Gt-Tg-Tt square and its 2×6 attachments
– e.g., between Mu and Nz). To prove this, note that a region containing a white circle
flanked by two black circles to form a black-white-black I-tromino (e.g., at Jf -Lf or Lb-Ld)
must be straight, because such a white circle gives the loop no space to turn through it.

Further, once the loop enters a cell adjacent to any of the straight white circles, it must
go immediately onto that white circle, as going elsewhere would make that circle unsolvable.
Therefore, a sequence of such I-trominoes with one-space gaps between them, such as the
sequence Bf -Bh, Df -Dh, Ff -Fh, must be solved with a straight line directly through the
white circles, as seen in Figure 35.

a b c d e f g h i j k l m n o p q r s t u v w x y z
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S
T
U
V
W
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Y
Z

Figure 35 One of three (non-equivalent) solutions to Restricted Dotchi Loop degree-3 room.

We can also see that the cells earlier marked “F” (e.g., cell Gk) can be considered forced
entrances/exits from the large central region to the side regions, because the white circles
adjacent to them are necessarily straight. Finally, we can infer that the large central region
must be a turn region, because the circle at Gg (among others) cannot be a straight circle
without causing the loop to block off one of the two adjacent (now known to be straight)
white circles.

These facts together suffice to force the entire solution to be as in Figure 35, for a
loop traveling through this room using the north and east entrances (mutatis mutandis for
north-south or east-south) – save for inconsequential differences such as getting things done
in a slightly different order, or making some irrelevant additional movements within the large
empty space in the central region. That is to say, deviating meaningfully from the depicted
solution would prevent one or more of the white circles from being crossed properly (turn or
straight, according to its region).
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We now see how the loop is forced to form its own self-impenetrable wall around the
room, save for an opening at each of exactly two of the 2 × 6 areas mentioned earlier. These
areas are the “corridors” of this reduction and each one joins with one from a neighboring
room (as they are aligned at the center). Accordingly, we now see that the rooms work as
they need to. ◀

8 Discussion and Future Research

8.1 Application of HP3G and HC3G
We have seen how HP3G and HC3G are useful graph-theoretic computational problems for
giving reductions to some pen-and-paper puzzles, particularly those occurring on square
grids with a kind of path- or loop-finding aspect. But even Araf was successfully proven
NP-complete using one of these, despite the lack of any overt requirement to construct a path
or loop in the puzzle’s rules. Therefore, HP3G and HC3G seem to be at least moderately
broadly applicable problems that should be taken seriously as candidates for future such
reductions – certainly, at least, when proofs using common choices such as 3SAT are not
forthcoming.

8.2 Restricted puzzle versions
In general, we find it interesting to consider whether a given puzzle remains NP-complete
when the set of available puzzle instances is restricted in some way. We explored this in
Section 7 for Dotchi Loop. In deliberately making the task difficult by eliminating the means
to create easy walls, we became forced to find an alternative approach using the loop’s path
itself. Similar such results may be available for the other puzzles. For example, we may
consider Linesweeper without the use of 0-cells (despite footnote 8). We suspect that HP3G
and HC3G can still serve as bases for reductions to these restricted puzzles, but the task gets
more challenging the more tools we deprive ourselves of using to (for example) build walls.

Restricted versions of puzzles compare to the original versions in a way analogous to
how 3SAT compares to SAT, or HP3G and HCG3 respectively compare to the Hamiltonian
path and cycle problems on arbitrary graphs. As potential bases for reductions in future
NP-completeness proofs, they require the construction of fewer gadgets than the originals.
But even in the likely scenario that no future NP-completeness proofs use these particular
puzzles as bases for reductions, we still find the possibility of nontrivially restricted versions
being NP-complete inherently interesting.

8.3 HP4G and HC4G
As a side remark, we are grateful for the existence of Theorem 1 and Corollary 1, which have
allowed us to give reductions without needing to construct degree-4 rooms. Had we been
forced to construct such rooms in addition to the others, our task would have been rather
harder. While a degree-4 room is in some cases very simple to construct after seeing the
lower-degree rooms, in other cases their design is not so trivial. Dotchi Loop, Chains, and
Arukone3 are easy cases (see Figure 36(a)-(c)). Linesweeper is more challenging, but could
be done as in Figure 36(d), if the lower-degree rooms are appropriately padded with 0s to
match the dimensions. But Araf and Restricted Dotchi Loop bear no constructions we have
been able to find. For Araf, the lower-degree rooms do not fit a clear pattern that can be
straightforwardly extrapolated to degree 4, and overall we simply have not found any design
that works. For Restricted Dotchi Loop, such a pattern very clearly does exist, but a naive
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attempt to design degree-4 rooms this way allows a loop to enter and exit the same degree-4
room twice, resulting in some non-Hamiltonian graphs getting mapped to solvable puzzle
instances. (By contrast, the rooms in Figure 36 all prevent this.) Although these last two
puzzles are provably NP-complete anyway, and degree-4 rooms are of course possible to build
“the long way” by reducing HP4G → HP3G → Araf and HC4G → HC3G → Restricted DL,
we wonder as a matter of pure curiosity whether these puzzles admit “direct” degree-4 room
designs – i.e., ones as small and natural as those of the lower-degree rooms.

a a 0 0 0 0 0 0
b b

c c 0 0
d d e f g h

1 1 e f g h 0 0 0 0 0
3

1 1 i j k k
i j l l m n

m n 0 0 0 0 0
o o
n n 0 0

0 0 0 0 0 0

(a) (b) (c) (d)

Figure 36 Degree-4 rooms of Dotchi Loop, Chains, Arukone3, and Linesweeper. Rooms (b)
and (c) can be made terminal by inserting an appropriate number in the center. Room (d) is given
with two of six solutions shown.
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Abstract
Card-based cryptography studies the problem of implementing cryptographic algorithms in a visual
way using physical cards to demonstrate their security properties for those who are unfamiliar with
cryptography. In this paper, we initiate the study of card-based implementations of differentially
private mechanisms, which are a standard privacy-enhancing technique to publish statistics of
databases while protecting the privacy of any particular individual. We start with giving the
definition of differential privacy of card-based protocols. As a feasibility result, we present three
kinds of protocols using standard binary cards for computing the sum of parties’ binary inputs,
f(x1, . . . , xn) =

∑n

i=1 xi for xi ∈ {0, 1}, under differential privacy. Our first protocol follows the
framework of output perturbation, which provides differential privacy by adding noise to exact
aggregation results. The protocol needs only two shuffles, and the overheads in the number of cards
and the error bound are independent of the number n of parties. Our second and third protocols are
based on Randomized Response, which adds noise to each input before aggregation. Compared to
the first protocol, they improve the overheads in the number of cards and the error bound in terms
of differential privacy parameters at the cost of incurring a multiplicative factor of n. To address a
technical challenge of generating non-uniform noise using a finite number of cards, we propose a
novel differentially private mechanism based on the hypergeometric distribution, which we believe
may be of independent interest beyond applications to card-based cryptography.
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1 Introduction

With the rapid development of cryptography, various kinds of cryptographic primitives have
been proposed and allowed secure data processing on sensitive data. However, most of
these primitives are supposed to be implemented by computers and, as such, often lead to
complicated algorithm design. As a result, there remains a gap in non-experts’ understanding
of the security properties, which may prevent active social implementations.

© Reo Eriguchi, Kazumasa Shinagawa, and Takao Murakami;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Fun with Algorithms (FUN 2024).
Editors: Andrei Z. Broder and Tami Tamir; Article No. 12; pp. 12:1–12:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eriguchi-reo@aist.go.jp
https://orcid.org/0000-0002-0019-6934
mailto:kazumasa.shinagawa.np92@vc.ibaraki.ac.jp
https://orcid.org/0000-0002-5219-1975
mailto:tmura@ism.ac.jp
https://orcid.org/0000-0002-5110-1261
https://doi.org/10.4230/LIPIcs.FUN.2024.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


12:2 Card-Based Cryptography Meets Differential Privacy

To address this problem, card-based cryptography [7, 6] studies the problem of implement-
ing cryptographic algorithms in a visual way using physical cards and demonstrates their
security properties for those who are unfamiliar with cryptography. So far, many card-based
cryptographic protocols have been proposed to implement secure multiparty computation
(e.g., [6, 16, 19, 22]) and zero-knowledge proofs [18, 11].

Recently, the concept of differential privacy [10] has been attracting a lot of attention as
the gold standard for rigorous privacy guarantees. Differential privacy is a mathematical
concept introduced in [8, 9] to quantify the privacy loss associated with any publication of
statistics of databases. For example, consider the simplest task of computing the sum of n

parties’ private inputs. If the exact aggregation result is published, an adversary colluding
with n − 1 parties can deduce the input of the remaining party from the result, which in
principle cannot be prevented only by secure computation techniques. Differentially private
mechanisms make results untraceable back to individuals by perturbing them with the
addition of noise. Due to its strong privacy and robustness guarantees, many differentially
private mechanisms have been proposed and deployed in privacy-preserving data analysis of,
e.g., users’ location information [2, 26] and social network data [21].

We note that differentially private mechanisms were previously supposed to be imple-
mented using computers in the literature. This seems to be in part because the mechanisms
usually need complicated processes to generate noise drawn from non-uniform probability
distributions (e.g., Laplace or Bernoulli distribution [10]). Towards the further deployment
of privacy-enhancing techniques, it is important to demonstrate differentially private mech-
anisms in an easier-to-understand way. However, the problem of implementing differentially
private mechanisms using cards has never been considered prior to this work.

1.1 Our Results
In this paper, we initiate the study of card-based implementations of differentially private
mechanisms. We start with giving the definition of differential privacy of card-based protocols.
Our definition is inspired by the framework of [3] defining differential privacy of (non-card-
based) distributed protocols. As a feasibility result, we present three kinds of protocols
using standard binary cards for computing the sum of parties’ binary inputs, f(x1, . . . , xn) =∑n

i=1 xi for xi ∈ {0, 1}, under differential privacy. Computing the binary sum function is
one of the most fundamental problems within the context of differential privacy [3, 4, 10, 24].

Our first protocol is based on output perturbation, which provides differential privacy
by adding noise to exact aggregation results. The protocol needs only two shuffles, and
the overheads in the number of cards and a bound on the mean squared error (MSE) are
independent of the number n of inputs. A technical challenge is how to generate non-uniform
noise using a finite number of cards. Along the way, we propose a novel differentially private
mechanism based on the hypergeometric distribution, which we believe may be of independent
interest beyond applications to card-based cryptography.

Our second and third protocols are based on input perturbation, which adds noise to
each input before aggregation. Compared to the above protocol, they improve the overheads
in the number of cards and the error bound in terms of differential privacy parameters at the
cost of incurring a multiplicative factor of n. Our third protocol even reduces the number of
shuffles to one. While not apparent in asymptotic notations, we empirically show that the
second protocol ensures a smaller number of cards and a smaller MSE in concrete parameter
settings. The detailed comparison is shown in Table 1 and Section 6.

We note that our first protocol can be described in the traditional model of card-based
protocols introduced in [16]. On the other hand, our second and third protocols assume
that parties apply private reveals to cards, which is not allowed in the model of [16]. While
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Table 1 Comparison of our card-based protocols.

Protocol MSE # cards # shuffles

ΠHG
k,ℓ (Section 4) O(ϵ−4 ln δ−1) n + O(ϵ−5 ln δ−1) 2

ΠRR
k,ℓ (Section 5.1) O(ϵ−2n) O(ϵ−1n) n

ΠRR′
k,ℓ (Section 5.2) O(ϵ−2n) O(ϵ−1n) 1

ϵ, δ denote differential privacy parameters and n denotes the number of parties (see Section 2 for the definition).
We show the asymptotic performance when ϵ tends to 0 and use the approximation eϵ ≈ 1 + ϵ + ϵ2/2.

such private operations could be easily implemented in practice and are assumed by a prior
work [13], constructing protocols without any private operations has been considered as
theoretically important in the literature. For that, we show that private operations in our
second and third protocols can be removed at the cost of doubling the number of cards and
requiring n more shuffles.

1.2 Overview of Our Techniques
We here provide an overview of our protocols. More detailed descriptions and security proofs
are given in the following sections.

Our protocols assume standard binary cards with ♡ and ♣. A framework to guarantee
differential privacy is roughly categorized into output perturbation and input perturbation:
The former first computes an exact result privately and then perturbs it with the addition of
noise; The latter first perturbs private inputs and then computes a target function on the
noisy values.

1.2.1 Our Protocol Based on the Hypergeometric Distribution
Our first protocol is based on output perturbation. The private computation of the sum
f(x) =

∑
i∈[n] xi of binary inputs is straightforward: If parties submit face-down cards

following the encoding rule ♡ = 1, ♣ = 0, then the number of ♡s in a resulting sequence of
cards is equal to f(x). A main technical challenge is thus how to implement the addition of
noise providing differential privacy using cards. One of the most common choices for the
noise distribution is the binomial distribution Bin(k, 1/2) with the number of trials k and
the success probability 1/2 [1]. A naïve card-based implementation of binomial distributions
would be that for each i = 1, 2, . . . , k, parties uniformly permutes a pair of two cards with ♡
and ♣, and adds one of them to the above sequence in a face-down manner. Although it
indeed generates binomial samples, this naïve implementation needs a large number of shuffle
operations proportional to k. A state-of-the-art analysis [1] shows that k should be chosen
as k = Ω(ϵ−2 ln δ−1) to guarantee (ϵ, δ)-differential privacy. Concretely, k should be larger
than 2000 for ϵ = 0.5 and δ = 10−6, and even larger than 20000 for ϵ = 0.1 and δ = 10−6.

To reduce the number of shuffles, we prepare a supplementary sequence of randomly
shuffled cards containing equal numbers of ♡s and ♣s, and choose k cards from it without
replacement. Intuitively, if the number of ♡s in the sequence is sufficiently larger than
k, then the number of ♡s in the k draws approximately follows the binomial distribution
Bin(k, 1/2). Since we sample cards without replacement, our method requires only a single
shuffle to prepare the supplementary sequence for generating noise. It is important to note
that the number of ♡s in the sequence is actually a finite value. A technical challenge
is thus that the noise does not exactly follow the binomial distribution but follows the
hypergeometric distribution, which precisely describes the distribution of the number of ♡s in
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k draws without replacement from a sequence of cards containing equal numbers of ♡s and
♣s1. We present for the first time the differential privacy guarantee of a mechanism adding
noise drawn from the hypergeometric distribution, and also present a utility guarantee in
terms of the mean squared error (MSE). We believe that differentially private mechanisms
based on the hypergeometric distribution may be of independent interest beyond applications
to card-based cryptography.

1.2.2 Our Protocols Based on Randomized Response

Our second and third protocols are based on input perturbation. Specifically, we focus on a
traditional mechanism called Randomized Response [10, 24], which guarantees differential
privacy by having parties flip their input bits with a probability p = 1/(eϵ + 1). A technical
challenge here is how to implement biased coins using cards.

Our first realization is a direct implementation of the above procedure: We prepare n

supplementary sequences of ℓ cards each consisting of randomly permuted k ♡s and ℓ− k ♣s
such that p ≈ k/ℓ and let the i-th party privately open a card in the i-th sequence and flip his
input if and only if he draws ♡. In Section 5.1, we carefully analyze the impact of the finite
approximation of the probability p on differential privacy, which is not a straightforward
problem as there are known attacks on naïve implementations of algorithms assuming real
arithmetic [14].

A possible drawback of the above implementation is that the number of shuffle operations
grows linearly in the number n of parties since n supplementary sequences should be
independently prepared. To reduce the number of shuffles, we propose an alternative
implementation: We prepare one supplementary sequence consisting of randomly permuted
k ♡s and ℓ− k ♣s such that p ≈ k/ℓ and let the i-th party privately open the i-th card in
the sequence and flip his input if and only if he draws ♡. This method allows us to prepare
the supplementary sequence with only a single shuffle. On the other hand, a more careful
analysis of privacy and utility is necessary since the states of cards drawn by parties are no
more independent. Note that this kind of challenge has not been encountered in the prior
computer-based implementations of Randomized Response or its variants [24, 10, 23] where
parties can locally generate independent randomness.

Finally, both of the above implementations require parties to apply private reveals to
cards. While such private operations could be easily implemented in practice, it has also been
considered as theoretically important to construct protocols without any private operations
(i.e., those following the traditional model of card-based protocols [16]). We also show that
private operations can be removed by emulating the local computations done by parties with
card-based secure computation protocols. In the above implementations, parties need to
privately compute the XOR of their inputs and the states of cards drawn from supplementary
sequences. We emulate these computations with an efficient card-based XOR protocol
without any private operations [17]. As a result, we obtain variant protocols removing private
operations at the cost of doubling the number of cards and requiring n more shuffles. Note
that our first protocol based on the hypergeometric distribution can be described following
the model of [16] as it assumes no private operation.

1 The hypergeometric distribution can be defined in a more general setting where a sequence contains
different numbers of ♡s and ♣s.
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2 Preliminaries

Notations. For n ∈ N, define [n] = {i ∈ Z : 1 ≤ i ≤ n}. If a random variable z follows a
probability distribution D, we write z ← D. Let ln x denote the base-e logarithm of x, where
e is the Napiers constant.

2.1 Card-based Protocols
Card. In this paper, we use binary cards whose front sides are either ♣ or ♡ and back
sides are both ? . We assume that two cards with the same symbol are indistinguishable.
We use the encoding ♣ = 0 and ♡ = 1 throughout the paper except in Section 7.

Shuffle. A shuffle is an operation that applies a random permutation to a sequence of
face-down cards, where the permutation is chosen by some probability distribution. It is
assumed that no party guesses which permutation is chosen from the shuffle.

A complete shuffle is a shuffle that applies a uniformly random permutation to a sequence
of face-down cards, which is denoted by [·]. For example, a complete shuffle for a sequence of
three cards results in one of the six sequences each with probability 1/6 as follows:[ 1

?
2

?
3

?
]
→

1

?
2

?
3

? or
1

?
3

?
2

? or
2

?
3

?
1

? or
2

?
1

?
3

? or
3

?
1

?
2

? or
3

?
2

?
1

? .

A pile-scramble shuffle [12] is a shuffle that divides a sequence of cards into multiple piles
of the same number of cards and applies a random permutation to a sequence of piles, which
is denoted by [·| · · · |·]. For example, a pile-scramble shuffle for a sequence of three piles each
having two cards results in one of the six sequences each with probability 1/6 as follows:

[ 1

?
2

?
∣∣∣ 3

?
4

?
∣∣∣ 5

?
6

?
]
→



1

?
2

?
3

?
4

?
5

?
6

?
1

?
2

?
5

?
6

?
3

?
4

?
3

?
4

?
5

?
6

?
1

?
2

?
3

?
4

?
1

?
2

?
5

?
6

?
5

?
6

?
1

?
2

?
3

?
4

?
5

?
6

?
3

?
4

?
1

?
2

?

.

Protocol. Suppose that there are n parties each having an input xi ∈ D, where the input
domain D is a finite set. A card-based protocol consists of three phases: the setup phase,
the computation phase, and the output phase. In the setup phase, supplementary cards are
prepared. Using shuffles, they are drawn from a probability distribution independent of
parties’ inputs. Here, the front sides of them are hidden from all parties. In the computation
phase, parties repeat one of the following operations:

Input: Each party submits a face-down card according to his/her input. They are called
main cards. If necessary, it is allowed to perform private reveals for a subset of the
supplementary cards (e.g., [13, 20, 25]), where a designated party privately reads the
symbol of a face-down card.
Shuffle: A random permutation is applied to the current sequence of cards consisting of
the main cards and the supplementary cards. It is assumed that no party guesses which
permutation is chosen from the shuffle.
Insertion: Some of the supplementary cards are inserted to the main cards.
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12:6 Card-Based Cryptography Meets Differential Privacy

In the output phase, parties open all cards in the current sequence and determine the output
value. Note that if parties do not perform private reveals, then a protocol can be described
in the traditional model of card-based protocols [16].

We evaluate the space complexity of a card-based protocol Π by the total number of
cards used to execute Π, which we denote by #Card(Π). We also evaluate the computational
complexity of Π by the total number of shuffle operations since shuffling is the most costly
operation in practice [15]. We denote it by #Shuffle(Π).

2.2 Differential Privacy
Following the terminology in [3], we say that two n-dimensional vectors x = (xi)i∈[n],
x′ = (x′

i)i∈[n] are T -neighboring for a subset T ⊆ [n] if xi = x′
i for any i ∈ T and xi ̸= x′

i for
at most one i /∈ T . If x and x′ are ∅-neighboring, we simply say that they are neighboring.
For a finite set D, we define the sensitivity of a function f : Dn → Z as

∆ = max
x,x′∈Dn:

neighboring

|f(x)− f(x′)|.

We say that two probability distributions D1,D2 over a set U are (ϵ, δ)-DP close if for any
subset S ⊆ U , it holds that Pr[y ← D1 : y ∈ S] ≤ eϵ · Pr[y ← D2 : y ∈ S] + δ.

3 Differentially Private Card-based Protocols

We start with giving the definition of differential privacy of card-based protocols. Our
definition is inspired by the framework of [3] defining differential privacy of (non-card-based)
distributed protocols. In this paper, we consider an adversary corrupting a set T of at
most n − 1 parties. We assume that the adversary is semi-honest, that is, she tries to
learn information from her view during the protocol but does not deviate from the protocol
specifications. Let ViewΠ,T (x) denote the view of the adversary during the execution of
a card-based protocol Π on input x = (x1, . . . , xn), which consists of the inputs of the
corrupted parties and the information (e.g., the states of cards) that they can learn during
the execution of Π.

▶ Definition 1. Let ϵ, δ be non-negative numbers. We say that a card-based protocol Π is
(ϵ, δ)-differentially private if for any set T of at most n− 1 parties and any pair (x, x′) of
T -neighboring vectors, ViewΠ,T (x) and ViewΠ,T (x′) are (ϵ, δ)-DP close.

We evaluate the utility of a protocol Π with respect to a function f : Dn → Z by its
mean squared error (MSE) defined as

MSEf (Π) = max
x∈Dn

E
[
|Π(x)− f(x)|2

]
,

where Π(x) is a random variable corresponding to the output of Π on input x.
In this paper, we focus on the setting in which every party has a bit xi ∈ {0, 1} and they

compute the binary sum f(x1, . . . , xn) = x1 + · · · + xn. Note that the sensitivity of f is
∆ = 1.

4 Our Protocol Based on the Hypergeometric Distribution

The hypergeometric distribution is a probability distribution of the number Z of ♡s in k

cards chosen uniformly at random from a sequence consisting of m− ℓ ♣s and ℓ ♡s. Formally,
we define the distribution as follows:
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▶ Definition 2. Let k, ℓ, m be positive integers such that k ≤ ℓ and k + ℓ ≤ m. A random
variable Z follows the hypergeometric distribution HG(m, ℓ, k) if its probability mass function
is given by

Pr[Z = z] = pHG(z) =
(

ℓ
z

)(
m−ℓ
k−z

)(
m
k

) , z = 0, 1, . . . , k.

First, we show that hypergeometric distributions are able to provide differential privacy.

▶ Proposition 3. Let k, ℓ be positive integers such that k < ℓ, and α, β be real numbers such
that

α ≥ ℓ

ℓ− k
and β > 1.

Let f : Dn → Z be a function with sensitivity ∆. Let ϵ and δ be real numbers such that

ϵ ≥ ∆ ln (αβ) and δ ≥ exp
(
−k

2

(
β − 1
β + 1 −

2∆
k

)2
)

. (1)

Define a randomized algorithm M as

M(x) = f(x) + z, z ← HG(2ℓ, ℓ, k).

Then, for any pair (x, x′) of neighboring vectors, M(x) and M(x′) are (ϵ, δ)-DP close.

Proof. It is sufficient to show that

Pr[M(x) ∈ S] ≤ eϵ · Pr[M(x′) ∈ S] + δ

for any subset S ⊆ Z. Let y = f(x), y′ = f(x′). We assume that y ≤ y′. The case of
y ≥ y′ can be dealt with similarly. Since z ← HG(2ℓ, ℓ, k) takes values between 0 and k,
we may assume that S ⊆ {s ∈ Z : y ≤ s ≤ y′ + k}. Letting z0 = k/(β + 1), we decompose
S into three subsets: S1 = {s ∈ S : s ≤ y′ + z0}, S2 = {s ∈ S : y′ + z0 < s ≤ y + k}, and
S3 = {s ∈ S : y + k < s ≤ y′ + k}. We will show that

Pr[M(x) ∈ S1] ≤ δ and Pr[M(x) = s] ≤ eϵ · Pr[M(x′) = s] (∀s ∈ S2).

If this is shown, since Pr[M(x) ∈ S3] = Pr[z ← HG(2ℓ, ℓ, k) : z > k] = 0, we obtain that

Pr[M(x) ∈ S] ≤ Pr[M(x) ∈ S1] +
∑
s∈S2

Pr[M(x) = s]

≤ δ +
∑
s∈S2

eϵ · Pr[M(x′) = s]

≤ eϵ · Pr[M(x′) ∈ S] + δ.

First, since y′ ≤ y + ∆ and the mean of HG(2ℓ, ℓ, k) is kℓ/(2ℓ) = k/2, the Chernoff
inequality [5] implies that

Pr[M(x) ∈ S1] ≤
∑

0≤z≤∆+z0

pHG(z) ≤ exp(−2t2k),

where

t = 1
2 −

∆ + z0

k
= 1

2

(
β − 1
β + 1 −

2∆
k

)
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12:8 Card-Based Cryptography Meets Differential Privacy

We thus obtain that

Pr[M(x) ∈ S1] ≤ exp
(
−k

2

(
β − 1
β + 1 −

2∆
k

)2
)
≤ δ.

Next, let s ∈ S2 and set z = s− y, z′ = s− y′. We then obtain that max{z −∆, z0} ≤
z′ ≤ z ≤ k, and

Pr[M(x) = s]
Pr[M(x′) = s] = pHG(z)

pHG(z′)

=
(

ℓ
z

)(
ℓ

k−z

)(
ℓ
z′

)(
ℓ

k−z′

)
=

∏
z′<i≤z

k + 1− i

i

∏
ℓ−k+z′<i≤ℓ−k+z

2ℓ− k + 1− i

i

≤
(

k + 1
z′ + 1 − 1

)z−z′ (
2ℓ− k + 1

ℓ− k + z′ + 1 − 1
)z−z′

≤
(

k

z0
− 1
)z−z′

αz−z′
(∵ z′ ≥ z0)

= (αβ)z−z′
.

Here, we use the fact that

ℓ ≥ α

α− 1k ≥ α

α− 1(k − 1)− α + 1
α− 1z0

and hence (ℓ− z0)/(ℓ− k + z0 + 1) ≤ α. Since αβ > 1, we obtain that

Pr[M(x) = s]
Pr[M(x′) = s] ≤ (αβ)∆ ≤ eϵ ◀

We show a protocol ΠHG
k,ℓ based on the hypergeometric distribution in Figure 1. The

following theorem shows the differential privacy, MSE and complexities of ΠHG
k,ℓ .

▶ Theorem 4. Let ϵ, δ be positive real numbers such that δ < 1/
√

e. Let k, ℓ be integers such
that

k ≥ 4
(

eϵ + 1 + ϵ

eϵ − 1− ϵ

)2
ln 1

δ
+ 2(eϵ + 1 + ϵ)

eϵ − 1− ϵ
and ℓ ≥

(
1 + 1

ϵ

)
k. (2)

Then, the protocol ΠHG
k,ℓ satisfies (ϵ, δ)-differential privacy. The MSE of ΠHG

k,ℓ with respect to
f : {0, 1}n ∋ (xi)i∈[n] 7→

∑
i∈[n] xi ∈ Z is

MSEf (ΠHG
k,ℓ ) = k(2ℓ− k)

4(2ℓ− 1) . (3)

The complexities of ΠHG
k,ℓ are

#Card(ΠHG
k,ℓ ) = n + 2ℓ = n + O

(
e2ϵ

ϵ(eϵ − 1− ϵ)2 ln 1
δ

)
and #Shuffle(ΠHG

k,ℓ ) = 2.
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Setup: Arrange a sequence of 2ℓ face-down cards consisting of ℓ ♡ s and ℓ ♣ s:

♣ ♣ · · · ♣︸ ︷︷ ︸
ℓ cards

♡ ♡ · · · ♡︸ ︷︷ ︸
ℓ cards

→ ? ? · · · ?︸ ︷︷ ︸
2ℓ cards

.

Apply a complete shuffle to the sequence:[
? ? · · · ?

]
→ ? ? · · · ? .

We set them as supplementary cards.
Input: Following the encoding rule ♣ = 0 and ♡ = 1, the i-th party submits a face-down

card corresponding to xi. Then we have the following sequence of cards:

?
x1

?
x2

· · · ?
xn

.

We set them as main cards.
Insertion: Append any k out of the 2ℓ supplementary cards (e.g., the leftmost k cards) to

the main cards:

? ? · · · ?︸ ︷︷ ︸
main cards

? ? · · · ?︸ ︷︷ ︸
k cards

.

Shuffle: Apply a complete shuffle to the sequence of the n + k cards:[
? ? · · · ?

]
→ ? ? · · · ? .

Output: Open all the n + k cards:

? ? ? ? ? · · · ? → ♡ ♡ ♣ ♡ ♣ · · · ♡ .

Output y − k/2, where y is the number of ♡ in the opened cards.

Figure 1 A protocol ΠHG
k,ℓ .

Proof. First, we show the differential privacy of the protocol ΠHG
k,ℓ . Let T be a set of

corrupted parties such that |T | ≤ n − 1, and let x = (xi)i∈[n], x′ = (x′
i)i∈[n] ∈ {0, 1}n be

T -neighboring inputs. Define Y (resp. Y ′) be random variables corresponding to the number
y computed during the execution of ΠHG

k,ℓ on input x (resp. x′). Note that xi = x′
i for all

i ∈ T and the cards opened during the protocol are a uniformly random permutation of y

♡s and n + k − y ♣s. Thus, the distributions of ViewΠHG
k,ℓ

,T (x) and ViewΠHG
k,ℓ

,T (x′) can be
simulated from Y and Y ′, respectively. From the post-processing property of differential
privacy, it is sufficient to show that Y and Y ′ are (ϵ, δ)-DP close.

If parties’ inputs are x, then the number of ♡s included in the main cards is f(x) just
after all parties submit their cards. Furthermore, the number of ♡s included in k cards
drawn from supplementary cards follows the distribution HG(2ℓ, ℓ, k). Thus, the number Y

of ♡s included in the main cards at the end of the protocol follows the same distribution as
M(x) = f(x) + z, z ← HG(2ℓ, ℓ, k). Similarly, Y ′ follows the same distribution as M(x′).
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Define α and β as α = ℓ/(ℓ− k) and β = eϵ/(1 + ϵ), respectively. Since ϵ > 0, we have
that β > 1. Furthermore, since ℓ ≥ (1 + ϵ−1)k, it holds that α ≤ 1 + ϵ. We then obtain that

αβ ≤ eϵ. (4)

We will show that

k

2

(
eϵ − 1− ϵ

eϵ + 1 + ϵ
− 2

k

)2
≥ ln δ−1. (5)

If this is shown, the condition (4) and the assumption that the sensitivity of f is ∆ = 1 imply
the condition (1), and hence it follows from Proposition 3 that Y and Y ′ are (ϵ, δ)-DP close.
Let

a = eϵ − 1− ϵ

eϵ + 1 + ϵ
, b =

√
2 ln δ−1, and t =

√
k.

Then, the condition (5) is equivalent to (at− 2/t)2 ≥ b2, i.e., at2 − bt− 2 ≥ 0. Furthermore,
it is equivalent to

k = t2 ≥ b2

2a2

(
1 +

√
1 + 8a

b2

)
+ 2

a
.

Since δ ≤ 1/
√

e, we have that a ≤ 1 and b ≥ 1. Thus, it holds that

b2

2a2

(
1 +

√
1 + 8a

b2

)
+ 2

a
≤ 2b2

a2 + 2
a

= 4
(

eϵ + 1 + ϵ

eϵ − 1− ϵ

)2
ln 1

δ
+ 2(eϵ + 1 + ϵ)

eϵ − 1− ϵ
.

The condition (5) then follows from the condition (2).
Finally, we analyze the utility of ΠHG

k,ℓ . If parties’ inputs are x, the output of the protocol
is given as y−k/2 = f(x)+z−k/2, z ← HG(2ℓ, ℓ, k). Since the mean of the hypergeometric
distribution HG(2ℓ, ℓ, k) is k/2, MSEf (ΠHG

k,ℓ ) is equal to the variance of HG(2ℓ, ℓ, k). We
therefore obtain (3). ◀

5 Our Protocols Based on Randomized Response

Randomized Response [10, 24] guarantees differential privacy by having parties flip their
input bits with a certain probability p. Specifically, for a privacy parameter ϵ > 0, let p be
such that

1
eϵ + 1 ≤ p <

1
2 . (6)

We define an algorithm Rp as follows: On input x ∈ {0, 1}, Rp chooses r ∈ {0, 1} according
to the Bernoulli distribution with parameter p, i.e.,

Pr[r = 1] = p and Pr[r = 0] = 1− p,

and then outputs y = x ⊕ r. The condition (6) implies that Pr[Rp(x) = b] ≤ eϵ ·
Pr[Rp(1− x) = b] for any x, b ∈ {0, 1}. Hence Rp(0) and Rp(1) are (ϵ, 0)-DP close.



R. Eriguchi, K. Shinagawa, and T. Murakami 12:11

Setup: Arrange n sequences of ℓ face-down cards each consisting of k ♡ s and ℓ− k ♣ s:

♡ ♡ · · · ♡︸ ︷︷ ︸
k cards

♣ ♣ · · · ♣︸ ︷︷ ︸
ℓ− k cards

→ ? ? · · · ?︸ ︷︷ ︸
ℓ cards

.

Apply a complete shuffle to each of the n sequences:[
? ? · · · ?

]
→ ? ? · · · ? .

We set the whole sequence as supplementary cards, and call the i-th sub-sequence as
the i-th sequence of the supplementary cards.

Input: The i-th party performs a private reveal for any card (e.g., the leftmost one) in
the i-th sequence of the supplementary cards. Let ri ∈ {♣,♡} be the opened symbol.
Following the encoding rule ♣ = 0 and ♡ = 1, the i-th party submits a face-down card
corresponding to xi ⊕ ri. Then we have the following sequence of cards:

?
x1⊕r1

?
x2⊕r2

· · · ?
xn⊕rn

.

We set them as main cards.
Output: Open all the n cards:

? ? ? ? ? · · · ? → ♡ ♣ ♣ ♡ ♡ · · · ♣ .

Output z = y−nk/ℓ
1−2k/ℓ , where y is the number of ♡ in the opened cards.

Figure 2 A protocol ΠRR
k,ℓ .

5.1 A Direct Implementation
Our first realization, denoted by ΠRR

k,ℓ , is a direct implementation of the above procedure:
We prepare n sequences each consisting of randomly permuted k ♡s and ℓ− k ♣s such that
p ≈ k/ℓ and let the i-th party privately open a card in the i-th sequence and flip his input if
and only if he draws ♡. The formal description of ΠRR

k,ℓ is given in Figure 2.
The following theorem shows the differential privacy, MSE and complexities of ΠRR

k,ℓ .

▶ Theorem 5. Let ϵ be a positive real number. Let k, ℓ be integers such that

ℓ ≥ 3(eϵ + 1)
eϵ − 1 and 1

eϵ + 1 ≤ p := k

ℓ
≤ eϵ + 2

3(eϵ + 1) . (7)

Then, the protocol ΠRR
k,ℓ satisfies (ϵ, 0)-differential privacy. The MSE of ΠRR

k,ℓ with respect to
f : {0, 1}n ∋ (xi)i∈[n] 7→

∑
i∈[n] xi ∈ Z satisfies

MSEf (ΠRR′

k,ℓ ) = np(1− p)
(1− 2p)2 ≤

n(eϵ + 2)(2eϵ + 1)
(eϵ − 1)2 .

The complexities of ΠRR
k,ℓ are

#Card(ΠRR
k,ℓ ) = n(ℓ + 1) = O

(
neϵ

eϵ − 1

)
and #Shuffle(ΠRR

k,ℓ ) = n.
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Proof. To begin with, it holds that
eϵ + 2

3(eϵ + 1) −
1

eϵ + 1 = eϵ − 1
3(eϵ + 1) ≥

1
ℓ

.

Hence, there indeed exists integers k, ℓ satisfying the condition (7).
To see the differential privacy of the protocol ΠRR

k,ℓ , let Yi(x) denote a random variable
corresponding to the state of the card that the i-th party submits to main cards when
parties’ inputs are x. Let T be a set of corrupted parties such that |T | ≤ n − 1, and
let x = (xi)i∈[n], x′ = (x′

i)i∈[n] ∈ {0, 1}n be T -neighboring inputs. For any i ∈ [n], the
distribution of the state ri of the card that the i-th party draws from supplementary
cards is given as Pr[ri = ♣] = 1− p and Pr[ri = ♡] = p. Furthermore, since the 1-to-n-th
sub-sequences are prepared independently, r1, . . . , rn are independent. Thus, if we encode
♡ = 1,♣ = 0, then Yi(x) = Rp(xi). Similarly, we have that Yi(x′) = Rp(x′

i). We also have
that p < 1/2 since

1
2 −

eϵ + 2
3(eϵ + 1) = eϵ − 1

6(eϵ + 1) > 0.

The condition (6) is then satisfied and the differential privacy of the algorithm Rp implies that
(Yi(x))i/∈T and (Yi(x′))i/∈T are (ϵ, 0)-DP close. The adversarys view during the execution
of the protocol on input x (resp. x′) can be simulated from ((xi)i∈T , (Yi(x))i/∈T ) (resp.
((xi)i∈T , (Yi(x))i/∈T )). Since xi = x′

i (∀i ∈ T ), the post-processing property implies that ΠRR
k,ℓ

is (ϵ, 0)-differentially private.
To analyze the utility of ΠRR

k,ℓ , let x ∈ {0, 1}n. For ease of notations, we write Yi =
Yi(x), s =

∑
i∈[n] xi. Note that Yi = 1 if and only if the i-th party submits ♡ to main cards,

and Yi = 0 if and only if he submits ♣. Furthermore,
∑

i∈[n] Yi is equal to the total number
y of ♡s included in main cards.

Since x2 = x if x ∈ {0, 1}, the expectation and variance of Yi are given by

E[Yi] = 1 · Pr[Yi = 1] = (1− 2p)xi + p and
Var[Yi] = E

[
Y 2

i

]
− (E[Yi])2 = p(1− p) + (1− 2p)2xi − (1− 2p)2x2

i = p(1− p).

Since E
[
(
∑

i∈[n] Yi − np)/(1− 2p)
]

= s, the expectation of an output z of ΠRR
k,ℓ is s = f(x).

Hence, MSEΠRR′
k,ℓ

(f) is given by the variance of z. Since the 1-to-n-th sub-sequences of
supplementary cards are prepared independently, Y1, . . . , Yn are independent and

Var[z] = 1
(1− 2p)2 Var

∑
i∈[n]

Yi

 = 1
(1− 2p)2

∑
i∈[n]

Var [Yi] = np(1− p)
(1− 2p)2 .

On the other hand, g(t) := t(1− t)/(1− 2t)2 is monotonically increasing with respect to t.
We therefore conclude that Var[z] ≤ n(eϵ + 2)(2eϵ + 1)/(eϵ − 1)2. ◀

5.2 Reducing the Number of Shuffles
A possible drawback of our first realization is that the number of shuffles grows linearly in
the number of parties. In this section, we propose an alternative implementation denoted
by ΠRR′

k,ℓ : We prepare one supplementary sequence consisting of randomly permuted k ♡s
and ℓ − k ♣s such that p ≈ k/ℓ and let the i-th party privately open the i-th card in the
sequence and flip his input if and only if he draws ♡. The formal description of ΠRR′

k,ℓ is given
in Figure 3.

The following theorem shows the differential privacy, MSE and complexities of ΠRR′

k,ℓ .
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Setup: Arrange a sequence of ℓ face-down cards consisting of k ♡ s and ℓ− k ♣ s:

♡ ♡ · · · ♡︸ ︷︷ ︸
k cards

♣ ♣ · · · ♣︸ ︷︷ ︸
ℓ− k cards

→ ? ? · · · ?︸ ︷︷ ︸
ℓ cards

.

Apply a complete shuffle to the sequence:[
? ? · · · ?

]
→ ? ? · · · ? .

We set them as supplementary cards.
Input: The i-th party performs a private reveal for the i-th card in the supplementary

cards. Let ri ∈ {♣,♡} be the opened symbol. Following the encoding rule ♣ = 0 and
♡ = 1, the i-th party submits a face-down card corresponding to xi ⊕ ri. Then we have
the following sequence of cards:

?
x1⊕r1

?
x2⊕r2

· · · ?
xn⊕rn

.

We set them as main cards.
Output: Open all the n cards:

? ? ? ? ? · · · ? → ♡ ♣ ♣ ♡ ♡ · · · ♣ .

Output z = y−nk/ℓ
1−2k/ℓ , where y is the number of ♡ in the opened cards.

Figure 3 A protocol ΠRR′
k,ℓ .

▶ Theorem 6. Let ϵ be a positive real number and assume that n ≥ 2. Let k, ℓ be integers
such that

α := n

ℓ
≤ eϵ − 1

5eϵ
and 1 + αeϵ

eϵ + 1 ≤ p := k

ℓ
≤ 1 + 2αeϵ

eϵ + 1 . (8)

Then, the protocol ΠRR′

k,ℓ satisfies (ϵ, 0)-differential privacy. The MSE of ΠRR′

k,ℓ with respect to
f : {0, 1}n ∋ (xi)i∈[n] 7→

∑
i∈[n] xi ∈ Z satisfies

MSEf (ΠRR
k,ℓ ) ≤ 25n(1 + 2αeϵ)(1− 2α)(1 + 4α)eϵ

(eϵ − 1)2 .

The complexities of ΠRR′

k,ℓ are

#Card(ΠRR′

k,ℓ ) = n + ℓ = O

(
neϵ

eϵ − 1

)
and #Shuffle(ΠRR′

k,ℓ ) = 1.

Proof. To begin with, it holds that

1 + 2αeϵ

eϵ + 1 − 1 + αeϵ

eϵ + 1 ≥
1
ℓ

. (9)

Indeed, since α = n/ℓ, the inequality (9) is equivalent to n ≥ (eϵ + 1)/eϵ. Since n ≥ 2 and
2eϵ > eϵ + 1, (9) actually holds. Thus, there exists an integer k satisfying the condition (8).

To see the differential privacy of the protocol ΠRR′

k,ℓ , let T be a set of corrupted parties
such that |T | ≤ n− 1, and let x = (xi)i∈[n], x′ = (x′

i)i∈[n] ∈ {0, 1}n be T -neighboring inputs.
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12:14 Card-Based Cryptography Meets Differential Privacy

Let H = [n] \ T . Then xi ̸= x′
i for some i ∈ H. We assume that xi = 0, x′

i = 1. The case
of xi = 1, x′

i = 0 can be dealt with similarly. Let Hi = H \ {i}. For j ∈ [n], define Rj as a
random variable corresponding to the state rj ∈ {♣,♡} of the card that the j-th party draws
from supplementary cards. For j ∈ [n], define Yj(x) as a random variable corresponding to
the state of the card that the j-th party submits when parties’ inputs are x. Similarly, we
define Yj(x′) as a corresponding random variable when parties’ inputs are x′. For a subset
S ⊆ [n], we denote RS = (Rj)j∈S , YS(x) = (Yj(x))j∈S , YS(x′) = (Yj(x′))j∈S .

Then, the joint view of corrupted parties in T is given as ViewΠRR
k,ℓ

,T (x) = (YH(x), RT )
and ViewΠRR

k,ℓ
,T (x′) = (YH(x′), RT ). For any outcome (yH , rT ) of (YH(x), RT ), it holds that

Pr
[
ViewΠRR

k,ℓ
,T (x) = (yH , rT )

]
= Pr[RT = rT ] Pr[YH(x) = yH |RT = rT ]

= Pr[RT = rT ] ·
∑
rHi

Pr[RHi = rHi ] Pr[YH(x) = yH |RT = rT , RHi = rHi ],

where rHi
ranges over the set of all outcomes of RHi

. Since YHi
(x) is uniquely determined

by RHi , we have that

Pr
[
ViewΠRR

k,ℓ
,T (x) = (yH , rT )

]
= Pr[RT = rT ] ·

∑
rHi

Pr[RHi
= rHi

] Pr
[
Yi(x) = yi

∣∣R[n]\{i} = r[n]\{i}
]
.

Let

P (yi) = Pr
[
Yi(x) = yi

∣∣R[n]\{i} = r[n]\{i}
]

and
P ′(yi) = Pr

[
Yi(x′) = yi

∣∣R[n]\{i} = r[n]\{i}
]
.

Suppose that r[n]\{i} is composed of n− 1− j ♣s and j ♡s. Since we assume that xi = 0 = ♣
and x′

i = 1 = ♡, P (♣) and P ′(♡) are equal to the probability of the event that the i-th
party draws ri = ♣ from supplementary cards, and hence we obtain that

P (♣) = P ′(♡) = ℓ− n + 1− k + j

ℓ− n + 1 .

In addition, P (♡) and P ′(♣) are equal to the probability of the event that the i-th party
draws ri = ♡ from supplementary cards, and hence we have that

P (♡) = P ′(♣) = k − j

ℓ− n + 1 .

Therefore, it holds that

P (yi)
P ′(yi)

≤ max
{

k − j

ℓ− n + 1− k + j
,

ℓ− n + 1− k + j

k − j

}
.

Since 0 ≤ j ≤ n− 1, we obtain that

P (yi)
P ′(yi)

≤ max
{

k

ℓ− n + 1− k
,

ℓ− k

k − n + 1

}
= max

{
p

(1− p)− (n− 1)/ℓ
,

1− p

p− (n− 1)/ℓ

}
≤ max

{
p

(1− p)− α
,

1− p

p− α

}
.
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On the other hand, we have that

max
{

p

(1− p)− α
,

1− p

p− α

}
≤ eϵ ⇐⇒ αeϵ + 1

eϵ + 1 ≤ p ≤ (1− α)eϵ

eϵ + 1

and

(1− α)eϵ

eϵ + 1 ≥ 1 + 2αeϵ

eϵ + 1 ⇐⇒ n

ℓ
≤ eϵ − 1

3eϵ
.

Thus, it follows from the condition (8) that P (yi) ≤ eϵ · P ′(yi). We therefore conclude that

Pr
[
ViewΠRR

k,ℓ
,T (x) = (yH , rT )

]
= Pr[RT = rT ]

∑
rHi

Pr[RHi
= rHi

]P (yi)

≤ Pr[RT = rT ]
∑
rHi

Pr[RHi
= rHi

]eϵP ′(yi)

= eϵ Pr[RT = rT ] ·
∑
rHi

Pr[RHi
= rHi

] Pr
[
Yi(x′) = yi

∣∣R[n]\{i} = r[n]\{i}
]

= eϵ Pr
[
ViewΠRR

k,ℓ
,T (x′) = (yH , rT )

]
.

To analyze the utility of the protocol, let x ∈ {0, 1}n. For ease of notations, we write
Yi = Yi(x), s =

∑
i∈[n] xi. Note that Yi = 1 if and only if the i-th party submits ♡ to main

cards, and Yi = 0 if and only if the i-th party submits ♣. Furthermore,
∑

i∈[n] Yi is equal to
the total number y of ♡s included in main cards.

The expectations of Yi and Y 2
i are

E[Yi] = 1 · Pr[Yi = 1] = (1− 2p)xi + p and E
[
Y 2

i

]
= 12 · Pr[Yi = 1] = (1− 2p)xi + p.

In particular, the expectation of an output z of ΠRR′

k,ℓ is s = f(x) and hence MSEΠRR
k,ℓ

(f) is
equal to the variance of z.

Since x2 = x if x ∈ {0, 1}, the variance of Yi is

Var[Yi] = E
[
Y 2

i

]
− (E[Yi])2 = p(1− p) + (1− 2p)2xi − (1− 2p)2x2

i = p(1− p).

For any i ̸= j, if xi = xj = 0, then

Pr[Yi = 1, Yj = 1] =
(

ℓ−2
k−2
)(

ℓ
k

) = k(k − 1)
ℓ(ℓ− 1) =: a1.

If xi = 1, xj = 0 or xi = 0, xj = 1, then

Pr[Yi = 1, Yj = 1] =
(

ℓ−2
k−1
)(

ℓ
k

) = k(ℓ− k)
ℓ(ℓ− 1) =: a2.

If xi = xj = 1, then

Pr[Yi = 1, Yj = 1] =
(

ℓ−2
k

)(
ℓ
k

) = (ℓ− k)(ℓ− k − 1)
ℓ(ℓ− 1) =: a3.

We have that

E[YiYj ] = Pr[Yi = 1, Yj = 1] = (1 − xi)(1 − xj)a1 + ((1 − xi)xj + xi(1 − xj))a2 + xixja3.
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Thus, the covariance of Yi and Yj is

Cov[Yi, Yj ] = E[YiYj ] − E[Yi]E[Yj ]

= (a1 − p2) + (−a1 + a2 − (1 − 2p)p)(xi + xj) + (a1 − 2a2 + a3 − (1 − 2p)2)xixj

= − k(ℓ − k)
ℓ2(ℓ − 1) + 2k(ℓ − k)

ℓ2(ℓ − 1) (xi + xj) − 4k(ℓ − k)
ℓ2(ℓ − 1) xixj

We thus obtain that

Var

∑
i∈[n]

Yi

 =
∑
i∈[n]

Var[Yi] +
∑
i ̸=j

Cov[Yi, Yj ]

= p(1 − p)n − k(ℓ − k)
ℓ2(ℓ − 1)n(n − 1) + 4k(ℓ − k)

ℓ2(ℓ − 1) (n − 1)s − 4k(ℓ − k)
ℓ2(ℓ − 1)

∑
i ̸=j

xixj

≤ p(1 − p)n + 4p(1 − p)
ℓ

n2

≤ (1 + 2αeϵ)(eϵ − 2αeϵ)
(eϵ + 1)2 (1 + 4α)n.

On the other hand, the condition (8) implies that

1− 2p ≥ 1− 2(1 + 2αeϵ)
eϵ + 1 = eϵ − 1− 4αeϵ

eϵ + 1 ≥ eϵ − 1
5(eϵ + 1) > 0.

Thus, the variance of z is upper bounded by

Var
[∑

i∈[n] Yi − np

1− 2p

]
= 1

(1− 2p)2 Var

∑
i∈[n]

Yi

 ≤ 25n(1 + 2αeϵ)(1− 2α)(1 + 4α)eϵ

(eϵ − 1)2 . ◀

6 Performance Evaluation

We evaluate our proposed protocols based on the following performance metrics:
Number of cards: The total number of main cards and supplementary cards.
Error: The mean squared error with respect to the binary sum f(x1, . . . , xn) =

∑
i∈[n] xi.

Number of shuffles: The total number of shuffles in the protocol, including the preparation
of supplementary cards.

Table 1 in Section 1.1 shows the performance of our protocols in the asymptotic setting
where ϵ → 0. Here, we use the approximation eϵ ≈ 1 + ϵ + ϵ2/2. We set k and ℓ to the
minimum integers that satisfy the conditions in Theorems 4, 5, and 6.

Figure 4 shows the performance of our protocols for concrete values of n, ϵ, and δ. We
set n ∈ {100, 1000}, ϵ ∈ {0.1, 0.2, . . . , 1, 1.2, . . . , 5.0}, and δ = 10−6, and plot the number of
cards and the MSE.

Below, we highlight the advantage of each of the protocols ΠHG
k,ℓ , ΠRR

k,ℓ , and ΠRR′

k,ℓ .

ΠHG
k,ℓ : The error and the number of shuffles do not depend on n. The additive overhead in
the number of cards, i.e., O(ϵ−5 ln δ−1), is independent of n. In contrast, ΠRR

k,ℓ and ΠRR′

k,ℓ

suffer from a larger number of cards and a larger error when n becomes larger, as shown
in Figure 4.

ΠRR
k,ℓ : When ϵ is close to 0, ΠRR

k,ℓ achieves a smaller number of cards and a smaller error
than ΠHG

k,ℓ and ΠRR′

k,ℓ , as shown in Figure 4. In addition, ΠRR
k,ℓ achieves pure differential

privacy (i.e., δ = 0).



R. Eriguchi, K. Shinagawa, and T. Murakami 12:17

0 1 2 3 4 5
²

102

103

104

105

106

107

108

109
N

um
be

r o
f c

ar
ds

¦HGk; `

¦RRk; `

¦RR
0

k; `

(a) Number of cards (n = 100)

0 1 2 3 4 5
²

102

103

104

105

106

107

108

109

N
um

be
r o

f c
ar

ds

¦HGk; `

¦RRk; `

¦RR
0

k; `

(b) Number of cards (n = 1000)

0 1 2 3 4 5
²

100
101
102
103
104
105
106
107

M
SE

¦HGk; `

¦RRk; `

¦RR
0

k; `

(c) MSE (n = 100)

0 1 2 3 4 5
²

100
101
102
103
104
105
106
107

M
SE

¦HGk; `

¦RRk; `

¦RR
0

k; `

(d) MSE (n = 1000)

Figure 4 The number of cards and MSE of our protocols.

ΠRR′

k,ℓ : The number of shuffles is only one. ΠRR′

k,ℓ achieves asymptotically the same upper
bound on the number of cards and the error as ΠRR

k,ℓ . It also achieves pure differential
privacy (i.e., δ = 0).

7 Removing Private Operations

In the protocols ΠRR
k,ℓ and ΠRR′

k,ℓ , parties need to perform private reveals and privately decide
which cards to submit based on the results. While such private operations could be easily
realized in practice, it has also been considered as theoretically important to construct
protocols without any private operations in the literature (i.e., those following the traditional
model of card-based protocols [16]). In this section, we show a variant Π̃RR

k,ℓ (resp. Π̃RR′

k,ℓ ) of
ΠRR

k,ℓ (resp. ΠRR′

k,ℓ ) where parties do not perform private reveals at the cost of doubling the
number of cards and requiring n more shuffles. Note that the protocol ΠHG

k,ℓ can be described
following the model of [16] as it assumes no private operation.

Our solution is to emulate private XOR operations done by each party with an existing
XOR protocol without private reveals [17]. To this end, we first modify a way of encoding
bits: We encode 0 into a pair of cards ♣ ♡ and 1 into ♡ ♣ , instead of encoding 0 into ♣
and 1 into ♡ . To preserve the structure of encoding, we consider a pair of cards encoding a
bit as a minimum unit. In particular, we replace every complete shuffle with a pile-scramble
shuffle. That is, whenever we shuffle m cards in ΠRR

k,ℓ and ΠRR′

k,ℓ , we shuffle m pairs of cards
in such a way that the pairs are uniformly permuted but the order of cards in each pair is
preserved.
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12:18 Card-Based Cryptography Meets Differential Privacy

Next, the XOR protocol in [17] allows parties to perform the following conversion of
cards:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

→ ? ?︸ ︷︷ ︸
a⊕ b

.

In the above protocol, parties do not perform any private operation, and the trace of states
of cards is independent of inputs a, b or an output a ⊕ b.2 We modify ΠRR

k,ℓ and ΠRR′

k,ℓ as
follows: Whenever a party randomizes his input bit, he first submits a pair of face-down
cards encoding xi, picks a pair of face-down cards encoding a random bit ri, and then
computes their XOR with the protocol in [17]. Since the XOR protocol in [17] requires no
additional card and only one pile-scramble shuffle, the cost for executing n instances of the
XOR protocol is n pile-scramble shuffles.

Finally, observe that the final states of odd-numbered cards in main cards in Π̃RR
k,ℓ and

Π̃RR′

k,ℓ is equal to the final states of main cards in the original protocols ΠRR
k,ℓ and ΠRR′

k,ℓ ,
respectively. We thus calculate the number y of ♡s in the odd-numbered cards and output
z = y−nk/ℓ

1−2k/ℓ .
The security of the XOR protocol ensures that the trace of states visible to parties is

simulated from that of ΠRR
k,ℓ or ΠRR′

k,ℓ . Hence, the resultant protocols Π̃RR
k,ℓ and Π̃RR′

k,ℓ achieve
the same level of differential privacy and MSE as the original protocols. On the other hand,
due to the structure of encoding and the additional shuffles to execute the XOR protocol,
the complexities of Π̃RR

k,ℓ and Π̃RR′

k,ℓ are given as follows:

#Card(Π̃RR
k,ℓ ) = 2n(ℓ + 1) = O

(
neϵ

eϵ − 1

)
, #Shuffle(Π̃RR

k,ℓ ) = 2n,

#Card(Π̃RR′

k,ℓ ) = 2(n + ℓ) = O

(
neϵ

eϵ − 1

)
, and #Shuffle(Π̃RR′

k,ℓ ) = n + 1.
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A The XOR Protocol in [17]

Mizuki and Sone [17] proposed the following four-card XOR protocol, which takes commit-
ments to a, b with the two-card encoding ♣ ♡ = 0, ♡ ♣ = 1 and outputs a commitment
to a⊕ b without additional cards:

1. Arrange the input commitments as follows:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

.

2. Rearrange the order of the sequence as follows:

? ? ? ?
❅❅❘��✠

? ? ? ? .

3. Apply a pile-scramble shuffle with two piles (also known as a random bisection cut):

[ 1

?
2

?
∣∣∣ 3

?
4

?
]
→


1

?
2

?
3

?
4

?
3

?
4

?
1

?
2

?
.

4. Rearrange the order of the sequence as follows:

? ? ? ?
❅❅❘��✠

? ? ? ? .

5. Reveal the leftmost two cards and determine the output commitment as follows:

♣ ♡ ? ?︸ ︷︷ ︸
a⊕b

or ♡ ♣ ? ?︸ ︷︷ ︸
a⊕b

.
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conventional methods, achieved through a partial index occupying a mere 5% of the text size.
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In other words, the study reveals that, interestingly, strategically introducing fake samples within
the sampled sequence slashes the required index space by almost half, just avoid compromising
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matching in academic circles, involves the task of identifying every occurrence of a given
pattern x, spanning a length of m, within a text y, stretching to a length of n. Both sequences
are crafted from characters drawn from an alphabet Σ of size σ.

While the methods for storing data may vary, textual data remains a stalwart pillar of
information storage. This reliance is particularly evident in literature and linguistics, where
data take the form of vast corpora and extensive dictionaries. Yet, this reliance extends into
the realm of computer science, where vast volumes of data are stored in linear files. Even in
the domain of molecular biology, where biological entities are often simplified to sequences of
nucleotides or amino acids, the need for swift text-searching solutions persists, propelling
researchers to seek ever-faster methodologies.

Applications necessitate two distinct approaches: online and offline string matching. The
former contends with unprocessed text, demanding real-time scrutiny during the search
operation. Its worst-case time complexity clocks in at Θ(n), a milestone initially conquered by
the venerable Knuth-Morris-Pratt (KMP) algorithm [16]. However, the holy grail of average
time complexity, Θ( n logσ m

m ) [20], finds its manifestation in the Backward-Dawg-Matching
(BDM) algorithm [4], a gem in the algorithmic crown.

While legions of string matching algorithms strive for sub-linear performance in practice [5],
the Boyer-Moore-Horspool algorithm [2,13] deserves a standing ovation for its resounding
success and the avalanche of subsequent research it has inspired.

On the flip side, solutions embracing the second approach aim to expedite searches through
judicious preprocessing, erecting data structures that render search operations a breeze, at
least proportional to the pattern’s length. Dubbed indexed searching, this methodology
enjoys a cornucopia of efficient solutions. Notable mentions include those leveraging suffix
trees [1], boasting a O(m + occ) worst-case time, suffix arrays [17], offering a respectable
O(m+log n+occ) [17], and the formidable FM-index [12] (Full-text index in Minute space), a
compressed titan born of the Burrows-Wheeler transform, deftly balancing input compression
with swift substring queries.

But ah, the catch! Despite their dazzling time performance2, the voracious appetite for
space exhibited by full-index data structures, such as suffix-trees and suffix-arrays, dwarfs
that of the text itself, ranging from 4 to 20 times its girth. And while the FM-Index appears
leaner, often weighing in at less than the text’s own bulk, its construction demands almost
as much space as a full-index, leaving many practical applications gasping for breath.

Fear not, for the sampled string matching emerges as the solution to our space-hungry
conundrum, offering a ray of hope amidst the darkness of bloated data structures!

1.1 Sampled String Matching
A more apt remedy for the quandary lies in the realm of sampled string matching, first
delineated by Vishkin in 1991 [19]. Here, the strategy involves fashioning a succinct sampled
version of the text and then applying any online string matching algorithm directly onto
this trimmed version. While this technique may unearth potential pattern occurrences more
swiftly, the caveat is that each discovery within the sampled text necessitates subsequent
validation within the original corpus. Nonetheless, a sampled-text approach flaunts several
virtues: firstly, it often boasts ease of implementation, standing head and shoulders above its
more labyrinthine counterparts. Secondly, it exhibits a penchant for parsimony, requiring

2 A fast offline solution’s search speed is as swift as a cheetah’s sprint, typically under 1 millisecond per
query.
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only a trifling amount of additional space. Moreover, it’s no slouch in the speed department,
often zipping through searches. Furthermore, it’s not averse to updates, allowing for swift
alterations to the underlying data structure.

Besides Vishkin’s theoretical breakthrough, a more pragmatic incarnation of sampled
string matching has emerged, courtesy of Claude et al. [3], leveraging an alphabet reduction
technique (OTS). Their brainchild touts an extra space overhead of a mere 14% of the text’s
size, while clocking in at speeds up to 5 times faster than traditional online string matching
algorithms on English texts. It thus earns its stripes as one of the premier solutions for such
search approach.

Their ingenuity doesn’t stop there. They’ve also dabbled in indexing the sampled text,
concocting a sampled suffix array by indexing the sampled positions of the text. Although
reminiscent of the sparse suffix array [14], this variant dances to its own beat, with divergent
sampling properties birthing distinct search algorithms and performance metrics.

More recently, Faro et al. have injected a dose of innovation into the sampling sphere
with their Character Distance Sampling (CDS) approach [7–11]. In practical terms, through
sampling absolute positions of some specific characters in the text, called pivot characters,
their method has yielded speedups of up to a factor of 9 on English texts, while demanding a
mere pittance of additional space, ranging from 11% to 2.8% of the text’s size. This translates
to a whopping 50% reduction in search times compared to the previous approach (OTS).

1.2 Our Contribution

In this paper, we propose a variation of the CDS method that enhances it in terms of both
space efficiency and search performance. The ingenious tweak involves introducing a set
of additional false samples of the pivot characters, amusingly dubbed fake samples, which
marginally increase the number of elements in the partial index. Paradoxically, this leads
to a whopping three-quarters reduction in the overall space required to represent the data
structure, all while ensuring algorithmic correctness. Quite a nifty advantage, wouldn’t you
say, especially considering the significant boost in search performance it offers?

The crux of the new approach lies in storing distances between pivot characters rather
than their absolute positions within the text. This allows us to reduce the space used but
introduces the problem of direct addressing of positions within the original text. But fear
not, for we shall delve into the details in due course giving a solution to this problem.

The structure of the paper unfolds as follows: In Section 2 we briefly summarize the CDS
method as it is used to efficiently solve the string matching problem. In Section 3, we lay out
the conceptual foundation of the new sampling approach, delineating its costs and benefits.
Section 5 presents an empirical analysis comparing the new approach to the standard CDS
methodology in terms of space utilization and search time efficiency. Finally, our findings
and insights are encapsulated in Section 6.

2 Characters Distance Sampling in Brief

In this section, we embark upon a concise yet comprehensive description of the methodology
employed in crafting the partial-index built in the Character Distance Sampling (CDS).

For this purpose, let y be the input text, of length n, and let x be the input pattern, of
length m, both over an alphabet Σ of size σ. We assume that all strings can be treated as
vectors starting at position 1. Thus we refer to x[i] as the i-th character of the string x, for
1 ≤ i ≤ m, where m is the size of x.

FUN 2024
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We select a sub-alphabet C ⊆ Σ to serve as the set of pivot characters. Using this
designated pivots, we sample the text y by calculating the distances between consecutive
occurrences of any pivot character c ∈ C within y. Formally, our sampling methodology is
based on the following definition of position sampling within a text.

▶ Definition 1 (Position Sampling). Let y be a text of length n, let C ⊆ Σ be the set of pivot
characters and let nc be the number of occurrences of any c ∈ C in the input text y.

First we define the position function, δ : {1, .., nc} → {1, .., n}, where δ(i) is the position
of the i-th occurrence of any occurrence of the pivot character c in y. Formally we have

(i) 1 ≤ δ(i) < δ(i + 1) ≤ n for each 1 ≤ i ≤ nc − 1
(ii) y[δ(i)] ∈ C for each 1 ≤ i ≤ nc

(iii) y[δ(i) + 1..δ(i + 1)− 1] contains no pivot characters for each 0 ≤ i ≤ nc

where in (iii) we assume that δ(0) = 0 and δ(nc + 1) = n + 1.
Then the position sampled version of y, indicated by ẏ, is a numeric sequence, of length

nc, defined as

ẏ = ⟨δ(1), δ(2), .., δ(nc)⟩. (1)

▶ Example 2. Suppose y = “agaacgcagtata” is a sequence of length 13, over the alphabet
Σ = {a,c,g,t}. Let C = {a} be the set of pivot characters. Thus the position sampled version
of y is ẏ = ⟨1, 3, 4, 8, 11, 13⟩. Specifically the first occurrence of character “a” is at position 1
(y[1] = “a”), its second occurrence is at position 3 (y[3] = “a”), and so on.

▶ Definition 3 (Characters Distance Sampling). Let C ⊆ Σ be the set of pivot characters, let
nc ≤ n be the number of occurrences of any pivot character in the text y and let δ be the
position function of y. The characters distance function is defined by ∆(i) = δ(i + 1)− δ(i),
for 1 ≤ i ≤ nc− 1, as the distance between two consecutive occurrences of any pivot character
in y.

Then the characters-distance sampled version of the text y is a numeric sequence, indicated
by ȳ, of length nc − 1 defined as

ȳ = ⟨∆(1), ∆(2), .., ∆(nc − 1)⟩ = ⟨δ(2)− δ(1), δ(3)− δ(2), .., δ(nc)− δ(nc − 1)⟩ (2)

▶ Example 4. Let y = “agaacgcagtata” be a text of length 13, over the alphabet Σ = {a,c,g,t}.
Let C = {a} be the set of pivot characters. Thus the character distance sampling version
of y is ȳ = ⟨2, 1, 4, 3, 2⟩. Specifically ȳ[1] = ∆(1) = δ(2) − δ(1) = 3 − 1 = 2, while
ȳ[3] = ∆(3) = δ(4)− δ(3) = 8− 4 = 4, and so on.

In practical scenarios, particularly when dealing with large alphabets, the set of pivot
characters may comprise only one character. Consequently, for the sake of simplicity, we
will frequently refer to the pivot character in the singular form, rather than mentioning the
entire set of pivot characters.

The approach of sampled string matching utilizing CDS maintains a partial index, which
is represented by the position-sampled version of the text y. The size of this index is 32nc

bits, assuming that this index resides in memory and is readily available for any search
operation on the text. When there arises a need to search for a pattern x of length m within
y, a preprocessing step is executed on the pattern to compute its sampled version x̄. It can
be straightforwardly proved that an occurrence of x in y corresponds to an occurrence of x̄

in ȳ, hence it suffices to utilize any string matching algorithm to locate the occurrences of x̄

in ȳ to solve the problem. However, the reverse scenario is not necessarily true, implying
that occurrences of x̄ in ȳ may not align with occurrences of x in y. Consequently, for each
occurrence of x̄ in ȳ, referred to as a candidate occurrence, a validation check in y is required.
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Given that the validation process demands O(m) computational time, the entire search
operation will consume O(mn) time. Nonetheless, envisioning modifications to the funda-
mental procedure to ensure that the overall search operation, despite the checks, remains
linear in time is not challenging (for further details, refer to [8]).

An essential aspect to highlight in our discourse is that the CDS-based approach does not
explicitly maintain the character-distance sampled version ȳ of the text. Instead, it maintains
the position-sampled version ẏ of the text. Indeed, ȳ solely retains the distances between the
pivot characters and lacks direct ties to the original positions of these pivot characters within
the text. Consequently, directly verifying every candidate occurrence becomes impracticable.
This issue is addressed by retaining the text ẏ, which holds the positions, and computing ȳ

on-the-fly during the search. The i-th element of ȳ can indeed be computed in constant time
using the relationship ȳ(i) = ẏ(i + 1)− ẏ(i).

The CDS-based sampled string matching approach has demonstrated remarkable ef-
fectiveness in practical applications, boasting a significant reduction in search times by up
to 40 times compared to standard online exact string matching techniques. Remarkably,
this enhancement is achieved while incurring a relatively minimal cost, as it entails the
construction of a partial index merely equivalent to 2% of the text size. Moreover, sampled
string matching has exhibited exceptional flexibility, rendering it adept at addressing text
searching challenges, even in the approximate realm. Notably, Faro et al. [11] recently
introduced the run-length text sampling, tailored for approximate searches. This technique
proves well-suited, for instance, for tasks such as Order Preserving pattern matching [15].

In addition to its commendable space and time efficiency, sampled string matching offers
a plethora of other advantageous features. For instance, ease of programming stands out as
a notable advantage, with the construction of the partial index typically being a swift and
straightforward process. Moreover, the inherent flexibility of the data structure allows it to
seamlessly adapt to text variations. This means that minor alterations in the text, such as
character deletions or insertions, can be effortlessly reflected in the corresponding index.

However the one described above is not without its share of pitfalls or weaknesses. One
such challenge is the variability in performance based on the choice of pivot character.
Consequently, strategic consideration must be given to selecting the pivot character, striking
a balance between partial index size and execution times. Research indicates that in the case
of the English language the pivot character ranked 8th tends to offer best performances [8].

Another factor to consider is that if the pattern is exceptionally short and lacks occurrences
of the pivot character, resorting to a standard string search within the text becomes necessary.
Additionally, this method may not yield significant advantages when applied to texts with
small alphabets, as the benefits in terms of space efficiency may not be realized. However,
studies by Faro et al. [9, 10] have proved the efficacy of a technique leveraging condensed
alphabets to expand the underlying alphabet size and achieve markedly improved performance.

3 The Cunning Hoax of Fake Samples

Let’s point out the paradox of text sampling based on position distance!
While it does indeed seek to reduce the burden of representation by sampling elements, it
naively inflates the space required for each element by a whopping factor of 4. Imagine, if you
will, the humble character of a text, typically content with a mere 8 bits for its expression,
suddenly finding itself encased in the luxurious padding of a 32-bit integer!

In the realm of extreme scenarios, where the sampled positions sprawl to encompass
more than a quarter of the input sequence, we encounter a most peculiar predicament. The
very act of sampling, intended to lighten the load, paradoxically threatens to devour more
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memory than the original text itself. Consider, for instance, the vast genomic landscape,
where the four noble bases – A, C, G, and T – hold court. Here, the uniform distribution
of these alphabetic constituents renders sampling based on position distance a pointless
endeavor, yielding a partial index that, although it manages to significantly improve search
performance, rivals the text in sheer magnitude of memory consumption. A nice scam!

In this section we present a useful strategy to avoid this unpleasant and somewhat
embarrassing situation at a very low cost in almost all practical cases. Although our
discussion focuses on the CDS sampling method, the proposed technique is suitable for any
distance-based text sampling method between sampled locations where a certain limit is
imposed on the representation space of each distance.

To do this, we assume that p1 and p2 are two consecutive sampled positions, and we also
assume that d = p2 − p1 is the distance between these two positions. We use the symbol γ

to denote the distance representation bound (DRB), a value related to the memory space
used for the representation of each individual value of the sequence. In this context each
value of the sequence of distances is represented using exactly γ bits, so that each distance
contained in the sequence should have a value between 0 and 2γ − 1.

As we have already discussed, this constraint on the representation of distances introduces
the problem of not being able to represent all those distances whose value is greater than or
equal to the limit 2γ , making it inapplicable in many practical cases.

Our solution to this problem involves the introduction of a certain additional, arbitrarily
large number of samples, which can allow us to decompose a distance d ≥ 2γ into a sequence
of distances whose value is contained within the limit imposed on us. Since these additional
samples are not foreseen in the actual sampling, we will call them fake samples, to underline
the fact that they are not sampled positions but rather fictitious and therefore incorrect
values, introduced exclusively for the purpose of ensuring that all distances can fall within
the 2γ limit that we have imposed for the representation of the sampled text.

To avoid ambiguity in the sequence representation, the decomposition should be non-
ambiguous. For this reason, among the many possible alternatives, this work proposes a
decomposition that involves the introduction of a false sample, if necessary, every 2γ − 1
characters of the original text. In other words, if two samples are at a distance d = p2−p1 ≥ 2γ ,
we introduce a false sample at position p′

1 = p1 + 2γ − 1 and we operate recursively on the
residual interval p2 − p′

1, provided that it is greater than or equal to 2γ . An interval of d

positions between two real samples will then be decomposed, as needed, into a sequence of
⌈d/2γ⌉ intervals of size 2γ − 1, made exception for the last interval whose size will be equal
to d mod (2γ). The above is achieved through the insertion of fake samples. An example of
the Sampling procedure is shown on Algorithm 1.

More formally we introduce the following definition of Fake Distance Decomposition.

▶ Definition 5 (Fake Distance Decomposition). Let d be an integer value representing the
distance between two sampled text positions. The fake distance decomposition [d]γ for a given
DRB γ is a numeric sequence

[d]γ = ⟨d0, d1, .., dk−1⟩

such that:
(a) k = ⌈d/2γ⌉;
(b) di = 2γ − 1, for 0 ≤ i < k − 1:
(c) dk−1 = d mod (2γ).
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By Definition 5 it turns out that the sum of the distances obtained from a fake distance
decomposition [d]γ results in the value of the original distance. Formally we have

∑
u∈[d]8

u =
k−1∑
i=0

di

=
k−2∑
i=0

(2γ − 1) + (d mod (2γ))

= (2γ − 1)×
⌊

d

2γ

⌋
+ (d mod (2γ))

= d

(3)

Observe also that the fake distance decomposition of a distance value d < 2γ leaves the
original sequence unchanged, since k = ⌈d/2γ⌉ = 1. This can be expressed by the relationship
[d]γ = ⟨d⟩, if d < 2γ .

▶ Example 6. Let γ = 8 be the distance representation bound which assumes a binary
representation of any distance value by using 8 bits, and therefore a maximum representable
value equal to 2γ − 1 = 255. Then, if we take into account the distance values 841, 134, 256
and 255, we have the following fake distance decompositions:

[841]8 = ⟨255, 255, 255, 76⟩

[134]8 = ⟨134⟩

[265]8 = ⟨255, 10⟩

[255]8 = ⟨255⟩

The definition of Fake Distance Decomposition given above can be easily extended in
order to decompose a distance sequence and make it representable by using γ bits for each
individual sample value. We then introduce the following definition of Faked Distance
Sampling.

▶ Definition 7 (Fake Distance Sampling). Let y = ⟨d0, d1, .., dn−1⟩ be a sequence of distances,
of length n, obtained from any kind of distance sampling performed on an input text. The
fake distance sampled version of y, with DRB γ, is a numeric sequence, [y]γ , obtained by the
concatenation of the fake distance decompositions of its values. Formally

[y]γ = [d0]γ + [d1]γ + .. + [dn−1]γ

▶ Example 8. Let y = ⟨3, 124, 15, 255, 7, 9, 15, 262, 9, 841, 3⟩ be a sequence of distances
obtained from any kind of sampling performed on the text y. According to Definition 7 the
fake distance sampling of y, using a DRB value equal to 8, is given by

[y]8 = ⟨3, 124, 15, 255, 7, 9, 15, 255, 7, 9, 255, 255, 255, 76, 3⟩

where we underlined the sub-sequences obtained by a fake distance decomposition.

▶ Example 9. Let y = ⟨3, 124, 15, 255, 7, 9, 32, 15, 262, 9, 841, 3⟩ be a sequence of distances
obtained from any kind of sampling performed on the text y and let x = ⟨15, 262, 9⟩ be a
sequence of distances obtained from the same kind of sampling performed on the pattern x.
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Algorithm 1 Fake-Position-Distance-Sampling(y, n, pivot).

Data: a string y, its length m and the selected pivot character
Result: The faked character distance representation of y

1 ȳ ←− ⟨⟩
2 j ←− 0
3 prev ← 0
4 for i←− 0 to n− 1 do
5 if (y[i] = pivot) then
6 a←− i− prev

7 while (a > 255) do
8 ȳ[j]←− 255
9 j ←− j + 1

10 a←− a− 255
11 end
12 ȳ[j]←− a

13 j ←− j + 1
14 end
15 return ȳ

16 end

According to Definition 5 the fake sample sequences are as follows:

[y]8 = ⟨3, 124, 15, 255, 7, 9, 32, 15, 255, 7, 9, 255, 255, 255, 76, 3⟩
[x]8 = ⟨15, 255, 7, 9⟩

Therefore with this kind of representation, if we intend to search [x]8 into [y]8, we will have
two different verify.
The first verify will be at position 7, will give negative response, due for the different original
distances in fact, the 255, 7 of the pattern was originally a 262 differently from the one in
the text. The second one at the position 12 which can also give positive response depends on
the original text and pattern. It’s noteworthy to highlight that employing solely the CDS
representation without employing the Fake Decomposition, the number of verification steps
would be reduced to just one at position 12. This consideration arises from the fact that the
occurrence at position 7 would not match the sampled pattern if it were not decomposed.

3.1 How Much Space Does This Hoax Cost?
In the realm of text sampling, the spatial demand for string matching emerges as a pivotal
consideration. It delineates the additional space, relative to the text’s size, that a given
solution consumes to tackle the task.

Let’s consider the partial index derived from our innovative approach: a clever concoction
that, despite utilizing more characters than the original technique (refer to Figure 1), owes
its efficiency to the inclusion of a certain number of fake samples. Despite the incorporation
of these fake samples, our experimental analysis conducted on an English text3 reveals only
a marginal deviation in the sizes of these two indices, maintaining a comparable character
count.

3 In our experiments, we utilized the 100MB dataset of English texts sourced from Pizza and Chili [18].
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Specifically Figure 1 compares CDS and Faked-CDS approaches. On the left we show
the number of elements contained in the two indexes depending on the rank of the pivot
character, computed as a percentage of the number of characters of the text on which the
indexes are built. We can see how the values are almost identical with very slight variations:
this suggests that only a negligible number of samples are added to the original index.

This can be attributed to the fact that only a small fraction of the distances between
occurrences of the pivot character exceed the imposed 2γ threshold. This observation is
confirmed in Figure 1, on the right, which shows the percentage of fake samples added in the
construction of the partial index in the Faked-CDS approach. As a percentage, the addition
of false samples we are compelled to include rises with the rank of the pivot character used
in index construction, albeit remaining negligible.

It is very interesting to observe how the pivot of rank 14, which is identified by the
character \s (the blank space) in our dataset, reduces the number of fake samples to 0. This
is due to the fact that this character has a more uniform distribution within the text and this
means that two occurrences of the same character are never more than 256 characters apart.

However, the devil lies in the details! Upon closer examination of the space required by
these data structures, a significant contrast becomes apparent. While the previous index
allocates 32 bits for each element, our method showcases newfound parsimony, utilizing a
mere 8 bits for distance representation. Behold the marvel: a nearly fourfold reduction in
effective space compared to its predecessor.

To highlight this aspect, Figure 2 shows the additional amount of space required for
storing the two data structures, computed as a percentage of the space required for storing
the text on which the indexes are built. As expected, the space required by the Faked-CDS
approach is almost four times less than that required by the standard CDS approach.

0 2 4 6 8 10 12 14 160 %

2 %

4 %

6 %

8 %

CDS
FCDS

0 2 4 6 8 10 12 14 16
0 %

0.2 %

0.4 %

0.6 %

0.8 %

1 %

1.2 %

1.4 %

Figure 1 CDS and Faked-CDS approaches compared. On the left, the number of elements
contained in the two indexes, calculated as a percentage of the number of characters of the text on
which the indexes are built. On the right, the percentage of fake samples added in the construction
of the partial index in the Faked-CDS approach, calculated relative to the number of characters in
the text. In both cases, the x-axis identifies the rank of the pivot character used to construct the
two indices.
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Figure 2 CDS and Faked-CDS approaches compared in terms of additional amount of space
required for storing the two data structures. The percentage is computed as a relative to the space
required for storing the text on which the indexes are built. The x-axis identifies the rank of the
character used as a pivot in the construction of the index. The corresponding character for each
rank is showed below each rank (\s is the space charcater).

Ultimately, the new approach manages to reduce the space required to store the partial
index by a factor ranging from 69% to 73% with respect to the standard CDS approach, despite
utilizing more samples in its representation. Quite a feat, considering it also significantly
enhances search performance (see Section 5 for details). Specifically, employing the pivot of
rank 8, which yields the best search time performance [8], the new approach yields an index
occupying only 2.5% of the text size, compared to the standard CDS method’s 10%.

In Section 5, we will delve into an analysis of performance, examining both time and
space metrics.

4 The Details of the Search Algorithm

The search phase in a sampling-based searching approach entails the straightforward applic-
ation of any exact string matching algorithm. Its task? To ferret out all instances of the
sampled pattern lurking within the sampled text. For each of these candidate occurrences,
a thorough verification is then undertaken within the text. The goal? To sift through the
text and discern whether the candidate occurrence is a real occurrence or merely a cunning
impostor.

In the conventional rendition of the CDS approach, an additional amount of space was
allocated to ensure a direct mapping of each pivot character’s position within the index to
its corresponding position within the original text. In simpler terms, every index element ẏ[i]
denotes the position of the i-th pivot character within the text, facilitating swift navigation
from the sampled text. Consequently, upon identifying a candidate occurrence, one could
swiftly access the corresponding text position for verification, requiring only O(m) time.
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Algorithm 2 Search-FCDS(x, m, y, n, x̄, m̄, ȳ, n̄).

Data: a pattern x of length m, a text y of length n and their faked decomposition
Result: the number of occurrences of x in y

1 hbc← []
2 for i← 0 to Σ do
3 hbc[i]← m

4 end
5 for i← 0 to m̄ do
6 hbc[x̄[i]]← m̄− i− 1
7 end
8 s← 0
9 count← 0

10 last_position← 0
11 last_position_index← 0
12 while while(s ≤ n̄− m̄) do
13 i← 1
14 while i < m̄ and x̄[i− 1] == ȳ[s + i− 1] do
15 i = i + 1
16 end
17 if i == m̄ then
18 position← s

19 while position > last_position_index do
20 last_position = last_position + ȳ[position]
21 position = position− 1
22 end
23 count = count + verify(x, m, y, last_position)
24 end
25 s = s + hbc[ȳ[s + m̄− 1]]
26 return count
27 end

However, the advent of the novel sampling representation embraced by the Fake Decom-
position approach alters this dynamic. This approach opts to store the distances ȳ[i] between
consecutive occurrences of pivot characters rather than their positions, thereby relinquishing
the explicit mapping of pivot character positions. Consequently, the dilemma arises: how
does one access the corresponding text position to verify each candidate occurrence?

By working with the distances between consecutive positions of pivot characters, we can
derive the mapping ẏ[i] of the i-th character of the index using the following formula:

ẏ[i] =
i∑

j=0
ȳ[j]

While this approach theoretically lends itself to direct application through a linear index
scan algorithm, such as the renowned KMP algorithm [16], let’s not be too hasty in celebrating
its efficacy. Assuming we’ve computed the mapping for all positions less than i, accessing
the i-th position of the index theoretically enables us to compute the direct mapping of the
i-th pivot character using the formula ẏ[i] = ẏ[i− 1] + ȳ[i].
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However, despite its apparent simplicity and linear execution time, let’s not overlook the
practical performance implications. The most efficient string matching approaches are those
employing forward jumps [5], allowing for the avoidance of scanning extensive text portions.
The Boyer-Moore [2] and Horspool [13] algorithms are among the most representative elements
of this family. Yet, such approaches are unable to update the mapping on the text in constant
time. Oh, the joys of theoretical elegance versus practical pragmatism!

In this study, we scrutinize two potential remedies for this dilemma:
The first approach, shown in Figure 2, entails retracing the mapping steps, starting from
the last checked position. Put simply, we retain the position v of the last index position
from which a text check was conducted. Assuming we’ve already established a direct
mapping for that position, we proceed to scan all text positions from the v-th to the
i-th to determine the direct mapping for the new verification position i. This method
boasts swift indexing during the search phase, as mapping concerns are deferred until a
candidate occurrence surfaces. However, its Achilles’ heel lies in the verification phase,
which could prove arduous if the last verification occurred significantly earlier in the text.
We will refer to this solution as Faked-CDS (FCDS).
In our second approach, shown in Algorithm 3, we aimed to integrate a technique
reminiscent of the one used in the OTS approach [3]. Much like their method, we chose to
periodically link elements in the sampled text to their positions in the original text. This
deliberate choice was made to simplify the backtracking process, sparing us the effort of
computing positions by summing distances. Furthermore, it enables quick identification
of a character’s position, assuming it has already been mapped. Consequently, computing
positions for unmapped characters is noticeably accelerated in real-world scenarios.
In a more formal sense, we define a parameter k ≥ 1 and allocate an array ρ of ⌈n/k⌉
positions, serving as a link between the sampled elements of the partial index and their
actual positions in the text. Specifically, within the partial index, one element is sampled
every k, totaling ⌈n/k⌉ elements. Consequently, the additional space required amounts
to 4 × ⌈n/k⌉ bytes. When verifying position i with v as the index of the last verified
position, it becomes necessary to backtrack the mapping, commencing from the larger
value between the mapping of v and ρ[⌊i/k⌋].
The advantage of this second approach lies in its ability to circumvent the need for
extensive backtracking through text, thereby reducing verification times. Of course, the
downside is the inevitable consumption of extra memory to accommodate the mapping
array. We will refer to this solution as Faked-CDS + Mapping (FCDS+).

5 Experimental Evaluation

In this section, we present experimental results in order to evaluate the performances of the
sampling approaches presented in this paper.

In particular, we tested the original CDS approach (CDS), the Faked-CDS approach
(FCDS) and the Faked-CDS enhanced with mapping (FCDS+) approach. The latter has been
implemented using values of k in the set {8, 16, 32, 64}. However, the experimental results for
these 4 variants are essentially identical, so we will simply unify the values of the 4 variants.
Moreover we choose to set γ = 8 to conduct our experiments, where we remember that γ is
the number of bits we use to represent each single element of the sampled text.

In all three instances, we opted for the pivot character ranked 8 within the text, identified
as the letter s, as depicted in Figure 2. This particular choice was made based on its observed
superior performance in terms of execution times, as detailed in [8].
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Algorithm 3 Search-FCDS+(x, m, y, n, x̄, m̄, ȳ, n̄, ρ, k).

Data: a pattern x of length m, a text y of length n, their sampled versions and the
mapping array

Result: the number of matches
1 hbc← []
2 for i← 0 to Σ do
3 hbc[i]← m

4 end
5 for i← 0 to m̄ do
6 hbc[x̄[i]]← m̄− i− 1
7 end
8 s← 0
9 count← 0

10 while while(s ≤ n̄− m̄) do
11 i← 1
12 while i < m̄ and x̄[i− 1] == ȳ[s + i− 1] do
13 i = i + 1
14 end
15 if i == m̄ then
16 position← ρ[s/k]
17 idx← s− (s%k)
18 while idx < s do
19 position = position + ȳ[idx]
20 idx = idx + 1
21 end
22 count = count + verify(x, m, y, position)
23 end
24 s = s + hbc[ȳ[s + m̄− 1]]
25 return count
26 end

The algorithms have been implemented using the C programming language, and have
been tested using the Smart tool [6] and executed locally on a MacBook Pro with 4 Cores,
a 2.7 GHz Intel Core i7 processor, 16 GB RAM 2133 MHz LPDDR3, 256 KB of L2 Cache
and 8 MB of Cache L3.4 During the compilation we use the -O3 optimization option.

Comparisons were conducted in terms of search times. For our experiments, we utilized
a 100MB dataset of English texts sourced from Pizza and Chili [18]. We employed various
pattern sizes ranging from 27 to 212. The space used to maintain the partial indexes and any
mapping arrays is shown in the following table.

Name Index Size Mapping Size Samples Fake Samples
CDS 10.14 MB - 2536790 -
FCDS 2.53 MB - 2537048 258
FCDS+ 2.53 MB 1.26 MB 2537048 258

4 The Smart tool is available online for download at http://www.dmi.unict.it/~faro/smart/ or at
https://github.com/smart-tool/smart.
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Figure 3 Running times of three sampled string matching algorithms for searching a 100 MB
English text and averaging over 1000 different runs.

For each sequence in the dataset, we randomly selected 1000 patterns extracted from the
text and computed the average running time over these 1000 runs.

As illustrated in Figure 3, despite utilizing less space, as demonstrated in previous sections,
the Fake Decomposition method achieves superior performance in practice, particularly in
terms of searching time.

According to experimental results, it turns out that the newly proposed methods (FCDS
and FCDS+) allows a speed-up ranging between 33.7% and 55.1%. Despite the increase in
the size of the partial-index with the new method, several factors contribute to the observed
improvement in performance. Firstly, the enlarged size of the sampled pattern, a known
accelerator in classical string matching, likely plays a role, as exact string matching algorithms
generally perform better with larger patterns. Secondly, the Character Distance Sampling
algorithms, while susceptible to performance degradation in scenarios with fewer than 2
distances represented in the sampled pattern, benefit from the increased number of characters
required for the representation, thereby averting their worst-case scenario. Another notable
speed-up is observed in the searching phase, which no longer requires the computation of
distances by subtracting consecutive positions; rather, each item in our sampled text already
represents a distance itself.

While FCDS consistently demonstrates a space reduction of approximately 75%, FCDS+
utilizes an additional data structure to accommodate the position mapping, resulting in
a space reduction ranging from 62.5% (if the position mapping is stored every 8 different
characters) to 72% (with a mapping value of 32).

It is noteworthy that while both the FCDS and FCDS+ approaches demonstrate comparable
performances, nuanced disparities are discernible. Notably, FCDS exhibits marginally superior
efficacy for short patterns, whereas FCDS+ surpasses as pattern length extends. The rationale
underlying this phenomenon lies in the examination of candidate occurrences identified by
the search within the partial index.

For short patterns, the proliferation of candidate occurrences escalates, rendering the
verification times in FCDS easily justifiable. The proximity of consecutive checks minimizes
the impact of backtracking on search efficiency. Consequently, the inclusion of an additional
mapping table mildly penalizes the FCDS+ methodology.
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Figure 4 Performances of the algorithms with a 100 MB English text averaging over 1000 different
executions. Solid lines indicate running times obtained with a partial index constructed using the
8-th ranked pivot character, specifically representing the character ’s’. Dashed lines indicate running
times obtained with a partial index constructed using the the 14-th pivot character, representing
the blank space character ’\s’, which generates no fake samples.

Conversely, with longer patterns, the candidate occurrences diminish significantly, exacer-
bating the performance degradation induced by backtracking in the FCDS approach. Herein
lies the challenge: reconstructing the occurrence’s position from distant points within the
text. In contrast, FCDS+ capitalizes on the mapping table, curtailing backtracking distances
substantially.

Lastly, we venture into a comparative analysis of the two methodologies delineated in
this study, particularly examining scenarios where distinct pivot characters are employed. A
shared observation emerges regarding the potential rationale for adopting the “blank space”
character (ranked 14 within the text) as a pivot. Notably, its utilization within the FCDS
approach obviates the generation of fake samples. One might conjecture that leveraging this
character as a pivot could be pragmatically advantageous when performance metrics are
comparable, owing to its minimal impact on partial index construction.

Regrettably, the time performances are far from commensurate, as elucidated in Figure 4.
It becomes apparent that sampling predicated on the rank 8 character yields a notable 40%
to 50% reduction in processing times compared to its “blank space” counterpart.

6 Conclusions

We introduced a novel method for storing sampled versions of text and patterns based on
character distance sampling. Our approach involved an initial analysis of a new decomposition
method, which significantly reduces the space requirements for each occurrence of any
pivot character. Subsequently, we developed two distinct searching processes aimed at
outperforming the original Character Distance Sampling (CDS) algorithm. Our algorithms
demonstrate improved efficiency compared to the previous method by a factor ranging
between 33.7% and 55.1%, while achieving a space reduction ranging from 63% to 75%.
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Given the promising results achieved with this new technique, it would be interesting to
apply it to other derived versions of the CDS, such as the offline and condensed variants.
It would also be intriguing to investigate how the CDS algorithm performs when combined
with other online string matching algorithms, to explore the possibility of achieving new and
interesting performance improvements. We intend to explore these directions in our future
work.
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Abstract
We present and analyze PackIt!, a turn-based game consisting of packing rectangles on an n× n

grid. PackIt! can be easily played on paper, either as a competitive two-player game or in solitaire
fashion. On the t-th turn, a rectangle of area t or t+ 1 must be placed in the grid. In the two-player
format of PackIt! whichever player places a rectangle last wins, whereas the goal in the solitaire
variant is to perfectly pack the n× n grid. We analyze necessary conditions for the existence of a
perfect packing over n×n, then present an automated reasoning approach that allows finding perfect
games of PackIt! up to n = 50 which includes a novel SAT-encoding technique of independent
interest, and conclude by proving an NP-hardness result.
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1 Introduction

Pen-and-paper games have not only stimulated bored high school students for centuries, but
also attracted the attention of mathematicians and computer scientists alike. From Tic-Tac-
Toe to Conway’s Sprouts [10], passing through Dots and Boxes [6], Sudoku, Hangman [1],
and Nim [4], simple pen-and-paper games have had a long lasting impact in combinatorial
game theory (e.g., the Sprague-Grundy theorem) and have offered landmark computational
challenges (e.g., Sudokus require 17 clues to have a unique solution [13]). In this paper
we introduce a new pen-and-paper game, PackIt!, and explore both mathematical and
computational challenges concerning it.

1.1 Definition of PackIt!
The game proceeds by turns, and takes place over an n × n grid that we shall denote G. The
main principle of PackIt! is very simple: on turn t (starting from 1), a rectangle rt of area
t or t + 1 must be placed into G without intersecting any of the already placed rectangles.
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Figure 1 Illustration of a couple of games of PackIt!. Each rectangle at is labeled with t and
depicted in a different color.

Formally, at the beginning of the game one defines the set of used cells of the grid as U0 := ∅.
On turn t, the corresponding player chooses rt = (ht, vt, xt, yt), with ht · vt ∈ {t, t + 1}, and
0 ≤ xt, yt < n. Define the cells used by this rectangle as the set

At := {xt, xt+1, . . . , xt+ht−1} × {yt, yt+1, . . . , yt+vt−1},

so that the requirement for a valid turn is that At ∩ Ut−1 = ∅. After a valid turn, one sets
Ut := Ut−1 ∪ At. Figure 1 illustrates some examples.

PackIt! as a game. PackIt! can be played as a solitaire game, where the goal of the game
is to complete a perfect packing, that is, to play so that after a valid sequence of turns it
holds that Ut = {0, . . . , n − 1} × {0, . . . , n − 1}. As depicted in Figure 1, we say the final
board of such a game corresponds to a perfect game of PackIt!. For two players, it suffices
to alternate turns and when a player cannot play a valid turn, he or she is declared the loser.
At this point, we suggest the reader to directly experiment with PackIt!. A version of the
game is available for solitaire mode at https://packit.surge.sh.

Organization. The main question about PackIt! is:

for which values of n the n × n grid admits a perfect game of PackIt!?

Section 2 presents arithmetic results that represent the initial steps toward answering this
question. Then, Section 3 discusses the complexity of PackIt!, showing that a particular
version of the solitaire game is NP-hard. Finally, Section 4 is devoted to analyzing this question
from a computational perspective. We present an initial backtracking implementation, which
is then improved by a more complicated approach leveraging a novel SAT encoding.

2 Arithmetic Results

A perfect game of PackIt! can be conceptually divided into two aspects:
(Rectangle selection) As we denote by |At| the area of the rectangle used in turn t, it
must hold that in a perfect game of PackIt! we have∑

t

|At| = n2.

Moreover, in order to fit every rectangle rt of dimensions ht × vt, it must hold that
max(ht, vt) ≤ n. We will say that such a sequence of choices is a valid rectangle sequence.
(Packing Aspect) Even if a sequence of area choices is valid, it can be the case that it
is not possible to use such area choices in a perfect game of PackIt!.

https://packit.surge.sh
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This section focuses on studying perfect games through the lens of the first aspect, as it is
sometimes enough to determine the tileability/untileability of grids. Despite PackIt! being
originally defined for a square grid, from now on we consider m × n grids as most of our
ideas generalize nicely in that setting. Without loss of generality we will assume n ≥ m

throughout the paper.
In order to state our results, we will need a couple of definitions. We denote by Tk the

k-th triangle number, defined as Tk =
∑k

i=1 i = k(k+1)
2 . Then, for any positive integer r, we

denote by τ(r) = arg maxk{Tk | Tk ≤ r}.
An initial observation to understand whether an m × n grid admits a perfect packing is

that the number of rectangles used in perfect PackIt! games depends entirely on the grid
area m · n, and not on its precise width or height

▶ Lemma 1. For an m×n grid there is a unique number K(m, n) such that if the m×n grid
admits a perfect PackIt! game, then such a packing must use exactly K(m, n) rectangles. In
particular, K(m, n) = τ(m · n).

Proof. Assume, expecting a contradiction that for some m × n grid there are two sequences
A := (|A1|, . . . , |AK1 |) and A′ := (|A′

1|, . . . , |A′
K2

|), with K1 ̸= K2, that can be used for
perfect packings. Now, note that we must have

K1∑
t=1

|At| = m · n =
K2∑
t=1

|A′
t|. (1)

By the game rules, we have that

K1∑
t=1

|At| ≥
K1∑
t=1

t = TK1 , and
K1∑
t=1

|At| ≤
K1∑
t=1

(t + 1) = TK1+1 − 1.

Using the same analysis for A′, and Equation (1), we get

max(TK1 , TK2) ≤ m · n ≤ min(TK1+1, TK2+1) − 1.

As K1 ̸= K2, let us assume without loss of generality that K1 > K2. Using that T is an
increasing sequence, we have

TK1 ≤ m · n ≤ TK2+1 − 1. (2)

Now, as K1 is an integer, K1 > K2 implies K1 ≥ K2 + 1, from where Equation (2) becomes
TK1 ≤ m · n ≤ TK1 − 1, a clear contradiction. To obtain the second part of the lemma, note
that when K(m, n) := K1 = K2 we get

TK(m,n) ≤ m · n ≤ TK(m,n)+1 − 1,

from where it follows by the definition of τ that K(m, n) = τ(m · n). ◀

We can now define the notion of gap, which intuitively represents the number of turns t

in which a rectangle of area t + 1 must be chosen. Let us say that any turn t at which a
rectangle of area t + 1 is chosen is an expansion turn.

▶ Definition 2. For any m × n grid, we define its gap, γ(m, n), as

γ(m, n) = m · n − Tτ(m·n).

FUN 2024
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▶ Lemma 3. For any sequence of turns that results in a perfect packing of an m × n grid,
the number of expansion turns is exactly γ(m, n).

Proof. By Lemma 1, there must be exactly K(m, n) = τ(m · n) turns in such a sequence. If
for every turn t ∈ {1, . . . , τ(m · n)}, a rectangle of area t were to be chosen, then the total
area used would be exactly

τ(m·n)∑
t=1

t = Tτ(m·n).

Given that the total area used must be m ·n, we conclude there must be exactly m ·n−Tτ(m·n)
expansion turns. ◀

The next ingredient to analyze whether an m × n grid admits a perfect packing has to
do with prime numbers, as if the area of a rectangle is a prime number p, then the only
possibles rectangles are p × 1 or 1 × p, which can limit our ability to pack it. We define the
set P (m, n) as

P (m, n) = {p | n < p ≤ K(m, n) and p is prime}.

As the next results show, the comparison between the gap of a grid and the size of
its corresponding P set plays a crucial role in understanding whether or not it allows a
perfect packing. In particular, Theorem 4 shows how small gaps can forbid perfect packings,
whereas Theorem 5 shows how large gaps can also be problematic.

▶ Theorem 4 (Small gap). For any m × n grid, if γ(m, n) < |P (m, n)|, then the grid does
not allow a perfect game of PackIt!.

1 2 2 3 3 3

4 4 7 7 5

4 4 7 7 5

6 6 7 7 5

6 6 7 7 5

6 6 5

Figure 2 Illustration of the impossibility result for n = 6 resulting from Theorem 4. Even though
turns 1 through 6 use the minimal possible area, the choice of area 8 on turn 7 is enough to make turn
9 possible, as only 8 empty cells remain (which is invariant under the concrete choice of packing).

Before a formal proof, let us present some intuition. Theorem 4 considers a gap that is
“too small”, as the following example shows. Consider m = n = 6. One can easily check that,
τ(6 · 6) = 81, and therefore the gap results in

γ(m, n) = m · n − Tτ(m·n) = 6 · 6 − 8 · 9
2 = 0.

1 A general formula for τ(r) is not too hard to derive. In particular, τ(r) =
⌊√

8r+1
2 − 1

2

⌋
.



T. Garrison, M. J. H. Heule, and B. Subercaseaux 14:5

Then, K(m, n) = τ(m · n) = 8, and thus P (m, n) = {7}. As K(m, n) = 8, any perfect
packing of the 6 × 6 grid will consist of 8 rectangles. We claim that in turn 7, the area chosen
must be 7, or in other words, that choosing a rectangle of area 8 in turn 7 would forbid a
perfect packing. Too see this, consider expecting a contradiction that a rectangle of area 8 is
chosen on turn 7, and notice that then on the first 8 turns the smallest sum of areas we can
achieve would be

1 + 2 + 3 + 4 + 5 + 6 + 8 + 8 = 37 > 36,

a contradiction. On the other hand, given 7 is a prime number, the only rectangles of area
7 are a 1 × 7 or a 7 × 1 rectangle, neither of which can be packed into a 6 × 6 grid. As
either area choice for turn 7 leads to a contradiction, we conclude it is not possible to have a
perfect game of PackIt! over the 6 × 6 grid. This example is illustrated in Figure 2, and is
generalized in the next proof.

Proof of Theorem 4. Let p ∈ P (m, n). At turn p, one must choose between area p or area
p+1. If area p is chosen, then the rectangle must be either 1×p or p×1, due to the primality
of p. However, by the definition of the set P (m, n) we have p > n ≥ m, and thus neither
the 1 × p nor the p × 1 rectangle can be packed into the m × n grid. Assume, expecting
a contradiction, that γ(m, n) < |P (m, n)| and there exists a sequence of turns leading to
a perfect packing for the m × n grid. As a result of the previous argument, every turn
p ∈ P (m, n) must be an expansion turn. As the number of expansion turns is equal to γ(m, n)
by Lemma 3, we have γ(m, n) ≥ |P (m, n)|, which directly contradicts the assumption. ◀

▶ Theorem 5 (Large gap). For any m×n grid, let 1Kp
be the indicator variable corresponding

to whether K(m, n) + 1 is a prime number or not. Then, the condition

γ(m, n) > K(m, n) − |P (m, n)| − 1Kp

implies the m × n grid does not allow a perfect game of PackIt!.

Before the proof, let us present some intuition for Theorem 5. Consider m = n = 18 (this
example is illustrated in Figure 3). As a result, τ(18 · 18) = 24 , and therefore the gap is

γ(m, n) = m · n − Tτ(m·n) = 18 · 18 − 24 · 25
2 = 24.

We also have K(m, n) = τ(m · n) = 24, implying that any perfect packing of the 18 × 18 grid
will consist of K(m, n) = 24 rectangles. We claim that on turn 18, both choices of area, 18
and 19, lead to contradictions. Let us see what happens if area 18 is chosen on turn 18. In
this case, even if area t + 1 is chosen on every turn t ̸= 18, the maximum sum of the areas
we can achieve is

2 + 3 + . . . + 17 + 18 + 18 + 20 + . . . + 25 = 323 < 324,

implying the 324 cells of the 18 × 18 grid cannot be covered. On the other hand, if area 19 is
chosen on turn 18, we run into a different issue: as 19 is a prime number it only allows for
the rectangles 1 × 19 or 19 × 1, neither of which be can be packed into the 18 × 18 grid. As
both cases lead to an impossibility, we conclude it is not possible to have a perfect game
of PackIt! over the 18 × 18 grid. The proof for Theorem 5 generalizes this example.

FUN 2024
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5 5 5 5 5 5 23 23 23 23 23 23 23 23 23 23 23 23

14 4 4 4 4 4 23 23 23 23 23 23 23 23 23 23 23 23

14 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

14 12 11 11 11 11 11 11 11 11 11 11 11 11 2 2 2

14 12 7 7 7 7 7 7 7 7 24 24 24 24 24 19 19

14 12 21 21 10 22 22 20 20 20 8 24 24 24 24 24 19 19

14 12 21 21 10 22 22 20 20 20 8 24 24 24 24 24 19 19

14 12 21 21 10 22 22 20 20 20 8 24 24 24 24 24 19 19

14 12 21 21 10 22 22 20 20 20 8 24 24 24 24 24 19 19

14 12 21 21 10 22 22 20 20 20 8 6 17 17 9 9 19 19

14 12 21 21 10 22 22 20 20 20 8 6 17 17 9 9 19 19

14 12 21 21 10 22 22 20 20 20 8 6 17 17 9 9 19 19

14 12 21 21 10 22 22 18 18 18 8 6 17 17 9 9 19 19

14 12 21 21 10 22 22 18 18 18 8 6 17 17 9 9 19 19

14 12 21 21 10 22 22 18 18 18 1 6 17 17 15 15 15 15

14 12 21 21 10 22 22 18 18 18 1 6 17 17 15 15 15 15

13 13 13 13 13 13 13 18 18 18 3 3 17 17 15 15 15 15

13 13 13 13 13 13 13 18 18 18 3 3 17 17 15 15 15 15

Figure 3 Illustration of the impossibility result for n = 18 (Theorem 5). Even though almost
each rectangle t has area t + 1, except for t ∈ {18, 22} (where t + 1 > n is prime), the total area
covered by turn 24 is only 322 = 182 − 2, and naturally it is not possible to fill in the two remaining
cells in turn 25.

Proof of Theorem 5. Let p ∈ P (m, n). As p ≤ K(m, n) by definition of P (m, n), turn p − 1
is necessarily part of any perfect packing. At turn p − 1, one must choose between area p − 1
or area p. If area p is chosen, then the rectangle must be either 1 × p or p × 1, due to the
primality of p. However, by the definition of the set P (m, n) we have p > n ≥ m, and thus
neither the 1 × p nor the p × 1 rectangle can be packed into the m × n grid. We conclude
that for each p ∈ P (m, n), the turn p − 1 is not an expansion turn.

If K(m, n) + 1 is prime, then the rectangle turn K(m, n) cannot be an expansion turn.
By definition, K(m, n) + 1 ̸∈ P (m, n), so the number of turns that are not expansion turns
is at least |P (m, n)| + 1Kp

. By Lemma 1, the number of expansion turns is exactly γ(m, n),
which together with the previous fact implies that the total number of turns is at least

|P (m, n)| + 1Kp
+ γ(m, n). (3)

Suppose, expecting a contradiction that

γ(m, n) > K(m, n) − |P (m, n)| − 1Kp
, (4)

and yet there exists a sequence of turns leading to a perfect packing for the m × n grid. By
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combining Equation (3) and Equation (4), the total number of turns is at least

|P (m, n)| + 1Kp
+ γ(m, n) > |P (m, n)| + 1Kp

+
(
K(m, n) − |P (m, n)| − 1Kp

)
= K(m, n),

which is a contradiction, given the total number of turns must be exactly K(m, n) according
to Lemma 1. ◀

Combining Theorem 4 and Theorem 5, we obtain a range of values for the gap of an
m × n grid in which perfect packings are a priori possible. So far, we have not found any
examples of m × n grids whose gap belongs in this range and yet no perfect packings exist.
Therefore, we pose the following conjecture

▶ Conjecture 6. Let m ≤ n be positive integers. Then, if

|P (m, n)| ≤ γ(m, n) ≤ K(m, n) − |P (m, n)| − 1Kp
,

it is possible to complete a perfect game of PackIt! for the m × n grid.

Interestingly, Theorem 4 is enough to construct infinite families of n × n grids that do
not admit perfect packings.

▶ Theorem 7. There are infinitely many positive integers n such that the n × n grid does
not admit a perfect game of PackIt!.

Proof. By Theorem 4, if suffices to show that there are infinitely many values of n such that
γ(n, n) = 1 and |P (n, n)| > 1. First, consider the following claim.

▷ Claim 8. For every n ≥ 100, we have K(n, n) ≥ 1.4n.

Proof of Claim 8. Let ℓ = ⌊1.4n⌋. It suffices to argue that Tℓ ≤ n2. As ℓ > n ≥ 100, we have
ℓ < 1

100 ℓ2, which we can use as follows.

Tℓ = ℓ2 + ℓ

2 ≤
101ℓ2

100
2 = 101ℓ2/200,

and conclude by noting that

101ℓ2/200 ≤ 101
200 ·

(
140
100n

)2
= 1 979 600

2 000 000n2 ≤ n2. ◁

Now, Schoenfeld proved in [15] that for every n > 3 · 106, there is always a prime number
between n and

(
1 + 1

16957
)

n, which applied twice gives us that there are always (at least) two
prime numbers between n and

(
1 + 1

16957
)2

n ≤ 1.4n. Therefore, for n > 3 · 106 we always
have |P (n, n)| > 1. It remains to prove that γ(n, n) = 1 infinitely often. We do this by using
the theory of generalized Pell’s equation. Indeed, the condition γ(n, n) = 1 can be written,
by using notation K := K(n, n), as

n2 − K(K + 1)
2 = 1, (5)

which after multiplying both sides by 8 and rearranging is equivalent to

8n2 − (2K + 1)2 = 7.
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Introducing the variable t := (2K + 1) we consider the following equations.

t2 − 8n2 = −7, (6)(
t(h)
)2

− 8
(

n(h)
)2

= 1. (7)

While Equation (7) presents an “homogeneous” Pell equation, for which it is well known that
infinitely many solutions exist over the positive integers (cf. the problem of square triangular
numbers [2]), Equation (6) corresponds to a “non-homogeneous” equation, less frequently
studied. Similarly to the theory of ordinary differential equations, we can obtain a set of
solutions to the non-homogeneous equation by combining one initial solution for it with a
set of solutions to its homogeneous counterpart. Indeed, assume the existence of a solution
(n0, t0) to Equation (6) over the positive integers, and

(
n

(h)
i , t

(h)
i

)
a sequence of solutions

to Equation (7) over the positive integers, whose existence is standard (see e.g., [2]).

▷ Claim 9. The sequence (ni, ti), defined as

(ni, ti) :=
(

t0t
(h)
i + 8n0n

(h)
i , t0n

(h)
i + n0t

(h)
i

)
, (8)

is an infinite family of solutions of Equation (6) over the positive integers.

Proof of Claim 9. By assumption, (n0, t0) is a solution of Equation (6), and
(

n
(h)
i , t

(h)
i

)
is a

solution of Equation (7). Thus, we have

−7 =
(
t2
0 − 8n2

0
)((

t
(h)
i

)2
− 8

(
n

(h)
i

)2
)

= (t0 +
√

8n0)(t0 −
√

8n0)
(

t
(h)
i +

√
8n

(h)
i

)(
t
(h)
i −

√
8n

(h)
i

)
=
[
(t0 +

√
8n0)

(
t
(h)
i +

√
8n

(h)
i

)]
·
[
(t0 −

√
8n0)

(
t
(h)
i −

√
8n

(h)
i

)]
=
[(

t0t
(h)
i + 8n0n

(h)
i

)
+

√
8
(

t0n
(h)
i + n0t

(h)
i

)]
·
[(

t0t
(h)
i + 8n0n

(h)
i

)
−

√
8
(

t0n
(h)
i + n0t

(h)
i

)]
=
(

t0t
(h)
i + 8n0n

(h)
i

)2
− 8

(
t0n

(h)
i + n0t

(h)
i

)2

= n2
i − 8t2

i . ◀

As we can provide an initial solution (n0, t0) := (11, 31) to Equation (6), we conclude
by Claim 9 that it has infinitely many solutions over the positive integers. We now finish the
proof by the following claim.

▷ Claim 10. Every solution (ni, ti) to Equation (6) over the positive integers with ni > 3 ·106

corresponds to a value of n such that the n×n grid does not admit a perfect game of PackIt!.

Proof of Claim 10. Let (ni, ti) be a solution to Equation (6) and let us argue that the ni × ni

does not admit a perfect game of PackIt!. First, consider that ti must be odd, as t2
i = 1+8n2

i ,
by Equation (6). Therefore (ti − 1)/2 is a positive integer. We now a argue that (ti − 1)/2
indeed matches the definition of K(ni, ni). Let us denote (ti − 1)/2 by K ′, and we will argue
that indeed K ′ = K(ni, ni). To see, this, consider that as Equation (6) has the same set of
solutions as Equation (5), it must be the case that

n2
i − K ′(K ′ + 1)

2 = 1,
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implying that TK′ = n2
i − 1 ≤ n2

i . Moreover, we have that

TK′+1 = TK′ + (K ′ + 1) = n2
i + K ′ > n2

i ,

thereby confirming that K ′ = τ(n2
i ) = K(ni, ni). Taking n := ni, we have by construction

that γ(n, n) = 1, and as n > 3 · 106 we have |P (n, n)| > 1. Therefore the condition
of Theorem 4 applies to n, implying the n × n grid does not admit a perfect packing. This
concludes the proof of the entire theorem. ◁

◀

Let us define notation γ−1(c) to denote the set {n ∈ N>0 | γ(n, n) = c}. The previous
proof showed that there are infinitely many values of n ∈ γ−1(1) that do not admit perfect
packings. We now show a much stronger statement.

▶ Theorem 11. For every value c ≥ 0, only a finite number of values n ∈ γ−1(c) allow for a
perfect packing of the n × n grid.

Proof. By Theorem 4, it suffices to show that for every value c ≥ 0, there are only finitely
many values of n such that

|P (n, n)| = {n < p ≤ K(n, n) | p is prime} ≤ c

We will do so by using the following improvement on Bertrand’s postulate due to Dusart.

▶ Proposition 12 ([8]). For every value of n > 3275, there exists a prime number p such that

n < p ≤ n

(
1 + 1

2 ln2 n

)
.

In particular, if we apply Proposition 12 exactly c + 1 times, we obtain that

∣∣∣∣∣
{

n < p ≤ n

(
1 + 1

2 ln2 n

)c+1 ∣∣∣ p is prime
}∣∣∣∣∣ ≥ c + 1, for every n > 3275.

Now, let us see that for every sufficiently large n it holds that

n

(
1 + 1

2 ln2 n

)c+1
≤ K(n, n),

which will be enough to conclude. Indeed, recall that by Claim 8 we have that K(n, n) ≥ 1.4n

for n ≥ 100, and hence it only remains for us to show that for sufficiently large n we have(
1 + 1

2 ln2 n

)c+1
≤ 1.4,

which must be true since the LHS is monotonically decreasing in n and its limit when n goes
to infinity is 1. ◀

▶ Theorem 13. For every even n ≥ 2, the 2 × n2

2 grid always admits a perfect game
of PackIt!.
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1 2 2 3 3 3

4 4 4 4 5 5 5 5 5

1 1 2 2 3 3 3

4 4 4 4 5 5 5 5 5

1 1 2 2 4 4 4 4

3 3 3 5 5 5 5 5

(Initial Placement)

(Expansion Step)

(Final Swap)

Figure 4 Illustration of Case 1 for the proof of Theorem 13, for n = 4. In this case γn = 1.

Proof. The proof is constructive. Let K := K
(

2, n2

2

)
. As a first step, we place the first

n − 1 rectangles (i.e., 1 × t for t ∈ {1, . . . , n − 1}) in the first row, one after another, thus
covering the first n(n−1)

2 < n2

2 cells of the first row. Some of these rectangles will be expanded
later on in order to fill up the first row, meaning that the rectangle 1 × t, used in turn t will
be replaced by a rectangle 1 × (t + 1). The remaining K − n − 1 rectangles, for t ≥ n, will
be placed on the second row. We might have to move some rectangles from the first row
to the second row or vice-versa. The proof proceeds by cases over γ

(
2, n2

2

)
, which we will

abbreviate by γn to alleviate notation.

(Case 1: γn ≤ n
2 ). As introduced earlier, the first step is to place the first n − 1 rectangles

in the row one and the rest in row two. For the moment we do not care if row two is too
long or row one too short; we will deal with that in a moment. Next, expand the first γn

rectangles of row one. Originally, row one was n2

2 − n(n−1)
2 = n

2 cells too short, and after
the expansion of the first γn rectangles it is n

2 − γn cells too short. By Lemma 3, the γn

expansions in row one, guarantee that the total area of rectangles in row one and two adds
up to exactly n2. As a result, row two must be exactly n

2 − γn cells too large. If γn were to
be exactly n

2 , we would be done immediately. Otherwise, we will swap a rectangle from row
one with a rectangle from row two. Indeed, note that r n

2 +γn
, the 1 × n

2 + γn rectangle, is
still on row one, and it was not expanded. Therefore, we can swap r n

2 +γn (from row one)
with rn (from row two). As a result, row one has grown by n −

(
n
2 + γn

)
= n

2 − γn cells, and
row two has shrunk by the same amount. Therefore both rows have reached their desired
length. This case is illustrated in Figure 4.

(Case 2: n
2 < γn < n − 1). As before, placing the first n − 1 rectangles in row one makes

the first row n
2 cells too short. Then, if we place rectangles rn, . . . , rK in row two, given that

in total γn expansions are required to achieve the total desired area (Lemma 3), it must be
the case that row two is γn − n

2 cells too short. Naively, we would simply expand n
2 rectangles

in the first row, and γn − n
2 in the second row. However, the second row might contain fewer

than γn − n
2 rectangles. To address this, we will transfer a rectangle from row one to row
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two, and perform more expansions on row one, which concentrates most of the rectangles.
Let us identify which rectangle will be moved from row one to row two. Let us define

i = γn − n

2 .

Transfer ri from row one to row two, and expand the first γn < n − 1 of the rectangles in
row one. Since γn expansions have been made, the total area is exactly n2

2 , and thus it only
remains to argue that the top row has exactly n2

2 cells covered. This is indeed the case as

n(n − 1)
2 + γn − i = n(n − 1)

2 + γn −
(

γn − n

2

)
= n2

2 .

(Case 3: γn ≥ n − 1). Place the first n − 1 rectangles in row one and the rest in row two.
Expanding all n − 1 rectangles in the first row, and then expand γn − (n − 1) rectangles
in the second row. Let i = n

2 − 2 (if n ∈ {2, 4}, the result can be checked manually, and
therefore we assume i ≥ 1 is a valid index for a rectangle). Move rectangle ri from row one
to row two. As in the previous case, it only remains to argue that the number of cells in the
top row is exactly n2

2 . This is indeed the case as the number is determined by

n(n − 1)
2 + (n − 1) − (i + 1) = n(n − 1)

2 + (n − 1) −
(n

2 − 1
)

= n2

2 .

Having covered all cases, we conclude the entire proof. ◀

3 Complexity Results

In turn t of a game of PackIt!, the turn in which each of the already placed rectangles was
packed into the grid is irrelevant, and therefore a partially filled grid G of dimensions n × n

can be represented as an n × n matrix over {0, 1}. We will assume this representation uses
O(n2) bits. Consider now the following problem:

PROBLEM: : SolitairePackIt!
INPUT : A partially filled grid G, and a turn number t given in

binary.
OUTPUT : Whether it is possible to complete a perfect packing for

G starting from turn t.

We will analyze the complexity of SolitairePackIt! next, but before that, let us remark that
the definition of the problem does not require the partial filling of G to be achievable in t − 1
turns. We leave the complexity of SolitairePackIt! with the additional restriction that G

must be achievable in t − 1 turns as an open problem. That being said, we can present our
main complexity result.

▶ Theorem 14. SolitairePackIt! is NP-complete.

Proof. Let n×n be the the dimensions of G. Membership in NP is easy to see: the certificate
is a description of the turns t, ..., t + m, where m = K(n, n) ≤ n2, and it suffices to check
that at each turn t + i, a rectangle of the appropriate area was placed without overlapping
with any of the previously placed rectangles. For hardness, we reduce from a variant of the
well-known 3 partition problem, proven to be NP-hard by Hulett, Will and Woeginger [12].
The overall reduction is inspired by the analysis of Tetris by Breukelaar et al. [5]. Consider
the Restricted-3-Partition problem defined as follows.
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PROBLEM: : Restricted-3-Partition
INPUT : A set of integers, A = {α1, . . . , αn}, with n a multiple of 3,

such that if we define T :=
∑n

i=1
αi

(n/3) , then T/4 < αi < T/2
for every i ∈ [n].

OUTPUT : Whether it is possible to partition A into n/3 sets of 3
elements, all of them having sum exactly T .

Consider now the 4-Restricted-3-Partition, defined exactly as above but with the additional
restriction that all numbers αi are multiples of 4. This additional restriction preserves NP-
hardness as every 3-partition P defined as

{4α1, . . . , 4αn} P7−→ ({4αi, 4αj , 4αk} , . . . , {4αx, 4αy, 4αz})

is in a one-to-one correspondence with a 3-partition P ′ defined as

{α1, . . . , αn} P ′

7−→ ({αi, αj , αj} , . . . , {αx, αy, αz}) .

We can therefore reduce directly from 4-Restricted-3-Partition. Let A be an input instance
of 4-Restricted-3-Partition. We now show how to construct an associated instance of Soli-
tairePackIt!. First, we will present the required gadgets, which are illustrated in Figure 5.

E-gadgets. An E-gadget consists of a T × 3 grid, in which the first and third column are
completely filled, whereas the middle column is completely empty (hence E(mpty)-gadget).
An illustration is presented in Figure 5b.

S-gadgets. Given an integer α ≥ 1, an S(α)-gadget consists of a T × 3 grid, in which the
first and third column are completely filled, whereas only the bottom T − α rows of the
middle column are filled. In other words, S(α)-gadgets have a single “hole” of α × 1, hence
their name. An illustration is presented in Figure 5b.

D-gadgets. Given an integer α ≥ 1, a D(α)-gadget consists of a T × 3 grid, in which the
first and third column are completely filled, and the middle column is filled only at row α + 1
and rows {2α + 2, 2α + 3, . . . , T }. In other words, D(α)-gadgets have two “holes” of α × 1,
i.e., a double hole, hence their name. An illustration is presented in Figure 5c.

With these gadgets, we can now construct a (T + n) × (T + n) grid as follows. First,
horizontally concatenate exactly n/3 identical E-gadgets. Next, concatenate an S(1)-gadget to
the right of the current construction. Then, for every odd value m such that 3 ≤ m < max(A),
concatenate a D(m)-gadget to the right of the current construction if m − 1 ̸∈ A, and instead
an S(m + 1)-gadget to the right of the current construction otherwise.

Afterwards, if the resulting grid has length T × T ′, we complete a T × (T + n) grid by
concatenating a T × (T +n−T ′) completely filled grid to the right of the current construction.
This is well-defined, meaning that T ′ < T + n, as we show next. First, consider that, as each
gadget uses exactly 3 columns, we have

T ′ = 3 · n/3 + 3 ·
∣∣{3 ≤ m < max(A) | m is odd

}∣∣
≤ n + 3

⌈
max(A) − 3

2

⌉
< n + 3max(A)

2 .
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(a) An E-gadget. (b) An S(4)-gadget. (c) A D(3)-gadget.

Figure 5 Illustration of the gadgets for T = 10.

Next, consider that

T =
(∑

α∈A
α

)
/(n/3) ≤ 3 max(A).

Then, as max(A) ≤ T/2 by the definition of 4-Restricted-3-Partition, we have

T ′ ≤ n + 3 · max(A)
2 ≤ n + 3 · T

4 < T + n.

Finally, to go from the resulting T × (T + n) grid to a (T + n) × (T + n) grid it suffices to
concatenate a completely filled n × (T + n) grid at the bottom of the previous grid. This
construction is illustrated in Figure 6. We are now ready to prove the correctness of our
reduction. Let GA be the (T + n) × (T + n) grid constructed by the above process.

▶ Lemma 15. The instance (GA, 1) is a Yes-instance for SolitairePackIt! if and only if A
is a Yes-instance for 4-Restricted-3-Partition.

Proof. ( ⇐= ) Let us start with the backward direction since it is simpler. Assume there
is a solution to the partition problem with sets S1, . . . , Sn/3, where each set has exactly 3
elements and its sum is exactly T . Then, we can complete a perfect packing of G as follows.
On each turn 1 ≤ t ≤ max(A):
Case I) If t ∈ A, then let i be the index such that t = αi, and j be the index of the set Sj

such that αi ∈ Sj . Then, on this turn we can place a rectangle of dimensions t × 1 into
the j-th E-gadget of GA.

Case II) If t = 4k for some positive integer k but t ̸∈ A, then by construction there is a
D(t + 1)-gadget, which can be filled by placing a (t + 1) × 1 rectangle on this turn, and a
(t + 1) × 1 rectangle on the next turn.

Case III) If t = 4k + 1 and t − 1 ∈ A, then by construction there is an S(t + 1)-gadget, which
can be filled by placing a (t + 1) × 1 rectangle on this turn.

Case IV) If t = 4k + 1 for some integer k, and t − 1 ̸∈ A, then this turn has been covered in
Case II).

FUN 2024
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. . . . . .T

n

T + n

Figure 6 Illustration of the construction of GA for Theorem 14. Note that n could be larger than
T , and thus this figure is not necessarily in scale.

Case V) If t = 4k + 2 for some integer k, then by by construction there is a D(t + 1)-gadget,
which can be filled by placing a (t + 1) × 1 rectangle on this turn, and a (t + 1) × 1
rectangle on the next turn.

Case VI) If t = 4k + 3 then this turn has been covered in Case V).
As a result of the turns of Case I), every E-gadget will be completely filled since by definition,
if αi, αk, αℓ ∈ Sj , then αi + αk + αℓ = T . As there are exactly n/3 identical E-gadgets in
GA, they will all be filled. Note as well that the gadgets used in every case are different. In
particular, the only S-gadgets in the construction are for t + 1 = 4k + 2 with t − 1 ∈ A, which
are all used by Case III). Similarly, all D(m)-gadgets for m = 4k + 1 for some integer k are
used by Case II), whereas all D(m)-gadgets for m = 4k + 3 are used by Case V). Given all
gadgets are perfectly filled up, we have a perfect packing of GA.

( =⇒ ) For the forward direction, assume it is possible to perfectly pack the grid GA
starting from turn 1. Let GP

A be any perfect packing completing GA. Note immediately
that by construction, every rectangle placed in GP

A from turn 1 onward must have dimension
t × 1 for some positive integer t. Intuitively, we will now prove that the choices made in the
backward direction of the proof are forced.
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▶ Definition 16. For any turn t ≥ 1, we say the rectangle placed in GP
A on turn t is proper

if either
1. t = 1, and the rectangle placed in GP

A on this turn was a 1 × 1 rectangle placed in the
only S(1)-gadget of GA.

2. t > 1 is odd, and t − 1 ∈ A, and the rectangle placed in GP
A on this turn was a (t + 1) × 1

placed in the only S(t + 1)-gadget of GA.
3. t > 1 is odd and t − 1 ̸∈ A, and the rectangle placed in GP

A on this turn was a t × 1 placed
in one of the two spaces of the only D(t)-gadget of GA.

4. t ∈ A, and the rectangle placed in GP
A on this turn was placed in one of the E-gadgets.

5. t is even but t ̸∈ A, and the rectangle placed in GP
A on this turn was a (t + 1) × 1 placed

in one of the two spaces of the only D(t + 1)-gadget of GA.

▷ Claim 17. Every turn t ≥ 1 where a rectangle was placed in GP
A must have been proper.

Proof of Claim 17. We prove the claim by induction on t. The base case is t = 1, for which a
single S(1)-gadget exists in the construction, and given that the 1 × 1 empty space in this
gadget must be filled in GP

A, the only turn on which it can be filled is turn 1. Therefore the
base case works. For the inductive case, assume the claim holds up to t and let us show it
holds for t + 1.

If t + 1 is odd and t ∈ A, then we claim the rectangle placed on turn t + 1 must have
been a (t + 2) × 1 rectangle in the only S(t + 2)-gadget of GA. Indeed, if this were not
the case, said gadget could only have been filled by a (t + 2) × 1 rectangle placed on turn
(t + 2), since all previous turns have been proper and thus not placed anything in the
S(t + 2)-gadget. However, given there are two empty spaces of size (t + 3) into the only
D(t + 3)-gadget of GA (which must exist since t ∈ A =⇒ t + 2 ̸∈ A as all elements of A
are multiples of 4), and no previous turns could have placed anything into them as they
are proper by inductive hypothesis, then we conclude that on turn (t + 2) a rectangle of
size (t + 3) must have been placed into the only D(t + 3)-gadget of GA.
If t + 1 is odd and t ̸∈ A, then given all the previous turns have been proper, it must be
that the only D(t + 1)-gadget of GA has only received a (t + 1) × 1 rectangle placed on
turn t, according to (5) in the definition of proper turn. Therefore, a single (t + 1) × 1
empty space remains in the only D(t + 1)-gadget of GA, and it must be that is filled on
this turn, as any posterior turns will have rectangles of area at least t + 2.
If t + 1 is even but t + 1 ̸∈ A, then given all turns so far have been proper, there are two
empty (t + 2) × 1 spaces in the only D(t + 2)-gadget of GA, and given none can be filled
after turn t + 3, and at most one can be filled in turn t + 2, we conclude that turn t + 1
must fill one.
If t + 1 ∈ A, and this turn were to be improper, then the rectangle placed on this turn
must be placed either in an S(t′)-gadget or in a D(t′)-gadget.
In either case we will reach a contradiction. Note first that t′ > t + 2: in the construction
of GA, as t is odd and t − 1 ̸∈ A, when m = t a D(t)-gadget was created, and the next
gadget created is a S(t + 3)-gadget when m = t + 2, since m − 1 ∈ A. Next, note that the
remaining empty space on the S(t′)-gadget or the D(t′)-gadget partially filled on turn
t + 1 must be at least t′ − (t + 2) > 0. If t′ − (t + 2) < t + 2, then that remaining empty
space can never be filled in posterior turns, where all rectangles have area at least t + 2,
a contradiction. Otherwise, t′ − (t + 2) > t + 1, meaning that t′ > 2t + 3. Because an
S(t′)-gadget or a D(t′)-gadget exists, we deduce from the construction that t′ ≤ max(A).
This implies that

max(A) > t′ − 1 > 2t + 2 = 2(t + 1),
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meaning that two elements of A, namely

αi := max(A), αj := t + 1,

hold αi > 2αj . But by definition of 4-Restricted-3-Partition that would imply the
following contradiction:

T/4 < αj < αi/2 < (T/2)/2 = T/4. ◁

By Claim 17, we have that for every αt ∈ A, a rectangle of area αt has been placed inside
an E-gadget. Given that T/2 < αt < T/4 for every t, there must be exactly 3 rectangles
placed inside every E-gadget. Let α

(1)
i , α

(2)
i , α

(3)
i be the areas of the three rectangles placed

inside the i-th E-gadget. As for every i, by hypothesis, the i-th E-gadget is perfectly filled
and had t empty cells to be filled, we conclude that that α

(1)
i + α

(2)
i + α

(3)
i = T , from where

it follows that A is a Yes-instance to the 4-Restricted-3-Partition problem. This concludes
the proof of Lemma 15. ◀

Given the reduction presented above can clearly be carried out in polynomial time, we
conclude hardness from the correctness proved in Lemma 15, and consequently this finishes
the entire proof of Theorem 14. ◀

4 Computing Perfect PackIt! games

Even though Theorem 14 does not directly imply that it is hard to find perfect packings for
an n × n grid (or to decide whether such a packing exist), it arguably gives evidence for this
being a hard combinatorial challenge.

In many combinatorial problems SAT-solving can dramatically outperform backtracking
approaches. This also happens to be the case for computing perfect PackIt! games, where
even after several optimizations, a backtracking approach only allowed us to find perfect
packings up to n = 20. In contrast, by using a novel SAT encoding technique we were able
to find perfect packings up to n = 50 in under 24 hours of computation. As in Section 2, we
divide the problem into two stages: (i) finding a set of rectangles (ht, vt) such that

Their total area is n2, meaning that
∑

t ht · vt = n2.
The t-th rectangle has area t or t + 1, meaning that ht · vt ∈ {t, t + 1} for every t.
All rectangles fit into the n × n grid, meaning that max(ht, vt) ≤ n.

and (ii), packing the rectangles obtained in the previous stage without overlaps. Note that
due to the area condition, if a valid rectangle selection is packed without overlapping, then
they must cover the entire n × n grid.

For stage (i), we use a pseudo-polynomial dynamic programming approach, similar to the
one used for the standard subset sum problem. For stage (ii) we use a sophisticated SAT
encoding that uses only O(n3) many clauses as opposed to the naive O(n4) encoding. Due
to space constraints, both the dynamic programming formulation and the SAT encoding is
presented in the extended arXiv version of this paper, at https://arxiv.org/abs/2403.
12195.

4.1 Computational Results
All experiments have been run on a personal computer with the following specifications:

MacBook Pro M1, 2020, running Sonoma 14.3
16GB of RAM
8 cores (but all experiments were run in a single thread).

https://arxiv.org/abs/2403.12195
https://arxiv.org/abs/2403.12195
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In terms of software, we experimented with different SAT-solvers, and obtained the best
results using the award-winning solver Kissat [3]. We tested every value of n between 5 and 50
and such that neither Theorem 4 nor Theorem 5 applies, and for every value we were able to
find a perfect game of PackIt! in under 24 hours. For each such value, we used the dynamic
programming approach to generate a valid selection of rectangles, and simply used the first
one obtained. Given the number of valid selections of rectangles is likely exponential in n,
it could be that some valid selections are significantly easier to pack than others. The fact
that we obtained perfect packings simply using the first valid rectangle selection obtained
via dynamic programming confirms the robustness of the SAT approach.

Detailed results are presented in Table 1. As it is common for families of satisfiable
formulas, the runtime is not strictly monotone with n, even though the size of the encoding
is (both the number of variables and clauses).

Table 1 Computational results for n ∈ {5, . . . , 50}. Perfect packings for n ∈ {1, . . . , 4} are trivial.

n #vars #clauses SAT runtime

5 141 424 0.0s
(Theorem 4 applies) 6 - - -

7 297 1101 0.0s
8 375 1482 0.0s
9 510 2228 0.02s

10 611 2797 0.02s
11 780 3921 0.02s
12 904 4732 0.03s
13 1037 5673 0.19s
14 1254 7375 0.16s
15 1410 8584 0.04s
16 1661 10838 0.56s
17 1840 12397 0.20s

(Theorem 5 applies) 18 - - -
19 2327 17184 0.20s
20 2538 19339 2.47s
21 2871 23037 2.08s
22 3105 25582 2.04s

(Theorem 4 applies) 23 - - -
24 3729 33117 4.43s
25 3995 36396 2.80s
26 4410 41980 2.69s
27 4699 45737 23.21s
28 5148 52283 8.45s
29 5460 56636 17.24s

(Theorem 5 applies) 30 - - -
31 6278 69109 34.26s
32 6622 74340 48.17s
33 7153 83288 36.37s
34 7520 89207 107.23s

(Theorem 4 applies) 35 - - -
36 8475 105934 747.46s
37 8874 112997 194.33s
38 9487 124629 502.20s
39 9909 132324 442.62s
40 10556 145392 129.71s
41 11001 153969 6117.58s
42 11455 162890 2088.45s
43 12150 177744 923.03s
44 12627 187501 579.50s
45 13356 203857 3185.11s
46 13856 214540 2188.39s

(Theorem 5 applies) 47 - - -
48 15142 244107 48102.44s
49 15674 256188 23337.97s
50 16485 276182 15925.77s
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5 Concluding Remarks

We have analyzed several aspects of PackIt!:
1. Every 2 × n2

2 grid admits a perfect PackIt! game.
2. For every n ≤ 50 such that neither Theorem 4 nor Theorem 5 applies, the n × n grid

admits a perfect PackIt! game. In other words, Conjecture 6 is true for all values of
n ≤ 50.

We hope that both our mathematical and computational techniques can be applicable to
similar packing problems. The “Mondrian Art Puzzle” [9, 14] asks for perfect packings of
n × n grids but where all rectangles must use the same area. Recently, the MIT CompGeom
Group has studied perfect packings for rectangular grids with square pieces [11]. Then, in
terms of concrete PackIt! questions, we pose the following challenges:
1. Prove or refute Conjecture 6.
2. Is there always a perfect packing of the m × n grid when γ(m, n) = K(m, n)/2? In this

case, exactly half of the turns are expansion turns. In particular, this might be easier to
show assuming m and n are even.

3. What is the complexity of PackIt! as a 2-player game? It is well known that complexity
tends to increase in 2-player formulations (see e.g., [7]), so could PackIt! be complete
for the class PSPACE?

In terms of our web implementation of PackIt!, future work includes the design of an
online multiplayer mode, and AIs that could be faced as opponents.
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Abstract
Finding schedules for pairwise meetings between the members of a complex social group without
creating interpersonal conflict is challenging, especially when different relationships have different
needs. We formally define and study the underlying optimisation problem: Polyamorous Scheduling.

In Polyamorous Scheduling, we are given an edge-weighted graph and try to find a periodic
schedule of matchings in this graph such that the maximal weighted waiting time between consecutive
occurrences of the same edge is minimised. We show that the problem is NP-hard and that there is
no efficient approximation algorithm with a better ratio than 4/3 unless P = NP. On the positive
side, we obtain an O(log n)-approximation algorithm; indeed, an O(log ∆)-approximation for ∆

the maximum degree, i.e., the largest number of relationships of any individual. We also define a
generalisation of density from the Pinwheel Scheduling Problem, “poly density”, and ask whether
there exists a poly-density threshold similar to the 5/6-density threshold for Pinwheel Scheduling
[Kawamura, STOC 2024]. Polyamorous Scheduling is a natural generalisation of Pinwheel Scheduling
with respect to its optimisation variant, Bamboo Garden Trimming.

Our work contributes the first nontrivial hardness-of-approximation reduction for any periodic
scheduling problem, and opens up numerous avenues for further study of Polyamorous Scheduling.
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1 Introduction

We study a natural periodic scheduling problem faced by groups of regularity-loving polyamor-
ous people: Consider a set of persons and a set of pairwise relationships between them, each
with a value representing its neediness, importance, or emotional weight. Find a periodic
schedule of pairwise meetings between couples that minimizes the maximal weighted waiting
time between such meetings, given that each person can meet with at most one of their
partners on any particular day.

Before formally defining the Polyamorous Scheduling Problem (Poly Scheduling for short),
we illustrate some features of the problem on an example. Figure 1 shows an instance
using the natural graph-based representation: We have vertices for people and weighted

© Leszek Gąsieniec, Benjamin Smith, and Sebastian Wild;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Fun with Algorithms (FUN 2024).
Editors: Andrei Z. Broder and Tami Tamir; Article No. 15; pp. 15:1–15:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:l.a.gasieniec@liverpool.ac.uk
https://orcid.org/0000-0003-1809-9814
mailto:b.m.smith@liverpool.ac.uk
https://orcid.org/0000-0003-2306-3461
mailto:wild@liverpool.ac.uk
https://orcid.org/0000-0002-6061-9177
https://doi.org/10.4230/LIPIcs.FUN.2024.15
https://arxiv.org/abs/2403.00465
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


15:2 Polyamorous Scheduling

¥

¥

¥

¥

¥

¥

¥

¥

AA

BB

CC

DD

EE

FF

GG

HH

40♡
80♡

16♡20♡

40♡

40♡
40♡ 80♡

16♡80♡

¥

¥

¥

¥

¥

¥

¥

¥

AA

BB

CC

DD

EE

FF

GG

HH

4♡
2♡

10♡8♡

4♡

4♡
4♡ 2♡

10♡2♡
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0 ♥ ♥ ♥ ♥

1 ♥ ♥ ♥

2 ♥ ♥ ♥

3 ♥ ♥

4 ♥ ♥ ♥ ♥

5 ♥ ♥

6 ♥ ♥ ♥

7 ♥ ♥

Figure 1 An example Optimisation Polyamorous Scheduling instance with 8 persons: Adam,
Brady, Charlie, Daisy, Eli, Frankie, Grace, and Holly. Top left: Graph representation with edge
labels showing the weight (desire growth rates) of each pairwise relationship. Bottom: An optimal
schedule for the instance. On each day, a set of meetings is scheduled as indicated by ♥s. The
schedule has a period of 8 days: after day 7, we start from day 0 again. Top right: A decision
version of the instance obtained for heat 160. The edge labels here are the frequencies with which
edges have to be scheduled stay below heat 160.

(undirected) edges for relationships. It is easy to check that the schedule given at the bottom
of Figure 1 never schedules more than one daily meeting for any of the 8 persons in the
group; in the graph representation, the set of meetings for each day must form a matching.
Each day the mutual desire for a meeting experienced by each couple grows by the weight or
desire growth rate of that relationship1 – that is, until a meeting occurs and their desire is
reset to zero. We will refer to the highest desire ever felt by any pair when following a given
schedule as the heat of the schedule. The heat of the schedule in Figure 1 is 160: as the
reader can verify, no pair ever feels a desire greater than 160 before meeting and resetting
their desire to zero. Desire 160 is also attained; e.g., Adam and Daisy are scheduled to see
each other every other day, but over the period of 2 days between subsequent meetings, their
desire grows to 2 · 80 = 160.

For the instance in Figure 1, it is easy to show that no schedule with heat < 160 exists.
For that, we first convert from desire growth rates to required frequencies: Under a heat-160
schedule, a pair with desire growth rate g must meet at least every ⌊160/g⌋ days. The
top-right part of Figure 1 shows the result. It is easy to check that the given schedule
indeed achieves these frequencies. However, any further reduction of the desired heat to

1 “Remember, absence makes the heart grow fonder” [10].
(https://getyarn.io/yarn-clip/ae628721-c1d1-49d1-bd7c-78cbffceabf0)

https://getyarn.io/yarn-clip/ae628721-c1d1-49d1-bd7c-78cbffceabf0


L. Gąsieniec, B. Smith, and S. Wild 15:3

160 − ε would leave, e.g., Adam hopelessly overcommitted: the relation with Daisy would get
frequency ⌊(160 − ε)/80⌋ = 1, forcing them to meet every day; but then Brady and Frankie,
each with frequency ⌊(160 − ε)/40⌋ ≤ 3 cannot be scheduled at all.

While local arguments suffice for our small example, in general, Poly Scheduling is
NP-hard (as shown below). We therefore focus this paper on approximation algorithms and
inapproximability results.

1.1 Formal Problem Statement
We begin by defining a decision version of Poly Scheduling. In the Decision Polyamorous
Scheduling Problem, we are given a set of people and pairwise relationships with “attendance
frequencies” fi,j , and we are trying to find a daily schedule of two-person meetings such
that each couple {i, j} meets at least every fi,j days. The only constraint on the number of
meetings that can occur on any given day is that each person can only participate in at most
one of them. A Decision Polyamorous Scheduling instance can naturally be modelled as a
graph of people with the edges representing their relationships. Because each person can
participate in at most one meeting per day, the edges scheduled on any given day must form
a matching in this graph.

▶ Definition 1 (Decision Polyamorous Scheduling (DPS)). A DPS instance Pd = (P, R, f) (a
“decision polycule”) consists of an undirected graph (P, R) where the vertices P = {p1, . . . , pn}
are n persons and the edges R are pairwise relationships, with integer frequencies f : R → N
for each relationship.

The goal is to find an infinite schedule S : N0 → 2R, such that
(1) (no conflicts) for all days t ∈ N0, S(t) is a matching in Pd, and
(2) (frequencies) for all e ∈ R and t ∈ N0, we have e ∈ S(t) ∪ S(t + 1) ∪ · · · ∪ S(t + f(e) − 1);
or to report that no such schedule exists. In the latter case, Pd is called infeasible.

We write fi,j and fe as shorthands for f({pi, pj}) resp. f(e). An infinite schedule exists
if and only if a periodic schedule exists, i.e., a schedule where there is a period T ∈ N such
that for all t, we have S(t) = S(t + T ): any feasible schedule corresponds to an infinite walk
in the finite configuration graph of the problem (see Section 3), implying the existence of a
finite cycle. A periodic schedule can be finitely described by listing S(0), S(1), . . . , S(T − 1).

By relaxing the hard maximum frequencies of meetings between couples to “desire growth
rates”, we obtain the Optimisation Polyamorous Scheduling (OPS) Problem. Our objective
is to find a schedule that minimizes the “heat”, i.e., the worst pain of separation ever felt in
the polycule by any couple.

▶ Definition 2 (Optimisation Polyamorous Scheduling). An OPS instance (or “optimisation
polycule”) Po = (P, R, g) consists of an undirected graph (P, R) along with a desire growth
rate g : R → R>0 for each relationship in R. An infinite schedule S : N0 → 2R is valid if,
for all days, t ∈ N0, S(t) is a matching in Po.

The goal is to find a valid schedule that minimizes the heat h = h(S) of the schedule
where h(S) = max

e∈R
he(S) and

he(S) = sup
d∈N

{
(d + 1) · g(e) ∃t ∈ N0 : e /∈ S(t) ∪ S(t + 1) ∪ · · · ∪ S(t + d − 1);
g(e) otherwise.

As for DPS, S can be assumed to be periodic without loss of generality, meaning that S

is finitely representable.

FUN 2024
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1.2 Related Work
Polyamorous Scheduling itself has not been studied to our knowledge. Other variants of
periodic scheduling have attracted considerable interest recently [24, 18, 1], including FUN [4].

The simplest periodic scheduling problem is arguably Pinwheel Scheduling. In Pinwheel
Scheduling [19] we are given k positive integer frequencies f1 ≤ f2 ≤ · · · ≤ fk, and the
goal is to find a Pinwheel schedule, i.e., an infinite schedule of tasks 1, . . . , k such that any
contiguous time window of length fi contains at least one occurrence of i, for i = 1, . . . , k,
(or to report the non-existence of such a schedule).

Pinwheel Scheduling is NP-hard [22], but unknown to be in NP [24], (see [14] for more
discussion). Poly Scheduling inherits these properties.

The density of a Pinwheel Scheduling instance is given by d =
∑k

i=1 1/fi. It is easy to
see that d ≤ 1 is a necessary condition for A to be schedulable, but this is not sufficient,
as the infeasible instance (2, 3, M) with d = 5

6 + 1/M , for any M ∈ N shows. However,
there is a threshold d∗ so that d ≤ d∗ implies schedulability: Whenever d ≤ 1

2 , we can
replace each frequency fi by 2⌈lg(fi)⌉ without increasing d above 1; then a periodic Pinwheel
schedule always exists using the largest frequency as period length. A long sequence of
works [19, 6, 20, 26, 7, 13, 11, 14] successively improved bounds on d∗, culminating very
recently in Kawamura’s proof [24] that it is indeed a sharp threshold, d∗ = 5

6 , confirming
the corresponding conjecture of Chan and Chin from 1993 [20]. Generalizations of Pinwheel
Scheduling have also been studied, e.g., with jobs of different lengths [17, 12].

Pinwheel Scheduling is a special case of DPS, where the underlying graph (P, R) is a
star, i.e., a centre connected to k pendant vertices with edges of frequencies f1, . . . , fk. Note
that it is not generally possible to obtain a polyamorous schedule by combining the local
schedule of each person2; see for example a triangle with edge frequencies 2: In the DPS
instance ({A, B, C}, {A−B, B−C, A−C}, f) with f(e) = 2 for all edges, the local problem
for each person is feasible by alternating between their two partners, but the global DPS
instance has no solution. This example also shows that the simple strategy of replacing fi by
2⌈lg(fi)⌉ is not sufficient to guarantee the existence of a schedule for Poly Scheduling. Indeed,
it is unclear whether any such constant-factor scaling of frequencies exists which applies to
all Poly Scheduling instances.

There are two natural optimisation variants of Pinwheel Scheduling. In Windows Sched-
uling [3] tasks with frequencies are given and the goal is to find a perpetual scheduling that
minimizes the number of tasks that need to be done simultaneously while respecting all
frequencies (i.e., the number of channels or servers needed to schedule all tasks). Efficient
constant-factor approximation algorithms are known that use the connection to Bin Pack-
ing [2] (where we bin tasks by used channels), even when the sets of tasks to schedule changes
over time [8].

The Bamboo Garden Trimming (BGT) Problem [16, 15] retains the restriction of one task
per day, but converts the frequencies into growth rates g1 ≤ · · · ≤ gk (of k bamboo plants
1, . . . , k) and asks to find a perpetual schedule that minimizes the height ever reached by
any plant. BGT also allows efficient constant-factor approximations whose approximation
factor has seen a lively race of successively improvements over last few years: from 2 [16]
over 12

7 ≈ 1.71 [28], 1.6 [15], and 1.4 [18], down to the current record, 4
3 ≈ 1.33, again by

Kawamura [24]. As for the Windows Scheduling problem, no hardness of approximation
results are known. It remains open whether it is possible to obtain a PTAS for the Bamboo
Garden Trimming Problem [15] or the Windows Scheduling Problem. We show that the
same is not true for Poly Scheduling (see Theorem 3 below).

2 The current state-of-the-art approach in practice, usually via Google Calendar.
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As for Pinwheel Scheduling and DPS, Bamboo Garden Trimming is the special case of
OPS on star graphs. Although BGT can be approximated well, since it is in general not
possible to combine local schedules into a global schedule for a polycule (as noted above), it
is not clear whether Poly Scheduling allows an efficient constant-factor approximation.

All mentioned problems above have simple fractional counterparts that are much easier
to solve and hence provide necessary conditions. Indeed, this is the motivation for density
in Pinwheel Scheduling: if we allow a schedule to spend arbitrary fractions of the day on
different tasks, we obtain a schedule if and only if the density is at most 1. (Spending a 1/fi

fraction on task i each day is best possible). For Windows Scheduling, any valid schedule
must partition the tasks into bins (channels/servers), so that each bin admits a Pinwheel
schedule. Relaxing the latter constraint to “density at most 1” yields a standard bin packing
problem, to which we can apply existing techniques; (packing bins only up to density 5/6
guarantees a Pinwheel schedule, at the expense of a 6/5 factor increase in channels). For
Bamboo Garden Trimming, the optimal fractional schedule spends a G/gi fraction of each
day with task i, where G is the sum of all growth rates, thus achieving height exactly G.
For Poly Scheduling, we can similarly define a fractional problem, but its structure is much
richer (see Section 6).

There are further periodic scheduling problems with less direct connections to Poly
Scheduling that received attention in the literature. Patrolling problems typically involve
periodic schedules: for example, [1] finds schedules for a fleet of k identical robots to patrol
(unweighted) points in a metric space, whereas the “Continuous BGT Problem” [15] sends
a single robot to points with different frequencies requirements; [25] tasks k robots with
patrolling a line or a circle. The underlying geometry in these problems requires different
techniques from our work. The Point Patrolling Problem studied in [25] can be seen as a
“covering version” of Pinwheel Scheduling: each day, we have to assign one of n workers to
a single, daily recurring task, where worker i requires a break of ai days before they can
be made to work again. Yet another twist on a patrolling problem is the Replenishment
Problems with Fixed Turnover Times given in [5], where vertices in a graph have to be visited
with given frequencies, but instead of restricting the number of vertices that can be visited
per day, the length of a tour to visit them (starting at a depot node) shall be minimized.

In the Fair Hitting Sequence Problem [9], we are given a collection of sets S = {S1, . . . , Sm},
each consisting of a subset of the set of elements V = {v1, . . . , vn}. Each set Sj has an urgency
factor gj , which is comparable to the growth rates in BGT instances with one key difference:
A set Sj is hit whenever any vi ∈ Sj is scheduled. The goal is again similar to BGT; to
find a perpetual schedule of elements vi ∈ V that minimizes the time between visits to each
set Sj , weighted by gj . There is also a decision variant, similar to Pinwheel Scheduling in
that growth rates are replaced by frequencies. We use a similar layering technique in our
approximation algorithm (Section 5) as the O(log2 n)-approximation from [9], but we obtain
a better approximation ratio for Poly Scheduling. Their O(log n)-approximation based on
randomized rounding does not extend to Poly Scheduling since the used linear program has
exponentially many variables for Poly Scheduling (Section 6).

1.3 Our Results
Despite the recent flurry of results on periodic scheduling, Polyamorous Scheduling seems
not to have been studied before. Apart from its immediate practical applications, some
quirks make Polyamorous Scheduling an interesting combinatorial optimization problem in
its own right. The first version of this manuscript used a direct reduction from 3SAT to
introduce the following hardness-of-approximation result, which rules out the existence of a
PTAS (polynomial-time approximation scheme) for Optimisation Polyamorous Scheduling.
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▶ Theorem 3 (SAT Hardness of approximation). Unless P = NP, there is no polynomial-time
(1 + δ)-approximation algorithm for the Optimisation Poly Scheduling problem for any δ < 1

12 .

We retain this original proof in the appendix of the extended online version3, both for
the record and because we expect future works to expand on the methods it develops. We
have, however, since found a substantially simpler and stronger hardness-of-approximation
result, Theorem 4, by containing the 3-Regular Chromatic Index Problem as a special case.

▶ Theorem 4 (Hardness of approximation). Unless P = NP, there is no polynomial-time
(1 + δ)-approximation algorithm for the Optimisation Poly Scheduling problem for any δ < 1

3 .

Though the current form of Theorem 3 follows from Theorem 4, the direct 3SAT reduction
is significantly more versatile and we hope to improve the lower bound on the approximation
ratio in future work. The core idea of the reduction in Theorem 3 is to force any valid schedule
to have a periodic structure with a 3-day period, where edges scheduled on days t with t ≡ 0
(mod 3) represent the value True and edges scheduled on days with t ≡ 1 (mod 3) represent
False; the remaining slots, t ≡ 2 (mod 3), are required to enforce correct propagation along
logic gadgets. The appendix, available online, includes a detailed construction of all gadgets,
the proof of Theorem 3, and a worked example – the DPS instance corresponding to an
example 3-CNF formula.

Theorems 3 and 4 of course imply the NP-hardness of Polyamorous Scheduling; overall,
we have 3 independent reductions establishing this. Section 3 surveys these and shows that
the best-known upper bound for the complexity of Polyamorous Scheduling is PSPACE. We
could thus call Polyamorous Scheduling very NP-hard; yet, efficient approximation algorithms
are possible. Finding an edge colouring and using a simple round-robin schedule of its colours
yields a good approximation if both the maximum degree and the ratio between the smallest
and the largest desire growth rates are small (Theorem 5).

▶ Theorem 5 (Colouring approximation). For an Optimisation Poly Scheduling instance
Po = (P, R, g) set gmin = min

e∈R
g(e), gmax = max

e∈R
g(e), and let ∆ be the maximum degree in

(P, R) and h∗ be the heat of an optimal schedule. There is an algorithm that computes in
polynomial time a schedule S of heat h with h

h∗ ≤ min
{

∆+1
∆ · gmax

gmin
, ∆ + 1

}
.

A fully general approximation seems only possible with much weaker ratios; we provide an
O(log ∆)-approximation by applying Theorem 5 to groups with similar weight and interleaving
the resulting schedules.

▶ Theorem 6 (Layering approximation). For an Optimisation Poly Scheduling instance
Po = (P, R, g), let ∆ be the maximum degree in (P, R) and h∗ be the heat of an optimal
schedule. There is an algorithm that computes in polynomial time a schedule S of heat h

with h
h∗ ≤ 3⌈lg(∆ + 1)⌉ = O(log n), where n = |P |.

Finally, we generalize the notion of density to Polyamorous Scheduling. As discussed
above, density has proven instrumental in understanding the structure of Pinwheel Scheduling
and in devising better approximation algorithms, by providing a simple, instance-specific
lower bound. For Polyamorous Scheduling, the fractional problem is much richer, and indeed
remains nontrivial to solve. We devise a generalization of density4 for Poly Scheduling from
the dual of the Linear Program (LP) corresponding to a fractional variant of Polyamorous
Scheduling, which gives the following instance-specific lower bound.

3 extended online version at https://arxiv.org/abs/2403.00465
4 Note that poly density describes how tightly the polycule packs meetings together, not the density of

its members.

https://arxiv.org/abs/2403.00465
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▶ Theorem 7 (Fractional lower bound). Let Po = (P, R, g) be an OPS instance with optimal
heat h∗. For any set of values ze ∈ [0, 1], for e ∈ R, with

∑
e∈R ze = 1, we have

h∗ ≥ h̄(z) = 1
max

M∈M

∑
e∈M

ze

g(e)

with the maximum ranging over the set of all inclusion-maximal matchings (M) in (P, R).
The largest value h̄∗ of h̄(z) over all feasible z, is the poly density of Po.

The bound implies (and formally establishes) simple ad-hoc bounds such as the following,
which corresponds to the lower bound of G on the height in Bamboo Garden Trimming
(setting ze = g(e)/G).

▶ Corollary 8 (Total growth bound). Given an OPS instance Po = (P, R, g) with optimal heat
h∗, let G =

∑
e∈R

g(e) and m be the size of a maximum matching in (P, R); then h∗ ≥ G/m.

More importantly though, Theorem 7 allows us to define a poly density similarly to the
Pinwheel Scheduling Problem, and allows us to formulate the most interesting open problem
about Poly Scheduling. For a DPS instance Pd = (P, R, f), define the poly density of Pd,
h̄∗(Pd), as the poly density of the OPS instance Po = (P, R, 1/f) (see also Lemma 10).

▶ Open Problem 9 (Poly Density Threshold). Is there a constant c such that every Decision
Poly Scheduling instance Pd = (P, R, f) with poly density h̄∗(Pd) ≤ c admits a valid schedule?

2 Preliminaries

In this section, we introduce some general notation and collect a few simple facts about Poly
Scheduling used later.

We write [n..m] for {n, n+1, . . . , m} and [n] for [1..n]. For a set A, we denote its powerset
by 2A. All graphs in this paper are simple and undirected. We denote by M = M(V, E) the
set of inclusion-maximal matchings in graph (V, E), where matching has the usual meaning
of an edge set with no two edges incident to the same vertex. By ∆ = ∆(V, E), we denote the
maximum degree in (V, E). A pendant vertex is a vertex with degree 1. The chromatic index
χ1 = χ1(V, E) is the smallest number C of “colours” in a proper edge colouring of (V, E)
(i.e., the number of disjoint matchings required to cover E); by Vizing’s Theorem [29], we
have ∆ ≤ χ1 ≤ ∆ + 1 for every graph. Misra and Gries provide a polynomial-time algorithm
for edge colouring any graph using at most ∆ + 1 colours [27].

Given a schedule S : N0 → 2R and an edge e ∈ R, we define the (maximal) recurrence
time r(e) = rS(e) of e in S as the maximal time between consecutive occurrences of e in S,
formally:

rS(e) = sup
d∈N

{
d + 1 ∃t ∈ N0 : e /∈ S(t) ∪ S(t + 1) ∪ · · · ∪ S(t + d − 1);
0 otherwise.

Using recurrence time, the heat h = h(S) of a schedule S in an OPS instance (P, R, g) is
h(S) = max

e∈R
g(e) · r(e). Clearly, for any schedule S : N0 → 2R, we can obtain S′ : N0 → M

by adding edges to S(t) until we have a maximal matching S′(t) ⊇ S(t); then rS′(e) ≤ rS(e)
for all e ∈ R and hence S′ is a valid schedule for any DPS instance for which S is valid, and
if S schedules an OPS instance with heat h(S) then S′ does too, with h(S′) ≤ h(S).

We use Lemma 10 to reduce OPS to DPS, and Lemma 11 to formalize how DPS solves
OPS:
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▶ Lemma 10 (OPS to DPS). For every combination of OPS instance Po = (P, R, g) and
heat value h, there exists a DPS instance Pd = (P, R, f) such that
(1) any feasible schedule S : N0 → 2R for Pd is a schedule for Po with heat ≤ h, and
(2) any schedule S′ for Po with heat h′ > h is not feasible for Pd.

Proof. Consider an OPS polycule Po = (P, R, g); we set Pd = (P, R, f) where f(e) =
⌊

h
g(e)

⌋
for all e ∈ R. Schedules satisfying Pd when applied to Po will allow heat of at most
max
e∈R

g(e) · f(e) = max
e∈R

g(e)⌊ h
g(e) ⌋ ≤ h.

Now consider a schedule S′ for Po with heat h′ > h. By definition, h′ = max
e∈R

rS′(e) · g(e),
where r(e) = rS′(e) is the recurrence time of e in S′. Assume towards a contradiction that
r(e) ≤ f(e) for all e ∈ R. This implies that h′ = max

e∈R
r(e) · g(e) ≤ max

e∈R
⌊ h

g(e) ⌋ · g(e) ≤ h, a
contradiction to the assumption. ◀

▶ Lemma 11 (DPS to OPS). Let Pd = (P, R, f) be a DPS instance. Set F = max
e∈R

f(e).
There is an OPS instance Po = (P, R, g) such that the following holds.
(1) If Pd is feasible, then Po admits a schedule of height h ≤ 1.
(2) If Pd is infeasible, then the optimal heat h∗ of Po satisfies h∗ ≥ F +1

F .

Proof. Consider a DPS instance Pd = (P, R, f); we set Po = (P, R, g) with g(e) = 1/f(e) for
e ∈ R. By definition, any feasible schedule S for Pd has recurrence time re = rS(e) ≤ f(e) for
all e ∈ R, so its heat in Po is given by h(S) = max

e∈R
r(e)·g(e) = max

e∈R

r(e)
f(e) ≤ 1. Conversely, if Pd

is infeasible, then for every S : N0 → 2R there exists an edge e′ ∈ R where r(e′) > f(e′), i.e.,
r(e′) ≥ f(e′) + 1. In Po, the heat h(S) must then be h(S) = max

e∈R
r(e) · g(e) ≥ r(e′) · g(e′) ≥

f(e′)+1
f(e′) ≥ F +1

F . ◀

We will often use the Normal Form of OPS instances in proofs; this can be assumed
without loss of generality but is not generally useful for algorithms unless h∗ is known:

▶ Lemma 12 (Normal Form OPS). For every OPS instance Po = (P, R, g), there is an
equivalent OPS instance P ′

o = (P, R, g′) with optimal heat 1 where g′ : R → U for U =
{1/m :∈ N≥1}, i.e., the set of unit fractions. More precisely, for every schedule S : N0 → 2R

holds: S has optimal heat h∗ in Po if and only if S has heat 1 in P ′
o. That is, any optimal

schedule S∗ for either problem is also optimal for the other problem.

Proof. Let (P, R, g) be an arbitrary OPS instance with optimal heat h∗. Setting ĝ(e) =
g(e)/h∗ yields OPS instance (P, R, ĝ) with optimal heat 1. We now start by setting g′(e) =
ĝ(e) for all e ∈ R. Consider a particular optimal schedule S∗. Suppose that for some edge
e ∈ R, we have g′(e) /∈ U . In S, there is a maximal separation r(e) = q ∈ N between
consecutive occurrences of e with q · g(e) ≤ h∗. But then, increasing g(e) to h∗/q would not
affect the heat of S. We can thus set g′(e) = 1/q. By induction, we thus obtain g′ : R → U
without affecting the heat of S. ◀

3 Computational Complexity

One proof of the NP-hardness of the Decision Poly Scheduling (DPS) Problem is that it
contains Pinwheel Scheduling as a special case, an NP-hard problem [22]. We show in
Section 4 that OPS also contains the Chromatic Index problem as a special case, which gives
another proof of the NP-hardness of DPS using the conversion in Lemma 10. Since all good
things come in threes, our inapproximability result in the appendix, available online, gives a
third independent proof of NP-hardness by reducing 3SAT to DPS.
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Upper bounds on the the complexity of DPS are much less clear. Similar to other periodic
scheduling problems, characterizing the computational complexity of Poly Scheduling is
complicated by the fact that there are feasible instances that require an exponentially large
schedule. It is therefore not clear whether Decision Poly Scheduling is in NP since no succinct
Yes-certificates are known; this is unknown even for the more restricted Pinwheel Scheduling
Problem [24].

The following simple algorithm shows that DPS is at least in PSPACE (see also [14], [25]):
Given the polycule Pd = (P, R, f) with |P | = n and |R| = m, construct the configuration
graph Gc = (V, E), where V consists of “countdown vectors” listing for each edge e how
many days remain before e has to be scheduled again. v ∈ V has an outgoing edge for every
maximal matching M in M(P, R), and leads to a successor configuration where all e ∈ M

have their urgency reset to f(e) and all e /∈ M have their countdown decremented. Feasible
schedules for Pd correspond to infinite walks in the finite Gc, and hence must contain a cycle.
Conversely, any cycle forms a valid periodic schedule. Our algorithm for DPS thus checks in
time O(|V | + |E|) whether Gc contains a cycle.

The configuration graph Gc has single exponential size: V = {(ue)e∈R : ue ∈ [0..f(e)]}
and E has an edge for every matching in (P, R). So |E| ≤ |V | · 2m (since we have at most
2|R| matchings) and |V | ≤

∏
e∈R f(e). To further bound this, we use that all f(e) need to be

encoded explicitly in binary in the input.
∏

e∈R f(e) ≤
∏

e∈R 2|fe| = 2
∑

|fe| ≤ 2N for N the
size of the encoding of the input.

To obtain a PSPACE algorithm, we use the polylog-space s-t-connectivity algorithm
(using Savich’s Theorem on the NL-algorithm that guesses the next vertex in the path) on
Gc, computing the required part of the graph on-the-fly when queried; this yields overall
polynomial space.

4 Unweighted Poly Scheduling & Edge Coloring

Given an OPS instance Po = (P, R, g), one can always obtain a feasible schedule from a
proper edge colouring c : E → [C] of the graph (P, R): any round-robin schedule of the
colours is a valid schedule for Po, and the number of colours becomes the separation between
visits. More formally, we can define a schedule S via S(t) = {e ∈ R : c(e) ≡ t (mod C)}. An
example is shown in Figure 2.

A B

C

D

EF

G

H

Figure 2 An unweighted polyamorous scheduling instance (that is, an OPS instance where all
edges have growth rate 1). Edge colours show one optimal schedule, where every edge is visited
exactly every three days: [3, 3, 3], i.e., all red edges are scheduled on days t with t ≡ 0 (mod 3), all
blue edges when t ≡ 1 (mod 3) and green edges for t ≡ 2 (mod 3).
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Such a schedule can yield an arbitrarily bad solution to general instances of Po, but it
gives optimal solutions for a special case: The non-hierarchical polycule Pu, which is an OPS
polycule where all growth rates are gi,j = 1 (i.e., an unweighted graph). Recall that any
graph with maximal degree ∆ can be edge-coloured with at most ∆ + 1 colours and clearly
needs at least ∆ colours.

▶ Proposition 13 (Unweighted OPS = edge coloring). An unweighted OPS problem admits a
schedule with heat h if and only if the corresponding graph is h-edge-colourable.

Proof. First note that any k-edge-colouring immediately corresponds to a schedule that
visits every edge every k days, since we can schedule all edges e with c(e) = i on days t ≡ i

(mod C). Moreover, any schedule with height h must visit every edge at least once within
the first h days (otherwise it would grow to desire > h · 1). We can therefore assign h colours
according to these first h days of the schedule; some edges might receive more than one
colour, but we can use any of these and retain a valid colouring using h colours. ◀

Since it is NP-complete to decide whether a graph has chromatic index χ1 = ∆ (even
when the graph is 3-regular [21]) unweighted Poly Scheduling is NP-hard. This provides
a second restricted special case of the problem that is NP-hard, which also gives us the
inapproximability result stated in Theorem 4:

Proof of Theorem 4 (page 6). Assume that there is a polynomial-time algorithm A that
achieves an approximation ratio of 4

3 −ε for some ε > 0. Given an input (V, E) to the 3-Regular
Chromatic Index Problem (i.e., given a 3-regular graph, decide whether χ1(G) = ∆ = 3
or χ1(G) = ∆ + 1 = 4), we can apply A to (V, E, g), setting g(e) = 1 for all e ∈ E. By
Proposition 13, A finds an edge colouring with c ≤ ( 4

3 − ε) · χ1(G) colours. If χ1(G) = ∆ = 3,
then c ≤ 4 − 3ε < 4, so c = 3; if χ1(G) = 4, then c ≥ 4. Comparing c to ∆ thus determines
χ1(G) exactly in polynomial time; in particular, for every 3-regular graph, this decides
whether χ1(G) = 3. Since 3-Regular Chromatic Index is NP-complete [21], it follows that
P = NP. ◀

We close this section with the remark that there are weighted DPS instances where any
feasible schedule must “multi-colour” some edges, including the polycule shown in Figure 3.
For the general problem, we thus cannot restrict our attention to edge colourings (though
they may be a valuable tool for future work).

A

B

CD

E

3

33

3

22

Figure 3 A discrete polyamorous scheduling instance which is solvable only by assigning multiple
colours to the CD edge.
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5 Approximation Algorithms

In this section, we present two efficient polynomial-time approximation algorithms for Poly
Scheduling, thereby proving Theorems 5 and 6. Throughout this section, we assume a fixed
instance Po = (P, R, g) of Optimisation Polyamorous Scheduling (OPS) is given.

5.1 Lower Bounds
We first collect a few simple lower bounds used in the analysis later; note that Section 6 has
further lower bounds.

▶ Lemma 14 (Simple lower bound). Given an OPS instance Po = (P, R, g), set gmin =
mine∈R g(e), gmax = maxe∈R g(e), and ∆ = maxp∈P deg(p). Any periodic schedule for Po

has heat h ≥ max{∆ · gmin, gmax}.

Proof. The chromatic number χ1 of the unweighted graph (P, R) is χ1 ∈ {∆, ∆ + 1}.
This means that under any periodic schedule, some edge desires will grow to at least to
χ1 ·gmin ≥ ∆·gmin, since we cannot schedule any two edges incident to a degree-∆ node on the
same day. Moreover, we cannot prevent the weight-gmax edge from growing to heat gmax. ◀

A second observation is that the lower bound for any subset of the problem is also a lower
bound for the problem as a whole:

▶ Lemma 15 (Subset bound). Given two OPS instances Po = (P, R, g) and P ′
o = (P, R′, g′)

with R′ ⊆ R and g(e) = g′(e) for all e ∈ R′, i.e., P ′
o results from Po by dropping some edges.

Assume further that any schedule for P ′
o has heat at least h∗. Then, any schedule for Po also

has heat at least h∗.

Proof. Suppose there is a schedule S for Po of heat h′ < h. We obtain a schedule S′ for P ′
o by

dropping all edges e /∈ R′. (The resulting schedule may have empty days.) By construction,
when using S′ to schedule P ′

o, all edges in R′ will grow to the same heat as in Po under S,
and hence also to heat h′ < h. ◀

5.2 Approximation for Almost Equal Growth Rates
We first focus on a special case of OPS instances with “almost equal weights”, which is used
as base for our main algorithm. Let the edge weights satisfy gmin ≤ g(e) ≤ gmax for all
e ∈ R. We will show that scheduling a proper edge colouring round-robin gives a ∆+1

∆ · gmax
gmin

approximation algorithm, establishing Theorem 5.

Proof of Theorem 5 (page 6). We compute a proper edge colouring for (P, R) with ∆ + 1
colours using the algorithm from [27] and schedule these ∆ + 1 matchings in a round-robin
schedule. No edge desire will grow higher than (∆ + 1) · gmax in this schedule. Lemma 14
shows that OPT ≥ max{∆ · gmin, gmax}. The edge-colouring schedule is thus never more
than a min{ ∆+1

∆ · gmax
gmin

, ∆ + 1} factor worse than OPT. ◀

5.3 Layering Algorithm
The colouring-based algorithm from Theorem 5 can be arbitrarily bad if desire growth rates
are vastly different and ∆ is large. For these cases, a more sophisticated algorithm achieves
a much better guarantee (Theorem 6). The algorithm consists of 3 steps:
1. breaking the graph into layers (by edge growth rates),
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2. solving each layer using Theorem 5, and
3. interleaving the layer schedules into an overall schedule.

Let L be a parameter to be chosen later. We define layers of Po = (P, R, g) as follows.
For i = 0, . . . , L − 1, set Pi = (P, Ri, g) where

Ri =
{

e ∈ R : gmax

2i+1 < g(e) ≤ gmax

2i

}
.

Moreover, PL = (P, RL, g) with RL =
{

e ∈ R : g(e) ≤ gmax
2L

}
.

Denote by ∆i, for i = 0, . . . , L, the maximal degree in (P, Ri). Let Si be the round-
robin-(∆i + 1)-colouring schedule from Theorem 5 applied on the OPS instance Pi. If run in
isolation on Pi, schedule Si has heat hi ≤ (∆i + 1)gmax/2i ≤ (∆ + 1)gmax/2i by the same
argument as in Section 5.2. Moreover, for i < L, Si is a 2∆i+1

∆i
-approximation (on Pi in

isolation); for i = L, we can only guarantee a (∆L + 1)-approximation.
To obtain an overall schedule S for P, we schedule the L + 1 layers in round-robin

fashion, and within each layer’s allocated days, we advance through its schedule as before,
i.e., S(t) = S(t mod (L+1))

(
⌊t/(L + 1)⌋

)
. Any advance in layer i is now delayed by a factor

(L + 1). Hence S achieves heat at most

h = max
i∈[0..L]

(L + 1) · hi ≤ max
i∈[0..L]

(L + 1)(∆i + 1) · gmax

2i

Using Lemma 15 on the layers and Lemma 14, we obtain a lower bound for OPT of

h = max
{

max
i∈[0..L−1]

∆i · gmax

2i+1 , gmax

}
We now distinguish two cases for whether the maximum in h is attained for an i < L

or for i = L. First suppose h = (L + 1)(∆i + 1)gmax/2i for some i < L. Since we also have
h ≥ ∆i · gmax/2i+1, we obtain an approximation ratio of 2(L + 1) ∆i+1

∆i
≤ 3(L + 1) overall in

this case. Here, we assume that ∆i ≥ 2; otherwise we have only monogamous couples in this
layer and scheduling is trivial, giving hi = ∆i · gmax/2i.

For the other case, namely h = (L + 1)(∆L + 1)gmax/2L > (L + 1) · (∆i + 1)gmax/2i for all
i < L, we do not have lower bounds on the edge growth rates. But we still know h ≥ gmax,
so we obtain a (L + 1)(∆L + 1)/2L-approximation overall in this case.

Equating the two approximation ratios suggests to choose L such that L ≈ lg(∆L+1)−lg 3;
with L = ⌈lg(∆ + 1) − lg 3⌉ and using ∆L ≤ ∆, we obtain an overall approximation ratio of
at most 3(L + 1) ≤ 3⌈lg(∆ + 1)⌉ ≤ 3⌈lg n⌉. This concludes the proof of Theorem 6.

6 Fractional Poly Scheduling

In this section, we generalize the notion of density from Pinwheel Scheduling for the Polyamor-
ous Scheduling Problem. For that, we consider the dual of the linear program corresponding
to a fractional variant of Poly Scheduling.

6.1 Linear Programs for Poly Scheduling
In the fractional Poly Scheduling problem, instead of committing to a single matching M in
(P, R) each day, we are allowed to devote an arbitrary fraction yM ∈ [0, 1] of our day to M ,
but then switch to other matchings without cost or delay for the rest of the day (a simple
form of scheduling with preemption). The heat of a fractional schedule is again defined
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as maxe∈R r(e)g(e), but the recurrence time r(e) now is the maximal time in S before the
fraction of days devoted to matchings containing e sum to at least 1. (For a non-preemptive
schedule with one matching per day, this coincides with the definition from Section 2.)

Schedules for the fractional problem are substantially easier because there is no need to
have different fractions yM for different days: the schedule obtained by always using the
average fraction of time spent on each matching yields the same recurrence times. We can
therefore assume without loss of generality that our schedule is given by S = S({yM }M∈M),
with yM ∈ [0, 1] and

∑
M∈M yM = 1. S schedules the matchings in some arbitrary fixed

order, each day devoting the same yM fraction of the day to M . Then, recurrence times are
simply given by rS(e) = 1

/ ∑
M∈M:e∈M yM .

With these simplifications, we can state the fractional relaxation of Optimisation Poly
Scheduling instance Po = (P, R, g) as an optimisation problem as follows:

min h̄ (1)

s. t.
∑

M∈M
yM ≤ 1 (2)

1∑
M∈M:e∈M yM

· ge ≤ h̄ ∀e ∈ R (3)

yM ∈ [0, 1] ∀M ∈ M (4)

Substituting h̄ = 1/ℓ, this is equivalent to the following linear program (LP):

max ℓ (5)

s. t.
∑

M∈M
yM ≤ 1 (6)

1
ge

∑
M∈M:e∈M

yM ≥ ℓ ∀e ∈ R (7)

yM ≥ 0 ∀M ∈ M (8)

The optimal objective value ℓ∗ of this LP gives h̄∗ = 1/ℓ∗, the optimal fractional heat.

▶ Lemma 16 (Fractional lower bound). Consider an OPS instance Po = (P, R, g) with optimal
heat h∗ and let h̄∗ = 1/ℓ∗ where ℓ∗ is the optimal objective value of the fractional-problem
LP from Equation (5). Then h̄∗ ≤ h∗.

Proof. We use the same approach as in [9, §3]: For any schedule S, h(S) is at least the heat
hT (S) obtained during the first T days only, which in turn is at least maxe g(e) · r̄(e) for r̄(e)
the average recurrence time of edge e during the first T days. A basic calculation shows
that for the fractions yM of time spent on matching M during the first T days there exists
a value 1/ℓ = h(S)(1 − o(T )), so that we obtain a feasible solution of the LP (5). Hence
1/ℓ∗ ≤ 1/ℓ = h(S)(1 − o(T )). Since these inequalities hold simultaneously for all T , taking
the limit as T → ∞, we obtain 1/ℓ∗ = h̄∗ ≤ h(S). ◀

The immediate usefulness of Lemma 16 is limited since the number of matchings can be
exponential in n.
▶ Remark 17 (Randomized-rounding approximation?). One could try to use this LP as the basis
of a randomized-rounding approximation algorithm, but since it is not clear how to obtain
an efficient algorithm from that, we do not pursue this route here. The simple route taken
in [9] cannot achieve an approximation ratio better than O(log n), so Theorem 6 already
provides an equally good deterministic algorithm.
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We therefore proceed to the dual LP of Equation (5):

min x (9)

s. t.
∑
e∈R

ze ≥ 1 (10)

∑
e∈M

ze

ge
≤ x ∀M ∈ M (11)

ze ≥ 0 ∀e ∈ R (12)

While still exponentially large and thus not easy to solve exactly, the dual LP yields the
versatile result from Theorem 7.

Proof of Theorem 7 (page 7). Using the given ze and x = maxM∈M
∑

e∈M
ze

g(e) , we fulfil
all constraints of Equation (9). The optimal objective value x∗ is hence x∗ ≤ x. By the
duality of LPs, we have x∗ ≥ ℓ∗ for ℓ∗ the optimal objective value of Equation (5). Together
with Lemma 16, this means h∗ ≥ h̄∗ = 1/ℓ∗ ≥ 1/x∗ ≥ 1/x. ◀

6.2 Poly Density
Theorem 7 gives a more explicit way to compute the poly density h̄∗ than the primal LP,
but it is unclear whether it can be computed exactly in polynomial time. Given the more
intricate global structure of Poly Scheduling, h̄∗ is necessarily more complicated than the
density of Pinwheel Scheduling. A particularly interesting open problem for Poly Scheduling
is whether a sufficiently low poly density implies the existence of a valid (integral) schedule.

Specific choices for ze in Theorem 7 yield several known bounds:
Setting ze = ge/G for G =

∑
e∈R ge yields Corollary 8.

Fix any subset R′ ⊆ R. Now set ze = ge/C if e ∈ R′ and 0 otherwise, where C =
∑

e∈R′ ge.
The maximum from Theorem 7 then simplifies to 1

C maxM∈M |M ∩ R′|, so

h∗ ≥
∑

e∈R′ ge

maxM∈M |M ∩ R′|
.

An immediate application of that observation with R′ being all edges incident at a person
p ∈ P yields the BGT bound:
▶ Corollary 18 (Bamboo lower bound). Given an OPS instance (P, R, g) and p ∈ P with
g1 ≥ · · · ≥ gd the desire growth rates for edges incident at p. Set Gp = g1 + · · · + gd. Any
periodic schedule for (P, R, g) has heat at least Gp.

▶ Remark 19 (Better general bounds?). For the general case, it seems challenging to obtain
other such simple bounds. The bound of G/m is easy to justify without the linear programs
by a “preservation-of-mass argument”: Assume a schedule S could achieve a heat h < G/m.
Every day, the overall polycule’s desire grows by G, and S can schedule at most m pairs to
meet, whose desire is reset to 0 from some value ≤ h. Every day, S thus removes only a total
of ≤ mh < G desire units from the polycule, whereas the overall growth is G, a contradiction
to the heat remaining bounded.

Note that the bound of G/m is tight for some instances, so we cannot hope for a strictly
lower bound. On the other hand, the example from Figure 4 shows demonstrates that it can
also be arbitrarily far from h∗.

Figure 4 shows the tadpole family of instances demonstrating the power of the dual-LP
approach and Theorem 7. All DPS tadpoles (as shown in the figure) are infeasible since
already the triangle A−B−C does not admit a schedule obeying the given frequencies. The
corresponding OPS instances (as given by Lemma 11) with g(e) = 1/f(e) thus have h∗ > 1;
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A

B

C

T1 T3 T5 T7 T9

T2 T4 T6 T8

2 3

3

F F F F F F F F F . . .
Tk

Figure 4 The tadpole family of DPS instances, defined for parameters k ≥ 0 (tail length) and
F ≥ 3 (tail frequency). The total growth rate is G = 1

2 + 2
3 + k · 1/F = 7

6 + k
F

and the size of a
maximum matching is m = 1 + ⌊(k + 1)/2⌋.

indeed h∗ = 4/3 if F ≥ 2. However, the simple lower bounds or local arguments do not
detect this: (a) All local Pinwheel Scheduling instances (any person plus their neighbours)
are feasible. (b) The mass-preservation bound (Corollary 8) is G/m < 1 for k ≥ 1. Indeed,
setting F = k and letting k → ∞, G/m = O(1/k), giving an arbitrarily large gap to h∗. By
contrast, consider the LP fractional lower bound. One can show that h̄∗ = 7

6 > 1 for any
k ≥ 1 and F ≥ 2, so Theorem 7 correctly detects the infeasibility in this example.
▶ Remark 20 (Better Pinwheel density via dual LPs?). Since Poly Scheduling is a generalization
of Pinwheel Scheduling resp. Bamboo Garden Trimming, we can apply Theorem 7 also to
these problems. However, for this special case, the optimal objective value of the dual LPs is
always x∗ = ℓ∗ = 1/G for G the G the sum of the growth rates, so we only obtain the trivial
“biomass” lower bound of G for Bamboo Garden Trimming resp. the density ≤ 1 necessary
condition for Pinwheel Scheduling. The more complicated structure of matchings in non-star
graphs makes fractional lower bounds in Poly Scheduling much richer and more powerful.

7 Open Problems & Future Directions

This paper opens up several avenues for future work. The most obvious open problem
concerns efficient approximation algorithms: We show that finding approximations with a
better ratio than 4/3 is NP-hard, and introduce an O(log n) polynomial-time approximation.
Can the gap between these be reduced, or even eliminated?

In the appendix, available online, we conjecture that further analysis of the SAT reduction
originally used to prove Theorem 3 may demonstrate better inapproximability results for
OPS in the general case. The true lower bound may even be super-constant. However, in
light of our Theorem 6, a super-constant hardness of approximation result would have to use
Poly Scheduling instances with super-constant degrees. Open Problem 9 will also have clear
implications for OPS, as well as being interesting in its own right.

There is also interesting work to be done looking at specific classes of polycules. Bipartite
polycules are particularly interesting, both for the likelihood that they will permit better
approximations than are possible in the general case and for their applications (e.g., modelling
the users and providers of some service).

Polyamorous scheduling has several interesting generalizations including Fungible Poly-
amorous Scheduling, whose decision version we define as:

▶ Definition 21 (Fungible Decision Polyamorous Scheduling (FDPS)). An FDPS instance
Pfd = (P, R, s, f) (a “(fungible decision) polycule”) consists of an undirected graph (P, R)
where the vertices P = {p1, . . . , pn} are n classes of fungible persons and the edges R are
pairwise relationships between those classes. Classes have integer sizes s : P → N and
relationships have integer frequencies f : R → N.
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The goal is find an infinite schedule S : N0 → 2R, such that
(1) (no overflows) for all days t ∈ N0, S(t) is a multiset of elements from P such that each

node p ∈ P appears at most s(p) times, and
(2) (frequencies) for all e ∈ R and t ∈ N0, we have e ∈ S(t) ∪ S(t + 1) ∪ · · · ∪ S(t + f(e) − 1);
or to report that no such schedule exists.

FDPS also has an optimisation version, which again allows each class p ∈ P to have at
most s(p) meetings each day. These problems have clear applications to the scheduling of
staff, locations, resources etc. in real-world applications.

Another natural generalisation is Secure Polyamorous scheduling. Suppose that Adam is
dating both Brady and Charlie, who are also dating each other. In a DPS or OPS polycule,
on any day, Adam must choose to meet with either Brady or Charlie, who each face the
same dilemma; but why can’t he meet both?5 The Secure Decision Polyamorous scheduling
problem allows this:

▶ Definition 22 (Secure Decision Polyamorous Scheduling (SDPS)). An SDPS instance
Psd = (P, R, f) (a “(secure decision) polycule”) consists of an undirected graph (P, R) where
the vertices P = {p1, . . . , pn} are n persons, and the edges R are pairwise relationships, with
integer frequencies f : R → N for each relationship.

The goal is find an infinite schedule S : N0 → 2R, such that
(1) (no third-wheels) for all days t ∈ N0, S(t) is a set of meetings between cliques of people

in P in which each person appears at most once, and
(2) (frequencies) for all e ∈ R and t ∈ N0, we have e ∈ S(t) ∪ S(t + 1) ∪ · · · ∪ S(t + f(e) − 1);
or to report that no such schedule exists.

Again, this has a natural optimisation version.
Polyamorous Scheduling also motivates the study of several restricted versions of Pinwheel

Scheduling and Bamboo Garden Trimming, including partial scheduling (wherein some portion
of the schedule is fixed as part of the problem and the challenge is to find the remainder of
the schedule), and fixed holidays (where the fixed part of the schedule consists of periodic
gaps).
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Abstract
In the video game Tetris, a player has to decide how to place pieces on a board that are revealed by
the game one after another. We show that the missing information about the upcoming pieces is
indeed crucial to a player’s success. We present a construction for piece sequences that force (online)
players without or with a finite preview of upcoming pieces to lose while (offline) players who know
the entire piece sequence can clear the board and continue to play.

From a competitive analysis perspective, it follows that there cannot be any c-competitive online
algorithm for various optimization goals in the context of playing Tetris. Furthermore, we improve
existing results by providing a construction for piece sequences which force every player to lose for
every possible board size with at least two columns. With this construction, we are also able to show
that an instance with just 435 pieces is sufficient to force every player to lose on a standard-size
board with ten columns and twenty rows.
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1 Introduction

Tetris is a classical video game in which four-celled pieces ( , , , , , , ) fall
onto a rectangular board. While a piece drops from the top, the player can rotate and move
it horizontally until it lands on a filled cell or the bottom of the board. Whenever every cell
of a row is occupied by pieces it disappears (lineclear) and all filled cells above drop down by
one row. The player continues to play as long as pieces can be placed on the board and loses
if a piece cannot be placed on the board.

Apart from its fame as a video game, the underlying concept also leads to interesting
combinatorial questions, like: Given a board, and a sequence of pieces to place, is there
a way to place the pieces without losing? Are there piece sequences that always lead to
a loss or always have a loss-avoiding strategy? These questions have been studied in the
past, often with the assumption that the player knows all upcoming pieces. However, in the
classical video game, the player needs to make irrevocable decisions with just a few pieces of
lookahead. Therefore, it seems reasonable to consider the underlying combinatorial concept
as an online-problem.

For standard-size boards (ten columns and twenty rows) Brzustowski [6] gives an instance
that forces an online player with a lookahead of just one piece to lose. Later Burgiel [7]
showed that there is no chance to play for more than 69600 pieces before losing in an instance
with alternating and pieces, even if the entire instance is known in advance.

If an instance forces an offline player to lose, then an online player with less information
about the piece sequence is naturally also forced to lose. However, the opposite case is not
trivial. If there is an instance that forces an online player with a finite lookahead to lose,
must an offline player who knows the entire instance also lose?
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1.1 Related Work
After its development in the mid-1980s by Pajitnov, Pavlovsky, and Gerasimov [10], the
history of analyzing the underlying theoretic concepts of Tetris started in 1992 with the
already mentioned master’s thesis by Brzustowski. Apart from showing that there are
unwinnable instances for general Tetris, Brzustowski presents some winning strategies for
restricted variants with only one or two different piece types. Even if there cannot be a
general loss-avoiding strategy for classical Tetris, it is known that such strategies exist for
some restricted piece-sets even on non-rectangular boards [15]. If the pieces of an instance
cannot be chosen arbitrarily but have to be presented in a sequence of permutations of the
seven different piece types (the so-called 7-bag randomizer) then some commercial game
variants have loss-avoiding strategies [1]. For an overview of implemented piece selection
algorithms see [12]. Here the different selection process has a crucial role since it is known that
some specific sequences lead to a loss. If randomly selecting the next piece type determines
the piece sequence then such a loss-forcing sequence appears for sure at some point in a
resulting infinite random string. Burgiel therefore follows that every Tetris game (implying a
random generation of the piece sequence) must end at some point [7].

Since it is known that the player has to lose for some piece sequences, it is natural to ask
for the complexity to decide if a given instance is such a sequence. Demaine et al. found out
in 2003 that this is indeed an NP-hard problem, and related optimization problems similar
to the ones we investigate in Section 3.1 also cannot be approximated efficiently [9]. Later a
simpler reduction was given [5, 4], and some modifications are shown to not be easier [2, 14].

For further related work about Tetris, also to non-theoretical results, we refer to the vast
related work section of Dallant and Iacono’s article [8].

In most of the mentioned results about Tetris, an algorithm or strategy is given the
entire instance which must be solved in advance. In contrast, a Tetris player like an online
algorithm has no advanced knowledge about the instance it needs to solve. Whenever a
new element of the instance is given some irrevocable decision must be taken before the
next piece is revealed. An online algorithm tries to optimize an objective function that is
dependent on the solution set formed by its decisions. The strict competitive ratio of an
algorithm, as defined by Sleator and Tarjan [13], is the worst-case ratio of the performance
of an algorithm compared to that of an optimal solution computed by an offline algorithm
for the given instance, over all instances. The competitive ratio of an online problem is then
the best competitive ratio over all online algorithms. For a general introduction to online
problems, we refer to the books of Borodin and Ran El-Yaniv [3] and of Komm [11].

1.2 Preliminaries and Notation
An instance of a Tetris game in the algorithmic sense consists of a board and a finite sequence
of pieces (as piece types) that are played. The board has a width w, a height h, and consists
of w×h many cells that are either filled or empty. We call each resulting pattern of filled and
unfilled cells a board configuration. Each instance starts with an empty board configuration
where all cells are empty. We divide the board in w

2 pairs of adjacent columns, which we call
lanes like in [6].

The player immediately loses if a piece is placed in such a way that a cell outside the
boundaries of the board would be filled. The player wins if each piece of the piece sequence
has been successfully placed inside the board. A player can rotate a piece and select the
column it is supposed to fall in. We call rotations of pieces where the piece is taller than wide
(e.g., , , . . . ) vertical and the opposite rotations (e.g., , , . . . ) horizontal. Compared
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to implemented games and some mathematical models the player cannot manipulate the
piece while it is falling as the additional complexity of the model is not needed for the claims
made in this work.

In an online setting a player has a lookahead l ∈ N. The game proceeds with the player
placing the i-th piece of the piece sequence, and then the adversary chooses and appends the
i + l + 1-th piece type to the piece sequence. In an offline setting the entire piece sequence is
known before the game begins.

For some objective function, the ratio between the performance of the best possible online
strategy and the optimal offline solution is called (strict) competitive ratio, usually denoted
with c. Sometimes adding a constant α is sensible, making the analysis non-strict. Therefore,
we call an online problem c-competitive if there is an online strategy that is not worse than
c·OPT+α than an optimal solution. Here OPT denotes the quality of the optimal solution
with respect to the objective function [3, 11].

The following sections use state diagrams where nodes are board configurations to depict
game instances similarly to [6]. Transitions have labels depicting which piece types is
presented to the player. Furthermore, transitions can have an optional index (e.g., , 2) to
indicate that the player places the piece with its leftmost cells in the 0-indexed column. An
optional multiplier (e.g., 2× ) denotes that the same piece type is presented multiple times.

1.3 Results
In Section 2 we construct instances without any loss-avoiding strategies for players with
arbitrary (but finite) lookahead, but for which loss-avoiding strategies exist if the full instance
is known to the player. A common question for online-problems is to ask how much worse
an online algorithm (in our case the player with a finite preview of upcoming pieces) will
perform on the same instance due to the lack of information.

In Section 3.1 the aforementioned construction is used to show that there are instances
where the online player performs arbitrarily badly against an offline player for several
optimization goals. Hence, for these goals, there cannot be any c-competitive online algorithms
for any c. In Section 3.2 we use parts of the construction to improve the upper bound for
instances that force offline players to lose from 69600 down to 435 pieces on a standard-size
board. This adversarial strategy is also used in Section 3.3 to show that such loss-forcing
instances exist for every board that is at least two columns wide, no matter its size or the
length of the player’s preview.

In Section 4 we give strictly 1-competitive online algorithms for some optimization
goals. For other optimization goals, we give instances where competitiveness cannot be
strict. Interestingly online players cannot play optimally for some optimization goals such as
clearing as many lines as possible without the necessary lookahead, even in instances with
just a single piece type.

2 Construction

This section shows a way to construct sequences in which online players necessarily lose,
while offline players end with an empty board, and can continue to play. The construction
works for even height and width (w ≥ 4) of a rectangular board and is divided into the
following three parts.

First, a sequence of and pieces is presented to ensure that the board is almost
filled. This technique is similar to the one used by Brzustowski and Brugiel and described in
Section 2.1. Second, given an almost filled board, we present two strategies an adversary can
use to make online players lose, if they only have finite lookahead. Finally, we will see that

FUN 2024
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(a) (b) (c) (d)

Figure 1 After the first iteration of the padding sequence a wave has been created (b). After
another iteration a second wave has been placed on top (c). Repeating the procedure h

2 − 1 times
leads to a padded board (d).

the offline player (who chose the other option and therefore has not lost yet) can also clear
the whole board. This ensures that the loss of an offline player is not just delayed by a few
pieces.

2.1 Padding Sequence
In this part, we will see that playing with a sequence of and pieces leads to a board
configuration, containing waves alternately.

▶ Definition 1 (Wave). A wave is a pattern of cells consisting of two rows where every
second cell is filled horizontally and vertically.

▶ Example 2 (Wave). Placing a piece vertically in each lane of a 10 columns wide board
gives a board configuration wave as depicted in Figure 1b. Repeating the same with pieces
stacks a wave on top of the existing one as depicted in Figure 1c.

Two waves of the same orientation cannot be stacked on top of each other, as the resulting
lineclears would remove one of them. Stacking several waves on each other ultimately leads
to a padded board.

▶ Definition 3 (Padded Board). A padded board is an even-width even-height board configur-
ation which consists of h

2 − 1 stacked waves (of alternating orientation) and where the two
topmost rows are completely empty.

▶ Example 4 (Padded Board). A padded standard-size board can be seen in Figure 1d.

Brzustowski [6] and Burgiel [7] use a similar approach, by presenting iterations of repeated
and pieces as their piece sequence. We call piece sequences that switch between finite

subsequences of and pieces SZ-Sequences.

▶ Definition 5 (SZ-Sequence). An SZ-Sequence is a piece sequence of alternating and
pieces, with the amount of pieces in each iteration given by integers a1, ..., an.

. . .︸ ︷︷ ︸
a1

. . .︸ ︷︷ ︸
a2

. . . . . .︸ ︷︷ ︸
ai

. . .︸ ︷︷ ︸
ai+1

. . .

▶ Example 6 (SZ-Sequence). The sequence of 69.600 alternating and pieces that force
an offline player to lose on a standard size board given by [7] can be characterized as an
SZ-Sequence with 1 ≤ i ≤ 69.600 and ai = 1.



M. Gehnen and L. Venier 16:5

This section proposes an adapted construction that we call padding sequence intending to
force the creation of a padded board by stacking waves on an empty board. The goal is that
the competitive analysis performed in Section 3.1 is independent of the board size and does
only have to regard a constant number of rows on top of the board. Thus, the goal of the
padding sequence is not to force a player to lose, nonetheless Section 3.2 shows how it can
be expanded to force offline players to lose and gives some results that follow. The following
padding sequence is defined only for even-height boards, as this simplifies notation, and the
bifurcation sequence presented in Section 2.2 is limited to even-height boards. The key to
the following lemma is to prove that, given a padding sequence, a player has no other choice
than to create a padded board as they would otherwise lose.

▶ Lemma 7 (Padding Sequence). Given an empty even-width even-height board, there exists
an SZ-Sequence with a set of integers a1, ..., a h

2 −1 ∈ N such that, after all pieces have been
played, the resulting board configuration is a padded board or the player has lost.

Proof. The padding sequence consists of h
2 − 1 iterations, each with a multiple of w

2 pieces
and enough pieces to force the creation of a wave. Given these constraints, the player has
four different options on how to play an iteration. The key of this proof is to show, that any
other option than to create a wave (without residual pieces) in each iteration, will lead to a
loss of the player.

1. Playing all pieces vertically in lanes and distributed equally. Given that the
iteration consists of a multiple of w

2 pieces, this adds a wave to the board configuration.
All following options will add additional unremovable rows to the board configuration
and thus lead to a loss of the game.

2. Playing some pieces horizontally (i.e., rotated as / ). According to [6] the
horizontal piece can not be removed by additional or pieces and thus two more rows
have been added to the board configuration that cannot be removed. Given that each
iteration consists of at least w

2 pieces and there can only fit w
2 − 1 horizontal pieces in

two rows, the resulting board configuration after placing pieces horizontally must be at
least two rows taller than if Option 1 had been chosen.

3. Playing some pieces vertically in between lanes. If a piece has been played
vertically in between lanes, the adjacent cells to the right of the piece (or left of the
piece) must be filled. If they are not filled, then two additional rows have been created
that cannot be removed anymore compared to Option 1. To fill the adjacent cells another
in-between piece must be played. This can be repeated until the adjacent cells to be filled
reach the outermost column of the board. There they cannot be filled anymore and if
enough pieces are played a piece must be placed to irrevocably cover the unfilled cells
thus creating two additional unremovable rows compared to Option 1.

4. Playing all pieces vertically in lanes, but not distributed equally. The resulting
board configuration has a wave and some residual pieces stacked in some lanes. When
switching to the following iteration, the player has two options.
(a) Play all pieces of the following iteration vertically in lanes. For each piece in a lane

that is not part of a wave two unremovable rows would be created by the switch from
to or vice-versa.

(b) Play some pieces of the following iteration in-between lanes to avoid multiple pairs of
unremovable rows like in Option 4a. However, playing in-between lanes will also lead
to additional unremovable rows as described in Option 3 and depicted in Figure 2.

FUN 2024
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(a) (b) (c) (d) (e) (f)

Figure 2 Example that distributing pieces unequally during one iteration of the padding sequence
leads to additional unremovable rows. If the player plays the pieces exclusively in lanes, the two
black circles will not be filled thus creating two unremovable rows. Also filling them with a piece
in-between lanes (marked with lighter shade in (c)) just moves the cells to be filled two columns to
the right.
This can be repeated until the marked cells reach the side of the board. Latest here there is no way
to fill the two black circles with pieces. This however must happen since the other lanes just allow
a finite amount of pieces until they are full, thus creating two more unremovable rows.

Playing all pieces vertically in lanes and distributing them equally creates a wave in each
iteration. After h

2 − 1 many iterations that yields h
2 − 1 many stacked waves which equals

a padded board. If however, the player chooses to deviate from the procedure and place
some piece in another way, then at least two additional unremovable rows would be added to
the board configuration as detailed in Options 2 - 4. This would lead to a loss of the player
as there would not be enough space left on the board to place the remaining pieces of the
padding sequence. Hence, given a padding sequence, a player has no other option than to
play according to Option 1 and create a padded board. ◀

2.2 Bifurcation Sequence
We use the notion of an adversary to construct a piece sequence where an online player is
forced to lose while an offline player can continue to play. Therefore, the piece sequence
requires an element where offline and online players make different decisions. If the lookahead
of an online player enables them to see a sufficient part of the piece sequence at the time of
the decision, they would be able to avoid loss by choosing to play the item the same way as
the offline player. Since we want to show that no finite amount of lookahead is sufficient,
we construct the piece sequence in a way that the correct decision is dependent on pieces
arbitrarily far in the future.

As such we construct two bifurcation sequences, both consisting of three parts: the
decision, the consequence, and a looping part in between to push the two further away than
the lookahead size. The first sequence can be used for an even width greater or equal than
six, the second for a width of four.

▶ Lemma 8 (Bifurcation Sequence). Given an even-width (w ≥ 6) even-height (h ≥ 2) padded
board, then there is a piece sequence that forces an online player to lose while an offline
player can continue to play.
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(⋆)

Loss

(⋆)

( w
2 − 2)×

( w
2 − 2)×

( w
2 − 2)×

2×

( w
2 − 2)×

2×

( w
2 − 2)×

( w
2 − 2)×

2×, 0

, 2

, 4

w
2 ×

w
2 ×

w
2 ×

Figure 3 Game graph for bifurcation sequence presented in Lemma 8 with board width w = 8.
The board configurations marked with (⋆) are only reachable for offline players.

Proof. Without loss of generality assume that the topmost wave is induced by pieces.
Given the player has a lookahead of l, we choose an integer k with k× w

2 > l and construct
the following piece sequence:

. . .︸ ︷︷ ︸
k× w

2


. . .︸ ︷︷ ︸

w
2 −2

if first is placed in the leftmost column

. . .︸ ︷︷ ︸
w
2 −2

otherwise

The can only be placed horizontally in every second column such that it covers just two
lanes. Otherwise, the following pieces would not fit on the board and the player would
lose.

The following set of repeating w
2 many pieces always returns to the same board

configuration. Once the set has been repeated often enough to surpass the online player’s
lookahead the adversary can choose the appropriate response to force the online player to
lose according to the case distinction above. Hence, the adversary forces the online player to
lose with this sequence. An example for a board width of eight is given in Figure 3. As an
offline player know the full piece sequence of the entire game beforehand, they can choose
the correct way to place the initial piece, as they know the response that will come later.
Thus, an offline player is not forced to lose with this sequence and can continue to play. ◀

▶ Lemma 9. Given an even-width (w ≥ 4) even-height (h ≥ 4) padded board then there is a
piece sequence that forces an online player with arbitrary but finite lookahead to lose while an
offline player can continue to play.

FUN 2024
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Loss

(⋆) (⋆)

, 0

, 1 , 0

, 1

, 0 , 1

, 2

, 2, 0

, 0, 0

2×

2× 2×

2×
2×

Figure 4 Game graph for bifurcation sequence described in Lemma 9 for boards with w = 4,
even h, and h ≥ 4. The board configurations marked with (⋆) are only reachable for offline players.

, 0 , 3 , 6

Figure 5 Example of the first part of a clearing sequence for bifurcation sequence presented in
Figure 3.

Proof. Without loss of generality assume that the topmost wave is induced by pieces.
There is a bifurcation sequence for padded boards with width w = 4 consisting of the
following pieces.

↑
. . .︸ ︷︷ ︸

2k,k>l

{
if marked piece (↑) has been placed horizontally
if marked piece (↑) has been placed vertically

As can be seen from Figure 4 the online player has to choose how to place the second piece
and loses either way. An offline player however will choose the opposite way and therefore
reaches one of two possible board states marked with (⋆) in Figure 4. ◀
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w
2 ×

w
2 ×

w
2 ×

w
2 ×

Figure 6 Example of the second part of a clearing sequence for a padded board with width w = 6
and height h = 8.

2.3 Clearing Sequence
After the bifurcation sequence has been played, the online player must have lost, while there
are still some board configurations the offline player can reach without having lost. It is
important to show that the loss of the offline player has not been delayed by a finite number
of pieces but instead that the offline player can continue to play forever if they are given
an appropriate piece sequence. The following lemma shows that every board configuration
resulting from the bifurcation sequence can be transformed into an empty board by a piece
sequence we call clearing sequence.

▶ Lemma 10 (Clearing Sequence). There is a piece sequence that can be played after the
bifurcation sequence from Lemma 8 or Lemma 9 to clear the board.

Proof. Given the bifurcation sequence for a board with a width of four there are two board
configurations only reachable for offline players (marked with (⋆) in Figure 4). For both
cases, there is a piece sequence that removes the four topmost rows of the board given by

and respectively. This either leaves us with an empty or padded
board, which can also be removed as shown below.

If the bifurcation sequence for a board of width six or more was used, there are four filled
cells in the penultimate row in (0-indexed) columns x, x+1, x+2, x+3 for x ∈ {1, 3, . . . , w−5}.
As the four filled cells on the penultimate row always start in an odd column, by placing
a and a around it, the remaining space can be filled by w

2 − 3 many pieces and the
induced line clear removes everything from the top two rows. The result is a return to the
padded board as can be seen in Figure 5.

Both cases leave us with a padded board, which can be deconstructed as seen in Figure 6
using the following piece sequence:

. . .︸ ︷︷ ︸
w
2

. . .︸ ︷︷ ︸
( h

2 −2)× w
2

. . .︸ ︷︷ ︸
w
2

The rotation of the / piece should be chosen based on whether the topmost wave was
induced by or pieces. The pieces are played in h

2 − 2 iterations with each w
2 pieces to

remove all but the last wave. The last wave is removed by w
2 many pieces and the result is

an empty board. ◀

FUN 2024
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3 Consequences

The strategy presented in the previous chapter is useful for different results, that follow
immediately as a corollary and are presented in this section. First, online players cannot
perform competitively against offline players for different optimization goals. Second, we
compute the number of pieces required for the padding sequence on a standard-size board
and show that there is a piece sequence that forces any player to lose in just 435 pieces.
Third, as the padding sequence applies to any even-width board we can generalize the known
results by Brzustowski [6] and Burgiel [7], and show that there exists a piece sequence that
forces an offline player to lose on any board that is at least two columns wide.

3.1 Competitive Analysis of Online Tetris
The padding, bifurcation, and clearing sequences of the previous section can be combined to
show that an online player with any lookahead of l ∈ N pieces will perform arbitrarily badly
in comparison to an offline player who knows the entire piece sequence from the beginning of
the game. However, for Tetris, it is not immediately clear in which ways the performance
is measured. This observation was already made by Demaine et al. when they analyzed
approximation algorithms [9]. We are using similar optimization goals to [9] to show that the
restriction to finite lookahead is crucial for any strategy. While the first three problems are
identical to the ones analyzed by Demaine et al. [9] and known to be NP-hard, the fourth is
a variation since we are interested in the highest filled cell at the end and not during the
game.

▶ Definition 11. Given an instance I consisting of an initial board configuration and a
piece sequence p1p2 . . . pn with pi ∈ { , , , , , , }, we define the following four
optimization goals:
1. Survival Maximization: Number of pieces played in Instance I before losing
2. Lineclear Maximization: Number of lineclears performed in Instance I before losing
3. Tetris Maximization: Number of tetrises (four lineclears at once) performed in Instance

I before losing
4. Highest Filled Cell Minimization: Highest row with filled cells at the end of the

game

The first three problems can be understood as a proxy for the decision problem of survival
(Can a player place all given pieces without loosing?), and the fourth as a proxy for the
decision problem of clearing (Can a player place all piece in such a way that the resulting
board configuration only contains empty cells?). The bifurcation sequences presented in the
previous chapter apply to even-width even-height boards with at least four columns. It
follows as a corollary from the construction that for each of the four problems there cannot
be any c-competitive online algorithm for any possible value of c.

▶ Theorem 12. There cannot be any c-competitive online algorithm for Online Survival
Maximization, Online Lineclear Maximization,Online Tetris Maximization, and
Highest Filled Cell Minimization for any c for even-width even-height boards with
w ≥ 6, h ≥ 2 and w = 4, h ≥ 4.

It is easy to see that this result also stays true for the maximization goals when allowing
non-strict competitiveness. Note that for Tetris Maximization the height of the board must
be at least 4.
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Proof. For a given size of the board, construct an instance I that starts with the padding,
bifurcation, and clearing instance from the previous chapter. This ensures that the online
player loses with some finite amount of played pieces and cleared lines, and without having
performed a Tetris.

However, the offline player can continue playing on an empty board, thus the instance
continues with the necessary pieces for the optimization goals. The number of lineclears and
played pieces for the offline player can easily be increased by filling up the piece sequence
with arbitrarily many pieces, which can be played forever without difficulties. Analogously
the number of tetrises can be increased arbitrarily by playing pieces if the board has a
height of at least four. Since the online player could only achieve a finite amount of played
pieces, cleared lines, or performed tetrises, the ratio can get arbitrarily bad.

For Highest Filled Cell Minimization, it is sufficient to see that the online player
leaves the game when the full height of the board is covered, while the offline player can
decrease the size down to zero with the clearing sequence. ◀

3.2 A computed result for 10 × 20 boards
As seen in Lemma 7 and previously in the works by Brzustowski [6] and Burgiel [7], playing
sequences of and alternately is an efficient way to force a player to fill the board. By
adding an iteration to the padding sequence the player can be forced to lose.

▶ Proposition 13. Given a padded board where the topmost wave has been induced by
pieces (or ), then w

2 pieces (or ) force the player to lose.

Proof. The w
2 pieces do not fit vertically in lanes on top of a padded board. Horizontally or

vertically in-between lanes there is only enough room left for w
2 − 1 pieces. As the player

cannot perform a lineclear by playing the pieces horizontally or vertically in between lanes,
the last piece necessarily loses, since the next piece might not fit onto the board anymore. ◀

The goal of this section is to find lower bounds on how many pieces each iteration of
the padding sequence must contain. As seen in Lemma 7, there are several ways a player
can play the piece of an iteration, but finally at least two unremovable rows will be created.
Similar to [6, 7], playing pieces horizontally or vertically in-between lanes immediately creates
bumps that cannot be filled with subsequent pieces. This creates additional unremovable
rows faster than Option 4 (playing all pieces in lanes but not distributing them equally) in
the proof of Lemma 7. Therefore, we restrict the algorithm to play new pieces vertically,
and compute how many it takes to create additional unremovable rows if the pieces of the
previous iteration have not been distributed equally. If the previous iteration ended with
a wave without any deviations, the amount of pieces required for the following iteration is
given by completely stacking pieces in all lanes except of one, plus one piece. While it is
obvious to see that distributing the pieces equally is a rather fast way to create a wave and
the corresponding unremovable rows, it is not so clear which kind of deviation is able to
prolong the construction of the wave most. Therefore, Algorithm 1 computes the number of
pieces that suffices to force the creation of additional unremovable rows, given any possible
way of unequally distributing the pieces in lanes of the previous iteration.

Since it is also possible to play pieces in-between lines like in Figure 2 to avoid new
unremovable rows for some finite time, Algorithm 1 tries to prolong this for as many rows
(and therefore pieces) as possible. In fact, the result pictured in Example 2 turns out to be
the worst case. There, the rightmost piece in picture f is the first which covers the cells (with
the black dots) irrevocably. The algorithm avoids covering the cells and instead loses the
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game, as there is not any other option. Hence, the number of pieces played by the algorithm
until loss is the same as the maximum number of pieces that the player can play until they
have to have created additional unremovable rows.

Algorithm 1 Compute iteration sizes for padding sequence.

for all iterations a2, ..., a h
2 −1 do

result← 0
for all deviations playable in the previous iteration do

counter ← 0
for all lanes l without residual pieces do

Play piece in lane l

counter ← counter + 1
end for
repeat

Play piece in lowest leftmost (for , rightmost for ) possible placement which
does not cover a cell,

counter ← counter + 1
until game over
if counter > result then

result← counter

end if
end for
ceil result to next multiple of w

2
end for

Applying the algorithm to a board with ten columns and twenty rows leads to the results
in Table 1. This yields the following result.

▶ Theorem 14. Given an empty 10× 20 board, there exists an SZ-Sequence with a set of
integers a1, ..., a10 ∈ N that forces an offline player to lose that is 435 pieces long.

Proof. The first nine iterations are the padding sequence as described in Lemma 7, and the
final iteration in Proposition 13.

The first iteration requires ⌈( w
2 −1)×( h

2 −1)+1⌉w
2

= 40 pieces. The first ( w
2 −1)×( h

2 −1)
pieces may be filled into all but one lane, the next piece must necessarily placed into
the last lane to induce one line clear. The number of pieces must be ceiled to the next
multiple of w

2 to enable the creation of a wave without residual pieces.
Iterations a2 to a9 can be computed with Algorithm 1. See Table 1 for the results.
In the final iteration w

2 = 5 force the player to lose according to Proposition 13.
Adding the sizes of each iteration yields a sum of 435 pieces. ◀

The results of 435 pieces to force a player to lose on a standard-size board improves on
the previously known upper bound of 69600 pieces by Burgiel [7]. Since ensuring that waves
are created is not a necessary requirement for losing, it is plausible that even faster ways
exist that do not enforce waves.

3.3 Offline players lose on every board of width at least two
We use the padding sequence with Proposition 13 together with existing results to show
that every board that is at least two columns wide has a losing piece sequence. Since we
expect every piece to physically fit on the empty board, is the only allowed piece type for a
single-column instance, and a player cannot lose.
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Table 1 Results for applying Algorithm 1 on a standard-size board. Deviations are given as
a sequence of integers representing the number of pieces played per lane. The number 5, 0, 0, 0, 0
describes 5 pieces in the first lane and 0 pieces in the following ones. Iteration a2 is depicted in
Figure 2.

Iteration Best Deviations Unceiled Result Ceiled Result

a2 5,0,0,0,0 69 70
a3 5,0,0,0,0 65 65
a4 5,0,0,0,0 61 65
a5 5,0,0,0,0 57 60
a6 5,0,0,0,0 53 55
a7 2,0,3,0,0 2,3,0,0,0 30 30
a8 2,0,3,0,0 26 30
a9 1,0,2,2,0 2,1,0,2,0 2,2,1,0,0 13 15

While it is known that there are losing piece sequences for offline players on odd-width
boards (w ≥ 3) [6] and for boards with a width of 2 mod 4 [7], the case for boards with
width 0 mod 4 remained open. Brzustowski also proved that online players cannot win on
boards of even width [6].

▶ Theorem 15. For any empty board with a width of at least two, there is a piece sequence
that forces an offline player to lose.

Proof. For w ≥ 3, w mod 2 = 1 Brzustowski gives loss-forcing piece sequences [6]. Combin-
ing the padding sequence (Lemma 7) and Proposition 13 gives a piece sequence that forces
any player to lose on even-width boards. ◀

4 Competitiveness of Single Piece Tetris

This section looks at the competitiveness of a constrained version of Tetris. Brzustowski has
shown that limiting the piece sequences of the game to a single piece type allows strategies
to play forever, at least if the board size allows it [6]. We show that for each optimization
goal analyzed in the previous section, there is an online algorithm that is 1-competitive if
the piece sequence is constrained to contain only a single piece type. However, for some
optimization goals, there are instances that do not allow strict 1-competitive algorithms.
The constrained online problems are defined as follows.

▶ Definition 16 (Single Piece Online Tetris). The Online Tetris Problems defined in Defin-
ition 11 where every piece sequence can only contain elements of the same piece type are
prefixed with Single Piece.

4.1 Single Piece Survival Maximization and Single Piece Tetris
Maximization have strictly optimal online algorithms

The following theorems show that there is a strategy to play optimally for Single Piece
Survival Maximization and Single Piece Tetris Maximization.

▶ Theorem 17. There is a strictly 1-competitive online algorithm for Single Piece Survival
Maximization.
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Proof. If there is no perpetual loss-avoiding strategy for the given board size and piece type,
then online and offline players will play such that the highest achievable number of moves is
played before losing. If there is a perpetual loss-avoiding strategy both players will place every
single piece of the piece sequence without losing. In both cases, gainAlg(I) = gainOpt(I)
holds, and therefore, the strategy employed by the online player is strictly 1-competitive. ◀

▶ Theorem 18. There is a strictly 1-competitive online algorithm for Single Piece Tetris
Maximization.

Proof. If the chosen piece type is not or h < 4 then no tetrises can be played and hence
gainAlg(I) = gainOpt(I) = 0. If the chosen piece type is and the board has at least four
rows then tetrises can be created by placing pieces in columns next to each other until the
last column is filled and a Tetris is performed. This leads to gainAlg(I) = gainOpt(I) = ⌊ |P |

w ⌋
with |P | the length of the piece sequence, which cannot be beaten by an offline algorithm. ◀

4.2 Online Players cannot perform optimally for Single Piece Lineclear
Maximization and Single Piece Highest Filled Cell Minimization

Compared to the two optimization goals above we can construct instances for Single Piece
Lineclear Maximization and Single Piece Highest Filled Cell Minimization
where online players are not able to perform optimally. Nonetheless, there are 1-competitive
online algorithms for the problems.

The key to creating such instances is that an offline player can choose to play the final
piece in such a way that improves the optimization function but would lead to a loss if
the piece sequences did not end. As the offline player chooses to deviate from a perpetual
loss-avoiding strategy at some point since they know when the instance ends, which an online
player can not.

▶ Theorem 19. There cannot be a strictly 1-competitive online algorithm for Single Piece
Lineclear Maximization without lookahead.

Proof. Assume there is an online strategy to achieve optimality. On a 6× 4 board and with
items, it, therefore, has to put the first two pieces horizontally to get the first lineclear to

play optimal, since the instance could end after those two items and the optimal solution
would also have a lineclear. Since an optimal algorithm can get two lineclears with four
pieces, an online player has to place the next two pieces horizontally as well. This continues
with the fifth piece and the sixth piece for the third lineclear with the next two horizontally
placed pieces. Therefore, the online player is left with a configuration with three filled cells
in the second and fifth column, where it is not able to make any further lineclears with the
following items. Therefore, a strategy that guarantees optimality for the first items will
necessarily lose after finitely many steps, while there is a strategy to play infinitely long. ◀

Algorithms with a non-strict competitive ratio of c = 1 exist, using the same strategies as
in Theorem 17. The instance above requires an online player that does not have any looka-
head. If there is an instance that is non-strictly competitive for Single Piece Lineclear
Maximization even if the online player is granted some lookahead remains an open question.
However, we believe that an algorithm needs arbitrarily much lookahead if the instance gets
wider.

▶ Theorem 20. There cannot be a strictly 1-competitive online algorithm for Single Piece
Highest Filled Cell Minimization.



M. Gehnen and L. Venier 16:15

Proof. Given an instance I with a 4x4 board and a single piece the optimal strategy is to
place it horizontally, resulting in a maximum height of 2. However, an online player without
lookahead cannot place the item horizontally, as an adversary could play additional pieces
which force a loss. Since it is possible to continue playing by placing the pieces vertically, it
is crucial to know if more than one item is coming or not to decide whether placing the first
item vertically or horizontally is optimal. ◀

Note that a single piece strategy needs at most eight rows [6], hence 1-competitive online
algorithms with additive constant α ≤ 8 exist. Here, the instance given above can be
extended to cover any available lookahead l by making the board 4 + 2× l columns wide.
Again, the online player must either start by playing the pieces vertically or horizontally,
depending on their beliefs about what would be optimal. This however is still hidden behind
the lookahead pieces.

5 Conclusion and Open Problems

In this article, we were able to see that for some instances knowing the whole instance
is crucial if a player wants to avoid losing. However, this only works if the adversary is
allowed to use the presented construction which leads to some open problems discussed in
this section. Our construction works on any even-width, even-height board with w = 4, h ≥ 4
and w ≥ 6, h ≥ 2 leaving out two classes of boards: boards with a width of just two columns
and boards of odd width.

We analyzed a very restricted class of Tetris games limited to a single piece type, and
have shown that online players (even without lookahead) can play optimally. Interestingly,
for some optimization goals, the competitiveness is not strict. Another known restricted
class of Tetris games can be found in some implemented video games with a standard-size
board, a 7-bag randomizer, three pieces of lookahead, and one piece of hold. A perpetual
loss-avoiding strategy for this class is given in [1].

Somewhere between those results must be the point, when knowing the future gets crucial.
How can the game be restricted such that a preview of one, three, or infinite many pieces
starts making a difference? One main feature of Tetris in favor of a player is the option to
hold a piece, which can be taken at later steps. Similar to lookahead, this feature relaxes the
need to play immediately in an online way. Therefore, the influence of the option to hold
would be interesting: does Tetris get competitive if the player is allowed to hold one or more
items?

On the other hand, lookahead and hold are two features to relax the strict online
setting of Tetris: for online problems, many more relaxations such as advice, randomization,
reservations, or predictions are known and part of current research. For future work it would
be interesting to see how such relaxations applied to Tetris behave, and how large their
impact is.

Last, we believe that 435 pieces are still just an upper bound for an instance size that is
sufficient to force an (offline) player to lose a game of Tetris on a standard-size board. Since
finding the actual number was neither a primary goal for Burgiel [7] nor for us, we believe
that the bound can be decreased even further with a dedicated approach.
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Abstract
Various forms of graph coloring problems have been studied over the years in the society of graph
theory. Recently, some original puzzles are popularized in Japanese 100-yen shops, and one of
them can be formalized as a graph coloring problem in a natural way. However, this natural graph
coloring problem has not been investigated in the context of the graph theory. In this paper, we
investigate this puzzle as a graph coloring problem. We first prove that this graph coloring problem
is NP-complete even when the graph is restricted to a path or a spider. In these cases, diameter of
the graphs seems to play an important role for its difficulty. We then show that the problem can be
solved in polynomial time when the graph is restricted to some graph classes of constant diameter.
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1 Introduction

Research on computational complexity of puzzles and games has a long history. One of the
reasons is that there exist some puzzles that characterize major computational complexity
classes in natural and simple ways, and hence the features of these puzzles give us some
understanding of such complexity classes [3, 6]. Especially, many NP-complete puzzles have
helped us to obtain some intuitions for the class NP. They may lead us to the solution to the
P ̸=NP conjecture, which is one of the millennium prize problems.

A problem Matchsticks Solution

Figure 1 The matching match puzzle sold at Daiso.
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In this paper, we investigate a puzzle named “Matching Match” (Figure 1). This puzzle
is designed by Rikachi, a Japanese puzzle designer, and it is a commercial product produced
by Daiso, which is one of the major 100-yen shops in Japan.1 As a commercial product,
the rule of this puzzle is simple and understandable even for children. You are given a card
and a set of “matchsticks”. On the card, a planar graph is drawn and some vertices of it
are colored. Each matchstick has its own colors on both endpoints (the colors can be the
same). The number of matchsticks is equal to the number of edges of the graph. That is,
each matchstick corresponds to an edge of the graph and vice versa. The puzzle asks us to
find an arrangement of the matchsticks on the edges so that every color matches at each
vertex of the graph. The color of an endpoint should be matched to the color on the vertex
if the vertex is colored. On the other hand, we have to assign a color to each vertex if it is
not colored. That is, at a vertex without color, all the endpoints of the matchsticks sharing
the vertex have to have the same color.

It is easy to see that the puzzle can be easily solved if every vertex of the graph on a
card has its color. Namely, for a given graph, this puzzle asks us to find a proper coloring
of the uncolored vertices in the graph for a given set of edges with pre-colored endpoints.
As you can find in Figure 1, it is a natural problem not only in the context of the puzzle,
but also as a variant of graph coloring problems. The graph coloring problem is one of
classic problems which has been widely investigated in the context of theoretical computer
science [4]. From the viewpoint of algorithmic technique, the color-coding is one of technique
for solving a graph coloring problem efficiently [1]. However, as far as the authors know,
this graph coloring problem corresponding to the matching-match puzzle has never been
investigated in the context of graph coloring. One of the reasons may be that this graph
coloring admits to color two neighbors with one color when we have an edge with endpoints
with pre-colored by the same color. In fact, we will use such edges in our reduction.

We first show that the matching-match puzzle is NP-complete even if the graph is quite
restricted. Precisely, this puzzle is NP-complete even if the graph is a spider, a path, or
a cycle in general. On the other hand, when the graph is a complete graph or a star the
matching-match puzzle is polynomial-time solvable. We note that a star is a spider with
legs of length 1. That is, we have a constant B′ such that the matching-mach puzzle is
NP-complete on spiders with legs of length at least B′, and it is polynomial-time solvable
on spiders with legs of length at most B′. In this paper, we also show a polynomial-time
algorithm on spiders with legs of length at most 2. That is, we prove that B′ ≥ 2. The keen
threshold value of B′ is open.

2 Preliminaries

In this paper, we only consider a simple graph G = (V, E) with |V | = n and |E| = m. A
sequence of the vertices (v0, v1, . . . , vk) is a path of length k in G when {vi, vi+1} ∈ E for
each i = 0, . . . , k − 1. It is a cycle of size k if v0 = vk and k > 2. A graph is a tree if it is
acyclic and connected. A tree is a spider if it has only one vertex of degree greater than
2. The unique vertex of degree greater than 2 of a spider is called the body of it. A spider
consists of three or more paths sharing the body. Each path (including the body) is called
a leg of the spider. A graph is a star if it is a spider with legs of length 1. A graph is
complete if every pair of vertices are joined by an edge. A complete graph is denoted by Kn

if it consists of n vertices. For a vertex v in V , its neighbor set in G = (V, E) is defined by

1 English instruction can be found at https://www.daiso-syuppan.com/noutore/.

https://www.daiso-syuppan.com/noutore/
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{u | {u, v} ∈ E} and denoted by NG(v) (or N(v) if G is clear in the context). We also use a
notation NG[v] and N [v] defined by NG(v) ∪ {v}. The distance between two vertices u and
v in G is the minimum length of a path joining u and v. The diameter of G is the maximum
distance between all pairs of vertices in G. For a given graph G = (V, E), an edge set M is a
matching if no two edges share a common vertex. For a given graph G = (V, E) and a vertex
subset V ′, we call the graph G′ = (V ′, E′) with E′ = {{v, v′} | v, v′ ∈ V ′ and {v, v′} ∈ E}
an induced subgraph by V ′, and it is denoted by G[V ′]. A vertex set Q is called a clique if
G[Q] is a complete graph.

Now we turn to the definition of the matching-match puzzle. An instance of the matching-
match puzzle consists of a graph G = (V, E) with V = {v0, v1, . . . , vn−1} and a set of sticks
S = {s0, s1, . . . , sm−1}. We define the set of endpoints of sticks by U . That is, each stick si is
a pair of distinct vertices {ui, u′

i,2}, where ui, u′
i,2 ∈ U and hence |U | = 2m. We will use two

color sets C0 = {0, 1, . . . , c} and C1 = {1, . . . , c} for some positive integer c to distinguish
colors in V and U . Each vertex v in V is colored by a function C0 : V → C0 and each vertex u

in U is colored by a function C1 : U → C1. We say a vertex v in V is not colored if C0(v) = 0.
The other vertices in V and U are colored. Then the input of the matching-match puzzle is a
5-tuple (G, S, c, C0, C1). An instance (G, S, c, C0, C1) is feasible if and only if there exists a
mapping M from U to V such that (1) for each si = (ui, u′

i), {M(ui), M(u′
i)} is in E, (2)

for each u ∈ U , C1(u) = C0(M(u)) or C0(M(u)) = 0, (3) for each e ∈ E, there exists a stick
si = {ui, u′

i} with e = {M(ui), M(u′
i)}, and (4) for each v ∈ V with C0(v) = 0, there exists a

color c′ such that all vertices u ∈ U with M(u) = v satisfy C1(u) = c′. The matching-match
puzzle asks us if there exists a feasible mapping M for a given instance (G, S, c, C0, C1). That
is, we can formalize the matching-match puzzle as follows:

Matching-match puzzle
Input: A graph G = (V, E), a set S of sticks, an integer c > 0, and two functions C0 and

C1.
Output: Determine whether there exists a feasible mapping M.2

We note that we consider general graphs and they are not necessarily planar. However,
almost all graphs in this paper are planar except complete graphs (with at least 5 vertices).
Except for complete graphs, all graphs in this paper can be drawn on a plane with edges of
unit length without crossing. That is, they can be real problems in Matching Match puzzle.

3 NP-completeness

In this section, we prove that the matching-match puzzle is intractable even if G is quite
restricted.

▶ Theorem 1. The matching-match puzzle is NP-complete in general even if G is (1) a
spider, (2) a path, or (3) a cycle.

Proof. Let (G, S, c, C0, C1) be an instance of the matching-match puzzle. If there is a feasible
mapping M, it is easy to confirm that M is feasible. Thus the matching-match puzzle is
in NP. Therefore we show NP-hardness. To show NP-hardness, we reduce the following
3-Partition problem to our problem:

2 In the commercial puzzle, each of 40 instances has a unique solution. We do not assume it in this paper.
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Figure 2 Construction of a spider.

3-Partition
Input: Positive integers a1, a2, a3, . . . , a3m′ such that

∑3m′

i=1 ai = m′B for some positive
integer B and B/4 < ai < B/2 for 1 ≤ i ≤ 3m′.

Output: Determine whether we can partition {1, 2, . . . , 3m′} into m′ subsets
A1, A2, . . . , Am′ so that

∑
i∈Aj

ai = B for 1 ≤ j ≤ m′.

It is well known that the 3-Partition problem is strongly NP-complete [2].

(1) We first show a reduction to a spider. For a given instance a1, a2, a3, . . . , a3m′ of the
3-Partition problem, we construct G and S as follows (Figure 2). We use m′ + 1 colors,
namely, C0 = {0, 1, . . . , m′ + 1}. The graph G is a spider with 3m′ legs. For each i with
1 ≤ i ≤ 3m′, the ith leg is a path of length ai + 1. The body of the spider is colored by 1,
and all the other vertices are not colored. That is, C0(b) = 1 for the body vertex b ∈ V and
C0(v) = 0 for each vertex v ∈ V \ {b}. The set S consists of m = m′(3 + B) sticks. For each
j with 1 ≤ j ≤ m′, S contains B sticks s = {u, w} with C1(u) = C1(w) = j + 1 and 3 sticks
s′ = {u′, w′} with C1(u′) = 1 and C1(w′) = j + 1.

Clearly, the reduction can be done in polynomial time. Thus we show that the instance
a1, a2, a3, . . . , a3m′ of the 3-Partition problem has a solution if and only if G and S are
feasible.

We first assume that the instance a1, a2, a3, . . . , a3m′ has a solution. Then they can
be partitioned into m′ subsets A1, A2, . . . , Am′ such that

∑
i∈Aj

ai = B for 1 ≤ j ≤ m′.
Without loss of generality, we assume that A1 = {a1, a2, a3}. Then we match three sticks
s1 = s2 = s3 = {1, 2} to indicate three legs of lengths a1, a2, and a3. That is, the function
M maps each 1 to the body of the spider, and 2 to the neighbors of the body corresponding
to the three legs of lengths a1, a2, and a3. Now we match the other sticks {2, 2} to these
three legs. Since a1 + a2 + a3 = B, we can match all sticks to these legs and no sticks {2, 2}
remain. We repeat the same process for each of A2, . . . , Am′ . Since they are a solution of
the 3-Partition problem, we can match all the sticks.

We next assume that we can match all the sticks in S to the edges of the spider G.
We first observe that all sticks that have an endpoint of color 1 to join legs to the body.
Therefore, we cannot use two or more colors on a leg except the edge joining the leg to the
body. Thus, each set of B sticks of the same color should be on three legs such that the
total length is B. Hence we can construct a solution of the 3-Partition problem from the
solution of the matching-match puzzle.

(2) We next show a reduction to a path. The basic idea is similar to the case (1) (Figure 3).
The graph G is a path (v0, v1, . . . , vm) of length m = m′(B + 6). It has 3m′ + 1 vertices
v with C0(v) = 1, and all the other vertices are not colored. By the vertices v with
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Figure 3 Construction of a path.

C0(v) = 1, the path is partitioned into 3m′ subpaths since both endpoints v of the path
satisfy C0(v) = 1. The ith subpath has length ai for each i = 1, 2, . . . , 3m′. The set S

consists of m = m′(6 + B) sticks. For each j with 1 ≤ j ≤ m′, S contains B sticks s = {u, w}
with C1(u) = C1(w) = j + 1 and 6 sticks s′ = {u′, w′} with C1(u′) = 1 and C1(w′) = j + 1.
The reduction can be done in polynomial time. By using the same argument, we can show
that the instance a1, a2, a3, . . . , a3m′ of the 3-Partition problem has a solution if and only
if G and S are feasible.

(3) In the construction (2), by unifying the endpoints of the path G, we can obtain a cycle.
On the cycle, the same argument works.

Therefore, the matching-match puzzle is NP-complete in general even if G is a spider, a
path, or a cycle. ◀

By the proof of Theorem 1(1), we obtain the following corollary.

▶ Corollary 2. The matching-match puzzle is NP-complete even if G is a spider and its body
is the only colored vertex. Moreover, the matching-match puzzle is NP-complete even if G is
a spider and no vertex is colored.

Proof. The proof of Theorem 1(1) meets the first claim. Thus we focus on the case that the
vertices in G are not colored. The construction of the graph G and the set S is the same as
the proof of Theorem 1(1). The coloring of C1 is also the same, and we define C0(v) = 0 for
all vertices in V . To derive a contradiction, we assume that the body b of the spider G is
colored by the other color, say C0(b) = 2, than 1 in a solution. In the original instance of the
3-Partition problem, we can assume that m′ > 6 without loss of generality. Since we have
at most B sticks {u, u′} with C1(u) = C1(u′) = 2 to cover the legs, we have to change the
color on some legs from 2 to the other colors in the middle of the legs. To change the color,
we have to use the vertices v with C0(v) = 1. However, we have only three sticks {u, u′}
with C1(u) = 2 and C1(u′) = 1. Thus, since m′ > 6, there are at least 4 legs that should
be totally colored by 2 from the body to their leaves. However, by the assumption that
B/4 < ai < B/2, we cannot cover 4 legs by B sticks, which is a contradiction. Therefore, we
cannot color the body by any other color than 1. That is, we can assume that C0(b) = 1 for
the body vertex b without loss of generality. Thus the matching-match puzzle is NP-complete
even if no vertex in G is colored. ◀
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4 Polynomial time algorithms

In this section, we show polynomial-time algorithms for the matching-match puzzle on some
graph classes. We first consider two simple cases that G is a complete graph and G is a star.
In these two cases, we can solve the matching-match puzzle efficiently. Next we turn to the
spider with legs of length 2. We give a polynomial-time algorithm for this case.

▶ Theorem 3. For a given instance (G, S, c, C0, C1), the matching-match puzzle can be solved
in O(n + m) time when G is a complete graph.

Proof. We first check if G is a complete graph, and output “No” if it is not in O(n + m) time.
In the set of sticks in S, we can count the number of appearances of each color. We denote by
#(i) the number of color i in S. Precisely, #(i) =

∑
s={u,u′}∈S(δ(C1(u) = i) + δ(C1(u′) = i))

for each i ∈ {1, . . . , c}, where δ(C1(u) = i) = 1 when C1(u) = i and δ(C1(u) = i) = 0 when
C1(u) ̸= i. Then, #(i)/(n − 1) gives the number of vertices v in G with C0(v) = i after
matching by a solution M. If C0 cannot satisfy this condition by extension to C1, the answer
is “No”. Thus we assume that the given function C0 in the instance is consistent with the
condition. (Precisely, for each color i, the number of vertices with C0(v) = i is equal to or
less than #(i)/(n − 1).) Now we assign the colors to the vertices v in V with C0(v) = 0 so
that C0(v) > 0 and they are consistent with the condition. Since G is a complete graph, the
assignment can be done according to the numbers #(i)/(n − 1). After the assignment, we
check the consistency of the sticks in S. Precisely, for each edge {u, u′}, we decrease #(C0(u))
and #(C0(u′)) by 1, respectively. Then the sticks are consistent if and only if #(C0(v)) = 0
after the decreasements. Since all the vertices in G are now colored, it can be done in O(m)
time. The correctness of the algorithm is trivial. Thus we can solve it in O(m) time in total
when G is a complete graph. ◀

▶ Theorem 4. For a given instance (G, S, c, C0, C1), the matching-match puzzle can be solved
in O(n) time when G is a star.

Proof. We first check if G is a star, and output “No” if it is not. It can be done in O(n)
time since G is a star if and only if it has one vertex of degree n − 1 and n − 1 vertices of
degree 1. Assume G = (V, E) is a star and b ∈ V is the body vertex of degree n − 1. Now we
pick any stick s = {u, u′} in S. Then it should be either M(u) = b or M(u′) = b if it is a
yes-instance. We first check whether M(u) = b. In this case, all sticks s′ = {w, w′} should
satisfy C1(u) = C1(w) or C1(u) = C1(w′). If all other sticks satisfy the condition, we output
“Yes”. Otherwise, we check whether M(u′) = u in the same way. If all other sticks satisfy
the condition, we output “Yes”, otherwise, output “No”. The correctness of the algorithm is
trivial, and it can be done in O(n) time. ◀

Now we turn to the main theorem in this section:

▶ Theorem 5. For a given instance (G, S, c, C0, C1), the matching-match puzzle can be solved
in polynomial time when G is a spider with legs of length 2, and C0(v) = 0 for all v ∈ V .

Proof. Our algorithm checks all cases that C0(b) = i with i = 1, . . . , c for the body vertex b

of G. Therefore, hereafter, we fix that C0(b) = 1 and C0(v) = 0 for all vertices v ∈ V \ {b}
without loss of generality. Then the set S of sticks can be partitioned into three subsets
S1 = {{u, u′} | C1(u) = C1(u′) = 1}, S2 = {{u, u′} | C1(u) = 1 and C1(u′) ̸= 1}, and
S3 = {{u, u′} | C1(u) ̸= 1 and C1(u′) ̸= 1} (Figure 4(a)).
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Figure 4 Classifications of S and V .

We suppose that there exists a feasible mapping M from S to V , and consider conditions
that M has to satisfy. Here we color the graph G according to this mapping M, and we
suppose that each color of a vertex v in G can be referred as C(v) to simplify. Since G is
a spider with legs of length 2, we have n′ = (n − 1)/2 legs. Then, we partition these legs
(b, v1, v2) into four subsets P1 = {(b, v1, v2) | C(v1) = C(v2) = 1}, P2 = {(b, v1, v2) | C(v1) =
1 and C(v2) ̸= 1}, P3 = {(b, v1, v2) | C(v1) ̸= 1 and C(v2) = 1}, and P4 = {(b, v1, v2) |
C(v1) ̸= 1 and C(v2) ̸= 1} (Figure 4(b)).

Then we can observe that

2|P1| + |P2| = |S1|,
|P2| + 2|P3| + |P4| = |S2|,

|P4| = |S3|.

Thus, we can obtain |P4| = |S3| first. Now the size |P3| is one of 0, 1, . . . , n′. Therefore, our
algorithm checks all cases for |P3| = 0, 1, . . . , n′. Once |P4| and |P3| are fixed, |P2| and |P1|
are also determined (when one of them is negative, the case is not feasible). Therefore, our
algorithm checks if there is a feasible mapping M from S to V for given |P1|, |P2|, |P3|, and
|P4|. Intuitively, we have to make two matchings; one between S2 and S3 in P4 and another
one among S2 in P3. The remaining edges in S2 can be matched in P2 in any way.

Now we construct an auxiliary graph H = (S2 ∪ S3, E′), where

E′ = {{u, v} | two sticks u and v share a color i in {2, 3, . . . , c}}.

That is, two sticks in S2 ∪ S3 are joined by an edge in E′ if they have endpoints of the same
color (under mapping M) but not the color 1. Then we have the following observation:

▶ Observation 6. A mapping M is a feasible solution of the given instance of the matching-
match puzzle if and only if H has a matching M such that (1) M contains |P4| edges joining
a vertex in S2 and another one in S3, (2) M contains |P3| edges joining two vertices in S2,
and (3) M contains no any other edges.

Proof. We can observe that each edge in M corresponding to the central vertex v1 in each
path (b, v1, v2) on G. That is, edges in M with the condition (1) correspond to the edges
in H joining an edge in S2 of G and an edge in S3 on a leg in P4, and edges in M with
the condition (2) correspond to the edges in H joining two edges in S2 on a leg in P3. The
remaining edges in S2 are joined to edges in S1 on legs in P2. ◀(of Observation 6)
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Figure 5 Graph H ′ = (S2 ∪ S3, E′′).

By the observation, we can remove all edges in H that joins two vertices in S3, which
are not necessary to construct the desired matching M in H. Let H ′ = (S2 ∪ S3, E′′) be the
graph obtained from H by removing them (Figure 5).

Now our goal is a construction of the matching M on H ′ that satisfies the conditions of
Observation 6. We first note that H ′[S2] induces a set of cliques Qi for each color i = 2, 3, . . . , c.
That is, S2 can be partitioned into c − 1 subsets Si

2 = {{u, u′} | C1(u) = 1 and C1(u′) = i}
for each color i = 2, 3, . . . , c, and then H ′[Si

2] is a clique Qi. By the definition of H ′, we
can observe that NH′ [q] = NH′ [q′] for any q, q′ ∈ Qi. We also note that |M | = |S3| and
|S2| − |S3| = |P2|. That is, in the spider G, every stick in S3 should be joined to a stick in
S2 in a proper way and other sticks in S2 are connected to sticks in S1 in any way.

To construct M , we first compute a maximum matching M ′ on the bipartite graph
H ′′ = (S2, S3, E′′′), where E′′′ is the set of edges joining vertices in S2 and S3 in H ′. (In
other words, we ignore the edges in the cliques Qi.) If |M ′| < |S3|, the answer is clearly
“No”. Otherwise, we choose |S3| edges in H ′ as the legs in P4. Let Q′

i be the set of cliques
induced by the vertices not matched in M ′. If

∑c
i=2 ⌊|Q′

i|/2⌋ ≥ |P3|, we have enough pairs
to construct legs in P3. Then we choose any |P3| edges in H ′[∪iQ

′
i] and add them to M ′,

which is the desired M . Once we can obtain M , we assign the remaining edges in S2 as legs
in P2. In this case, the answer is “Yes”.

The last remaining possible situation is that (1) the maximum matching M ′ has enough
edges as |M ′| ≥ |S3| and (2)

∑c
i=2 ⌊|Q′

i|/2⌋ < |P3|. In this case, some Q′
i may contain an

odd number of vertices not matched in M ′. When |Q′
i| and

∣∣Q′
j

∣∣ with i ̸= j are odd, by
changing the edges in M ′, we may make both of |Q′

i| and
∣∣Q′

j

∣∣ even and then we can increase∑c
i=2 ⌊|Q′

i|/2⌋ by one. If we can perform it repeatedly, we may achieve
∑c

i=2 ⌊|Q′
i|/2⌋ = |P3|.

This can be done if we have an alternating path P in H ′ with respect to M ′ between Q′
i and

Q′
j . Here, an alternating path P is a path (v0, v1, . . . , v2k) for some positive integer k such

that the edges on P are in M alternately. Thus, by finding an alternating path P in H ′ with
respect to M ′ and replacing M ′ by M ′ ⊕ P (swapping the members in M ′ according to P),
we can increase

∑c
i=2 ⌊|Q′

i|/2⌋ by one.
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For the graph H ′ = (S2 ∪ S3, E′′) and the maximum matching M ′, we have the following
lemma:

▶ Lemma 7. We assume that |Q′
i| and

∣∣Q′
j

∣∣ with i ̸= j are odd. Then there exists an
alternating path between two vertices Qi and Qj if and only if a connected component of H ′

contains both of Qi and Qj.

Proof (Outline). We first consider a vertex s = {u, w} in S3 with C1(u) = C1(w). Then
N(s) = QC1(u). For such a vertex, M ′ contains an edge {s, q} for some q ∈ QC1(u) and we
have nothing to do. Thus we focus on a vertex s = {u, w} in S3 with C1(u) ̸= C1(w). Then s

has two clique neighbors Qi and Qj when C1(u) = i and C1(w) = j. That is, N(s) = Qi ∪ Qj .
Now we prove the claim of this lemma by induction on the length of the distance between

Qi and Qj in a connected component of H ′.
The base case is that the distance between Qi and Qj is 2. In this case, there exists

a stick s = {u, w} such that C1(u) = i and C1(w) = j, and M ′ contains one of {s, qi} and
{s, qj} for some vertices qi ∈ Qi and qj ∈ Qj . Without loss of generality, we assume that
M ′ contains {s, qi}. Now, by assumption, we have an unmatched vertex qj in Qj . Then
we can construct an alternating path is (qi, s, qj). In this case, we can replace M ′ with
M ′ ∪ {{s, qj}} \ {{s, qi}}. After replacement, both of |Q′

i| and
∣∣Q′

j

∣∣ are even, and a new pair
{qi, qi′} with qi, qi′ ∈ Q′

i appears and it can be used to add a leg into P3.
We turn to the inductive step: the distance between qi ∈ Qi and qj ∈ Qj is 2k for some

k > 1 (and any pair of qi and qj). In a similar argument, we can assume that {s, qi} is
in M ′ and {s, qj} is not in M ′ for some qj in Qj . Then, we can find a shortest path P of
even length between qi and qj in H ′ when they are in the same connected component in
H ′. Since M ′ is a maximum matching, P is an alternating path and we can replace M ′ with
M ′ ⊕ P. After replacement, we can see that |Q′

i| and
∣∣Q′

j

∣∣ are even, and any other clique
Qk appearing on P does not change the parity of |Qk|. Therefore, a new pair {qi, qi′} with
qi, qi′ ∈ Q′

i appears again and it can be used to add a leg into P3.
When Qi and Qj are not in a connected component of H ′, it is trivial to see that we

cannot make any alternating path joining two vertices in Qi and Qj , which completes the
proof. ◀(of Lemma 7)

By Lemma 7, repeating the process, we eventually maximize
∑c

i=2 ⌊|Q′
i|/2⌋ for the

maximum matching M ′. When this maximum value
∑c

i=2 ⌊|Q′
i|/2⌋ is at least |P3|, we can

construct a desired matching M , which gives us a solution of the matching-match puzzle.
On the other hand, when the maximum value is less than |P3|, this case is not feasible.

The correctness of the algorithm follows with properties of the matroid. Using the standard
technique for finding a maximum matching in a bipartite graph based on alternating paths
(see, e.g., [5]), the algorithm can be performed in a polynomial time. ◀

Careful case analysis leads us to the following corollary:

▶ Corollary 8. For a given instance (G, S, c, C0, C1), the matching-match puzzle can be solved
in polynomial time when G is a spider with legs of length at most 2, and C0(v) = 0 for all
v ∈ V .

5 Concluding Remarks

In this paper, we introduced and investigated the matching-match puzzle in general form. It
is based on a commercial product puzzle which can be modeled as a variant of the graph
coloring problems in a natural way.
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In the puzzle, the numbers of vertices and edges in the graph and the number of colors
are variables and it is NP-complete even if the graph is quite restricted. In the proof of
NP-completeness, the number of the colors is linear to the number of the vertices. It may be a
reasonable assumption that the number of the colors is bounded above by a constant (in fact,
the commercial product has 4 colors). For example, a natural brute force algorithm allows
us to solve the matching-match puzzle on a k-partite complete graph G = (V1, V2, . . . , Vk, E)
in O

(
c(c+n)k(c−1)

(c!)k

)
time. It is another open problem that the puzzle is fixed-parameter

tractable with respect to the number of colors. That is, is there an algorithm that runs in
O(f(c) · poly(n)) for some graph classes of graphs of n vertices with c color, where poly(n) is
a polynomial function and f(c) is a computable function?

A natural extension of Corollary 8 is the case that some vertices of a spider G of legs of
length at most 2 are pre-colored additional to the body. We consider our polynomial-time
algorithm can be extended to this case, however, case-analysis is quite complicated. (We

note that it can be solved in O

(
(c(c+n)c2

)
(c!)c

)
time by a brute force algorithm.) It is unlikely

that there exists a simple polynomial-time algorithm for solving this case. Based on this
fact, we conjecture that the matching-match puzzle is NP-complete if G is a spider with legs
of length at most 3, which is another open problem.
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Advanced Spikes ‘n’ Stuff: An NP-Hard Puzzle
Game in Which All Tutorials Are Efficiently
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Abstract
We adjust Alan Hazelden’s 2017 polynomial time solvable puzzle game Spikes ‘n’ Stuff: We obtain
the NP-complete puzzle game Advanced Spikes ‘n’ Stuff with 3 trap types so that each strict subset
of the traps results in a polynomial time solvable puzzle game. We think of this as a “hard game in
which all tutorial levels are easy”. The polynomial time algorithms for solving the tutorial games
turn out to be quite different to each other.

While numerous papers analyze the complexity of games and which game objects make a game
NP-hard, our paper is the first to study a game where the NP-hardness can only be achieved by a
combination of all game objects, assuming P differs from NP.
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1 Motivation

By a tutorial for a game we mean the game with some of its parts removed. The exact notion
of what constitutes a “removable part” of a game is arbitrary, but for many games there
are natural choices. For games such as Alan Hazelden’s 2017 puzzle game Spikes ‘n’ Stuff
[1], where the player navigates through a maze with different types of traps, the natural
removable parts are the different types of traps. In a very similar manner, natural tutorials
have been investigated for example in [9], where the removable parts are the interactive
objects (which are not necessarily traps) in a level of the computer game Portal. One main
observation in [9] is that many of the interactive objects in Portal are NP-hard on their
own, i.e., in these cases the tutorial in which only one type of interactive object is present is
already NP-hard. We list many more such examples from the literature in Section 3.

The original Spikes ‘n’ Stuff game is a turn-based game that is solvable in polynomial
time (in the size of the level), because each level only has a state space of polynomially
bounded size. We adjust this game slightly so that we get the NP-hard game Advanced
Spikes ‘n’ Stuff, which is a game that is polynomial-time solvable if levels contain only two
of the three traps, see Figure 1. The main technical difficulty that we overcome in this paper
is that at least one trap type has to result in a superpolynomially large state space, but this
trap type is not allowed to make the game NP-hard on its own or combined with any one of
the other two trap types. This is the first NP-hard game that we know for which all tutorials
are solvable in polynomial time.

Note that artificial NP-hard “games” in which all tutorials are easy can readily be created
for example as follows (with two removable “game” parts instead of three): The game is to
solve a 3SAT instance, and the two removable parts are negation of variables and disjunction.
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NP-C P

P
P

P

P
P

spike trap

horizontal crossbow

vertical crossbow

Figure 1 If all three trap types in Advanced Spikes ‘n’ Stuff are present, the game is NP-complete.
Otherwise it is solvable in polynomial time.

While 3SAT is NP-complete, if we remove the negation of variables, the problem becomes
trivial, whereas when we remove disjunctions, then all clauses have length 1, which also
trivializes the problem.

Our point is that Advanced Spikes ‘n’ Stuff is only a slight variation of the fun game
Spikes ‘n’ Stuff, and therefore our techniques (or refinements thereof) may have implications
on actual game design approaches in the future. As a first insight, we can say that the fact
that all tutorials are easier to solve than the complete game forces the player to rethink their
strategies (that they have developed while playing through tutorial levels) when playing the
complete game. Forcing the player to re-think established assumptions is usually a desirable
property in puzzle games.

2 Advanced Spikes ‘n’ Stuff

Advanced Spikes ‘n’ Stuff is a turn-based single player puzzle game where the goal is to
move an agent from the start position to the finish position through a maze without the
agent getting killed by traps. The game is played on a square grid of tiles. Every tile is
either walkable without a spike trap, or walkable with a spike trap, or a wall, or a horizontal
crossbow trap (facing left or right), or a vertical crossbow trap (facing up or down). Each
trap has an internal state, where spike traps have three states 0, 1, 2, vertical crossbows have
two states 0, 1, and horizontal crossbows have six states 0, 1, . . . , 5. The state 0 is called the
idle state. In addition to this state, every vertical crossbow is either functional or deactivated.
Horizontal crossbows count as always functional. We define the range of a crossbow to be the
set of tiles in a direct line in front of the crossbow up to the next unwalkable tile. Figure 2
depicts an example level of Advanced Spikes ‘n’ Stuff.

On each turn, first the agent must move either horizontally or vertically from its tile p

to an adjacent walkable tile q. The direction is chosen by the player. If q is a state 1 spike
trap or q is in the range of a functional state 1 crossbow, then the agent dies and the player
loses the game. Traps in other states do not harm the agent. At this point, if the player
hasn’t lost yet, all traps that are not in their idle state or deactivated advance their state by
1, coming back to their idle state after their maximal state is reached. If p is a spike trap,
then now that spike trap’s state is set to 1. If q is in the range of an idle functional crossbow
trap, the crossbow trap’s state is now set to 1. If q is left or right of a vertical crossbow trap,
that crossbow trap is set to deactivated and its state is set to 0. At this point, the turn ends
and the player must now make the next choice in which direction to move.
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The light gray coloured tiles are the walls, and the darker
coloured tiles are the walkable tiles. The start position is
the tile at the top-left of the level, and the finish position
is the tile at the bottom-right. The agent takes the form
of a person and can be seen near the goal position. Each
spike trap state is shown in this level. The spike trap
immediately above the agent is in state 1 and the one
immediately above that is in state 2. All other spike
traps in the level are in state 0. Similarly all states of
the horizontal crossbow trap are present. The crossbow
adjacent to the player is in state 1. Going up from
this position, the crossbows are in states 2,3,4 and 5
respectively, with the one at the very top being idle (in
state 0). Two vertical crossbows are also in this level; the
red one is functional and the blue one is deactivated. The
notion of the range of a crossbow is also highlighted in this
level using the horizontal crossbow towards the bottom.
The walkable tiles with small gold squares are precisely
those tiles which are in the range of this crossbow. These
gold squares are hidden from the player during the game,
and are merely used here for illustrative purposes.

Figure 2 Sample level of Advanced Spikes ‘n’ Stuff.

A game state of this turn-based game consists of the start and finish positions and the
tile arrangement (which do not change throughout the game), the agent’s position, the states
of all traps, and the functional/deactivated flag of all vertical crossbow traps. The game
starts with all traps in their idle state and all vertical crossbows functional. For the sake of
simplicity, we assume that

the start tile is not in range of any crossbow trap and the tiles adjacent to the start
tile are not spike traps, and (1)

the tiles left and right to of vertical crossbow traps and their adjacent tiles are not
spike traps, and they are not in range of a horizontal crossbow trap. (2)

Formally, we consider the problem ASnS(S) of deciding given an Advanced Spikes ‘n’
Stuff level satisfying (1) and (2) whether or not the player can move the agent from the start
tile to the finish tile without the agent dying by traps. The parameter S is a subset of the
set of symbols {h, s, v}, where s ∈ S indicates that the levels can have spike traps, h ∈ S

indicates that the levels can have horizontal crossbow traps, and v ∈ S indicates that the
level can have vertical crossbow traps.

▶ Theorem 2.1 (Main Theorem). ASnS({h, s, v}) is NP-complete, but ASnS(S) ∈ P for all
strict subsets S ⫋ {h, s, v}.

Theorem 2.1 is illustrated in Figure 1. Since a game cannot get harder if possible game
pieces are removed, the results ASnS({h}) ∈ P, ASnS({s}) ∈ P, ASnS({v}) ∈ P are direct
corollaries from ASnS({h, s}) ∈ P, ASnS({s, v}) ∈ P.

We prove ASnS({h, s}) ∈ P in Corollary 4.3, ASnS({v, s}) ∈ P in §5, and ASnS({h, v}) ∈ P
in §6, interestingly with different proof strategies: While ASnS({h, s}) ∈ P follows from
the polynomially bounded state space, the argument for ASnS({v, s}) ∈ P partitions the
exponentially large state space into polynomially large pieces and greedily traverses poly-
nomially many pieces, and ASnS({h, v}) ∈ P uses the same strategy, but with a more
involved argument, because in the presence of horizontal crossbow traps, the agent cannot
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safely traverse a safe walk in the reverse direction (see the discussion in §6). We prove
the NP-completeness of ASnS({h, s, v}) in Theorem 7.3. We use a standard framework for
constructing a polynomial-time reduction from 3SAT to ASnS({h, s, v}), closely based on [3].
Early versions of this framework appear in the hardness proofs for games such as SOKOBAN
[10] and PushPush [8], but it has since been refined, as can be seen in the papers [2] and [7].

The original game Spikes ‘n’ Stuff

In the original Spikes ‘n’ Stuff the horizontal crossbow traps have only 4 states and the
vertical crossbow traps work in the same way as the horizontal crossbows traps (and there
are some other minor changes about arrows hitting each other mid-air and the player pulling
a treasure, which add some twists to the game, but these are not essential, so we do not
discuss them). Therefore, no crossbow trap can be deactivated, which implies that the state
space has polynomially bounded size, see Lemma 4.2. Hence, the original Spikes ‘n’ Stuff
game is solvable in time that is polynomially bounded in the size of the game board, for
example by breadth-first-search in the state space.

3 Related Work

[11] proves various theorems about the complexity of two-dimensional platform games. For
example, a level containing items for the player to collect is, on its own, polynomial-time
solvable, but adding in a time-limit immediately makes it NP-hard. Moreover, platform
games with drops longer than the maximum jump height are already NP-hard.

[13] proves that games where doors can be opened with pressure plates, but not closed,
are in P, but adding the ability to close doors makes that game NP-hard. Similarly, it is
shown that games with buttons that act on only a single door are in P, but games where a
single button may act on two or more doors are NP-hard. Moreover, if a game contains a
feature that forces the player to visit various locations, and there are single-use paths or “toll
roads” (a certain number of a specific item must be collected to pass), that game is NP-hard.

In the game Lemmings, agents can be assigned skills by the player which alter their
behaviour. For example, the Builder skill allows the Lemming to construct a bridge, and the
Digger skill allows the Lemming to dig vertically downwards (see [6], [13] and [14]). One
sensible way of defining a tutorial of Lemmings is to consider the game we get by restricting
the skills we are allowed to give to the agents (and this is indeed how the actual game is set
up). Some of these tutorials where only a single skill can be given to the agents are already
NP-hard (even in simplified models of the game): in [6] hardness is proved using only Digger
skills, and [13] presents a construction that only requires Basher or Miner skills to achieve
hardness.

In [3], we see that even if we consider classic Nintendo games with a subset of their
original features we may still get a game that is NP-hard. The original Super Mario Bros. is
NP-hard with only the following game features: Super Mushrooms to turn Mario into Super
Mario (who can break blocks but cannot fit into narrow horizontal corridors), Goombas to
turn Super Mario back to normal Mario (who can fit into narrow horizontal corridors but
cannot break blocks) vertical drops that are higher than the maximum jump height, and
Stars which provide temporary invulnerability from Firebars. Pokémon is already NP-hard if
it contains nothing other than pushable blocks, and also if pushable blocks are not present
and the only feature used is battles with enemy Trainers (in this second case, the game
is actually NP-complete). Similarly, the original Legend of Zelda is NP-hard even if block
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pushing is the only feature that is kept. In later Zelda games, there are ice blocks. These are
blocks that when pushed, slide until they hit an obstruction. It is shown that with just this
feature, the game is in fact PSPACE-complete.

Another platform game is Celeste, where the player navigates through various levels
containing obstacles. The character they control can move in eight directions, and has
the ability to jump, dash and temporarily grab onto walls. The game contains many
different mechanics and types of obstacles, but [2] proves that even if only the following are
present, the game is already NP-hard: platforms that break when stood on, button-operated
doors, and special types of blocks that teleport the player in a straight line. [5] solves the
PSPACE-hardness for several of its tutorials.

[12] explores a tiling problem that is based on the game KPlumber. The input to the
problem is a grid of tiles, with each tile being one of six possible types (O, C, D, S, T, X),
and the goal is to rotate the tiles in order to reach a desired goal state. If the tiles C, D, S

are used, the tutorial is already NP-complete. The same holds for C, S, T . For some subsets
of {O, C, D, S, T, X} the complexity has not been classified.

Another game that has been studied which contains many natural tutorials is Tetris.
Simpler versions of the game can be obtained by, for example, restricting the size of the
gameboard, or the pieces that are available. Some of these simpler versions are proven to be
solvable in polynomial time in [4], some are NP-hard, where the tutorials are distinguished
by board size, piece size, and empty/non-empty initial board state. We have not found any
analysis in the literature about the complexity when the set of tetris pieces is restricted to a
subset.

4 The game states in Advanced Spikes ‘n’ Stuff

In this section we prove ASnS({h, s}) ∈ P.

▶ Definition 4.1. A game state is called tame if at most 2 spike traps are not in the idle
state and at most 12 crossbow traps are not in their idle state.

Note that this definition poses no constraints on the functional/deactivated flags of the
vertical crossbow traps, which means that the set of tame game states can be exponential in
size.

▶ Lemma 4.2. In a game of Advanced Spikes ‘n’ Stuff, only tame game states can be reached.

Proof. During each move the agent can only set one spike trap to state 1. Hence, during a
move only one spike trap can go from state 1 to state 2.

Similarly, during each move the agent can only trigger 2 crossbow traps, which have
6 or 2 states each, and 2 max{2, 6} = 12. ◀

▶ Corollary 4.3. ASnS({h, s}) ∈ P.

Proof. If no vertical crossbow traps are present, then the size of the set of tame game states
is polynomially bounded. By Lemma 4.2 it is sufficient to consider only this space. Hence,
a breadth-first-search in the space of tame game states solves ASnS({h, s}) in polynomial
time. ◀

FUN 2024



18:6 An NP-Hard Puzzle Game in Which All Tutorials Are Efficiently Solvable

5 ASnS({s, v}) ∈ P

We prove that ASnS({s, v}) ∈ P. First, note that

a spike trap kills an agent if and only if the agent moves from the spike trap
to an adjacent tile and immediately back on the next turn.
a functional vertical crossbow trap kills the agent if and only the agent
makes a vertical move within its range.

(3)

Let V denote the set of vertical crossbow traps. For any subset of S ⊆ V of functional
vertical crossbow traps, let RS ⊆ S denote the set of functional vertical crossbow traps the
agent can deactivate when starting at the start tile and making game moves without dying
and without deactivating any other functional vertical crossbow trap. For each fixed S, the
set RS can be determined in polynomial time using the observation in the above two bullet
points, for example by a breadth-first-search in the subset TS of the space of tame game
states that have exactly the vertical crossbows S functional. Note that the size of TS is
polynomially bounded.

The polynomial-time algorithm to solve ASnS({s, v}) initializes S0 := V . Then it loops
the following for i = 0, . . .:
1. If the game can be solved by just traversing game states in TSi , return true.
2. Determine RSi

.
3. If RSi = ∅, return false. Else, pick an arbitrary ri ∈ RSi and define Si+1 = Si \ {ri}

and continue the loop with the next i.
If true is returned, then the solution to the level is by first moving the agent to deactivate
r0, then moving the agent back to the start, then deactivating r1, then moving the agent
back to the start, and so on, until finally traversing the game states in TSi

to the finish tile.
The crucial observation here is that the properties (3) and (2) imply that going back to the
start by tracing the steps backwards will not kill the agent.

If false is returned, then Si is the unique maximal set of functional vertical crossbow
traps that can be reached from the start game state. But in TSi

there is no traversal to a
finish game state. This finishes the proof of ASnS({s, v}) ∈ P.

6 ASnS({h, v}) ∈ P

The proof outline is the same as in §5. The only difference is that once the agent deactivates
a vertical crossbow trap, it might not be possible to trace the same walk back to the start
without being killed, see Figure 3. First, note that the agent gets killed if it makes a vertical
step in the range of a functioning vertical crossbow trap. Now, generalize this observation
from 2 states (vertical crossbow trap) to 6 states (horizontal crossbow trap): the agent can
only make at most 4 successive horizontal moves within the range of a horizontal crossbow
trap without being killed. The following Theorem 6.1 states the “converse”.

▶ Theorem 6.1. If a level has no spike traps, then for a walk w from tile p to tile q that
does not make more than 4 successive horizontal moves within the range of a horizontal
crossbow trap and that does not make a vertical move within the range of a functional vertical
crossbow trap, there exists a walk w′ from p to q such that the agent does not get killed when
traversing w′.

Theorem 6.1 implies ASnS({h, v}) ∈ P as follows. Since the property of w of avoiding 4
successive horizontal moves in ranges of horizontal crossbow traps and avoiding vertical
moves in ranges of vertical crossbow traps is symmetric, traversing w back to the start can
be done safely by replacing it by w′ (where we use the safety assumptions (1) and (2)), which
finishes the proof of ASnS({h, v}) ∈ P.
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Figure 3 The walk (3,4), (3,5), (3,4), (4,4), (5,4), (6,4), (7,4), (7,3), (7,2) can be safely traversed
from the agent’s current position, but attempting to traverse this walk in reverse will cause the
agent to be killed.

Proof of Theorem 6.1. First, observe that the agent cannot be killed by any horizontal
crossbow trap when making a vertical step. The reason is that if a vertical step moves the
agent into the range of a horizontal crossbow trap and the crossbow trap was in state 1
(which would kill the agent), then the agent would have set its state to 1 in the last turn. But
in the last turn the agent was not in the range (otherwise, a vertical step would move the
agent out of the range). Analogously, the agent cannot be killed by a vertical crossbow trap
when making a horizontal step. Hence, in w the player is not killed by a vertical crossbow
trap.

Now, take the walk w and adjust it as follows to obtain w′: Every move in which the
agent enters and not immediately leaves the range of a crossbow trap (this must necessarily
be a horizontal crossbow trap by assumption on w) that is in state i ∈ {0, 2, 3, 4, 5}, the
agent repeatedly takes one step back and then one step forward: once if i = 0, 0 times if
i = 2, 3 times if i ∈ {3, 4}, and 2 times if i = 5. The agent now proceeds traversing w and
enters the range with the crossbow trap in state 2, which immediately moves to state 3. The
agent can now safely make 4 horizontal steps in the range, while the state of the crossbow
trap goes to 4, 5, 0, 1. As discussed before, the new vertical steps cannot get the agent killed
by any horizontal crossbow traps, and clearly not by a vertical crossbow trap. An example
of this construction of w′ is given in Figure 4. ◀

Figure 4 The walk w = ((1, 2), (2, 2), (3, 2), (3, 3), (3, 4), (3, 5), (4, 5), (4, 4), (5, 4), (6, 4), (7, 4),
(8, 4), (8, 5), (9, 5), (9, 6)) will get the agent killed at (7, 4), but the agent survives when using
w′ = ((1, 2), (2, 2), (3, 2), (3, 3), (3, 4), (3, 5), (4, 5), (4, 4), (4,5), (4,4), (4,5), (4,4), (4,5), (4,4),
(5, 4), (6, 4), (7, 4), (8, 4), (8, 5), (9, 5), (9, 6)).

FUN 2024



18:8 An NP-Hard Puzzle Game in Which All Tutorials Are Efficiently Solvable

7 NP-completeness

▶ Theorem 7.1. ASnS({h, s, v}) ∈ NP.

Proof. We prove that every level can be solved in a number of steps that is polynomially
bounded in the level size. This proves the theorem, because the step sequence gives a
polynomially sized witness for the solvability.

Consider an arbitrary level that the player can complete. Since the level is completable,
there exists some walk w that the agent is able to traverse from the start tile to the finish
tile without being killed. Let (d1, d2, . . . , dk) be the sequence of vertical crossbows that the
agent deactivates during w, in chronological order of deactivation. Note that each crossbow
can be deactivated at most once, so k cannot exceed the number of tiles of the level. For
i ∈ {0, 1, . . . , k} let Di denote the set of tame states (see Definition 4.1) in which exactly
the vertical crossbows {d1, . . . , dk} are deactivated. By assumption and by Lemma 4.2 there
exists a path p from the start game state through the space D0 ∪ D1 ∪ · · · ∪ Dk to a finish
game state in which each edge is a game move. Since k is polynomially bounded, and the
cardinality of each Di is polynomially bounded, the length of a shortest path p is polynomially
bounded. Such a path serves as the desired NP witness. ◀

7.1 NP-hardness
The construction uses one-way gadgets (where the agent can only pass through in one
direction), variable gadgets, clause gadgets, and crossover gadgets: one variable gadget for
each variable in the 3SAT instance, and one clause gadget for each clause. Each variable
gadget is connected to its clause gadgets by paths, and also to the next variable gadget, see
Figure 5.

Start

Finish

Variable
x1 ¬x1

Variable
x2 ¬x2

Variable
x3 ¬x3

x1 ¬x1 x2
Clause

x1 ¬x2 x3
Clause

Figure 5 NP-hardness framework: The agent starts at Start and tries to get to Finish, traversing
the edges. Arrows stand for one-way gadgets. Each 4-way intersection must be crossed in a straight
manner. This is ensured by crossover gadgets. Our crossover gadget is not symmetrical and care
must be taken with its placement. Colored edges of the same color belong to the same section.

The one-way gadget is constructed as depicted on the left side in Figure 6. It is easy to
see that a player can traverse this gadget from north to south by entering the range of the
crossbow to set its state to 1, backtracking one step to avoid being hit by the arrow, then
proceeding in the obvious way to the exit, which is at the south. However, if the player tries
to traverse this gadget from the south to the north, they will find themselves in the state
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Figure 6 Left: One-way gadget, only traversable from north to south, not from south to north.
Right: Traversing one-way gadget from south to north results in agent being killed.

depicted in Figure 6 on the right side. This is clearly a losing position: moving west causes
the agent to be killed by the horizontal crossbow trap, and moving south causes them to be
killed by the spike trap.

The solvability of levels is not invariant under rotations, but for each gadget we also have
the gadgets in all four rotations, which is illustrated in Figure 7.

G = G

Figure 7 Constructing a 90◦ rotated version of a gadget G. The depicted gadget G has 1 input
on each side, but this construction obviously works for any number of inputs on any side.

The variable gadget is constructed from one-way gadgets as depicted in Figure 8.

Variable
xi ¬xi

=

Figure 8 The variable gadget consists of three one-way gadgets.

The clause gadget is also easy to build, see Figure 9. There are three entrances at the
north side of the gadget (that correspond to the three literals in the clause that this gadget
is representing). When the agent uses one of these entrances, they can unlock the gadget by
setting a vertical crossbow trap to deactivated. When the agent enters the gadget from the
east, they can traverse it to the west if and only if it is unlocked, i.e., it has been unlocked in
at least one of the northern entrances.

7.2 The Crossover gadget and its placement
The final gadget required for the construction is the crossover gadget, see Figure 10. There
are two paths, which we refer to as the north-south path and the east-west path, which cross
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Figure 9 The clause gadget.

Figure 10 The crossover gadget in its closed state, in the can be opened at north rotation.

at the spike trap in the center. This gadget comes equipped with a state, which is closed if
the vertical crossbow is functional, and open if it is deactivated. The key properties of the
gadget are explained in the following lemma.

▶ Lemma 7.2. If the crossover gadget is closed, then the agent can traverse east to west
and vice versa, and the agent can open the gadget from the north. If the crossover gadget is
open, then the agent can traverse from east or west to any direction, while from the north
and south the agent can only go to the north and south.

Proof. If the gadget is closed and the agent comes from the south, the vertical crossbow trap
will kill the agent. Obviously, the agent can open the gadget from the north by deactivating
the vertical crossbow trap. If the gadget is open and the agent comes from the north or
south, then the horizontal crossbow trap together with the spike traps prevents the agent to
go east or west, but north and south are possible.

Independent of the gadget’s state, the gadget can be traversed east to west or vice versa
by the agent entering the horizontal crossbow’s range, taking one step back, and then moving
across. This also works for moving to the north or south, but only if the gadget is open,
i.e., the vertical crossbow is deactivated. If the gadget is closed, the vertical crossbow is
functional, which prohibits any turning onto the north-south path. ◀
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Recall that the crossover gadget comes in all 4 rotations, see Figure 7. We now show how
this gadget is used in our construction. Recall Figure 5. Where two paths cross, we insert a
crossover gadget in one of the four rotations, but the choice of rotation is not arbitrary.

As seen in Figure 5, we have an ordering x1, x2, . . . , xn on the set of variables in the 3SAT
instance. The edge colors in Figure 5 indicate so-called sections: The i-th section consists
of the two walks wi,0, wi,1 originating from the variable gadget for xi, one corresponding to
setting xi to 0 (false) and the other to setting it to 1 (true): These walks touch all of the
clause gadgets containing the literal they correspond to, and then go to the next variable
gadget. For each intersection of two walks, it will be important from which direction the
walks enter the intersection for the first time when traversed. To place the crossover gadgets,
first consider intersections of walks in different sections: wi,bi , wj,bj for i ̸= j, w.l.o.g. i < j.
We place the crossover gadget so that the vertical crossbow trap is at the place where wj,bj

enters the intersection for the first time when traversed. We claim that the agent can only
first enter the variable gadget 1, then section 1, then the variable gadget 2, then section 2,
and so on, until the agent has to traverse all clause gadgets and reaches the finish tile. This
can be seen as follows. Clearly, the agent has to first enter variable gadget 1 and then
section 1. The placement of the crossover gadgets guarantees that the agent cannot open any
crossover gadget of section 1 with any section j ̸= 1. Therefore, the agent must traverse to
variable gadget 2 and enter section 2. By the same argument, in section 2 the agent cannot
open any crossover gadget of section 2 with any section j > 2. However, the agent can open
the crossover gadgets of section 2 with section 1. But the placement guarantees that the
agent cannot enter section 1 from these crossover gadgets. Therefore, the agent has to enter
variable gadget 3 and section 3, and so on.

When placing crossover gadgets at the intersection of wi,0 and wi,1, we take the orientation
so that the vertical crossbow trap is at the place where wi,0 enters the intersection for the
first time when traversed. This makes sure that if the player chooses xi = 1, then the agent
only ever encounters east-west crossings of crossover gadgets, which means that the agent
cannot open these gadgets and hence cannot traverse east or west, and if the player chooses
xi = 0, then the agent only ever encounters north-south crossings of crossover gadgets, and
hence can open the gadgets, but not traverse east or west.

▶ Theorem 7.3. ASnS{h, s, v} is NP-complete.

Proof. The proof is now obvious. We have seen that in order to reach the finish tile, the
agent must traverse section 1, then section 2, and so on, and choose exactly one Boolean
value for each variable. And after choosing the variable values, the agent can traverse the
clause gadgets if and only if the agent touched each clause gadget. ◀

7.3 Full example
Figure 11 depicts the Advanced Spikes ‘n’ Stuff level built from the 3SAT instance ϕ =
(x1 ∨ ¬x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ x3). Setting each of the variables x1, x2 and x3 to true makes
ϕ evaluate to true. It can be easily verified that if the player makes these choices at the
variable gadgets, they are able to unlock both clause gadgets during their traversal, and are
hence able to complete the level.
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Figure 11 Advanced Spikes ‘n’ Stuff level built from ϕ = (x1 ∨ ¬x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ x3). The
situation is rotated by 90° from Figure 5. The variable gadges are on the west, x1 to x3 from south
to north. A southern traversal sets the variable to true, a northern traversal sets it to false. The
clause gadget for (x1 ∨ ¬x1 ∨ x2) is at the south east, and the clause gadget for (x1 ∨ ¬x2 ∨ x3) is at
the north east.
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Anarchy in the APSP: Algorithm and Hardness for
Incorrect Implementation of Floyd-Warshall
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Abstract
The celebrated Floyd-Warshall algorithm efficiently computes the all-pairs shortest path, and its
simplicity made it a staple in computer science classes. Frequently, students discover a variant of this
Floyd-Warshall algorithm by mixing up the loop order, ending up with the incorrect APSP matrix.
This paper considers a computational problem of computing this incorrect APSP matrix. We will
propose efficient algorithms for this problem and prove that this incorrect variant is APSP-complete.
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1 Introduction

The Floyd-Warshall algorithm computes the all-pairs shortest path (APSP) in a directed
weighted graph [4, 9, 2]. Known in the computer science community for over 60 years,
Floyd-Warshall is still one of the most efficient algorithms for the APSP problem, where
it has a runtime of O(n3) for a graph with n vertices. No algorithms have improved this
runtime by a polynomial factor in general graphs, which motivates the APSP Conjecture by
[10].

Another remarkable characteristic of this algorithm is its simplicity - the standard
implementation of this algorithm is a short triply nested loop, as shown below:

Algorithm 1 The Floyd-Warshall Algorithm (KIJ Algorithm).

A← Adjacency matrix of the graph
Ensure: A[i, i] = 0 for all 1 ≤ i ≤ n

Ensure: G has no negative cycles
for k ← 1, 2, . . . , n do

for i← 1, 2, . . . , n do
for j ← 1, 2, . . . , n do

A[i, j]← min(A[i, j], A[i, k] + A[k, j])

Unfortunately, due to the algorithm being too simple, some students write a variant of
the Floyd-Warshall algorithm, either by mistake or as a deliberate attempt to rectify the
loop order into a natural lexicographic order. 1

1 We are unaware of any publication over this variant except [7], but some Internet forums and even the
lecture material discuss it. Examples are:
https://www.quora.com/Why-is-the-order-of-the-loops-in-Floyd-Warshall-algorithm-important-to-its-
correctness, https://cs.stackexchange.com/questions/9636/why-doesnt-the-floyd-warshall-algorithm-work-if-
i-put-k-in-the-innermost-loop, https://codeforces.com/blog/entry/20882, https://cs.nyu.edu/~siegel/JJ10.
pdf.

© Jaehyun Koo;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Fun with Algorithms (FUN 2024).
Editors: Andrei Z. Broder and Tami Tamir; Article No. 19; pp. 19:1–19:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:koosaga@mit.edu
https://people.csail.mit.edu/koosaga
https://orcid.org/0009-0005-7599-3662
https://doi.org/10.4230/LIPIcs.FUN.2024.19
https://www.quora.com/Why-is-the-order-of-the-loops-in-Floyd-Warshall-algorithm-important-to-its-correctness
https://www.quora.com/Why-is-the-order-of-the-loops-in-Floyd-Warshall-algorithm-important-to-its-correctness
https://cs.stackexchange.com/questions/9636/why-doesnt-the-floyd-warshall-algorithm-work-if-i-put-k-in-the-innermost-loop
https://cs.stackexchange.com/questions/9636/why-doesnt-the-floyd-warshall-algorithm-work-if-i-put-k-in-the-innermost-loop
https://codeforces.com/blog/entry/20882
https://cs.nyu.edu/~siegel/JJ10.pdf
https://cs.nyu.edu/~siegel/JJ10.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


19:2 Algorithm for Incorrect Implementation of Floyd-Warshall

Algorithm 2 The Variant of Floyd-Warshall Algorithm (IJK Algorithm).

A← Adjacency matrix of the graph G

Ensure: A[i, i] = 0 for all 1 ≤ i ≤ n

Ensure: G has no negative cycles
for i← 1, 2, . . . , n do

for j ← 1, 2, . . . , n do
for k ← 1, 2, . . . , n do

A[i, j]← min(A[i, j], A[i, k] + A[k, j])

Algorithm 2 do not compute the correct APSP matrix. For example, let A be the
adjacency matrix, and the M1 and M2 be the resulting matrix computed by Algorithm 1
and Algorithm 2 on A. The following choice of A makes M1[2, 1] and M2[2, 1] different:

A =


0 ∞ ∞ ∞
∞ 0 ∞ 1
1 ∞ 0 ∞
∞ ∞ 1 0

 , M1 =


0 ∞ ∞ ∞
3 0 2 1
1 ∞ 0 ∞
2 ∞ 1 0

 , M2 =


0 ∞ ∞ ∞
∞ 0 2 1
1 ∞ 0 ∞
2 ∞ 1 0


Since Algorithm 2 cannot compute the APSP correctly, it is natural to regard it as a

novice mistake and move on. But we encounter surprisingly nontrivial questions when we try
to understand what’s happening. For example, in a sparse graph with no negative edges, we
can compute the APSP problem using Dijkstra’s algorithm [3] for computing a single-source
shortest path in each vertex. Using the Fibonacci heap from [5] yields an O(nm + n2 log n)
time algorithm for n-vertex, m-edge graphs. Hence, we have an efficient way to obtain the
resulting matrix by Algorithm 1, but for Algorithm 2, despite being a seemingly novice
version, it is unclear how to obtain such matrix efficiently. To this end, we formally define
the Incorrect-APSP problem as follows:

▶ Definition 1 (Incorrect-APSP). Given a weighted graph with n vertices without negative
cycles, compute the matrix returned by Algorithm 2.

We note that calling Algorithm 2 as an incorrect algorithm might be unfair. Indeed,
a recurring theme in art and fashion is to take a seemingly correct version of a piece and
twist it cleverly so that people can find something new from a familiar composition. Even in
theoretical computer science, such attempts are not new: For example, a famous Bogosort [8]
is a sorting algorithm deliberately engineered to perform worse. A more similar example where
people consider a variant of a well-known algorithm also exists [7, 6]. In this way, depending
on the inspiration we drew, we can call the Algorithm 2 as either Improvised-APSP (Jazz
music reference), Punk-APSP (Rock music reference), or Bogo-APSP (Bogosort reference).
However, we will (unfortunately) call the problem Incorrect-APSP to avoid possible
confusion.

A significant inspiration for this work is an arXiv preprint by [7], which considers the
exact problem of Incorrect-APSP . In the preprint, the authors proved that running
Algorithm 2 three times on the given adjacency matrix will compute a correct APSP distance
matrix. In other words, the Incorrect-APSP problem is not entirely incorrect - even if
the student does not know the correct loop order, they can run the algorithm three times
and obtain a correct APSP matrix. While this result itself is funny (who cares about the
loop order if you can just run three times?), it raises an intriguing question about the
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hardness of the Incorrect-APSP problem, as their result implies that Incorrect-APSP
is at least as hard as the APSP problem. In other words, a subcubic implementation of
Incorrect-APSP can imply a breakthrough! So, is this seemingly novice mistake of APSP
made the problem strictly harder? Or can we find a subcubic reduction to prove that the
Incorrect-APSP problem is equivalent to the APSP problem?

1.1 Our Results
Our results in this paper are the following:

▶ Theorem 2. Given a weighted graph with n vertices and m edges, we can solve the
Incorrect-APSP in O(nTSSSP (n, m)) time, where TSSSP (n, m) is the time to execute a
single-source shortest path (SSSP) algorithm in a graph with n vertices and m edges.

▶ Theorem 3. Incorrect-APSP is subcubic equivalent to APSP.

Theorem 2 concerns a notable special case where n iteration of single-source shortest
path (SSSP) algorithm is known to outperform the Floyd-Warshall algorithm on the APSP
problem. For the Incorrect-APSP problem, it is unclear whether it can be optimized using
the SSSP-based approach. We show this is possible and present an algorithm matching the
APSP problem’s corresponding bounds. Note that the current record for the SSSP algorithm
is TSSSP (n, m) = O(m log2 n log(nM) log log n) ([1]). Under the assumption where G do not
contain negative weight edges, TSSSP (n, m) = O(n log n + m) ([5]).

Theorem 3 implies that both Incorrect-APSP and APSP have a subcubic algorithm
or both do not, meaning that we have a new member in the list of APSP-complete problems
where the subcubic solution to any of them implies a breakthrough.

1.2 Organization of our paper
In Section 2, we list the definitions and carefully formalize Algorithm 2 in graph theoretic
notions. In Section 3, we prove that the Incorrect-APSP problem is equivalent to the
path minimization problem with certain constraints. In Section 4, we prove Theorem 2 by
solving the path minimization problem by combining single-source shortest path problem
and dynamic programming. In Section 5, we prove Theorem 3 by devising an algorithm that
solves the Incorrect-APSP in subcubic time under the subcubic APSP oracle.

2 Preliminaries

2.1 Notations
For integers i and j, we use [i, j] to denote the set {i, i + 1, . . . , j}. Let G = (V, E, w) be
a weighted directed graph, where V = [1, n] is the set of vertices, E ∈ V × V is a set of
edges where an element (i, j) ∈ E represents a directed edge from vertex i to vertex j, and
w : E → [−M, M ] is the weight function of edges. As we represent vertices as integers, we
can say that a vertex is smaller or larger than the other vertex by comparing the integer.
We heavily rely on such notation, as our algorithm iterates V in the order of these integers.

We can use another representation for the directed weighted graphs if we do not rely on
the graph’s sparsity. For a graph G = (V, E, w) with V = [1, n], an adjacency matrix A(G)
of G is a n× n matrix such that:

A(G)[i, j] =


0 if i = j

w(i, j) if i ̸= j, (i, j) ∈ E

∞ otherwise
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Note that A(G)[i, j] may not accurately represent G if it has negative-weight loops, but
this is not a problem since we will invoke Algorithm 1 or Algorithm 2 only if G has no
negative cycles. Here, ∞ is an element where ∞+ x =∞ holds for all x ∈ [−M, M ].

2.2 Definitions
Algorithm 1 and Algorithm 2 both try to recognize certain kinds of paths in a graph: Starting
from the paths with at most one edge, it tries to build up a new paths that is a concatenation
of two paths. Here, we will formalize it so that we can view it as a minimization problem
over certain types of paths. In Section 3, we will argue that there is a simple characterization
of paths realized by Algorithm 2.

We formally define a concept of path realization, a generic description of paths realized
by the algorithms above.

▶ Definition 4. A path P = {p0, p1, . . . , pm} is realized by a sequence of 3-tuple
T = {(i1, j1, k1), (i2, j2, k2), . . . , (il, jl, kl)}, if and only if m ≤ 1, or there exists a pair of
integer d, x such that:

1 ≤ d ≤ l

1 ≤ x ≤ m− 1
(id, jd, kd) = (p0, pm, px)
{p0, p1, . . . , px} is realized by {(i1, j1, k1), (i2, j2, k2), . . . , (id−1, jd−1, kd−1)}.
{px, px+1, . . . , pm} is realized by {(i1, j1, k1), (i2, j2, k2), . . . , (id−1, jd−1, kd−1)}.

We list some immediate corollaries that can be shown by structural induction on Defini-
tion 4. While the corollaries themselves are somewhat trivial, they help us to organize our
theorems in a purely mathematical way.

▶ Corollary 5. Let Tkij(n) be a sequence of length n3 consisting of 3-tuples, where the
an2 + bn + c + 1-th element in the sequence is (b + 1, c + 1, a + 1) for all 0 ≤ a, b, c ≤ n− 1.
Given a n× n adjacency matrix of G, where G has no negative cycle, Algorithm 1 will return
a matrix M , where M [i, j] is the minimum total weight of all simple paths from i to j that is
realized by Tkij(n).

Proof. It suffices to prove the statement for all paths, as the graph does not contain any
negative cycles, and we can turn any non-simple paths into simple paths without increasing
their total length.

For any path from i to j realized by T (n), M [i, j] is at most the weight of such paths.
Note that the triple nested loop in Algorithm 1 exactly iterates the list Tkij(n) and performs a
relaxation operation of A[i, j] = min(A[i, j], A[i, k]+A[k, j]) for each 3-tuple (i, j, k) ∈ Tkij(n).
Hence, we can show this by induction over Definition 4. Specifically, we can prove the following:
For all path P of length k realized by a sequence of 3-tuples of length l, M [i, j] is always at
most the weight of P after applying the relaxation operation for first l elements of Tijk(n).
Then, we can apply induction over (k, l).

Conversely, we can also prove that, for any 1 ≤ i, j ≤ n, there exists a path of weight
at most M [i, j], which is realized by T (n), which also follows the identical induction as
above. ◀

▶ Corollary 6. Let Tijk(n) be a sequence of length n3 consisting of 3-tuples, where the
an2 + bn + c + 1-th element in the sequence is (a + 1, b + 1, c + 1) for all 0 ≤ a, b, c ≤ n− 1.
Given a n× n adjacency matrix of G, where G has no negative cycle, Algorithm 2 will return
a matrix M , where M [i, j] is the minimum total weight of all simple paths from i to j that is
realized by Tijk(n).
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Proof. You can proceed identically as in Corollary 5. ◀

The following provides some characterizations of paths that we will use in the later stage
of the paper.

▶ Definition 7. A path P = {p0, p1, . . . , pk} with k ≥ 1 is increasing if for all 1 ≤ i ≤ k it
holds that pi−1 < pi.

▶ Definition 8. A path P = {p0, p1, . . . , pk} with k ≥ 1 is decreasing if for all 1 ≤ i ≤ k it
holds that pi−1 > pi.

▶ Definition 9. A path P = {p0, p1, . . . , pk} with k ≥ 1 is valley if for all 1 ≤ i ≤ k − 1 it
holds that pi ≤ min(p0, pk).

▶ Definition 10. A path P = {p0, p1, . . . , pk} with k ≥ 1 is proper if there is no index
1 ≤ i ≤ k − 2 such that pi > min(p0, pk) and pi+1 > min(p0, pk).

3 Main Theorem

The main theorem of our paper is as follows:

▶ Theorem 11. In a graph with n vertices, a nonempty simple path P = {p0, p1, . . . , pk} is
realized by Tijk(n) if and only if one of the following holds:

p0 < pk, and there exists an index 0 ≤ i ≤ k such that {p0, p1, . . . , pi} is proper,
{pi, pi+1, . . . , pk} is increasing, and pi ≥ p0.
p0 > pk, and there exists an index 0 ≤ i ≤ k such that {p0, p1, . . . , pi} is decreasing,
{pi, pi+1, . . . , pk} is proper, and pi ≥ pk.
By combining Theorem 11 with Corollary 6, we can yield an explicit characterization for

the output of Algorithm 2.

▶ Corollary 12. Given a n × n adjacency matrix of G where G has no negative cycle,
Algorithm 2 will return a matrix M , where M [i, j] is:

If i < j, the minimum possible total weight of a path P = {p0 = i, p1, . . . , pk = j} such
that there exists an index 0 ≤ x ≤ k such that {p0, p1, . . . , px} is proper, {px, px+1, . . . , pk}
is increasing, and px ≥ p0.
If i = j, 0.
if i > j, the minimum possible total weight of a path P = {p0 = i, p1, . . . , pk = j} such
that {p0, p1, . . . , px} is decreasing, {px, px+1, . . . , pk} is proper, and px ≥ p0.

Proof. By Corollary 6, Algorithm 2 returns a matrix where M [i, j] is the minimum total
weight of all simple paths from i to j realized by Tijk(n), which is of above form by
Theorem 11. ◀

3.1 High-level ideas
Before proceeding to the proof of Theorem 11, let’s play with several examples to motivate
intuition. Recall the standard proof of Algorithm 1, where one proves the following lemma
by the induction on t:

▶ Lemma 13 (Key lemma of [4]). For all 0 ≤ t ≤ n, a path P = {p0, p1, . . . , pk} is realized
by the tn2-length prefix of Tkij(n) if and only if pi ≤ t for all 1 ≤ i ≤ k − 1.
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This proof strategy surely does not work for Algorithm 2, but it does work identically for
the specific type of path, which we define as a valley path:

▶ Definition 9. A path P = {p0, p1, . . . , pk} with k ≥ 1 is valley if for all 1 ≤ i ≤ k − 1 it
holds that pi ≤ min(p0, pk).

However, while all valley paths are realized by Tijk(n), this is still not an exhaustive
characterization. Consider the path P = {3, 101, 1, 102, 2}, which is not a valley path but is
realized by Tijk(n) as the subsequence {(1, 2, 102), (3, 1, 101), (3, 2, 1)} of Tijk(n) can realize
P . The reason is that the algorithm can glue some large vertices into P before it starts to
realize the valley path. For this specific counterexample, one can observe that these large
vertices should be adjacent to small vertices to get glued inside a valley path, which motivates
the definition of a proper path.

▶ Definition 10. A path P = {p0, p1, . . . , pk} with k ≥ 1 is proper if there is no index
1 ≤ i ≤ k − 2 such that pi > min(p0, pk) and pi+1 > min(p0, pk).

With some modification of proofs in Lemma 13, we can see that all proper paths are
realized by Tijk(n). However, this definition is slightly strict: For example, the path
P = {1, 2, 3, 4} is realized by {(1, 3, 2), (1, 4, 3)} but does not fit in a definition of valley path.
More generally, we can append any increasing paths in the back of the proper path and
prepend any decreasing paths in the front of the proper path. By addressing these cases, we
do reach an appropriate characterization of paths realized by Tijk(n), that fits nicely to the
inductive argument given in the proof of Theorem 11.

3.2 Proof of the Main Theorem
▶ Theorem 11. In a graph with n vertices, a nonempty simple path P = {p0, p1, . . . , pk} is
realized by Tijk(n) if and only if one of the following holds:

p0 < pk, and there exists an index 0 ≤ i ≤ k such that {p0, p1, . . . , pi} is proper,
{pi, pi+1, . . . , pk} is increasing, and pi ≥ p0.
p0 > pk, and there exists an index 0 ≤ i ≤ k such that {p0, p1, . . . , pi} is decreasing,
{pi, pi+1, . . . , pk} is proper, and pi ≥ pk.

Proof (←). Let n be the number of vertices, and let Tijk(n, i, j) be the prefix of Tijk(n) up
to and including the element (i, j, n).

We first show that all proper paths from i to j are realized by Tijk(n, i, j). We perform an
induction over (i, j). Consider a proper path P = {p0, p1, . . . , pk}, and assume that there is
no index 1 ≤ i ≤ k − 1 such that pi ≤ min(p0, pk). Then, since there could be no two entries
with pi > min(p0, pk), it holds that k ≤ 2, and we are done. Otherwise, take the maximum px

such that px < min(p0, pk). By maximality, both {p0, p1, . . . , px} and {px, px+1, . . . , pk} are
proper paths, and by inductive hypothesis, they are realized in Tijk(p0, px) and Tijk(px, pk).
Hence, by Definition 4, P is realized.

As P = {p0, p1, . . . , pk} from p0 to pk are realized by Tijk(n, p0, pk), we can
see {p0, p1, . . . , pk, x} are realized by Tijk(n, p0, x) for any x > pk, and similarly,
{x, p0, p1, . . . , pk} are realized by Tijk(n, x, pk) for any x > p0. Using this fact, we can
use a similar induction to prove that we can append an increasing path in the back or a
decreasing path in the front. ◀

Proof (→). We use the induction on the length l of the prefix of Tijk(n) to show that the
path realized by a length-l prefix of T (n) is always in one of such patterns. This claim is
true for l = 0. Assume l ≥ 1 and let (i, j, k) be the last element of T (n). Note that we can
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assume i ̸= j, j ̸= k, k ̸= i, since if one of them holds, we have no new realized paths or a
non-simple path.

We list all possible cases and show we can always find such patterns. Here, we use ∗ to
denote that any index from 1 to n can be there.

i < j, k < i: We consider a path in a form of i → (decreasing) → (proper) → k →
(proper)→ (increasing)→ j. Let z be the first vertex in the increasing part of this path,
where i ≤ z (as i < j such vertex exists). The path between i to z is proper, and the
path between z to j is increasing.
i < j, i < k < j: All entries of (k, j, ∗) are not in the current prefix, so the only path
from k to j realized now is the trivial path {k, j}. We can append this in the increasing
part of our path.
i < j, j < k: All entries of (i, k, ∗) and (k, j, ∗) are not in the current prefix, so the path
we consider is exactly {i, k, j} which is proper.
j < i, k < j: We consider a path in a form of i → (decreasing) → (proper) → k →
(proper)→ (increasing)→ j. Let z be the last vertex in the decreasing part of this path,
where j ≤ z (as j < i such vertex exists). The path between i to z is decreasing, and the
path between z to j is proper.
j < i, j < k < i: All entries of (i, k, ∗) are not in the current prefix, so the only path
from i to k realized now is the trivial path {i, k}. We can prepend this in the decreasing
part of our path.
j < i, i < k: All entries of (i, k, ∗) and (k, j, ∗) are not in the current prefix, so the path
we consider is exactly {i, k, j} which is proper. ◀

4 Algorithm for Incorrect-APSP Problem

In this section, we prove the following theorem:

▶ Theorem 2. Given a weighted graph with n vertices and m edges, we can solve the
Incorrect-APSP in O(nTSSSP (n, m)) time, where TSSSP (n, m) is the time to execute a
single-source shortest path (SSSP) algorithm in a graph with n vertices and m edges.

For this, we will try to solve the optimization problem described in Corollary 12. Here, it
is useful to observe the following:

▶ Observation 14. Let rev(P ) be the reverse of the path. A path P is realized by Tijk(n) if
and only if rev(P ) is realized by Tijk(n).

Proof. If P satisfies the property from Theorem 11, the reverse also satisfies the property
from Theorem 11. ◀

By Observation 14, it suffices to find M [i, j] for all i < j, as the other case can be solved
by reversing all edges and repeating the same algorithm.

We will fix i and devise an algorithm that computes M [i, j] for all j ≥ i. To start, we
find a minimum-length proper path to all j. By the description in Corollary 12, we only
need to compute the proper path ending in j ≥ i. By Definition 10, a path is proper if it
does not contain two adjacent vertices px, px+1 of index greater than min(i, j) unless one of
the vertices is the last vertex of the path.

Since we have min(i, j) = i, this is equivalent to not using an edge where both endpoints
have an index greater than i, except where the edge is the last on the path. As we
fixed i, we can apply SSSP algorithm on G where edges with endpoints greater than i

are removed. Let ProperExceptLast[j] be the distance from i to j on such graph.
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Then, for the last move, we simulate the move for all vertex. Specifically, we initialize
Proper[j] = ProperExceptLast[j] for all 1 ≤ j ≤ n, and for all edge (u, v) ∈ E, we set
Proper[v] = min(Proper[v], ProperExceptLast[u]+w(u→ v)). In the end, Proper[j]
holds the shortest proper path from i to j for all j ≥ i.

Finally, we may need to append the increasing path at the back of each proper path. We
can use dynamic programming as the increasing path consists of edges headed to the larger
indexed vertex. For computing the M [i, j], we have two choices:

Assume px = pk and simply take the shortest proper path from i to j.
Otherwise, we pick an edge (k → j) and use the edge as a final edge in the optimal path.
Here, k < j should hold, and there should be an edge (k, j) ∈ E. The remaining path
from i to k is a proper path appended with an increasing path computed by M [i, k].

In Algorithm 3, we present a pseudocode of the above algorithm.

Algorithm 3 Computing M [i, j] for fixed i, all j ≥ i.

G′ = (G without edges where both vertices have index greater than i)
Proper = SSSP(G′, i)
ProperExceptLast = Proper
for (u, v) ∈ E do

Proper[v] = min(Proper[v], ProperExceptLast[u] + w(u→ v)).
for j ← i, i + 1, . . . , n do

M [i, j] = Proper[j]
for k incident to j do

if i ≤ k < j then
M [i, j] = min(M [i, j], M [i, k] + w(k → j))

As all procedures except the SSSP use O(n + m) computation, the algorithm’s running
time is dominated by the SSSP, which leads to the runtime of O(nTSSSP (n, m)).

5 Subcubic equivalence between APSP and Incorrect-APSP

In this section, we will prove Theorem 3. For a computational problem A, B, we say A ≤3 B

if there is a subcubic reduction from A to B as in [10]. The following result is known:

▶ Theorem 15 (Theorem 1 of [7]). APSP ≤3 Incorrect-APSP.

In the first subsection, we will recite the proof of Theorem 15 from [7]. We emphasize
that this is not our original contribution: Our goal is to make this paper self-contained and
to rephrase the statement of [7] in terms of subcubic reduction.

In the second subsection, we complement Theorem 15 by proving the following theorem,
hence closing the gap:

▶ Theorem 16. Incorrect-APSP ≤3 APSP.

Given that Theorem 16 and Theorem 15 are true, the proof of Theorem 3 follows by
definition of subcubic equivalence in [10].

▶ Theorem 3. Incorrect-APSP is subcubic equivalent to APSP.
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5.1 Proof of Theorem 15
▶ Lemma 17. Let T i be a sequence T repeated for i times and P be any simple path in a
graph with n vertices. (Tijk(n))3 realizes P .

Proof. Given a path P = {p0, p1, . . . , pk}, let m be an integer in [0, k] where pm = maxk
i=0 pi.

We call pi a skyscraper, if it satisfies the following:
i < m, and there exists no j < i such that pj > pi.
i = m.
i > m, and there exists no j > i such that pj > pi.

It is helpful to observe that p0 and pk are always a skyscraper.
Let 0 = i0 < i1 < . . . < ij = m < ij+1 < . . . < il = k be a list of indices where pis

is a
skyscraper for all 0 ≤ s ≤ l. For all 1 ≤ s ≤ l, it holds that the subpath pis−1 , pis−1+1, . . . , pis

is proper - in fact, there can’t be even a single vertex with value larger than min(pis−1 , pis
)

since that will add such vertex into a list of skyscraper, contradicting our assumption that
is−1 and is are adjacent. By Theorem 11, we can see that the subpath pis−1 , pis−1+1, . . . , pis

is realized by (Tijk(n))1.
Next, we will prove that both subpath p0, p1, . . . , pm and pm, pm+1, . . . , pk are realized

in (Tijk(n))2. Given that all subpaths between pis−1 and pis
are realized in (Tijk(n))1, the

remaining skyscrapers are either increasing or decreasing according to its relative location per
pm. The statement holds as we can realize the increasing and decreasing path by Theorem 11.

Finally, to realize P in (Tijk(n))3, we need (p0, pk, pm) in Tijk(n) which we definitely
have. ◀

▶ Theorem 15 (Theorem 1 of [7]). APSP ≤3 Incorrect-APSP.

Proof. By Definition 3.1 in [10], it suffices to design a subcubic algorithm for APSP which
calls the oracle to compute Incorrect-APSP for an n×n matrix, at most a polylogarithmic
times.

We take an input graph, construct an adjacency matrix, call Incorrect-APSP, call
Incorrect-APSP again in the returned matrix, call Incorrect-APSP again in the
returned matrix, and return the output of Incorrect-APSP. This algorithm calls an oracle
for 3 times and runs in quadratic time, which satisfies all requirements to be a subcubic
reduction. The correctness follows by Lemma 17. ◀

5.2 Proof of Theorem 16
Let A⊙B be a min-plus matrix product of two n×n matrix A and B. The following lemma
shows that we can convert a proper path minimization into a valley path minimization
problem. Note that the definition of G2 is equivalent to the usual definition of graph powers,
defined as a power of adjacency matrix (here, the multiplication operator is ⊙).

▶ Lemma 18. Given a graph G, A proper path of G from i to j with weight w exists if and
only if a valley path of G2 from i to j with weight w exists. Here, G2 is a complete directed
graph on the same set of vertices with G, where the weight of the edge from i to j is the
minimum weight path from i to j using at most 2 edges.

Proof. Every proper path of G translates to a valley path of G2, as all vertices that are
not i, j and have an index at most min(i, j) are either adjacent in the path or have at most
one intermediate vertex in the path. Conversely, given a valley path of G2, we can turn
it into a path in G by replacing an edge with two edges and a vertex. Those new are the
only vertex that can violate the pi ≤ min(p0, pk) condition, but they are not adjacent by
construction. ◀
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We will devise an algorithm that uses subcubic oracle for APSP-complete problems to
compute the resulting matrix M [i, j]. Note that we will only demonstrate how to compute
M [i, j] for i ≤ j - as in Observation 14, we can compute the opposite part by computing
the transpose of A(G) in quadratic time and running the same algorithm. We use the result
from [10] that APSP and min-plus matrix multiplication are subcubic equivalent.

Let’s first find a matrix for minimum proper paths in G, which by Lemma 18 is equivalent
to minimum valley paths in G2. Let Vl[i, j] be a minimum weight of the valley path from i

to j, which includes all valley paths with at most 2l edges. Note that this definition includes
all valley paths with ≤ 2l edges, but it is not limited to such valley paths - it is, however,
limited to valley paths. Here, V0 = A(G2) = A(G)2, and we can compute this using min-plus
matrix multiplication.

To compute the entry Vl[i, j], we fix the vertex k in the middle of the (imaginary) path
P . As k is in the middle of P , and since P has at most 2l edges, the path to the left and the
right of k has at most 2l−1 edges.

Let’s say a valley path from i to j is ascending if i < j and descending otherwise. The
path to the left of k can be divided into a block of descending paths, and the path to the
right of k can be divided into a block of ascending paths. To see this, consider all vertex v

such that the subpath from v to k does not have any vertex greater than v, which we refer
to as a skyscraper. Then, for each adjacent skyscraper, the subpath they form is a valley, as
otherwise, we find a skyscraper in between them.

Conversely, it’s easy to see that a concatenation of ascending valley paths, followed by
descending valley paths, forms a valley path. Hence, a valley path of at most 2l edges is
equivalent to a sequence of descending and ascending valley paths, each with at most 2l−1

edges.
The minimum path from i to j that is a sequence of descending valley paths of at most

2l−1 edges, can be computed with the APSP oracle: We can provide an adjacency matrix of
Vl−1[i, j], where all entries with i < j are overwritten to ∞. Conversely, we can compute the
sequence of ascending paths with the APSP oracle by overwriting Vl−1[i, j] with I > j to ∞.
Then, we can combine those two patterns by a single min-plus matrix multiplication.

Finally, we need to append an increasing path in the back of the path. By supplementing
the adjacency matrix of G where we overwrite all entries with i > j to ∞, we can compute
the increasing path of minimum cost for all pairs using an APSP oracle. We can obtain the
desired answer by multiplying this with the valley path matrix.

In Algorithm 4, we present a pseudocode of the above algorithm.
As we make at most O(log n) calls to the subcubic oracles, Algorithm 4 is subcubic, which

proves Theorem 16.
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Algorithm 4 Computing M [i, j] for all 1 ≤ i ≤ j ≤ n.

Ensure: A⊙B is subcubic
Ensure: APSP (G) is subcubic

V0 = A(G)⊙A(G)
for l← 1, 2, . . . , ⌈log2 n⌉ do

DescendingValley = Vl−1
AscendingValley = Vl−1
for i← 1, 2, . . . , n do

for j ← 1, 2, . . . , n do
if i < j then

DescendingValley[i, j] =∞
else if i > j then

AscendingValley[i, j] =∞
Vl = APSP (DescendingValley)⊙APSP (AscendingValley)

Valley = V⌈log2 n⌉
G′ = (G with edges u→ v such that u < v)
Answer = Valley⊙APSP (A(G′))
for i← 1, 2, . . . , n do

for j ← 1, 2, . . . , n do
if i ≤ j then

M [i, j] = Answer[i, j]
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Abstract
In 1883, Lewis Carrol wrote a newspaper article to criticize how the second best player was determined
in a tennis tournament, and to suggest how such a task could be done correctly. This article has
been taken by Donald Knuth as the inspiration for efficiently determining the smallest t elements of
a totally ordered set of size n using k-comparisons. In the ensuing research, optimal algorithms for
some low values of k and t have been established, by Knuth and Aigner; for k = 2 and t ≤ 3, a few
new bounds have been established for special values of n. Surprisingly, very little else is known on
this problem, in spite of its illustrious pedigree and its relationship to other classical problems (e.g.,
selection and sorting with k-sorters). Enticed by the undeniable beauty of the problem, and the
obvious promise of fun, we have joined the investigative quest. The purpose of this paper is to share
some new results obtained so far. We are glad to report advances in two directions.
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1 Introduction

Lewis Carrol, the poet, mathematician, photographer, and beloved author of Alice’s Ad-
ventures in Wonderland, was also known to be a tennis enthusiast and to have followed
many important matches. He did observe that, in the single-elimination tournaments usually
adopted for tennis matches, the selection of the winner was fair while that of the runner-up
was not [4]. Indeed, in this type of tournaments, the player defeated in the final match is
declared second, with the implicit meaning of “second best in the tournament”, while s/he is
the true second only with a probability close to half. If, for instance, the true second belongs
to the same part of the board as the champion, s/he does not have any possibility to emerge.
Lewis Carrol also explained with an example how to determine the true second and third,
without however specifying a real algorithm [4]; furthermore, his proposal required a high
number of matches, most of which are actually not needed for this determination. A well
known presentation and discussion of Lewis Carroll’s proposal has been provided by Donald
Knuth [5].

In the game of tennis a match involves two players; in general, the problem of determining
the ranking of the players in tournaments can be formulated as the following combinat-
orial problem: given a set of n elements and a comparison operation on k elements (k
-comparison) that returns the linear ordering of them, we want to calculate the number of
k-comparisons needed to find the top t elements. We shall call this problem t-TopFinding
in k-TrackRacing (t-T-k-T); see Figure 1.
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20:2 Variations on the Tournament Problem

Let C(n, k, t), with t < n, be the number of k-comparisons of an algorithm that determines
the first t elements among n (upper bound), and let S(n, k, t) be the minimum number of
k-comparisons required to solve the problem (lower bound). For k = 2 and t = n the problem
corresponds to traditional sorting with binary comparisons. Optimal algorithms for some
low values of k and t have been established by Knuth [5] and, a decade later, by Aigner [1],
namely:

▶ Fact 1 ([5]).

C(n, 2, 1) = S(n, 2, 1) = n − 1
C(n, 2, 2) = S(n, 2, 2) = n + ⌈log2 n⌉ − 2

S(n, k, 1) = ⌈n − 1
k − 1 ⌉

▶ Fact 2 ([1]). Let n = 2s + r, where 0 ≤ r ≤ 2s−1. Then

C(n, 2, 3) = S(n, 2, 3) =


(n − 3) + ⌈log2 n⌉ if r = 0,
(n − 3) + ⌈log2 n⌉ + 1 if 1 ≤ r ≤ 2s−2,
(n − 3) + ⌈log2 n⌉ + 2 otherwise.

For k = 2 and t ≤ 3, a few new bounds have been established for special values of n [6, 3].
Surprisingly, very little else is known on this problem, in spite of its relationship to classical
problems of selection and sorting (see the nice review by Iványi and Fogarasi [8]) especially
using k-comparators (called k-sorters, e.g. [2, 9])

Enticed by the noble pedigree of the problem, the undeniable beauty of the challenge,
and the obvious promise of fun, we have started to examine t-T-k-T. The purpose of this
paper is to share some new results obtained so far. We are glad to report advances in two
directions.

In Section 2 of this paper we discuss our study of the problem, for any value of n and
k, when t = 2. We show that a standard two-phases tournament can be improved when
(n − 1)/(k − 1) is not an integer, and find a new lower bound S(n, k, 2) that matches the
upper bound C(n, k, 2) for all values of n.

In Section 3 we take a different approach which has so far received little attention. We
consider the k-comparison problem in a parallel setting, where the most significant function to
consider is the number R(n, k, t, p) of rounds played in parallel by a certain number of groups
of k competitors, where p is now the maximum number of available facilities (racetracks, or
tennis courts, or football fields, etc.). For minimum R we then minimize C(n, k, t, ). We
study the problem thoroughly for k and t up to three, conjecturing what happens for larger
values.

Figure 1 A horse race: a real life instance of t-T-k-T.
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2 Winner and runner-up using k comparisons

2.1 An introductory example
Consider n horses running on a track of k lanes, among which we want to establish the first
t = 2 with minimal number of races. After a race, a linear ordering is established among
the k horses on the track, based only on the finishing order (race time is not considered).
For n = 25 and k = 5 lanes in a track, we can find the winner and runner-up by applying
an immediate generalization of the 2-phases known tournament algorithm for k = 2. In the
first phase, the horses are divided into n/k = 5 groups of five horses each, and each group
runs in a race corresponding to a 5-comparison. Then the five winners run in a final race to
establish the champion, with a total of six races. The second phase takes place with a second
tournament between all the horses who were beaten directly (i.e. in the same race) by the
champion and ranked second in that race. Since there are five such horses, one additional
race is sufficient to award the second place, for a total of sevens races.

2.2 The upper bound
Let us review what is known on C(n, k, 2) for arbitrary values of n and k, and propose a
non-standard tournament organization by which the value of C(n, k, 2) can be lowered for
particular pairs n, k.

As stated in Fact 1, ⌈ n−1
k−1 ⌉ k-comparisons are needed in general to establish the top

element. In a standard two-phases tournament for arbitrary k, the top-element appears
in ⌈logkn⌉ k-comparisons, from which ⌈logkn⌉ elements are ranked as a possible second
and additional ⌈⌈(logkn⌉ − 1)/(k − 1)⌉ k-comparisons are used to establish the real second
one. As we have seen in the introductory example above, for n = 25 and k = 5 we have
⌈logkn⌉ = 2, ⌈⌈logkn⌉ − 1/(k − 1)⌉ = 1, and a further k-comparison is sufficient to award
second place. Therefore for a standard two-phases tournament we have:

▶ Fact 3. C(n, k, 2) = ⌈(n − 1)/(k − 1)⌉ + ⌈(⌈logkn⌉ − 1)/(k − 1)⌉ .

This upper bound is tight if (n − 1) mod (k − 1) = 0. However, should (n − 1) and (k − 1)
be coprime, in a k-comparison of the first phase, not all k entry points are needed; these
“free” entry points could be used to partially contribute to the second phase where the second
element is determined.

For example, for n = 27 and k = 5 we perform ⌈n − 1/(k − 1)⌉ = 7 comparisons for the
top-element, but one of them has two not exploited entry points that can be used in the
search for the second element. As shown in Figure 2, we can re-organize the initial phase
of a tournament on n = 27 elements, postponing the last of the seven 5-comparisons where
the winner of the first twenty-five elements is compared to elements number 26 and 27, to
include the elements x and y that must compete for the second place. So the total number of
k-comparisons is seven instead of eight, as we would get from Fact 3 if a standard two-phases
algorithm is applied.

We now transform the above considerations into a precise algorithmic form, and we
establish an upper bound for C(n, 2, 2) and any value of n and k with n > k.

Let r = (n − 1)mod(k − 1); then the number p of entry points of a k-comparison left
free in the first tournament is p = 0 if r = 0, p = k − r − 1 otherwise. Let n′ = ⌈logkn⌉; let
n′′ = n′ − p − 1 if n′ > p, n′′ = 0 otherwise.

If r ̸= 0 and n′ ≤ p, the free entry points of the first phase can absorb all the remaining
elements among which the second element has to be determined. This is the case of the
latter example where n = 27, k = 5, ⌈logkn⌉ = 3, r = 2, and the selection of the first and
second element can be performed in a single phase. We have:
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1    2    3                      x        c     ….                                                                                    25        26   27

C y

c

x             y

Figure 2 Tournament for n = 27 and k = 5. The selection of the first and second element can be
accomplished in the first phase. The last comparison includes elements 26, 27, x and y. x is the second in
the first k-comparison of the champion c, and y is the second in the second comparison of c.

▶ Theorem 1. Let n > k ≥ 2. Then

C(n, k, 2) =
{

⌈(n − 1)/(k − 1)⌉ + ⌈(n′ − 1)/(k − 1)⌉ if r = 0,
⌈(n − 1)/(k − 1)⌉ + ⌈n′′/(k − 1)⌉ otherwise.

Proof. Case r = 0 is known. If r ̸= 0 run the first tournament with n + p elements with
⌈(n − 1)/(k − 1)⌉ comparisons. If n′ ≤ p + 1, then n′′ = 0 and no other comparisons is
needed. Otherwise, n′′ = n′ − p − 1 and a second tournament is run with n − p elements. ◀

2.3 The lower bound
We now show a matching lower bound S(n, k, 2) for determining the first and second elements,
recalling the definition of r and p of the previous section. .

▶ Theorem 2. Let n > k ≥ 2. Then S(n, k, 2) = C(n, k, 2).

Proof. First of all, note that for k = 2 the lower bound is the known formula S(n, 2, 2) =
n + ⌈log2 n⌉ − 2 (see Fact 1). Note that this formula has been proved by [5] selecting the
second, once the first has been found. We follow the same approach.
Further note that, for r ̸= 0 and p = 0, upper and lower bounds match.

Let k > 2; we shall consider the cases r = 0 and 0 < r < k, separately.

Case r = 0.
First observe that ⌈(n − 1)/(k − 1)⌉ is the necessary number of k-comparisons for the selection
of the top element. Let us then determine the minimal number of additional k-comparisons
required to determine the second element. In order to do so, we need not to include any
comparison among elements whose relation can be derived, by transitivity, from previous
k-comparisons. In order to minimize the number of elements ordered by transitivity, it is
sufficient to impose the following balancing rule: if, in a k-comparison, it results that xj is
less than xl, 1 ≤ j ̸= l ≤ k, then the number of elements already known to be less than xj ,
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are less or equal than the number of elements already known to be less or equal than xl.
Let us now define as L(i) the maximum number of elements established to be less than the
champion after i k-comparisons; this knowledge can be acquired either directly, because the
elements are compared with the top one in a k-comparisons, or by the transitive property.
From the balancing rule, we have the following recursive definition:

L(i) =
{

k − 1 if i = 1
kL(i − 1) + k − 1 otherwise

whose closed formula is L(i) = ki − 1.
Since the elements less than the champion are n − 1, there exists a î such that L(̂i) =

kî − 1 = n − 1. The value î = ⌈logkn⌉ represents the number of k-comparisons done by
the champion to win the competition. The second element has to be established among
all the elements classified at the second place in a direct k-comparison with the cham-
pion, whose number is precisely î. Therefore the second element cannot be determined in
less than ⌈⌈(logkn⌉ − 1)/(k − 1)⌉ additional comparisons, for a total of ⌈(n − 1)/(k − 1)⌉ +
⌈(n′ − 1)/(k − 1)⌉.

Case 0 < r < k.
In this case, exactly p = k − r − 1 entry points are empty and can be exploited to com-
pare elements to determine the second element. If n′ − 1 ≤ p, all these elements can be
accommodated in the empty entry points and the second element can be selected directly in
the block of comparisons needed to establish the first element. However, if n′ > p, at least
n′′ = n′ − p − 1 elements require a second phase, requiring an additional ⌈(n′′ − 1)/(k − 1)⌉
k-comparisons, fora total of ⌈(n − 1)/(k − 1)⌉ + ⌈n′′/(k − 1)⌉. ◀

Let consider, for instance, the case n = 47 k = 4. We have n′ = 3. According
to the theorem we have S(47, 4, 2) = ⌈46/3⌉ + ⌈(3 − 2 − 1)/3⌉ = 16. Computing the
two phases separatedy we would have been obtained a number of comparisons equal to:
⌈47/3⌉ + ⌈(3 − 1)/3⌉ = 16 + 1 = 17.
It is very easy to modify the tournament algorithm of Sec.2 in a way that the case that
the approximation ⌈(n − 1)/(k − 1)⌉ is not exact is also considered, in order to obtain a
matching upper bound.

3 t-T-k-T in parallel

Everything we have discussed so far reflects a standard computing approach. Let us now
look at the problem from a slightly different point of view, that is, the various operations
required may take very different times to be executed. In particular this is the case of sports
competitions such as horse racing, tennis tournaments, final stages of football championships,
where comparisons of indexes such as those appearing in while or do instructions needed
for deciding the order of the events take incomparably less time than the comparison in
if A[i] > A[j], where A[i] and A[j] are two players competing in the game.

In fact the complexity of most sorting and searching algorithms is evaluated in order of
magnitude by counting the number of comparisons between elements of the dataset, and
this is due to the observation that the number of all other operations is of the same order as
those, and each of them requires time comparable to the others. Instead we will now evaluate
the number of single sports matches because they dominate the overall time. In particular
we consider the k-comparison problem in a parallel setting, where a new function to consider
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is the number R(n, k, t, p) of rounds played in parallel by a certain number of groups of k

competitors, where p is a new parameter representing the maximum number of available
facilities (racetracks, or tennis courts, or football fields). Our primary goal is minimizing the
number R of rounds (e.g. days) the tournament lasts, imagining that each competitor can
play a maximum of one game per day. For minimum R we then minimize the total number
C(n, k, t) of comparisons made (e.g., for better conservation of the facilities). As you shall
see, we study the problem in full for k and t up to three, leaving as a conjecturing what
happens for larger values.

Note that the k-comparison problem was discussed in depth in the literature without any
real attention to parallel processing. This aspect was considered in [10] in a much wider
context, evaluating the time complexity in order of magnitude as a function of n and p instead
of counting the exact number comparisons and rounds as we do. And then it was discussed
in [7], with focus on the overhead communication time for different kinds of interconnection
networks. Our approach is completely different. Let’s start with some clarifications on what
was said in the previous sections.

The results of Fact 1 are valid for any value p ≥ 1. Another result implicitly discussed in
the previous section must be better specified, namely:

▶ Fact 4. R(n, k, 1, p) = ⌈logk n⌉ is an upper and a lower bound of R for p ≥ n/k.

Note that the upper bound in Fact 4 is demonstrated directly by referring to the standard
tournament algorithm (see the proof of Theorem 2), and the lower bound is also proved by
equivalent reasoning although this is generally not underlined. In fact, for k = 2 the adversary
model used in the proof implies that in an optimal algorithm with n − 1 comparisons, when
the final winner f is engaged in a new comparison with another competitor g the following
must happen. If f and g have already been recognised as superior to other participants of
sets F and G respectively, f wins the comparison with g only if |F | ≥ |G| and F ∩ G = Φ.
Then the computation must proceed essentially as in a tournament or equivalent, where f

and g are the temporary winners of two independent sub-problems solved on disjoint subsets
of participants. This reasoning can be immediately extended to k > 2 where an optimal
algorithm requires ⌈ n−1

k−1 ⌉ k-comparisons to find the winner f , and when this is engaged in
any k-comparison with k − 1 competitors all of them must be top elements of disjoint subsets
of cardinality less or equal the one of f .

From now on we will assume that n is a power of k without affecting the core of the
problem. In fact we can add fictitious competitors who, by default, would lose all matches
with the others, until reaching a number of competitors equal to the next power of k. This
does not affect Fact 4 where the integer approximation is no more needed. For p < n/k,
instead, the bound of Fact 4 must be increased because it will not be possible to execute in
parallel all the comparisons due in certain rounds. As an example we limit the calculation of
these bounds to k = 2 as it is not particularly interesting.

▶ Fact 5. For n = 2q, and for 2i ≤ p < 2i+1 with 0 ≤ i ≤ q − 1, R(n, 2, 1, p) = 2q−i + i − 1
is an upper bound of R.

Proof. Consider the tournament algorithm, where some rounds are divided into several
consecutive sub-rounds if needed.
(1) The two limit cases i = 0 and i = q − 1 are immediate. For i = 0 we have 20 ≤ p < 21 and
R(n, 2, 1, 1) = 2q − 1, in fact only one comparison can be made in each round. For i = q − 1
we have 2q−1 ≤ p < 2q and R(n, 2, 1, 1) = q, so that the log2 n rounds indicated in Fact 4
are executed.
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(2) For a generic value of i with 0 < i < q − 1, some rounds of the tournament must be
performed as a sequence of sub-rounds. In fact, the 2q−1, 2q−2, . . . , 2i+1 comparisons needed
in rounds 1, 2, . . . , q − i − 1, must be divided into 2q−1−i, 2q−2−i, . . . , 21 sub-rounds played in
the p = 2i facilities. The total number of these sub-rounds is 2q−i − 2, to which the number
q − (q − i − 1) = i + 1 of undivided rounds must be added, and the bound 2q−i + i − 1
follows. ◀

For example, for n = 25 and 22 ≤ p < 23 we have i = 2 hence R(25, 2, 1, 22) = 23+2−1 = 9.
Giving a matching lower bound is open.

We now study the best way to determine in parallel the first elements of the game for the
values n = 2q, k = 2, p ≥ n/2, and t=2 (for t = 1 the problem is solved in Fact 3), and for
n = 3q, k = 3, p ≥ n/3, and t = 3. We give bounds on the function R, and then on C when
the former are satisfied. Then the solution for k > 3 and t > 3 is discussed as a conjecture.

3.1 The case k=2
We start computing R(n, 2, 2, n/2) and then C(n, 2, 2), for n = 2q. Based on the considerations
made above on the proof of Fact 4 we will use a parallel tournament to calculate the winner,
adding new comparisons in different rounds to calculate the second too. Recall that in a
binary tree representing a tournament, the vertices in each round (i.e. level of the tree) are
labelled with match winners who are known at the end of the matches, so the results cannot
be used before the next round. We have:

▶ Theorem 3. R(n, 2, 2, n/2) = log2 n + 1 is an upper and a lower bound of R, for n power
of two.

Proof. (i) Upper bound. Based on the inductive application of the following reasoning.
Consider the section of a tournament shown in figure 3-above (solid edges) where s is possible
final winner, as it will be known after the comparison between p and s is made in round
ri+2. At round ri+1, n, m are the possible candidates for the second position, where m is
the maximum element among the ones in the sub-tournanent leaded by p int round ri. A
symmetric situation holds for the pair t, q in the sub-tournament lead by s in the round ri+1.
Comparisons n vs m and t vs q can be made in round ri+2 along with p vs s, and these three
results will be usable from round rii+3 onwards.

The same situation now occurs for the element s which is the winner of the round ri+2,
and will compete in the round ri+3 for the final victory with the winner of another section
of the tournament not shown. The looser p at level ri+2, and the maximum element in the
sub-tournament lead by s in round ri+1, will compete for second position. In the example
provided, such a maximum element is q, as determined with the comparison q vs t in the
round ri+2. Note that the comparison n vs m in the round ri+2 is actually useless, but this
was not predictable in that round where the outcome of s vs p was not known.

To see how our algorithm works, refer to figure 3-below. Rounds r1 and r2 are like the
ones of a standard tournament for the winner (t = 1). Starting to round r3 a subset of
competitors are compared to determine the final winner, and for each of these comparisons,
two more comparisons are created to determine the final runner-up as shown in the figure.
The basis of the induction is shown in the first three rounds, where the runner-up competitors
in each sub-tournament of round r3 are the pairs of elements defeated by the current winner
in rounds r1 and r2.

As usual the winner is decided in round rlog2 n (r4 in the example). In the same round
two more comparisons are made to decide the two candidates for second place which, is
decided in the next round rlog2 n+1. Note that in each round the number of comparisons is
less than or equal to p = n/2 (see the next corollary).
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(ii) Lower bound. To prove that log2 +1 rounds are needed note that, as we said before, the
winner can be determined in log2 n rounds only using a standard tournament or equivalent
algorithm. Two candidates x, y for the first position are compared in the last round, and all
others are divided into two subsets X, Y where so far no element of one has been compared
directly or indirectly with an element of the other. Clearly the loser between x and y, say
x, can be the runner-up, but to make this decision x must be compared to at least one
element of Y , say z, since no element of Y except y has ever been compared to the elements
of X. However the x vs z comparison cannot be done before knowing that x lost to y, so an
additional round is required after the comparison x vs y. ◀

From the algorithm reported in Theorem 3 (i) we have with simple calculations:

▶ Corollary 4. If the first and the second elements are determined in log2 n + 1 rounds,
C(n, 2, 2) = 3n/2 − 2 is an upper bound of C, for n power of two.

Note that the upper bound of Corollary 4 is higher than that of Fact 1, due to the
requirement to proceed with a minimum number of parallel rounds. Finding a corresponding
lower bound is an open problem.

Figure 3 Above: Section of a scoreboard (solid edges). s is a possible winner. n, m and q, t are the
pairs for a possible runner-up before the comparison between p and s is made. Below: Scoreboard of a
tournament of 5 rounds for 24 competitors. f is the winner, and j is the runner-up.

For p = n/2 the comparisons required in each round of the algorithm in Theorem 3 are
done in the round itself. Since it is not possible to select some participants to engage in
further comparisons before the results of the current round are known, it is not necessary
to allow p > n/2 parallel comparisons. For p < n/2, however, the initial rounds must be
divided into parts and a new value for R must be determined as done in Fact 3. Let’s leave
out the boring and uninteresting calculations involved.

3.2 The case k=3 and beyond
We now compute R(n, 3, 3, n/3) and then C(n, 3, 3), for n = 3q. Again we use a parallel
tournament to calculate the winner, adding new comparisons in different rounds to calculate
the second and the third too. For better understanding, in the scoreboard the vertices in
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each round will be labeled x − y − z according to the resulting order in the comparison
among x, y, z (in particular the winner is shown in bold). Again this order is known at the
end of the comparison, so the result cannot be used before the next round. The proof of the
following theorem is an extension of the one given for Theorem 3. We have:

▶ Theorem 5. R(n, 3, 3, n/3) = log3 n + 2 is an upper and a lower bound of R, for n power
of three.

Proof. (i) Upper bound. Consider the section of a tournament shown in figure 3-above. In
each round the comparisons for the possible first, second, and third final elements are shown
with thick-solid lines, thin-solid lines, and dashed lines, respectively. First turn your attention
to the participants a to i in the left section of the figure. Once the result d − a − g of round
ri+1 is known, the candidates for the final second and third positions are limited to e − a and
f − b − g respectively, and these two comparisons are scheduled for round ri+2, where they
will be carried out together with the comparison among d, z, j for the first place. This last
comparison produces the ordering z − d − j, so now d can be at most the second finisher and
will be considered for this position in the next round ri+3, competing with v which emerges
as possible second from the section of the tournament led by z in the previous round ri+1.

The second position occupied by d in round ri+2 also has an important consequence on the
competition for the third place. Indeed, the possible second e now becomes a possible third,
and will compete with x and j which similarly emerge from the section of the tournament
led by z in the round ri+1. Note that no element in the tournament section led by j in round
ri+1, except j itself, can now compete for second or third position because j was third in
the comparison z − d − j in round ri+2. Furthermore, the possible third f that emerged
in round ri+2 in the comparison f − b − g is now abandoned, and that comparison has no
further consequences.

All in all, in each round rj≥i+1, for each comparison for the first position, there is one
comparison for the second position and one for the third position in the round rj+1. The
winner is decided in round rlog3 n. In the same round four more comparisons are made, two
of which to decide the two candidates for second place, and the other two to decide the three
candidates for the third place. The holders of the second and third place will be respectively
determined in the rounds rlog3 n+1 and rlog3 n+2 as shown in figure 4-below. Note that in each
round the number of comparisons is less than or equal to p = n/3 (see the next corollary).

(ii) Lower bound. As in the proof of theorem 3, note that log3 n rounds are needed for
determining the winner (Fact 4), and this may happen only using a tournament or equivalent
algorithm. Refer to figure 3. In the round rlog3 n three candidates a, b, c remain for the
first position and are compared in this round. All the others are divided into three subsets
A, B, C where so far no element of one has been compared directly or indirectly with an
element of the others. Suppose the comparison for first place results in b − a − c. Then b is
the final winner, and the second place can be assigned to a or to at least one element, say v,
belonging to B. Note that v cannot belong to C, as c was third in the comparison with b

and a and all elements of C are inferior to c. So at least one comparison, say a − v, must be
made in the round rlog3 n + 1 to assign second place. Clearly the winner a in this comparison
is the second of the tournament and the loser v may be the third, but in this round there
is at least another competitor for third place, coming from one of the three sections of the
tournament led by a, b, and c in the round rlog3 n. So another round rlog3 n+2 is needed to
award the third place. ◀
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From the algorithm reported in Theorem 5 we have:

▶ Corollary 6. If the first, second, and third elements are determined in log3 n + 1 rounds,
C(n, 3, 3) = 13n/18 + 1/2 is an upper bound of C, for n power of three.

Finding a corresponding lower bound for C(n, 3, 3) is an open problem.

We can now speculate on competitions with k-ary comparisons, with k > 3. We believe
that the algorithm presented in the upper-bound of the Theorems 3 and 5 can be immediately
extended, adding comparisons from the third round onwards. In particular, adding binary,
ternary, . . . k-ary comparisons in each round to determine the candidates for the second, third,
. . . k-th place. Since the proof would probably be long and tedious, we pose the following:

Strong Conjecture. R(n, t, t, n/t) = logt n + t − 1 is an upper and a lower bound of R, for
n power of t.

Figure 4 Above: Section of a scoreboard for 3q competitors. Thick-solid, thin-solid, and dashed lines
indicate comparisons for the first, second, and third place respectively. Below: The final three rounds.
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Golden Egg by Romi – https://www.smwcentral.net/?p=section&a=details&id=4645
Reggie! by the NSMBW Community – https://github.com/NSMBW-Community/
Reggie-Updated
CoinKiller by Arisotura – https://github.com/Arisotura/CoinKiller
Miyamoto by aboood40091 – https://github.com/aboood40091/Miyamoto
BizHawk by TASEmulators – https://github.com/TASEmulators/BizHawk
Mesenrta by threecreepio – https://github.com/threecreepio/mesenrta
Mesenrta-s by threecreepio – https://github.com/threecreepio/mesenrta-s
mGBA by endrift – https://mgba.io/
Dolphin by the Dolphin Emulator Project – https://dolphin-emu.org/
Citra by Citra Team – https://citra-emu.org/
Cemu by Team Cemu – https://cemu.info/

1 Introduction

At FUN 2016, Demaine, Viglietta, and Williams [3] proved that it is PSPACE-hard to
complete a level in Super Mario Bros., when the game is generalized to an arbitrary level
size, screen size, number of on-screen enemies, and (exponentially large) time limit. (They
also considered versions with bounded screen size, where off-screen enemies reset, but this
makes the game substantially easier.) But Super Mario Bros. is just the first game in a
venerable series of Super Mario platforming video games. Consequently, that paper ended
with an open problem about other games:

Finally, we suspect that our proofs can be adapted to the many Super Mario Bros.
sequels, but this remains to be explored. [3]

In this paper, we explore these sequels, analyzing the complexity of all fifteen 2D Super
Mario platform video games released to date. Table 1 summarizes our results, most of which
are PSPACE-hardness. Previously, no other PSPACE-hardness results were known, though
four of the games we prove PSPACE-hard were known to be NP-hard from an earlier FUN
2014 paper [1].

Our PSPACE-hardness reductions all involve building “door gadgets”, a technique first
used to prove PSPACE-completeness of Lemmings [6] and then Super Mario Bros. [3]. An
open-close door gadget is a constant-size piece of a level that can be in two states, open
or closed, and has three possible traversal paths: the open path allows the player to change
the state to open, the close path forces the player to change the state to closed, and the
traverse path can be traversed only when the door is open.

These original applications also required a “crossover gadget” to enable non-interacting
crossing tunnels for the player to traverse. At FUN 2020, however, Ani et al. [2] showed
that (in most cases) just a door gadget suffices, and crossovers are unnecessary. They also
introduced two other types of doors – self-closing doors and symmetric self-closing doors –
each of which alone suffices to prove PSPACE-completeness. They also applied this doors
framework to prove that all 3D Mario games released to date are PSPACE-hard.2

In this paper, we apply the doors framework of [2] to prove PSPACE-hardness of thirteen
more 2D Mario games. Several of these doors (presented in Section 3) are variations of
the open-close door gadget from Super Mario Bros. [3], but even so, they require careful

2 Since the paper appeared, one more 3D Mario game has been released: Bowser’s Fury (as part of Super
Mario 3D World + Bowser’s Fury). But this game has the same mechanics as Super Mario 3D World,
in particular switchboards, so their PSPACE-hardness proof applies.

https://www.smwcentral.net/?p=section&a=details&id=4645
https://github.com/NSMBW-Community/Reggie-Updated
https://github.com/NSMBW-Community/Reggie-Updated
https://github.com/Arisotura/CoinKiller
https://github.com/aboood40091/Miyamoto
https://github.com/TASEmulators/BizHawk
https://github.com/threecreepio/mesenrta
https://github.com/threecreepio/mesenrta-s
https://mgba.io/
https://dolphin-emu.org/
https://citra-emu.org/
https://cemu.info/
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Table 1 New and known results for all sixteen 2D Mario platform games, in order of release date.

Year Game Lower Bound Ref Previous Bound
1985 Super Mario Bros. PSPACE-hard [3] NP-hard [1]
1986 Super Mario Bros.: The Lost Levels PSPACE-hard Thm. 1 NP-hard [1]
1988 Super Mario Bros. 2 PSPACE-hard Thm. 12 NP-hard [1]
1988 Super Mario Bros. 3 PSPACE-hard Thm. 2 NP-hard [1]
1989 Super Mario Land NP-hard Thm. 13
1990 Super Mario World PSPACE-hard Thm. 4 NP-hard [1]
1992 Super Mario Land 2: 6 Golden Coins PSPACE-hard Thm. 9
1995 Super Mario World 2: Yoshi’s Island PSPACE-hard Thm. 10
2006 New Super Mario Bros. PSPACE-hard Thm. 11
2009 New Super Mario Bros. Wii PSPACE-hard Thm. 11
2012 New Super Mario Bros. 2 PSPACE-hard Thm. 11
2012 New Super Mario Bros. U PSPACE-hard Thm. 11
2015 Super Mario Maker (all four styles) PSPACE-hard Thm. 5
2016 Super Mario Run NP-hard Thm. 14
2019 Super Mario Maker 2 (all five styles) PSPACE-hard Thm. 7
2023 Super Mario Bros. Wonder PSPACE-hard Thm. 8

adjustments and checking because each game (except one) adds some mechanics while
removing other mechanics from Super Mario Bros. In one case, Super Mario Bros. 2, the
open-close door we construct (in Section 6) is completely different and quite complicated.
For other games, we build self-closing doors (in Section 4) or symmetric self-closing doors (in
Section 5).

For two 2D Mario games, Super Mario Land and Super Mario Run, we have not yet
succeeded in building any door gadget. But we can at least prove only NP-hardness of these
games (in Section 7), following the SAT framework first used to prove Super Mario Bros.
NP-hard [1].

Our PSPACE-hardness results leave open which Mario games are in PSPACE and which
are harder. Specifically, membership in PSPACE would hold if we polynomially bounded the
maximum number of on-screen enemies or the maximum number of enemies at each screen
position. This claim was made for Super Mario Bros. in [3]. But even Super Mario Bros. has
an infinite source of enemies (if we remove the bound on enemies): Lakitu periodically spawns
spinies. Many other Mario games have pipes that periodically spawn items or enemies. In
some cases, these mechanics can be used to prove RE-completeness and thus undecidability;
we explore this direction in a companion paper [4].

2 Generalized Mario

For each Mario game that we analyze, we make sure to only use blocks, enemies, objects,
and other elements that appear in that game as released. We also make no changes to the
physics or other interactions between the player and game elements.

However, actual Mario video games place several constraints on level sizes, number of
onscreen enemies, and other parameters. For the purposes of analyzing complexity, we define
generalized versions of each game with the following properties:

No arbitrary limits on the level width, level height, and numbers of objects and events.
Exponentially long time limits, or no time limit whatsoever (as in Super Mario Bros. 2
and Super Mario Bros. Wonder).
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Arbitrarily large screen size, as large as the entire level. One exception is Super Mario
Bros. 2, which remembers necessary offscreen state, so we do not generalize in this case;
see Section 6.

For simplicity, we use the original name of each game to refer to the generalized version. In
all of these games, we restrict to a single player using a single input device unless otherwise
stated.

2.1 Forbidding Powerups
A key defining feature of Mario games is powerups, such as the mushroom which makes
Mario grow in size and allows him to take damage once without dying. Powerups can break
many of the gadgets presented in this paper. For this reason, we want to assume that Mario
comes into each level without a powerup and never collects one, unless we explicitly say
otherwise. One way of doing this is to simply build a Mario game which features no powerups.
However, in the interest of only caring about solvability of a single level, we should assume
that Mario might be able to come into the level with a powerup. We can handle this by
starting each level with a powerup and forcing Mario to take damage, e.g., by having to walk
over a long row of spikes/munchers or through an enemy. Henceforth, in all of our gadgets,
we will assume Mario begins in the non-powered state.

2.2 Playtesting
The majority of the gadgets featured here have been tested in the physics of the original games,
by modifying those games with community-built level editors (see the Acknowledgments
for details). You can watch videos of the gadgets in action, under both correct use and
attempted misuse, on YouTube.3 To try these levels out yourself, you can download playable
level files from GitHub.4 Given game hardware constraints and software limits in the released
versions of these games, the gadgets may be modified slightly from what we present in the
paper.

2.3 Reachability with Doors
In this paper, we reduce from a known PSPACE-complete problem called “reachability with
planar door gadgets” [2], which we now describe.

The specific door gadgets used in this paper are the open-close door, self-closing door,
and symmetric self-closing door, as shown in Figure 1. Each of these door gadgets has two
states: open and closed. The (optional-open) open-close door consists of a traversal path
(blue), a close path (red), and an optional open path (green). Traversing the close path forces
the door into the closed state. Traversing the open path puts the door into the open state,
but as the entrance and exit location of the open path are the same, the player can freely
decide whether to open the door or not. The traversal path can be traversed by the player
only when the door is in the open state. The (optional-open) self-closing door consists of
a traversal path, which forces the door into the closed state when traversed, and an optional
open path which opens the door. A symmetric self-closing door consists of two traversal
paths. Traversing the top path is possible only when the door is open, and it forces the door
to become closed; while traversing the bottom path is possible only when the door is closed,
and it forces the door to open.

3 https://www.youtube.com/playlist?list=PLCZQ5yzonfsaxrs9jZ41pgMvK4nRHSTXh
4 https://github.com/65440-2023/mario-hardness-gadgets
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Closed Closed

Open Open

Open Closed

(a) The open-close door gadget.

Closed

OpenOpen

Open Closed

(b) The self-closing door gadget.

Closed

Open

Open Closed

(c) The symmetric self-closing
door gadget.

Figure 1 State diagrams for the PSPACE-complete gadgets used in this paper. Each box denotes
a state (labeled Open or Closed), and each arrow denotes a possible transition in that state, labeled
with the new state that the gadget enters upon such traversal.

Now we are given a system of door gadgets, consisting of several instances of the same
type of door gadget, an initial state for each gadget, and a graph defining connections between
locations (entrances and exits) of the doors. In a planar system, these connections do not
cross each other or the door gadgets themselves. The reachability problem asks, given a
system and two locations, whether it is possible for the player to start at the first location
and reach the second location, by a sequence of traversals of door gadgets and connection
edges. In planar reachability, we restrict to planar systems of gadgets.

For all three types of door gadgets described above, planar reachability is PSPACE-
complete [2]. (That paper defines one open-close door gadget which it does not prove
PSPACE-complete, but it has a non-optional open path.) If we can build any door gadget
in a Super Mario platform game, then we can instantiate this gadget multiple times and
connect them together via tunnels made of blocks in such a way that the only way for
Mario to reach the flagpole is via suitable traversal through these gadgets, and thereby prove
PSPACE-hardness of the Mario game.

3 Standard Open-Close Doors

We will begin by examining games which can build doors with a similar structure to that
featured in [3]. All of these doors are open-close doors. These doors have traverse and open
on their left side, and close on the right. An enemy is hit from below while on a certain
type of block such as a brick block to cause it bounce up and move between the two sides of
the door. While on the left, the enemy blocks access to the traverse tunnel, and while on
the right, the enemy blocks access to the close tunnel. There is some object which prevents
Mario from crossing between the traverse and close tunnels but which allows for the enemy to
pass through. In most of these games, the enemy in question becomes stunned for a constant
amount of time when hit from below, and if the player is able to hit it and traverse quickly
enough to pick it up, this could break the door. For this reason, we assume all tunnels in
these gadgets are significantly longer than pictured, such that they take longer to traverse
than it does for the enemy to wake up. This is indicated in our gadget figures with ellipses
(· · · ).

3.1 Super Mario Bros.: The Lost Levels
This game was originally released in Japan as スーパーマリオブラザーズ２ (Super Mario
Bros. 2), but was renamed to Super Mario Bros.: The Lost Levels when it was finally released
in North America, as part of the 1993 compilation Super Mario All-Stars. We follow the
latter naming convention, to avoid confusion with the other game named (uniquely) Super
Mario Bros. 2 (covered in Section 6).
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Figure 2 An open-close door in Super Mario Bros.: The Lost Levels.

▶ Theorem 1. Super Mario Bros.: The Lost Levels is PSPACE-hard.

Proof. Super Mario Bros.: The Lost Levels is almost exactly the same as Super Mario Bros.
but with different levels, graphics, and only a few minor tweaks. In particular, the physics
of Mario’s movement is the same, and spinies and firebars behave in the same way. Hence,
we can build the same door used in [3] to show that Super Mario Bros.: The Lost Levels
is hard. For reference, Figure 2 shows such a gadget built in Super Mario Bros.: The Lost
Levels. The idea is that the door is open whenever the spiny is on the right side of the
central fire (as in the figure), in which case Mario can freely follow the traverse path. To
traverse the close path, Mario must jump to hit the brick block with careful timing so
that the spiny above gets bumped to the other side of the gadget, closing the gadget and
enabling Mario to reach the close exit. Similarly, visiting the open path allows Mario to hit
the spiny to the other side, opening the gadget. ◀

3.2 Super Mario Bros. 3
▶ Theorem 2. Super Mario Bros. 3 is PSPACE-hard.

Proof. Figure 3 shows our door gadget for Super Mario Bros. 3. Notably, we make use of
clouds , which are a semi-solid platform. Objects (including both Mario and enemies) can
pass through clouds from below and the sides, but not from above. When Mario hits a brick
block with a spiny on top of it, the spiny is bounced on top of the cloud. After a brief
period of waking up, the spiny walks to the opposite side of the gadget. The black plants are
munchers , an enemy which will damage Mario if he touches them. Mario cannot pass
above the munchers in the center of the gadget without touching them and dying, but the
spiny is invulnerable to their effects and can pass through without issue. We also make use
of invisible coin blocks . When Mario hits these from below, they become solid blocks,
but before that point, they are completely intangible, and the spiny can pass through them
from the side with no issues. Their purpose is to restrict Mario from jumping over the spiny

and onto the cloud. Because of them, Mario can only pass through the traverse or close
tunnel by jumping next to the munchers, and this can only happen if the spiny is on the
opposite side of the gadget.

One might worry that Mario can hit the coin blocks on traversal, permanently breaking
the gadget. This is true. If Mario hits a coin block, the gadget will enter a broken state
where it is stuck open or closed, depending on the location of the spiny. However, this is not
an issue, as doing so as it can only make the reachability problem more restrictive. If Mario
hits a coin block while traversing on the left side of the gadget, the spiny will never fall down
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Figure 3 An open-close door in Super Mario Bros. 3.
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Figure 4 An open-close door in New Super Mario Bros. Wii.

the left side, and the door will be permanently open. This means that if Mario attempts
to close the door, he will become stuck and forced to backtrack or die. A similar argument
shows that it is never in Mario’s interest to force the door into a stuck closed state. ◀

3.3 New Super Mario Bros. Series
▶ Corollary 3. New Super Mario Bros., New Super Mario Bros. Wii, New Super Mario Bros.
2, and New Super Mario Bros. U are all PSPACE-hard.

Proof. The door from Theorem 3 works in all of the New Super Mario Bros. games for the
same reasons. In place of clouds, we use a different semisolid platform , and some of the
New Super Mario Bros. games feature spikes instead of munchers , but the objects
behind these graphical changes function in the same way. For reference, Figure 4 shows a
door built in New Super Mario Bros. Wii. ◀

We will give another proof of this result in Section 5, which uses different mechanics and
is furthermore robust against the mechanics of Wii U gamepads.

3.4 Super Mario World
▶ Theorem 4. Super Mario World is PSPACE-hard.

Proof. In Super Mario World, we cannot use spinies because they die instantly upon being
hit from below. Instead, we make use of the goomba enemy, which behaves differently in
Super Mario World in that it becomes stunned instead of killed when hit. Figure 5 shows the
resulting door gadget. Unlike with spinies, Mario can safely jump on goombas. To ensure
Mario does not jump over the goomba or step on it to stun it and pass through a blocked
tunnel, we place munchers at the top of the traversal tunnels. If Mario would jump on
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Figure 5 An open-close door in Super Mario World.
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Figure 6 An open-close door in Super Mario Maker.

the goomba, it will bounce him into the munchers, killing him instantly. The only valid way
to traverse the gadget is to first open it by hitting the on/off block from below when a
goomba is on it. Doing so will cause the goomba to bounce onto the munchers in the center
of the gadget and walk across to the other side, allowing safe traversal. The close traversal
works analogously. As a remark, the on/off switches contain extra functionality which we
completely ignore here; we only care about them in terms of their ability to bounce goombas
when hit from below. ◀

3.5 Super Mario Maker
▶ Theorem 5. All styles of Super Mario Maker are PSPACE-hard.

Proof. Our door gadget for Super Mario Maker is almost identical to the door gadget for
Super Mario Bros. 3. The main difference is that we add one-ways , which only allow
one-directional traversal, immediately below and above the brick blocks . This is because,
in the Super Mario World style, the blocks corresponding to brick blocks temporarily become
intangible when hit, allowing a spiny or Mario to pass through. The one-ways ensure that
Mario cannot go up and the spinies cannot go down through these blocks, but Mario maintains
the ability to bounce the spiny from below. All features present in this gadget exist in all
four styles of Super Mario Maker, so this gadget works in all of them. Figure 6 shows a
construction of the gadget. ◀

▶ Corollary 6. The four 2D styles Super Mario Maker 2 are PSPACE-hard.

Proof. Each of the four 2D styles of Super Mario Maker 2 features all elements of the door
gadget pictured in Figure 6, behaving in the same way, so we use the same gadget gadget
from Super Mario Maker. As a small detail, if we choose, we can simplify the construction
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Figure 7 An open-close door in the Super Mario 3D World style of Super Mario Maker 2.

involving 2 one-ways and a brick block by using the on/off switches present in Super Mario
Maker 2 since they cannot be passed through in any game style and bounce spinies in the
same way (these are the same type of blocks we used in the reduction to show that Super
Mario World is PSPACE-hard). ◀

▶ Theorem 7. All styles of Super Mario Maker 2 are PSPACE-hard.

Proof. Corollary 6 proves hardness for all 2D styles. There is one remaining style present in
Super Mario Maker 2, the Super Mario 3D World style. This style works very differently from
the other four styles, so we construct a different door gadget, shown in Figure 7. The issue
in the Super Mario 3D World style is that the spiny changes direction when it wakes up
and is unable to cross the gadget on its own. Fortunately, there are on/off switches which
toggle the state of the blue squares pictured. When the switch is on, as pictured, the
blue squares are empty. When the switch is off, they are replaced by solid blue blocks. To
cause the spiny to change sides, the player hits the brown brick block , bounding the
spiny into the center of the gadget. The player can then toggle the state of the switched
blocks to allow the spiny to walk across to the other side of the gadget. Then, toggling the
switch again will drop the spiny into the desired side. Hitting the switch toggles the state of
all blue blocks in the level, including those in other gadgets, but these do not interact with
the other gadgets because the blue blocks are above the spinies, so only the door where the
player hits the spiny is affected.

With the addition of the switched blocks, it is possible for Mario to hit the switch at such
a time that the spiny is crushed by the blocks. If this happens, the door can no longer be
closed, which is bad. In Super Mario Maker, enemies can be created holding keys which
Mario will collect if the spiny dies. Mario will keep this key and any others he collects
until they are used on locked doors or warp blocks . We give the spiny in our gadget
a key, and at the very end of the level we force Mario through a “check” gadget which
consists of a 1 tall path with a locked warp box (see Figure 8). If the player has a key, they
get warped and become completely stuck. If they have no key, they pass through with no
issue. Taking advantage of the check gadget, we use a second key to prevent the player
from switching between the two sides of the gadget, taking the place of the munchers in the
previous reduction. ◀

3.6 Super Mario Bros. Wonder
▶ Theorem 8. Super Mario Bros. Wonder is PSPACE-hard.
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check check

Figure 8 The check gadget for the Super Mario 3D World style of Super Mario Maker 2.
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Figure 9 An open-close door in Super Mario Bros. Wonder.

Proof. Our door gadget for Super Mario Bros. Wonder is similar to the door gadget for
Super Mario Bros. 3, but we take advantage of the fact that Super Mario Bros. Wonder can
have non-grid-aligned objects to simplify the gadget by removing the need for invisible coin
blocks. Figure 9 shows a construction of the gadget. ◀

4 Self-Closing Doors

4.1 Super Mario Land 2

▶ Theorem 9. Super Mario Land 2: 6 Golden Coins is PSPACE-hard

Proof. To show Super Mario Land 2: 6 Golden Coins is PSPACE-hard, we reduce from
planar reachability with self-closing doors [2], using the self-closing door gadget shown in
Figure 10. Super Mario Land 2 does not have a spiny enemy, so we instead use a koopa

. In this game, koopas do not walk off of ledges (like red koopas in other games), which
complicates matters. When the door is closed (the koopas is in the top left, pictured solid
in Figure 10), it blocks the traversal path because Mario is too tall to jump past it in the
1-block corridor. To open the door, Mario enters the open tunnel, and with a well-timed
hit, it is possible to bounce the koopa into the right of the gadget (as pictured partially
transparent in Figure 10). This opens up the beginning of the traversal tunnel, but blocks
the right half. To continue with traversal, Mario must head down the vertical tunnel, below
the semisolid , and reach the other light gray block to bounce the koopa back to the left.
Mario can then backtrack and finish traversal. However, when Mario bounces the koopa to
the left, it is possible for him to instead time the hit such that the koopa falls down the same
tunnel Mario entered. If this happens, the koopa will block Mario’s path out, which prevents
Mario from finishing the traversal. Therefore, an optimal player must choose not to do this,
and we can safely assume it does not happen. ◀
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Figure 10 A self-closing door in Super Mario Land 2.
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Figure 11 A self-closing door in Super Mario World 2.

4.2 Super Mario World 2: Yoshi’s Island

▶ Theorem 10. Super Mario World 2: Yoshi’s Island is PSPACE-hard

Proof. To show PSPACE-hardness for Super Mario World 2: Yoshi’s Island, we reduce from
planar reachability with self-closing doors [2], using the self-closing door gadget shown in
Figure 11. To traverse, the player must ride the chomp rock , a spherical enemy which
rolls when stood on, to the right side of the gadget. Attempts to cross without using the
chomp rock will fail as the player does not have enough height to reach the traversal exit
without the chomp rock and cannot stand on spikes without dying. The chomp rock rolls
down a slope and loses momentum upon reaching the bottom due to partially hitting the
spikes. The player can then use it to traverse, but is unable to push the chomp rock back
up the slope at the same time. To open the gadget, the player gains access to a reusable
helicopter powerup . This powerup briefly turns Yoshi into a helicopter, allowing the
player to safely push the the chomp rock up the slope and reset the door while hovering safely
above the spikes. When the timer on the helicopter powerup runs out, Yoshi is instantly
transported back to the open tunnel. Because of the powerup timer, by making all tunnels
between gadgets sufficiently long, we can ensure that the player cannot reach and open any
gadgets other than the intended one. ◀
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5 Event-Based Symmetric Self-Closing Doors

Corollary 3 already showed that all four New Super Mario Bros. games are PSPACE-hard.
But these games also implement a system called events, which allow the player to interact
with blocks via switches and event controllers. In this section, we develop event-based
symmetric self-closing door gadget, for two main reasons:
1. These doors are incredibly simple and small compared to the previous ones.
2. Unlike enemies, events persist regardless of the location of the screen. This means that

we do not need to generalize screen size, which shows hardness for something that is
much closer to the original game. This is also of some importance for New Super Mario
Bros. U, as discussed in Section 5.2.

That being said, there are some drawbacks to using events. For one, they work behind
the scenes and their behavior is not transparent to the player. It could be seen as not in
the spirit of the game to build doors out of objects that are not true visible game elements.
Furthermore, while these games do not impose arbitrary limits on the number of enemies
(outside of memory constraints), they do impose a limit of 255 events based on the encoding
of object data in binary. To allow for arbitrary events, we would have to generalize to
a system which allows for more events. For these reasons, this door does not completely
supplant the door of Corollary 3.

5.1 Event Mechanics
The relevant event mechanics used in this paper are as follows:

There are numbered events, each of which can be either on or off
There are numbered locations, which are sections of the level bounded by some rectangle
Location controllers toggle an event based on the status of enemies or players in a given
location
There are blocks which appear or disappear according to the status of an event

5.2 New Super Mario Bros. U with Gamepad
In New Super Mario Bros. U, the Wii U gamepad serves a special purpose. If the player
is playing on a non-gamepad controller, they (or a friend) can use the gamepad in “boost
mode” to help Mario. The player with the gamepad can create platforms on-screen to help
the player cross dangerous areas, and if Mario steps on 10 of these, the gamepad player
gains access to a boost star which allows them to kill enemies by tapping on them. It is
very reasonable to disallow boost mode in our generalized New Super Mario Bros. U as it
somewhat breaks the restriction of only one player, and this must be done for the door in
Figure 4 to work properly, but with events, we can allow for the gamepad as the gamepad
player has no control over any event behavior.

5.3 Self-Closing Door
▶ Theorem 11. New Super Mario Bros., New Super Mario Bros. Wii, New Super Mario
Bros. 2, and New Super Mario Bros. U are all PSPACE-hard, even when restricted to just
blocks and events.

Proof. The gadget pictured in Figure 12 is an event-based symmetric self-closing door. It
uses one event. The blocks labeled 1 are on if and only if the event is on, and the blocks
labeled 2 are on if and only if the event is off. When the player enters location 3, the event
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Figure 12 A symmetric self-closing door in New Super Mario Bros. U.

turns on, and when the player enters location 4, the event turns off. In this way, traversal
through the top path is only possible when the event is off, and doing so turns the event on,
and traversal through the bottom path is only possible when the event is on, and doing so
turns the event off. The door in Figure 12 is pictured in New Super Mario Bros. U, but the
same gadget works in all four New Super Mario Bros. games. ◀

6 Super Mario Bros. 2 Open-Close Door

In this section, we prove PSPACE-hardness of Super Mario Bros 2 (as named in North
America). This reduction consists of our most complicated door gadget by far.

6.1 Mechanics
Super Mario Bros 2 has significantly different mechanics from the rest of the games in this
paper, and our reduction for it is relies on many of these mechanics, so we take some extra
time to describe the behavior of various objects. Refer to Figure 13 to see images of relevant
objects.

The blue blocks with an X pictured in our gadgets are semi-solids or diodes. They
can be passed through from below, but not from above.
The spikes will kill the player if they land on them from above.
Mario cannot naturally pass through a 1 block tall tunnel. However, by crouching, holding
in the direction of desired movement, and repeatedly jumping, Mario can make very slow
progress through the tunnel. This mechanic is used to pass through the tunnel at the
bottom right of the gadget.
The mushrooms are objects which the player can pick up and place down. When
placed, they fall and then snap to the grid in the level. When the player is holding any
object, they cannot hold any other object or enemy. They also cannot pass through 1
block tall tunnels.
The Birdo enemy , pictured in bottom right of the gadget will shoot eggs when
on screen. Eggs move across the screen horizontally at a constant speed until they hit a
solid object. The player can jump off of them and can also pick them up and throw them
to kill enemies.
There are two types of shy guy enemies. They walk back and forth and can be picked up
and thrown. When thrown, they return to walking. The red shy guy will walk off of
ledges (analogous to green koopas in other Mario games), and the pink shy guy will
turn when it reaches a ledge (analogous to red koopas in other Mario games). Mario can
also stand on shy guys and ride them across spikes.
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By crouching for a brief period of time to charge his jump, Mario can perform a super
jump, which is an especially tall jump.
The game features 4 playable characters: Mario, Luigi, Toad, and Peach. The relevant
differences for this gadget are that Luigi jumps higher than the others and that Peach
can float for a brief period of time. Our gadget is robust to use of all four characters.
The game remembers the position of mushrooms that are moved when they become off
screen, so we do not need to generalize screen size. In fact, we will take advantage of
screen size constraints.

6.2 Glitches
Super Mario Bros. 2 has many glitches and unintended behavior. Several of these are
documented in [5]. As far as we are aware, there are two which are relevant for our gadget.

If the player jumps and makes contact with the corner of an enemy, they can perform a
second jump midair, resulting in a much higher jump than should be allowed. We avoid
abuse of this by not giving the player opportunities to jump off of the corners of enemies
where important.
If the player is crouching on top of an enemy which walks into a one block tall tunnel, the
player will not collide with the wall, despite doing so visually. This does not happen if
the player is holding an item. If the roof of the tunnel is only one block thick, the player
can then jump through the ceiling. We make tunnel ceilings two blocks thick and make
use of shy guys to prevent abuse of this.

6.3 Open-Close Door
▶ Theorem 12. Super Mario Bros. 2 is PSPACE-hard.

Proof. We reduce from planar reachability with open-close doors [2]. A door is pictured
in Figure 13. The state of the gadget is determined by a mushroom object, which the
player can pick up and place in different locations. Specifically, the mushroom in position
A, representing the open state, can instead be in position B, representing the closed state.
When the door is open, the player can run through the bottom tunnel until Birdo is onscreen.
Birdo will then shoot an egg to the left which the player can jump on to reach the exit of
the traverse tunnel. This path is pictured in red. When the door is closed, the mushroom is
in position B, and the egg’s path is blocked, preventing traversal. Even Luigi with a super
jump is unable to reach the platform without the egg.

Closing the door begins with the player throwing the shy guy in position 1 onto the spikes
above, as shown in position 2. The shy guy walks to the right for use later. The player
cannot cross this same gap because of the spikes. The glitch which allows for the player to
ride an enemy across does not apply because the ceiling prevents Mario from getting on the
enemy in the first place. Then, the player proceeds to the right and moves the mushroom
from position A to B. Once the mushroom is in position B, they can use it to super jump up
to the right. If they do not place the mushroom, they will be unable to exit, as a regular
jump off of an egg does not give enough height, even for Luigi, to exit, and it takes too
long to charge a super jump for the player to perform one off of the egg before it moves too
far to the left. Hence, for the player to continue through the close tunnel, they must place
the mushroom in location B, blocking the path of the eggs, and closing the traverse tunnel.
Finally, the player can move the shy guy that was thrown to position 2 to the row of spikes
above, and jump off of it in position 3 to cross an otherwise impassable spike tunnel. The
shy guy continues walking to the left and falls back down to position 1 in preparation for the
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Figure 13 An open-close door in Super Mario Bros. 2.

next use. An outline of this path is pictured in blue. Note that the player can choose not to
jump off the shy guy and instead ride it back to the entrance of the close gadget, but this
does not accomplish anything productive as they are simply forced to close the gadget again,
so we can assume this does not happen.

Opening the door begins on the bottom right of the gadget with a 1-toggle sub-gadget.
The mushroom can be placed in either position X or Y, but can only be picked up from the
top, not the side. The effect of this is that the 1-toggle can only be traversed from the right
if the mushroom is in position X and from the left if in position Y. This prevents the player
from exiting through the open tunnel when closing the door. For the player to traverse from
right to left in the open path, the mushroom is forced into position Y. Then, the player can
(optionally) move the other mushroom from position B to position A, opening the door. They
cannot exit through the close tunnel as they do not have the shy guy required to cross the
spikes, and are forced to return through the 1-toggle, returning it to position X as they leave.

One might worry that the player can ride an egg through the gadget to the traverse path
when opening or closing the door. This would be an issue, but there is a pink shy guy in
the egg’s path. The egg will pass through with no issue, but if a player is riding an egg, the
taller hitbox of the shy guy will cause them to become stuck in the middle of a row of spikes,
and they are unable to jump across the shy guy fast enough to continue riding the egg. The
shy guy is placed far enough to the left such that Birdo is off screen and will not shoot any
more eggs while the player is stranded. As pictured, the player could grab an egg and throw
it at the shy guy before performing this shortcut, thus clearing the way, but making the
tunnel sufficiently long and placing the shy guy far enough from the ends will prevent this.
We simply show the smaller gadget here for simplicity. ◀

7 NP-Hardness

We initially set out to prove all 2D Mario Games PSPACE-complete. Sadly, we have not yet
succeeded for two of these games we considered: Super Mario Land and Super Mario Run.
Nonetheless, we can at least prove NP-hardness for both of these games. We will be using
the framework developed in [1].
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Figure 14 A clause gadget in Super Mario Land.

▶ Theorem 13. Super Mario Land is NP-hard.

Proof. The framework for proving NP-hardness requires us to create the following gadgets:
Start and Finish. We use the trivial start and end gadgets.
Variable. We use the same variable gadget as used in [1].
Clause and Check. We use the clause gadget pictured in Figure 14. Each of the 3
question blocks in the left side of the gadget creates a mushroom which can be used
to damage boost through the spikes at the right of the gadget. However, if there is
no mushroom, the player is unable to cross.
Crossover. We use the crossover gadget pictured in Figure 15. This is a unidirectional
crossover in which left to right traversal happens before top to bottom. When coming
from the left, the player gains access to a star in a question block. This allows them to
pass to the right over the row of spikes, which is much longer than pictured such that the
player can only barely make it across with the star. They are unable to go up as they
do not have a mushroom. To traverse from bottom to top, the player gains access to a
mushroom in a question block which allows them to break the breakable blocks and
move up, where they then take forced damage and are returned to a powered-down state.
However, they are unable to cross the spikes to the right because the maximum distance
Mario can run on spikes with a star is mush longer than the distance he damage boost
with a mushroom, and the player is unable to reach the star block on the left side of the
gadget. After the player completes a vertical traversal, there is leakage from horizontal
to vertical, but, as discussed in [1], this is not an issue.

The combination of these gadgets is sufficient to show NP-hardness. ◀

▶ Theorem 14. Super Mario Run is NP-hard.

Proof. First, we note that Super Mario Run is unique compared with other Mario games in
that the player can, under normal circumstances, only move right (and is pulled to the right
by default). Fortunately, the game provides backflip blocks which will cause the player
to move left when jumping off of them, which allows for easy creation of wires which allow
for moving left, as pictured in Figure 16a. Vertical wires are traversed via wall jumping or
falling.

The framework for proving NP-hardness requires us to create the following gadgets:
Start and Finish. We use the trivial start and end gadgets.
Variable. We use the variable gadget pictured in Figure 16b. The forced rightward
movement inherently creates a diode, ensuring that once the player chooses either the
top or bottom path, they cannot choose the other variable.
Clause and Check. We use the clause gadget pictured in Figure 16c. This works
almost identically to the clause gadget in [1], but with grinders in place of fire bars
to enforce that the player must have a star.
Crossover. We use the clause gadget pictured in Figure 16d. Vertical traversal is
accomplished either via falling or wall jumping, and is bidirectional. The traversal from
left to right requires hitting a switch to briefly toggle the states of the red and
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Figure 15 A crossover gadget in Super Mario Land.

outlined blocks, creating a tunnel from left to right. Because of the forced right
condition, the player moves through the tunnel before the switch state can revert, and is
unable to stall for leakage.

The combination of these gadgets is sufficient to show NP-hardness. ◀

8 Open Problems

As discussed in the previous section, while we initially set out to prove all 2D Mario Games
PSPACE-complete, Super Mario Land and Super Mario Run have only been shown to be
NP-hard. Super Mario Land features a very different set of objects from the other Mario
games, and none that stand out to us as being able to toggle the state of a door an unbounded
number of times. Super Mario Run poses a similar issue, with enemies behaving somewhat
differently from the other games. It also suffers from the issue of access: unlike all other
games considered in this paper, there are no known tools for creating custom Super Mario
Run levels.

In this paper, we did not place any restrictions on generating new enemies, although none
of our doors take advantage of this. If we do enforce that no new objects can be spawned, then
we get containment in NPSPACE as the size of the level cannot grow, and hence PSPACE
by Savitch’s Theorem. In this case, we have PSPACE-completeness for every PSPACE-hard
game examined in this paper. However, most of these games have some mechanism by which
the level size could grow without bound, with the removal of arbitrary object limits. For
example, the original paper on Super Mario Bros. PSPACE-hardness, [3], makes claims that
Super Mario Bros. is contained in NPSPACE based on its levels only taking up a polynomial
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(a) A left-moving wire. (b) A variable gadget.

(c) A clause gadget. (d) A crossover gadget.

Figure 16 Super Mario Run Gadgets.

amount of space. However, this is not entirely true as Super Mario Bros. also has the Lakitu
enemy which can create additional spinies. With the exponentially long timer, a player could
stand near a Lakitu for exponentially long and generate exponentially many spinies which
walk off-screen. These will require an exponential amount of memory, since we assume in
SMB-General that the game remembers the positions of all off-screen enemies. With an
exponentially large timer, all of these games are clearly contained in NEXPTIME, but this is
a very arbitrary limit, and in the version without a timer, there are no obvious upper bounds
other than RE for any of these games.5

References
1 Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo games

are (computationally) hard. Theoretical Computer Science, 586:135–160, 2015. doi:10.1016/
j.tcs.2015.02.037.

2 Hayashi Ani, Jeffrey Bosboom, Erik D. Demaine, Jenny Diomidova, Della Hendrickson, and
Jayson Lynch. Walking through doors is hard, even without staircases: Proving PSPACE-
hardness via planar assemblies of door gadgets. In Proceedings of the 10th International
Conference on Fun with Algorithms (FUN 2020), pages 3:1–3:23, 2020. Full paper available as
arXiv:2006.01256.

3 Erik D. Demaine, Giovanni Viglietta, and Aaron Williams. Super Mario Bros. is harder/easier
than we thought. In Proceedings of the 8th International Conference on Fun with Algorithms
(FUN 2016), pages 13:1–13:14, La Maddalena, Italy, June 2016.

5 In fact, we explore RE-completeness for some of these games in [4].

https://doi.org/10.1016/j.tcs.2015.02.037
https://doi.org/10.1016/j.tcs.2015.02.037
https://arxiv.org/abs/2006.01256


MIT Hardness Group, H. Ani, E. D. Demaine, H. Hall, and M. Korman 21:19

4 MIT Hardness Group, Hayashi Ani, Erik D. Demaine, Holden Hall, Ricardo Ruiz, and Naveen
Venkat. You can’t solve these Super Mario Bros. levels: Undecidable Mario games. In
Proceedings of the 12th International Conference on Fun with Algorithms (FUN 2024), pages
29:1–29:20, La Maddalena, Italy, June 2024.

5 Super Mario Wiki. List of Super Mario Bros. 2 glitches. https://www.mariowiki.com/List_
of_Super_Mario_Bros._2_glitches. Accessed December 2023.

6 Giovanni Viglietta. Lemmings is PSPACE-complete. Theoretical Computer Science, 586:120–
134, 2015. doi:10.1016/J.TCS.2015.01.055.

FUN 2024

https://www.mariowiki.com/List_of_Super_Mario_Bros._2_glitches
https://www.mariowiki.com/List_of_Super_Mario_Bros._2_glitches
https://doi.org/10.1016/J.TCS.2015.01.055




You Can’t Solve These Super Mario Bros. Levels:
Undecidable Mario Games
MIT Hardness Group1

CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Hayashi Ani #

CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Erik D. Demaine #

CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Holden Hall #

CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Ricardo Ruiz #

CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Naveen Venkat #

CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
We prove RE-completeness (and thus undecidability) of several 2D games in the Super Mario Bros.
platform video game series: the New Super Mario Bros. series (original, Wii, U, and 2), and both
Super Mario Maker games in all five game styles (Super Mario Bros. 1 and 3, Super Mario World,
New Super Mario Bros. U, and Super Mario 3D World). These results hold even when we restrict to
constant-size levels and screens, but they do require generalizing to allow arbitrarily many enemies
at each location and onscreen, as well as allowing for exponentially large (or no) timer.

In our Super Mario Maker reductions, we work within the standard screen size and use the
property that the game engine remembers offscreen objects that are global because they are supported
by “global ground”. To prove these Mario results, we build a new theory of counter gadgets in
the motion-planning-through-gadgets framework, and provide a suite of simple gadgets for which
reachability is RE-complete.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases video games, computational complexity, undecidability

Digital Object Identifier 10.4230/LIPIcs.FUN.2024.22

Related Version Full Version: https://arxiv.org/abs/2405.10546

Supplementary Material
Software (ROM Files): https://github.com/65440-2023/mario-hardness-gadgets

Acknowledgements This paper was initiated during open problem solving in the MIT class on
Algorithmic Lower Bounds: Fun with Hardness Proofs (6.5440) taught by Erik Demaine in Fall
2023. We thank the other participants of that class for helpful discussions and providing an inspiring
atmosphere. Portions of this paper originally appeared in Ani’s master’s thesis [2]. Several community
level editors and emulators were very helpful in building and testing counters:

Reggie! by the NSMBW Community – https://github.com/NSMBW-Community/
Reggie-Updated
CoinKiller by Arisotura – https://github.com/Arisotura/CoinKiller
Miyamoto by aboood40091 – https://github.com/aboood40091/Miyamoto

1 Artificial first author to highlight that the other authors (in alphabetical order) worked as an equal
group. Please include all authors (including this one) in your bibliography, and refer to the authors as
“MIT Hardness Group” (without “et al.”).

© MIT Hardness Group, Hayashi Ani, Erik D. Demaine, Holden Hall, Ricardo Ruiz, and
Naveen Venkat;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Fun with Algorithms (FUN 2024).
Editors: Andrei Z. Broder and Tami Tamir; Article No. 22; pp. 22:1–22:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joshuaa@mit.edu
mailto:edemaine@mit.edu
https://orcid.org/0000-0003-3803-5703
mailto:hhall314@mit.edu
mailto:ruizr@mit.edu
mailto:nvenkat@mit.edu
https://doi.org/10.4230/LIPIcs.FUN.2024.22
https://arxiv.org/abs/2405.10546
https://github.com/65440-2023/mario-hardness-gadgets
https://github.com/NSMBW-Community/Reggie-Updated
https://github.com/NSMBW-Community/Reggie-Updated
https://github.com/Arisotura/CoinKiller
https://github.com/aboood40091/Miyamoto
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


22:2 Undecidable Mario Games
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1 Introduction

In 2014, Hamilton [10] proved that solving a (bounded-size) level in the 2008 video game
Braid is RE-complete (the same difficulty as the halting problem, and thus undecidable),
even without its famous time-travel mechanic. The reduction is from counter machines
[15, 16, 13]: a finite-state machine with a constant number of natural-number counters
equipped with increment, decrement, and jump-if-zero instructions. The central idea was
to represent the value of each counter in a Braid level by the number of enemies occupying
a particular location in the level, exploiting that this number can be arbitrarily large even
in a bounded-size level. The same paper conjectured that many other video games were
amenable to this approach.

In this paper, we prove that this approach extends to several 2D games in the Super Mario
Bros. platform video game series,2 when we generalize them to remove any limits on time,
the total number of enemies, or the number of enemies at each location. Most of these games
(even the original Super Mario Bros. from 1985) have mechanics for spawning arbitrarily many
enemies over time, but it is difficult to find the right combination of mechanics to implement
the specific functionality of an increment/decrement/jump-if-zero counter. Specifically, we
show that the following games are RE-complete by building computer machines where the
number of enemies in a particular location represents the value of each counter:
1. The New Super Mario Bros. series (Section 3): New Super Mario Bros., New Super Mario

Bros. Wii, New Super Mario Bros. U, and New Super Mario Bros. 2. One reduction
covers all four games, using their powerful “event” game mechanic, where Mario’s location
can toggle the existence of blocks. We build an entire universal counter machine within a
single screen of the the Wii version, so solving even a single-screen level is RE-complete.

2. The Super Mario Maker series (Section 4): Super Mario Maker 1 in all four game styles
(Super Mario Bros. 1, Super Mario Bros. 3, Super Mario World, and New Super Mario
Bros. U) and Super Mario Maker 2 in all five game styles (the same four, plus Super
Mario 3D World).

All of these games are in RE: if a level is solvable, then there is a finite algorithm to
solve them, by trying all possible sequences of inputs to the game, and simulating the result.
Because any solvable level is (by definition) solvable in finite time, and the state in the game
after any finite time is finite, this algorithm is finite. Thus, to prove RE-completeness, it
remains to prove RE-hardness.

To simplify the process of proving such games RE-hard using counter machines, we develop
in Section 2 a new theory of “counter gadgets” which shows that a single gadget diagram
suffices to prove RE-hardness in a one-player game like Super Mario Bros. This framework
builds on the motion-planning-through-gadgets framework developed in recent years
[8, 3, 6, 5, 4, 5, 14, 11], starting with FUN 2018 [7]. In the single-player version of this
framework, one agent (Mario) traverses an environment consisting of local “gadgets”, with
the locations of the gadgets connected together in a graph (representing freely traversable
connections). Each gadget has a finite set of states and a finite set of possible transitions,

2 After all, “Braid is a postmodern Super Mario Bros.” [12].

https://dolphin-emu.org/
https://cemu.info/
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where a transition (q, a) → (r, b) means that, when the gadget is in state q, the agent can
enter at location a and leave at location b, while changing the state of the gadget to r. We
generalize this framework to allow for infinite-state gadgets called counter gadgets, where
the states are the natural numbers and the traversals are among common operations such
as increment, decrement, traversable-if-zero, and traversable-if-nonzero. Specifically, we
show that any one of the following counter gadgets suffices to prove RE-completeness of the
reachability problem (can the agent get from one location to another?):
1. Inc-Dec-JZ: One traversal path that increments the counter value, another that decre-

ments the counter value unless it is already zero, and a third that leads the agent to two
different locations depending on whether the counter value is zero.

2. Inc-JZDec: One traversal path that increments the counter value, and another that
leads the agent to two different locations depending on whether the counter value is zero,
and if it is not, decrements the counter.

3. Inc-DecNZ-PZ: One traversal path that increments the counter value, another that
decrements the counter value but which can be traversed only if the counter is nonzero,
and a third that is traversable only if the counter value is zero.
Notably, this RE-hardness result holds even when the connections between gadgets form
a planar graph, so there is no need for a crossover gadget.

4. Inc[a, b]-DecNZ[c, d]-PZ: A generalization of the previous gadget where, when the
agent traverses an increment or decrement path, it gets to choose how much to increment
or decrement, within a range of [a, b] or [c, d], respectively, where a, c > 0. This robustness
to unknown gadget behavior is helpful for building gadgets in video games, which can
require very careful timing and alignment to force a specific number of increments or
decrements, but forcing at least one and at most some constant is relatively easy.

Specifically, we build an Inc[1, 2]-DecNZ[1, 2]-PZ gadget in the New Super Mario Bros.
series, and we build three different Inc-DecNZ-PZ gadgets for different variants of the Super
Mario Maker series. Some of our gadgets are available for download and play [17]. On the
plus side, we need to build only one main gadget for each game, together with a crossover
gadget in some cases (such as New Super Mario Bros.). On the negative side, as we will see,
that one main gadget is quite complex.

By contrast, the Braid proof [10] had six individual gadgets. We can instead combine
three of them (Lever Pull, Counter, and Branch) in a straightforward way to build an
Inc-JZDec gadget; see Figure 1. Then we only need a crossover gadget for the agent (Tim),
which is one of the three crossover gadgets in [10]; the other two are no longer necessary.

Like Hamilton, we conjecture that our counter-gadget framework can be applied to prove
RE-hardness of other video games as well. We discuss further possibilities for Super Mario
Bros. games in Section 5.

2 Counter Gadgets

In this paper, we reduce from “reachability with gadgets”, first explored in [7, 8]. We define
a gadget G = (Q, L, T ) to consist of a set Q of states (not necessarily finite), a finite set
L of locations, and a set T ⊆ (Q × L)2 of allowed transitions on pairs of locations and
states, each written in the form (q, a) → (r, b) where q, r ∈ Q and a, b ∈ L.

An example of a gadget is the 1-toggle: it has a single path that the player can cross
in only one direction, and every time they do, the allowed direction flips. Figure 2 gives
a graphical representation. In this case, there are two locations L = {a, b}, two states
Q = {R, L}, and T = {(0, a) → (1, b), (1, b) → (0, a)}.
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Nonzero

JZDec in

Inc in

Inc
out

Zero

Lever Pull Gadget

Lever Pull Gadget

Branch Gadget
(re�ected)

Counter Gadget

Figure 1 An Inc-JZDec counter gadget in Braid, built from the Level Pull, Counter, and Branch
gadgets of [10].

Figure 2 A 1-toggle, along with its state diagram on the right. When the player goes from a to
b, the arrow flips.

Here, we consider gadgets with an infinite number of states, namely, one for each natural
number. We further restrict a counter gadget to consist of counter components (see
Figure 3) that interact with each other when put in the same gadget:

Inc[a, b]. This is a directed tunnel that is always traversable. When the player traverses
it, they choose a natural number i such that a ≤ i ≤ b. The gadget’s state increments
by i.

DecNZ[a, b]. This is a directed tunnel that is traversable if and only if the gadget’s
state is at least a. When the player traverses it, they choose a natural number i such
that a ≤ i ≤ min(s, b), where s is the gadget’s state. The gadget’s state decrements by i.

Dec[a, b]. This is like DecNZ[a, b], except that it is always traversable, and if the gadget’s
state would become negative, it instead becomes 0.

Inc, DecNZ, Dec. These are short for Inc[1, 1], DecNZ[1, 1], and Dec[1, 1], respectively.

PZ. This is a directed tunnel that is traversable if and only if the gadget’s state is 0. It
does not change the state.

PNZ. This is a directed tunnel that is traversable if and only if the gadget’s state is not
0. It does not change the state. This is only defined for convenience of defining the JZ
switch below.

JZ. This is a switch formed by putting a PZ tunnel and a PNZ tunnel in the same gadget
and combining their entrances.

JZDec. This is a switch formed by putting a PZ tunnel and a DecNZ tunnel in the same
gadget and combining their entrances.
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Figure 3 Counter components that are allowed in counter gadgets, along with their sets T of
allowed traversals.

2.1 Undecidable Gadgets via Counter Machines
A system of gadgets consists of instances of gadgets, an initial state for each gadget, and a
graph connecting the gadgets’ locations together. In the reachability problem, we are given
a system of gadgets, a start location s, and a goal location t, and we want to know whether
the player can get from s to t by making a sequence of gadget traversals and following edges
of the connection graph.

With infinite-state gadgets, sometimes reachability is undecidable, since we can simulate
counter machines. We use the fact that the counter-machine halting problem is RE-hard [15]
as a starting point. First, we give a brief introduction to counter machines.

A counter machine is a set of counters and a sequence of instructions that run on those
counters. The instructions are:

Inc(c): Add 1 to counter c and move on to the next instruction
Dec(c): Subtract 1 from counter c, leaving its value alone if it was 0, and move on to the
next instruction.
JZ(c,i): Check if counter c is 0. If so, jump to instruction i. Otherwise, move on to the
next instruction.
Halt: Stop the machine.

It is RE-hard to determine whether a counter machine reaches a Halt instruction, even with
just two counters [15], [16, pp. 255–258].

2.2 Inc-Dec-JZ is RE-complete
The Inc-Dec-JZ gadget (Figure 4) consists of, as the name indicates, an Inc tunnel, a Dec
tunnel, and a JZ switch.

We prove that reachability with this gadget is NP-hard. The proof involves duplicating
the Inc and Dec tunnels a bunch, then duplicating the JZ switch a bunch, then simulating a
counter machine using multiple of the gadget, using each set of Inc, Dec, and JZ components
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Figure 4 The Inc-Dec-
JZ gadget, shown in states
0 and 1.

Figure 5 The Inc-DecNZ-DecNZ gadget, along with its simulation
by Inc-Dec-JZ gadgets.

as an instruction. We will show RE-hardness again, but with a different method where we
build a gadget made for flow control, and use multiple copies of that gadget along with
unaltered Inc-Dec-JZ gadgets.

▶ Theorem 1. Reachability with Inc-Dec-JZ is RE-complete.

Proof. We show this by simulating a counter machine with Inc(c), Dec(c), and JZ(c,i)
instructions, which increment counter c, decrement counter c (saturated at 0), and jump to
instruction i if c = 0, respectively.

First, we build an Inc-DecNZ-DecNZ gadget to help with flow control. We simulate
one as shown in Figure 5. If the agent enters via Inc in, they increment the top gadget
and leave. If the agent enters via DecNZi in, they eventually get stuck if the top counter
is 0. Otherwise, they increment the middle/bottom gadget, decrement the top gadget, and
decrement the gadget that they incremented before, leaving via DecNZi out.

To construct the counter machine, we use an Inc-Dec-JZ gadget c for each counter c,
and an Inc-DecNZ-DecNZ gadget i for each instruction i: · · · . At a high level, we connect
gadgets so that the agent flow works as follows:

For an instruction i:Inc(c), the agent increments instruction gadget i, increments the
counter gadget c, finds the incremented instruction gadget i and decrements it, and then
moves on to the next instruction gadget i + 1.
For an instruction i:Dec(c), the agent does the same as above, except that they decrement
the counter gadget c.
For an instruction i:JZ(c,i′), the agent increments instruction gadget i and goes to check
whether counter gadget c is in state 0. If it is, they decrement gadget i and branch to
instruction gadget i′. Otherwise, they decrement gadget i using the other decrement path
and move on to the next instruction gadget i + 1.

Figure 6 shows an example.
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Figure 6 The Inc-Dec-JZ gadget simulating a counter machine.

More concretely, we connect gadgets in the following ways, where a[b] denotes location b

of gadget a, I denotes the counter machine program, I[i] denotes the ith instruction, and C

denotes the set of counter gadgets:
i[Inc out] ∼ c[Inc in] for all i, c where I[i] = Inc(c).
i[Inc out] ∼ c[Dec in] for all i, c where I[i] = Dec(c).
i[Inc out] ∼ c[JZ in] for all i, c, i′ where I[i] = JZ(c,i′).
c[Inc out] ∼ i[DecNZ0 in] for all i, c where 0 ≤ i < |I| and c ∈ C.
c[Dec out] ∼ i[DecNZ0 in] for all i, c where 0 ≤ i < |I| and c ∈ C.
c[JZ out ( ̸= 0)] ∼ i[DecNZ0 in] for all i, c where 0 ≤ i < |I| and c ∈ C.
c[JZ out (= 0)] ∼ i[DecNZ1 in] for all i, c where 0 ≤ i < |I| and c ∈ C.
i[DecNZ0 out] ∼ (i + 1)[Inc in] for all i where 0 ≤ i < |I| − 1.
i[DecNZ1 out] ∼ i′[Inc in] for all i, c, i′ where I[i] = JZ(c,i′).

The agent starts just in front of the first instruction gadget, and any instruction gadget
that corresponds to a Halt instruction is replaced with a goal. Then the agent can win if
and only if the counter machine halts, reducing the counter machine halting problem to
reachability. ◀

2.3 Inc-JZDec is RE-complete
The Inc-JZDec gadget (Figure 7) replaces the Dec and JZ components with a single JZDec
switch. We prove that reachability with this gadget is RE-hard by simulating the Inc-Dec-JZ
gadget.

▶ Theorem 2. Reachability with Inc-JZDec is RE-complete.

Proof. We reduce from reachability with Inc-Dec-JZ by simulating the Inc-Dec-JZ gadget,
as shown in Figure 8. We use G0 and G1 to store the counter’s value. If the agent enters via
Inc in, they increment G0 and G1 and leave via Inc out. If the agent enters via Dec in, then
if the counter is 0, they nearly immediately leave via Dec out. Otherwise, they decrement
G0, increment H2, decrement G1, decrement H2, and leave via Dec out. Note that H2 has
no net change. If the agent enters via JZ in, if the counter is 0, they nearly immediately leave
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Figure 7 The Inc-JZDec
gadget, shown in states 0
and 1.

Figure 9 The Inc-
DecNZ-PZ gadget, shown
in states 0 and 1.

Figure 8 Simulation of Inc-Dec-JZ with Inc-JZDec. Gadgets G0

and G1 store the counter’s value, while H0, H1 and H2 are used for
flow control.

via JZ out = 0. Otherwise, they decrement G1, increment H1, increment G1, decrement H1,
and leave via JZ out ̸= 0, leaving no net change (except in H0, but that gadget is just used
as a diode). So this simulation works. ◀

2.4 Inc-DecNZ-PZ is RE-complete
The Inc-DecNZ-PZ gadget (Figure 9) replaces the JZDec switch with separate DecNZ and PZ
tunnels. This gadget can easily simulate the Inc-JZDec gadget, by combining the entrances
of DecNZ and PZ.

▶ Corollary 3. Reachability with Inc-DecNZ-PZ is RE-complete.

In addition, we have a planar result. In planar reachability, we restrict to planar
systems of gadgets where the graph of connections between gadgets’ locations do not cross
gadgets or each other (except at common endpoints).

▶ Theorem 4. Planar reachability with any planar system of Inc-DecNZ-PZ gadgets is
RE-complete.

Proof. Ani et al. [3, Theorems 3.1 and 3.2] show that a crossover can be built from a
symmetric self-closing door : a gadget with two states Q = {1, 2} and two possible
traversal paths L1 → R1 and L2 → R2, where L1 → R1 is possible only in state 1, L2 → R2
is possible only in state 2, and every traversal switches the state. Figure 11 shows how
to build a symmetric self-closing door from Inc-DecNZ (and thus Inc-DecNZ-PZ) in all
cases. ◀

Thus, we do not need to build a crossover when reducing from reachability with the
Inc-DecNZ-PZ gadget, even in a planar application.
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Figure 11 Left: State diagram of the symmetric self-closing door. Right: Simulation of a
symmetric self-closing door, no matter the planar arrangement of tunnels in Inc-DecNZ.

Figure 12 The Inc[a, b]-
DecNZ[c, d]-PZ gadget,
shown in states 0 and c.

Figure 13 An edge duplicator built with the Inc[a, b]-DecNZ[c, d]-
PZ gadget. The player can go from e0 to e1 along two different paths
without leaking between them.

2.5 Inc[a, b]-DecNZ[c, d]-PZ, a > 0, c > 0 is RE-complete
The Inc[a, b]-DecNZ[c, d]-PZ gadget (Figure 12) replaces the Inc and DecNZ tunnels with
Inc[a, b] and DecNZ[c, d] tunnels, respectively. Recall that an Inc[a, b] tunnel allows the
player to choose an integer between a and b inclusive, and increment the gadget’s state by
that amount. A DecNZ[c, d] tunnel allows the player to choose an integer between c and d

inclusive and decrement the state by that integer, but only if the result is nonnegative.

▶ Theorem 5. Reachability with Inc[a, b]-DecNZ[c, d]-PZ is RE-hard if a > 0 and c > 0.

Proof. We simulate the Inc-DecNZ-PZ gadget. First, we build an edge duplicator (Fig-
ure 13), which allows us to duplicate Inc[a, b] and DecNZ[c, d] tunnels as many times as we
want. In the edge duplicator shown, e0 → e1 is being duplicated. If the player enters via
In0, they go from f to g c times and go through e0 to reach e1. Then since the gadget on
the right does not allow passage, they must go from h to i until the path to Out0 opens up
(that is, a times). Then they leave, and the left gadget is reset. This works symmetrically
for In1 → Out1.

Then we use two gadgets with as many Inc[a, b] tunnels, as many DecNZ[c, d] tunnels,
and as many PZ lines as we want to simulate the Inc-DecNZ-PZ gadget (Figure 14). In fact,
we use acd Inc[a, b] tunnels and abd DecNZ[c, d] tunnels in G0, and bcd Inc[a, b] tunnels and
abc DecNZ[c, d] tunnels in G1.
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Figure 14 Simulation of Inc-DecNZ-PZ with Inc[a, b]-DecNZ[c, d]-PZ gadget. The numbers of
copies of repeated tunnels are shown in red.

Let s(G) be the state of gadget G. We say that G ⊏ [i, j] if s(G) is between i and j, and
it is possible that s(G) = i, and also possible that s(G) = j. For example, if G starts at state
0, then G ⊏ [0, 0]. If the player goes through the Inc[a, b] tunnel, then G ⊏ [a, b]. After going
through the DecNZ[c, d] tunnel, which is only possible if b − c ≥ 0, G ⊏ [max(a − d, 0), b − c].
If G ⊏ [i, j], we define min(G) = i and max(G) = j.

We maintain the invariant that max(G0) = min(G1) = abcdn, where n is state of the
simulated Inc-DecNZ-PZ gadget.

If the player crosses the simulated Inc tunnel, then max(G0) := max(G0) + b · acd =
abcd(n + 1) and min(G1) := min(G1) + a · bcd = abcd(n + 1).
If the player successfully crosses the simulated DecNZ tunnel, then because of G0, it
was the case that abcdn ≥ c · abd, meaning that n > 0, which is what we want. Then
max(G0) := max(G0)−c·abd = abcd(n−1) and min(G1) := min(G1)−d·abc = abcd(n−1).
Note that since max(G0) = min(G1), if G0’s portion was crossable, then so is G1’s portion.
If the player successfully crosses the simulated PZ tunnel, then because of G1, it was the
case that abcdn = 0, meaning that n = 0. Then max(G0) := 0 and min(G1) := 0. If G1’s
portion was crossable, then so is G0’s portion, because max(G0) = min(G1).

So this simulation works. ◀

2.6 Constant-Size Levels
Universal Turing or counter machines let us strengthen our results to need just a constant
number of gadgets. For example, Korec [13] designs a 2-counter machine U32 (consisting of
32 instructions over Inc, Dec, and JZ) that is strongly universal in the sense that there is
a computable function f such that, given any 2-counter machine M , M applied to x and
y produces the same result as U32 applies to counter values f(x) and y. By applying the
theorems above to U32, we obtain a system of a constant number of counter gadgets that
simulates U32 and thus any 2-counter machine and thus any Turing machine. Crucially,
this system must start with arbitrary specified initial states, to represent f(x) and y. This
framework and its implications are described in more depth in [1].

Applied to Mario, this means that we can prove RE-hardness of constant-size levels,
provided they can start with arbitrarily many enemies at each location.

Alternatively, if we must start with all counters in state 0, or Mario levels without any
enemies, then we need a linear number of instructions to build up the initial counter values
(by repeated addition and multiplication implemented by repeated addition).
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3 New Super Mario Bros. Series

An earlier version of this work [2] showed that Generalized New Super Mario Bros. is
undecidable by a reduction from reachability with the Inc-DecNZ-PZ gadget and a crossover.
In this section, we will prove undecidability for all games in the New Super Mario Bros.
series by building a similar counter with the Inc[1, 2]-DecNZ[1, 2]-PZ gadget. Specifically,
this gadget can be used in New Super Mario Bros., New Super Mario Bros. Wii, New Super
Mario Bros. U, and New Super Mario Bros. 2. We use the number of enemies called Goombas
to keep track of the counter state, and since we can simulate the Inc-DecNZ-PZ gadget by
Theorem 14 we can obtain undecidability in constant size as in Section 2.6. However, this
result is not necessarily planar, so we provide a simple crossover gadget.

In this section, we make heavy use of a mechanic in the New Super Mario Bros. games
called events, which allows the player to interact with blocks via switches and event
controllers. The functionality of events that we will use can be summarized as follows,
although exact implementations vary per game:

Each event can be either on or off.
Event controllers toggle one event based on the status of another.
Location controllers toggle an event based on the status of enemies or players in a
pre-defined location.
There are blocks which appear or disappear according to the status of an event.

▶ Theorem 6. The New Super Mario Bros. games are RE-complete.

Proof. Our counter gadget is composed of two parts: the counter, pictured in Figure 15a,
and the tunnel, pictured in Figure 15b. Each purple area represents a defined location. The
groups of blocks associated with a letter are controlled by the event with the given letter3.
When the event with the corresponding letter changes state, the blocks also change state
between visible and invisible (where invisible blocks are also intangible). Invisible blocks are
depicted as outlined instead of filled. There are also several invisible control objects:

An enemy spawner spawns Goombas from the pipe .
A location controller activates event A when a player enters location 1.
An event controller activates event B when event A is activated.
A location controller deactivates event A when a player enters location 2.
A location controller activates event D when a player enters location 3.
An event controller activates event E when event D is activated.
A location controller deactivates event D when a player enters location 4.
A location controller activates event C when an enemy enters location 5.
An event controller deactivates event B when event C is activated.
A location controller activates event F when an enemy enters location 7.
An event controller deactivates event E when event F is activated.
An event controller activates event G if and only if an enemy is in location 6.

Inc[1, 2]. When the player enters the Inc tunnel, they encounter location 1 which enables
event A, preventing backtracking and opening the path through the tunnel. They then enter
location 2, which reverses this change, preventing backtracking. At the same time, event A
triggers event B which allows a Goomba to pass through the blocks tied to event B. That
same Goomba enters location 5 which indirectly deactivates event B. Because of the
way Goombas spread out when moving, only one or two Goombas will pass through
during this time. The incremented Goomba(s) end up in location 6.

3 In memory, events are numbered, not lettered, but we use letters to disambiguate with locations
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Figure 15 The New Super Mario Bros. counter gadget in state 0.
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DecNZ[1, 2]. The DecNZ tunnel works analogously to the Inc tunnel, instead allowing one
Goomba to pass through the blocks tied to event E. In addition, if a Goomba is not
in location 6, i.e. the counter value is zero, event G will be disabled, and blocks tied to G
will block traversal through the decrement tunnel, enforcing the NZ condition.

PZ. Similarly to how the NZ condition is enforced, if a Goomba is in location 6, event
G is active and blocks tied to G block the path through PZ.

To complete the proof, we provide a crossover gadget, as pictured in Figure 16. This
is another event-based gadget, where all blocks are controlled by one event, which is off
as pictured. Entering either location labeled 1 will enable the event, toggling the states of
all blocks and allowing traversal only between the top left and bottom right, and entering
either location labeled 2 will disable the event, returning it to the state pictured and allowing
traversal between the top right and bottom left. ◀

3.1 Constant-Size New Super Mario Bros. Wii
As described in Section 2.6, the above result implies undecidability for a level of constant
size. In fact, we have explicitly built a universal counter machine in New Super Mario Bros.
Wii within a single screen. Figure 17 depicts such a counter, as shown in the Reggie level
editor. Our level file is available to download and play [17].

Specifically, this level builds the strongly universal counter machine U32 of Korec [13],
following an approach taken for the video game Baba Is You [1]. The construction of this level
is somewhat different from the reductions we have described, making many simplifications to
fit the level on one screen. The left side of the level is devoted to the 8 registers, while the
majority of the level is devoted to traversal tunnels which control the states of the gadget.
Effectively, this is the same as the two components of our gadget featured in Theorem 6,
but with extra space removed. Branches are achieved easily by having an event controller
to check whether a Goomba is in the counter location. As pictured, the gadget has values
of 0, 0, 1, 1, 0, 0, 1, 0 for registers 0, 1, 2, 3, 4, 5, 6, 7 respectively. The goal of the level is to
traverse from the starting area (in the bottom left) to the pipe (bottom right) which leads to
the flagpole. A mini-mushroom is provided in the starting area to help the player traverse
more easily through tight tunnels, but is not essential to the functioning of the gadget.

Because this entire counter fits on one screen, it is unnecessary to generalize level size
as we have with other games. However, we still need to generalize the game in a few ways.
Specifically, the actual game features a timer, and the actual game engine will spawn a
Goomba from each pipe only if there are not already eight Goombas on screen. Both of these
limitations need to be removed to make the level fully work.



MIT Hardness Group, H. Ani, E. D. Demaine, H. Hall, R. Ruiz, and N. Venkat 22:13

Figure 17 U32 in New Super Mario Bros. Wii.

Because the functionality of events is effectively the same across the New Super Mario
Bros. series, this same counter should be able to be built in the other games, although smaller
Nintendo DS screen sizes seem to prevent making such a large screen size in the DS games.

4 Super Mario Maker

First we describe how the screen size (which we do not generalize from the implemented
size) affects local vs. global behaviors in Super Mario Maker 1 and 2. As in most Mario
games, memory and effects are typically limited to the extent of the screen – technically,
the relevant screen which extends four blocks beyond the visible screen. For example,
activating a P-switch temporarily turns coins into blocks, but only within the current relevant
screen; as Mario and this screen moves, which coins are transformed changes, which can
impact nearby enemies etc. Similarly, enemies typically spawn when the relevant screen
first overlaps their start location, and then despawn when they leave that relevant screen.

But the Super Mario Maker game engines also define a notion of global objects [9] whose
state is remembered even when it outside the relevant screen. Only a handful of objects
are inherently global; for example, One-ways spawn at the beginning of the level and never
despawn, while Yoshi spawns when reaching the screen but then never despawns. Crucially,
an object becomes global if it is on Tracks, or is on top of another global object; this principle
is called global ground. We use this property to make global any objects we want to be
remembered, such as the enemies representing the state of a counter.

The Super Mario Maker games are also unusual in that they allow level creation in multiple
(4–5) game styles, which each offer some slightly unique mechanics. Our constructions that
apply to four styles make use of only mechanics that are present in all four styles, and all
four of the styles have the same physics.
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4.1 Super Mario Maker 1
▶ Theorem 7. All four game styles (Super Mario Bros. 1, Super Mario Bros. 3, Super Mario
World, and New Super Mario Bros. U) of Super Mario Maker 1 are RE-complete.

Proof. We reduce from planar reachability with the Inc-DecNZ-PZ gadget (Theorem 4). Our
gadget uses the following elements:

Solid ground: Solid ground with no special effects.
Semisolid platforms: Platforms which can be jumped through from below
but are solid from above.
One-ways: Walls which allow entities (Mario, enemies, etc.) to pass the white bar
only in the direction of the arrows.
Brick block: Solid block which can be hit from below to defeat enemies or bounce
trampolines above it,
Coin: Transparent course element which allows Mario and enemies to pass through
freely. If Mario touches a coin, it is collected and disappears from the course.
P-switches: Switches which turn coins into brick blocks and vice versa for the
duration of a timer.
Tracks: Rails specifying periodic movement of attached entities; platforms on
tracks are global ground, meaning that they and entities on them do not despawn when
offscreen.
Spikes: Blocks which damage Mario upon contact.
Goombas: Enemies which damage Mario when he contacts from any direction but
above. Can safely walk on spikes and are defeated by being jumped on, giving Mario a
vertical boost similar to a jump. We use big (2 × 2) Goombas in this construction.
Trampoline: Item which bounces entities on it up into the air.
Pipes: Elements which periodically spawn a particular item or enemy (drawn next
to the pipe) into the course. If the pipe spawns items, it will only do so if the last element
that the pipe spawned is no longer loaded or exists. Enemies such as Goombas spawn
indefinitely. Their spawn frequency can be adjusted to one of four speeds.

The key idea in this gadget is similar to other Mario Inc-DecNZ-PZ reductions: use the
number of Goombas in a particular location to represent the value of a counter. The
gadget has infinitely many enumerated states such that, for any integer n ≥ 0, there exists a
state with a collection of n Goombas. The particular construction of the gadget determines
how to increase, decrease, and check for zero in the gadget.

The counter element of the gadget is a semisolid platform on a track . The track
makes the platform global ground, preventing the Goombas from despawning as Mario
moves away from the gadget.

Another critical element to the gadget construction is Goomba pushing. If two Goombas
are on the same y level and walk into each other, they both bounce off and move in the

opposite direction. This property is useful for building single-Goomba chambers: if there is
a one-way into a chamber with the width of a single Goomba that can only be accessed
from the side, at most one Goomba can occupy it. This is because, if any other Goombas
attempt to walk into the space, they will bounce off and be unable to pass through the
one-way.

Inc. On traversal of the increment path, the player is forced to add exactly one Goomba
to the gadget counter. Above the semisolid platform counter, there is a long horizontal

chamber with coins for a floor. At one end of the corridor, a pipe spawns Goombas
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Figure 18 The counter gadget for Super Mario Maker.

which immediately fall through the coin floor. At the other end of the pipe, a one-way
leads to a space wide enough for exactly one Goomba bounded by coins: a single-Goomba

chamber as described above. This chamber is level with the pipe and has a solid floor, unlike
the coin floor of the corridor.

On activation of a P-switch , the coins turn to brick blocks . Any Goombas
already in the gadget are defeated instantly, and future spawned Goombas can freely

walk towards the chamber. The coins bordering the chamber on the other side will be brick
blocks, trapping exactly one Goomba in the chamber. Once the P-switch timer expires, the
floor will transform back into coins and all the Goombas currently in the corridor will be
too low to enter the chamber. The brick blocks at the end of the chamber will turn back
into coins, allowing the Goomba to pass through and fall onto the semisolid platforms to
increment the counter. As long as the corridor length and pipe spawn frequency guarantee
that at least one Goomba reaches the chamber by the end of a P-switch cycle, every P-switch
activation guarantees a counter increment by exactly one.

An Inc traversal path can be built such that Mario is forced to hit a P-switch exactly
once. We accomplish this by spawning P-switches from a pipe in the ceiling, which
fall onto a brick block behind a one-way . Beyond the brick block, a row of coins

above a row of spikes leads to solid ground . After the solid ground, another
row of spikes below a row of brick blocks lead out to the exit port. The gadget is
constructed such that Mario must jump through a set of one-ways : one before hitting
the P-switch and another immediately after.

To traverse, Mario must jump past the one-way and land on the P-switch , then
run across the transformed brick blocks over the spikes and onto the solid ground

. Once through the one-way, Mario cannot go back and activate another P-switch. Since
the exit port is blocked by a spike row, Mario is forced to wait out the full P-switch timer,
guaranteeing that the Goomba remains loaded until it can fall onto the counter and
reach global ground.

DecNZ. At the end of the semisolid counter platform farthest from the chamber
described above, another Goomba chamber is formed by a one-way and solid ground

tiles. This guarantees that, in any state n > 0, exactly one Goomba is in the
chambered section of the counter. Below the chamber, a pipe spawns trampolines

onto a brick block which is accessible from below. Directly above the chamber, a
semisolid platform leads toward a long fall. The platform is low enough such that a
Goomba bounced up from the counter by a trampoline would land on the upper semisolid
platform , no longer in the counter. The upper semisolid platform is bounded on one side
by one-ways , and on the other it has a long fall onto a row of spikes .

FUN 2024



22:16 Undecidable Mario Games

The decrement works by having small Mario hit the brick block from below, bouncing
the trampoline upwards and allowing it to bounce a Goomba up into the air onto
the upper semisolid platform . Mario must then traverse the row of spikes , which
is too long to clear in a single jump. If the counter had more than one Goomba and the
bounce succeeded, a Goomba will fall onto the spikes, allowing Mario to jump off it to gain
extra height and clear the row, exiting the gadget. If the counter was at zero, Mario would
be unable to clear the spikes and lose a life instead. This checks that the decrement removes
at least one Goomba.

We enforce the condition that Mario can only decrement once per traversal by using
one-ways. Mario is forced to jump through a one-way , hit the brick block , then fall
through another one-way . Using this construction, Mario can only hit the brick block
once, making a tight lower bound and guaranteeing decrement of exactly one enemy.

PZ. The traverse path requires that Mario jumps through the semisolid counter platform
from below, in particular through the bottom of the single-Goomba chamber. If the

gadget is in any nonzero state, there is guaranteed to be one Goomba in the chamber.
Mario will take damage when making contact from below and lose a life. If the gadget is in a
zero state instead, the Goomba chamber will be empty and Mario will be free to traverse. ◀

4.2 Super Mario Maker 2
▶ Theorem 8. All four normal game styles (Super Mario Bros. 1, Super Mario Bros. 3, Super
Mario World, and New Super Mario Bros. U) of Super Mario Maker 2 are RE-complete.

The reduction for Super Mario Maker 1 from Section 4.1 might be adaptable to Super
Mario Maker 2, but differing mechanics in the latter game (which allows picking up items
from behind one-ways) would mean that the gadget would have to be altered for some of the
game styles in order to prevent breaking the gadget. Thus, we demonstrate here a different
gadget which works equally well for all four styles, making use of some mechanics exclusive
to Super Mario Maker 2.

Proof. We reduce from planar reachability with the Inc-DecNZ-PZ gadget (Theorem 4).
Figure 19 shows the gadget, and Figure 20 shows portions of a playthrough. We use some
entities already described in Section 4.1: solid ground , semisolid platforms , one-ways

, P-switches , tracks , spikes , platforms , goombas , and pipes . In
addition, we use the following entities:

Donut blocks: Semisolid blocks that begin to fall after Mario stands on them for a
short amount of time. Placing many in a vertical drop effectively slows Mario’s downward
traversal.
Note blocks: Bouncy blocks that cause any entity that walks on them to be bounced
upward.
P-blocks: These blocks flip from being outlines to being solid (or vice versa)
while the P-switch is active. In this construction, they prevent the clown car from
spawning out of the blue pipe unless the P-switch is active.
On/off switches: When hit from below, these switches flip a global on/off state,
toggling the solidity of on/off blocks: vs. .
On/off blocks: These blocks come in and out of existence based on the
state of the on/off switches : in the “on” red state , and in
the “off” blue state .
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Figure 19 Complete Inc-DecNZ-PZ gadget for the normal game styles of Super Mario Maker 2.

Blaster: These blasters shoot a shell in the direction of Mario if he is sufficiently
close and the corresponding barrel of the blaster is not blocked. These shells can activate
on/off switches .
Clown cars: These vehicles allow exactly one falling enemy to enter and ride them.
If a loaded clown car touches spikes , then it will panic and fly upward.
Thwomps: An enemy that charges downward if Mario is sufficiently close and at or
below the level of the Thwomp, and then resets to its original location.
Seesaws: A tilting platform that balances based on the weight on both sides
of the center. If a Thwomp pounds on one side of the seesaw, it will launch up any
enemies on the other side of the platform. This is used to get the Goombas into a
falling state so that they can be picked up by the clown car .
Conveyors: A moving platform that can slow down a shell that is moving
in the opposite direction. In this construction, it allows us to use less space to achieve
the timing for the shell that deactivates an activated on/off switch .

As before, the state of the counter gadget is the number of Goombas on the platform
on the track .

PZ. When the gadget is in state 0, there are no Goombas on the platform , allowing
the player to traverse the PZ path. When the gadget is in any state > 0, there is at least
one Goomba on the platform, preventing the player from traversing the PZ path without
taking damage (and thus dying).

Inc. When the player enters the increment path, the first tunnel is long enough that a shell
will be launched left from the blaster and bounce within the single adjacent space.

At the end of this tunnel, the leftward one-way ensures that the player cannot hit the
on/off switch without fully activating the increment, and the downward facing one-ways
and on/off blocks below ensure that the player cannot hit the on/off switch more than once.
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(a) Inc path: The shell resets the on/off switch
after exactly one Goomba has spawned.

(b) DecNZ path: A single Goomba rides the
panicked clown car upward.

Figure 20 Screenshots from playing the gadget from Figure 19 in Super Mario Maker 2.

Once the on/off switch is triggered, the green pipe , being no longer blocked from
spawning, immediately starts spawning Goombas . At the same time, the shell , no
longer confined to a single space, starts moving left toward an on/off switch . The shell’s
distance to the switch, along with the speed of the conveyor and the spawning
speed of the green pipe , ensures that exactly one Goomba can spawn before the pipe
is again blocked from spawning by the shell hitting the on/off switch, as shown in Figure
20a. This single Goomba moves left, bouncing up from walking on note blocks , and
falls onto the platform on the track .

The rows of donut blocks that Mario must endure at the end of this path ensures
that the player keeps the Goomba loaded on screen until it is on the global ground of
the platform , so that the counter value is correct.

DecNZ. Meanwhile, when the player enters the decrement path, they fall onto a P-switch
spawned from the the left blue pipe , activating the P-switch. (Note that Mario

now blocks spawns from the pipe, so no new P-switches will spawn. And even if the player
managed to fall into the hole exactly when the P-switch was spawning, since it is a 1-wide
hole, they can never pick up the P-switch, and only fall onto it or block spawns from the
pipe.)

This causes the bottom blue pipe , no longer being blocked from spawning, to spawn
a clown car . At the same time, falling into this hole is just far enough down to trigger
the Thwomp , which repeatedly charges downward onto the seesaw . This, in
turn, causes the opposite end of the seesaw to shoot up, launching the Goombas .

Though it usually takes a few seconds for all of this to line up, eventually this results in
the Goombas being shot up while the clown car is under them, causing one Goomba
to enter the clown car while the rest fall back onto the platform . Now that it is entered,
the clown car panics from touching spikes , and flies upward until it gets stuck between
the two one-ways at the top of the spike column. Figure 20b shows the separation of a
single Goomba and panicking of the clown car.

Now the player is free to jump up to the top tunnel of the decrement path, where they
can clear the long jump over the spikes by bouncing on the Goomba in the clown
car in the middle of the jump. If the player performs an illegal decrement from state 0,
then the clown car will never fly up because it never gets entered, and Mario will not be able
to clear the long jump over the spikes. ◀



MIT Hardness Group, H. Ani, E. D. Demaine, H. Hall, R. Ruiz, and N. Venkat 22:19

Inc

PZ

Inc

PZ

DecNZ

DecNZ

Figure 21 The complete Inc-DecNZ-PZ gadget for the 3D World game style of Super Mario
Maker 2.

The 3D world style of Super Mario Maker 2 has many different mechanics from that of
the four regular styles, and so requires a different construction to show that it is RE-hard.
See the full paper for details.

▶ Theorem 9. The Super Mario 3D World style of Super Mario Maker 2 is RE-complete.

Proof. Our gadget is presented in Figure 21. The details of this gadget are covered in the
full version of our paper. ◀

5 Open Problems

Of the 2D Mario Games released since New Super Mario Bros., we have shown that all
except for Super Mario Wonder are undecidable, and a natural open question is whether it
is too. There is evidence which suggests that it might be based on the presence of events
and infinitely spawning Goombas, but the game is still very new, and more research is
needed to understand the mechanics of the game well enough to make further claims about
undecidability.

There are also several older 2D Mario Games which have evidence that they might be able
to build counters. In particular, any game with a Lakitu has a way of generating unlimited
numbers of Spinies, Super Mario Bros. 3 and Super Mario World 2: Yoshi’s Island both have
enemies that can be generated from pipes, and Super Mario World has enemies generated by
falling from the sky. Can we use any of the mechanics in those games to build counters? If
any of these other games are not undecidable, it would also be noteworthy if we can obtain
any other upper bounds on their complexity.

Finally, we showed that all games considered here are hard in constant-size levels, but it is
not certain exactly what that constant is. We provided an explicit example of a single-screen
counter in New Super Mario Bros. Wii, but we can definitely compact it further if we want
to build the smallest possible universal counter machine. Furthermore, we can consider the
Super Mario Maker games and whether it is possible to build a universal counter machine
that fits inside of the standard constraint on level size.
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Abstract
We prove that Hamiltonicity in maximum-degree-3 grid graphs (directed or undirected) is ASP-
complete, i.e., it has a parsimonious reduction from every NP search problem (including a polynomial-
time bijection between solutions). As a consequence, given k Hamiltonian cycles, it is NP-complete
to find another; and counting Hamiltonian cycles is #P-complete. If we require the grid graph’s
vertices to form a full m × n rectangle, then we show that Hamiltonicity remains ASP-complete
if the edges are directed or if we allow removing some edges (whereas including all undirected
edges is known to be easy). These results enable us to develop a stronger “T-metacell” framework
for proving ASP-completeness of rectangular puzzles, which requires building just a single gadget
representing a degree-3 grid-graph vertex. We apply this general theory to prove ASP-completeness
of 37 pencil-and-paper puzzles where the goal is to draw a loop subject to given constraints: Slalom,
Onsen-meguri, Mejilink, Detour, Tapa-Like Loop, Kouchoku, Icelom; Masyu, Yajilin, Nagareru,
Castle Wall, Moon or Sun, Country Road, Geradeweg, Maxi Loop, Mid-loop, Balance Loop, Simple
Loop, Haisu, Reflect Link, Linesweeper; Vertex/Touch Slitherlink, Dotchi-Loop, Ovotovata, Building
Walk, Rail Pool, Disorderly Loop, Ant Mill, Koburin, Mukkonn Enn, Rassi Silai, (Crossing) Ichimaga,
Tapa, Canal View, and Aqre. The last 13 of these puzzles were not even known to be NP-hard.
Along the way, we prove ASP-completeness of some simple forms of Tree-Residue Vertex-Breaking
(TRVB), including planar multigraphs with degree-6 breakable vertices, or with degree-4 breakable
and degree-1 unbreakable vertices.
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1 Introduction

Hamiltonicity is one of the core NP-complete problems, used as the basis for countless NP-
hardness reductions. It accounts for two of Karp’s 21 NP-complete problems [22]: directed
and undirected Hamiltonian cycle. It has been shown to remain NP-complete for many
restricted graph classes: undirected maximum-degree-3 graphs [15], undirected bipartite
graphs [24], undirected 3-connected 3-regular bipartite graphs [2], undirected 2-connected
3-regular bipartite planar graphs [2], undirected 3-connected 3-regular planar graphs of
minimum face degree 5 [16], directed planar graphs with indegree and outdegree at most 2
and total degree at most 3 [29], and so on.

One of the most useful special cases of Hamiltonicity is (square) grid graphs: graphs
whose vertices are a subset of the 2D integer lattice, with an edge connecting two vertices
exactly when they have distance 1. Itai, Papadimitriou, and Szwarcfiter [19] proved that
Hamiltonicity is NP-complete in grid graphs. Papadimitriou and Vazirani [28] improved
this result by proving Hamiltonicity NP-complete in grid graphs of maximum degree 3.
Together, these results strengthen most of the special graph classes mentioned above (as grid
graphs are necessarily planar and bipartite), with a stronger geometric guarantee. Other
papers extend these results to other 2D grids [6, 10, 17]. Hamiltonicity in grid graphs is
the foundation for NP-hardness proofs of countless games and puzzles, from video games
[13, 9, 1] to pencil-and-paper puzzles [36, 3], as well as practical problems such as lawn
mowing and milling [5, 4].

But what about parsimonious reductions that preserve the number of solutions? A
particularly strong form of this notion is ASP-completeness: an NP search problem P is
ASP-complete [37] if there is a polynomial-time reduction from every NP search problem
Q to P along with a polynomial-time bijection converting every solution of P to a unique
solution of Q and vice versa. If P is ASP-complete, then the decision version of P is
NP-complete, counting solutions to P is #P-complete, and the k-ASP P problem – given
an instance of P and k solutions, find another solution – is NP-complete for any k ≥ 0 [37].

Only a few versions of Hamiltonicity are known to be ASP-complete, or weaker, #P-
complete. Liśkiewicz, Ogihara, and Toda [25] proved #P-completeness of Hamiltonicity in
undirected 3-regular planar graphs (based on [16]). Seta [30] proved ASP-completeness of
Hamiltonicity in undirected maximum-degree-3 planar graphs (based on [29]). Bosboom
et al. [8] proved ASP-completeness of Hamiltonicity in directed 3-regular (indegree 2 and
outdegree 1 or vice versa) planar graphs (based on [29]). But what about grid graphs?

1.1 Our Results
In this paper, we prove that Hamiltonicity in maximum-degree-3 grid graphs is ASP-complete.
Thus this popular problem can serve as a foundation for ASP-completeness proofs as well.
The same result holds for Hamiltonicity in directed maximum-degree-3 grid graphs, where
each edge has a specified direction. As mentioned above, grid graphs are bipartite and
planar, so these results roughly strengthen the ASP-completeness results mentioned above,
except that we can guarantee “maximum-degree-3” but not “3-regular”. (No grid graphs
are 3-regular; consider the top-left corner. Furthermore, undirected 3-regular graphs have
an even number of Hamiltonian cycles by Smith’s Theorem [34], so we cannot hope for
ASP-completeness in this case: the 1-ASP decision problem is trivial, while the 1-ASP
construction problem is in PPA [27].)

The basis for this result is another form of Hamiltonicity called Tree-Residue Vertex-
Breaking (TRVB) [11], previously used to analyze Hamiltonicity in grid graphs [10]. In
TRVB, we are given a graph where some vertices are breakable, and the goal is to break
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Rectangular Max-degree-3 spanning
subgraph of rectangular Max-degree-3

Undirected P [19] ASP-complete [§4.2] ASP-complete [§4.3]

Directed ASP-complete [§4.1] ASP-complete [§4.2] ASP-complete [§4.3]

Table 1 Complexity of Hamiltonicity in various types of grid graphs. Each cell shows an example
of a Hamiltonian graph of the specified type, with a darkened Hamiltonian cycle. The first and third
column concern true grid graphs, where there is an edge between each pair of vertices at distance 1.
In the first and second columns, the vertices form exactly an m × n rectangle, whereas the third
column allows an induced subgraph of a rectangular grid graph. The middle column concerns graphs
constructed from a rectangular grid graph by removing some edges (but no vertices) so that each
vertex has degree at most 3. The second and third columns have maximum degree 3.

a subset of the breakable vertices – replacing each broken degree-k vertex with k degree-1
vertices – to make the graph into a tree. This problem has a known characterization of
what degrees of breakable or unbreakable vertices make the problem polynomial vs. NP-
complete [11]. We prove that several forms of TRVB are in fact ASP-complete, including
planar multigraphs with degree-6 breakable vertices, and planar multigraphs with degree-4
breakable and degree-1 unbreakable vertices.

We also study even more geometric forms of grid-graph Hamiltonicity. Suppose instead
of allowing an arbitrary set of vertices on the square grid, we require the vertex set to be an
entire m×n rectangle of integer points. Such graphs are known as rectangular grid graphs
[19]. In this case, undirected Hamiltonicity is known to be easy [19]. But we show that
directed Hamiltonicity in rectangular grid graphs is ASP-complete. Alternatively, if the graph
is undirected but we allow removing some edges (but not vertices) from the rectangular grid
– a spanning subgraph of a rectangular grid graph – then Hamiltonicity is also ASP-complete.
Table 1 summarizes these results.

Rectangular grid graphs are useful because many (if not most) pencil-and-paper puzzles
take place on a full rectangular grid. In particular, the T-metacell framework of Tang
[32] shows how NP-hardness for a pencil-and-paper puzzle often follows from building a
single gadget, essentially representing a degree-3 vertex that must be visited at least once.
In Section 5, we extend this framework to prove ASP-completeness as well. We also extend
the framework to allow for T-metacells where some exits are directed (usable in only one
direction) and up to one exit is forced (must be used). In some cases, we need to build more
than one T-metacell to handle different orientations of directions and/or forced edges.

Finally, in Section 6, we apply this framework to prove ASP-completeness of 37 pencil-
and-paper puzzles, listed in Table 2. Five of these results use the same reduction from [32],
while the remainder involve creating new T-metacell gadget(s). For thirteen of the analyzed
puzzles, even our NP-hardness result is new.

FUN 2024
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Table 2 Our results on pencil-and-paper puzzles. All ASP-completeness results are new; some
are via an existing reduction [32] and some are via a new reduction; and some puzzles were not even
known to be NP-hard. (Puzzles known to be NP-hard have corresponding citations).

Games # New ASP-
Hardness

New
Reduction

New NP-
Hardness

Slalom/Suraromu [21, 32], Onsen-meguri [32],
Mejilink [32], Detour [31, 32], Tapa-Like Loop
[32], Kouchoku [32], Icelom [32]

7 yes no no

Masyu [14, 32], Yajilin [18, 32], Nagareru [20,
32], Castle Wall [32], Moon or Sun [20, 32],
Country Road [18, 32], Geradeweg [32], Maxi
Loop [32], Mid-loop [32], Balance Loop [32],
Simple Loop [19, 32], Haisu [31, 32], Reflect
Link [32], Linesweeper [26]

14 yes yes no

Vertex/Touch Slitherlink, Dotchi-Loop,
Ovotovata, Building Walk, Rail Pool, Dis-
orderly Loop, Ant Mill, Koburin, Mukkonn
Enn, Rassi Silai, (Crossing) Ichimaga, Tapa,
Canal View, Aqre

16 yes yes yes

2 Connections Between Problems

We collect together some useful equivalences between problems on plane graphs, which are
variously present in the literature [12, 11].

▶ Definition 1 ([11]). The Tree-Residue Vertex-Breaking (TRVB) problem takes place
on an undirected multigraph with vertices marked as either “breakable” or “unbreakable”. The
goal is to break a subset S of the breakable vertices to leave a tree – to break a vertex of
degree d, replace it with d new leaves attached to its incident edges. In other words, the graph
obtained from G by subdividing every edge and deleting the vertices in S must be a tree.

▶ Definition 2 ([7, 12]). Given a plane multigraph, a kiki Euler tour is a cycle which
traverses every edge exactly once, such that any time the cycle enters a vertex via an edge e,
it leaves by an edge adjacent to e in the cyclic order.2

The following is a well-known result with a long history; see [33].

▶ Theorem 3. Every Eulerian plane graph where every face is a triangle, except possibly the
exterior face (a “near-triangulation”), has a proper vertex 3-coloring.

Let G be a connected 3-regular bipartite plane multigraph, and let G̃ be its plane dual. By
Theorem 3, G̃ is 3-colorable; equivalently it is possible to 3-color the faces of G so that
adjacent faces have different colors, where faces are regarded as adjacent if they share an
edge. Note that in such a 3-coloring, the three faces around a single vertex contain each
color exactly once.

2 This notion is one of two definitions of “nonintersecting” or “noncrossing Euler tour”. We avoid this
term to avoid confusion with the other definition, where an Euler tour is has a crossing if there are
four edges e, e′, f, f ′ adjacent to a single vertex so that e′ follows e and f ′ follows f in the tour, and
{e, e′} alternates with {f, f ′} in the cyclic order [33]. Noncrossing Euler tours in this sense always exist,
whereas kiki is a stricter condition.
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(a) Face 3-coloring of G. (b) Assignment of colors with
blue and white connected.

(c) Cycle containing blue faces
and not white faces.

(d) Directed graph G1. (e) Kiki Euler tour of G2. (f) Tree-Residue Vertex-
Breaking of G3.

Figure 1 Illustration of Lemma 4.

Let us fix such a coloring using the colors {white, blue, yellow} such that the exterior
face is colored white. Define the following graphs:

G1 is the directed plane multigraph obtained from G by orienting every blue face clockwise
and every white face counterclockwise. This fully determines the orientation.
G2 is the plane multigraph obtained from G by contracting every yellow face to a single
vertex.
G3 is the subgraph of G̃ induced by the non-white vertices.

▶ Lemma 4. There are bijections between the following sets:
(i) Assignments of colors {white, blue} to each yellow vertex of G̃ such that the white

induced subgraph is connected and the blue induced subgraph is also connected.
(ii) Hamiltonian cycles of G which contain all blue faces and no white faces.
(iii) Hamiltonian cycles of G which use every edge separating white faces from blue faces.

FUN 2024
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(i) (ii) (iii)

(iv)

(v)(vi)

Figure 2 The bijections we define for Lemma 4.

(iv) Directed Hamiltonian cycles of G1.
(v) Kiki Euler tours of G2.
(vi) Tree-Residue Vertex-Breakings of G3, where yellow vertices are breakable and blue

vertices are unbreakable.

Proof. Refer to Figure 1. We give explicit transformations between the sets; it can be
checked that these transformations invert each other as needed. Figure 2 summarizes the
transformations we describe, which form a strongly connected graph.

(i) → (ii): Consider an assignment of colors to faces of G. For each vertex, two of the faces
around it are one color and the third is the other color, so exactly two edges incident to
it separate blue from white. The set of all edges separating blue from white thus forms a
collection of cycles visiting each vertex once.
We claim that this is actually a single cycle. If it were multiple cycles, they would divide
the plane into more than two regions. Two of those regions must be the same color (blue
or white), violating the assumption that each color is connected.
So we have a Hamiltonian cycle separating blue from white, and since the exterior face is
white, it contains all blue faces and no white faces of G.

(ii) → (i): Given a cycle, assign blue to exactly the faces it contains. Since the cycle is
Hamiltonian, it does not intersect itself, so the blue faces are connected and the white
faces are connected.

(ii) → (iii): If C contains all blue faces and no white faces, then it must use every edge
separating white from blue.

(iii) → (iv): If C is a cycle on G1 which uses every edge separating white from blue, then
at each individual vertex it is impossible for C to reverse directions; thus it is always
consistent with the orientations, so it is a directed Hamiltonian cycle.

(iv) → (ii): Suppose C is a directed Hamiltonian cycle of G1. Since C visits every vertex, it
contains at least one edge of every face. Because C contains an edge of the exterior face
its orientation must be consistently clockwise. Therefore C it encounters every blue face
on its right side and every white face on the left, meaning it contains every blue face and
does not contain any white faces.

(iii) → (v): The edges separating white and blue faces are exactly the edges of G3 remaining
after contracting the yellow faces. Let C be a Hamiltonian cycle of G containing every
white-blue edge, and let C ′ be the Euler tour of G3 obtained from C by the contraction.
It must be the case that C contains exactly half of the edges incident to each yellow face,
each of which connects two adjacent white-blue edges; so C ′ is kiki.

(v) → (iii): Suppose C ′ is a kiki Euler tour of G3. Let C be the set of edges of G consisting
of all white-blue edges, together with those that connect consecutive edges in C ′; then C

is a Hamiltonian cycle of G containing every white-blue edge.
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(ii) → (vi): Note that G3 does not have any edges between two breakable vertices, so
breaking a vertex is equivalent to removing it and all incident edges. Thus TRVB
becomes “find an induced subgraph of G3 containing all unbreakable vertices which is a
tree”.
Given a cycle C, break all yellow vertices which are outside C, or equivalently take the
induced subgraph on vertices inside C. This subgraph is clearly connected. If it has a
cycle, there is a face of G̃ inside that cycle, which corresponds to a vertex v of G. Then v

is strictly inside C. But v must touch a white face, contradicting the fact that all white
faces are outside C. Hence the induced subgraph on vertices inside C is a tree.

(vi) → (ii): Take C to be the boundary of the tree containing blue faces and nonbroken
yellow faces. Then C is a cycle because it bounds a tree, its interior contains all blue
faces (which cannot be broken) and no white faces (which are not present in G3. Finally,
C is Hamiltonian because every vertex is incident to an edge separating blue from white,
which must be in C. ◀

Furthermore, given any of the graphs Gi, equivalents to the others can be obtained by
analogous transformations. So these various problems can be regarded as equivalent.

An important special case of TRVB is when every breakable vertex has degree at most 3.
For planar graphs this condition is equivalent to requiring that every yellow face of the graph
G in the preceding discussion is a digon or triangle; it is also equivalent to kiki Euler tour with
vertices of degree at most 6. In this case, the problem can be solved in polynomial time by
reducing it to a matroid parity problem.[12][11] In the next section we will discuss breakable
vertices with higher degrees, with which the problem turns out to be ASP-complete.

3 ASP-Completeness of Tree-Residue Vertex-Breaking

Demaine and Rudoy [11] prove several NP-hardness results for TRVB using reductions
from finding Hamiltonian cycles on a max-degree-3 planar directed graph. At the time,
this Hamiltonian cycle problem was not known ASP-complete, so they did not consider
ASP-completeness.

More recently, Bosboom et al. [8] showed that finding Hamiltonian cycles on a directed
max-degree-3 planar graph is ASP-complete, using a reduction from positive 1-in-3SAT.

Several of the reductions used by Demaine and Rudoy [11] are easily verified to be
parsimonious, proving ASP-completeness. We are specifically interested in the results of
Section 4, on planar ({k}, {4})-TRVB.

They first reduce finding Hamiltonian cycles on a max-degree-3 planar directed graph to
finding Hamiltonian cycles on a planar graph where all vertices have indegree and outdegree 2
and vertices have their two in-edges and their two out-edges adjacent in the planar embedding.
This last condition is called non-alternating, because vertices are not allowed to alternate
in-edges and out-edges. The reduction is by contracting forced edges, and is straightforwardly
parsimonious.

▶ Theorem 5. Finding Hamiltonian cycles on non-alternating indegree-2 outdegree-2 planar
graphs is ASP-complete.

Next, Demaine and Rudoy reduce this problem to a version of Tree-Residue Vertex-
Breaking. Specifically, Demaine and Rudoy [11] prove NP-hardness of TRVB on a planar
graph where each unbreakable vertex has degree 4 and each breakable vertex has degree k,
for any constant k ≥ 4. This is planar ({k}, {4})-Tree-Residue Vertex-Breaking. This
reduction is a bit more complicated (see Section 4.2 and in particular Figures 11 through 13

FUN 2024
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Figure 3 Simulating a degree-4 unbreakable
vertex using degree-4 breakable vertices (white)
and degree-1 unbreakable vertices (black).

Figure 4 Simulating a degree-4 unbreakable
vertex using degree-6 breakable vertices.

of [11]) but it is again parsimonious; indeed, [11, Lemmas 4.14 and 4.15] show that there
is a bijection between Hamiltonian cycles in the input problem and solutions to the TRVB
instance.

▶ Theorem 6. Planar ({k}, {4})-TRVB is ASP-complete, for each k ≥ 4.

To further simplify our reductions, we will use a slightly simpler version of TRVB: degree-4
breakable vertices and degree-1 unbreakable vertices.

▶ Theorem 7. Planar ({4}, {1})-TRVB is ASP-complete.

Proof. It suffices to parsimoniously simulate a degree-4 unbreakable vertex. Such a simulation
is shown in Figure 3. No vertex in the simulation can be broken in a solution to TRVB. ◀

▶ Theorem 8. Planar ({6}, ∅)-TRVB is ASP-complete.

Proof. It again suffices to simulate a degree-4 breakable vertex. Such a simulation is shown
in Figure 4. If the top vertex is not broken, both others must be broken, disconnecting the
middle edge. So the top vertex must be broken, and then the other two vertices must not
be. ◀

4 Hamiltonian Cycles in Grid Graphs

In this section, we prove ASP-completeness of finding Hamiltonian cycles in several natural
classes of grid graphs. We begin by defining the types of graph that appear in our results.

▶ Definition 9. A grid graph is an induced subgraph of the square lattice. That is, its
vertices are a subset of Z2, and it has an edge between each pair of vertices at distance 1. In
a directed grid graph, each edge has a direction, so there is exactly one edge between each
pair of vertices at distance 1.

▶ Definition 10. A rectangular grid graph is one whose vertex set consists of all lattice
points within a rectangle.

▶ Definition 11. A graph is max-degree-3 if each of its vertices have degree at most 3.

▶ Definition 12. A spanning subgraph of G is a subgraph of G which contains all of the
vertices (and some subset of the edges) of G.
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Figure 5 An example showing how reductions from TRVB to Hamiltonian cycle work.

Note that grid graphs contain all possible edges: graphs that contain only some of the
edges are (spanning) subgraphs of grid graphs.

We consider three types of graph for each of undirected and undirected. Our results are
summarized in Table 1.

Most of our ASP-completeness results are by reductions from planar ({4}, {1})-TRVB,
and use the same core idea illustrated in Figure 5. This is a breakable degree-8 vertex,
with the yellow square in the middle representing the vertex itself and the blue tentacles
representing edges. We replace every vertex in the TRVB instance with a vertex like the one
shown, and connect the tentacles of adjacent vertices. By Lemma 4, Hamiltonian cycles of
the resulting graph correspond to solutions of the original TRVB instance.

This idea works equally well for directed and undirected graphs. To apply this idea to
each of the five types of graph we prove ASP-completeness for, we need to show how to draw
gadgets for degree-4 breakable and degree-1 unbreakable vertices in that type of graph, while
ensuring that the tentacles representing edges do not interfere with each other.

4.1 Rectangular Grid Graphs
▶ Theorem 13 ([19]). Finding Hamiltonian cycles on an undirected rectangular grid graph
is in P.

▶ Theorem 14. Finding Hamiltonian cycles on a directed rectangular grid graph is ASP-
complete.

Proof. We first consider directed grid graphs, and later fill in holes to make them rectangular.
Everything we need for this is shown in Figure 6. The yellow rectangles are degree-4 breakable
vertices with exactly two local solutions, and the dead end in the bottom left is a degree-1
unbreakable vertex. As before, blue is inside the loop and yellow might be inside the loop
depending on the choice made for a vertex gadget. If we ignore the gray edges, this is
essentially the same as Figure 5.

We just need to ensure that gray edges cannot be used, which we can do by orienting
them carefully. Ignoring the H-shaped construction in the center for the moment, each black
edge is either the only edge pointing towards or the only edge pointing away from some vertex
(depending on which side of the tentacle it’s on), and thus must be used in a Hamiltonian

FUN 2024
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Figure 6 TRVB gadgets for directed grid graphs, showing two breakable degree-4 vertices
connected by an edge and an unbreakable degree-1 vertex.

cycle. We call such an edge forced. Each gray edge (still ignoring the H) shares either
its source or its target with a black edge, and thus cannot be used. We call such an edge
unusable.

This requires the orientation of the gray edges relative to a tentacle to be different on the
two ends of the tentacle, which is what the H achieves: one can verify by repeatedly finding
forced edges and deleting unusuable edges that any Hamiltonian cycle must use all black
edges and no gray edges in the H. Each tentacle representing an edge between two degree-4
breakable vertices will have such an H.

This reduction proves a weaker version of the theorem: Finding Hamiltonian cycles on a
directed grid graph is ASP-complete. It remains to fill all of the unused space to make a
rectangular grid graph.

If we place each vertex gadget, H, and turn on the same parity, the construction lies
neatly on a 2 × 2 grid, and in particular the holes are made of 2 × 2 squares. Figure 6
indicates these squares in green. In addition, in each hole at least one of these squares is
adjacent to a forced edge: all black edges except a few in each H are forced,3 and each hole is
adjacent to a non-H section of tentacle provided we do not use any extremely short tentacles.

Pick one such 2 × 2 square, and add four new vertices to fill it. Assume that the adjacent
forced edge is the only outgoing edge from its source; the case where it is the only edge
pointing towards its target is similar but with directions reversed. This situation is illustrated
in Figure 7 (left), with the forced edge in blue. Now reverse the forced edge, and add new
edges as shown on the right of Figure 7 (omitting any edges between a vertex in the square
and a vertex outside it which doesn’t yet exist). It is straightforward to check that all gray
edges are unusable, so any Hamiltonian cycle must follow the blue path, which is equivalent
to the original forced edge but consumes the added vertices.

3 They all become forced after deleting some unusable edges, but it’s simpler to argue that hole filling
works with directly forced edges.
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Figure 7 Filling holes in a directed rectangular grid graph.

Figure 8 Figure 6 after some hole filling.

Filling this small portion of hole preserves the fact that every hole has a 2 × 2 square
adjacent to a forced edge, since the three relevant blue edges are forced. Thus we can repeat
this process until all holes are filled, ultimately filling each hole with paths that outline a
spanning forest of the 2 × 2 squares. Figure 8 shows what this looks like after filling (the
visible portion of) the top middle hole in Figure 6.

The result is a directed rectangular grid graph which is equivalent to the original directed
grid graph for the purposes of Hamiltonian cycles. Hence Hamiltonian cycles in the final
graph correspond to solutions to the instance of TRVB. ◀

4.2 Max-Degree-3 Spanning Subgraphs of Rectangular Grid Graphs
▶ Theorem 15. Let G be a directed max-degree-3 spanning subgraph of a rectangular grid
graph. Consider the promise problem of finding an undirected Hamiltonian cycle on G,
subject to the promise that all such cycles respect the given edge directions; that is, they would
also be valid directed Hamiltonian cycles of G. This promise problem is ASP-complete.

Proof. We modify the construction from Theorem 14 by simply removing all of the gray
edges. Inspection of Figure 8 reveals that every vertex is incident to at most three non-gray
edges: vertices along tentacles have two forced edges, and vertices in degree-4 vertex gadgets
have one forced edge and two optional red edges. Filling holes preserves the non-gray degree
of existing vertices and adds vertices with two non-gray edges.
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Figure 9 Figure 8 after removing gray edges.

Figure 10 Figure 9 after forgetting directions of edges.

In the previous proofs, all of the possible solutions only used non-gray edges. Thus, we
can adapt the previous reduction by simply deleting all gray edges, obtaining a directed
max-degree-3 spanning subgraph of a rectangular grid graph. For instance, doing this to
Figure 8 yields Figure 9, which also has the advantage of being easier to read.

By the proof of Lemma 4, directed Hamiltonian cycles on G are the same as undirected
Hamiltonian cycles on G, and the set of such cycles is in bijection with solutions of the
original TRVB instance. ◀

▶ Corollary 16. Finding Hamiltonian cycles on a directed max-degree-3 spanning subgraph
of a rectangular grid graph is ASP-complete.
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Figure 11 A breakable degree-6 TRVB vertex gadget for undirected max-degree-3 spanning
subgraphs of rectangular grid graphs.

Proof. This is a special case of Theorem 15. ◀

In the undirected case, we can strengthen the assumption about forced edges. For
undirected graphs, an edge is forced if it is incident to a degree-2 vertex, since both edges
incident to such a vertex must be used in any Hamiltonian cycle. A degree-3 vertex in a
subgraph of a grid graph has two edges in opposite directions, which we call side edges, and
a third edge between them, which we call the center edge. In this case, we can assume not
only that each degree-3 vertex has a forced edge, but that this forced edge is a side edge,
further reducing the number of distinct vertices we need to simulate for an application.

▶ Theorem 17. Finding Hamiltonian cycles on an undirected max-degree-3 spanning subgraph
of a rectangular grid graph is ASP-complete, even when every degree-3 vertex has a forced
side edge.

Proof. We are not able to directly build breakable degree-4 TRVB vertices under these
constraints. However, we are able to build a breakable degree-6 vertex, so we reduce from
planar ({6}, ∅)-TRVB, which was shown ASP-complete in Theorem 8.

Our breakable degree-6 vertex gadget is shown in Figure 11. Black edges are forced, and
red edges are optional. Note that vertices in tentacles all have degree 2, and each degree-3
vertex inside the vertex gadget has a forced side edge. This is equivalent to the cycle of red
edges turning at every vertex. The vertex gadget has exactly two local solutions, which each
use alternating red edges.

As before, blue tentacles are inside the cycle, and the yellow region is inside the cycle
in one of the local solutions, corresponding to not breaking the TRVB vertex. We have
new color as well: the green squares are inside the cycle in the other solution, when the
TRVB vertex is broken. It is clear by inspection that the yellow local solution connects all
six tentacles, and the green local solution disconnects them all.

Finally, we connect vertex gadgets along tentacles and fill holes in exactly the same way
as before. Filling holes uses only degree-2 vertices, so it does not introduce degree-3 vertices
without forced side edges. ◀
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Figure 12 A breakable degree-4 TRVB vertex
gadget for undirected max-degree-3 grid graphs. Re-
moving the vertices highlighted in white gives an
unbreakable degree-4 vertex gadget.

Figure 13 A breakable degree-4 TRVB
vertex gadget for directed max-degree-3
grid graphs.

4.3 Max-Degree-3 Grid Graphs
▶ Theorem 18. Finding Hamiltonian cycles on an undirected max-degree-3 grid graph is
ASP-complete, even when every vertex has a forced edge.

Proof. This proof is sketched, and its key gadget is shown, by Demaine and Rudoy [11], but
at the time TRVB was not known to be ASP-complete, so it was purely a simpler proof of
NP-hardness used to motivate the usefulness of TRVB.

Like most of our other proofs, we reduce from planar ({4}, {1})-TRVB. Our breakable
degree-4 vertex gadget is shown in Figure 12. The main difficulty in this case is that we
need the paths on each side of a tentacle to be separated by distance at least 2, so that the
cycle cannot cross between the two sides (and all tentacle edges are forced). As usual, black
edges are forced, and there are exactly two solutions which each use alternating red edges.
One solution puts the green region inside the cycle, and one puts the yellow region inside the
cycle, corresponding to breaking and not breaking the vertex, respectively.

A degree-1 unbreakable vertex can be made by simply “capping off” a tentacle. Alternat-
ively, we could reduce from ({4}, {4})-TRVB, and construct a degree-4 unbreakable vertex
gadget by removing the vertices highlighted in white from Figure 12. ◀

▶ Theorem 19. Finding Hamiltonian cycles on a directed max-degree-3 grid graph is ASP-
complete, even when every vertex has a forced edge.

Proof. The proof is extremely similar to the previous proof. We again reduce from ({4}, {1})-
TRVB. Our degree-4 breakable vertex gadget is shown in Figure 13, and a degree-1 unbreak-
able vertex can again be made by capping off a tentacle. Black edges are forced and gray
edges are unusable. We again keep the sides of a tentacle apart from each other (away from
vertex gadgets) so that a cycle cannot leak between them.

As before, there are exactly two solutions to the vertex gadget, one of which put the
yellow square inside the cycle corresponding to leaving the TRVB vertex unbroken. ◀

5 T-Metacells

Many puzzle genres which involve drawing a single loop are proven hard using reductions
from various forms of grid graph Hamiltonicity. Tang [32] described a simple “T-metacell”
framework for proving NP-hardness of these puzzles using grid graph Hamiltonicity. A
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T-metacell is a gadget which represents a single degree-3 vertex in a grid graph. Each
T-metacell is a (usually square) tile with 3 exits (on 3 of the 4 sides) such that the loop
may traverse the gadget between any pair of exits. The gadget should be reflectable and
rotatable, and the loop may travel between adjacent T-metacells only when both have exits
along their shared border. Finally, the loop must be required to visit every T-metacell.

It’s straightforward to see how T-metacells can simulate degree-3 vertices in a Hamilton-
icity reduction; Tang showed that they can also simulate degree-2 vertices. Let G be a
subgraph of a grid graph in which every vertex has degree 2 or 3. Degree-3 vertices of G can
be replaced directly with T-metacells. To handle degree-2 vertices, consider the graph H on
the same vertex set as G which has an edge between two lattice-adjacent vertices precisely
when G is missing that edge. Then H consists of degree-1 and degree-2 vertices. Orient the
edges of H into directed paths and cycles such that each vertex has a maximum indegree
and outdegree of 1. Each degree-2 vertex of G can now be replaced by a T-metacell with its
extra edge facing in the direction of the outward-pointing edge from that vertex in H. This
ensures that this extra exit will always be facing a non-exit in the adjacent cell, so only the
intended edges of G may be used by the loop.

We apply our results from Section 4 to show that solving T-metacell problems is ASP-
complete, instead of just NP-hard. We extend the framework to allow for some exits of a
T-metacell to be directed, meaning that the loop must have a consistent orientation which
agree with the directions of the exits it uses. We also allow for T-metacells to have one forced
exit through which the loop must pass. Note that when all three exits are directed, these
necessarily create a forced exit: there must be either a lone exit directed inwards or a lone
exit directed outwards, which in either case must be chosen. T-metacells with forced edges
can be classified into two categories: symmetric and asymmetric. A symmetric T-metacell
has its two unforced edges directly opposite each other, while an asymmetric T-metacell has
its two unforced edges adjacent. We use this classification to reduce the number of distinct
gadgets which need to be constructed to apply the framework.

▶ Corollary 20. Finding Hamiltonian cycles on a rectangular grid of undirected T-metacells
is ASP-complete.

Proof. We reduce from finding Hamiltonian cycles on max-degree-3 spanning subgraphs of
rectangular grid graphs (Theorem 17). Replace each vertex with a undirected T-metacell,
handling degree-2 vertices as described above. ◀

▶ Corollary 21. Finding Hamiltonian cycles on a rectangular grid of required-edge directed
T-metacells is ASP-complete.

Proof. We reduce from finding Hamiltonian cycles on directed max-degree-3 spanning
subgraphs of rectangular grid graphs (Corollary 16). Place a T-metacell for each degree-3
vertex, and handle degree-2 vertices in the same way as above. The direction of the unusable
edge on a T-metacell at a degree-2 vertex can be arbitrary. ◀

▶ Corollary 22. Finding Hamiltonian cycles on a rectangular grid of asymmetric required-edge
undirected T-metacells is ASP-complete.

Proof. In the proof of Theorem 17, every degree-3 vertex conveniently has a forced side
edge, which is equivalent to being a asymmetric undirected T-metacell. Degree-2 vertices
require a bit more care, but are not an obstruction: after deciding how to orient T-metacells
as described above, note that for each degree-2 vertex, at least one of its edges is a side edge
of the T-metacell. So we can simply place a T-metacell with that side edge forced. ◀
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▶ Corollary 23. Finding Hamiltonian cycles on a rectangular grid of required-edge directed
asymmetric T-metacells and required-edge undirected symmetric T-metacells is ASP-complete.

Proof. We reduce from the promise problem of finding a Hamiltonian cycle of a directed
max-degree-3 spanning subgraph of a rectangular grid graph, with the promise that every
undirected Hamiltonian cycle is a valid directed Hamiltonian cycle (Theorem 15). We
perform the same replacement of vertices with T-metacells as in Corollary 21, except that
the symmetric T-metacells are undirected. We claim that Hamiltonian cycles of the original
graph are in bijection with solutions to the T-metacell instance. A directed Hamiltonian cycle
of the original graph clearly solves the T-metacell instance, since it correctly passes through
the directions on the directed T-metacells. On the other hand, a solution to the T-metacell
instance is necessarily an undirected Hamiltonian cycle of the original graph; by the promise,
directed Hamiltonian cycles and undirected Hamiltonian cycles are the same. ◀

6 Applications

We apply our improved T-metacell framework to a variety of pencil-and-paper logic puzzles
implemented by the online puzzle-solving interface “puzz.link” [23]. This web resource
implements more than 240 different logic puzzles. It includes most genres published by the
Japanese publisher Nikoli, whose puzzles have a long history of analysis from a computational
complexity perspective [30] [37] [3] [35] [26] [32], as well as many others in a similar style.

We improve existing NP-hardness results for pencil-and-paper logic puzzles to ASP-
completeness, and give new ASP-completeness results. Many of the ASP-completeness proofs
consist of just a single T-metacell, demonstrating the ease of applying the framework for
proving ASP-completeness. The main additional requirement when designing a T-metacell
gadget for ASP-completeness proofs is that it be “parsimonious”: for each pair of exits, there
must be a unique local solution where the loop passes through those exits.

Full explanations for each proof can be found in the full version of this paper; due to
space constraints, we present an abridged gallery of reductions here.

Figure 14 shows the gadgets for improving prior NP-hardness results to ASP-completeness,
most of which consist of minor adjustments to existing T-metacells in [32] to ensure parsimony.
We also make similar improvements for Yajilin, Moon and Sun, and Simple Loop via direct
reductions from Hamiltonicity.

Figure 15 shows the gadgets for new NP- and ASP-completeness reuslts. We also
give similar results for Dotchi Loop, Ovotovata, and Koburin via direct reductions from
Hamiltonicity.

Finally, some puzzle genres were proved NP-complete by Tang, but we have not yet found
parsimonious adaptations of the corresponding T-metacells. These genres are Angle Loop,
Double Back, Scrin, Icebarn, and Icelom 2.
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“beat” the NES version of Tetris by reaching a killscreen [6].

The rules of Tetris are simple. In each round, a tetromino piece (one of , , ,

, , , ) spawns at the top of a grid and periodically moves down one unit,
assuming the squares below the piece are empty. The player can repeatedly move this piece
one unit left, one unit right, or one unit down, or rotate the piece by ±90◦. When any part
of the piece rests on top of a filled square for long enough that it triggers an automatic
downward move, the piece “locks” in place, and stops moving. If a piece stops above a
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24:2 Tetris with Few Piece Types

Table 1 Our NP-hardness results for Tetris clearing assuming SRS. Each entry in a specific row
and column corresponds to the proposition for the hardness of the two-element subset consisting of
the row piece and column piece (for example, the entry “Prop. 6” in row and column
indicates that Proposition 6 proves hardness for the subset { , }). Letters in parentheses
denote additional models (“H” for “hard drop only”, “G” for “20G”); question mark indicates a
conjecture for hardness under that additional model.

− Prop. 6 (H) Prop. 6 (H) Prop. 6 Prop. 6 Prop. 6 (H, G) Prop. 6 (H, G)
− − Prop. 9 Prop. 8 Prop. 8 Prop. 7 Prop. 7
− − − Prop. 10 Prop. 10 Prop. 12 Prop. 12
− − − − Prop. 11 Prop. 13 Prop. 12
− − − − − Prop. 12 Prop. 13
− − − − − − Prop. 14 (G?)
− − − − − − −

piece spawns at the top of the grid, and play continues. Completely filling a row causes the
row to clear, and all squares above that row move downward by one unit. For more detailed
rules, see [16].

To study Tetris from a computational complexity perspective, we generally assume that
the player is given a sequence of pieces and an initial board state of filled cells, making the
game perfect information (as introduced in [4]). The two main objectives we consider here are
“clearing” and “survival” (as introduced in [7]). In Tetris clearing, we want to determine
whether we can clear the entire board after placing all the given pieces. In Tetris survival,
we want to determine whether the player can avoid losing before placing all the given pieces.
Previous work shows that these problems are NP-complete, even to approximate various
metrics within n1−ϵ [4], or with only 8 columns or 4 rows [2], or with additional constraints
on drops [12], or with k-ominoes for k ≥ 3 clearing or k ≥ 4 survival [7].

1.1 Our Results
One of the open problems posed in the original paper proving Tetris NP-hard twenty years
ago [4] is to determine which subsets of the seven Tetris piece types { , , , ,

, , } suffice for NP-hardness, and which admit a polynomial-time algorithm. All
existing Tetris NP-hardness proofs [4, 2, 12] use at least five of the seven piece types. In
particular, [4, Section 6.2] mentions various sets of five piece types that suffice. What about
fewer piece types?

Our main results are the first to make progress on this question: for any size-2 subset
A ⊆ { , , , , , , }, Tetris clearing is NP-complete with pieces
restricted to A. Most pairs of piece types require different constructions for their reductions;
refer to Table 1. Our results require us to specify more details of the piece rotation model,
specifically what happens when the player rotates a piece in a way that collides with a filled
square. We assume the Super Rotation System (SRS) [14], first introduced in the 2001
game Tetris Worlds and as part of the Tetris Company’s Tetris Guideline for how all modern
(2001+) Tetris games should behave [15].

For every size-2 subset A of piece types, we also establish #P-hardness for the corres-
ponding problem of counting the number of ways to clear the board. Here we distinguish
solutions by the final placement of each piece, not the sequence of moves to make those
placements (as long as the placement is valid). This definition lets us ignore e.g. the null
effect of moving a piece repeatedly left and right.
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For certain size-3 subsets of piece types, we further establish ASP-completeness for Tetris
clearing. Recall that an NP search problem is ASP-complete [17] if there is a parsimonious
reduction from all NP search problems (including a polynomial-time bijection between
solutions). In particular, ASP-completeness implies NP-hardness of finding another solution
given k solutions, for any k ≥ 0, as well as #P-completeness. These results hold for piece
types { , , } and { , , }.

We also study Tetris under two more restrictive models on piece moves:
Hard drops only: In this model, pieces do not move downward on their own, and if the
player moves a piece downward, the piece moves maximally downward before locking into
place (a hard drop maneuver). The player is still free to rotate or move the piece left
or right before hard-dropping the piece. This model is motivated by most Tetris games
awarding higher scores for hard drops, and was posed in [4].
20G: In this model, instead of periodically moving down one unit, all pieces move
maximally downward instantly and on their own, and the player is not allowed to control
how fast a piece moves downward. The player is still free to rotate or move the piece
left or right before the piece locks. This model is motivated by levels with the maximum
possible gravity, as in Level 20+ of regular Tetris with 20 rows [13].

For certain size-2 subsets of piece types, we establish NP-hardness of both Tetris survival
and clearing under either of these models. Table 1 labels which of our Tetris clearing results
hold in which models.

Along the way, we prove new results about 3-Partition and Numerical 3-Dimensional
Matching (3DM): both problems are strongly ASP-complete even when all integers are
assumed distinct. These results are of independent interest for ASP-hardness reductions.
Previously, these problems were known to be ASP-complete with multisets of integers [3],
and strongly NP-complete with distinct integers [10].

1.2 Outline
The structure of the rest of the paper is as follows. Section 2 details the Super Rotation
System (SRS), an important aspect of modern Tetris and used in our constructions. Section 3
proves ASP-completeness of 3-Partition with Distinct Integers and Numerical 3-Dimensional
Matching with Distinct Integers, two problems we reduce from. Section 4 discusses our
hardness results for Tetris clearing with SRS with only two piece types. Section 5 discusses
some Tetris survival results under the “hard drops only” and “20G” models. Section 6 proves
ASP-completeness of Tetris clearing with SRS.

2 Super Rotation System (SRS)

Most previous Tetris results are not sensitive to exactly how Tetris pieces rotation: most
reasonable rotation models work [4, Section 6.4]. By contrast, many of the results in this
paper focus specifically on (and require) the Super Rotation System (SRS) [14], defined
as follows.

Each piece has a defined rotation center , as indicated by dots in Figure 1, except for
and , whose rotation centers are the centers of the 4 × 4 squares in Figure 1. When

unobstructed, all non- tetrominoes will rotate purely about the rotation center (note
that pieces cannot rotate). The key feature about SRS is kicking: if a tetromino is
obstructed when a rotation is attempted, the game will attempt to “kick” the tetromino into
one of four alternate positions, each tested sequentially; if all four positions do not work,
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24:4 Tetris with Few Piece Types

then the rotation will fail. See Figure 2 for an example of this kicking process. The full data
for wall kicks can be found in Tables 2 and 3, and at [14]. Of note is that SRS wall kicks
are vertically symmetric for all pieces or pairs of pieces (i.e., ↔ and ↔ )
except for the piece, so all rotations can be mirrored.

Figure 1 All tetromino pieces, in order from top to bottom: , , , , , ,
. The first column is the default orientation of a piece upon spawning in; each column to the

right indicates a 90◦ rotation clockwise about the rotation center of the piece.

(a) (b) (c)

Figure 2 An example of the SRS kick system. Suppose the piece in (a) is being rotated
90◦ counter-clockwise. Test 1 (which is (0, 0)) would fail, due to the dark gray square shown in (b).
Test 2 (which is (+1, 0)) would succeed, as shown in (c), and so the piece would rotate to the
position in (c).

This system of kicking tetrominoes during rotations allows for moves which are often
called twists or spins. All the spins that we utilize are detailed in the appendix of the full
version of our paper.

3 3-Partition and Numerical 3DM with Distinct Integers

Our reductions to Tetris are all from one of the following two problems, which are strength-
enings of two standard strongly NP-complete problems:

▶ Definition 1 (3-Partition with Distinct Integers). Given a set A = {a1, a2, . . . , an} of n

distinct positive integers such that t
4 < ai < t

2 for each i, where t = 3
n

∑n
i=1 ai, determine

whether there is a partition of A into n
3 groups D1, . . . , Dn/3 (each necessarily of size 3)

having the same sum
∑

x∈Dj
x = t.
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Table 2 Kick data for , , , , and pieces. 0 indicates the default orientation,
and R, 2, and L indicate the orientation reached from a 90◦, 180◦, and 270◦ rotation clockwise
(respectively) from the default orientation. An ordered pair (a, b) denotes a translation of the center
by a units in the x direction and b units in the y direction. Positive x direction is rightwards, and
positive y direction is upward.

Test 1 Test 2 Test 3 Test 4 Test 5
0 → R (0, 0) (−1, 0) (−1, +1) (0, −2) (−1, −2)
R → 0 (0, 0) (+1, 0) (+1, −1) (0, +2) (+1, +2)
R → 2 (0, 0) (+1, 0) (+1, −1) (0, +2) (+1, +2)
2 → R (0, 0) (−1, 0) (−1, +1) (0, −2) (−1, −2)
2 → L (0, 0) (+1, 0) (+1, +1) (0, −2) (+1, −2)
L → 2 (0, 0) (−1, 0) (−1, −1) (0, +2) (−1, +2)
L → 0 (0, 0) (−1, 0) (−1, −1) (0, +2) (−1, +2)
0 → L (0, 0) (+1, 0) (+1, +1) (0, −2) (+1, −2)

Table 3 Kick data for pieces, with same notation as Table 2.

Test 1 Test 2 Test 3 Test 4 Test 5
0 → R (0, 0) (−2, 0) (+1, 0) (−2, −1) (+1, +2)
R → 0 (0, 0) (+2, 0) (−1, 0) (+2, +1) (−1, −2)
R → 2 (0, 0) (−1, 0) (+2, 0) (−1, +2) (+2, −1)
2 → R (0, 0) (+1, 0) (−2, 0) (+1, −2) (−2, +1)
2 → L (0, 0) (+2, 0) (−1, 0) (+2, +1) (−1, −2)
L → 2 (0, 0) (−2, 0) (+1, 0) (−2, −1) (+1, +2)
L → 0 (0, 0) (+1, 0) (−2, 0) (+1, −2) (−2, +1)
0 → L (0, 0) (−1, 0) (+2, 0) (−1, +2) (+2, −1)

▶ Problem 2 (Numerical 3-Dimensional Matching (3DM) with Distinct Integers). Given
three sets

A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn}, and C = {c1, c2, . . . , cn}

of n positive integers, where all 3n integers are distinct, and a target sum t = 1
n

∑n
i=1(ai +

bi + ci), determine whether there is a partition of A ∪ B ∪ C into n groups D1, . . . , Dn, each
with exactly one element from each of A, B, and C, and

∑
x∈Dj

x = t for all j.

Without the “distinct” and “set” conditions, both problems are well-known to be strongly
NP-complete, meaning that the problem is NP-hard even if the ai integers are bounded by
a polynomial in n. This property makes it feasible to represent each integer ai (and t) in
unary, which is the approach taken by all past Tetris NP-hardness proofs [4, 7, 2, 12], as
then the total reduction size is still polynomial in n.

We want to ensure all integers are distinct in order to have more control over our reductions’
blowup in the number of solutions, as needed for #P- and ASP-hardness. Bosboom et al. [3]
proved that numerical 3DM is strongly ASP-complete when A is restricted to be a set, but
allowed for B and C to be multisets as usual, and did not forbid repeated integers between
A, B, C. Hulett, Will, and Woeginger [10] proved that both 3-Partition and Numerical
3DM remain strongly NP-hard with distinct integers. We extend their proof to obtain
ASP-completeness:

▶ Theorem 3. 3-Partition with Distinct Integers, and Numerical 3-Dimensional Matching
with Distinct Integers, are strongly ASP-complete.

To prove this result, we use the following intermediate problems (which are thus also
ASP-complete):
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24:6 Tetris with Few Piece Types

▶ Problem 4 (Positive 1-in-3SAT). Given a boolean formula in 3CNF (i.e., an and of
clauses consisting of 3 literals), where all literals are positive, does there exist an assignment
of the variables to either true or false such that each clause has exactly one literal set to true?

▶ Problem 5 (Tripartite Edge-Disjoint Triangle Partition). Given an undirected tripartite
graph G = (V, E), can we partition E into disjoint triangles?

Proof of Theorem 3. We give a chain of parsimonious reductions from 3SAT, which is
known to be ASP-complete [17]:
1. 3SAT → Positive 1-in-3SAT: Hunt, Marathe, Radhakrishnan, and Stearns [11,

Theorem 3.8] gave such a parsimonious reduction.2 See also [3, Lemma 2.1].
2. Positive 1-in-3SAT → Tripartite Edge-Disjoint Triangle Partition: We follow

a simplification of a reduction from FCP 1-in-3SAT to FCP Tripartite Edge-Disjoint
Triangle Partition [8, Theorem 12], which in turn is based on a reduction from 3SAT to
Tripartite Edge-Disjoint Triangle Partition [9]. By reducing from Positive 1-in-3SAT, we
simplify the reduction of [8] by avoiding negative literals.
We represent each variable by a sufficiently large triangular grid of vertices, with opposite
sides of a parallelogram identified to form a flat torus, as shown in Figure 3a. This grid
has exactly two solutions, corresponding to true (the triangles in Figure 3a) and false
(the triangles in Figure 3b); note that the two solutions consist of exactly the same edges,
and cover each exactly once. For each clause (x, y, z), we pick one triangle of positive
orientation, remove its edges, and unify the corresponding vertices of these triangles and
of the three neighboring triangles of negative orientation, as shown in Figure 3c. Exactly
one variable must choose the true state so as to cover the edges surrounding the unified
hole exactly once. By choosing the variable gadgets large enough, we can ensure that the
clause gadgets are disjoint from each other. Each gadget has a unique way to implement
a given assignment, so this reduction is parsimonious.

3. Tripartite Edge-Disjoint Triangle Partition → Numerical 3DM with Distinct
Integers: We combine a chain of reductions, from Triangle Edge-Disjoint Triangle
Partition to Latin Square Completion [5], and from Latin Square Completion to Numerical
3DM with Distinct Integers [10].
If U = {u1, u2, . . .}, V = {v1, v2, . . .}, W = {w1, w2, . . .} is the vertex tripartition, then
we do the following:

Let q = 2 max{|U |, |V |, |W |}, and let the target sum be t = 19q6.
Map each edge (ui, wk) to 2q6 + iq − k ∈ A.
Map each edge (vj , wk) to 7q6 + jq2 + k ∈ B.
Map each edge (ui, vj) to t − (9q6 + jq2 + iq) = 10q6 − jq2 − iq ∈ C.

The lemmas in [10] show that all the integers in A, B, and C are distinct (i.e., we have a
valid instance of Numerical 3DM with Distinct Integers); and that any triple summing
to t consists of one element each from A, B, and C, with the elements corresponding
to a triangle in the graph. Thus we obtain a bijection between triangle partitions and
Numerical 3DM solutions, i.e., the reduction is parsimonious.

4. Numerical 3DM with Distinct Integers → 3-Partition with Distinct Integers:
We use standard techniques to relate these problems. Convert each integer ai, bi, and ci

in Numerical 3DM to integers 8ai + 1, 8bi + 2, and 8ci − 3, respectively, in 3-Partition;

2 Their problem “1-Ex3MonoSat” is Positive 1-in-3SAT with the additional constraint that every clause
has exactly three literals. Their reduction is also planarity preserving, so chaining with their parsimonious
reduction from 3SAT to Planar 3SAT, we obtain that Planar 1-in-3SAT is also ASP-complete.
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A

A
B

B

(a) Variable gadget in true
state. A/B denote unifica-
tion to form torus.

A

A

B

B

(b) Variable gadget in false
state. A/B denote unifica-
tion to form torus.

(c) Clause gadget bringing together three variable gadgets.
Vertices connected by dashes are unified.

Figure 3 Reduction from Positive 1-in-3SAT to Tripartite Edge-Disjoint Triangle Partition.

and convert t to 8t. In particular, all integers are still distinct, because we scale up by a
factor of 8 and then shift values by less than 4. Furthermore, working modulo 8, every
triple of integers summing to t must take exactly one ai, one bj , and one ck. Therefore
we have a parsimonious reduction.

Composing these reductions, we obtain that 3-Partition with Distinct Integers, and
Numerical 3DM with Distinct Integers, are ASP-hard. Both problems are NP search
problems, so they are ASP-complete. ◀

4 Tetris with Two Piece Types

In this section, we will prove that for any size-2 subset A ⊆ { , , , , ,

, }, Tetris clearing with SRS is NP-hard, and the corresponding counting problem is
#P-hard, even if the sequence of pieces given to the player only contains the piece types in
A. We will also show that some of the reductions work under the “hard drop only” model
and the “20G” model. Refer to Table 1 for a table of all of our results.

All of our reductions are from 3-Partition with Distinct Integers and are in the same
flavor as the reduction for clearing 3-tris with rotation as given in the Total Tetris paper [7],
which we will use some terminology from. In particular, the reductions will involve a starting
board involving n

3 structures, which we will call “bottles”, of equal height of Θ(t · poly(n)),
spaced sufficiently far apart so that bottles do not interact with each other except for line
clears, and possibly along with an additional structure, which we will call a “finisher”, to
the right of the rightmost bottle.

Each bottle consists of a neck portion with n constant-sized “top segments”, a body
portion with t poly(n)-sized “units”, and possibly O(n) extra lines either above the neck
portion, between the “top segments”, between the neck portion and the body portion, and/or
below the body portion that get cleaned up after the rest of the lines. To simplify our
arguments, we make the size of each unit larger than the size of the neck portion.
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24:8 Tetris with Few Piece Types

The finisher will be a structure that specifically prevents the rows in the body portion
from clearing before all of the top segments are cleared, and is located in same rows as
the body portion of the bottles when required. We will use three types of finishers, a
finisher, an finisher (which is a vertically symmetric version of the finisher), and a

finisher, shown in Figure 4. Note that the finishers can be adapted to any number of
rows larger than 4, and there is exactly one way to clear each type of finisher.

(a) (b) (c)

Figure 4 The and finishers (the finisher can be obtained by reflecting the
finisher through a vertical line), and an example of the finisher next to a bottle (in the ,

setup).

For each element ai ∈ A, we create a sequence of pieces Si, which can be decomposed
into three subsequences:

Priming sequence: A piece sequence that, if used correctly, properly blocks all bottles
but one in the same “top segment”, and if used incorrectly, either directly “overflows” the
bottle (i.e., puts blocks above the line under which all of our pieces must go) or “clogs”
the bottle (i.e., improperly blocks the bottle and prevents the player from being able to
clear the lines necessary to re-open the bottle). For all of the bottle structures except
for the one for { , }, the pieces in the priming sequence cannot rotate or translate
below the topmost “top segment” under SRS, and any piece placed into a “top segment”
of a bottle prevents any piece in the filling sequence from reaching the body portion of
that bottle.
Filling sequence: A piece sequence of length Θ(ai) that “fills” ai units in the body
portion of the unblocked bottle. If there are not enough units left to fill, then the pieces
corresponding to one of the units will cause an overflow due to there not being enough
empty space in the neck portion for all of the pieces (using the fact that the size of each
unit is larger than the size of the neck portion).
Closing sequence: A piece sequence that properly clears the lines corresponding to the
“top segment” blocked by the priming sequence and resets the states of the neck portion
of the bottles (albeit with one less “top segment”).

We also have a finale sequence F , possibly the empty sequence, which helps clear any
finishers on the board and the remaining lines on the board after the lines corresponding to
the neck and body portions have been cleared.
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In this section, when we write a sequence of pieces, we will use parentheses around
sequences, commas between different piece types, and exponentiation to denote repeated
pieces of the same piece type. For example, a sequence written as ( 2, 3, ) consists
of 2 s, 3 s, and an , in that order. The sequence of pieces given to the player will
be of the form (S1, S2, . . . , Sn, F ).

4.1 General Argument
We provide a very general argument for why these reductions work. If there exists a valid
3-partition (D1, . . . , Dn/3) for {a1, a2, . . . , an}, then for each Si, determine the corresponding
ji such that ai ∈ Dji

, then use the priming sequence to block all bottles properly except for
the (ji)th one, the filling sequence to fill ai units in the body portion of the (ji)th bottle,
and the closing sequence to reset the states of the neck portion of the bottles. After all the
Si are used in this way, all lines corresponding to the “top segments” will be cleared as there
are n such “top segments” with each Si clearing exactly one of them, and each bottle will be
filled to exactly t units. Thus, in the case where there are no pieces in the finale sequence,
the lines corresponding to the body portions of the bottles will be cleared, meaning that
no lines remain and we have cleared the board, and in the case where there are pieces in
the finale sequence, the only lines that remain are those that can be cleared by the finale
sequence. Thus, the sequence (S1, S2, . . . , Sn, F ) can clear the board.

Conversely, if the sequence (S1, S2, . . . , Sn, F ) can clear the board, then we claim that
there is a corresponding 3-partition for {a1, a2, . . . , an}. In particular, for each Si, the
priming sequence must properly block all but one bottle, say the (ji)th bottle, forcing all
the pieces in the filling sequence into the (ji)th bottle. The filling sequence must then fill
exactly ai units in the (ji)th bottle before the closing sequence, and it must do so without
overfilling the body portion of the bottle, as otherwise there will be an overflow in that
bottle. In particular, this means that, for each 1 ≤ j ≤ n

3 , the sum of the ai corresponding
to the Sj that filled some units in the jth bottle must be at most t. However, since

∑
ai is

exactly t
(

n
3

)
, the sum of the ai corresponding to the Sj that filled some units in the jth

bottle must actually be exactly t. In other words, there is a way to partition the ai into n
3

subsets D1, . . . , Dn/3 such that the sum of the elements in each subset is t. Thus, there is a
corresponding 3-partition for {a1, a2, . . . , an}.

This general argument shows how yes instances of the two problems (3-Partition with
Distinct Integers, Tetris clearing with SRS and restricted piece types) are equivalent, and
hence that this reduction works. The rest of the subsections in this section show the bottle
structures for each size-2 subset of piece types. Due to space constraints, we omit detailed
construction-specific explanations; refer to the full version of our paper for more details.

4.2 Subsets with Pieces
First we show how the reduction in the Total Tetris paper [7] can be easily adapted to any
subset of pieces with pieces plus an additional piece type:

▶ Proposition 6. Tetris clearing with SRS is NP-hard, and the corresponding counting
problem is #P-hard, even if:

The type of pieces in the sequence given to the player is restricted to any of { , },
{ , }, { , }, { , }, { , }, or { , },
The model being considered is “hard drops only” and type of pieces in the sequence
given to the player is restricted to any of { , }, { , }, { , }, or
{ , }, or
The model being considered is “20G” and the type of pieces in the sequence given to the
player is restricted to either { , } or { , }.
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24:10 Tetris with Few Piece Types

Refer to Figure 5 for the bottle structures.

(a) (b) (c) (d) (e) (f)

Figure 5 The bottle structures for the subsets containing , including how the non-
piece must block a bottle during the priming and closing sequence.

4.3 Other Subsets with Pieces
We now move on to all the remaining subsets which contain pieces.

▶ Proposition 7. Tetris clearing with SRS is NP-hard, and the corresponding counting
problem is #P-hard, even if the type of pieces in the sequence given to the player is restricted
to either { , } or { , }.

Refer to Figure 6a, which shows the bottle structure for { , }. The bottle structure
for { , } can be obtained by reflecting the bottle structure for { , } through a
vertical line. We will also use a (or ) finisher in our setup to prevent rows in the
body portion from clearing early.

A demo of the { , } bottle structure can be found at https://jstris.jezevec10.
com/map/80188.

▶ Proposition 8. Tetris clearing with SRS is NP-hard, and the corresponding counting
problem is #P-hard, even if the type of pieces in the sequence given to the player is restricted
to either { , } or { , }.

Refer to Figure 6b, which shows the bottle structure for { , }. The bottle structure
for { , } can be obtained by reflecting the bottle structure for { , } through a
vertical line. We do not use a finisher in our setup.

A demo of the { , } bottle structure can be found at https://jstris.jezevec10.
com/map/81818.

▶ Proposition 9. Tetris clearing with SRS is NP-hard, and the corresponding counting
problem is #P-hard, even if the type of pieces in the sequence given to the player is restricted
to { , }.

https://jstris.jezevec10.com/map/80188
https://jstris.jezevec10.com/map/80188
https://jstris.jezevec10.com/map/81818
https://jstris.jezevec10.com/map/81818
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(a) { , }. (b) { , }. (c) { , }.

Figure 6 The bottle structures for the other subsets containing ; the bottle structures for
{ , } and { , } can be obtained by reflecting the bottle structures for { , } and
{ , } through a vertical line.

Refer to Figure 6c for the bottle structure. We will also use a finisher in our setup
to prevent rows in the body portion from clearing early.

A demo of the { , } bottle structure can be found at https://jstris.jezevec10.
com/map/80169.

4.4 Two-Element Subsets of { , , }
▶ Proposition 10. Tetris clearing with SRS is NP-hard, and the corresponding counting
problem is #P-hard, even if the type of pieces in the sequence given to the player is restricted
to either { , } or { , }.

Refer to Figure 7a, which shows the bottle structure for { , }. The bottle structure
for { , } can be obtained by reflecting the bottle structure for { , } through a
vertical line. We do not use a finisher in our setup.

A demo of the { , } bottle structure can be found at https://jstris.jezevec10.
com/map/80184.

▶ Proposition 11. Tetris clearing with SRS is NP-hard, and the corresponding counting
problem is #P-hard, even if the type of pieces in the sequence given to the player is restricted
to { , }.

Refer to Figure 7b for the bottle structure. We do not use a finisher in our setup.
A demo of the { , } bottle structure can be found at https://jstris.jezevec10.

com/map/80198.

4.5 Remaining Subsets with More Complex Structures
▶ Proposition 12. Tetris clearing with SRS is NP-hard, and the corresponding counting
problem is #P-hard, even if the type of pieces in the sequence given to the player is restricted
to any of { , }, { , }, { , }, or { , }.
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(a) { , }. (b) { , }.

Figure 7 The bottle structures for the two-element subsets of { , , }; the bottle
structure for { , } can be obtained by reflecting the bottle structure for { , } through
a vertical line.

Refer to Figure 8a, which shows the bottle structure for { , } and { , }.
The bottle structure for { , } and { , } can be obtained by reflecting the
bottle structure for { , } and { , } through a vertical line. We will also use a

(or ) finisher in our setup to prevent rows in the body portion from clearing early.
A demo of the { , } bottle structure can be found at https://jstris.jezevec10.

com/map/80205.

▶ Proposition 13. Tetris clearing with SRS is NP-hard, and the corresponding counting
problem is #P-hard, even if the type of pieces in the sequence given to the player is restricted
to either { , } or { , }.

Refer to Figure 8b, which shows the bottle structure for { , }. The bottle structure
for { , } can be obtained by reflecting the bottle structure for { , } through a
vertical line. We will also use a (or ) finisher in our setup to prevent rows in the
body portion from clearing early.

A demo of the { , } bottle structure can be found at https://jstris.jezevec10.
com/map/83069.

▶ Proposition 14. Tetris clearing with SRS is NP-hard, and the corresponding counting
problem is #P-hard, even if the type of pieces in the sequence given to the player is restricted
to { , }.

Refer to Figure 8c(a) for the bottle structure for { , }. We will also use a
finisher in our setup to prevent rows in the body portion from clearing early.

A demo of the { , } bottle structure can be found at https://jstris.jezevec10.
com/map/80195.

We also note the following:

▶ Conjecture 15. The reduction in the proof of Proposition 14 works even if pieces experience
20G gravity.

https://jstris.jezevec10.com/map/80205
https://jstris.jezevec10.com/map/80205
https://jstris.jezevec10.com/map/83069
https://jstris.jezevec10.com/map/83069
https://jstris.jezevec10.com/map/80195
https://jstris.jezevec10.com/map/80195
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(a) { , },{ , }. (b) { , }. (c) { , }.

Figure 8 The bottle structures for the other subsets containing ; the bottle structure for
{ , } and { , } can be obtained by reflecting the bottle structure for { , }
and { , } through a vertical line, and the bottle structure for { , } can be obtained
by reflecting the bottle structure for { , } through a vertical line.

4.6 Putting It All Together
Combining all of these results, we get the following result:

▶ Theorem 16. For any size-2 subset A ⊆ { , , , , , , }, Tetris
clearing with SRS is NP-hard, and the corresponding counting problem is #P-hard, even if
the type of pieces in the sequence given to the player is restricted to the piece types in A.

Proof. Propositions 6, 7, 8, 9, 10, 11, 12, 13, and 14 cover all size-2 subsets of piece types,
as shown in Table 1; combining all of the reductions, we obtain the desired result. ◀

▶ Remark 17. All of our reductions involve a linear-factor blowup in the ai for the filling
sequences (i.e., we use Θ(nai) pieces in the filling sequences); this makes it easier to argue
about what happens when an overfill happens and makes the bottle analogy more fitting
(since the neck portion is smaller while the body portion is much larger) but makes our
reductions somewhat inefficient. Perhaps it is possible to reduce the blowup to a constant
factor, though the argument may be a bit more complex.

5 Tetris Survival: Hard Drops Only and 20G

The previous section mentions NP-hardness of Tetris clearing under the “hard drops only”
and “20G” Tetris models. Previous results about general Tetris [7, 2] have also proven
NP-hardness of Tetris survival, so in this section, we prove that, in both of these vari-
ants, Tetris survival is NP-hard using { , } pieces. This improves upon a result by
Temprano [12] which proves hardness for “hard drops only” mode using the piece subset
{ , , , , }.

▶ Theorem 18. Tetris survival is NP-complete in the “hard drops only” and “20G” game
modes, even if the type of pieces in the sequence given to the player is restricted to { , }.

Proof. We reduce from 3-Partition with Distinct Integers using a similar bottle structure to
other proofs in this paper. From a 3-Partition with Distinct Integers instance, we create a
setup consisting of n

3 width 1 buckets, each of height 4t, separated by width 1 columns. In
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addition, we create a bucket of height t − 1 on the left which is blocked by a single square
and has an open square on the upper left diagonal. We add one additional column on the
left to obtain an even width board. We leave two rows at the top of the board empty. See
Figure 9(a) for details. Each ai is encoded by the sequence ( n/3+1, ai , ).

(a) (b) (c)

(d) (e) (f)

Figure 9 The bucket structure for “hard drops only” and “20G” Tetris modes. (b) shows how
beginning sequence must block all but one bucket. (c) shows the result of a filling sequence. (d)
shows how the closing sequence clears the top two rows. (e) shows a full board. (f) shows improper
handling during the priming sequence.

The priming sequence is ( n/3+1). Due to parity constraints, the player is forced to
block all but one of the buckets using these pieces. They can choose to leave either one
two-block wide gap or two one-block wide gaps in the top two rows. However, if they choose
to leave one-block gaps, they will create spaces that can never be filled without overflowing
the screen and causing a game loss (see the squares highlighted in red in Figure 9(f)), so we
can assume that they will leave a 2 × 2 gap, as shown in Figure 9(b).

The filling sequence is ( ai); the pieces must be placed in the pre-selected
bucket, as shown in Figure 9(c). If pieces are not placed in accordance with a correct partition,
then there will at some point be an extra piece which does not fit in the open bucket.
This will cause the player to lose as an piece has length 4 and cannot fit in the 2 × 2
gap in the top 2 rows (note that no piece will stick partially out of a bucket since each
bucket has a height that is a multiple of 4).

The closing sequence is ( ). The piece can only fit in the 2 × 2 square formed
during the priming sequence (see Figure 9(e)), and it clears the top two rows, resetting the
board to the initial state, except with a somewhat more filled bucket.

Once the player has received the entire sequence corresponding to each number in the
3-partition instance, including the final closing piece, the entire board will be full (see Figure
9(e)), with the exception of the extra inaccessible bucket. Because of this, the player must
have filled each of the buckets to exactly the right height, solving the 3-partition instance,
otherwise they would have lost.
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For the entire duration of this sequence, every piece can be hard dropped into place as
there are no overhangs in any of the buckets. Furthermore, each piece can be successfully
maneuvered under 20G conditions. The pieces cannot fall down any buckets, so they
can be safely slid to any location in the top 2 rows, and the pieces can move over the
placed pieces to the only open bucket. ◀

▶ Corollary 19. The above reduction can be extended to NP-hardness for board clearing
under “hard drops only” or “20G” conditions if we also allow for pieces.

▶ Remark 20. We have already proved that Tetris clearing under the “hard drops only” and
“20G” models is hard with just two types of pieces. The primary reason for including hardness
with a larger set of pieces is that this shows that, in both game modes, there is a board
configuration and subset of pieces where the problems of surviving and clearing the board
are both hard at the same time. In addition, our Tetris clearing results under the “20G”
model does not include any proper subsets of { , , }, so this result is interesting
in its own right.

Proof. We begin with the above proof that survivability with { , } is hard. We
extend the sequence with the finale sequence ( , t, 2n/3, 3). Figure 10 shows
the clearing process. We begin by using the first piece to open the inaccessible bucket
by clearing a row. We then use the pieces to fill the previously inaccessible bucket,
clearing all but the final two rows in the process. The final piece protrudes one square
from its bucket because of the row cleared by the first . We use the pieces to fill the
2n
3 × 4 space on the right of the board. Finally, we place the remaining three pieces to

fill the remaining space and completely clear the board. All of these pieces can be placed in
both special game modes. ◀

(a) (b) (c)

Figure 10 The clearing procedure for “hard drops only” and “20G” using { , , }.

6 ASP-Completeness of Tetris

Even though the reductions in Section 4 are sufficient to prove #P-hardness, the reductions
are not parsimonious, so they cannot be used to prove ASP-completeness. Indeed, the
“blocking” bottles paradigm likely cannot be used to show ASP-completeness as there are
many ways to permute the pieces that block all but one bottle. Thus, for ASP-completeness,
we turn back to the “priming” buckets paradigm in [4]:

▶ Theorem 21. Tetris clearing with SRS is ASP-complete even if the type of pieces in the
sequence given to the player is restricted to either { , , } or { , , }.
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Proof. First we discuss the { , , } case. We give a parsimonious reduction from
Numerical 3-Dimensional Matching with Distinct Integers; refer to Figure 11(a), which shows
the bucket structure plus rightmost columns for { , , }.

(a) (b) (c)

(d) (e)

Figure 11 The bucket structure plus rightmost columns for { , , }. (b) shows how
the piece must prime a bucket (requires an spin) and how the remainder of the pieces
in a sequence must fit in the bucket (m = 2 here). (c) shows how the board looks like before the
finale sequence. (d–e) show how the pieces in the finale sequence must be placed (requires an
spin).

Here, a “unit” is the pattern that repeats every four rows. A positive integer m is encoded
by the sequence of pieces ( , ( , , )m−1, , ). The finale sequence is
( , N ), where N = poly(nt) is much larger than the height of the buckets, and is
used to clear the rightmost columns after the buckets have been filled.

In this case, the piece serves as the “primer”, and must be placed as indicated
in Figure 11(b) (the placement is possible due to spins). The pieces cannot be
placed in a non-primed bucket without blocking off certain holes, particularly the squares in
which an piece or an piece must be placed, and misplacing an piece (i.e.,
putting it in a different, non-primed bucket, putting it where the piece goes during the
finale sequence, or putting it too high in the bucket) causes the next two pieces to block
off squares in which an piece or an piece must be placed. Thus, once the
piece is placed in a bucket, the placements of the rest of the pieces encoding the positive
integer m are forced. Further discussion on and figures for improper piece placements can be
found in the full version of our paper.

Lastly, to make the reduction parsimonious, from the instance

A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn}, and C = {c1, c2, . . . , cn}

of Numerical 3-Dimensional Matching with Distinct Integers, we scale the ai, bi, and ci and
add/subtract constants such that each group must consist of exactly one ai, one bj , and
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one ck (i.e., no group with at least two elements from any of A, B, or C can sum to the
target sum). In addition, we “pre-fill” all of the buckets so that the ith bucket from the left
is already filled up to ai units, and the sequence of pieces given to the player consist only
of the pieces in the bi sequences, the pieces in the ci sequences, and the pieces in the finale
sequence. This ensures that the subsets have a fixed ordering and must consist of exactly one
ai, one bj , and one ck. Combined with the fact that all the piece placements after each
piece in a sequence encoding a positive integer are forced, this means that each solution to
the Numerical 3-Dimensional Matching instance corresponds to exactly one way to clear the
Tetris board, and vice versa.

Therefore, we have a parsimonious reduction from Numerical 3-Dimensional Matching
with Distinct Integers to Tetris clearing with { , , }, meaning that Tetris clearing
with SRS is ASP-complete even if the type of pieces in the sequence given to the player is
restricted to { , , }.

We get a similar argument for { , , } by vertical symmetry; the spin
required still works when mirrored even though the kick tests for are not vertically
symmetric. ◀

Demos of the bucket structure can be found at https://jstris.jezevec10.com/
map/80170 for { , , } and at https://jstris.jezevec10.com/map/83325 for
{ , , }.

7 Open Problems

One big open problem that still remains is the computational complexity of Tetris clearing
with SRS if the player is only given one piece type (for example, if the sequence consists
of entirely pieces). In this case, the “blocking” bottles paradigm no longer works,
because the same piece type cannot be used both to block and to fill bottles without the
reduction breaking, so a proof of hardness would involve an entirely different setup. It is also
possible that Tetris clearing with SRS and with only one piece type is in P. For example, [4]
conjectures polynomial time for the piece type.

Similarly, it is open whether or not Tetris clearing with SRS is ASP-complete for subsets
of pieces that are not supersets of { , , } or { , , }. One could likely
construct similar structures for other 3-piece subsets, but arguing whether Tetris clearing
with SRS is ASP-complete for 1- or 2-piece subsets may require different ideas.

Some open questions arise regarding whether our results can be extended if we consider
different objectives or add additional features. For example, can we establish results for
2-piece subsets, similar to those in Section 4, for Tetris survival? If we add a “holding”
function, where the player can put one piece aside for later use, can get similar results?

Modern variants of Tetris also use different random generators to ensure that the player
doesn’t receive the same piece arbitrarily many times in a row. One of the simplest random
generators is called a 7-bag randomizer . For this randomizer, the sequence of pieces is
divided into groups (or “bags”) of 7, each group containing one of each tetromino in one of
7! = 5,040 possible orderings. Can we show NP-hardness even if the sequence of pieces has
to be able to be generated from this randomizer?
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Abstract
We study three problems related to the computational complexity of the popular game Minesweeper.
The first is consistency: given a set of clues, is there any arrangement of mines that satisfies it?
This problem has been known to be NP-complete since 2000 [4], but our framework proves it as a
side effect. The second is inference: given a set of clues, is there any cell that the player can prove
is safe? The coNP-completeness of this problem has been in the literature since 2011 [6], but we
discovered a flaw that we believe is present in all published results, and we provide a fixed proof.
Finally, the third is solvability: given the full state of a Minesweeper game, can the player win the
game by safely clicking all non-mine cells? This problem has not yet been studied, and we prove
that it is coNP-complete.
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1 Introduction

The puzzle-based video game Minesweeper was popularized by its inclusion in the default
installation of Windows 3.1 in 1992, and to this day is one of the most widely recognizable
computer games. Though the premise is very simple, it has spawned an endless stream of
spinoffs, and a number of communities dedicated to challenges such as completing a randomly
generated game as quickly as possible.

From a computational complexity perspective, Minesweeper is interesting in that there
are multiple natural decision problems to study. The simplest is consistency (“given some
clues, is there a possible arrangement of mines?”), which was proved NP-complete in 2000 [4].

But consistency doesn’t capture the essence of Minesweeper as a game, where the player
has some partial information and tries to find a cell that they can click on safely, leading
to more information. This suggests the inference problem (“given some clues, is there a
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cell that is provably safe?”), which was shown coNP-complete in 2011 [6]. Unfortunately,
this proof of coNP-hardness of Minesweeper inference is incorrect, and Thieme and Basten’s
proof [7], which is designed to use very small gadgets, suffers from the same issue.

While inference asks about a single “turn” of Minesweeper, it is also natural to ask
a related question about the entire game. We introduce the solvability decision problem,
in which we are given both the current state of a Minesweeper game and also the secret
arrangement of mines, and asked whether the player can make a sequence of safe clicks to
solve the game.

In this paper, we develop a framework based on graph orientation to prove coNP-
completeness of Minesweeper inference and solvability. As a side effect, the same gadgets
also suffice to prove NP-hardness of Minesweeper consistency. Of particular note, we prove
that Minesweeper solvability is coNP-complete even “after a single click”: from a nearly
empty initial state with only one cell revealed.

Specifically, we define three graph orientation decision problems (consistency, promise-
inference, and uniqueness) related to the Minesweeper problems, and show that each is
hard with a particular set of simple abstract gadgets. It follows that finding well-behaved
constructions in Minesweeper which behave like those gadgets is enough to prove hardness
for all three Minesweeper problems.

In Section 2, we define each decision problem carefully, summarize the previously known
results, and explain the flaw in the existing reduction for inference. In Section 3, we develop
a framework of gadgets that makes it easy to prove hardness results for all three decision
problems. In the full version of the paper, we apply the framework to Minesweeper and
to many variants of Minesweeper from the video game 14 Minesweeper Variants. For the
most part, each application consists entirely of constructions of the relevant gadgets in the
Minesweeper variant under consideration.

2 Prior work and definitions

2.1 Consistency
Research on the computational complexity of Minesweeper began when Sadie Kaye [4] posed
the Minesweeper consistency problem. Informally, this problem asks whether a partially
completed Minesweeper board has a legal arrangement of mines. We provide a formal
definition here.

▶ Definition 1. A partial board is a two-dimensional rectangular array, where each entry
is either a covered cell or an uncovered cell. A covered cell is an unknown cell which
may or may not be a mine. An uncovered cell has an integer (and is known to not contain a
mine), representing a Minesweeper clue. For a partial board B, we denote the set of covered
cells C (B), and the set of uncovered cells U (B).

▶ Definition 2 (Minesweeper consistency problem). A partial board B is consistent if there
exists a set M ⊆ C (B), representing all locations of mines, such that M ∩ U (B) = ∅ and
the integer in each uncovered cell c ∈ U (B) counts the number of cells in M which are
orthogonally or diagonally adjacent to c. Otherwise, B is inconsistent. See Figures 1 and 2.
The input to the Minesweeper consistency problem is a partial board, and the problem
asks whether it is consistent.

Kaye proves that the consistency problem is NP-complete [4]. We also prove NP-
completeness as a side effect of our framework.
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Figure 1 Left: an example of a consistent board. Right: one possible way to satisfy it.

8 0

Figure 2 An example of an inconsistent board.

▶ Proposition 3. The Minesweeper consistency problem is in NP.

Proof. Given a partial board B, a certificate of consistency is the M of Definition 2. We
can iterate over U (B) and check that each clue is satisfied in polynomial time. ◀

We leave the proof of hardness to Section 3.

2.2 Inference
The Minesweeper inference problem was first posed by Allan Scott, Ulrike Stege, and Iris
van Rooij [6]. Informally, this problem asks whether a partially completed Minesweeper
board has a logical deduction available to the player that lets them click on a cell which is
guaranteed to not have a mine. We provide a formal definition of a slight variation on the
problem as originally posed.

▶ Definition 4 (Minesweeper inference problem). Given a partial board B, an inference is
a cell c ∈ U (B) such that for all consistent arrangements of mines M ⊆ C (B), we have
c ̸∈ M . The input to the Minesweeper inference problem is a partial board, and it asks
whether there is an inference. See Figures 3 and 4.

Note that this definition has two key differences from the one originally given by Scott,
Stege, and van Rooij [6]:

Deducing the location of a mine does not count as an inference.
No positions of known mines are given in the input.

3 1 3 1

Figure 3 Left: an example of a board with an inference. Right: green squares mark cells that
can be inferred.
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1

3

2

4

Figure 4 An example of a board that doesn’t have an inference.

Figure 5 The OR gate from [6] Figure 16. There is a minor typo: the lower cell with b should
have b.

We prefer Definition 4 because it eliminates the need to place conditions on the input
such as “all given mines must be deducible from the clues,” which is otherwise necessary
to avoid placing mines that could never be deduced in a real game. Furthermore, the flags
representing known mines can be viewed as simply a player aid – one could in principle play
a full game of Minesweeper without marking a single mine. Though we will proceed with
Definition 4 only, we remark that all results in this paper work under either definition.

▶ Proposition 5. The Minesweeper inference problem is in coNP.

Proof. Given a partial board B, a certificate of noninference is, for each cell c ∈ C (B), a
consistent arrangement of mines M with c ∈ M . We can iterate over the polynomially many
arrangements given by the certificate and check consistency in polynomial time. ◀

Again, the proof of hardness will be in Section 3.

Error in existing proofs

Scott, Stege, and Rooij’s proof of coNP-hardness [6] has an issue where there is sometimes an
unintended inference. Their OR gate is shown in Figure 5. A cell has a mine when the literal
marking it is true. The inputs are u and v the output is a. The 6 enforces a + b = u + v,
and the section at the bottom enforces a ≥ b. Together this forces a = u ∨ v and b = u ∧ v.

The issue occurs when we know that u and v can’t both be true. This might happen if
the OR gate is used inside an AND gate which merges two clauses which can’t simultaneously
be false, such as if one contains x and the other contains ¬x.
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Figure 6 An example of a solvable board. Cyan cells indicate elements of K, and white cells are
unknown to the player. Red flags indicate elements of M . From the initial state, the only provably
safe cell is the fourth cell in the second row. After clicking it, the player can now deduce the third
cell in the first row. Finally, this reveals enough information to deduce the second cell in the first
row.

In this case, we can deduce that b = u ∧ v is false, and thus the (higher) cell labeled b is
safe to click. This is an inference. One strategy for resolving this issue would be to reveal
that cell in the input, assuming one can find all inferences like this. But this doesn’t work:
That cell has either a 3 or a 4 depending on the value of u, so revealing it tells the player the
value of u, allowing them to make more inferences and possibly learning further information.

Thieme and Basten’s more compact proof [7] has a very similar issue.
Our approach to avoiding this issue is twofold. meaning clicking an inferred cell never

reveals information. This allows us to eliminate inferences by revealing those cells in the
input. This handles unintended “local” inferences, which we are able to detect.

Second, to prevent unintended larger-scale inferences, we design the network of gadgets
carefully. Specifically, we ensure that for every gadget (OR gate, crossover, etc.), every locally
valid combination of values can be achieved. The only exception is the “final” gate, which
has a forced output when the input formula is unsatisfiable. We maintain this property
across simulations by introducing a problem we call “promise-inference”, which also partially
relaxes the constraint that every locally valid solution is achievable.

2.3 Solvability
Informally, the Minesweeper solvability problem asks whether a player can make a sequence of
inferences from a partially completed Minesweeper game and win by clicking on all non-mine
cells. We provide a formal definition of this problem, which to our knowledge has not been
studied.

▶ Definition 6 (Minesweeper solvability problem). Let B be a partial board with uncovered
cells K = U (B), and let M be a set of mines consistent with B. Note that B is determined
by M and K. Here M represents the secret set of mines, which is thought of as unknown to
the player, and K represents the set of known cells.

Consider an ordering O of G \ (M ∪ K), meaning a list containing each element of
G \ (M ∪ K) exactly once. For an element o ∈ G \ (M ∪ K), let O = Oinit ++ [o] ++ Otail,
where ++ denotes concatenation. We say M is solvable from K if there exists an O such
that for all o ∈ O, o is a inference for the (unique) partial board consistent with M whose
uncovered cells are K ∪ Oinit. Otherwise, M is unsolvable from K. See Figure 6.

The input to the Minesweeper solvability problem consists of the dimensions of a
rectangular grid G and two disjoint subsets of cells M ⊆ G and K ⊆ G. The problem asks
whether M is solvable from K.

Intuitively, solvability simulates a player who is given a Minesweeper puzzle on their
computer to solve. If such a player wishes to guarantee that they do not click a mine (to
win without any luck, or because they have antagonistic implementation which repositions
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mines to make the player lose if they click a cell that isn’t provably safe, such as “expert
mode” in 14 Minesweeper Variants), they must click covered cells in an order O that satisfies
Definition 6.

▶ Proposition 7. The Minesweeper solvability problem is in coNP.

Proof. Given a game (M, K), a certificate of unsolvability is a set K ′ ⊇ K together with a
certificate of noninference for K ′.

Suppose there is such a certificate. As long as the information available to the player is
a subset of K ′, they cannot infer that a cell outside K ′ is safe. Any order has a first cell
outside K ′, which by assumption is not an inference.

Conversely, suppose an instance is unsolvable. Starting from K, repeatedly make inferences
and add them to the known information. By assumption, this must get stuck before all
non-mine cells are uncovered, meaning we reach a point with no inferences. Then take K ′ to
be the uncovered cells at that point. ◀

Once again, we prove hardness in Section 3.

3 The Minesweeper gadget framework

In this section, we describe an abstract framework which we will later apply to Minesweeper.
The wires in Minesweeper hardness proofs generally have two states, which can be thought
of as two orientations of an edge, so our framework is a general form of graph orientation.

▶ Definition 8. A gadget is an abstract object which has
a finite set of ports, in a specified cyclic order (we will generally list the ports in this
order, and describe it more explicitly when relevant).
a constraint, which is a set of subsets of the ports.

Gadgets will interact via directed edges connecting ports. The constraint says which sets
of edges pointing towards the gadget should be considered legal.

The gadgets we name are collected in Table 1, and will also be described as they come up.

▶ Definition 9. A network of gadgets from a set S is an undirected graph where
each vertex is labeled with a gadget from S

if G ∈ S has k ports, each vertex labeled G has degree k and its edge incidencies are
labeled in a bijection with ports of G.

A planar network is such a graph equipped with a planar embedding, such that the cyclic
order of edges around each vertex matches the order of the ports of the corresponding gadget.

We often equivocate between vertices and gadgets, and between edge incidencies and
ports – think of each vertex as a copy of its label, and think of edges as connecting ports to
ports in a matching.

We draw planar networks using the icons in Table 1, which also indicate the correspondence
between edges and ports (except for when it doesn’t matter by symmetry).

▶ Definition 10. An assignment to a (planar) network assigns a direction to each edge. A
vertex is satisfied if the set of (labels of) edges pointing into it is in its (label’s) constraint.
An assignment is satisfying if every vertex is satisfied.

Planar Graph Orientation (PGO) is the study of satisfying assignments of planar networks.
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Table 1 The gadgets we define in this paper, the icons we use to draw them (for those we show
in networks), and their constraints.

Name Icon Constraint

fixed (true) terminal a F {{}}

fixed (false) terminal a T {{a}}

free terminal a {{}, {a}}

AND gate a

b
c {{c}, {a, c}, {b, c}, {a, b}}

OR gate a

b
c {{c}, {a}, {b}, {a, b}}

NOT gate a c {{}, {a, c}}

NOR gate a

b
c {{}, {a, c}, {b, c}, {a, b, c}}

(k-way) fanout gate a

ck

ck−1

c2
c1

... {{a}, {c1, . . . , ck}}

1-in-3 gadget
a

b

c1⁄3

{{a}, {b}, {c}}

crossover a1 a2

b1

b2

{{a1, b1}, {a2, b1}, {a1, b2}, {a2, b2}}

3.1 Gates as gadgets

One important kind of gadget is logic gates, which can be interpreted as gadgets: inputs are
edges entering from the left and output are edges exiting on the right. Interpret pointing
right as true. The gadget’s constraint allows the inputs to be arbitrary, but forces the correct
outputs for each combination of inputs. More precisely, for each subset S of input ports, the
constraint contains S ∪ T , where T is the set of outputs that are false when precisely the
inputs in S are true.

It’s important to keep in mind distinction between gate gadgets, which compute a value,
and “normal” gadgets, which enforce a constraint.
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For example, the OR gate has ports {a, b, c} and constraint {{c}, {a}, {b}, {a, b}}. This
constraint allows any subset of the input ports a and b to have edges pointing in, and enforces
that the edge incident to the output port c to point out exactly when at least one input port
points in. In other words, it computes the OR of a and b, and outputs it at c.

On the other hand, the OR gadget (which we don’t need beyond this example) has only
two ports {a, b} and constraint {{a}, {b}, {a, b}}. It enforces that at least one edge points in,
or that at least one input is true. This is equivalent to an OR gate with the output forced to
be “true” (pointing away).

Any boolean circuit can be represented as a network of gate gadgets, by attaching input
ports to output ports in the natural way. Allow us to leave inputs and outputs to the
full circuit as “dangling” edges for now. It follows from the definition of gate gadgets –
formally, one can induct on the depth of a gate – that this network has exactly one satisfying
assignment for each combination of orientations of the dangling input edges, and in each the
orientations of the output edges encode the output of the circuit (and internal edges encode
the internal state of the circuit).

If an output connects to k > 1 inputs, we need to use a k-way fanout gate, which has
ports {a, c1, . . . , ck} and constraint {{a}, {c1, . . . , ck}}. This is the gadget representing the
gate that duplicates its input k times.

A drawing of a circuit in the plane becomes a planar network of gate gadgets. A crossing
pair of wires is translated to the crossover gate, which has two inputs and two outputs
matching the inputs in the opposite order. As a gadget, the crossover gate has ports
{a1, b1, a2, b2}, in that cyclic order, and constraint {{a1, b1}, {a1, b2}, {a2, b1}, {a2, b2}}. One
can think of it as two wires a1 → a2 and b1 → b2 that cross in a circuit. However, the
directions of these wires are arbitrary because the gadget is highly symmetric. As a gadget
outside the perspective of networks of logic gates, the crossover gate is two edges that can
independently be assigned orientations, and which cross each other. So we will also call it
simply the crossover .

3.2 Decision problems
We consider three decision problems about planar graph orientation, corresponding to the
Minesweeper decision problems we’re interested in. Each of them is parameterized by a set
of gadgets S – throughout we consider only finite sets of gadgets – and takes as input a
planar network N of gadgets from S.

The problem corresponding to Minesweeper consistency is straightforward.

▶ Problem 11. PGO consistency with S asks whether N has a satisfying assignment.

For Minesweeper inference, we need to avoid a subtle issue, which is the error in prior
claims of coNP-hardness [6, 7]. If there is a gadget for which we can deduce that some
legal combination of edge orientations can’t be extended to a full satisfying assignment, this
information may allow us to infer the value of a Minesweeper cell internal to the gadget.
This can happen even if we can’t deduce the orientation of any particular edge, so the most
obvious PGO inference problem fails to reduce to Minesweeper, and thus isn’t useful.

Our strategy for resolving this issue will ultimately be to “click” all cells in the Minesweeper
instance that could be deduced in this way. To make this work, we will need the values of
those cells to not reveal any additional information (a property we will call “silence”), and
we need the reduction to find all such cells in polynomial time. For our gadget framework to
help here, we need to define the inference problem carefully, and in particular it needs to be
aware of which combinations of edges are ruled out by “semilocal” deductions.
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▶ Problem 12. PGO promise-inference with S is given a network N as well as, for each
vertex in N , a semilocal constraint which is a subset of its constraint. We say an edge e

is locally forced if the semilocal constraint of one of its vertices requires it has a particular
orientation (because it’s either in every element or in no element), and locally free otherwise.

We are promised that
in every satisfying assignment, the set of edges pointing into a vertex is in its semilocal
constraint; and
either

there is a locally free edge to which every satisfying assignment assigns the same
direction; or
for each vertex v and set of edges in its semilocal constraint, there’s a satisfying
assignment that makes exactly those edges point towards v.

We are asked to determine whether there is an edge whose orientation can be inferred but
isn’t immediate from semilocal constraints; that is, whether we are in the first option above.

Note that the two options can’t simultaneously be true, since the existence of such an
edge would imply that its incident vertices’ semilocal constraints have elements that can’t be
extended to satisfying assignments.

The intent of semilocal constraints is to be between the levels of individual gadgets’
“local” constraints and “global” deductions that require understanding the entire network. A
semilocal constraint typically contains the sets of in-pointing edges that are attainable when
looking at some constant-size neighborhood of a gadget.

The first part of the promise ensures that semilocal constraints are actually enforced by
the structure of the network. In the case where there’s no inferable edge, the second part
says that it isn’t possible to deduce more about the immediate neighborhood of a gadget
than its semilocal constraint.

Finally, the PGO decision problem analogous to Minesweeper solvability is simpler.

▶ Problem 13. PGO uniqueness with S is given N as well as a satisfying assignment of
N , and asks whether it is the unique satisfying assignment.

PGO uniqueness is related to Minesweeper solvability because it’s possible to deduce the
orientations of all edges if and only if there’s a unique satisfying assignment.

▶ Lemma 14. For any set S of gadgets,
1. PGO consistency with S is in NP.
2. PGO promise-inference with S is in promise-coNP.
3. PGO uniqueness with S is in coNP.

Proof. Each problem has a straightforward certificate:
1. A satisfying assignment serves as a certificate of consistency.
2. A certificate that there is no inference consists of, for locally free edge and each orientation,

a satisfying assignment that assigns the orientation to the edge.
3. A second satisfying assignment serves as a certificate of nonuniqueness. ◀

3.3 Hardness
We now prove hardness of each PGO decision problem for the appropriate class, with a
specific set of gadgets. The gadget sets are chosen to make the hardness proofs simple; there
are easy ways to reduce the number of different gadgets needed, and we will further simplify
our gadget sets using simulation in Section 3.5. With Lemma 14, we have completeness in
each case.
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· · ·

· · ·
· · · · · · · · ·

· · ·

z1

· · ·

· · ·
· · · · · · · · ·

· · ·

z2

r

Figure 7 Our reduction for coNP-hardness of PGO promise-inference. See Table 1 for gadget
notation.

▶ Theorem 15. PGO satisfiability with free terminals, fanout gates, and 1-in-3 gadgets is
NP-hard.

Some of these gadgets are new: the 1-in-3 gadget has three ports, and its constraint
says that exactly one of them must point in. The free terminal has one port, which is
allowed to point in either direction.

Proof. We reduce from planar positive 1-in-3SAT, which is NP-hard [5]. Each variable
with k occurrences becomes a free terminal that leads to a k-way fanout gate. Each clause
becomes a 1-in-3 gadget. We connect the outputs of the fanout gates to 1-in-3 gadgets as in
the 1-in-3SAT formula, which is planar. Satisfying assignments of this network correspond
to satisfying assignments of the formula. ◀

▶ Theorem 16. PGO promise-inference with free terminals, fanout gates, crossovers, OR
gates, and AND gates is coNP-hard.

Proof. We reduce from the complement of monotone 3SAT, which is NP-hard [1]. The
layout of gadgets is depicted in Figure 7. The green outline is an example of a variable,
and the red outline is an example of a clause. We think of the top half of the circuit as
the positive clauses, and the bottom half of the circuit as the negative clauses. We remove
duplicate clauses before constructing the circuit. Each gadget has as its semilocal constraint
its full constraint set.

The output of the formula is given by r, which is connected to a free terminal. If the
formula is unsatisfiable, there is an inference; namely, r is false (points towards the AND
gate). So we just need to show that if the formula is satisfiable, there is no inference; that is,
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for each gadget in the reduction, every set of edges in its constraint is possible to achieve
(pointing in) in some consistent assignment. Because each gadget is a gate, this is equivalent
to every combination of input values being attainable.

There is a unique consistent assignment for each choice of values for variables, z1, and
z2. We will describe such a choice that achieves each combination of input values for each
gadget.

Each fanout depends on a single variable, which can have either value. Each crossover is
between two wires connected to different variables, so all combinations are possible. The
inputs of each OR gate in a clause can be chosen by setting the input variables as desired.

Consider any of the AND gates combining the outputs of the clauses on one half of the
circuit, and assume for simplicity that it’s on the positive half. We can make both inputs
true (pointing in) or both inputs false (pointing out) by setting all variables true or all
variables false, respectively. To make exactly one input true, note that we can choose a single
(positive) clause to be unsatisfied: make the three variables in that clause false and all other
variables true. Then the clause is unsatisfied, but (since clauses have exactly three literals
and there aren’t duplicates), every other positive clause is satisfied. By choosing a clause
that feeds into either side of the AND gate in question, we can make either of its inputs false
and the other true. The same argument shows that the AND gates with z1 and z2 can also
have any combination of inputs.

Finally, consider the rightmost AND gate, with output r. By hypothesis, the formula is
satisfiable, so both inputs can be made true by satisfying the formula and setting z1 and z2
to both be true. We can then independently choose to make either input false by flipping z1
or z2 as appropriate. ◀

▶ Theorem 17. PGO uniqueness with free terminals, fanout gates, crossovers, NOT gates,
OR gates, AND gates, and fixed terminals is coNP-hard.

The fixed terminal has one port, and its constraint forces the port’s value. There are
two kinds of fixed terminal; we will use the fixed true terminal, which forces the edge to
point in.

Proof. We reduce from the complement of 3SAT, which is NP-hard [3]. Refer to Figure 8.
Each variable becomes an edge connected to a fanout gate pointing down: that edge pointing
down represents the variable being true. Each clause becomes a pair of OR gates connected
in the natural way. We place edges connecting variables to clauses in the structure of the
formula. If edges cross, we use a crossover gadget. For negated literals, we place a NOT gate
along the edge.

The outputs of the clauses are merged with AND gates, so the edge in the bottom right
of Figure 8 points right (and up) exactly when the assignment (based on the orientations of
edges representing variables) is satisfying.

In the top section of Figure 8, we merge the other ends of the variable edges with AND
gates. The top right edge points right (and down) exactly when all variables are false.

On the right, there is an edge z which points towards one of two AND gates, with the
results merged by an OR gate and then run into a fixed true terminal. For the output of
that OR gate to be true (point right), either

z points up, and all variables are false; or
z points down, and the 3SAT formula is satisfied.

Note that the orientations of all edges are uniquely determined by those of z and variables,
even ignoring the fixed terminal. In particular, the network has exactly one satisfying
assignment (with z pointing down) for each satisfying assignment of the 3SAT formula, plus
exactly one more, which has z pointing up and all variable edges pointing up.
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· · ·
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T

Figure 8 Our reduction for coNP-hardness of PGO uniqueness. See Table 1 for gadget notation.

The input to PGO uniqueness is the network described above and the satisfying assignment
with z pointing up. This is the unique satisfying assignment exactly when the 3SAT formula
is not satisfiable. ◀

3.4 Simulation
A key feature of our framework is that it allows us to abstractly construct gadgets out of
other gadgets, greatly reducing the complexity of the gadgets we need to actually implement
in Minesweeper. In particular, the results in Section 3.3 use many gadgets, some of which
are hard to build directly, particularly with the properties our hardness proofs require.

▶ Definition 18. A simulation using gadgets from S is a network of gadgets from S, except
it may have some “dangling” edges incident to only one vertex. Equivalently, the graph
contains one special vertex called the “outside world” (which has the trivial constraint).

For planar simulations, we require that the dangling edges are in the external face, or
equivalently that the graph including the outside world is planar.

See Section 3.5 for several examples of simulations.

▶ Definition 19. Given a simulation, the simulated gadget has dangling edges as ports, and
its constraint contains each set of dangling edges for which there is a satisfying assignment
making exactly those edges point into the simulation (away from the outside world).

In the planar case, the order of the ports is the order of the dangling edges around the
simulation, or the reverse of their order around the outside world.

▶ Definition 20. We say S simulates G if there is a simulation using gadgets from S where
the simulated gadget is G. For a set T , we say that S simulates T if S simulates each
gadget in T .

For PGO uniqueness and Minesweeper solvability, we will need our simulations to be
even better behaved.
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▶ Definition 21. A simulation of G is parsimonious if for each legal configuration of
the edges of G, there is exactly one satisfying assignment of the simulation that orients the
dangling edges that way.

We say that S parsimoniously simulates G if the relevant simulation is parsimonious,
and S parsimoniously simulates T if S parsimoniously simulates each element of T .

Much of the point of having a theory of simulations is that they can be composed. This
reduces conceptual complexity by letting us break down complicated simulations into a
sequence of simpler ones.

▶ Lemma 22. If S simulates T and T simulates G, then S simulates G. Moreover, this
composition preserves parsimony.

Proof. In the simulation of G using gadgets from T , replace each gadget with its simulation
using gadgets from S. In any satisfying assignment of the new simulation, each component
simulation is consistent with the gadget it’s simulating, so we can construct a satisfying
assignment of the original simulation with the same orientations for dangling edges by looking
at only the edges between simulated gadgets.

Conversely, any satisfying assignment of the original simulation can be extended to one
of the new simulation by filling in each simulated gadget with an appropriate satisfying
assignment. Thus we have a simulation of G using gadgets from S.

If each gadget is replaced with a parsimonious simulation, there is only one way to fill in
simulated gadgets this way. So we have defined a bijection between satisfying assignments
of the original and new simulations of G. If the original is parsimonious, so is the new
simulation. ◀

The other half of the point of simulations is to simplify hardness proofs, so we need them
to preserve hardness. This is straightforward for satisfiability.

▶ Lemma 23. If S simulates T , then there is a polynomial-time reduction from PGO
satisfiability with T to PGO satisfiability with S.

Proof. Given a network N of gadgets from T , replace each gadget with a (constant-size)
simulation using gadgets from S to construct a network N ′ of gadgets from S.

If there is a satisfying assignment of N ′, looking only at the edges connecting simulated
gadgets gives a satisfying assignment of N .

If there is a satisfying assignment of N , we can set the edges connecting simulated gadgets
to match it, and then each simulated gadget has a local solution compatible with those
edges. ◀

This is somewhat more complicated for promise-inference, but it’s not so bad with the
right definition for the decision problem.

▶ Lemma 24. If S simulates T , then there is a polynomial-time reduction from PGO
promise-inference with T to PGO promise-inference with S

Proof. We are given an instance of promise-inference with T , which is a network N of gadgets
from T and semilocal constraints. Construct a network N ′ of gadgets from S in the same
way as above.

To complete the instance of PGO promise-inference with S, we must define semilocal
constraints for the vertices in N ′. Consider a vertex v, which is inside a simulation of G ∈ T .
The semilocal constraint of v shall contain the sets the of edges that point into v in satisfying
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assignments of the simulation that are compatible with the semilocal constraint of G (as a
vertex of N). These semilocal constraints can be computed in polynomial time because each
one requires considering only a simulation, and simulations have constant size.

It remains to check that this instance satisfies the promise, and falls into the same option
as the input instance. For the first part of the promise, consider a vertex v in N ′ and a
satisfying assignment. Then v is inside a simulation of some G ∈ T , the corresponding
assignment of N (which has only edges between simulated gadgets) is compatible with
the semilocal constraint of G. So we have a satisfying assignment of the simulation of G

compatible with the semilocal constraint of G, and thus by construction it is compatible
with the semilocal constraint of v.

Suppose N has a locally free edge whose orientation is forced. Since every satisfying
assignment of N ′ contains a satisfying assignment of N in the inter-simulation edges, the
corresponding edge of N ′ also has forced orientation. It must also be locally unforced: each
orientation is compatible with the semilocal constraints of its vertices in N , and therefore
each orientation is compatible with some appropriate satisfying assignment of the simulations
of its vertices. Hence N ′ also has a locally free edge with forced orientation.

Now suppose N falls into the second option, namely there are satisfying assignments
achieving every element of its semilocal constraints. Consider a vertex v in N ′ which is
inside a simulation of G, and consider a set L in the semilocal constraint of v. By definition,
there is a satisfying assignment of the simulation which makes exactly the edges in L point
towards v, and which is compatible with the semilocal constraint of G as a vertex of N .
By assumption, there is a satisfying assignment of N which orients the dangling edges of
the simulation in the same way. Combining these, and filling in the assignment for other
simulations, we obtain a satisfying assignment of N ′ which directs exactly the edges in L

towards v, as desired. ◀

To prove an analogous result for PGO uniqueness, we need our simulations to preserve
unique solutions. That is, they should be parsimonious.

▶ Lemma 25. If S parsimoniously simulates T , then there is a polynomial-time reduction
from PGO uniqueness with T to PGO uniqueness with S

Proof. We are given a network N of gadgets from T and a satisfying assignment A. Construct
a network N ′ of gadgets from S in the same way as the two previous proofs – replace each
gadget with its simulation.

Our instance of PGO uniqueness with S also needs a satisfying assignment of N ′. To
construct one, direct inter-simulation edges to match A, and extend this to a full satisfying
assignment A′ by consistently orienting edges inside simulations. Since the simulations are
parsimonious, there is a unique way way to do this for each simulation, and since simulations
are constant-size, A′ can be computed in polynomial time.

As before, there is a correspondence between satisfying assignments of N and satisfying
assignments of N ′. This time, however, parsimony ensures that the correspondence is a
bijection, since A′ is well-defined. In particular, there is a satisfying assignment of N other
than A if and only if there is a satisfying assignment of N ′ other than A′. ◀

3.5 Simpler gadget sets
Now we put the theory of simulations into practice: we will demonstrate several simulations
and use them with the results of Section 3.4 to improve the results of Section 3.3 to use more
convenient sets of gadgets. The simulations we use are summarized in Figure 9.



MIT Hardness Group: D. Hendrickson and A. Tockman 25:15

free terminal,
splitter NOT (27.1)

fanout (27.3)

NOR (28) OR, AND,
crossover (29)

1-in-3

Figure 9 The (parsimonious) simulations we use to simplify our gadget set. Each gadget is
simulated by the collection of gadgets pointing towards it, except that we will need to build 1-in-3
gadgets, free terminals, and splitters directly.

When we build gadgets in variants of Minesweeper, we will construct gadgets that are
like the fanout gate, but may have more than three ports and may have some ports reversed.

▶ Definition 26. A generalized fanout is a gadget with at least three ports whose constraint
has exactly two sets, which are compliments. That is, it has two legal configurations, which
differ by flipping all edges.

For instance, the fanout gate is a generalized fanout, and the NOT gate is almost a
generalized fanout, except it has only two ports.

▶ Lemma 27. Let F be a generalized fanout. Then F and free terminals parsimoniously
simulate
1. the NOT gate
2. any generalized fanout F ′

3. fanout gates (with any number of outputs).

Proof. We describe each simulation.
1. Let F have ports P and constraint {T, F }, where T ⊔ F = P . Since |P | ≥ 3, at least

one of T and F has size at least 2; assume without loss of generality that |T | ≥ 2, and
a, b ∈ T . Attach free terminals to all ports of F other than a and b. This simulation has
two satisfying assignments, corresponding to T and F . The simulated gadget has ports a

and b, and constraint {{a, b}, ∅}, so it is the NOT gate.
2. Connect copies of F in a tree until there are at least as many dangling edges as ports of

F ′. Note that there are exactly two satisfying assignments; all copies of F must flip state
together. Now assign each port of F ′ to a dangling edge, respecting cyclic order. If there
are extra dangling edges, put free terminals on them.
The result is a generalized fanout with the same ports as F ′, but the partition into the
two legal configurations may be wrong. For each port on the wrong side of the partition,
attach a NOT gate (composing simulations using Lemma 22). This changes which of
the two satisfying assignments has the edge at that port pointing in. Now the simulated
gadget partition its ports into two legal configurations in the same way as F ′, so it is in
fact F ′.

3. This is a special case of the above. ◀

▶ Lemma 28. 1-in-3 gates, free terminals, and fanouts parsimoniously simulate the NOR
gate.
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Figure 10 A simulation of a NOR gate using 1-in-3 gadgets, free terminals, and fanouts.

Proof. The simulation consists of three 1-in-3 gadgets, four free terminals, two 2-way fanouts,
and a 3-way fanout, and is shown in Figure 10. The inputs are a and b and the output is c.
True means “pointing right”, for inputs, outputs, and labeled free terminals.

The simulation enforces a 1-in-3 constraint on each of {a, x, c}, {b, y, c}, and {x, y, z}.
The easiest way to verify that this is a parsimonious simulation of a NOR gate is to list all
satisfying assignments:

a b x y z c

T T F F T F

T F F T F F

F T T F F F

F F F F T T

We see that c is always ¬(a ∨ b), and there is a unique assignment for each combination
of values for a and b. When comparing against the definition of the NOR gate in Table 1,
recall that the correspondence between true/false and in/out is reversed for c relative to a

and b. ◀

▶ Lemma 29. NOR gates and fanout gates parsimoniously simulate OR gates, AND gates,
and crossovers.

Proof. In Section 3.1 we observed that boolean circuits can be converted to gadget networks;
these networks can be thought of as parsimonious simulations. The NOR operation is logically
complete and can build crossovers in planar circuits [2]. Hence for each gate we want to
simulate, we can find a planar circuit of NOR gates that computes it, then convert this into
a planar network of NOR-gate gadgets and fanout-gate gadgets. ◀

We now pull everything together by applying the results on simulation in Section 3.4
to the hardness results of Section 3.3, using the simulations in this section. We can either
compose reductions or compose simulations using Lemma 22; either way, we obtain our main
result about planar graph orientation decision problems.

▶ Corollary 30. PGO consistency with any generalized fanout, fixed terminals, free terminals,
and 1-in-3 gadgets is NP-hard. PGO promise-inference and PGO uniqueness with the same
set of gadgets are coNP-hard.
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3.6 Applying the framework
We now conclude the development of our gadget framework by discussing what it takes to
use it to prove hardness for a game like Minesweeper. We do not attempt to precisely define
“like Minesweeper”, and this results of this section are not stated precisely. Ultimately, one
needs a polynomial-time reduction from the appropriate PGO problem to the corresponding
question for the game under consideration, but the games we will consider are similar enough
that the reductions share most of their structure, and the discussion here applies to many or
all of them.

It is conceptually helpful to distinguish between gadgets as abstract formal objects
and the constructions we build in concrete games to embed gadgets in them. We call
the latter “implementations”, to parallel the distinction between the specification and the
implementation of a function.

▶ Definition 31. An implementation of a gadget is a construction in a game like
Minesweeper which behaves like the gadget, in that there are covered cells (usually on the
boundary of the construction) corresponding to ports, and the construction has a solution
exactly when the configuration of edges represented by the values of those cells is legal for the
gadget.

Unfortunately, because it matches how the term is typically used, we will frequently call
implementations “gadgets” when the intended meaning is clear from context.

For implementations to interact in a way that simulates gadget networks, we need some
kind of wire. Each of our wires will have two possible states, corresponding to the two
orientations of the edge it represents. We must be able to route our wires in an arbitrary
planar graph – the ability to extend and turn them is sufficient. We need to be able to plug
wires into the ports of implementations, which sometimes requires the ability to adjust the
alignment of a wire by a single cell.

Our wires and implementations also need to have the following properties.
Every solution uses the same number of mines. This means the total number of mines in
the puzzle doesn’t reveal any information that might break our reduction.
Every uncovered cell has a clue, as in most implementations of Minesweeper. Some
implementations and variants allow cells that are known to be safe but don’t have
additional information (e.g. showing a question mark instead of a number), but we don’t
want to rely on this feature.
All given mines can be deduced from uncovered non-mine cells. This provides robustness
against changes in the definition, e.g. whether the locations of mines can be provided as
part of a puzzle in addition to uncovered cells without mines.

Implementing some gadgets in a game allows us to a build network of those gadgets in
the game. The resulting instance of the game has a solution if and only if the network is
satisfiable.

▷ Claim 32. If a game like Minesweeper has implementations of the gadgets in S, then
there is a polynomial-time reduction from PGO consistency with S to the game’s consistency
problem.

Note that our definition of Minesweeper consistency in Section 2 is specific to Minesweeper.
For other games or variants, “partial board” and “consistent” need to be defined appropriately,
but the other definitions (for inference and solvability) work as is.

For the other two decision problems, we need well-behaved implementations.
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▶ Definition 33. An implementation is silent if clicking a known-safe internal cell can
never reveal information that wasn’t already known. In other words, for each covered internal
cell, the information that cell provides when clicked (e.g. the number of adjacent mines) is
the same in every solution in which it doesn’t have a mine.

▷ Claim 34. If a game like Minesweeper has silent implementations of the gadgets in S,
then there is a polynomial-time reduction from PGO promise-inference with S to the game’s
inference problem.

Proof. Embed a network of gadgets from an instance of PGO promise-inference with S in
the game. For each (constant size) gadget in the network, consider all solutions to its imple-
mentation which are consistent with its semilocal constraint. If there are commonalities,
or cells which are safe in all such solution (or mines in all such solutions), “click on” them,
revealing them in the instance of the game. Silence guarantees that the information revealed
is the same in all such solutions, so the information to put on that cell can be determined
from the semilocal constraint. If a commonality dictates the orientation of an edge, we click
on all covered cells in the edge in the same way. It doesn’t matter whether this includes
the cell(s) representing the port on the other end of the edge – if that gadget’s semilocal
constraint doesn’t force the edge in the same way, we must be in the first case of the promise
so there’s an inferable locally unforced edge anyway.

If the network has an inferable locally unforced edge, then cells inside the wire representing
that edge (or cells representing the ports that edge connects to) can be inferred.

Otherwise, we are in the second case of the promise. We’ve already clicked all cells that
can be deduced from each semilocal constraint – for any cell that is still covered, the gadget
(or wire) it’s in has solutions compatible with its semilocal constraint in which that cell has
a mine and in which it doesn’t. Thus the entire instance also has both of these kinds of
solutions because we are promised that every element of a semilocal constraint is achieved
by a satisfying assignment. That is, the cell in question can’t be inferred. This is where it is
crucial that we use promise-inference, and not a simpler PGO inference decision problem.

◁

For PGO uniqueness and Minesweeper solvability, we also need parsimony as we did for
Lemma 25.

▶ Definition 35. An implementation is parsimonious if it has exactly one solution corre-
sponding to each legal configuration of the gadget.

▷ Claim 36. If a game like Minesweeper has silent parsimonious implementations of the
gadgets in S, then there is a polynomial-time reduction from PGO uniqueness with S to the
game’s solvability problem.

Proof. Embed a network N of gadgets from an instance of PGO uniqueness with S in
the game. Thanks to parsimony, satisfying assignments of the network are in bijection
with consistent solutions to this instance of the game. The secret solution is the solution
corresponding to the given satisfying assignment of N , but cells are only uncovered if they
are uncovered in the embedding of N , which doesn’t depend on the satisfying assignment.

If N has another satisfying assignment, the game instance has multiple solutions. The
player may be able to safely click some cells – perhaps the orientation of some edge is forced,
or they can deduce that a cell inside a gadget is safe. However, since our implementations
are silent, the player can’t gain any information by doing this. In particular, all solutions
consistent with the initial state of the game are also consistent after the player makes any
sequence of safe clicks. In order to solve the instance, they would need to distinguish between
these consistent solutions, which is impossible.
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Conversely, suppose the only satisfying assignment to N is the one given to the reduction.
Then the secret solution is the only solution consistent with the initial state of the game (we
need parsimony to ensure there is only one). Thus the value of every cell can be deduced,
and all cells without mines can be safely clicked in any order. ◁

It follows that if we can silently and parsimoniously implement that gadgets needed by
Corollary 30, we have hardness of consistency, inference, and solvability for the game in
question. To simplify a little further, fixed terminals are trivial to construct: just let a wire
end, and reveal some cells in it to force its orientation. Alternatively, modify a free terminal
(possibly including a bit of wire) by revealing cells that determine its configuration.

▶ Corollary 37. Suppose that for some game like Minesweeper, we have silent parsimonious
implementations of any generalized fanout, free terminals, and 1-in-3 gadgets, and we are
able to route, turn, and adjust the alignment of wires enough to embed any planar network of
those gadgets. Then consistency is NP-hard, and inference and solvability are coNP-hard.

We now go through one final layer of abstraction, which will handle routing of wires and
filling empty space. We lay a network of the gadgets above on a square grid, where edges
run horizontally and vertically and can turn. In particular, each tile contains either one of
the gadgets above, a straight edge section, and turning edge section, or nothing.

This lets us reduce from problems about planar networks on grids, so we can construct
straight and turning tiles instead of describing general wire routing.

▶ Corollary 38. Suppose that for some game like Minesweeper, we have silent parsimonious
implementations of gadgets which are all square tiles that fit in a grid and interact appro-
priately with adjacent tiles. Suppose in particular that we have empty tiles, straight wires,
turning wires, any generalized fanout, free terminals, and 1-in-3 gadgets. Then consistency
is NP-hard, and inference and solvability are coNP-hard.

For a few of our applications, it is more convenient to build a 2-in-3 or a 1-in-4 instead
of a 1-in-3 gadget. These are also sufficient, since they can simulate a 1-in-3 gadget, using
NOT gates and a free terminal, respectively.

4 Hardness proofs

To demonstrate the utility of this PGO framework and the ease with which it facilitates
writing hardness proofs, we provide a number of example applications that prove hardness
of Minesweeper and Minesweeper-like games, found in the full version of this paper. We
reproduce some gadgets for standard Minesweeper here, as a representative example.

In the original Minesweeper game, the player does not start with any cells revealed, and
the player starts by clicking any cell on the entirely unrevealed board (which the game
guarantees to be safe). Hence, we construct the following “transparent” gadgets, where
all clues can be deduced starting from this initial state. This shows that Minesweeper
solvability is coNP-complete even in the setting where the player is initially given no clues.
(To guarantee the click is safe, we can double the width of the grid, and delay the decision of
which half to place the circuit on until after the click is made.)
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Abstract
In the video game “7 Billion Humans”, the player is requested to direct a group of workers to various
destinations by writing a program that is executed simultaneously on each worker. While the game
is quite rich and, indeed, it is considered one of the best games for beginners to learn the basics of
programming, we show that even extremely simple versions are already NP-Hard or PSPACE-Hard.
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1 Introduction

In a world where robots have occupied every possible job position, humans are finally free to
dedicate themselves to their favourite pastimes. However, in this utopian world, the work
ethic of yesteryear reigns supreme and the only thing humans desire is good-paying jobs. To
appease them, the robots construct one colossal building, so colossal to be visible from outer
space, and hire all 7 billion humans living on Earth as well-paid white-collar workers. Now,
robots are faced with the challenge of coordinating the human workforce to keep them all
constantly entertained.

It is in such a world that “7 Billion Humans” takes place. Released in 2018 as the
successor of “Human Resource Machine”, “7 Billion Humans” is a puzzle video game praised
by tech reviewers as one of the best games to learn the basics of programming [16, 17, 18].
The player, who takes on the role of the robots in the story, must coordinate a group of
workers by specifying their actions by means of an ad-hoc programming language. While
the programming language in the game is quite rich, also containing “if” statements and
“go-to” commands, in this paper, we will focus on the core mechanic of the game: moving
the workers. In particular, the goal is to move the workers into an accepted configuration
by writing a program that is executed simultaneously by each one of them. While moving,
the workers will have to navigate through walls, desks, plants, and other objects that block
their movement, as well as holes where workers can fall through. This extremely limited set
of commands and objects constitutes the core of the game since they appear in essentially
all the game levels. Even under these limitations, we show that the player (and hence the
robots) will have a hard time coordinating the humans.

Our work falls within the rich area of video-game computational complexity. In recent
years, several extremely popular video games have been proven to be NP-Hard or PSPACE-
Hard, such as Super Mario Bros. and other Nintendo games [3, 6], Portal and several other
3D games [5], Trainyard [1, 2], Candy Crush [9], and many others [10, 14].

Let us now describe the game “7 Billion Humans” and our contributions.
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1.1 Our Contributions

A level of “7 Billion Humans” consists of a grid of cells containing workers and objects.
The player must write a program, which is executed by every worker simultaneously, in
order to satisfy the requests of the level designer. We consider only the most basic kind
of request: the workers must be moved from their starting configuration into an accepted
configuration. More precisely, some cells of the grid are accepting cells and to solve a level,
all the workers must be standing on an accepting cell after executing the program. There are
many commands at the disposal of the user to write the program, but we make use only of
the most basic one: step {direction}, which is used to move the workers (all at the same
time) by one cell in a given direction, which can be one of up, down, left, right, up-left,
up-right, down-left, or down-right. A cell can either be empty or contain an object.1 The
simplest type of objects are the walls and, as one might expect, stepping into a wall results
in a non-movement.2

We show in figure 1a an example of a level. We abbreviate the command to step in
one direction with u, d, l, r, (ul), (ur), (dl), (dr), and a sequence of steps in the same
direction using exponentiation (e.g., r4 instead of rrrr). For a generic finite alphabet Σ, we
denote with Σ∗ the set of all finite strings consisting of symbols of Σ. A program is therefore
represented as a string over the alphabet {u, d, l, r, (ul), (ur), (dl), (dr)}. For simplicity,
when a program π ∈ {u, d, l, r, (ul), (ur), (dl), (dr)}∗ solves a level, we also say that the
level accepts the string π.

: a wall : a hole : the starting cell of a worker : an accepting cell

(a) This level can be solved, for example, by the
program u2r3uru or by the program ru2r3ur. In-
stead, ruru does not solve the level because only one
worker reaches an accepting cell.

(b) This level can be solved by the program ru2r3ur.
Instead, the program u2r3uru does not work any-
more because one of the two workers would get stuck
in a hole.

Figure 1 Two examples of game levels. The level on the left contains only walls and empty cells,
while the one on the right also contains holes. We assume that the grids are surrounded by walls.

The decision problem that we consider is: given a level of “7 Billion Humans”, say if the
level is solvable or not. Since we included only the essential elements of the game, we call
this problem 7BH-Essential. We will show that even this extreme simplification is already
NP-Hard.

1 We can assume that workers start in empty cells and the accepting cells are all empty.
2 In the game there are also other obstacles, such as desks and plants: since they all act the same, we will

always talk about walls. Other workers also behave as obstacles if hit. However, this will never happen
in our reductions.
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▶ Theorem 1. It is NP-Hard to check if a given level of “7 Billion Humans” is solvable, even
using only walls, empty cells, and the step command. That is, 7BH-Essential is NP-Hard.

Holes are another common object in the game. When a worker steps on a cell containing a
hole, it gets stuck for the rest of the computation. Since our goal is to have each worker on
an accepting cell, even if a single worker steps on a hole, the level is lost. An example of a
level with holes is shown in figure 1b. We call 7BH-Holes the decision problem previously
described where we add holes in addition to the already mentioned elements. Adding holes
might make the problem more difficult, in fact, 7BH-Holes is PSPACE-Hard.

▶ Theorem 2. It is PSPACE-Complete to check if a given level of “7 Billion Humans”
containing only walls, holes, empty cells, and using only the step command, is solvable.
That is, 7BH-Holes is PSPACE-Complete.

The paper is organized as follows. In Section 2 we highlight some connections between
ours and other problems. In Sections 3 and 4 we prove our two main theorems and finally, in
Section 5, we discuss some final remarks.

2 Relations with other problems

In our reductions, the game level of “7 Billion Humans” will be divided into isolated sub-levels,
each containing a single worker. Then, to solve the level, all the sub-levels must be solved
simultaneously. Moreover, in our reductions, we will prevent diagonal movements: the only
admissible directions are right, left, up, and down. This special structure of the level can
be used to draw some relations with other problems.

2.1 Simultaneous Maze Solving
Each sub-level can be interpreted as a grid maze: the worker must find a path from its
starting position to one of the accepting cells,3 avoiding the holes and navigating through
the walls. Our results, then, entail that solving multiple mazes simultaneously is NP-Hard
(Theorem 1), or PSPACE-Hard if the mazes can contain holes (Theorem 2). The only other
work on the topic, to the best of our knowledge, is the one of Funke et al. [7], which, however,
studies very special mazes that are always solvable simultaneously.

2.2 Intersection Non-Emptiness
Each sub-level can also be interpreted as a deterministic finite automaton (DFA for short).
In particular, a sub-level w × h naturally translates into a DFA with at most w · h states
(corresponding to the cells), and with the transition function on the alphabet {u, d, l, r} that
simulates the behavior of the cells. Solving all the sub-levels is equivalent to finding a string
that is accepted by a set of DFAs: this is a fundamental problem in automata theory known
as Intersection Non-Emptiness Problem [4, 12, 15] and first shown to be PSPACE-Complete
by Kozen [11]. The structure of our DFAs is very special: the undirected transition graph,
excluding self-loops, is a subgraph of the w × h grid graph. Therefore, our Theorem 2 entails
that Intersection Non-Emptiness is PSPACE-Complete even with this class of automata.

3 Note that passing upon an accepting cell is not enough: each worker must be standing on an accepting
cell at the end of the sequence of moves.
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To the best of our knowledge, given the strong restrictions that we have to make on
the DFAs, our results are not derivable from existing work. As an example, in the original
PSPACE-Hardness proof of Kozen [11], the standard construction of the DFAs contains
vertices having in-degree (|Q| + |Σ| + 1)3, where Q and Σ are the set of states and input
symbols of a Turing Machine, therefore, the in-degree is at least 27 and possibly much larger.
Instead, our DFAs have an in-degree of at most 8, considering self-loops. Moreover, in such
proof, the automata use several one-way transitions; instead, the transitions of our DFAs are
reversible (except for states associated with holes).

3 NP-Hardness of 7BH-Essential

In this section we prove Theorem 1. In particular, we show a polynomial-time reduction
from Positive 1-in-3-SAT, notoriously known to be NP-Hard (see, e.g., [8, page 259, problem
LO4]), to 7BH-Essential.

▶ Definition 3 (Positive 1-in-3-SAT). The input of Positive 1-in-3-SAT consists of n boolean
variables, x1, x2, . . . , xn, and a set of m clauses, each containing exactly three distinct positive
variables (i.e., there are no negated literals). The goal is to find a truth assignment to the
variables such that each clause contains exactly one true variable.

Fixed an instance of Positive 1-in-3-SAT, we make use of three types of gadgets: (i) the
diagonal gadget, to prevent diagonal movements, (ii) the assignment gadget that, intuitively,
allows assigning truth values to the variables, and (iii) one clause gadget for each clause, to
ensure that the truth assignment satisfies the original 1-in-3 formula. Each gadget will be
built with multiple independent sub-levels that must be solved simultaneously. The final
game level is obtained by stacking the sub-levels together and isolating them via walls.

4 5

1 2

3

Figure 2 The diagonal gadget, used to prevent diagonal movements, consists of five sub-levels:
for i ∈ {1, 2, 3, 4, 5}, the i-th sub-level contains only the worker and the accepting cell labeled with i.

The diagonal gadget is reported in figure 2. It consists of five sub-levels that we draw
together for brevity. In particular, for i ∈ {1, 2, 3, 4, 5}, the i-th sub-level contains only
the one worker and the one accepting cell labeled with i. Suppose the program contains a
diagonal movement (i.e., (ul), (ur), (dl), or (dr)), then, worker 3 would “overlap”4 with
another worker and it would become impossible to solve all the five sub-levels of the gadget
(indeed, once two workers are overlapped in different sub-levels having the same walls, it is
impossible to separate them).

3.1 Assignment Gadget
This gadget consists of four sub-levels, reported together in figure 3. For i ∈ {1, 2, 3, 4}, the
i-th sub-level contains only the i-th worker and the accepting cells labeled with i.

4 the workers are in different sub-levels, so they “overlap” if we imagine the sub-levels on top of each other
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3 4

1 2

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

T

T

T
F

F

F

xn

x1

x2

Figure 3 Assignment Gadget. It consists of four sub-levels, drawn together for brevity. In
particular, the i-th sub-level, for i ∈ {1, 2, 3, 4}, contains only the worker with label i on the left,
and only the accepting cells with label i on the right. The workers select the truth value of the
variables by moving up or down.

By using four sub-levels, the gadget ensures that the workers cannot hit the walls, indeed,
if that happened, two workers would overlap and at least one sub-level would become
unsolvable (e.g., using the program r5, workers 1 and 2 overlap, making it impossible for
them to simultaneously stand on an accepting cell). This property will be used in the clause
gadgets.

Since the accepting cells are at the right end of the sub-levels, the workers must pass
through all the variables, and select their truth values by moving up or down. Specifically,
when the workers are in correspondence with the variable xi (that is, when the workers are
in columns 4i + 1 and 4i + 2, assuming that the columns are numbered from left to right
starting with 0 on the left wall), moving up will set xi to true in all clauses while moving
down will set it to false. Intuitively, we can think that the workers will move via a program
of the form r4σ4

1r4 . . . σ4
nr4 with σi ∈ {u, d}, and σi determines the truth value of the i-th

variable (u = True, d = False).

▶ Remark. Note that the workers have more freedom of movement than what we would like.
For example, they can move left, and in correspondence with a variable, they can move up
and down multiple times before going right. However, our clause gadgets are such that this
extra freedom does not permit cheating. More precisely, if the level can be solved, then it
can also be solved by a program of the form r4σ4

1r4 . . . σ4
nr4 with σi ∈ {u, d}.
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3.2 Clause Gadgets

For each clause C = (xa, xb, xc), with a < b < c, we create a clause gadget consisting of two
sub-levels. In figure 4a, we report the sub-levels for the generic clause C. For the reader’s
convenience, we also show, in figure 4b, the gadget for the clause (x1, x2, x3). For i ∈ {1, 2},
the i-th sub-level contains only the i-th worker and the accepting cells labeled with i.

1 2

2

2

1

1

21

xa xb

xc

(a) Gadget for the generic clause (xa, xb, xc), with 1 ≤ a < b < c ≤ n.

1 2

2

2

1

1

21

x1 x2 x3 x4 xn

(b) Gadget for the clause (x1, x2, x3). We can handle all the clauses by stretching opportune sections of
the gadget (see figure 4a).

Figure 4 Figure (a) shows the Clause Gadget for the generic clause (xa, xb, xc). It consists of
two sub-levels drawn together for brevity. The i-th sub-level, i ∈ {1, 2}, contains only the worker
with label i on the left and the accepting cells with label i on the right. The columns associated
with the variables are aligned with those of the assignment gadget (figure 3). Solely for the sake of
clarity, we also show in figure (b) the gadget for the particular clause (x1, x2, x3).

Let us first argue that the flexibility of the assignment gadget cannot be exploited to
generate invalid truth assignments. Observe that the two workers of the clause gadget (of
the two distinct sub-levels) must always remain side by side, indeed, if they were to split, the
assignment gadget would become unsolvable since a worker would have hit a wall. Given that
the two workers must remain side by side, the workers in the clause gadget cannot hit a wall
horizontally (otherwise they would overlap, making the level unsolvable). This means that
using the left command is useless: in fact, it can only be used to go back to a variable and
possibly change its truth value in all the clauses. Moreover, moving up and down multiple
times when selecting a truth value does not lead to benefits either. Indeed, assuming that
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the user moves left or right only when none of the workers would hit a wall, then only the
last up or down movement is used to decide the truth value of the variable in all the clauses.
In other words, if the final game level is solvable, then it is also solvable by a program of the
form r4σ4

1r4 . . . σ4
nr4 with σi ∈ {u, d}.

Now, observe that the workers of the clause gadget for C = (xa, xb, xc) arrive at an
accepting cell if and only if they move up exactly once in correspondence with xa, xb, or
xc. Note that the vertical movement in correspondence with the other variables is ignored.
Since the up movement is associated with the “True” truth value, the clause gadget behaves
exactly like a clause of the Positive 1-in-3-SAT formula.

3.3 Conclusion of the proof
Proof of Theorem 1. Suppose the Positive 1-in-3-SAT instance is solvable, and let αi ∈
{True, False} for i ∈ {1, . . . , n} be the truth assignment to the variables that solves the

instance. Then, letting σi =
{

u, if αi = True
d, if αi = False

the program r4σ4
1r4 . . . σ4

nr4 solves the

corresponding 7BH-Essential instance. Conversely, if the 7BH-Essential instance is solv-
able, we can assume without loss of generality that it is solved by a program of the form

r4σ4
1r4 . . . σ4

nr4 with σi ∈ {u, d}. Let αi =
{

True, if σi = u

False, if σi = d
then, as we argued, α satisfies

all the 1-in-3-SAT clauses.
Moreover, note that each sub-level of the assignment gadget contains O(n2) cells, each

sub-level of a clause gadget contains O(n) cells, and the five sub-levels of the diagonal gadget
have a constant number of cells. Therefore, the complete game level obtained by stacking all
the sub-levels contains O(n2 + nm) cells and can be constructed in polynomial time. Our
reduction is complete. ◀

4 PSPACE-Completeness of 7BH-Holes

In this section, we prove Theorem 2. For a positive integer z, we use the notation [z] =
{1, 2, . . . , z}. Let us start by showing that 7BH-Holes can be solved in polynomial space.

▶ Observation 4. 7BH-Holes ∈ PSPACE

Proof. Consider a game level n × m containing k workers. Since the workers are the only
non-static elements of the level, each cell can be in at most one of two states: either it
contains a worker, or it does not. Then, there are at most

(
nm
k

)
≤ 2nm possible configurations

for the level. Then, consider the non-deterministic Turing Machine M that, given in input
a level of 7BH-Holes, maintains the current configuration of the level and a counter of
the number of steps performed so far. If all the workers are standing on an accepting
cell, then M accepts; if instead the counter exceeds 2nm, then M rejects. In all other
cases, M guesses non-deterministically the next step in {l, r, u, d, (ul), (ur), (dl), (dr)},
updating the configuration and increasing the counter accordingly. It is evident that M

solves 7BH-Holes because if the level is solvable, there is a solution using at most 2nm

instructions. Moreover, the space required in any computation branch is O(nm+log(2nm)) =
O(nm). Therefore, we showed that 7BH-Holes ∈ NPSPACE, then, by Savitch’s theorem
[13], 7BH-Holes ∈ PSPACE. ◀

Now it remains to show that 7BH-Holes is PSPACE-Hard. We do so by exhibiting a
polynomial-time reduction from the intersection non-emptiness problem for finite automata.
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4.1 Intersection Non-Emptiness Problem
Recall that a deterministic finite automaton (DFA for short) is a 5-tuple (Q, Σ, δ, q0, F ),
where Q is the set of states, Σ is the alphabet, δ : Q × Σ → Q is the transition function,
q0 ∈ Q is the starting state and F ⊆ Q is the set of accepting states. The language accepted
by the DFA A, called L(A), is the set of strings x ∈ Σ∗ such that, starting from q0 and
applying δ repeatedly, A ends up in an accepting state.

The following is a classic decision problem in automata theory and it was proved to be
PSPACE-Complete by Kozen [11]:

▶ Definition 5 (Intersection Non-Emptiness Problem). Given in input a set of k DFAs
{A1, A2, . . . , Ak}, with Ai = (Qi, Σ, δi, qi

0, Fi) for i ∈ [k], say if ∩k
i=1L(Ai) ̸= ∅

To simplify the exposition, let us assume that all the DFAs have the same set of states Q

and the same starting state q0. This is without loss of generality because we can rename the
states and add fictitious extra states, without changing the languages of the automata.

4.2 Reduction Overview
Consider an instance I = {A1, A2, . . . , Ak} of the Intersection Non-Emptiness Problem, with
Ai = (Q, Σ, δi, q0, Fi) for each i ∈ [k]. Without loss of generality, from now on we assume
that |Q| = n, Q = {q0, q1, . . . , qn−1}, and |Σ| = m, Σ = {σ1, σ2, . . . , σm}. Note that our
reduction must be polynomial in k, n, and m.

We represent the computation of the DFAs using a string. Specifically, let Γ = Σ∪Q∪{#},
where # is a new symbol, and consider a string of the following form:

R1#R2# . . . Rr# ∈ Γ∗

where:

Rj = σ(j)q(1,j)q(2,j) . . . q(k,j) for j ∈ [r],

σ(j) ∈ Σ and q(i,j) ∈ Q for i ∈ [k], j ∈ [r]

Call R the set of all such strings. Intuitively, Rj contains the j-th input symbol and the
state of the DFAs after processing the first j − 1 input symbols.

We say that a string R1#R2# . . . Rr# ∈ R is accepting if it describes a valid accepting
computation for all the automata, that is, if for all i ∈ [k] the following holds:

q(i,1) = q0
q(i,j+1) = δi(q(i,j), σ(j)), for all j ∈ [r − 1]
q(i,r) ∈ Fi

The main idea of our reduction is to define (i) an encoding of the alphabet Γ with strings
in {l, r, u, d}∗, and (ii) a game level G of 7BH-Holes, such that, a program solves G if and
only if it is an encoding of some accepting string in R. This will be enough to conclude our
reduction. Indeed, finding an accepting string in R is clearly equivalent to finding a string
accepted by all the DFAs. More formally:

▶ Observation 6. Given an instance {A1, A2, . . . , Ak} of the Intersection Non-Emptiness
Problem, ∩k

i=1L(Ai) ̸= ∅ ⇐⇒ ∃x ∈ R accepting

Proof. If σ1σ2 . . . σr ∈ ∩k
i=1L(Ai), then the string R1#R2# . . . Rr+1# where (i) σ(i) = σi

for i ∈ [r] and σ(r+1) is any symbol in Σ, and (ii) the states are set according to the
computation, is an accepting string. Conversely, if R1#R2# . . . Rr# ∈ R is accepting, then
σ(1)σ(2) . . . σ(r−1) ∈ ∩k

i=1L(Ai) (if r = 1, the empty string is accepted by all DFAs). ◀
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4.3 The Encoding
We first associate an integer value to each element in Q ∪ Σ = {q0, . . . , qn−1, σ1, . . . , σm},
specifically, we define num : Q ∪ Σ → N as:

num(qi) = 9 · (k + 2) · (i + 1) ∀i ∈ {0, 1, . . . , n − 1}
num(σi) = 9 · (k + 2) · (n + 2) · (i + 1) ∀i ∈ [m]

Let us now define C, the set of clockwise strings5, as:

C = {rx1dx2lx3ux4 | x1, x2, x3, x4 ≥ 6}

Our encoding will associate to each element of Γ a subset of clockwise strings, specifically,
let enc : Γ → P(C), where P(C) is the powerset of set C, be defined as:

enc(γ) =
{

rnum(γ)dnum(γ)lx3ux4 ∈ C | x3, x4 ≥ 6
}

∀γ ∈ Q ∪ Σ (1)

enc(#) = {rw#dx#ly#uz#} where: (2)
w# = 9 · (k + 2) · (n + 2) · (m + 2)
x# = 18 · (k + 2) · (n + 2) · (m + 2)
y# = w# + 4k + 3
z# = x# + 3k + 3

Note that the sets are disjoint, therefore it is possible to decode a clockwise string. In
particular, if x ∈ enc(γ), with a slight abuse of notation, we say that enc−1(x) = γ. Our
goal now is to build the game level G, such that, if γ1γ2 . . . γt ∈ R is accepting, then, the
program x1x2 . . . xt must solve the level G, where xi ∈ enc(γi). Conversely, if a program
solves G, then it must be a concatenation of clockwise strings x1x2 . . . xt such that they can
be decoded into enc−1(xi) = γi, and γ1γ2 . . . γt ∈ R is accepting.
▶ Remark. At this stage, the numbers used in the encoding might appear arbitrary and
obscure. We will point out where these numbers are used as we move forward in the proof.

4.4 The Game Level
We build several independent sub-levels, each containing a single worker. In particular, we
build 2k + 4 sub-levels: S = {CW1, CW2, CW3, enforce#} ∪ {Meven

i , Modd
i }i∈[k]. The final

game level G is created by stacking the sub-levels together and isolating them via holes.
Formally, G = stack(S).

The three sub-levels CW1, CW2, CW3, reported in figure 5, are solved by all and only
the programs that are concatenations of clockwise strings in C (note that CW1 and CW2
also prevent diagonal movements).

4.4.1 The Enforce# Sub-Level
Let us first introduce the counter gadget, in figure 6. This gadget is such that, if the worker
is standing on the cell labeled with 0, then any clockwise string in C brings the worker to
cell 1. Multiple counter gadgets can be concatenated together, and intuitively, these gadgets
can be used to skip clockwise strings that we do not need to process.

5 named after the fact that right, down, left, up is a clockwise movement
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(a) CW1. (b) CW2. (c) CW3.

Figure 5 Sub-levels CW1, CW2, CW3, together they ensure that the program is a concatenation
of clockwise strings in C. Note that CW3 is needed to ensure that the very first movement is right.

0

1

Figure 6 Counter gadget. A worker starting from cell 0 that processes any clockwise string in C
ends up in cell 1.

0

1

2

k+1

k + 1 counter gadgets

w# x#

y#

z#

Figure 7 enforce# sub-level. The values w#, x#, y#, z# are defined in Equation (2). This gadget
ensures that accepting programs must be a concatenation of a multiple of k + 2 clockwise strings
each ending with the encoding of #.
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The enforce# sub-level, in figure 7, skips the first k + 1 clockwise strings using k + 1
counter gadgets, then, it forces the next clockwise string to be rw#dx#ly#uz# , which is
the only encoding of # ∈ Γ, as defined in Equation (2). Indeed, if the (k + 2)th clockwise
string was not the encoding of #, the worker would end up in a hole. After processing the
whole encoding of #, the worker will be in its starting position again (which is also the only
accepting one), ready to possibly process more clockwise strings.

Therefore, to be more formal, the enforce# sub-level together with {CW1, CW2, CW3},
ensures that if π is a solving program, then it must be of the form R1#R2# . . . Rr#, where
# is the only encoding of #, and each Rj is a concatenation of k + 1 clockwise strings. Note
also that all the programs of such form solve these four sub-levels.

▶ Remark. The enforce# sub-level can be built if it holds (i) y# = 2 + 4(k + 1) + w# − 3 =
w# + 4k + 3, and (ii) z# = 3(k + 1) + x#. Note that both these relations are satisfied by our
encoding, as reported in Equation (2).

4.4.2 The Automata Sub-Levels
For each DFA Ai, i ∈ [k], we introduce two sub-levels: Modd

i and Meven
i . Consider a program

of the form R1# . . . Rr#, where # ∈ enc(#), and each Rj is a concatenation of k + 1
clockwise strings. Intuitively, Modd

i will ensure, for each odd j, that Rj+1 follows from Rj

according to the computation of Ai. Meven
i will guarantee the same, but for even j’s. These

sub-levels will also guarantee that the last state is an accepting one. Therefore, adding all
the sub-levels {Modd

i , Meven
i }i∈[k] will ensure that an accepting program must describe an

accepting computation for all the DFAs.
Before showing the construction of Modd

i and Meven
i , we introduce three new gadgets.

0 1 2 t

γ1

γ2

γt

num(γ1)

num(γ2)

num(γt)

num(γt)

Figure 8 The S-selector gadget for S = {γ1, γ2, . . . , γt} ⊆ Q ∪ Σ. A clockwise string reaches the
cell labeled with γℓ if it moves right and down exactly num(γℓ) times.

The S-selector gadget, in figure 8, is parametrized by a set S = {γ1, γ2, . . . , γt} ⊆ Q ∪ Σ
such that num(γj) < num(γj+1). If the worker is standing on the cell labeled with 0 of the
selector gadget, then the next clockwise string must be any encoding of any element γℓ ∈ S,
which will lead the worker to the cell labeled with γℓ. Indeed, from our encoding in Equation
(1), to verify that a clockwise string rx1dx2lx3ux4 ∈ C is an encoding of a certain element
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γℓ ∈ Q ∪ Σ, it suffices to check that x1 = x2 = num(γℓ), which is what the gadget does. It
is also easy to check that the worker will fall into a hole if the clockwise string is not an
encoding of any element of S. This gadget will be useful for choosing the next input symbol
and performing different checks depending on the current state of the automaton.

0

1

num(q)

Figure 9 The q-forcer gadget for q ∈ Q. Starting from cell 0, the worker reaches cell 1 with a
clockwise string if and only if the number of d symbols is equal to num(q).

For a state q ∈ Q, the q-forcer gadget, in figure 9, forces the next clockwise string to have
a number of down steps equal num(q). Therefore, if we know that c ∈ C is an encoding of
some state, then, by using the q-forcer gadget we impose the constraint that c must be an
encoding of q ∈ Q. This gadget will be useful to force the string to respect the transition
function.

1

0

0

0

≤ y#

≤ z#

≤ x#

≤ x#

≤ x#

Figure 10 The go-back gadget. Starting from any cell 0, the clockwise string rw# dx# ly# uz# , as
described in Equation (2), brings the worker back to the cell 1. Note that more cells 0 can be added
as needed, provided that the highlighted constraints are respected.

The last gadget we need is the go-back gadget, in figure 10. Suppose the worker is in one
of the cells labeled with 0, then, by processing the only encoding of # ∈ Γ, it will go back
to cell 1. This gadget will be useful to “go back” to a selector gadget and analyze the next
chunk of the program.
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Note that these three gadgets and the counter gadget can be concatenated together. The
only precaution to take is that when concatenating a selector gadget to a counter gadget,
the cell 0 of the selector (figure 8) must coincide with the cell 1 of the counter (figure 6).
Similarly, when concatenating a go-back gadget to a selector gadget, the cell 1 of the go-back
must coincide with the cell 0 of the selector.

start

Σ-selector

σ1 σ2 σm

i− 1 counters

Q-selector

q0 q1 qn−1

k + 1 counters

δi(q0,σ1)-forcer

k − i counters

k + 1 counters

δi(q1,σ1)-forcer

k − i counters

i− 1 counters

Q-selector

q0 qn−1

k + 1 counters

δi(q0,σ2)-forcer

k − i counters

go-back

Figure 11 Modd
i sub-level associated to the DFA Ai, i ∈ [k]. The starting position of the single

worker is at the beginning of the Σ-selector (i.e., the cell 0 of the Σ-selector, taking figure 8 as a
reference). The first cell of the Σ-selector is also an accepting cell. Moreover, each branch of the
Q-selectors corresponding to an accepting state qacc ∈ Fi, contains an accepting cell after the first
k + 1 − i counters (i.e., the accepting cell is the cell labeled with 1, taking figure 6 as a reference, in
the (k + 1 − i)th of the k + 1 counters).

start

i counters

q0-forcer

k − i+ 1 counters

M odd
i

Figure 12 Meven
i sub-level associated to the DFA Ai, i ∈ [k]. The starting position of the single

worker is at the beginning of the first counter. The accepting cells are the same described for the
Modd

i sub-level.

Fixed i ∈ [k], we report, in figure 11, the sub-level Modd
i , and, in figure 12 the sub-level

Meven
i . Both are represented in a schematic way. Both sub-levels use the go-back gadget,

which requires processing exactly the encoding of #: this is guaranteed by the enforce#
sub-level.
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We now argue that the sub-levels {CW1, CW2, CW3, enforce#, Modd
i , Meven

i } are solved
by all and only the programs describing a valid accepting computation of DFA Ai.

We know, from {CW1, CW2, CW3, enforce#}, that a solving program π must of the form:
R1#R2# . . . Rr#, where # ∈ enc(#), and Rj = cj

1cj
2 . . . cj

k+1 is a concatenation of k + 1
clockwise strings. Let us first show that π can always be decoded:

The Σ-selector of Modd
i (resp. Meven

i ) ensures that the first symbol of each Rj , for odd
j (resp. even j), is the encoding of a symbol in Σ. Therefore, for all j ∈ [r], it must be
cj

1 ∈ enc(σ), for some σ ∈ Σ.

Similarly, the Q-selectors of Modd
i (resp. Meven

i ) ensure that the (i + 1)th symbol of each
Rj , for odd j (resp. even j), is the encoding of a state. Therefore, for all j ∈ [r], it must
be cj

i+1 ∈ enc(q), for some q ∈ Q.
Moreover, π describes a valid computation:

the first forcer of Meven
i ensures that the computation starts from the starting state q0:

c1
i+1 ∈ enc(q0)

Suppose that the computation is valid up to Rj , that is, the state q = enc−1(cj
i+1) is

correctly reached from q0. Let us assume that j is odd. Then, Modd
i will follow the

branch σ in the Σ-selector, for some σ ∈ Σ, and the branch q in the Q-selector. Then,
the δi(q, σ)-forcer in Modd

i forces cj+1
i+1 to be in enc(δi(q, σ)), therefore, the state reached

in Rj+1 is correct too. If instead j is even, Meven
i ensures that the state reached in Rj+1

is correct.

It is left to show that the computation described by π is accepting for Ai. Suppose r is
odd. Then, at the end of the computation, the worker of Meven

i will be at the beginning of
the Σ-selector (which is an accepting cell), and the worker of Modd

i , which is “shifted forward”
by k + 2 clockwise strings, will be at the end of the (k + 1 − i)th counter right after the
Q-selector, but note that there is an accepting cell in such position only if the worker is in a
branch corresponding to a state qacc ∈ Fi, therefore cr

i+1 ∈ enc(qacc) and the computation is
accepting. If r is even, the situation is analogous: the worker of Modd

i is at the beginning
of the Σ-selector, but the one of Meven

i is at the end of the (k + 1 − i)th counter after a
Q-selector, and therefore it must be in an accepting branch.

Moreover, one can easily see that any encoding of an accepting computation solves all
the sub-levels. Indeed, the Σ-selector allows the user to choose the input string, and then,
since the computation is accepting, one of Meven

i and Modd
i will end up in the (k + 1 − i)th

counter of an accepting branch and the other will stay at the beginning of the Σ-selector.
Therefore, all the sub-levels would be solved.

▶ Remark. Our encoding allows the construction of Modd
i and Meven

i . First, from our encoding,
we have that for j ∈ {0, 1, . . . , n−2}, num(qj+1)−num(qj) = 9(k +2), while the space actually
needed between two branches of the Q-selector is: 4(k+1)+5+4(k−i)+4+6 < 8(k+1)+11 ≤
9(k + 2) where the last 6 takes into account the overhead of the selector. Similarly, for
j ∈ [m − 1], num(σj+1) − num(σj) = 9(k + 2)(n + 2), while the space required between two
branches of the Σ-selector is at most 4(i − 1) + 9(k + 2)(n + 1) + 6 < 9(k + 2)(n + 2). To
conclude, we need only to check that the constraints for the go-back gadget are satisfied. The
width of the whole Modd

i sub-level is at most 9(k+2)(n+2)(m+2) = w# < y#. The height of
the sub-level is instead at most num(σm)+4(i−1)+num(qn−1)+4(2k+1−i)+num(qn−1)+3 ≤
18(k + 2)(n + 2)(m + 1) + 8k < 18(k + 2)(n + 2)(m + 2) = x# < z#. Therefore all the gadgets
can be concatenated together.



A. Panconesi, P. M. Posta, and M. Giacchini 26:15

4.5 Conclusion of the proof
Putting all the pieces together, we can prove the theorem.

Proof of Theorem 2. The problem is in PSPACE by Observation 4. Consider the following
reduction from the Intersection Non-Emptiness Problem: an instance I = {A1, A2, . . . , Ak}
is associated with the level G = stack({CW1, CW 2, CW3, enforce#} ∪ {Modd

i , Meven
i }i∈[k]).

Suppose I can be solved, then, by Observation 6, there exists an accepting string
x1x2 . . . xt ∈ R. Consider any encoding π = y1y2 . . . yt such that yj ∈ enc(xj). Such
program can be rewritten in the form R1# . . . Rr#. Therefore, as we argued, π solves
{CW1, CW2, CW3, enforce#}, and, given that I is solved, for each i ∈ [k], π describes an
accepting computation for Ai, then, it also solves Modd

i and Meven
i . Therefore, G is solved:

all its workers will be standing on an accepting cell at the end of the program.
Suppose now that there exists a program π ∈ {l, r, u, d}∗ solving G. As we argued, such

a program can be decoded into a string R1# . . . Rr# ∈ R. Given that, for each i ∈ [k], Modd
i

and Meven
i are solved, it means that the string represents an accepting computation for Ai.

That is, letting Rj = σ(j)q(1,j) . . . q(k,j), it holds: (i) q(i,1) = q0, (ii) q(i,j+1) = δi(q(i,j), σ(j))
for j ∈ [r −1], and (iii) q(i,r) ∈ Fi. Therefore, the string in R is accepting. Using Observation
6, it follows that I is solvable.

Finally, observe that the number of cells in each sub-level is at most O(y# · z#) =
O(k2n2m2), and since there are 2k + 4 sub-levels, G has at most O(k3n2m2) cells, therefore
the reduction can be carried out in polynomial time. ◀

5 Conclusions

We analyzed the computational complexity of the video game “7 Billion Humans”. The
game involves controlling multiple workers simultaneously to direct them to some destination
cells. When each cell is either empty or contains a wall, the problem of deciding if a level is
solvable is NP-Hard, while adding holes makes the problem PSPACE-Complete. We also
observed that the simple structure of our reductions entails hardness results for the problem
of simultaneous maze solving and for the intersection non-emptiness problem.

While 7BH-Essential, the problem where levels only contain walls and empty cells, is
NP-Hard and clearly in PSPACE, it is not known whether it lies in NP. We leave this as an
interesting open problem.
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1 Introduction

Arimaa is a two-player strategy game played on an 8 × 8 board. Like chess, checkers, and Go,
it is a perfect-information, deterministic, turn-based game with at most one winner. Arimaa
has been a focus of much attention in applied AI research, as it was originally designed
purposely to be difficult for computers to play [18]. The present paper considers the more
theoretical question, “Given a position in Arimaa and specified player, does that player have a
winning strategy?” We call this the Arimaa decision problem. As with chess and checkers, this
question is trivially solvable in constant time if the game is played on a standard 8 × 8 board
(albeit for an impractically large constant). Accordingly, we focus instead on the question
for the generalized case of an n × n board (cf. [8], [11], [12], [13]). For the aforementioned
strategy games, the corresponding question is known to be PSPACE-hard.2 The present
paper shows that the same is true for Arimaa. We prove this result by reduction from
the known PSPACE-hard problem Generalized Geography, adapting a technique from [16]
originally used to show the PSPACE-hardness of n × n chess.3 We do not prove here that

1 Corresponding author. Authors listed alphabetically.
2 Results showing PSPACE-hardness of strategy and puzzle games continue to be produced to this day,

with some recent examples including [1], [3], and [4]. Depending on the details of how the game is
generalized – e.g., concerning rules such as the 50-move rule in chess – the question may in fact be
shown to be EXPTIME-hard (see, e.g., [8], [12], and [13]).

3 Our proof has its origins in the bachelor thesis of the second author, written under supervision of the
first [15].
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n × n Arimaa is in PSPACE. However, it is not hard to see that it falls in EXPTIME.4
In fact, we suspect it is EXPTIME-complete (see Conjecture 1), which we leave for future
research.

1.1 History

In the last twenty-five years, AI has been increasingly defeating humans in strategy games
such as chess and Go. This emerging trend inspired computer engineer Omar Syed to design
Arimaa as a game intentionally hard for computers while still relatively easy to understand
and fun to play for humans. It is played on a chess board with chess pieces, but the mean
branching factor is around 17,000 moves per turn [9] (compared to about 35 for chess).

In 2003, the game was ready and published in The International Computer Games
Association (ICGA) Journal [18], together with a prize of $10,000 USD for the first person
or organization to create a computer program that could beat the best human players before
the year 2020.5 The challenge sparked much research into the development of Arimaa bots
and the practical complexity of Arimaa from people like Brian Haskin [9], Christ-Jan Cox [5]
and experienced Go programmer David Fotland [6]. Fotland had won the Arimaa computer
tournament five times, but could never manage to win the contest against the best human
players. Many approaches were tried by different people, resulting in numerous academic
papers, theses and technical reports before the challenge was finally completed (e.g., [7], [17],
[19]). In 2015, David Wu with his bot SHARP [22] did the unthinkable and defeated the top
human players. The March 2015 ICGA Journal issue [20] was themed around the Arimaa
challenge being won.

All this research is on the practical complexity of making a machine play Arimaa well.
But its theoretical complexity is relatively unexplored. As the editorial board of ICGA wrote
in the March 2015 issue:

The last scientific challenge, establishing the game-theoretical value of Arimaa, is
still waiting for its solution. Arimaa is now in the class of games in which computers
outperform the best human players, just like chess. Yet, the ultimate question is: can
we solve the game? As readers of this Journal know we distinguish between weakly
solving and strongly solving a game (introduced by Allis, 1994). So, we would like to
encourage all researchers to continue the development of advanced techniques to find
the ultimate truth of Arimaa. [20]

1.2 Main theorem

The present paper proves the following result.

▶ Theorem 1. The Arimaa decision problem is PSPACE-hard.

4 In [8] it is stated that n × n chess is decidable in exponential time by brute force. A similar case can be
made for n × n Arimaa. There is an upper bound 13n2

on the number of possible board states, since
each of the n2 squares must be empty or occupied by one of the six pieces of either player. Since each
position is caused by one of two players, and since a position can occur no more than three total times
in a game (by the threefold repetition rule), the game tree has not more than 6 · 13n2

nodes, which is
exponential in the number n2 of squares. Optimal moves can then be found by, for example, alpha-beta
pruning.

5 The prize was later raised to $12,000 USD [2].
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We will reduce a known PSPACE-hard variant of Generalized Geography, which we call
AGG1.1, to a variant of Arimaa we call Arimaa′, which is then reduced to n × n Arimaa6.
These reductions are both computable in polynomial time, so it will follow that Arimaa is
PSPACE-hard.

The proof in this paper follows in the footsteps of Storer in [16] for n×n chess. Unlike chess,
however, Arimaa has no pieces that can move long distances in a single turn. Accordingly,
one of the main challenges of our proof, and arguably one of its main contributions, is in
showing how to apply Storer’s proof method for games with only short-range pieces like
Arimaa.

Since it is straightforward to see that the Arimaa decision problem is in EXPTIME for
reasons similar to those for chess (see fn. 4), it follows that the complexity of Arimaa lies
somewhere between PSPACE- and EXPTIME-completeness. In the future, we hope to settle
the following conjecture.

▶ Conjecture 1. The Arimaa decision problem is EXPTIME-complete.

2 Background

2.1 Game rules
Arimaa is played on a chess board using chess pieces, but otherwise has little to do with
chess. The pieces are renamed as follows to make it easier to remember their hierarchy (listed
in order of decreasing strength): elephant for king, camel for queen, horse for rook, dog for
bishop, cat for knight, and rabbit for pawn. The 8 × 8 board remains the same except for the
squares c3, c6, f3 and f6. These squares are trap squares, where pieces can be captured.

2.1.1 Setup
▶ Definition 2. The home ranks of a player are the first two ranks on the board from that
player’s perspective.

▶ Definition 3. The goal rank of a player is the first home rank of his opponent.

The board starts empty, with Gold being the first player to choose the setup in which
he7 would like to start the game. After he has positioned his pieces (this is visible to Silver),
Silver may choose her starting setup. Both players may place their 16 pieces in any order
they want on their home ranks. After the setup, Gold will be the first player to make a move.

2.1.2 Playing
▶ Definition 4. A position describes all piece locations and which player is next to move.
Switching pieces of the same team and strength does not result in a different position.

Figure 1 shows a sample Arimaa position. The game is shown from Gold’s point of view.
Traps are represented by × symbols. For readability, we use numbers to denote the different
pieces in figures throughout this paper. The numbers correspond to the pieces’ places in the
hierarchy – e.g., an elephant is denoted by the number 6, a camel by 5, etc. Hereafter, let us
call the 1s, 2s, and 3s the weak pieces and the 4s, 5s, and 6s the strong pieces.

6 Hereafter, we may refer to n × n Arimaa simply as Arimaa, if confusion is unlikely.
7 For referential convenience, in this paper we (alphabetically) use “he” for Gold and “she” for Silver.
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8

7 1 1 3 1
6 3 3 4 1
5 6
4 1
3 3 1 6 1 1
2 4 1 4
1 2 2 1 1 1 1

a b c d e f g h

Figure 1 An example Arimaa position from [21].

All pieces move the same way, one step at a time and only in cardinal directions. The
only exception to this rule is the rabbit: like the pawn in chess, the rabbit cannot move itself
backward. The only way a rabbit can move back is by being pushed or pulled by an enemy
piece (see below). The biggest difference from other board games such as chess, checkers,
and Go is that players are allowed to distribute up to four moves per turn over their pieces.
For example, one may let four pieces move one step, one piece move four steps, or anything
in between, as long as the turn ends with a net change to the position. Pieces can only step
onto an adjacent square if it is not occupied by another piece, unless the piece making the
move is pushing the other piece away.

Pieces may push or pull a single enemy piece that is strictly lower in the strength hierarchy.
This costs two steps, as two pieces are moving one square, and the piece performing the
push or the pull must be directly adjacent to the enemy piece. Any square in one of the
cardinal directions of the piece being pushed can be chosen to push that piece onto as long
as it is able to move, and the pushing piece will move on to the square previously occupied
by the pushed piece. Observe the position depicted in Figure 1. The gold dog on a6 could,
for example, push the silver rabbit on a7 to a8, moving to a7 itself. Pulling is similar: the
piece performing the pull can move to any square it is allowed to move to, and the pulled
piece will move to the square previously occupied by the pulling piece. For example, the
gold elephant on d3 could pull the silver rabbit on d2 to d3, and could then pull it to d4,
ending the turn on e4 itself.

Another game mechanic is freezing. Any piece that is next to an enemy piece that is
higher in hierarchy is frozen and therefore not allowed to move (thus also not allowed to
push or pull). It follows automatically that the elephant, the highest ranked piece, cannot be
frozen. A piece that is currently not frozen is allowed to move to a square next to a bigger
enemy piece, resulting in freezing itself. As an exception, a piece can protect itself from being
frozen by being next to a friendly piece. In that case, neither piece can be frozen. Likewise,
a piece can unfreeze a currently frozen friendly piece by moving to a square next to it. In
the example position in Figure 1, the pieces on a7, b7 and d6 are currently frozen, while the
piece on c1 is not.

Another way to immobilize a piece is to blockade it. A piece is blockaded when it is
surrounded by pieces it cannot push. Examples include the c3 rabbit in Figure 1 and the
elephants in Figure 5. So, while an elephant can never be frozen, it can be blockaded if
surrounded by two pieces in each direction.

The trap squares are the only way for pieces to be removed from the board (captured).
Trap squares can be controlled by having at least one friendly piece next to it, meaning your
pieces are safe to stand in the trap square without being captured. However, as soon as all



B. G. Rin and A. Schipper 27:5

four squares next to the trap are either unoccupied or are occupied by enemy pieces, any
friendly piece standing in the trap will be removed from the game. Shared trap control is
thus also possible, when both friendly and enemy pieces are standing around a trap, resulting
in the trap square being safe to occupy for both players.

All consequences of moving pieces are effective immediately, not at the end of the turn.
For example: if a piece is frozen after making a certain move, the player is not allowed to
make any more moves with that piece, even if not all four moves in the current turn are
used yet. However, pushing and pulling are moves considered to happen simultaneously.
This means that a player can, for instance, move a friendly piece onto an uncontrolled trap
square while pulling a weaker enemy piece. Although this results in the friendly piece getting
captured, the pull still gets to be completed. See, for example, the gold dog on b3: the
moment it moves south next to the silver horse on c2 to pull the c3 silver rabbit west, it is
frozen, but the pull gets completed anyway.

The final movement rule is the threefold repetition rule: a player may not end a turn
having created the same position as one that he or she has previously created twice.

2.1.3 Winning conditions
There are three ways for a player to win the game:
1. Ending a turn with at least one of the player’s rabbits on the goal rank.
2. Making the other player lose all his or her rabbits. If both players lose their last rabbit

in the same turn, the player who took the turn wins.
3. Giving the other player no legal moves to play (say, by freezing and/or blockading all his

or her pieces).

2.2 Generalization to n × n Arimaa
As already discussed, 8 × 8 is trivially computable in constant time, so we generalize to
an n × n board. However, stretching the board to variable dimensions raises an important
decision on how to place the trap squares. Standard Arimaa has four trap squares on an 8 × 8
board, placed on squares c3, c6, f3 and f6. We have opted to generalize this by concatenating
copies of the standard board (with standardly placed trap squares) in all directions, resulting
in an arbitrarily large board with many groups of four trap squares (see Figure 5 for an
example). More on trap placement can be found in Section 4, where we discuss other ways
of distributing trap squares over a large board.

2.3 Generalized Geography variations
Our main theorem is proved by reduction from a known PSPACE-complete variant of
Generalized Geography. We present the definition of this variant in the present section.

Geography is a game in which two players take turns in naming cities. The first letter
of the next city must be the same as the last letter of the previous city, and the next city
must not have been named before. The first player who cannot think of a new city loses.
Generalized Geography (GG) is a generalized version of the game. GG is played on a directed
graph in which the two players (usually called White and Black, but we may say Gold and
Silver) each take turns placing markers on nodes. The game starts with Gold placing a
marker on the start node, after which it is Silver’s turn. The players then take turns placing
markers on nodes with an incoming edge from the last node chosen. This continues until a
player places a marker on a node already marked, after which the game ends and that player
loses.

FUN 2024



27:6 Arimaa Is PSPACE-Hard

Join Fork Bend Pipe

Figure 2 The four node shapes.

The problem of determining which player has a winning strategy in GG is proven to be
PSPACE-complete by Schaefer [14]. In [10], some restrictions to the graph are added while
preserving the complexity of the game. Storer uses this restricted definition of GG in his
proof on the complexity of chess [16], where he calls it Restricted GG (RGG). Based on
RGG, Storer defines another variant called Array GG (AGG), wherein further restrictions
are added and the winning condition is reversed: a player who marks a previously marked
node now wins the game. In detail:

▶ Definition 5. The AGG problem is defined as: “Given a directed graph G and start node s,
with the features described below, does Gold have a winning strategy (see rules above)?”

The nodes in G have total degree 3 or have indegree 1 and outdegree 1. The start node s

is the only exception, with indegree 0 and outdegree 1.
The nodes of G form a finite subset of Z×Z in the Cartesian plane. Edges must be either

vertical or horizontal, and may only connect pairs of nodes that have no other nodes between
them (see Figure 3).

Other restrictions on the graph are:
1. The graph is planar (no crossing edges when the graph in embedded on a plane).
2. The graph is bipartite (no odd-length cycles).
3. The graph is connected.
4. There are no self-loops.

Storer proves that AGG is PSPACE-complete in [16], by showing how to transform an
RGG problem (given an instance (G,s) of RGG) into an AGG problem. This is done by
scaling up the graph when needed by adding new nodes (preserving the original parity of
the game by adding them in pairs) and changing the length of edges. The transformation is
done in such a way that we only end up with nodes of the forms depicted in Figure 2, and
straight edges between them.

In Corollary 1.1 from Storer’s paper it is shown that AGG remains PSPACE-complete even
if we add the further restriction that every non-start node must be one of the types depicted
in Figure 2, and the nodes of each type other than the bend are also in the orientations
depicted. Let us call this restricted problem AGG1.1. This means that we need only eleven
different types of nodes, other than the starting node, to build any AGG1.1 graph: the join,
fork and pipe in one orientation each, and bends in all eight orientations (only north-to-east
is depicted here).8 As in AGG, edges may be in any cardinal direction. Note that there can
be a long edge connecting two nodes that are distant in the Cartesian plane, if no node lies
between them.

8 Storer shows how a grid graph with nodes of other types can be simulated by one with only these types.
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start

Figure 3 An AGG1.1 example graph. Node color indicates which player can mark that node.

▶ Remark 6. Because the graph is bipartite, and because players alternate turns choosing
nodes adjacent to previously chosen nodes, the nodes can be partitioned into two disjoint
subsets – one for each player. Since it is predefined which player will mark the start node,
each node is already determined at the beginning of the game to be potentially markable
by precisely one particularly player. And given any node, its incoming edge(s) are also
deterministically assigned as potentially usable for exactly one player before the game starts.
See Figure 3 for an example of an AGG1.1 graph.

2.4 Arimaa′

To simplify the proof of the main theorem, we show that a variant of Arimaa called Arimaa′

reduces to n × n Arimaa, and we then show that this variant is PSPACE-hard. We define
Arimaa′ in the present section.

▶ Definition 7. A board state is an arrangement of pieces on the board, without consideration
of which player is moving next.

▶ Definition 8. Arimaa′ is the problem of determining whether Gold has a winning strategy
given an n × n Arimaa board state P ′ under the following conditions:
1. There is a new threefold repetition rule: players may now legally cause a position to occur

for a third time, but a player who does this immediately loses.9

2. The rule making players lose when starting a turn with no movable pieces is removed.
3. The rule preventing players from passing their turn without making a net change to the

position is removed. Passing a turn in any position still counts as causing that position,
with respect to the threefold repetition rule.

9 This change is strictly to make it easier to discuss repetition, so that we may sometimes say a player
repeats the position and loses, rather than say the player cannot repeat the position.

FUN 2024



27:8 Arimaa Is PSPACE-Hard

grid

rabbit prison

rabbit prison

Figure 4 Overview of an Arimaa′ position. In the area labeled “grid” is a simulated AGG1.1

graph.

4. In the board’s center is a simulated AGG1.1 graph with its start node already marked, the
details of which will be specified in the proof of Theorem 1. (We will see that Gold will
have a winning strategy in P ′ iff the Gold player in the simulated AGG1.1 game also has
a winning strategy.) Outside this area, the board is empty, save for two gadgets called
rabbit prisons defined later. See Figure 4.

5. The most recent turn was Gold’s and was a pass. Before that, Silver moved a piece.

▶ Remark 9. By condition 8.3, if a player (say, Gold) moves a piece and causes a position X,
after which the opponent (Silver) passes the turn, then Gold cannot profitably pass back.
If he tries, then Silver can pass again, after which Gold cannot pass back again without
instantly losing from having caused position X to occur for the third time. Therefore, a
player’s decision to pass the turn cannot be trivially undone by the opponent. Indeed, once a
player moves a piece, the opponent can repeatedly pass and force the player to make another
piece move, for as many turns as desired.

2.4.1 Big picture
▶ Definition 10. The simulation grid, or simply grid, is the simulated AGG1.1 graph located
in the middle of the Arimaa′ board. The simulation is the ongoing process of players making
moves that simulate placing markers on nodes of the AGG1.1 graph.

In Figure 4 we see the grid in the center and the rabbit prisons (see Section 2.4.3) near
their respective goal ranks. The Gold player in Arimaa′ will simulate the actions of Gold in
the AGG1.1 game. As detailed later, the Arimaa′ players simulate the marking of a node by
moving a cat into the corresponding gadget on the board, after which it becomes captured
or otherwise made irrelevant and simultaneously frees a previously frozen enemy cat. An
AGG1.1 node marked by Gold (Silver) will therefore correspond to an Arimaa′ gadget with a
gold (silver) cat entering it and a silver (gold) cat leaving. The latter cat will then travel to
an adjacent node gadget. In case of the start node, a silver cat is leaving, so we can think of
it as being already marked by Gold.

Surrounding the grid are walls, which we describe in the next section. Outside these walls
are two rabbit prisons, whose construction and purpose we describe in the section after.
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29 4 5 4 4 5 6 5 4
28 4 4 5 4
27 4 5 4 4
26 4 5 6 5 4 4 5 4
25 4 5 4 4 5 6 5 4
24 4 4 5 4
23 4 5 4 4
22 4 5 6 5 4 4 5 4
21 4 5 4 4 5 6 5 4
20 4 5 6 5 4 4 5 4
19 4 5 4 4
18 4
17 4
16 4 4 4 5 4
15 4 4 5 4 4 5 4 4 5 6 5 4
14 5 4 5 6 5 4 5 6 5 4 4 5 4
13 4 4 5 4 4 5 4 4 5 6 5 4
12 4 4 4 5 4
11 4
10 4 5 4
9 4 5 6 5 4
8 4 5 4
7 4 4 4 4 4
6 5 4 4 5 4 4 5 4 4 5 4 4 5 4
5 6 5 4 5 6 5 4 5 6 5 4 5 6 5 4 5 6 5 4
4 5 4 4 5 4 4 5 4 4 5 4 4 5 4
3 4 4 4 4 4
2

1

a b c d e f g h i j k l m n o p q r s t u

Figure 5 A part of a silver corridor containing a 90◦ turn.

2.4.2 Walls

▶ Definition 11. A free piece is a piece that is allowed to move, because it is not frozen or
blockaded by other pieces.

▶ Definition 12. A stable group of pieces is one containing no free piece.

A wall, as the name suggests, is a special kind of continuous line of stable pieces that
is designed to contain and constrain the motion of nearby free pieces. Specifically, walls
constrain only weak pieces (recall that this means pieces of strength 3 or less). A wall is
designed for just one color; its main function is to stop weak pieces of the appropriate color
that are on one side of the wall from crossing over to the other side. As we explain below, no
appropriately colored weak piece can get through them or break them down. Although a
wall is designed for only one color, pieces of both colors are needed to construct it. The color
of weak pieces that the wall constrains is always the opposite of the wall’s outermost pieces
(the 4s – see Figure 5). We say a wall is gold (silver) if its outer 4s are gold (silver). For
example, the walls in Figure 5 are silver walls.
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The main building block of a wall is a 6 with four enemy 5s and eight friendly 4s around
it. The 6 is unable to push or pull because of the double layer of pieces around it, and the 5s
and 4s are frozen, so the group of pieces as a whole is stable. These building blocks can be
laid out in any desired direction to build walls of various shapes.

The parallel walls in Figure 5 jointly form a corridor, inside which a free piece may move.
The inside of the corridor shown spans from row 8 to 11 and from column k to n. The 90◦

turn is included for demonstrative purposes; corridors can extend in a single direction for an
arbitrary length. Straight corridors will correspond to edges in our reduction from AGG1.1.

Observe how a silver (gold) wall constrains the movement of weak gold (silver) pieces,
since the weak piece gets frozen the moment it touches any outer 4. In the case of Figure 5,
the walls depicted have gaps on squares h17 and q18, but since each gap is only one square
wide and has 4s next to it, a weak gold piece cannot pass through it without getting frozen.
However, any strong gold piece can move through these gaps. If its strength is 5 or greater,
that piece can even destabilize the wall by pushing/pulling 4s. Furthermore, any free silver
piece can also move through the gaps and can destabilize the wall by unfreezing a 4.

It will normally hold that only weak gold (silver) pieces get free near silver (gold) walls.10

Since we always know which player may use a given edge in AGG1.1 (see Remark 6), we can
carefully construct corridors of correct colors accordingly. All corridors will have gaps similar
to the two in Figure 5, but they are impenetrable by the weak free pieces.

In addition to color, walls can also be categorized by their parity. We define the parity of
a wall based on the color of pieces that lie on the diagonal of the upper-left/bottom-right
traps (in the groups of four traps). If the color of the pieces on that diagonal is silver, we
say the wall has standard parity (regardless of the wall’s color). Otherwise, the parity is
nonstandard. In Figure 5, the wall depicted has standard parity.

Gold walls are made in almost the same way as silver walls, but aside from reversing the
piece colors, we also shift the wall one square to maintain standard parity. This is because
reversing the piece coloring changes the wall’s parity, so the shift is done to undo that change.
We desire all walls to be built with the same parity so they can connect properly. More on
connecting corridors can be found in Section 3.2.

2.4.3 Rabbit prisons

The rabbit prisons are similar to wall building blocks, but with a 1 in place of a 4. See
Figure 6. Each player’s rabbit prison is located near that player’s goal rank. The prisons’
sole purpose is to ensure that players comply with the AGG1.1 simulation in the Arimaa′

game, by giving the opponent of a non-complying player a way to punish them.
Specifically, a player who makes a move in the Arimaa′ game that breaks the simulation

will let the other player get a loose 4 or 6. (Details are explained in Section 3.3.2.) Such
pieces are strong enough to pass through gaps in the walls and walk outside the grid. When
this happens, the loose 4 or 6 can reach the appropriate rabbit prison and unfreeze the rabbit
there, letting it step onto the goal rank and win the game.

10 The only exception occurs when a player fails to uphold the simulation of the AGG1.1 game within the
Arimaa′ game. In Section 3.3.2, we see how any player who does this allows the opponent to have a
free piece near a same-colored wall, leading to a forced win for that opponent. This dynamic serves to
ensure the simulation is upheld until the end.
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Figure 6 A gold and a silver rabbit prison.

2.4.4 Viable winning conditions
As detailed in the game rules (Section 2.1.3), there are multiple ways to win at Arimaa.
However, some winning conditions have been altered in Arimaa′. In the setup presented here,
in which Arimaa′ is used to simulate an AGG1.1 game, the normal method of victory has a
player move a piece into a node gadget for the second time (always a join, the only node type
with in-degree 2 – see Figure 2), which leads, as we will later see, to an eventual threefold
repetition for the opponent. As discussed above, there is also an alternative winning method
possible against an opponent who does not comply with the AGG1.1 simulation.

The second Arimaa winning condition – capturing all opposing rabbits – can be disregarded
in Arimaa′. This is because, apart from all the rabbits in the simulation, the one in the
rabbit prison must also be captured. In order to do this, a player must get a free piece
outside the grid, and as soon as a player achieves that, it is equally possible to win by freeing
the player’s own imprisoned rabbit and walking it to the goal rank.

The third Arimaa winning condition has been simply removed from Arimaa′, as noted in
Definition 8.2. But note that in Arimaa′, if a player moves a piece and then ends (rather
than begins) their turn with no movable pieces, then their opponent can force a win by
passing twice and causing them to lose the game by the new repetition rule.

2.4.5 Reducing Arimaa′ to Arimaa
We now show that reducing AGG1.1 to Arimaa′ suffices to prove our main theorem.

▶ Lemma 2. n × n Arimaa is PSPACE-hard if Arimaa′ is PSPACE-hard.

Proof. For any Arimaa′ position with board state P ′, we show how to convert it to an n × n

Arimaa board state P such that Gold wins in P if and only if Gold wins in P ′ (with the
same player to move). This works in polynomial time. We begin by introducing the concept
of a cat cage, seen in Figure 7. The cat cage depicted is empty, but in the actual construction
a (silver or gold) cat is placed on one of the two empty squares in the middle. A cat cage is
gold (respectively, silver) if a gold (respectively, silver) cat is put into one of the two central
empty squares.

In P , the board state is identical to that of P ′ except that a gold and a silver cat cage
are placed outside the grid. By the cages’ design, a cat in one of the two middle squares of a
cage is only able to move back and forth between those squares, and all other pieces in the
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Figure 7 An empty cat cage.

cage remain immobile no matter the position of the cat. Further, note that there will never
be interaction between the pieces of the cat cages and those of the grid, because any player
who would somehow get a free piece outside the grid would just move it to the rabbit prison
to free the rabbit and win. These considerations lead us to the following definition.

▶ Definition 13. A grid state is an arrangement of pieces on the grid, without consideration
of which player is moving next or the caged cats’ positions. A cat cage move is a turn in
which the player simply moves the caged cat to the other accessible square and ends the turn.
Thus, a cat cage move leaves the grid state intact and changes only a caged cat’s location.

We now argue that the rule differences between n × n Arimaa and Arimaa′ described
in conditions 8.2-8.3 do not change the outcome of the game. By assumption, the Arimaa
players can play the same grid moves as the Arimaa′ players. Passing moves are not legal,
but these can be simulated by cat cage moves. The cat cages also ensure that players will
not lose the game by beginning a turn with no free pieces. Still, we must show that our
remark about Arimaa′ players losing if they end a turn with no free pieces applies to the
Arimaa game.

During the course of play, suppose the Arimaa board is in an arbitrary board state and a
player (without loss of generality, Gold) has just ended a turn with no free non-cage pieces.
We will show that Gold loses in this situation.

Assume without loss of generality that each cat is on the south square of its cage. Given
a grid state C, let C ⇓⇓ denote the board state consisting of grid state C with both caged
cats on the south square. The current position can then be written gC ⇓⇓, denoting that
Gold has just caused board state C ⇓⇓. From position gC ⇓⇓, Silver can make a cat
cage move (moving its cat to the north square), resulting in position sC ⇓⇑. As Gold has
no more legal moves left in the grid, he is forced to make a cat cage move, resulting in
position gC ⇑⇑. Because Gold has no other options, Silver can force the following sequence:
gC ⇓⇓ (initial position), sC ⇓⇑, gC ⇑⇑, sC ⇑⇓, gC ⇓⇓ (second occurrence), sC ⇓⇑ (second
occurrence), gC ⇑⇑ (second occurrence), sC ⇑⇓ (second occurrence). From here, Gold has
to create position gC ⇓⇓, but this is illegal in Arimaa as it repeats the position a third time.
Accordingly, Gold has no legal moves and loses by Arimaa rules.
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We now see that the presence of cat cages and the use of the repetition rule compensates
for the difference between Arimaa and Arimaa′ caused by the 8.2-8.3 rule changes. On the
other hand, while passing can be simulated by with cat cage moves, Arimaa player can
actually make cat cage moves back and forth for longer than players can pass back and forth
in Arimaa′ (compare the move sequence above in this proof with Remark 9). However, just
as in Arimaa′, players cannot trivially undo an opponent’s decision to simulate passing the
turn with cat cage moves; we have seen that if a player’s opponent insists on only cat-cage
movement, then the player must eventually progress the simulation with a move in the
grid. ◀

▶ Remark 14. In the course of play, there may arise positions in which the grid contains
arrangements of pieces that function similarly to a cat cage. That is, there may arise groups
of pieces internally within the grid such that a cat imprisoned inside is mobile, but can only
move through a fixed region of squares within. We call such a region a synthetic cat cage.
This may occur after a player uses a turn switcher gadget (see Section 3.3.2).

We observe that synthetic cages have no effect on the outcome of the game, for either
the Arimaa′ or Arimaa players discussed above. If an Arimaa player makes a synthetic cage
move, the result is equivalent to making a cat cage move.11 If an Arimaa′ player makes a
synthetic cage move, the opponent can respond with a pass, forcing the first player to do
something productive.

2.4.6 Reachability from the starting position
Before we proceed to the proof of the main theorem, we note that any simulated AGG1.1
position on an Arimaa and Arimaa′ board can be reached from the start of the game. This is
easy to see, as pieces can move any direction (except rabbits, which cannot move backward).
The board must be large enough that the home ranks can contain all pieces needed for the
simulation. Then the players offer each other no resistance when moving pieces to form the
simulated AGG1.1 position. Excess pieces can be captured in traps.

3 Proof

In this section we present the formal proof of Theorem 1:

▶ Theorem 1. The Arimaa decision problem is PSPACE-hard.

It will be clear that the reduction from AGG1.1 to Arimaa′, like the reduction from
Arimaa′ to Arimaa, is polynomial-time computable.

3.1 Movement through the grid
The simulation of the AGG1.1 game in Arimaa′ works by always having only one player,
called the active player, incentivized to move pieces, while the other player, called the inactive
player, simply passes the turn repeatedly, until the active player completes a series of moves
that simulate marking a node. This process involves a partial gadget called a turn switcher
(see Section 3.3.2). After this, the roles switch as the second player becomes incentivized to
move pieces while the first player repeatedly passes the turn, and so on. This continues until
the simulated AGG1.1 game is complete.

11 The reader can verify that if both players are making (synthetic or non-synthetic) cage moves in a
sequence similar to the eight-turn sequence in the proof above, then switching mid-sequence to moving
a cat from a different cage does not help.
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Figure 8 An AGG1.1 graph (left) and sketched representation by Arimaa′ gadgets (right).

▶ Definition 15. The key piece in the grid is the loose cat, a free cat that is the only piece
on the board able to travel. This cat is capable of moving from one gadget to the next. For as
long as the simulation is running, the active player will have a loose cat.

The simulation begins with Silver active (see Section 3.3.1). Players keep their roles until
forced to switch in a turn switcher (see Section 3.3.2). We consider two cases. If the active
player has a winning Geography strategy, the active player will have incentive to continue
making moves that progress the AGG1.1 simulation. If the active player does not have a
winning strategy, the inactive player will keep passing turns and thereby force the active
player to keep making moves in the simulation. In this case, while the active player may
initially make irrelevant moves, the threat of threefold repetition will eventually force the
loose cat to make progress in the simulation. This principle ensures that the losing player
keeps moving through the corridors and turn switchers. So, in either case the simulation will
eventually reach its natural conclusion.

3.2 Connecting gadgets
Before we present the details of the gadgets representing the different nodes of the AGG1.1
game, we look at how they are stitched together to form the grid. In Figure 8 we see how
the example AGG1.1 graph from Figure 3 looks once transformed into square blocks. The
example is made out of a starting node, one fork, two joins, two pipes, and eight bends.
These blocks will become the gadgets in the reduction. For some examples, see Figure 9.
The gadgets each use 49 concatenated standard Arimaa boards, arranged in a 7 × 7 square.
The connecting corridors are all centered and have standard parity, ensuring that the gadgets
connect correctly to each other. The detailed figures in the rest of this section cut off some
of the corridor and empty space, leaving only the most critical parts of the gadgets or partial
gadgets visible.

3.3 Gadgets
All the stable structures forming the simulation are built in standard parity, except for the
turn switcher. Most gadgets in this section are depicted in just one color, but each can be
transformed by reversing the piece colors, while preserving the parity by shifting the wall
position one square as discussed in Section 2.4.2. The turn switcher poses a more difficult
challenge, as we will see in Section 3.3.2.
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(a) A silver south-to-west bend gadget.
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(b) A long vertical silver edge.

4 5 6 5 4 4 5 4
4 5 4 4

4 4 5 4
4 5 4 4 5 6 5 4

4 5 6 5 4 4 5 4
4 5 4 4

4 4 5 4
4 5 4 4 5 6 5 4

4 5 6 5 4 4 5 4
4 5 4 4 5 6 5 4

4 4 5 4
4

4
4 5 4 4

4 5 6 5 4 4 5 4
4 5 4 4 5 6 5 4

4 5 6 5 4 4 5 4
4 5 4 4

4 4 5 4
4 5 4 4 5 6 5 4

4 5 6 5 4 4 5 4
4 4 4 5 4 4

4 4 5 4 4 4 5 4 4 4 5 4
5 4 5 6 5 4 4 4 1 1 1 1 5 4 4 5 6 5 4 4 5 6 5 4
4 4 5 4 4 5 5 4 1 1 5 6 5 4 4 5 4 4 5 4

4 4 5 6 6 6 6 6 6 6 6 5 4 3 4 4
4 5 6 6 6 6 6 6 5 4 3 4 5 4

2 3 4 5 5 1 1 4 5 4 3 4 5 6 5 4
2 2 2 1 1 1 1 3 3 4 5 4
2 1 4 4

4 3 2 2 2 2 2 2 1 2 2 4 4 5 4 4 5 4
5 4 4 5 4 5 4 3 4 5 3 3 2 5 4 5 4 4 5 6 5 4 4 5 6 5 4
6 5 4 4 5 6 5 6 5 4 5 6 5 4 4 5 6 5 6 5 4 5 6 6 6 5 2 4 5 4
5 4 4 5 4 5 4 3 4 5 4 4 5 4 5 4 4 5 6 5 4 4
4 4 4 4 4 4 4 5 4 4 5 4

4 4 5 6 5 4
4 4 5 4

4 5 4 4
4 5 6 5 4 4 5 4

4 5 4 4 5 6 5 4
4 5 6 5 4 4 5 4

4 5 4 4 5 6 5 4
4 4 5 4

4
4

4 5 4 4
4 5 6 5 4 4 5 4

4 5 4 4 5 6 5 4
4 5 6 5 4 4 5 4

4 5 4 4
4 4 5 4

4 5 4 4 5 6 5 4
4 5 6 5 4 4 5 4

4 5 4 4
4 4 5 4

4 5 4 4 5 6 5 4

(c) A gold fork gadget.
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(d) A gold join gadget.

Figure 9 Complete gadget examples.

3.3.1 Starting gadget
Recall that an AGG1.1 game starts with Gold marking the start node and Silver then marking
the next node. The player exiting the gadget simulating the start node should therefore be
Silver. This gadget representing the start node is nothing more than a corridor that is closed
on one side, with the other side connecting to the gadget representing the second node (see
Figure 10). In it is a loose silver cat to start the simulation. This is the only free piece at
the outset; the other pieces on the board are either part of the grid or rabbit prisons, hence
stable.

3.3.2 Turn switcher
This is the most important and complex partial gadget, responsible for switching the active
and inactive player. In broad terms, it activates when a loose cat approaches and frees a
friendly cat that then pushes an opposing rabbit down a narrow passage. At some point,
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Figure 10 The critical part of a starting gadget.
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Figure 11 A turn switcher changing Gold as active player to Silver.

the inactive player will have to respond, as otherwise the second cat will be able to push all
the way through the passage and end up on the other side of the turn switcher, where it
will be able to free an elephant that can be used to win the game. Now follows a detailed
explanation.

Figure 11 shows a turn switcher, which we see is completely stable before it gets activated.
Avoiding repetition, a loose cat from Gold will eventually enter the switcher via the left
corridor, where it will have no choice but to step on the g7 trap square and free the cat on
h7. The h7 cat then has no choice but to push the silver rabbit on i7 east, causing the g7 cat
to be captured. The remaining free cat is then forced to stay east of h7, because on h7 it
would get frozen again, allowing Silver to win by repeatedly passing the turn. At some point,
Gold will have to push the silver rabbit further right to j7 (case 1), k7 (case 2), l7 (case 3),
m7 (case 4), n7 (case 5), o7 (case 6), and/or p7 (case 7). As Gold can push the rabbit up
to twice per turn before Silver gets to move, Gold must choose which squares to allow the
rabbit to be on when Silver starts her turn. For example, if Gold wants to avoid leaving the
rabbit on m7, then Silver will necessarily have turns in which her rabbit begins on l7 and n7.
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We consider all cases below. In each case, we will assume Gold keeps the loose cat adjacent
to the silver rabbit between j7 and p7. If Gold instead decides to abandon the silver rabbit
and bring the cat back west, nothing changes in how Silver should act.

Case 1 (j7)

The silver cat on j8 is now free and can push the k8 rabbit, freeing the elephant on j10 and
allowing it to break down the wall and complicate the position. However, this series of events
would never happen, because this requires both players to cooperate; Gold would have to
choose to push the rabbit to j7 and end the turn, and Silver would then have to move the j8
cat. Whichever player has a winning strategy in the AGG1.1 simulation could decline to let
this sequence of moves occur.

Case 2, 4 (k7, m7)

The silver rabbit is frozen, so Silver simply passes and soon Gold must push the rabbit again.

Case 3 (l7)

Similar to cases 2 and 4. The rabbit can only move one square east before it gets frozen
again, but it will have no incentive to do so as Gold can reply by immediately starting to
pass all turns, causing Silver to lose the game. Meanwhile, the silver cat on l6 is technically
unfrozen now, but remains still unable to move because it has become blockaded.

Case 5 (n7)

Similar to case 1, with the n6 cat replacing the j8 cat.

The interesting cases are 6 and 7, as Silver will be forced to stop passing and make a
move in the simulation. At the end of case 6, the roles of active and inactive player will have
been switched. Case 7, we will see, will never occur.

Case 6 (o7)

In this position, we claim that Gold is now making a game-winning threat, forcing Silver to
stop passing and instead move her now free rabbit. The threat is that if Silver passes now,
Gold can double-push the rabbit east to q7 in his next turn, after which Silver is unable to
stop Gold from going to the elephant prison and winning the game. We now explain how
Gold would accomplish this, after which we describe Silver’s answer to the threat.

The elephant prison is centered around the square z4. The purpose of the elephant prison
is to give the active player a way to free an elephant without freeing the opponent’s pieces.12

In the event that Silver has not stopped the loose cat of Gold from walking all the way to p7
and pushing the silver rabbit all the way to q7, Silver now has no free pieces in this turn
switcher. This allows Gold’s cat to keep the rabbit frozen and push it into a trap at his
leisure, then move toward the gold 4 on z7. Unfreezing the 4 activates the elephant prison.
The 4 can move aside to give room to the elephant on z5 to push out the 5 on z6 (keeping it
always frozen). This 5 may be captured with any of the available traps, leaving the elephant
completely free. The silver 5s on y5 and aa5 stay frozen by the gold elephants below them.

12 As it turns out, this construction is more elaborate than strictly needed. It would suffice to replace the
elephant prison with normal wall, letting one of the wall’s outer 4s play the elephant’s role, as 4s are
also large enough to escape the grid and win. Still, we aesthetically favor using the strongest piece.
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After the elephant is freed, it can move through the gaps in the walls and escape from
the grid to the large empty space outside. Once there, it will go to its friendly rabbit prison
to free the rabbit there and win the game.

Returning to our initial case 6 position, Silver can and must prevent all this by moving
her rabbit from o7 to p7, which unfreezes the cat on p6 so that it can push the gold rabbit
on o6 to the o7 trap.13 The purpose of Silver pushing the gold rabbit from o6 onto o7 is to
restrict the mobility of Gold’s n7 cat. If Silver doesn’t do this, Gold’s n7 cat would have
the freedom to travel east and escape the turn switcher, which could benefit only Gold. So,
having now used three out of four movement steps this turn, Silver can either end the turn
now or move her cat back to p6 and then end the turn. Assume for simplicity that she
chooses to move now to p6, since we will see that the cat must move to p6 soon anyway.

After this turn by Silver, it is Gold to move. In this position, we claim Gold now has no
choice but to pass his turns. Observe that the rabbit now on the o7 trap square is immobile,
as it is blocked laterally and to the north, and gold rabbits can never move south. Further
observe that if Gold moves his n7 cat, this rabbit will be captured by the trap, and Gold
would only end up making irrelevant moves with his cat between i7 and n7 (moving all the
way to h7 would just get it frozen). Meanwhile, Silver would simply be able to pass the turn
repeatedly and make Gold lose the game by repetition.14 So, with Gold forced to keep his
cat and rabbit still, we see that he must pass, at which time Silver becomes the active player
and the silver cat now located on p6 becomes the loose cat. It is now free to go into the
rest of the gadget this turn switcher is a part of and continue the simulation. The gold cat,
meanwhile, stays permanently imprisoned between i7 and n7 and will never again be relevant
in the game (see Remark 14).

As an aside, note that Silver cannot leave the switcher with both her newly loose cat
and her rabbit, as each cannot free the other without freezing itself. (The useless rabbit is
anyway confined to only six squares – see fn. 13.) So there is always only one loose piece.

Case 7 (p7)

Gold will not allow this to occur. If he does, Silver wins as follows. First, Silver captures
the cat on the o7 trap by pulling the adjacent o6 rabbit with her p6 cat. Then she freezes
that rabbit by pushing it back to o6. Gold has no choice now but to pass. The silver cat
now pushes the rabbit to the o7 trap, capturing it, and travels backwards through the turn
switcher to the west side. Careful to avoid the g7 trap, it frees the frozen 3, which frees a 4,
which then escapes the grid and wins the game, similarly to gold’s threat from case 6.

▶ Remark 16. In the construction of turn switchers, there are some subtleties in changing
the switcher’s color and/or direction, since almost every piece in it has its own function and
since it is precisely built around and onto the trap squares. It also has an internal parity

13 It would be a losing strategy for Silver to move her rabbit further east than p7, as that would allow
Gold’s cat to catch up and freeze the rabbit, move it into a trap and win via the elephant prison. In
any case, silver rabbits cannot move north, so the s6 cat will keep it forever confined to squares q7, r7,
s7, q6, r6, and q5.

14 Note that even if this were an Arimaa game rather than Arimaa′, Gold would still lose the game. It
might seem at first glance that Gold’s initial westward movement of his cat is itself a sort of synthetic
cat cage move, making Gold the initiator (and therefore winner) of an eight-move repetition sequence
(as he shuffles his cat between m7 and n7), but this is not the case. Gold’s first movement to m7 causes
the o7 rabbit to be captured, creating a necessarily new Arimaa position and allowing Silver to be the
first to mark time in a cat cage.
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change15 where there is a double column of adjacent rabbits and elephants of the same color.
The upper left and the entire bottom side of the turn switcher in Figure 11 are of standard
parity, so they need no adjustment to connect to walls of standard parity. The upper right
corner, however, is not, so an extra gap of space is left between that part of the turn switcher
that is not of standard parity and the wall that is. The gap is not wide enough for enemy
cats to go through, as they would still be frozen by the pieces making up the wall.

Our reduction requires four types of turn switchers: rightward gold-to-silver (as in
Figure 11), leftward gold-to-silver (as in Figure 13, right turn switcher), rightward silver-
to-gold (not depicted), and leftward silver-to-gold (as in Figure 9a). All are constructed
similarly, but with the following adjustments. Changing the turn switcher’s direction requires
mirroring it over its vertical axis, resulting in a parity change. Changing its color requires
switching its piece colors and mirroring it over the horizontal axis (since gold and silver
rabbits are mirrored in their vertical movements). In all cases, a wall gap similar to the one
in s12-t12 in Figure 11 is included where needed.

3.3.3 Pipes and Bends
A pipe is easily constructed by a straight corridor with a turn switcher. A bend is similar, but
with a 90◦ corner. Bends can be made in any direction, with the turn switcher in whichever
of the two corridors connected by the corner is horizontal. See Figure 9a for an example.

3.3.4 Joins and Sleds
A join can be constructed from a two facing turn-switchers that feed into a common central
area that leads into a vertical corridor. Within the central area are two occurrences of a
small partial gadget that we call a sled. We now describe the workings of sleds, after which
we discuss the join itself and how it uses sleds.

14 4 4 4
13 4 5 4 4 5 4 4 5 4
12 4 5 6 5 4 5 6 5 4 5 6 5
11 4 5 4 5 6 5 4 6 5 4
10 4 4 5 4 4
9 4
8 2 3 2
7 2 2
6 2
5 4 4 4
4 4 5 4 4 5 4 4 5 4
3 5 6 5 4 5 6 5 4 5 6 5 4
2 4 5 4 4 5 4 4 5 4
1 4 4 4

a b c d e f g h i j k l

(a) Before.

14 4 4 4
13 4 5 4 4 5 4 4 5 4
12 4 5 6 5 4 5 6 5 4 5 6 5
11 4 5 4 5 6 5 4 6 5 4
10 4 4 5 4 4
9 4
8 2 3 2
7 2
6 2 2
5 4 4 4
4 4 5 4 4 5 4 4 5 4
3 5 6 5 4 5 6 5 4 5 6 5 4
2 4 5 4 4 5 4 4 5 4
1 4 4 4

a b c d e f g h i j k l

(b) During.

14 4 4 4
13 4 5 4 4 5 4 4 5 4
12 4 5 6 5 4 5 6 5 4 5 6 5
11 4 5 4 5 6 5 4 6 5 4
10 4 4 5 4 4
9 4
8 2 3 2
7 2
6 2
5 4 4 4
4 4 5 4 4 5 4 4 5 4
3 5 6 5 4 5 6 5 4 5 6 5 4
2 4 5 4 4 5 4 4 5 4
1 4 4 4

a b c d e f g h i j k l

(c) After.

Figure 12 A sled between two walls in a corridor in different stages of use.

Sleds are built between two corridor walls. They are designed to let just a single loose
cat pass a single time. See Figure 12 for a sled in action. In 12a we can see a loose cat (b7)
traveling east inside a corridor, encountering a sled. The sled functions like a dead end for

15 The reason for this internal change of parity is that the turn switcher needs to be in standard parity
both above and below the entrance – i.e., both h6 and h8 have silver pieces in Figure 11 – in order to
keep the h7 cat initially frozen. By contrast, o6 and o8 have pieces of opposite color, as do p6 and p8,
in order for the turn switcher mechanism to work.

FUN 2024
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this cat, and eventually it will have no choice but to move onto the trap square e6, as seen
in Figure 12b. Now the cat on f6 is unfrozen and has no choice but to move east, becoming
the new loose cat as the e6 cat gets captured (see Figure 12c). This new loose cat is free to
go north (g7) and east (h7), then continue movement through this corridor. Observe that
the sled can only be used in its intended direction and only one time.16

Recall that the main feature of an AGG1.1 join is that it is the only type of node that may
be marked twice, and subsequently the player who marked it wins the game. The Arimaa′

join gadget is designed to work similarly. In Figure 13 we see a join ready to be marked by
Gold.17 So Gold enters this join and Silver leaves it. Without loss of generality, assume Gold
enters from the west. Silver emerges from the turn switcher and has no choice but to use the
sled on the west side. With the loose silver cat now in the middle of the join, the only place
it can go is the vertical corridor exiting the gadget toward the turn switcher of the next node
gadget (north of this join gadget), since the east sled cannot be used from this side. The next
time this join gadget is used, Gold will activate the turn switcher on the east to enter. Silver
again emerges and has no choice now but to use the eastern sled and again go to the vertical
corridor leading to the next gadget. But since the next gadget’s turn switcher cannot be
used twice (the entrance works like a sled), Silver is now unable to get past this point. Stuck
in a dead end, she will eventually run out of new moves and lose the game by repetition.

3.3.5 Forks
Forks gadgets represent nodes with indegree 1 and outdegree 2. The fork shown in Figure 14
is a gold fork. The silver loose cat that will leave the turn switcher may choose to take either
the northern or southern outgoing corridor. Backtracking at a later stage in the simulation
to also use the other direction of the fork is impossible, as each node the fork feeds into has
a turn switcher, which a cat cannot go through in reverse.

3.4 Proof conclusion
We see that every gadget works as required. This completes the proof of Theorem 1. ◀

16 The metaphor of a sled is imperfect, since the cat entering the contraption is not the same physical cat
as the one coming out. But it is our attempt to convey a form of uni-directional travel that (for a cat,
at least) can be used only once.

17 This depiction is modified from the one in Figure 9c, in order to show its functioning more clearly. The
official join from 9c is more compressed and has only one elephant prison that is shared by both turn
switchers.
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4 Discussion and Conclusion

4.1 Overview
The inception of the game Arimaa has inspired many researchers to explore the practical
complexity of the game when developing their bots. The result of this paper on the theoretical
complexity of the game proves that the problem of solving Arimaa is intractable (under the
assumption P ⊊ PSPACE). It also gives us a way to compare the game to other games in
terms of difficulty, and of course adds one more problem to the library of known PSPACE-hard
problems.

As remarked earlier, one notable feature of this proof is that it shows PSPACE-hardness
of a game whose pieces only move short distances in a single turn. While our reduction
strategy is largely based on that of [16] for chess, chess does not present this same challenge
because some pieces can move arbitrarily many squares per turn. In Arimaa, the strictly
local movement of pieces calls for the idea of cat cages and Arimaa′ in our reduction.

4.2 Future research
This paper shows that Arimaa is PSPACE-hard because AGG1.1 reduces to Arimaa′, which
in turn reduces to Arimaa. The reduction presented in the proof works with traps placed on
the corners of a 4 × 4 square, with four empty spaces between adjacent groups of traps and
two empty spaces separating traps within a group. However, another way to generalize the
standard 8 × 8 Arimaa board could be to place traps with two empty spaces between them
in all directions. For this alternative version of n × n Arimaa, the reduction in this paper
would no longer work, as it is impossible to create any kind of stable building block like the
one we used here for the walls. This does not rule out all other possible reductions, but at
the moment we do not know how they would look. With minor adjustments, our reduction
can work with a constant number of three or more empty squares between traps, although
that might be less in line with the spirit of the original game. In future research it would be
interesting to see a reduction for a version containing traps spaced with two squares between
them in every direction (rather than alternating gaps of two and four squares), if possible.

Further, as discussed in this paper’s introduction, we expect that it is possible to prove
Arimaa is EXPTIME-hard, perhaps using a reduction similar to that of [8]. Raising the lower
bound of Arimaa’s complexity to match the upper bound, this would make Arimaa EXPTIME-
complete, just like chess (without a generalized 50-move draw rule) [8], checkers [13], and Go
(with Japanese ko rules) [12]. However, we also consider it possible, though less likely, that
Arimaa is in PSPACE and is therefore PSPACE-complete.
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Abstract
The total area of the 24 squares of sizes 1, 2, . . . , 24 is equal to the area of the 70 × 70 square.
Can this equation be demonstrated by a tiling of the 70 × 70 square with the 24 squares of sizes
1, 2, . . . , 24? The answer is “NO”, no such tiling exists. This has been demonstrated by computer
search. However, until now, no proof without use of computer was given. We fill this gap and give a
complete combinatorial proof.
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1 Introduction

The total area of the 24 squares of sizes 1, 2, . . . , 24 is equal to the area of the 70 × 70 square.
In fact, this is the only nontrivial solution of the Diophantine equation 12 +22 + · · ·+n2 = m2,
see [7]. Can this equation be demonstrated by a tiling of the 70 × 70 square with the 24
squares of sizes 1, 2, . . . , 24?

This natural question was popularized by Martin Gardner [3], who attributes the problem
to R. B. Britton (unpublished). The answer is “NO”, no such tiling exists. This has been
demonstrated by computer search, as claimed first in [2] without giving details and later in
[4, 5]. However, until now, no proof without use of computer was given. We fill this gap and
give a complete combinatorial proof.

Some initial steps towards a combinatorial proof were given in [6]. Using an extensive
case analysis, it is shown there that squares of size up to 5 cannot be placed on the edges
of the 70 × 70 board; in addition some further combinations of squares on edges, typically
involving 6, 7, and/or 8, are also excluded.
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28:2 No Tiling of the 70×70 Square with Consecutive Squares

This problem belongs to a wide class of Mrs. Perkins’s Quilt problems, that in general
ask for “squaring the square”, i.e., tiling of a given square with smaller squares. See [1] for
an overview of this rich area. Our problem is one special case. In addition to exact tiling,
there are numerous results on packings that do not cover the whole square or coverings
where some small squares overlap. One can then state various optimization problems, like
minimizing the bounding box that allows packing a given set of small squares, or minimizing
the overlap. One can also allow to omit some small squares and find a packing of a subset of
squares in the given square that minimizes the empty space. In our case, the 70 × 70 square
can accommodate all smaller squares except for the 7 × 7 square and the computer search in
[5] also shows that 49 is indeed the smallest possible empty space.

1.1 New techniques and proof overview
The key to a shorter proof avoiding a long case analysis is a new insight into the global
structure of a tiling. We assume that we have some tiling of the 70 × 70 board with the 24
squares and seek an eventual contradiction.

First observe that no three squares can together intersect all the rows as 22 + 23 + 24 =
69 < 70. This allows us to select four important rows such that each square intersects at
most one of them. Namely, select as two important rows the bottom row and the row just
above the largest square intersecting the bottom row. Similarly, select the top row and the
row just below the largest square intersecting the top row. Actually, there is some flexibility
in this selection, and we may choose the important rows so that the distance among any
two of them is at least 22 by moving the middle two important rows towards the center, if
necessary. This simplifies some arguments later. Analogously we define four important
columns. See Section 2 for precise definitions.

Now we classify all squares in the solution. A square is called
Major if it intersects both an important row and an important column.
Minor if it intersects an important row or an important column but not both.
Orphan if it intersects neither an important row nor an important column.

See Fig. 1.1 for an illustration of the square types.
We continue by a counting argument that shows that there are at most two orphans

which in addition have total size at most 4, see Theorem 2.4.
The limit of two orphans, additionally of small size, is a serious restriction. E.g., when

trying to sketch a possible tiling, one realizes that a corner square often has an orphan
adjacent to it, similarly to the top left corner in Figure 1.1, unless the corner square is
very large. One can actually prove that a smallest square on an edge must have an orphan
adjacent to it whenever it has size at most 11.

With this classification and restrictions in mind, we examine the tiling and exclude
possible cases step by step.

We start by excluding small squares on the edges of the 70 × 70 board, somewhat similar
to [6]. The bounds on orphans allow us to exclude squares of size up to 9 fairly easily, see
Sections 3 and 4.

If all the squares on an edge have size at least 10, we show that there are only four
squares on each edge, total of twelve squares along all edges, including the four corner squares
touching two edges, see Lemma 3.6. With this restriction, it is not hard to exclude also a
square of size 10 on an edge, see the end of Section 4.

More importantly, this restriction to only four squares on each edge allows us to use
another counting technique introduced at the beginning of Section 5. We illustrate it on the
case where all the squares on the edges have size at least 13. This means that the twelve
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Figure 1.1 Important rows and columns; square types.
As a convention, in all our figures we use colors and shading as follows:
• the important rows and columns are drawn as violet thick lines;
• major squares are drawn in black with no fill;
• minor squares are drawn in blue with a light fill;
• orphans are drawn in red, filled if size is 1, hatched if size is larger.

squares on edges are the twelve largest squares and have total size equal to 13+ · · ·+24 = 222.
Furthermore, every corner square is adjacent to a smaller square on one of the edges and
these squares are unique. It follows that the sizes of corner squares are at least 14, 16, 18, 20
and thus their total size is at least 68. However, this would imply that the circumference of
the board is at least 222 + 68 = 290, contradicting the obvious fact that the circumference is
equal to 4 · 70 = 280.

The remaining case where a square of size 11 or 12 is on an edge is the most delicate
part of the proof and needs a careful combination of all the techniques above, this is covered
in Section 5. First we exclude the option that both 11 and 12 touch an edge. This gives a
good lower bound on the total size of the twelve squares on the edges. Then, using some
case analysis, we give a lower bound on the size of the corner squares. This leads to the final
contradiction.

FUN 2024



28:4 No Tiling of the 70×70 Square with Consecutive Squares

2 Important lines and classification of squares

As already used above, the board refers to the 70 × 70 square which should be tiled. The
board consists of 70 rows and 70 columns of 1 × 1 squares that we call cells.

From now on, by a square we always mean one of the square tiles as positioned in the
solution. Edges always mean edges of the board, while sides are the sides of a square. A
square that is adjacent to an edge of the board is called an edge square; a square adjacent to
two edges of the board is called a corner square.

We assume that we have some solution, i.e., a tiling of the board with the 24 squares. It
is obvious that every square in the solution is aligned with the cells, as the solution covers the
board perfectly. From now on, we consider only such positions of squares, i.e., only positions
that have an integral offset from a corner of the board.

▶ Definition 2.1. We define four important rows of cells:
Bottom row: The row along the bottom edge.
Low row: Let A be the largest square touching the bottom edge, let x = max(22,A). The low

row is the (x + 1)-st row from bottom.
High row: Let B be the largest square touching the top edge, let y = max(22,B). The high

row is the (y + 1)-st row from top.
Top row: The row along the top edge.
Similarly, we define the first, left, right, and last columns and together call them important
columns.

See Fig. 1.1 for an illustration of important rows and columns on a partial tiling. Note
that the second important row and column do not touch any square on the top or left edge,
as all these squares are smaller than 22 and thus the important row and column are moved
towards the center, to maintain the desired spacing.

▶ Observation 2.2.
(i) No square intersects two of the important rows.
(ii) Any 22 consecutive rows contain at most one important row.
(iii) No square intersects two of the important columns.
(iv) Any 22 consecutive columns contain at most one important column.

Proof. We prove the first two items for rows. The claims for columns follow by symmetry.
By definition, no square intersects both bottom and low rows, and also no square intersects

both top and high rows.
Let x be the number of rows below the low row and y the number of rows above the high

row (as in the definition). For contradiction, assume that a square of size z intersects both
low and high rows. Note that this together covers all rows, implying x + y + z ≥ 70.

At most one of x, y, z can be equal to 24, as these options imply that the square 24 is
either at the top edge, at the bottom edge, or none of the two, respectively. Similarly, at
most one of x, y, z can be equal to 23. Thus x + y + z ≤ 24 + 23 + 22 = 69, a contradiction.

For the second claim, we need to observe that there are at least 21 rows between two
important rows. This follows by definition for bottom and low rows, and also for top and
high rows. As x + y ≤ 23 + 24 = 47, there are at least 70 − 47 = 23 rows between low and
high rows including these two important rows, and the claim follows as well. ◀

For completeness, we repeat the classification of the squares in the solution.
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▶ Definition 2.3. A square is called
Major if it intersects both an important row and an important column.
Minor if it intersects an important row or an important column but not both.
Orphan if it intersects neither an important row nor an important column.

There are exactly 16 major squares, as there are exactly 16 cells in the intersections of
important rows and important columns, each of these cells is covered by a square and no
square contains two of these cells due to Observation 2.2.

In the next theorem we show that the total size of orphans is at most 4. This implies
that there are at most two orphans and if there are two orphans, the smaller one has size
equal to 1. In addition, we give all combinations of sizes of minor and major squares for all
orphan sizes.

▶ Theorem 2.4. The total size of orphans is at most 4. There are at most two orphans and
at most one orphan larger than 1. All possible combinations of sizes of orphans, minor and
major squares are given in Table 2.1.

Table 2.1 Possible combinations of minor and major squares. The dots in the first two rows in
the column of minor squares denote all the smaller squares that are not among the orphans.

orphans minor squares major squares
1,3 . . . ,5,6,7,8 9,10,11,12,13,14,. . . ,24
4

1,2 . . . ,4,5,6,7,9 8,10,11,12,13,14,. . . ,24
3

2 1,3,4,5,6,8,9 7,10,11,12,13,14,. . . ,24
1,3,4,5,6,7,10 8,9,11,12,13,14,. . . ,24

1
2,3,4,5,7,8,9 6,10,11,12,13,14,. . . ,24
2,3,4,5,6,8,10 7,9,11,12,13,14,. . . ,24
2,3,4,5,6,7,11 8,9,10,12,13,14,. . . ,24

none

1,2,3,4,6,7,8,9 5,10,11,12,13,14,. . . ,24
1,2,3,4,5,7,8,10 6,9,11,12,13,14,. . . ,24
1,2,3,4,5,6,9,10 7,8,11,12,13,14,. . . ,24
1,2,3,4,5,6,8,11 7,9,10,12,13,14,. . . ,24
1,2,3,4,5,6,7,12 8,9,10,11,13,14,. . . ,24

Proof. Let MAJOR be the sum of sizes of all major squares, MINOR the sum of sizes of all
minor squares, and ORPHAN the sum of sizes of orphans.

The expression 2 · MAJOR + MINOR is equal to the sum of sizes of squares on all
important rows and columns. Thus we have 2 · MAJOR + MINOR = 8 · 70 = 560. The sum
of all 24 square sizes is 1 + · · · + 24 = 12 · 25 = 300, so MAJOR + MINOR = 300 − ORPHAN.
Together this implies MAJOR = 260 + ORPHAN.

Furthermore, MAJOR is at most the sum of the 16 largest squares, which gives MAJOR ≤
9 + 10 + · · · + 24 = 8 · 33 = 264. Thus ORPHAN ≤ 4. As the three smallest square sizes sum
to 6, there are at most two orphans. Also, there cannot be two orphans larger than 1, as
their total size would be at least 5.

It remains to examine all possible combinations of squares that sum up to ORPHAN and
the corresponding value of MAJOR. The results are given in Table 2.1. ◀
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28:6 No Tiling of the 70×70 Square with Consecutive Squares

3 Preliminary observations and small MIN cases

As in previous literature on the problem, it is convenient to consider various cases where we
have some partial tiling of the 70 × 70 board and we try to extend it. Our goal is to achieve
a contradiction, eventually covering all possibilities. To make our presentation complete, we
cover all cases, including those already excluded in the previous literature.

We denote the squares by blackboard-bold letters A, B, etc. We overload this notation
and use it for the size of squares, too. Similarly, square 1 denotes the unique square of size 1,
square 2 denotes the unique square of size 2, etc.

The smallest edge square is denoted MIN. (Recall that an edge square is a square touching
an edge of the board.) We will gradually restrict the possible sizes of MIN. Typically we
will assume that MIN touches the bottom edge. Some of our claims speak about an edge
square that is a local minimum, which means that on both sides it has either a larger edge
square or an edge (i.e., it is a corner square). Obviously, MIN is always a local minimum.

The following observation shows that MIN is never a corner square, but is useful in other
situations, too.

▶ Observation 3.1. A corner square is always adjacent to a smaller edge square.

Proof. If a corner square is adjacent to two larger edge squares, then these two squares
intersect, which is impossible. As there are no two equal squares, it follows that one of the
adjacent edge squares is smaller than the corner square. ◀

Some configurations lead to an easy contradiction based only on local considerations.
One of them is so-called corridor.

Given a partial tiling, a corridor is a rectangular space bounded by already placed squares
from three sides and open on the last side. Its width is the length of the middle bounding
segment and its height is the minimum of the two remaining bounding segments. Narrow
corridors are quite restrictive. The only way to fill a corridor of width 1 or 2 is to use square
1 or 2, respectively, so if such a corridor has height of 3 or more, it cannot be filled at all.
Similarly, a corridor of width 3 and height 5 cannot be filled, as the only way to cover the
width is to use square 3 or squares 1 and 2 together. See Fig. 3.1(a).

Any square A on the bottom edge that is a local minimum creates a corridor of width A
on top of it. This corridor must be filled with at least two squares, as size A is already used.
This immediately excludes the case MIN ≤ 2, as the corridor on top of MIN cannot be filled.

Observation 3.1 excludes the situation where square 1 is placed in a corner, as it cannot
be adjacent to two larger edge squares. This applies also to a corner-like configuration similar
to Figure 3.1(b) where instead of a corner of the board we have two squares.

(a) A corridor of width 3
and height 5 that cannot
be filled.

(b) A corner-like situa-
tion where square 1 is ex-
cluded.

A B

(c) The situation of A = MIN ∈
{3, 4} in Lemma 3.2 and the text
below.

Figure 3.1 Some configurations that are easy to exclude.
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The following observation will be useful at multiple places. See Figures 3.1(c) and 3.3 for
an illustration.

▶ Lemma 3.2. Suppose a square A on the bottom edge is a local minimum, i.e., any adjacent
edge square on the bottom edge is larger, and it has square 1 on top. Then square 1 is the
leftmost or rightmost square on top of A and the adjacent edge square exists and has size
A + 1.

Proof. If square 1 is in the middle of the top side of A, it creates a corridor of width 1 that
cannot be filled, as 1 is already used. Similarly, if it is next to a vertical edge or a square
larger than A + 1, it creates a corridor of width 1 that cannot be filled. ◀

Now we are ready to exclude the case of MIN ≤ 4, which is known but the proof is
significantly easier with our classification of squares. Suppose MIN ∈ {3, 4} is at the bottom
edge. By Theorem 2.4, MIN is a minor square, i.e., it cannot intersect an important column.
The only possible way to fill the corridor above it is to use squares 1 and MIN − 1, and both
of these squares are orphans. See Fig. 3.1(c) for reference. Lemma 3.2 now implies that the
neighboring edge square B has size MIN + 1. This is necessarily also a minor square, as we
now have orphans. Also, the neighbor of B on the other side than MIN is larger than B or B
is a corner square. In both cases, there is a corridor above 1 and B, thus any square on top
of B is another orphan, using also the fact that such squares cannot reach the low row. This
is a contradiction as we have three orphans.

Similar ideas lead to following observations that limit the possibilities on top of local
minimum squares and solve some more cases.

▶ Lemma 3.3. Suppose that A is a local minimum, w.l.o.g. on the bottom edge, and
5 ≤ A ≤ 11. Then A is a major square, one square on top of it is minor and the other
square(s) on top of it are orphans.

Proof. Since A ≤ 11, all squares on top of it have size at most 10. Thus none of these squares
intersects the low row. It follows that these squares are orphans or minor. They cannot
be all orphans, as A ≥ 5. Thus one, and only one, of them is intersected by an important
column. Consequently, A is a major square. ◀

We immediately see that MIN = 5 is excluded, as Theorem 2.4 implies that a major
square of size 5 cannot exist if there is an orphan.

At this point, it is good to summarize possible configurations on top of a local minimum
A ≤ 11, see Fig. 3.2. In addition to the minor square, there are one or two orphans, i.e., at
most three squares. If there are two orphans, one of them must have size 1 and it is not the
middle square.

The following lemma shows that for A = MIN ≤ 10, only the configuration in Fig. 3.2(a)
is possible.

▶ Lemma 3.4. Suppose that 6 ≤ MIN ≤ 10. Then MIN cannot have square 1 on top.

Proof. Suppose for a contradiction that square 1 is on top of MIN. Lemma 3.3 implies that
it is an orphan as otherwise there are orphans of total size MIN− 1 ≥ 5. Then by Lemma 3.2,
it is next to an adjacent edge square B of size MIN + 1. See Fig. 3.3. The squares B and 1
together create a corridor of width MIN+ 2. This corridor is not intersected by an important
column, as together with MIN they intersect at most MIN + MIN + 1 ≤ 21 consecutive
columns.

FUN 2024



28:8 No Tiling of the 70×70 Square with Consecutive Squares

A

(a)

A

(b)

A

(c)

A

(d)

Figure 3.2 Possible configurations in the corridor above a local minimum A.

MIN B = MIN + 1

Figure 3.3 An illustration of the proof of Lemma 3.4. On the right, a big square or the edge of
the board creates a corridor.

Thus any square filling this corridor must be an orphan, unless it intersects the low
row. The only configuration where the low row may be intersected is when MIN = 10 and
the whole corridor of width 12 is filled by a single square of size 12; as it sits on square
MIN+1 = 11, it reaches row 23. However, then the square 12 is minor, as it is not intersected
by an important column. By Theorem 2.4 this is impossible, as there is an orphan.

In all the other cases the corridor is filled by orphans of total size MIN + 2 ≥ 8, which is
also a contradiction. ◀

The last lemma excludes the case MIN = 6, as a major square of size 6 is not compatible
with orphans larger than 1.

The following proposition summarizes the cases excluded in this section.

▶ Proposition 3.5. We have MIN ≥ 7. Furthermore, if MIN ≤ 10, then MIN is major and
there is a single orphan on top of MIN and it has size at least 2.

We note that already our Proposition 3.5 is as strong as the results of approximately 40
pages of [6].

The next lemma limits the number of edge squares for large MIN. We use it in the later
parts of the proof.

▶ Lemma 3.6. If MIN ≥ 10, then each edge touches exactly four squares. There are exactly
twelve edge squares, all of them are major squares.
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Proof. For a contradiction, assume that some edge touches more than four squares. Then
there must be a minor edge square.

If MIN = 10 then Lemmata 3.3 and 3.4 imply that MIN is a major square and there is
an orphan of size at least 2. This in turn, using Theorem 2.4, excludes the existence of a
minor square of size 11 or more, thus we have a contradiction.

If MIN = 11 then by Lemma 3.3 it is a major square and there is an orphan on top of it.
This excludes a minor square of size 12 or more, thus we have a contradiction.

Otherwise the minor edge square must have size 12 and MIN = 12. Then at least one of
the squares on top of it does not intersect the low row, and thus it is an orphan. We have a
contradiction again.

We have shown that each edge touches four squares. Thus we have four corner squares
plus eight remaining edge squares, two per edge, a total of twelve edge squares. ◀

4 Medium MIN cases

In this section we exclude the remaining cases with 7 ≤ MIN ≤ 10. Proposition 3.5 and
Theorem 2.4 imply that MIN is a major square and there are two squares on top of it, a
minor square B and an orphan O ≥ 2; w.l.o.g. we assume that B is on the left of O. Let D
be the square touching both B and O. See Fig. 4.1.

MIN

O

B

D

E

(a) The case of MIN ≤ 8, including the square to
the right of E in the proof of Proposition 4.2.

MIN

O
B

D

E

(b) The case of MIN = 10. Note the boundary of
the board or the big square depicted on the left.

Figure 4.1 An illustration of the medium MIN case.

▶ Lemma 4.1. Suppose that 7 ≤ MIN ≤ 10 and B, O, and D are as above. Then D ≥ 9 and
if MIN ≤ 8 then D ≥ 17. Furthermore, the edge square touching MIN on the right exists and
has size exactly MIN + O.

Proof. We examine the possible types and sizes of D.
If D is an orphan, then D = 1 and O ≤ 3. This in turn implies that B = MIN − O ≥ 4.

However, the combination of a major square MIN = 7 and an orphan O = 3 is excluded
by Theorem 2.4, so B ≥ 5 ≥ O + 2. It follows that O is in a corner-like position similar to
Fig. 3.1(a), which leads to a contradiction.
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28:10 No Tiling of the 70×70 Square with Consecutive Squares

If D is not an orphan, it has to intersect an important row or column or both. If D intersects
the low row, then MIN+O+D ≥ 23, thus D ≥ 23−O−MIN ≥ 19−MIN ≥ 9. If D intersects
an important column, then it is not the same important column as the one intersecting MIN
and B, thus B and D span at least 23 columns; we obtain 23 ≤ B + D = D + MIN − O and
thus D ≥ 23 + O − MIN ≥ 23 + 2 − 10 = 15. The bound D ≥ 9 follows.

Furthermore, if MIN ≤ 8 then we get a stronger bound D ≥ 19 −MIN ≥ 11. However, as
we have an orphan O ≥ 2, Theorem 2.4 implies that D ≥ 11 has to be a major square. Thus
it intersects both an important row and column and the same calculation as in the previous
paragraph yields D ≥ 23 + O − MIN ≥ 23 + 2 − 8 = 17.

As D ≥ 9, it extends at least D − O ≥ 5 squares to the right of MIN and O. We claim
that this implies that the edge square touching MIN on the right exists an has size at most
MIN + O. Suppose for a contradiction that it has a strictly smaller size. The size needs to
be strictly larger than MIN. Then above this edge square and below D we have a corridor of
width 1, 2, or 3 and length at least 5, which cannot be filled, see Fig. 3.1(b), a contradiction.
Thus the size of the edge square is equal to MIN + O and the last claim of the lemma
follows. ◀

▶ Proposition 4.2. We have MIN ≥ 11.

Proof. Let B, O, and D be as above and let E be the edge square touching MIN on the right.
If MIN ≤ 8 then O ≤ 3 and E = MIN + O ≤ 11. See Fig. 4.1(a) for an illustration.

Lemma 4.1 implies that D extends at least 3 cells to the right of E. Thus there exists an
edge square to the right of E and it has size strictly between MIN and E ≤ MIN + 3. Thus
above this edge square and below D we have a corridor of width 1 or 2 and length at least 3,
which cannot be filled, a contradiction.

If MIN = 9 then 11 ≤ E ≤ 13. Thus MIN + E ≤ 22 and by Observation 2.2 only one
important column intersects MIN and E; we know that it intersects the major square MIN.
Thus E is a minor square. However, Theorem 2.4 excludes a combination of an orphan O ≥ 2
with a minor square E ≥ 11, a contradiction.

If MIN = 10 then Lemma 3.6 implies that there are only four edge squares on the edge
of MIN. See Fig. 4.1(b) for an illustration. As E = MIN + O ≤ 14, it follows that the
remaining two edge squares are either 24 and 23 (and E = 13) or 24 and 22 (and E = 14).
Thus O ∈ {3, 4} and B = 10 − O ∈ {6, 7}; also note that MIN and B span at most 17 rows.
Observe that on the left B touches the edge or a square of size at least 22 and on the right it
touches D ≥ 9 which extends above B ≤ 7 by at least D + O − B ≥ 5 cells. Thus there is a
corridor on top of B of length at least 5. It follows that there are at least two squares on top
of B. They cannot have size 1, as the cell above 1 cannot be covered, so they have size at
least 2 and at most 5. None of them intersect the low row as they reach at most 17 + 5 = 22
rows from bottom, and only one of them intersects an important column. Thus we have
another orphan of size at least 2, a contradiction. ◀

5 Large MIN cases

At this point we know that MIN ≥ 11. To exclude the cases with MIN ≥ 11, we use a
technique based on counting the sizes of edge squares.

Recall that by Lemma 3.6 there are exactly four squares along each edge, a total of twelve
squares, all of them major. For the rest of the section, let E denote the sum of sizes of the
edge squares and C the sum of sizes of the four corner squares.
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5.1 Edge-square counting technique and MIN = 13
We introduce and demonstrate the new technique on the case MIN ≥ 13, which is relatively
easy.

▶ Observation 5.1. We have E + C = 280.

Proof. The sum of all the squares touching a given edge is 70. Summing over all edges we
get 4 · 70 = 280. Considering that all corners touch two edges and the remaining edge squares
only one edge, the sum is equal to E + C. ◀

▶ Proposition 5.2. We have MIN ≤ 12.

Proof. Suppose for a contradiction that MIN ≥ 13.
Then the sizes of the twelve edge squares are 13, . . . , 24 (note that MIN > 13 is impossible).

Thus E = 13 + · · · + 24 = 6 · 37 = 222.
Every corner square is adjacent to a smaller edge square and these are unique. It follows

that the sizes of corner squares are at least 14, 16, 18, 20 and thus C ≥ 14 + 16 + 18 + 20 = 68.
We have E + C ≥ 222 + 68 = 290, a contradiction. ◀

5.2 Small corners and edge squares
To use the edge counting technique for MIN = 11, 12, we use the following ingredients, to
get the necessary bounds on E and C.
(1) We prove that only one of 11 and 12 is used as an edge square. This gives us a bound

E ≥ 209 for MIN = 11 and E ≥ 210 for MIN = 12.
(2) We prove that MIN has an orphan of size at least 2 adjacent to it.
(3) We prove that any corner square has size at least 14.
(4) We carefully analyze certain corner squares of small size, to show that each of them

enforces an orphan. This typically allows us to conclude that there is only one corner of
size at most 17, giving us a bound C ≥ 71.

(5) In case MIN = 11, we need to work a bit harder to obtain the bound C ≥ 72.
The first three items are covered in this subsection.

▶ Observation 5.3. Suppose that a corner square C neighbors with two edge squares such
that A has size C − δ for δ ∈ {1, 2} and B is larger than C. Then B has size at most C + δ.

Proof. Suppose w.l.o.g. that C is the bottom right corner and A is on the bottom edge.
Then we have a corridor of width δ on top of A below B. This corridor cannot be longer
than δ, as it can be filled only by square δ. Thus C cannot extend more than δ to the left of
C and the claim follows. ◀

▶ Lemma 5.4. There is no corner square of size 12.

Proof. Suppose for a contradiction that 12 is a corner square.
The corner 12 must have a smaller neighbor, which is necessarily MIN = 11. Observa-

tion 5.3 implies that the other neighbor of 12 has size 13. Assume w.l.o.g. that 12 is the
bottom right corner and MIN neighbors it on the bottom edge.

It follows that the other two squares along the bottom edge have size 23 and 24. The
remaining two squares along the right edge then have sizes at most 21 and 22. However, then
the total size along the right edge is at most 12 + 13 + 21 + 22 = 68 < 70, a contradiction. ◀

▶ Lemma 5.5. We cannot have two edge squares of sizes 11 and 12.
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Proof. For a contradiction, assume that we have edge squares MIN = 11 and B = 12. We
distinguish two cases.

Case 1. MIN = 11 and B = 12 are on the same edge, w.l.o.g. the bottom one. As none
of them can be a corner by Lemma 5.4, they are the two middle squares. The two bottom
corners have sizes 23 and 24.

Now consider the top row. All its squares have size at most 22, as 23 and 24 are the
two bottom corners. Thus the two top corners have size at least 70 − 22 − 21 = 37 and
overall we get C ≥ 37 + 23 + 24 = 84. Using again the fact that 23 and 24 are on the bottom
edge, we can bound E ≥ (11 + 12 + · · · + 20) + 23 + 24 = 5 · 31 + 47 = 202. Thus we have
E + C ≥ 202 + 84 = 284 > 280, a contradiction.

Case 2. MIN = 11 and B = 12 are on different edges. W.l.o.g. assume that B is on the
bottom edge and note that it is a local minimum.

Consider the squares on top of B. As 11 is used elsewhere, they have size at most 10 and
do not intersect the low row. It follows that one of them is an orphan of size at least 2.

As 12 is not adjacent to MIN = 11, it follows by Lemma 3.2 and 3.3, that there is an
orphan of size at least 2 adjacent to MIN. This is a contradiction as there cannot be two
orphans of size at least 2. ◀

▶ Corollary 5.6. If MIN = 11 then E ≥ 209. If MIN = 12 then E ≥ 210.

Proof. We have E ≥ MIN + 13 + 14 + · · · + 23 = MIN + 198. The claim follows. ◀

▶ Corollary 5.7. If MIN = 11, then MIN is adjacent to an orphan of size at least 2.

Proof. By Lemma 3.3 there is an orphan on top of MIN = 11. If the orphan has size one,
Lemma 3.2 implies that MIN is adjacent to 12, which is excluded by Lemma 5.5 ◀

▶ Lemma 5.8. There is no corner square of size 13.

Proof. Suppose for a contradiction that 13 is a corner square.
There is a smaller edge square adjacent to the corner 13, and Lemma 5.5 implies that

this is MIN ∈ {11, 12}, as no other edge square smaller than 13 is available. Assume w.l.o.g.
that 13 is the bottom right corner and MIN neighbors it on the bottom edge. Observation 5.3
implies that the other neighbor of 13 has size 14 or 15.

Now we examine the total size of the seven squares along the left and top edges. The
total, counting the top left corner twice, is equal to 140. The seven squares can contain one
of 14 and 15 (the one not adjacent to the corner 13) and then squares of size at least 16.
Thus the total size of the seven squares is at least 14 + 16 + 17 + · · · + 21 = 14 + 3 · 37 = 125.
Furthermore, the size of the top left corner is at least 16, as it has a smaller adjacent edge
square. Thus the total along the left and top edges is at least 125 + 16 = 141 > 140, a
contradiction. ◀

We conclude this subsection by showing that MIN is adjacent to an orphan of size at
least 2. We already know this for MIN = 11. The proof for MIN = 12 follows the line of
proof of Lemma 5.5.

▶ Lemma 5.9. If MIN = 12, then we cannot have two adjacent edge squares of sizes 12
and 13.
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Proof. For a contradiction, assume that we have adjacent edge squares MIN = 12 and
13; w.l.o.g. assume they are at the bottom edge. By Lemmata 5.4 and 5.8, these are not
corners. It follows that the two bottom corners have total size 70 − 12 − 13 = 45. The top
corners have sizes at least 15 and 17, as they are adjacent to smaller edge squares. Thus
C ≥ 45 + 15 + 17 = 76. Together with E ≥ 210 we have E + C ≥ 210 + 76 = 286 > 280, a
contradiction. ◀

▶ Corollary 5.10. If MIN = 12, then MIN is adjacent to an orphan of size at least 2.

Proof. If there is 1 on top of MIN = 12 then Lemma 3.2 implies that MIN is adjacent to 13,
which is excluded by Lemma 5.9.

Thus all squares on top of MIN have size at least 2. As there are at least two squares on
top of MIN, they are all of size at most 10. Thus they do not intersect the low row. This
in turn implies that one of them is an orphan, as at most one of them is intersected by an
important column, and we have obtained an orphan of size at least 2. ◀

5.3 Medium corners and the final analysis
The core of the remaining argument is to examine the corners of medium size more carefully.
Essentially, we need to extend Observation 3.1 to see that on one side of the corner square,
the adjacent squares do not extend beyond the corner square. The neighboring edge square
on that side is then called the key neighbor.

▶ Definition 5.11. Suppose C is a corner square and A is an adjacent edge square. W.l.o.g.
assume that C is the bottom right corner and A is on the bottom edge.

We say that A is a key neighbor of C if A < C and no square adjacent to the left side of
C extends beyond the top of C.

▶ Observation 5.12. Any corner square has at least one key neighbor.

Proof. Suppose that C is the bottom right corner, A < C is an edge square adjacent to C
on the bottom edge and B is an edge square adjacent to C on the right edge.

If B > C then no square adjacent to the left side of C may extend above the top of C, as
it would intersect B. So A is a key neighbor of C.

Suppose now that B < C and it is not a key neighbor of C. Then there exists a square D
adjacent to the top side of C and extending to the left of C. Now again no square adjacent
to the left side of C may extend above the top of C, as it would intersect D. So A is a key
neighbor of C. ◀

Now we are ready to formulate the needed extension of Observation 5.3 for small corners.

▶ Lemma 5.13. Suppose C is a corner square and A is its key neighbor and B the other
edge square adjacent to C; furthermore let δ = C − A. W.l.o.g. assume that C is the bottom
right corner and A is on the bottom edge, thus B is on the right edge.

Then the following holds:
(1) If A ̸= MIN and C + δ ≤ 22 then δ = 1 and B ≤ C + δ.
(2) If A = MIN and C ≤ 17 then δ ∈ {2, 3, 4} and either B = C + δ or B = 13, C = 16,

MIN = 12, and O = 4.
Furthermore, in both cases there is an orphan of size δ adjacent to C.
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C
A ̸= MIN

B

δ

(a) The case of A ̸= MIN.

C
A = MIN

B

O
D E

(b) The case of A = MIN.

Figure 5.1 An illustration of the proof of Lemma 5.14.

Proof. Suppose first that A ̸= MIN. See Fig. 5.1(a) for an illustration. Consider the δ

cells adjacent to the left side of C and above A. These cells are covered by squares that
do not extend above C. Thus all these squares have size at most δ and do not intersect
any important column due to the condition C + δ ≤ 22; they also do not intersect the low
row, as the low row is above C. It follows that all these squares are orphans. However, by
Corollaries 5.7 and 5.10 we already have a different orphan of size at least 2 adjacent to MIN
(it is different from the squares above A as MIN ̸= A); this implies that all these squares are
in fact only a single orphan of size 1. Thus δ = 1, we have an orphan of size 1 adjacent to C
and the lemma follows.

Suppose now that A = MIN. See Fig. 5.1(b) for an illustration. We know that there are
exactly two squares on top of MIN, namely one orphan O ∈ {2, 3, 4} and one minor square
D of size MIN − O ≥ 11 − 4 = 7. Since C ≤ 17, we have δ ≤ 17 − MIN ≤ 6. It follows that
D cannot be adjacent to C. Thus O is adjacent to C and D is to the left of O. We claim first
that δ = O and thus C = MIN + O. Indeed, if δ > O then the cells just above O must be
covered by at least two orphans, which leads to a contradiction.

Finally, we claim that B = C + O, except for one special case described in the lemma.
Indeed, if B < C + O, there is a corridor above O between D and B ≥ 13 of nonzero width
C + O − B = MIN + 2 · O − B ≤ 12 + 2 · 4 − 13 = 7 (the corridor may be wider than O if
B < C). If the width of the corridor is 7, the previous calculation has to be tight, which
leads to MIN = 12, O = 4, C = MIN + O = 16, and B = 13, i.e., exactly the special case
in the lemma. In the remaining case the corridor has width at most 6; this leads to a
contradiction as follows: Consider the square E adjacent to O and D. It reaches at most
the row A + O + 6 ≤ 22, so it does not reach the low row. It also does not intersect any
important column, so E is an orphan. It cannot have size 1, as it is in a corner-like position
which we excluded, see Fig. 3.1(2). It also cannot have size at least 2, as we would have two
orphans of size at least 2. So we have a contradiction. ◀

▶ Lemma 5.14. If MIN = 12 then C ≥ 71. If MIN = 11 then C ≥ 72.
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Proof. We start with several observations.
First, suppose we prove that there is a single corner of size at most 17. Then this corner

has size at least 14 and altogether we have C ≥ 14 + 18 + 19 + 20 = 71. Thus we are almost
done, except that we need to improve the bound by 1 if MIN = 11.

Second, if we have a corner C ≤ 17 with a key neighbor A ̸= MIN, then in Lemma 5.13
we have δ ≤ 17 − 13 = 4 and C + δ ≤ 21; thus the case (1) of Lemma 5.13 applies.

Third, we can have only one corner where the case (1) of Lemma 5.13 applies, as there is
only one orphan of size 1.

With these observations in mind, we proceed to examine some cases.
Suppose first that we have a corner C of size at most 17 with a key neighbor MIN. We

examine all possible cases which we list in the form of triples listing MIN, the size of the
corner, and the size of the other neighbor. We have C ≥ 14, furthermore Lemma 5.13 implies
that δ = C − MIN ≤ 4 and the size of the other neighbor equals C + δ, except for one
special case. Thus for the key neighbor MIN = 11, the only possibilities are (11, 14, 17) and
(11, 15, 19), while for MIN = 12, the possibilities are (12, 14, 16), and (12, 15, 18), (12, 16, 20),
and (12, 16, 13) (the special case in Lemma 5.13).

(11, 15, 19), (12, 16, 20), or (12, 16, 13): Then we have an orphan of size δ = 4, so no
other corner of size at most 17 exists. Thus C ≥ 15 + 18 + 19 + 20 = 72 and the lemma
holds.

(12, 14, 16): Then there is no other corner of size at most 17, as there is no consecutive
pair of sizes for the corner and its key neighbor. Thus C ≥ 14 + 18 + 19 + 20 = 71 and
the lemma holds. (Note that MIN = 12 in this case.)

(12, 15, 18): If there is no other corner of size at most 17, we are done. The only remaining
possibility is a corner 17 with a key neighbor 16. Then C ≥ 15 + 17 + 19 + 20 = 71 and
the lemma holds as well. (Note that MIN = 12 in this case, too.)

(11, 14, 17): We have two somewhat subtle subcases. If there is another corner of size
at most 17, the only possibility is a corner 16 with a key neighbor 15 and the other
neighbor 13. This exhausts all edge squares up to size 17. Now Lemma 5.13 implies that
the other corners have size at least 21. Indeed, for a corner of size at most 20 with a key
neighbor of size at least 18 we have δ ≤ 2 and thus the case (1) of Lemma 5.13 would
apply; this would imply another orphan of size 1, which is impossible. It follows that
C ≥ 14 + 16 + 21 + 22 = 73 and the lemma holds.
In the second subcase we have no other corner of size at most 17. We already know
that C ≥ 14 + 18 + 19 + 20 = 71 and we need to improve the bound by 1. To do this,
consider the edge of MIN. It has squares 11 and 14, thus its other corner has size at least
70 − 11 − 14 − 24 = 21. Thus C ≥ 14 + 18 + 19 + 21 = 72 and the lemma holds.

In the remaining case, we have no corner of size at most 17 with a key neighbor MIN.
From the observations at the beginning of the proof, it follows that there is at most a single
corner C ≤ 17. Thus we already know that C ≥ 14 + 18 + 19 + 20 = 71 and we need to
improve the bound by 1 if MIN = 11. This means that it is sufficient to exclude the case
where the corner sizes are exactly 14, 18, 19, and 20.

For a contradiction, assume that MIN = 11 and the corners are C = 14, 18, 19, and 20.
Then C = 14 has a key neighbor 13 and another neighbor of size at most 15; this other
neighbor is either 15 or MIN = 11, as no other small edge square is available. Now consider
the key neighbors of the two corners 18 and 19. One of them may have size at most 15,
namely it may be the one of 15 and MIN = 11 not adjacent to C. The other key neighbor of
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18 or 19 has size at least 16. Thus for this corner δ ≤ 19 − 16 = 3 and case (1) of Lemma 5.13
applies. This implies the existence of a second orphan of size 1, in addition to the one
adjacent to C. This is the final contradiction. ◀

▶ Theorem 5.15. There exists no tiling of the 70 × 70 board with squares of sizes 1, 2, . . . , 24.

Proof. Suppose we have a perfect tiling.
By Propositions 4.2 and 5.2 we have MIN ∈ {11, 12}.
If MIN = 11 then Corollary 5.6 and Lemma 5.14 imply that E + C ≥ 209 + 72 = 281.
If MIN = 12 then Corollary 5.6 and Lemma 5.14 imply that E + C ≥ 210 + 71 = 281.
In both cases we get a contradiction with E + C = 280 from Observation 5.1. ◀
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Abstract
Elo rating systems measure the approximate skill of each competitor in a game or sport. A
competitor’s rating increases when they win and decreases when they lose. Increasing one’s rating
can be difficult work; one must hone their skills and consistently beat the competition. Alternatively,
with enough money you can rig the outcome of games to boost your rating. This paper poses a
natural question for Elo rating systems: say you manage to get together n people (including yourself)
and acquire enough money to rig k games. How high can you get your rating, asymptotically in
k? In this setting, the people you gathered aren’t very interested in the game, and will only play
if you pay them to. This paper resolves the question for n = 2 up to constant additive error, and
provides close upper and lower bounds for all other n, including for n growing arbitrarily with k.
There is a phase transition at n = k1/3: there is a huge increase in the highest possible Elo rating
from n = 2 to n = k1/3, but (depending on the particular Elo system used) little-to-no increase for
any higher n. Past the transition point n > k1/3, the highest possible Elo is at least Θ(k1/3). The
corresponding upper bound depends on the particular system used, but for the standard Elo system,
is Θ(k1/3 log(k)1/3).
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1 Introduction

The Elo Rating system was proposed by Arpad Elo in the mid 20th century to estimate
the relative skill of chess players [2]. It was quickly adopted by the international chess
community, and in the decades since has seen adoption in many competitive contexts. This
paper considers a simple combinatorial question about the Elo system. To the author’s
knowledge, this is the first time this question has been posed in print: given n players
starting with equal rating, what is the highest a player could be rated after a
total of k games are played?

We begin with a definition of the system then provide its motivation. Each player is
given some “rating” value (measured in “points” or simply “Elo”), which updates as they
play games. These rating points are somewhat analogous to poker chips: when player A and
player B play a game, they each place some of their rating points into a pot. In the case of a
draw, the players split the pot evenly. If one player wins, they take the entire pot. The heart
of the Elo system is dictating how many points each player must ante up. To do so, each
implementation of the system specifies a “pot function” σ satisfying
1. σ is non-negative and monotonically increasing, and (1)
2. σ(z) + σ(−z) = 1 for all z ∈ R.
Let rA and rB be the ratings of players A and B respectively. When players A and B play,
the number of points they ante up are K · σ(rA − rB) and K · σ(rB − rA) respectively, for
a total pot size of K. Players are allowed to go into debt if they don’t have the required
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points, i.e. negative ratings are perfectly fine. The value of K itself is a parameter of the
system. The resulting rating updates for different outcomes of a game between A and B are
as follows:

A wins A and B draw B wins

r′
A = rA + K · σ(rB − rA) rA + K

2 · (σ(rB − rA) − σ(rA − rB)) rA − K · σ(rA − rB)

r′
B = rB − K · σ(rB − rA) rB + K

2 · (σ(rA − rB) − σ(rB − rA)) rB + K · σ(rA − rB)

(2)

The motivation for this system comes from thinking of the outcome of a game as a random
variable. For some symmetric random variable η, the event rA − rB + η > 0 is recorded as a
victory for A, rA − rB + η < 0 as a victory for B, and rA − rB + η = 0 as a draw. Set

σ(z) = Pr(η < z) + 1
2 Pr(η = z) (3)

so that σ is a kind of “symmetrized” cumulative distribution function of η (which coincides
with the usual cumulative distribution function when η has no atoms). Given η, setting
σ to satisfy (3) guarantees it satisfies (1). Conversely, given any σ satisfying (1), one can
define a symmetric random variable η satisfying (3), if some of the mass of η is allowed to
be at infinity (i.e. limz→∞ Pr(η ≤ z) need not be 1 and limz→−∞ Pr(η < z) need not be
0). Under this probabilistic model, observe that E(r′

A) = rA and E(r′
B) = rB . So one gains

points for performing “better than expected” and loses points for performing “worse than
expected”. One additional natural assumption is that η has a finite expectation, though it is
not required.

Given some real-world game, one should attempt to pick η so that these estimated
probabilities match the empirical win-loss rates observed. The proposal by Elo in the 1960s
was to take η to be Gaussian, citing the ubiquity of the normal distribution in nature [1].
However, the community soon decided a logistic random variable was more suitable, leading
to the pot function of σ(z) = 1

1+e−cz for some constant c [2]. The International Chess
Federation (FIDE) has long used c = log(10)/400 ≈ 5.76 × 10−3 [4, Chapter B02], though
recent analysis suggests c = 5

6 · log(10)/400 ≈ 4.80 × 10−3 reflects real-world chess data much
better [6]. Depending on various factors, FIDE uses K in the range of 10 to 40. The range
of ratings exhibited by human players is roughly 0 to 3000 [4, 3]. This paper considers a
generic pot function σ, and applies the results to several specific families of pot functions
listed in Table 1.

There are additional complications in real-world implementations of Elo. For legibility
and practicality, fractional and negative rating points are avoided by scaling and shifting
points up and rounding to the nearest integer, and by imposing an artificial floor on possible
ratings (by gifting a player points if they would otherwise dip below the floor). The total
size of the pot K may also vary depending on various factors, such as how many games
each player has played before. For example, K may be large for a new player to facilitate
faster convergence of their rating to their true skill level, and may decrease over time to
reduce arbitrary fluctuations for experienced players. Sometimes rating updates are batched.
That is, one accumulates their pot winnings and losses over several games, and updates
their rating once at the end. Often times all the games played at a single tournament are
batched together in that manner. All these details and even more complications are outlined
thoroughly by different organizations implementing Elo; one may read about them in, for
example, the FIDE Handbook [4].
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1.1 Setting and results
This paper considers n players starting with equal ratings. Players’ ratings update on a
game-by-game basis according to (2) with K = 1 kept fixed. In particular, both fractional
and negative points are possible and rating updates are not batched. Since the dynamics
depend only on the difference between ratings, we can take everyone’s initial rating to be
0 without loss of generality. Asymptotically in k, we seek the highest one of the n players
may be rated after a total of k games are played amongst all of them. This question is
interesting both for fixed n, and for n allowed to grow with k. We find a phase transition at
n = k1/3: there is a huge increase in the highest possible Elo rating from n = 2 to n = k1/3,
but (depending on σ) little-to-no increase for any higher n. This paper is organized into four
main sections.
Section 2: the highest Elo problem for n = 2 is resolved up to constant additive error.
Section 3: a lower bound is provided for each n by finding a family of strategies which

achieve a highest rating of Θ
(
min(n, k1/3)

)
for any pot function. Note the bound does

not improve past n = Ω
(
k1/3)

.
Section 4: an upper bound on the highest possible rating for each n is provided with a mild

natural assumption on σ.
Section 5: open questions and a surprising connection to the maximum overhang problem

are discussed.
The gap between the upper and lower bounds depends on which σ is used. In particular,
the key quantity is the left-tail behavior of σ. A quickly decaying tail corresponds both to a
small asymptotic rate in the case of n = 2, and to nearly matching upper and lower bounds
for general n. Our main result is stated in terms of the following function, which quantifies
the rate of decay of the left-tail of σ:

f(x) =
∫ x

0

1
σ(−τ) dτ (4)

Note that faster the left tail of σ decays to 0, the faster f diverges to infinity. Note that
non-negativity and monotonicity of σ means that f is increasing and convex. This main
theorem summarizes the results from each section.

▶ Theorem 1. Let R(n, k) be the highest possible Elo rating achievable with k games and n

players starting with 0 Elo points. Fix any pot function σ and let f be as in (4). Then
1
2f−1(2k) ≤ R(2, k) ≤ 1

2f−1(2k − 2) + 5
2 .

Now assume that supz z σ(−z) < ∞. Fix n = h(k). If h(k) = Ω(k1/3), then there exists
constants C1, C2 such that for sufficiently large k, one has

C1k1/3 ≤ R(h(k), k) ≤ C2k1/3f−1(k)1/3.

Furthermore, if h(k) = o(k1/3) then

C1h(k) ≤ R(h(k), k) ≤ C2h(k)f−1(k/h(k)).

Proof. R(2, k) handled in Section 2. The lower bounds for R(h(k), k) are in Section 3 and
the upper bounds are in Section 4. ◀

▶ Remark 2. The results hold even if the players all start with distinct ratings, provided
that all the initial ratings fall into some bounded interval independent of n and k, and that
there’s some point around which the inital ratings are symmetric. That is, there exists some
value r0 such that for every player rated r there’s one rated 2r0 − r.
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Table 1 lists the value of f−1 for several natural families of σ and names the corresponding
η where appropriate. For the logistic pot function, f−1 is logarithmic and Theorem 1 implies

R(2, k) = 1
2c

log(2k) + O(1) and R(n, k) = Θ̃
(

min
(

n, k1/3
))

where Θ̃ suppresses log factors. For any pot function that eventually hits 0 (for example, the
“uniform” pot function max(0, min(1, cz + 1/2))), let x be such that σ(−x) = 0 and note f

has a vertical asymptote at x. This means f−1 is bounded, so Theorem 1 implies

R(n, k) = Θ
(

min
(

n, k1/3
))

where Θ only suppresses constant factors. At the other extreme, σ need not converge to 0 at
all. In this case, f−1(k) = Θ(k). The upper bounds in Theorem 1 no longer hold, but just by
noticing the total pot size for each game is bounded, one sees R(n, k) = Θ(f−1(k)) = Θ(k)
anyway.

Table 1 The value of f−1 for some selected families of pot functions. Most of the families are
parameterized by some constant c, which correlates with the slope of each σ at 0. The logistic pot
function in the top row is the usual one used by real-world implementations of Elo.

η σ(z) f−1(k)

Logistic 1
1+e−cz

1
c

log(ck) · (1 + O(1/k))

– 1
2

cz

(1+|cz|p)1/p + 1
2

(
1

2cp · p+1
p

) 1
p+1 · k

1
p+1 · (1 + o(1))

Gaussian 1
2 erf(cz/

√
2) + 1

2
1
c

√
log k · (1 + o(1))

Uniform min
(
1, max

(
0, cz + 1

2

))
1
2c

− e−ck

2c

Cauchy 1
π

arctan(cz) + 1
2

√
2/cπ · k1/2 + O(1)

– c
2 sign(x) + 1

2
2

1−c
· k

2 Case of n = 2

When there are only two players, H and L, as their ratings rH and rL grow further apart, the
fewer rating points the higher player H can earn from the lower L each time. If σ(−x) = 0
for some x, the difference in the ratings of H and L cannot exceed x + 2. To see this, observe
that a game can only increase the value of rH − rL if |rH − rL| < x, and furthermore, rH

and rL can each change by at most one point in each game. Since rH + rL = 0 is invariant,
this immediately implies

rH ≤ x

2 + 1

independently of how many games are played. On the other hand, if σ(−z) > 0 for all z,
then rH − rL will diverge. To see this first note monotonicity of σ means σ is bounded away
from 0 on each compact interval. Then, note H beating L will change the value of rH − rL

by applying the map g : z 7→ z + 2σ(−z). The orbit can only converge if σ(−gj(z)) converges
to 0, which cannot happen for bounded z by assumption. In the former case, we may still
ask how quickly the bound rH ≤ z

2 + 1 is achieved, and in the latter case we ask how quickly
the orbit diverges. Intuitively, the faster σ(−z) decays to 0 as z → ∞, the slower the rate.



R. Shah 29:5

Indeed, as the next theorem makes explicit, there is a simple expression for the rate in terms
of the f defined in (4). Note f is only well defined for {x : σ(−x) > 0}. Nevertheless, it’s
continuous and strictly increasing, and its range is all of R. This implies for any σ that it
has a well defined inverse f−1 defined on all of R. The following theorem takes advantage of
that fact to unify the analysis for every σ.

▶ Theorem 3. Fix any pot function σ. Let r(t) be the highest possible rating after t games
with two players. Then

f−1(2t)
2 ≤ r(t) ≤ f−1(2t − 2)

2 + 5
2 .

Proof. Since the ratings of the two players sum to zero, it suffices to keep track of just the
higher rated player. Call the players H and L for “higher” and “lower”. Let r(t) be the rating
of H after t games. Then −r(t) is the rating of L after t games. Under the assumption that
H wins every game, we have the simple recurrence

r(0) = 0 r(t + 1) = r(t) + σ(−r(t) − r(t))
= r(t) + σ(−2r(t)).

This can be viewed as running Euler’s method on the differential equation

y(0) = 0 y′ = σ(−2y)

with a step size of 1. Since y′ is positive and monotonically decreasing in y, the Euler
approximation upper bounds the exact solution. That is,

r(t) ≥ y(t).

Using separate and integrate, one sees the exact solution to the differential equation is

y(t) = 1
2f−1(2t).

This establishes the lower bound. For the upper bound, we cannot assume that the optimal
strategy is for H to win every game. In particular, the function z 7→ z + σ(−2z) need not
be monotone, so we cannot exclude the possibility one can achieve a higher rating by first
losing a game and “slingshotting” to a higher rating exploiting the fact that σ(−2y) is larger
for smaller y. Construct a sequence xj based on the recurrence

x0 = 1 xj+1 = xj + σ(−2xj + 2). (5)

This sequence defines a partition of the positive real line, (0, x0], (x0, x1], (x1, x2], (x2, x3] · · · .

Again we take r(t) to be the rating of H after t games, but instead of a strict recurrence
we only have an inequality r(t + 1) ≤ r(t) + σ(−2r(t)), which is tight only when H wins
game t + 1. We now relate r(t) to xj . If r(t) ≤ 0, then r(t + 1) ≤ r(t) + 1 ≤ 1 = x0. If
r(t) ∈ (0, x0], then r(t + 1) ≤ r(t) + σ(−2r(t)) ≤ x0 + σ(−2x0 + 2) = x1. If r(t) ∈ (xj−1, xj ]
for some j, then

r(t + 1) ≤ r(t) + σ(−2r(t))
≤ xj + σ(−2xj−1)
≤ xj + σ(−2xj + 2)
= xj+1.
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29:6 Achieving the Highest Possible Elo Rating

In each case, we see that

r(t) ≤ xj =⇒ r(t + 1) ≤ xj+1.

Since r(0) = 0 < 1 = x0, we have r(t) ≤ xt regardless of the sequence of wins and losses.
Now similar to before, xt can be viewed as the result of running Euler’s method with a step
size of 1 on the differential equation

y′ = σ(−2y + 2). (6)

Using separate and integrate, see that the solution to the differential equation is

y(t) = 1
2f−1(2t) + 1.

Again the Euler approximation is an upper bound to the exact solution. That is,

xt ≥ y(t). (7)

Suprisingly, this lower bound leads us to an upper bound. We first plug the recurrence (5)
back into itself to express xt as a sum, then use (7) with monotonicity of σ.

xt = x0 +
t−1∑
j=0

σ(−2xj + 2) ≤ x0 +
t−1∑
j=0

σ(−2y(j) + 2). (8)

The summand is the same as the right hand side of the differential equation (6). Then the
sum is Reimann sum of step size 1. But since the summand is monotone, we can bound the
Reimann sum by the integral.

t−1∑
j=0

σ(−2y(j) + 2) =
t−1∑
j=0

y′(j) ≤ y′(0) +
∫ t−1

0
y′(s) ds = y′(0) + y(t − 1). (9)

Note y′(0) = 1/2 and x0 = 1, so combining (8) and (9) gives the final upper bound of

xt ≤ 1 + 1
2 + y(t − 1) = 1 + 1

2 + 1 + 1
2f−1(2t − 2). ◀

3 Lower bound for general n

This section describes two strategies for any number of players and games. The first strategy
does not depend at all on the pot function used, but requires that everyone’s initial ratings
be exactly equal. The second strategy has a small dependence on the pot function used, but
works for any symmetric list of initial ratings. Both strategies produce higher ratings for
larger n, up to n = Θ(k1/3), at which point the asymtotic highest rating in k is Θ(k1/3).
The first strategy is very simple: pick any pair of players with equal rating and have
one beat the other. Repeat until all players have a distinct rating or k games
have been played. This strategy is guaranteed to produce a player of either very high or
very low rating. If it produces a player of very low rating, simply re-do the strategy picking
the same sequence of pairs of players but have the opposite player win. Since game outcomes
are symmetric, this will produce a player of high rating instead.
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▶ Theorem 4. The aforementioned strategy achieves a highest rating of

min
(

k1/3

2 ,
n

4

)
when all players start with 0 rating points. In particular, the rating achieved is Ω(k1/3) for
n = Ω(k1/3).

Proof. Let r(j) be the multiset of player ratings after j games are played and |r(j)| its
element absolute value. We claim that every entry of r(j) is a half-integer. To see this, note
σ(0) = 1/2 for every pot function so player ratings change in increments of 1/2 and all start
at 0. We next claim∑

r∈r(j)

r2 = j/2. (10)

We argue inductively. The claim is clearly true initially when all ratings are 0. When two
players rated a points play, the increase in the functional is

∆ = (a + 1/2)2 + (a − 1/2)2 − a2 − a2 = 1/2.

Suppose the strategy terminates when k games have been played. Then
k

2 =
∑

r∈r(k)

r2 ≤ n max |r(k)|2 =⇒ max |r(k)| ≥
√

k/2n.

Now suppose the strategy terminates when all players have distinct ratings. Then since all
ratings are half integers, that means max |r(j)| ≥ n/4. Without a guarantee on which way
the strategy terminates, we get the worst of both bounds. So the maximum rating is at
least min

(√
k/2n, n/4

)
. If n ≤ 2k1/3, the minimum is n/4. If n > 2k1/3, we can rerun the

strategy ignoring all but the first 2k1/3 players, giving a bound of exactly k1/3/2. ◀

▶ Remark 5. Theorem 4 is unfortunately very brittle. If the initial ratings are perturbed
slightly, we can no longer assume all ratings are half-integers, nor can we often expect players
to have equal rating. For

σ(x) = 1
2 sign(x) + 1

2 =


1 x > 0
1/2 x = 0
0 x < 0

,

this is indeed the best we can do. If all players have slightly different ratings, no Elo can
be transferred between them. However, there’s a robust version of the strategy that works
for every other σ: first fix some δ > 0 for which σ(−δ) > 0. Pick any pair of players
whose ratings are within δ of each other and have the higher rated player beat
the lower rated player. Repeat until no two players are within δ rating points or
until k games have been played. Note for δ = 0, one recovers the original strategy. As
before, we may have to flip everyone’s rating to ensure we end with a very high rating, as
opposed to a very low rating. We need not assume that the initial ratings are all 0 anymore,
but we do need to allow ourselves this possible reflection.

▶ Theorem 6. Fix any r⃗ = (r1, · · · , rn). The aforementioned strategy achieves a highest
rating of

min
(

δ1/3σ(−δ)1/3 · k1/3,
δ

2 · n

)
for at least one choice of the initial ratings r(0) = r⃗ or r(0) = −r⃗.
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Proof. The proof is very similar to the proof of Theorem 4. Again we consider the functional∑
r∈r(j) r2. In a game between players rated a < b, the change in the functional is

∆ = (b + σ(a − b))2 + (a − σ(a − b))2 − b2 − a2

= 2bσ(a − b) − 2aσ(a − b) + 2σ(a − b)2

= 2(b − a)σ(a − b) + 2σ(a − b)2.

≥ 2 σ(−δ)2
.

Suppose the strategy terminates when k games have been played. Then

2 σ(−δ) · k ≤
∑

r∈r(k)

r2 ≤ n max |r(k)|2 =⇒ max |r(k)| ≥
√

2 σ(−δ)k/n.

Now suppose the strategy terminates when no two players are within δ rating points. Since
there are a total of n players, that means max |r(j)| ≥ δn/2. As before, without a guarantee
on which way the strategy terminates, we get the worst of both bounds. When

n ≤ 2 σ(−δ)1/3

δ2/3 · k1/3,

the smaller bound is δn/2. When n is larger, one simply ignores the excess players, as
before. ◀

▶ Remark 7. The theorem is best applied with the vector of initial ratings is symmetric,
i.e. r⃗ is a permutation of −r⃗. In fact, by shifting all the points up or down by a constant
amount, they can be symmetric around any (constant valued) point, i.e. r⃗ is a permutation
of (r0, · · · , r0) − r⃗.

▶ Remark 8. This bound is stronger the heavier the tail of σ. Consider, for instance
σ(z) = 1

1+e−cz as c → ∞, or any other family of σ approaching the pathological 1
2 sign(x) + 1

2 .
The bound of Theorem 6 becomes weaker and weaker. This contrasts with the bound of
Theorem 4, which is completely independent of the pot function but requires initial ratings
be exactly equal.

4 Upper bound for general n

In this section, we wish to show the algorithm presented in Section 3 is nearly optimal. Our
strategy is to show that achieving a rating of r requires many games to be played. We
start with a relaxation of the setup: instead of considering a discrete sequence of games
resulting in a discrete sequence of player ratings, we consider a continuous path in the space
of possible player ratings. Call a path r : [0, c] → Rn valid if there exists a finite sequence
0 = t0 < · · · < tk = c such that for each j ∈ [k] there exists w, ℓ ∈ [n] with

r′(t) = ew − eℓ ∀ t ∈ (tj−1, tj)

where ew, eℓ are elementary basis vectors. For convenience, we write r′(tj−1) = ew − eℓ to
make r′ right-continuous. In other words, r has constant speed and consists of line segments
(called edges) along which only two coordinates change. The points r(tj) are referred to as
vertices. We will use the notation

A → B → C
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to denote the path with vertices A, B, C. A sequence of games corresponds naturally to a
valid path: let r(tj) be the list of the players’ ratings after game j. The indices “w” and “ℓ”
conveniently correspond to the “winner” and “loser” for each game. In the event of a draw,
the initially lower rated player is considered the winner as their rating increases. Note

tj+1 − tj = amount of Elo transferred for game j + 1. (11)

Define a weight function

W (x, y) =
{

1
σ(2−⟨x,y⟩) ⟨x, y⟩ > 0
0 ⟨x, y⟩ ≤ 0

(12)

and define the length of the path to be

len(r) =
∫ c

0
W (r′(t), r(t)) dt.

Whereas the Euclidean length of a path is simply c
√

2, the value of len(r) depends highly on
the motion of the path. When a valid path comes from a sequence of games, Lemma 9 shows
len(r) cannot be larger than k. The intuition is that ⟨r′(t), r(t)⟩ = rw(t) − rℓ(t) records
the difference in two players’ ratings, so the Euclidean length of the (j + 1)th edge is is√

2σ(− ⟨r′(tj), r(tj)⟩), which approximately cancels with W (r′(t), r(t)) resulting in constant
contribution.

▶ Lemma 9. Let r be a valid path arising from a sequence of k games. Then

len(r) ≤ k.

Proof. It suffices to show for each edge r(tj) → r(tj+1) that

len(r(tj) → r(tj+1)) ≤ 1

since summing over all edges would produce the final result. Fix any j. Let w, ℓ be the
indices such that

r′(t) = ew − eℓ ∀ t ∈ [tj , tj+1).

Let z = ⟨r′(tj), r(tj)⟩ so that by (11) we have

σ(−z) = tj+1 − tj .

Also note ⟨r′(t), r(t)⟩ = z + 2(t − tj) ≤ z + 2 σ(−z) ≤ z + 2. Then

len(r(tj) → r(tj+1)) =
∫ tj+1

tj

W (r′(t), r(t)) dt

≤
∫ tj+1

tj

1
σ(2 − ⟨r′(t), r(t)⟩) dt

≤
∫ tj+1

tj

1
σ(−z) dt

= 1. ◀
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Lemma 9 means that instead of bounding k, we can bound len(r). Directly doing so for any
valid path is difficult, so we introduce two additional notions that allow us to make some
additional restrictions on r. Call a valid path ordered if

r1(t) ≥ · · · ≥ rn(t) ∀ t ∈ [0, c].

Each valid path corresponds to an ordered valid path of the same length by doing the
following: each time r intersects a hyperplane of the form xw = xℓ, reflect the remaining part
of the path across it. This makes it possible to refer unambiguously to the pth highest rated
player. It also means ⟨r′, r⟩ does not change sign on each edge. The last notion we introduce
is that of an upset. This is when a lower rated player beats or draws with a higher rated
player. Stated in terms of valid paths, an upset is an edge for which

⟨r′, r⟩ = rw − rℓ < 0

at the starting vertex. We essentially show an optimal strategy, when converted to a ordered
valid path, does not make use of upsets. The precise statement is given in Lemma 10. The
intuition here is that upsets bring the players’ ratings closer together, whereas in order
to make one rating large you need the ratings to be spread out. The proof strategy is to
take any valid path with upsets and convert it to one achieving a higher maximum rating
without upsets. This lemma is the longest and most technical as it involves some casework
in describing this conversion procedure.

▶ Lemma 10. For each valid ordered path r : [0, c] → Rn there exists a valid ordered path
r̃ : [0, c̃] → Rn with

len(r̃) ≤ len(r) and max r̃(c̃) ≥ max r(c)

such that r′ has no upsets.

Proof. Given r, we start by constructing r̃ with a slightly different property than the
requirement of the theorem. We require r(c) = r̃(c̃) and that all the upsets in r̃ occur at
the end. That is, once ⟨r̃′, r̃⟩ becomes negative, it stays negative. Once we have done that,
observe that upsets only decrease the value of max r̃ so we obtain a larger maximum value
by truncating the path just before the upsets.

Fix vector u = (1, 2, · · · , n). Then each valid path r has an associated sequence S(r)
of integers S(r)j = ⟨u, r′(tj)⟩ with one integer for each edge. Since that path is ordered,
each integer is positive if and only if the corresponding edge is an upset. Equip the set of
possible values of S(r) with the lexicographic ordering. Our method for constructing r̃ is
iterative, where each iteration strictly decreases S(r) and does not increase len(r). The strict
decreasing of S(r) guarantees that this procedure terminates after at most n# edges in r steps.

We now describe one iteration. Given a path r, locate three consecutive vertices
r(tj), r(tj+1), r(tj+2) with

S(r)j > 0 and S(r)j+1 < 0.

That is, the two connecting edges are a upset followed by a non-upset. We modify the path
to obtain r̃ by either deleting the middle vertex r(tj+1) from the path and adding an edge
directly from r(tj) to r(tj+2), or replacing the middle vertex with new vertex s. If r(tj+1) is
deleted, S(r) is shortened and therefore decreased. If r(tj+1) is replaced by s, note that only
the jth and (j + 1)th entries in S(r) are affected. So requiring that

S(r̃)j < S(r)j
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suffices for S(r) to decrease overall. Note the right hand side is positive, so it suffices for
S(r̃)j to be negative. We additionally require

len(r̃) ≤ len(r).

The modification differs based on how many coordinates change on those two edges. Edge
edge modifies two coordinates, so this number can be 2, 3, or 4.

Case of 4 coordinates: this corresponds to the players of the two games being
disjoint pairs. Intuitively, the order of the games is irrelevant to the outcome. Set s =
r(tj) − r(tj+1) + r(tj+2). Then S(r̃)j = S(r)j+1 < 0 and len(r) = len(r̃). Case of 2
coordinates: this corresponds to the same two players playing in consecutive games. Let
those players be w, ℓ with w < ℓ. Let Π be the projection onto the w, ℓ coordinates. Then
for some a, b > 0,

Πr(tj) =
[
x

y

]
Πr(tj+1) =

[
x − a

y + a

]
Πr(tj+2) =

[
x − a + b

y + a − b

]
.

Our modification simply deletes r(tj+1), so S certainly decreases. The original length is

len
([

x

y

]
→

[
x − a

y + a

]
→

[
x − a + b

y + a − b

])
=

∫ b

0

1
σ(2 + (y + a − t) − (x − a + t)) dt

=
∫ b

0

1
σ(2 + y − x + 2a − 2t) dt.

=
∫ b−a

−a

1
σ(2 + y − x − 2t) dt.

If a ≥ b, the new length is 0. If a < b, then

len
([

x

y

]
→

[
x − a + b

y + a − b

])
=

∫ b−a

0

1
σ(2 + (y − t) − (x + t)) dt

=
∫ b−a

0

1
σ(2 + y − x − 2t) dt

which is strictly less than the original length since the integrand is the same with a smaller
range. Case of 3 coordinates: this corresponds to one player playing two different
opponents. Let Π be the projection onto those three coordinates in ranked order, i.e.

Πr(tj) =

x

y

z


for x ≥ y ≥ z. There are six possible sign patterns of Π(r(tj+2) − r(tj)), each with a different
selection of s.

Subcase (+, −, +): For some a, c > 0 we have

Πr(tj+2) =

 x + a

y − a − c

z + c

 .

There are three possible values of Πr(tj+1) corresponding to the three possible upsets that
can occur. No matter which one we observe, the selection of their replacement s is the same.

Πr(tj+1) =

 x

y − c

z + c

 ,

 x

y − a − c

z + a + c

 ,

x − c

y

z + c

 , s =

x + a

y − a

z
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The possible original lengths are as follows.

L1 = len

x

y

z

 →

 x

y − c

z + c

 →

 x + a

y − a − c

z + c

 =
∫ a

0

1
σ(2 + (y − c − t) − (x + t)) dt

=
∫ a

0

1
σ(2 + y − x − c − 2t) dt,

L2 = len

x

y

z

 →

 x

y − a − c

z + a + c

 →

 x + a

y − a − c

z + c

 =
∫ a

0

1
σ(2 + (z + a + c − t) − (x + t)) dt

=
∫ a

0

1
σ(2 + z − x + a + c − 2t) dt,

L3 = len

x

y

z

 →

x − c

y

z + c

 →

 x + a

y − a − c

z + c

 =
∫ a+c

0

1
σ(2 + (y − t) − (x − c + t)) dt

=
∫ a+c

0

1
σ(2 + y − x + c − 2t) dt

=
∫ a

−c

1
σ(2 + y − x − c − 2t) dt

The new length is

L4 = len

x

y

z

 →

x + a

y − a

z

 →

 x + a

y − a − c

z + c

 =
∫ a

0

1
σ(2 + (y − t) − (x + t)) dt

=
∫ a

0

1
σ(2 + y − x − 2t) dt.

By monotonicity of σ, we automatically have L3 ≥ L1 ≥ L4. We assume r is an ordered path,
so in the L2 case we have z + a + c ≤ y − a − c giving L2 ≥ L4 showing our modification did
not increase the length. Also see that r(tj) → s is not an upset so S(r̃)j < 0.

Subcase (−, +, −): For some a, c > 0 we have

Πr(tj+2) =

 x − a

y + a + c

z − c

 .

Again there are three possible values of Πr(tj+1) corresponding to the three possible upsets
that can occur, and our selection of their replacement s is the same regardless.

Πr(tj+1) =

x − a

y + a

z

 ,

x − a − c

y + a + c

z

 ,

x − a

y

z + a

 , s =

 x

y + c

z − c

 .

The original lengths are as follows.
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L1 = len

x

y

z

 →

x − a

y + a

z

 →

 x − a

y + a + c

z − c

 =
∫ c

0

1
σ(2 + (z − t) − (y + a + t)) dt

=
∫ c

0

1
σ(2 + z − y − a − 2t) dt,

L2 = len

x

y

z

 →

x − a − c

y + a + c

z

 →

 x − a

y + a + c

z − c

 =
∫ c

0

1
σ(2 + (z − t) − (x − a − c + t)) dt

=
∫ c

0

1
σ(2 + z − x + a + c − 2t) dt,

L3 = len

x

y

z

 →

x − a

y

z + a

 →

 x − a

y + a + c

z − c

 =
∫ a+c

0

1
σ(2 + (z − t) − (y + t)) dt

=
∫ a+c

0

1
σ(2 + z − y − 2t) dt,

=
∫ c

−a

1
σ(2 + z − y − 2a − 2t) dt.

The new length is

L4 = len

x

y

z

 →

 x

y + c

z − c

 →

 x − a

y + a + c

z − c

 =
∫ c

0

1
σ(2 + (z − t) − (y + t)) dt

=
∫ c

0

1
σ(2 + z − y − 2t) dt.

Again by monotonicity of σ, we automatically have L3 ≥ L1 ≥ L4. We assume r is an
ordered path, so in the L2 case we have y + a + c ≤ x − a − c giving L2 ≥ L4 as required.
Also see that r(tj) → s is not an upset so S(r̃)j < 0.

Subcase (+, +, −): For some a, b > 0 we have

Πr(tj+2) =

 x + a

y + b

z − a − b

 .

There is only one possible value of Πr(t2) corresponding to an upset.

Πr(tj+1) =

x − b

y + b

z

 , s

 x

y + b

z − b

 .
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The original length is

L1 = len

x

y

z

 →

x − b

y + b

z

 →

 x + a

y + b

z − a − b


=

∫ a+b

0

1
σ(2 + (z − t) − (x − b + t)) dt

=
∫ a+b

0

1
σ(2 + z − x + b − 2t) dt

=
∫ b

0

1
σ(2 + z − x + b − 2t) dt +

∫ a

0

1
σ(2 + z − x − b − 2t) dt

and the new length is

L2 = len

x

y

z

 →

 x

y + b

z − b

 →

 x + a

y + b

z − a − b


=

∫ b

0

1
σ(2 + (z − t) − (y + t)) dt +

∫ a

0

1
σ(2 + (z − b − t) − (x + t)) dt

=
∫ b

0

1
σ(2 + z − y − 2t) dt +

∫ a

0

1
σ(2 + z − x − b − 2t) dt.

Again since we assume the path is ordered, we have x ≥ y + b so L2 ≤ L1 by monotonicity
of σ. Also see that r(tj) → s is not an upset so S(r̃)j < 0.

Subcase (+, −, −): For some b, c > 0, we have

Πr(tj+2) =

x + b + c

y − b

z − c

 .

There is only one possible value of Πr(t2) corresponding to an upset.

Πr(tj+1) =

 x

y − b

z + b

 , s =

x + b

y − b

z

 .

The original length is

L1 = len

x

y

z

 →

 x

y − b

z + b

 →

x + b + c

y − b

z − c


=

∫ b+c

0

1
σ(2 + (z + b − t) − (x + t)) dt

=
∫ b+c

0

1
σ(2 + z − x + b − 2t) dt

=
∫ b

0

1
σ(2 + z − x + b − 2t) dt +

∫ c

0

1
σ(2 + z − x − b − 2t) dt
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and the new length is

L2 = len

x

y

z

 →

x + b

y − b

z

 →

x + b + c

y − b

z − c


=

∫ b

0

1
σ(2 + (y − t) − (x + t)) dt +

∫ c

0

1
σ(2 + (z − t) − (x + b + t)) dt

=
∫ b

0

1
σ(2 + y − x − 2t) dt +

∫ c

0

1
σ(2 + z − x − b − 2t) dt.

Since we assume the path is ordered, we have y − b ≥ z so L2 ≤ L1 once again. Also see
that r(tj) → s is not an upset so S(r̃)j < 0.

Subcase (−, +, +), (−, −, +): For some a, c we have

Πr(tj+2) =

 x − a

y + a − c

z + c

 .

Depending on the sign of a − c, there are two possible values of Πr(tj+1). In either case, the
selection of s is the same.

Πr(tj+1) =

x − a

y

z + a

 ,

x − c

y

z + c

 s =

x − a

y + a

z

 .

In this case, both new edges are upsets so the new length is 0, but we cannot conclude
S(r̃)j < 0 as before. Instead, let w1 < w2 < w3 be the indices of the three relevant coordinates
and note

S(r)j = w1 − w3 > S(r̃)j = w1 − w2.

Finally note the sign patterns of (+, +, +) and (−, −, −) are not possible since the sum of all
ratings is invariant. Since in all possible cases we have a decrease of S without an increase
of length, this process terminates in a path that isn’t longer and doesn’t have any upsets
followed by a non-upset. We end by truncating off any upsets at the end of the path. ◀

Lemma 10 implies we can restrict our attention to valid ordered upset-free paths. The length
of these paths can be bounded in terms of the following potential function.

▶ Definition 11. Define Φ : Rn → R by

Φ(s) = ∥s∥2 +
n−1∑
p=1

f(−2 + sp − sp+1)

where f is as in (4).

We seek to show Φ grows slowly as games are played, so that Φ of the end point of the path
is upper bounded by (a multiple of) the length of the path. Note that the first term ∥s∥2 in
this potential function is exactly the

∑
r2 expression appearing in the proofs of Theorems 4

and 6. The intuitive idea behind the second term is that when player p beats player p + 1,
the ratings sp and sp+1 move 2σ(sp+1 − sp) apart, which by the definition of f means the
corresponding f term increases by just a constant amount. Lemma 12 makes this intuition
precise.
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▶ Lemma 12. For a valid ordered upset-free path r : [0, c] → Rn one has

Φ(r(c)) − Φ(r(0)) ≤
(

2 + 2 sup
z

z σ(2 − z)
)

· len(r)

Proof. By the fundamental theorem of calculus, it suffices to show that

d
dt

Φ(r(t)) ≤
(

2 + 2 sup
z

z σ(2 − z)
)

W (r′(t), r(t)).

Since r is upset-free we have, ⟨r′(t), r⟩ ≥ 0 so by the definition of W (12),

W (r′(t), r(t)) = 1
σ(2 − ⟨r′(t), r(t)⟩) .

The chain rule gives

d
dt

Φ(r(t)) = ⟨r′(t), ∇Φ(r(t))⟩ . (13)

Since r is ordered in addition to being upset-free, r′(t) is always of the form r′(t) = ej − ej+a

for positive a. That is, the winning player has a lower index than the losing player. The jth
entry of the gradient can be computed directly as

∂

∂sj
Φ(s) = 2sj + f ′(−2 + sj − sj+1) · 1j<n − f ′(−2 + sj−1 − sj) · 1j>1

= 2rj + 1j<n

σ(2 + sj+1 − sj) − 1j>1

σ(2 + sj − sj−1) ,

and in particular

⟨ej − ej+a, ∇Φ(s)⟩ =
(

∂

∂sj
Φ(s) − ∂

∂sj+a
Φ(s)

)
≤ 2(sj − sj+a) + 1j<n

σ(2 + sj+1 − sj) + 1j+a>1

σ(2 + sj+a − sj+a−1)

≤ 2(rj − rj+a) + 1j<n

σ(2 + sj+a − sj) + 1j+a>1

σ(2 + sj+a − sj)

≤ 2 supz z σ(2 − z)
σ(2 + sj+a − sj) + 2

σ(2 + sj+a − sj)

=
(

2 + 2 sup
z

z σ(2 − z)
)

· 1
σ(2 − ⟨ej − ej+a, s⟩) .

=
(

2 + 2 sup
z

z σ(2 − z)
)

· W (ej − ej+a, s).

For s = r(t) and ej − ej+a = r′(t), this is exactly what we needed to show. ◀

The last piece of the puzzle is showing Φ(s) has to be large whenever one entry of s is large.
Rapid growth of f means if any two consecutive players have a large rating difference, Φ will
be large. On the other hand, if consecutive players are close in rating, many entries of s are
close to its largest entry forcing ∥s∥2 to be large.

▶ Lemma 13. Let s be any vector such that max s = s1 and at least one entry is negative.
Then

Φ(s) ≥ s2
1 and Φ(s) ≥ s3

1/8
f−1(s2

1/4) + 2 .
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Furthermore,

Φ(s) ≥ nf
(

−2 + s1

2n

)
.

Proof. The first result is immediate from Φ(s) ≥ ∥s∥2 ≥ s2
1. By the assumption on s, there

exists m such that

sm ≥ s1/2 ≥ sm+1.

Then

∥s∥2 ≥ m

4 s2
1. (14)

By convexity of f ,
m∑

j=1
f(−2 + sj − sj+1) ≥

m∑
j=1

f

(
−2 + s1 − sm+1

m

)
≥ mf

(
−2 + s1

2m

)
. (15)

We claim (15) is monotonically decreasing in m. To see this, note f ′ is itself positive and
monotonically increasing by monotonicity of σ. Then for x > −2,

f(x) =
∫ x

0
f ′(t) dt ≤ xf ′(x) ≤ (x + 2)f ′(x) =⇒ 0 ≤ (x + 2)f ′(x) − f(x)

(x + 2)2 = d
dx

f(x)
x + 2 .

Setting x = −2 + s1/2m and noting x is itself monotonically decreasing in m establishes the
claim. m is the index of a player, so we must have m ≤ n. This immediately implies by
montonicity of (15) that

Φ(s) ≥ nf
(

−2 + s1

2n

)
.

Combining (14) and (15) yields

Φ(s) ≥ inf
m

(m

4 s2
1 + mf

(
−2 + s1

2m

))
≥ inf

m
max

(m

4 s2
1, mf

(
−2 + s1

2m

))
.

The minimum of the maximum of two functions occurs when they intersect, which in this
case is guaranteed to happen exactly once since f(−2 + s1/2m) is monotone in m and its
range contains [0, ∞) ∋ s2

1/4. Therefore the minimizing m is

m = s1/2
f−1(s2

1/4) + 2 .

The last result of the lemma follows immediately by plugging that m into (14). ◀

Assembling the above lemmas together results in Theorem 14.

▶ Theorem 14. Let r be the highest rating achieved by a group of any number of players
who play a total of k games. Suppose the pot function σ satisfies

C1 = sup
z

z σ(2 − z) < ∞.

Then

r ≤ 2n ·
(
f−1(C2 · k/n) + 2

)
.
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and

r ≤ 2 · C
1/3
2 · k1/3 ·

(
f−1(C2/4 · k) + 2

)1/3

for C2 = 2 + 2C1 + f(−2) where f is defined in (4).

Proof. We may take n ≤ k − 1 players without loss of generality by simply ignoring players
who who aren’t connected to the player achieving the highest rating via some sequence of
games. Let r : [0, c] → Rn be the valid path corresponding to the sequence of games achieving
rating r = max r(c). Perform all necessary reflections to make it ordered. Lemma 9 gives

len(r) ≤ k. (16)

Lemma 10 constructs r̃ without any upsets satisfying

r = max r(c) ≤ max r̃(c̃) (17)

and

len(r̃) ≤ len(r). (18)

Since r̃ is ordered and upset-free, Lemma 12 implies

Φ(r̃(c̃)) − Φ(r̃(0)) ≤ (2 + 2C1) len(r̃).

Note Φ(r̃(0)) = Φ(0) = (n − 1)f(−2) so

Φ(r̃(c̃)) ≤ (2 + 2C1) len(r̃) + (n − 1)f(−2). (19)

Set C2 = 2 + 2C1 + f(−2) and assemble the chain of inequalities:

Φ(r̃(c̃)) ≤
(19)

(2 + 2C1)len(r̃) + (n − 1)f(−2)

≤
(18)

(2 + 2C1)len(r) + (n − 1)f(−2)

≤
(16)

(2 + 2C1)k + (n − 1)f(−2)

≤ (2 + 2C1 + f(−2)) · k

= C2 · k (20)

The three lower bounds on Φ provided by Lemma 13 are each used in different ways. First,
the n-dependent bound implies

nf
(

−2 + r

2n

)
≤

(17)
nf

(
−2 + max r̃(c̃)

2n

)
≤
13

Φ(r̃(c̃)) ≤
(20)

C2 · k.

Since r appears only once in the equation, we can simply rearrange to solve for r. In
particular,

r ≤ 2n

(
f−1

(
C2 · k

n

)
+ 2

)
.

giving the first result of the theorem. The second n-independent bound gives

r3/8
f−1(r2/4) + 2 ≤

(17)

(max r̃(c̃))3/8
f−1((max r̃(c̃))2/4) + 2 ≤

13
Φ(r̃(c̃)) ≤

(20)
C2 · k. (21)
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This bounds k in terms of a function of r. The last application of Lemma 13 converts this
into a bound on r in terms of k.

r2 ≤
(17)

(max r̃(c̃))2 ≤
13

Φ(r̃(c̃)) ≤
(20)

C2 · k.

This can be plugged back into the left-hand side of (21),

C2 · k ≥ r3/8
f−1(r2/4) + 2 ≥ r3/8

f−1(C2/4 · k) + 2 .

Rearranging gives

r3 ≤ 8 · C2 · k ·
(
f−1(C2/4 · k) + 2

)
.

Taking cube roots establishes the final result. ◀

▶ Remark 15. The probabilistic interpretation (3) of the Elo system described in the
introduction lends itself naturally to the requirement that z σ(2−z) be bounded. In particular,
take σ(z) = Pr(η < x) + 1

2 Pr(η = x) to be the symmetrized cumulative distribution function
of a symmetric random variable η with finite expectation. Note

sup
z

z σ(2 − z) = sup
z

(2 + z) σ(−z) ≤ 2 + sup
z

z σ(−z).

It’s clear that the supremum on the right will be achieved for z ≥ 0. Since η has finite
expectation, we may apply Markov’s inequality to obtain

z σ(−z) ≤ z Pr(η ≤ −z) = 1
2 · z · Pr(|η| ≥ z) ≤ 1

2 E |η| < ∞.

This shows E |η| < ∞ is sufficient. However it isn’t strictly necessary; for instance, z σ(2 − z)
just barely does not diverge for a Cauchy random variable. However, one does need finite
(1 − ε)th moment: suppose σ(−z) ≤ c/z. Then

E |η|1−ε =
∫

Pr
(

|η|1−ε ≥ t
)

dt = 2
∫

σ
(

−t1/(1−ε)
)

dt ≤ 2
∫

t−1/(1−ε) dt < ∞

for each ε ∈ (0, 1).

5 Discussion

5.1 Remaining questions
Can one close the gap between the upper and lower bounds in the n = ω(1) regime? This
could occur by finding a better strategy than the ones in Section 3, for instance by slowly
increasing δ as games are played, or by tightening the analysis in Theorem 14. It’s possible
that for heavy-tailed σ the lower bound is too loose, but for light-tail σ the upper bound
is. Why is there a jump in the upper bound from f(k)1/3 to f(k/n) at n = k1/3? Can one
find a bound that smoothly crosses the phase transition? In Theorem 6, one cannot totally
specify the initial set of ratings, but has to allow the possibility that the initial ratings are all
flipped. This appears very strongly to be an artifact of the analysis; can one prove a version
that allows you to assign any initial ratings subject only to the constraint that the average
rating is non-negative?
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The highest Elo problem also bares a passing resemblance to the Toda lattice: players are
particles whose positions on the real line is given by their ratings; they exhibit a repulsive
force when a higher rated player beats a lower rated player and an attractive force if vice
versa. Is it possible to use tools from solid state physics to analyze this problem?

Another interesting variant is to constrain the number of rounds of games. In a tournament,
many games will be happening parallel. Each round consists of any number of games, subject
only to the constraint that each player only participates in at most one game each round.
Given n players and k rounds, what’s the highest someone may be rated after
all games have finished?

5.2 Connection to maximum overhang
One may notice the jump from log k to k1/3 as one increases n for σ(−z) = 1

1+e−z . This may
be reminiscent of the maximum overhang problem. In that problem, one places k unit-length
bricks on top of each other at the edge of a table, attempting to achieve the largest overhang
possible. The classic solution if one is restricted to placing only a single brick at each height
(the “single-wide” setting) achieves an overhang of Θ(log k) units. However, if one is allowed
to place as many bricks at each height as one likes (the “multi-wide” setting), the optimal
solution achieves an overhang of Θ(k1/3) [5]. This connection does not appear to be a
coincidence! The proof of optimality in the maximum overhang problem uses a reduction
to a “mass movement problem.” But in fact, the highest Elo problem for the particular
σ(z) = max(0, min(1, z/2 + 1/2)) can be reduced to nearly the same problem!

The mass movement problem described by [5] is as follows: consider some finite number of
piles of mass placed on the real line. A valid “move” takes some unit interval and rearranges
the mass within that interval so that the center of mass is unchanged. Negative mass is
allowed. Formally, a “signed distribution” µ is a finite linear combination of dirac delta
functions δ. A valid “move” replaces µ with µ + ν where ν is itself a signed distribution
whose support is contained in some unit interval and

∫
ν = 0. A sequence of moves ν1 · · · , νk

corresponds naturally to a sequence of signed distributions µ0, · · · , µk. They place an
additional “weight-constraint” on allowed sequences. In particular, the number of j for which
νj is allowed to have support to the right of any threshold T is at most max0≤i≤k

∫ ∞
T

µi.
The goal is to use at most k moves to move the distribution k · δ to a distribution with a
unit of mass as far right as possible.

To reduce highest Elo to mass movement, let rp(j) be the rating of player p after j games
and set

µj(x) =
∑

p

δ(x − rp(j)).

Then consider a game where p beats q. Set z = rp − rq. By the selection of σ(z) =
max(0, min(z/2 + 1/2)), this only produces a change in ratings if z ≤ 1. Then µ changes by
performing the following move:

ν(x) = δ(x − rp − σ(−z)) + δ(x − rq + σ(−z)) − δ(x − rp) − δ(x − rq). (22)

Suppose z ≥ −1. Then the support of ν is contained in [rq − σ(−z), rp + σ(−z)], which is
an interval of length z + 2 σ(−z) = 1 as required. Furthermore, ν only has support above
T when there’s a player above T Elo guaranteeing the weight-constraint. The objective is
starting with n · δ, produce via k moves a distribution with a unit of mass (i.e. at least one
player) as far right as possible (i.e. with the highest rating possible). Recall that for the
purposes of an upper bound, we make take n = k, establishing the correct objective.
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There is, however, one big discrepancy: the case of z < −1. In particular, in the highest
Elo problem it is possible for a player rated −10 to beat a player rated 10, garnering a full
point of Elo. This does not correspond to a valid move, since the support of ν would be
{−10, −9, 9, 10}. Intuitively, such moves should not ultimately help push mass far away, and
indeed in Lemma 10 we show for a different relaxation of highest Elo that they don’t help.

A second discrepancy is that mass movement places no restriction on the amount of mass
moved in each move, whereas for highest Elo we always have ∥ν∥1 = 2. This would seem
to imply an upper bound of the “k rounds” variant mentioned at the end of Section 5.1.
Can that argument be made to work? Conversely, is there a variant or generalization of
maximum overhang that can be analyzed using the proof of Theorem 14?
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Abstract
A combination puzzle is a puzzle consisting of a set of pieces that can be rearranged into various
combinations, such as the 15 Puzzle and Rubik’s Cube. Suppose a speedsolving competition for a
combination puzzle is to be held. To make the competition fair, we need to generate an instance
(i.e., a state having a solution) that is chosen uniformly at random and unknown to anyone. We call
this problem a secure random instance generation of the puzzle. In this paper, we construct secure
random instance generation protocols for the 15 Puzzle and for Rubik’s Cube. Our method is based
on uniform cyclic group factorizations for finite groups, which is recently introduced by the same
authors, applied to permutation groups for the puzzle instances. Specifically, our protocols require
19 shuffles for the 15 Puzzle and 43 shuffles for Rubik’s Cube.
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1 Introduction

1.1 Secure Random Instance Generation Problem
A combination puzzle is a puzzle that consists of a set of pieces that can be rearranged into
various combinations, such as the 15 Puzzle and Rubik’s Cube. Suppose we want to hold a
speedsolving competition for a combination puzzle. For the competition, we need to generate
an instance (i.e., a state having a solution) of the puzzle. It must be chosen uniformly at
random from all instances, since otherwise some players may predict the instance. In an
actual speedsolving competition, an instance is chosen randomly by a computer program, and
a person called the scrambler applies the corresponding scrambling procedure to the puzzle.
An obvious drawback of this method is that the scrambler, who should know the chosen
instance, cannot fairly participate in the competition. One solution to this problem could be
to use a robot that generates a uniformly random instance of the puzzle, but verifying the
correctness of the robot’s behavior is not easy in general.
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From this background, we need to generate an instance of the puzzle that satisfies the
following conditions:

It is chosen uniformly at random from all instances.
It is hidden from all players, including the scrambler, until the competition starts.
It is arranged by human hands without electronic devices (such as a robot).

We call this problem a secure random instance generation problem of the puzzle.
For the 15 Puzzle, the problem might seem to be trivial at first glance, because the

structure of an ordinary 15 Puzzle board allows taking out the 15 blocks, turning them
face-down, and scramble them randomly. However, there is actually an issue; a completely
random arrangement of blocks may have no solution. Precisely1, it is well-known that when
the blocks are arranged according to a permutation σ in the symmetric group S15, a solution
exists if and only if σ is in the alternating group A15, which happens only with probability
1/2 for a uniformly random σ. Therefore, we need to scramble the blocks in a way that only
permutations in A15 can appear, which is a non-trivial task.

For Rubik’s Cube, similar to the 15 Puzzle, we need to covertly and uniformly generate a
permutation of the Rubik’s Cube group R, which is a subgroup of the 48th symmetric group
S48, but the situation is more complicated than for the 15 Puzzle (not just because the group
R is more complicated than A15). First, unlike the 15 Puzzle, each piece of the cube cannot
be “face-down.” Second, since all pieces are mechanically connected, applying a permutation
to the cube is a non-trivial task.

In this paper, we consider the secure random instance generation problem for the first
time and solve the problem for the 15 Puzzle and Rubik’s Cube. For both puzzles, we need
to covertly and uniformly generate a permutation from a finite group. A similar problem has
been studied in the research area of card-based cryptography.

1.2 Card-Based Cryptography
Card-based cryptography [3, 5, 14] is a research area within cryptography, which is based
on physical cards; cryptographic protocols such as secure computation protocols and zero-
knowledge proof protocols are implemented by a deck of cards without electronic devices.

A shuffle is an operation to rearrange a card sequence covertly and randomly. Formally,
a shuffle for a sequence of n cards is defined by a pair of a set of permutations Π ⊆ Sn,
where Sn denotes the n-th symmetric group, and a probability distribution F on Π, which
is denoted by (shuffle, Π, F). For a sequence c⃗ := (c1, c2, . . . , cn) of face-down cards, it
chooses a permutation π ∈ Π according to F covertly, and rearranges it into the sequence
π(c⃗) = (cπ−1(1), cπ−1(2), . . . , cπ−1(n)). Here, it is assumed that no player (including the player
who actually operates the shuffle operation) can guess which permutation π was chosen
beyond the fact that it was chosen according to F . A shuffle (shuffle, Π, F) is said to be
uniform if F is the uniform distribution on Π, closed if Π is a subgroup of Sn, and uniform
closed if both conditions hold. Hereinafter, for a uniform shuffle (shuffle, Π, F), we write it
as (shuffle, Π) and call it the Π-shuffle.

Although the definition of shuffles allows for an arbitrary permutation set Π and an
arbitrary distribution F , how to physically implement a shuffle (shuffle, Π, F) given Π and F
is quite non-trivial. In the literature on card-based cryptography, five shuffles – a random cut,
a random bisection cut, a pile-shifting shuffle, a complete shuffle, and a pile-scramble shuffle

1 We assume that an instance of the 15 Puzzle always has the empty square placed at the bottom right
(as well as the default instance of the puzzle), therefore an arrangement of the puzzle corresponds to a
permutation in S15 rather than S16.
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– are considered easy to implement. This is because the first three shuffles are performed
by random cyclic shifting and the last two shuffles are performed by completely random
scrambling. (See also Ueda et al. [23] for how to implement a random cut, a random bisection
cut, and a pile-shifting shuffle.) In this paper, we call these five shuffles practical shuffles.

From this context, there is a line of research to implement a class of shuffles from practical
shuffles with the use of “helping cards”. Saito et al. [20] showed that any shuffle (shuffle, Π, F)
can be implemented by three practical shuffles (one random cut, one pile-shifting shuffle, and
one pile-scramble shuffle) with helping cards if every probability of F is a rational number.
Although it is very general and important work, it requires at least n · |Π| helping cards; it is
inefficient in terms of the number of cards when |Π| is large. Another important example
of previous work is the result by Koch [11]. He showed that any uniform closed shuffle
(shuffle, Π) can be implemented by pile-shifting shuffles. However, it requires O(|Π|) shuffles;
it is inefficient in terms of the number of shuffles when |Π| is large. In summary, up until
now, there is no efficient implementation of a shuffle when |Π| is large.

1.3 Our Contribution
In this paper, we propose physical protocols for secure random instance generation of the 15
Puzzle and Rubik’s Cube. Let G be the permutation group corresponding to the set of all
instances of the puzzle. We divide the problem into the following problems:

How to implement a G-shuffle from practical shuffles?
How to apply a G-shuffle to the puzzle physically?

For the first problem, we utilize a decomposition of a finite group into cyclic subgroups
called a uniform cyclic group factorization (UCF), which is recently proposed by the au-
thors [10] (see Section 3.1). We show that if a group G has a UCF of length k, a G-shuffle
can be implemented by a sequence of k cyclic group shuffles, which are C-shuffles for some
cyclic group C, with no additional cards. This is an efficient method to implement a G-shuffle
from practical shuffles since k is considerably smaller than |G|. Up until now, it is known
that all solvable groups have a UCF [10] but whether any finite group has a UCF or not is
still open. Fortunately, the alternating group and the Rubik’s Cube group R have a UCF.
Based on the UCF, the A15-shuffle and the R-shuffle can be implemented by a sequence
of 19 and 43 cyclic group shuffles, respectively. In addition, these cyclic group shuffles are
practical shuffles: random cuts, random bisection cuts, and pile-shifting shuffles. Note that
since |A15| = 653837184000 and |R| = 43252003274489856000, the existing methods [11,20]
require a large number of cards or a large number of shuffles at least these numbers.

For the 15 Puzzle, the second problem is almost trivial: Turn the blocks face-down and
apply the A15-shuffle to the sequence of face-down blocks just like a sequence of cards. Thus,
the secure random instance generation problem of the 15 Puzzle is solved.

For Rubik’s Cube, the second problem is more complicated than that of the 15 Puzzle
because there are two obstacles: (1) since each piece of the cube cannot be “face-down”, how
to hide an instance of the cube is non-trivial; (2) since all pieces are mechanically connected,
how to apply a permutation to the cube is non-trivial. To solve (1) and (2), we propose two
methods for the construction of a secure random instance generation of Rubik’s Cube.

The first solution requires color stickers, which are concealed by peelable films: The
faces of the cube are hidden by stickers and films, as a solution to (1), and a permutation is
applied to a sequence of color stickers instead of the cube, as a solution to (2). The protocol
proceeds as follows. First, an R-shuffle is applied to a sequence of color stickers. Then, each
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sticker is placed on each face of the cube. Finally, just before the competition starts, all
films are peeled off. We call it a protocol in the free permutation model since it applies a
permutation freely. The protocol flow is summarized as Figure 1.

Figure 1 The flow of our protocol for Rubik’s Cube in the free permutation model.

The second solution requires a piece of cloth: The cube is covered by a piece of cloth,
as a solution to (1), and standard operations of Rubik’s Cube (i.e., F, B, U, D, L, and R)
are applied from under the cloth, as a solution to (2). The protocol proceeds as follows.
First, cover the solved cube by a large piece of cloth. Then, apply a sequence of standard
operations repeatedly until the player who scrambles the puzzle cannot remember how many
times it has been repeated (just like a Hindu cut of the playing card) from under the cloth.
Finally, just before the competition starts, the cloth is removed. We call it a protocol in the
restricted permutation model since the permutations applied to the puzzle is restricted to the
standard operations.

In summary, we propose three protocols for secure random instance generation of the
15 Puzzle and Rubik’s Cube. For the 15 Puzzle, we propose a protocol with 19 practical
shuffles (7 random cuts, 7 random bisection cuts, and 5 pile-shifting shuffles). For Rubik’s
Cube, our protocol in the free permutation model applies 43 practical shuffles (22 random
bisection cuts and 21 pile-shifting shuffles) to the sequence of color stickers, and one in the
restricted permutation model applies a sequence of standard operations to the cube directly.

1.4 Related Work
Mathematics of the 15 Puzzle. It is NP-hard to determine whether an instance of the
generalized 15 Puzzle can be solved at most k moves for a given integer k [17,18]. It is shown
that the length of shortest solutions ranges from 0 to 80 single-tile moves [1] or 43 multi-tile
moves [16]. For the generalized 15 Puzzle with an n × n puzzle board, it is shown that the
asymptotic mixing time is O(n4 log n) when random moves are made [2].

Mathematics of Rubik’s Cube. It is NP-complete to determine whether an instance of the
generalized n × n × n Rubik’s Cube can be solved at most k moves for a given integer k [4].
It is shown that the minimum number of steps required to solve any instance of Rubik’s
Cube called God’s Number is 20 [19].

Card-Based Cryptography. There is a line of research to implement somewhat complicated
shuffles from practical shuffles. There are several studies on generating a derangement, which
is a permutation without fixed points, covertly and uniformly at random [3,6, 8, 9]. It can be
seen as a uniform shuffle whose permutation set is the set of all derangements. Hashimoto
et al. [7] proposed a secure grouping protocol that generates a random permutation with
some conditions, which has an application to the Werewolf game. Also, it can be seen
as a kind of uniform shuffle. Miyamoto and Shinagawa [12, 21] constructed a protocol for
implementing graph shuffles, which is a class of uniform closed shuffles whose permutation
set is the automorphism group of a graph, from pile-scramble shuffles.
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Secure Computation Using the 15 Puzzle. Mizuki, Kugimoto, and Sone [13] showed that
secure computation can be done by the use of the 15 Puzzle. In particular, they showed
that any 4-variable Boolean function and any 14-variable Boolean symmetric function are
securely computed by using the 15 Puzzle.

2 Preliminaries

2.1 Notations
Throughout this paper, any groups are assumed to be finite. We denote the n-th symmetric
group by Sn and the n-th alternating group by An. We assume to multiply permutations
from left to right, e.g., (1, 2)(1, 3) = (1, 2, 3). Note that it is the convention used by the GAP
and the community of Rubik’s Cube.

2.2 Shuffle
A shuffle is an operation that rearranges a sequence of cards covertly and randomly (see
also Section 1.2). In Sections 4 and 5, we use random cuts, random bisection cuts, and
pile-shifting shuffles. These shuffles are special cases of cyclic group shuffles.

Cyclic Group Shuffle. A cyclic group shuffle is a G-shuffle for some cyclic group G = ⟨g⟩.
Let k be the order of G. Then it applies a permutation gr to a sequence of cards, where
r ∈ {0, 1, . . . , k − 1} is chosen uniformly at random. For example, applying a cyclic group
shuffle (shuffle, ⟨g⟩), where g = (1, 2)(3, 4, 5, 6) ∈ S6, to a sequence of six cards yields the
following result:

→
c =

1
?

2
?

3
?

4
?

5
?

6
? 7−→ π(→

c ) =



1
?

2
?

3
?

4
?

5
?

6
? if π = g0 (with prob. 1/4);

2
?

1
?

6
?

3
?

4
?

5
? if π = g1 (with prob. 1/4);

1
?

2
?

5
?

6
?

3
?

4
? if π = g2 (with prob. 1/4);

2
?

1
?

4
?

5
?

6
?

3
? if π = g3 (with prob. 1/4).

Random Cut. A random cut [5] (of length k) is a cyclic group shuffle whose generator
g is a conjugate of (1, 2, . . . , k) ∈ Sn, i.e., there exists a permutation τ ∈ Sn such that
g = τ−1(1, 2, . . . , k)τ . For example, applying a random cut (shuffle, ⟨g⟩), where g = (2, 1, 4),
to a sequence of four cards yields the following result:

→
c =

1
?

2
?

3
?

4
? 7−→ π(→

c ) =


1
?

2
?

3
?

4
? if π = g0 (with prob. 1/3);

2
?

4
?

3
?

1
? if π = g1 (with prob. 1/3);

4
?

1
?

3
?

2
? if π = g2 (with prob. 1/3).

Random Bisection Cut. A random bisection cut [15] (of size ℓ) is a cyclic group shuffle
whose generator is a conjugate of (1, ℓ + 1)(2, ℓ + 2) · · · (ℓ, 2ℓ) ∈ Sn. For example, applying
a random bisection cut (shuffle, g⟩), where g = (1, 4)(2, 5)(3, 6), to a sequence of six cards
yields the following result:

→
c =

1
?

2
?

3
?

4
?

5
?

6
? 7−→ π(→

c ) =


1
?

2
?

3
?

4
?

5
?

6
? if π = g0 (with prob. 1/2);

4
?

5
?

6
?

1
?

2
?

3
? if π = g1 (with prob. 1/2).
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Pile-Shifting Shuffle. A pile-shifting shuffle [22] (of size ℓ with k piles) is a cyclic group
shuffle whose generator g is a conjugate of the following permutation:
→
c = (1, ℓ+1, 2ℓ+1, . . . , (k−1)ℓ+1)(2, ℓ+2, 2ℓ+2, . . . , (k−1)ℓ+2) · · · (ℓ, 2ℓ, 3ℓ, . . . , kℓ) ∈ Sn.

For example, applying a pile-shifting shuffle (shuffle, ⟨g⟩), where g = (1, 3, 5)(2, 4, 6), to a
sequence of six cards yields the following result:

1
?

2
?

3
?

4
?

5
?

6
? 7−→ π(→

c ) =


1
?

2
?

3
?

4
?

5
?

6
? if π = g0 (with prob. 1/3);

5
?

6
?

1
?

2
?

3
?

4
? if π = g1 (with prob. 1/3);

3
?

4
?

5
?

6
?

1
?

2
? if π = g2 (with prob. 1/3).

3 Uniform Cyclic Group Factorization and Its Application to Shuffle

In this section, we recall the notion of uniform cyclic group factorizations of a finite group [10]
and show that if a group G has a uniform cyclic group factorization, the G-shuffle can be
implemented by a sequence of cyclic group shuffles with no additional cards.

3.1 Uniform Cyclic Group Factorization
Let G be a group. Let H = (H1, H2, . . . , Hk) be an ordered tuple of subsets of G. Define the
multiplication map multH : H1 × H2 × · · · × Hk → G by multH(h1, h2, . . . , hk) := h1h2 · · · hk.
H is called a factorization of G if multH is surjective. The integer k is called the length of H.
If H1, H2, . . . , Hk are proper subsets of G, then H is called a proper factorization of G.

▶ Definition 1 (Definition 2.1 in [10]). Let G be a group and H = (H1, H2, . . . , Hk) a
factorization of G.
(1) The factorization H is a uniform factorization of G if |mult−1

H (g)| does not depend on
g ∈ G. The integer t := |mult−1

H (g)| is called the multiplicity of H.
(2) The factorization H is a uniform group factorization (UGF) of G if H is a uniform

factorization of G and all H1, H2, . . . , Hk are subgroups of G.
(3) The factorization H is a uniform cyclic group factorization (UCF) of G if H is a uniform

group factorization of G and all H1, H2, . . . , Hk are cyclic subgroups of G.

When (H1, H2, . . . , Hk) is a UGF (or a UCF) of G, we write G = H1H2 . . . Hk.
We give some examples of UCF. For the n-th symmetric group Sn, by letting Hi :=

⟨(1, . . . , i + 1)⟩, the tuple H1 = (H1, H2, . . . , Hn−1) is a UCF of Sn. The length of H1 is
n − 1 and the multiplicity of H1 is 1. For the n-th dihedral group Dn = ⟨σ, τ | σn = 1, τ2 =
1, τ−1στ = σ−1⟩, the tuple H2 = (⟨σ⟩, ⟨τ⟩) is a UCF of Dn. The length of H2 is 2 and the
multiplicity of H2 is 1.

▶ Lemma 2. Let G1, G2 be groups. If G1 and G2 have UGF (resp. UCF), then the direct
product G1 × G2 and the semi-direct product G1 ⋊ G2 also have UGF (resp. UCF).

Proof. Suppose that G1 = H1H2 . . . Hk and G2 = M1M2 · · · Mℓ where Hi = ⟨hi⟩ and
Mj = ⟨mi⟩. Then the direct product G1 × G2 = {(g1, g2) | gi ∈ Gi} has a UCF G1 × G2 =
Ĥ1Ĥ2 . . . ĤkM̂1M̂2 · · · M̂ℓ where Ĥi := ⟨(hi, idG2)⟩ and M̂j := ⟨(idG1 , mj)⟩. Since every
element x ∈ G1 ⋊G2 is uniquely represented by x = g1g2 for gi ∈ Gi, the semi-direct product
G1 ⋊ G2 has a UCF G1 ⋊ G2 = H1H2 . . . HkM1M2 · · · Mℓ. ◀
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Any solvable group has a UCF (Theorem 3.3 in [10]). It is an open problem whether
any group has a UCF or not. The authors showed that any group has a UCF whenever any
group has a proper UGF (Theorem 3.4 in [10]), i.e., the open problem can be affirmatively
solved if any group has a UGF.

3.2 Shuffles Based on Uniform Cyclic Group Factorization
We show that if a group G has a uniform cyclic group factorization, the G-shuffle can be
implemented by a sequence of cyclic group shuffles with no additional cards.

First, we define the equivalence between a shuffle and a sequence of shuffles. Intuitively,
they are said to be equivalent if the resultant probability distributions are the same.

▶ Definition 3. Let G, H1, . . . , Hs be subgroups of Sn. A shuffle (shuffle, G, F) is said to be
equivalent to a sequence of shuffles (shuffle, H1, F1), . . . , (shuffle, Hs, Fs) if for all g ∈ G,

F(g) =
∑

(h1,h2,...,hs)∈H1×H2×···×Hs

h1h2···hs=g

s∏
i=1

Fi(hi), (1)

where the summation is taken over all (h1, . . . , hs) ∈ H1 × · · · × Hs such that h1 · · · hs = g.

The following lemma is easy but important for implementing shuffles.

▶ Lemma 4. Let G be a group and H = (H1, H2, . . . , Hk) a factorization of G. Let FH be a
probability distribution on G defined as follows:

FH(g) = |mult−1
H (g)|∏k

i=1 |Hi|
.

Then a shuffle (shuffle, G, FH) is equivalent to a sequence of k uniform shuffles as follows:

(shuffle, H1), (shuffle, H2), . . . , (shuffle, Hk).

Moreover, if H is a uniform factorization, FH is a uniform distribution on G.

Proof. Since the probability that hi ∈ Hi is chosen by (shuffle, Hi) is 1
|Hi| and the number

of (h1, . . . , hk) ∈ H1 × · · · × Hk such that h1 · · · hk = g is |mult−1
H (g)|, the right hand side of

Eq. (1) is |mult−1
H (g)|∏k

i=1
|Hi|

which is equal to FH(g). Therefore, (shuffle, G, FH) is equivalent to the

sequence of k uniform shuffles. If H is a uniform factorization, FH is a uniform distribution
on G since |mult−1

H (g)| does not depend on g. ◀

▶ Corollary 5. Let G be a group. If G has a uniform cyclic group factorization of length k,
a uniform closed shuffle (shuffle, G) is equivalent to a sequence of k cyclic group shuffles.

Proof. Follows from Lemma 4. ◀

4 Secure Random Instance Generation of the 15 Puzzle

In this section, we propose a secure random instance generation protocol of the 15 Puzzle.
In Section 4.1, we give a UCF of the alternating group An based on the construction given
by the authors [10]. In Section 4.2, we construct a protocol based on the UCF.
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1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Figure 2 Cells of the 15 Puzzle.

4.1 Uniform Cyclic Group Factorization of the Alternating Group
The 15 Puzzle is a sliding block puzzle consisting of a board and 15 blocks from 1 to 15 .
The backs of all blocks are identical and denoted by ? . The board has 4 × 4 cells, which
are numbered from 1 to 16 as in Figure 2. Initially, all blocks are placed on cells from 1 to
15 in a random order. A cell having no block is called a blank cell. The aim of the puzzle is
to make a board with 1 to 15 in cells from 1 to 15 in the order, by sliding blocks into the
blank cell. An arrangement of the puzzle is identified with a permutation σ ∈ S15 such that
σ(i) = j if the block j is on the cell i. It is known that a permutation σ has a solution if
and only if σ is an even permutation, thus the set of all instances of the 15 Puzzle forms the
alternating group A15.

Now we construct a UCF of An based on Proposition 5.2 in [10]. If n is odd, An

is decomposed by An = HK where H ≃ An−1 is the stabilizer fixing the point n and
K = ⟨(1, 2, 3, . . . , n)⟩ is a cyclic group. If n is even (i.e., n = 2m), An is decomposed by
An = HK1K2 where H ≃ An−1 is the stabilizer fixing the point n and K1 = ⟨(1, 2, . . . , m)(m+
1, m + 2, . . . , 2m)⟩ and K2 = ⟨(1, m + 1)(m, 2m)⟩ are cyclic groups.

From the above, we can construct a UCF of An for any n. Note that all subgroups
correspond to practical shuffles: K = ⟨(1, 2, 3, . . . , n)⟩ corresponds to a random cut, K1 =
⟨(1, 2, . . . , m)(m + 1, m + 2, . . . , 2m)⟩ corresponds to a pile-shifting shuffle, and K2 = ⟨(1, m +
1)(m, 2m)⟩ corresponds to a random bisection cut. The above discussion is summarized by
the following lemma.

▶ Lemma 6. Let n ≥ 4 and An be the set of all even permutations in Sn. If n = 2m, an
An-shuffle is equivalent to a sequence of 3m − 3 shuffles: m − 1 random cuts, m random
bisection cuts, and m − 2 pile-shifting shuffles. If n = 2m + 1, it is equivalent to a sequence
of 3m − 2 shuffles: m random cuts, m random bisection cuts, and m − 2 pile-shifting shuffles.

A UCF of A15 is given by A15 = H1H2 · · · H19 as follows:
H1 = ⟨(1, 2, 3)⟩;
H2 = ⟨(1, 3)(2, 4)⟩;
H3 = ⟨(1, 2)(3, 4)⟩;
H4 = ⟨(1, 2, 3, 4, 5)⟩;
H5 = ⟨(1, 4)(3, 6)⟩;
H6 = ⟨(1, 2, 3)(4, 5, 6)⟩;
H7 = ⟨(1, 2, 3, 4, 5, 6, 7)⟩;
H8 = ⟨(1, 5)(4, 8)⟩;
H9 = ⟨(1, 2, 3, 4)(5, 6, 7, 8)⟩;
H10 = ⟨(1, 2, 3, 4, 5, 6, 7, 8, 9)⟩;
H11 = ⟨(1, 6)(5, 10)⟩;
H12 = ⟨(1, 2, 3, 4, 5)(6, 7, 8, 9, 10)⟩;
H13 = ⟨(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)⟩;
H14 = ⟨(1, 7)(6, 12)⟩;
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H15 = ⟨(1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)⟩;
H16 = ⟨(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)⟩;
H17 = ⟨(1, 8)(7, 14)⟩;
H18 = ⟨(1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12, 13, 14)⟩;
H19 = ⟨(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)⟩.

4.2 Our Protocol for the 15 Puzzle
Based on the UCF of A15, we can construct a secure random instance generation protocol
for the 15 Puzzle. From Lemma 6, our protocol requires 19 practical shuffles consisting of 7
random cuts, 7 random bisection cuts, and 5 pile-shifting shuffles. The protocol proceeds as
follows:
1. Arrange 15 blocks as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 .

2. Turn all blocks face-down as follows:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? .

3. Apply a shuffle (shuffle, Hi) for i = 1, 2, . . . , 19 as follows:

? · · · ?︸ ︷︷ ︸
15 blocks

H1−−→ ? · · · ?︸ ︷︷ ︸
15 blocks

H2−−→ ? · · · ?︸ ︷︷ ︸
15 blocks

H3−−→ · · · H19−−→ ? · · · ?︸ ︷︷ ︸
15 blocks

.

4. Place the i-th block to the i-th cell of the board for 1 ≤ i ≤ 15. The face-down blocks on
the board is a random instance of the 15 Puzzle.

5 Secure Random Instance Generation of Rubik’s Cube

In this section, we propose a secure random instance generation protocol of Rubik’s Cube.
In Section 5.1, we give a UCF of the Rubik’s Cube group R. In Section 5.2, we construct a
protocol in the free permutation model. In Section 5.3, we give a UCF of R whose generators
are written by a product of the standard generators. In Section 5.4, we construct a protocol
in the restricted permutation model.

5.1 Uniform Cyclic Group Factorization of the Rubik’s Cube Group
Rubik’s Cube consists of a number of pieces called cubies. A face of a cubie is called a facelet.
There are 6 center cubies, 8 corner cubies, and 12 edge cubies in Rubik’s Cube. By fixing the
center cubies, any instance can be regarded as a permutation of the 48 facelets, and thus the
Rubik’s Cube group R is a subgroup of S48. It is generated by the following permutations:

F := (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11);
B := (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27);
U := (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19);
D := (41, 43, 48, 46)(42, 45, 47, 44)(14, 22, 30, 38)(15, 23, 31, 39)(16, 24, 32, 40);
L := (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35);
R := (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24).
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1 2 3
4 5
6 7 8

9 10 11
12 13
14 15 16

17 18 19
20 21
22 23 24

25 26 27
28 29
30 31 32

33 34 35
36 37
38 39 40

41 42 43
44 45
46 47 48

U

L F R B

D

Figure 3 Facelets of Rubik’s Cube.

Here, the facelets are numbered from 1 to 48 as in Figure 3 and the above six permutations
correspond to the clockwise 90◦ rotation of the front, back, up, down, left, and right faces of
the cube, respectively. We call them the standard generators of R.

Edge cubies are represented by a pair of two indices, denoted by [α, β], as follows:
e1 := [2, 34], e2 := [4, 10], e3 := [5, 26], e4 := [7, 18], e5 := [12, 37], e6 := [13, 20], e7 := [15, 44],
e8 := [21, 28], e9 := [23, 42], e10 := [29, 36], e11 := [31, 45], and e12 := [39, 47]. Corner cubies
are represented by a tuple of three indices, denoted by [γ, δ, ϵ], as follows: c1 := [1, 35, 9],
c2 := [3, 27, 33], c3 := [6, 11, 17], c4 := [8, 19, 25], c5 := [14, 40, 46], c6 := [16, 41, 22],
c7 := [24, 43, 30], and c8 := [32, 48, 38]. For an edge cubie ei = [αi, βi], a permutation
representing a flip of the cubie is denoted by τi := (αi, βi). For a corner cubie ci = [γi, δi, ϵi],
a permutation representing the counterclockwise 120◦ rotation of the cubie is denoted by
σi := (γi, δi, ϵi). For a permutation π ∈ S12, a permutation e(π) ∈ S48 is defined as a
permutation that moves the edge cubies according to π, i.e., the i-th edge cubie ei is moved
to the π(i)-th edge cubie. For example, e((1, 2, 3)) = (2, 4, 5)(34, 10, 26). For a permutation
π ∈ S8, a permutation c(π) ∈ S48 is defined as a permutation that moves the corner cubies
according to π, i.e., the i-th corner cubie ci is moved to the π(i)-th corner cubie. For example,
c((1, 2, 3)) = (1, 3, 6)(35, 27, 11)(9, 33, 17).

The group structure of R is given by R ≃ (Z11
2 × Z7

3) ⋊ ((A8 × A12) ⋊ Z2) as follows:
The subgroup Z11

2 of R is given by:

Z11
2 = {τ b1

1 τ b2
2 · · · τ b12

12 | b1 + b2 + · · · + b12 ≡ 0 mod 2}.

It represents the group of all flippings of 12 edge cubies with the restriction that the
number of flipped cubies is even. A UCF of Z11

2 is given by Z11
2 = H1H2 . . . H11, where

Hi = ⟨τ1τi+1⟩ for 1 ≤ i ≤ 11.
The subgroup Z7

3 of R is given by:

Z7
3 = {σb1

1 σb2
2 · · · σb8

8 | b1 + b2 + · · · + b8 ≡ 0 mod 3}.

It represents the group of all rotations of 8 corner cubies, where all but one may be
rotated freely, but they determine the orientation of the last corner cubie. A UCF of Z7

3
is given by Z7

3 = H12H13 . . . H18, where H11+i = ⟨(σ1)−1σi+1⟩ for 1 ≤ i ≤ 7.
The subgroup A8 of R is given by:

A8 = {c(π) | π ∈ A8 ≤ S8}.

It represents the group of even permutations over 8 corner cubies. A UCF of A8 is given
by A8 = H19H20 · · · H27, where H18+i = ⟨c(σ′

i)⟩ for 1 ≤ i ≤ 9 and σ′
i is a generator of the

UCF of A8 given in Section 4.1.
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The subgroup A12 of R is given by:

A12 = {e(π) | π ∈ A12 ≤ S12}.

It represents the group of even permutations over 12 edge cubies. A UCF of A12 is given
by A12 = H28H29 · · · H42, where H27+i = ⟨e(σ′

i)⟩ for 1 ≤ i ≤ 15 and σ′
i is a generator of

the UCF of A12 given in Section 4.1.
The subgroup Z2 of R is given by:

Z2 = ⟨e((1, 2))c((1, 2))⟩.

It is a group generated by the composition of exchanging two corner cubies and exchanging
two edge cubies. Since Z2 is a cyclic group, it has a trivial UCF H43 := Z2.

From the above and Lemma 2, a UCF of R is given by R = H1H2 · · · H43 as follows:
H1 = ⟨(2, 34)(4, 10)⟩;
H2 = ⟨(2, 34)(5, 26)⟩;
H3 = ⟨(2, 34)(7, 18)⟩;
H4 = ⟨(2, 34)(12, 37)⟩;
H5 = ⟨(2, 34)(13, 20)⟩;
H6 = ⟨(2, 34)(15, 44)⟩;
H7 = ⟨(2, 34)(21, 28)⟩;
H8 = ⟨(2, 34)(23, 42)⟩;
H9 = ⟨(2, 34)(29, 36)⟩;
H10 = ⟨(2, 34)(31, 45)⟩;
H11 = ⟨(2, 34)(39, 47)⟩;
H12 = ⟨(1, 9, 35)(3, 27, 33)⟩;
H13 = ⟨(1, 9, 35)(6, 11, 17)⟩;
H14 = ⟨(1, 9, 35)(8, 19, 25)⟩;
H15 = ⟨(1, 9, 35)(14, 40, 46)⟩;
H16 = ⟨(1, 9, 35)(16, 41, 22)⟩;
H17 = ⟨(1, 9, 35)(24, 43, 30)⟩;
H18 = ⟨(1, 9, 35)(32, 48, 38)⟩;
H19 = ⟨(1, 3, 6)(35, 27, 11)(9, 33, 17)⟩;
H20 = ⟨(1, 6)(35, 11)(9, 17)(3, 8)(27, 19)(33, 25)⟩;
H21 = ⟨(1, 3)(35, 27)(9, 33)(6, 8)(11, 19)(17, 25)⟩;
H22 = ⟨(1, 3, 6, 8, 41)(35, 27, 11, 19, 22)(9, 33, 17, 25, 16)⟩;
H23 = ⟨(1, 8)(35, 19)(9, 25)(6, 43)(11, 30)(17, 24)⟩;
H24 = ⟨(1, 3, 6)(35, 27, 11)(9, 33, 17)(8, 41, 43)(19, 22, 30)(25, 16, 24)⟩;
H25 = ⟨(1, 3, 6, 8, 41, 43, 46)(35, 27, 11, 19, 22, 30, 14)(9, 33, 17, 25, 16, 24, 40)⟩;
H26 = ⟨(1, 41)(35, 22)(9, 16)(8, 48)(19, 38)(25, 32)⟩;
H27 = ⟨(1, 3, 6, 8)(35, 27, 11, 19)(9, 33, 17, 25)(41, 43, 46, 48)(22, 30, 14, 38)(16, 24, 40, 32)⟩;
H28 = ⟨(2, 4, 5)(34, 10, 26)⟩;
H29 = ⟨(2, 5)(34, 26)(4, 7)(10, 18)⟩;
H30 = ⟨(2, 4)(34, 10)(5, 7)(26, 18)⟩;
H31 = ⟨(2, 4, 5, 7, 12)(34, 10, 26, 18, 37)⟩;
H32 = ⟨(2, 7)(34, 18)(5, 20)(26, 13)⟩;
H33 = ⟨(2, 4, 5)(34, 10, 26)(7, 12, 20)(18, 37, 13)⟩;
H34 = ⟨(2, 4, 5, 7, 12, 20, 44)(34, 10, 26, 18, 37, 13, 15)⟩;
H35 = ⟨(2, 12)(34, 37)(7, 28)(18, 21)⟩;
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H36 = ⟨(2, 4, 5, 7)(34, 10, 26, 18)(12, 20, 44, 28)(37, 13, 15, 21)⟩;
H37 = ⟨(2, 4, 5, 7, 12, 20, 44, 28, 42)(34, 10, 26, 18, 37, 13, 15, 21, 23)⟩;
H38 = ⟨(2, 20)(34, 13)(12, 36)(37, 29)⟩;
H39 = ⟨(2, 4, 5, 7, 12)(34, 10, 26, 18, 37)(20, 44, 28, 42, 36)(13, 15, 21, 23, 29)⟩;
H40 = ⟨(2, 4, 5, 7, 12, 20, 44, 28, 42, 36, 45)(34, 10, 26, 18, 37, 13, 15, 21, 23, 29, 31)⟩;
H41 = ⟨(2, 44)(34, 15)(20, 47)(13, 39)⟩;
H42 = ⟨(2, 4, 5, 7, 12, 20)(34, 10, 26, 18, 37, 13)(44, 28, 42, 36, 45, 47)(15, 21, 23, 29, 31, 39)⟩;
H43 = ⟨(2, 4)(34, 10)(1, 3)(35, 27)(9, 33)⟩.

5.2 Our Protocol for Rubik’s Cube in the Free Permutation Model
In this section, we construct a secure random instance generation protocol of Rubik’s Cube
in the free permutation model. It requires color stickers along with a cube.

A color sticker is a sticker with one of the six colors as follows:

R B O W G Y .

Note that each letter (R, B, O, W, G, and Y) is indicated for clarity and is not actually
written. They are the same size as the facelet of the cube and can be placed on facelets. At
the beginning, all stickers are concealed by films that can be peeled off as follows:

.

All stickers are assumed to be indistinguishable when their films are not peeled off.
Our protocol requires 48 color stickers, consisting of 8 color stickers of each color, and 43

practical shuffles, consisting of 22 random bisection cuts and 21 pile-shifting shuffles. The
protocol proceeds as follows:
1. Arrange a sequence of color stickers as follows:

1

· · ·
8

︸ ︷︷ ︸
red

9

· · ·
16

︸ ︷︷ ︸
blue

17

· · ·
24

︸ ︷︷ ︸
orange

25

· · ·
32

︸ ︷︷ ︸
white

33

· · ·
40

︸ ︷︷ ︸
green

41

· · ·
48

︸ ︷︷ ︸
yellow

.

2. Apply an Hi-shuffle to the sequence for i = 1, 2, . . . , 43 as follows:

· · ·︸ ︷︷ ︸
48 stickers

H1−−→ · · ·︸ ︷︷ ︸
48 stickers

H2−−→ · · ·︸ ︷︷ ︸
48 stickers

H3−−→ · · · H43−−→ · · ·︸ ︷︷ ︸
48 stickers

.

3. Place the i-th color sticker to the i-th facelet of Rubik’s Cube for 1 ≤ i ≤ 48. The cube
concealed by films is a random instance of Rubik’s Cube.

5.3 Uniform Cyclic Group Factorization with the Standard Generators
For each O ∈ {F, B, U, D, L, R}, we denote O3 by O′. All generators of the UCF in Section 5.1
can be expressed by a product of the standard generators F, B, U, D, L, and R. For example,
(2, 34)(4, 10) = RLFU2F′RL′UB2U′F2L2U′F2R2B2D′. All generators of the subgroups Hi

(1 ≤ i ≤ 43) are expressed by a product of the standard generators as follows:
H1 = ⟨RLFU2F′RL′UB2U′F2L2U′F2R2B2D′⟩;
H2 = ⟨RUR′U′R′U′RURB′U′R2URB⟩;
H3 = ⟨U2LFUF′UL′B′R′U2RBU′LU′L′⟩;
H4 = ⟨LBDL2D′L′BD2R2F2U2F2R2DB2D⟩;
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H5 = ⟨LB′D′B2DLBDL2DF2R2U2R2F2D2⟩;
H6 = ⟨RL′FU2F′R′LDR2U2R2F2R2U2R2D′⟩;
H7 = ⟨RB′D′R2DRB′U2F2D′L2DF2UB2U⟩;
H8 = ⟨URLF′R2F′RL′UR2U2B2L2F2DL2B2U′⟩;
H9 = ⟨UBU′B′U′B′UBUR′B′U2BUR⟩;
H10 = ⟨RLF′U2FRL′U2R2L2DF2D′R2L2U2R2⟩;
H11 = ⟨B2LUBU′BL′D′R′B2RDB′LB′L′⟩;
H12 = ⟨R2U′F2UB2U′F2UB2DR′URD′R′U′R′⟩;
H13 = ⟨L2D′L2DF2U′FUL2UL2U′F⟩;
H14 = ⟨F2U′F2U′R2DR2DB2D2FDB2D′F′U2⟩;
H15 = ⟨R2D′B2U′F2UB2U′F2UR′URDR′U′R′⟩;
H16 = ⟨L2D′B2DB2U′L2UL2D2RD′L2DR′D2⟩;
H17 = ⟨R2UF2U′L2UF2U′R2UFD′B2DF′U′⟩;
H18 = ⟨B2DB2D′R2UR2U′B2U2F′UB2U′FU2⟩;
H19 = ⟨R2DB2D′F2DB2D′F2R2⟩;
H20 = ⟨RBR′F2RB′RB2U′F2DL2B2D′F2UF2⟩;
H21 = ⟨RU2R2DR2U2RB2UR2UR2U2B2D′R2⟩;
H22 = ⟨UR2UF2U2F2U′R2U′LR′F2L′R⟩;
H23 = ⟨URLD2R′L′F2U′L2U′B2UL2DR2D′⟩;
H24 = ⟨U2F2R2F2R2UR2F2R2F2U⟩;
H25 = ⟨L2UR′LF2R′L′F2UB2L2D2R2DF2DB2⟩;
H26 = ⟨RLU2RL′U2R2F2U2B2D2R2B2U2L2⟩;
H27 = ⟨URLU2D2RLU′F2R2UF2D2R2UB2L2⟩;
H28 = ⟨R2U2F2L2B2DB2L2F2U′R2⟩;
H29 = ⟨URL′U2R′LUF2UF2UF2UF2UF2⟩;
H30 = ⟨UFB′U2F′BUL2UL2UL2UL2UL2⟩;
H31 = ⟨L2FL2U2L2FUL2B2R2U′R2UDR2B2⟩;
H32 = ⟨R′U2F2U2RU2F2R2U2F2U2F2R2U2F2⟩;
H33 = ⟨L2U2F2R2B2U′L2B2R2UFUF′D′ULU′L⟩;
H34 = ⟨B2U′B2L2UL2B2L2D′U2L′B′LDL2BLB⟩;
H35 = ⟨R2F2U2FU2D2BU2D2F2D2B2L2U2D2⟩;
H36 = ⟨DUB2L2R2D2F2UL2DBDF′L′FLBR2F′⟩;
H37 = ⟨U2L2DR2F2R2UF2R2U2FD′LR′FL′FL′RU′⟩;
H38 = ⟨RDBD′R′U′L′B′LUBU′DL′D′U⟩;
H39 = ⟨R2D′R2UF2L2D′B2R2DFL′U′B2UL′R2BR2U2⟩;
H40 = ⟨L2B2L2D2UR2U′B2U2B′L2D′U′B2R′D2R2U′F2U′⟩;
H41 = ⟨D′RU2F2U2R′F2U2L2B2U2F2D2R2B2D′⟩;
H42 = ⟨DF2U′F2L2U2F2U2F2UFR2U′L2R2UF2RF2U′⟩;
H43 = ⟨UR2U′R2DR2D′F2UF2R2⟩.

We compute them by Online Rubik’s Cube Solver [24]. We remark that all of the
generators as above are of length at most 20, which is God’s Number of Rubik’s Cube.
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5.4 Our Protocol for Rubik’s Cube in the Restricted Permutation Model
In this section, we construct a secure random instance generation protocol of Rubik’s Cube
in the restricted permutation model.

Our protocol uses a piece of cloth, which is sufficiently large to hide a cube completely. A
player can hold a cube through his/her hand from under the cloth, and can apply a sequence
of the standard generators. During this operation, which permutation is applied to the cube
is completely hidden from other players.

Now we introduce a repetitive shuffle, which is a shuffling operation for a cube. Let
seq ∈ {F, B, U, D, L, R}∗ be a sequence of the standard generators such that the order of seq
is k, i.e., applying seq k times is equal to the identity permutation. For a cube covered with
a piece of cloth, a repetitive shuffle of seq covertly applies seqr to the cube for a uniformly
random number r ∈ {0, 1, . . . , k − 1}. Here, r is completely hidden from all players.

We give two physical implementations of repetitive shuffles. The first method is performed
by a single player: The player holding a cube through his hand from under the cloth applies
seq a sufficiently large number of times until he loses the number of times. The second
method is performed by (at least) two players: The first player holding a cube through
his hand from under the cloth applies seqr1 to the cube for a uniformly random number
r1 ∈ {0, 1, . . . , k − 1} which is generated by his mind; Then the cube is passed to the second
player, and she applies seqr2 to the cube for a uniformly random number r2 ∈ {0, 1, . . . , k −1}
which is generated by her mind. Since r := r1 + r2 mod k is distributed uniformly at random
and r is completely hidden from the both players, the second method correctly implements
the repetitive shuffle.

Our protocol requires 43 repetitive shuffles. The protocol proceeds as follows:
1. Prepare a solved cube. Cover it with a piece of cloth.
2. Apply 43 repetitive shuffles of the generators of cyclic groups given in Section 5.3. The

cube covered with a piece of cloth is a random instance of Rubik’s Cube.

6 Conclusion

In this paper, we introduced the secure random instance generation problem for the first
time and designed three protocols for the 15 Puzzle and Rubik’s Cube. We left as an open
problem to achieve the same task with a smaller number of practical shuffles. Note that
our protocols are based on UCFs with multiplicity 1, but it may be possible to construct a
shorter UCF with multiplicity 2 or more. Another research direction is to design a secure
random instance generation protocol for other combination puzzles.
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Abstract
Previous work demonstrated that the trading card game Magic: The Gathering is Turing complete,
by embedding a universal Turing machine inside the game. However, this is extremely hard to
program, and known programs are extremely inefficient. We demonstrate techniques for disabling
Magic cards except when certain conditions are met, and use them to build a microcontroller with a
versatile programming language embedded within a Magic game state. We remove all choices made
by players, forcing all player moves except when a program instruction asks a player for input. This
demonstrates Magic to be at least as complex as any two-player perfect knowledge game, which we
demonstrate by supplying sample programs for Nim and the Collatz conjecture embedded in Magic.
As with previous work, our result applies to how real Magic is played, and can be achieved using a
tournament-legal deck; but the execution is far faster than previous constructions, generally one
cycle of game turns per program instruction.
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1 Introduction and Previous Work

Magic: The Gathering (also known as Magic) is the world’s largest tabletop collectible card
game, played by hundreds of thousands of players in tournaments and by millions more
players casually. In 2020, Churchill, Biderman & Herrick published an embedding of a
universal Turing machine inside Magic [2]. This is the first widely played tabletop game to
be shown Turing complete in the format in which it is usually played, as opposed to some
infinite generalisation. For example, chess is EXPTIME-complete with infinite board and
pieces, but has a finite number of states in the 8x8 board used for tournament play. Churchill
et al. showed that the question “will this Magic game ever terminate” cannot be answered in
the general case, even for two-player Magic played with all the usual tournament restrictions.
However, this paper did not contain any concrete example computations.

The author of [1] investigated the runtime performance of this Universal Turing Machine
(UTM) embedded within Magic. He established a compilation sequence from an arbitrary
Turing machine with N states, into a 2-tag system, into the 2-state UTM(2,18), and thence
into Magic. He supplied a simple Turing machine to compute 2+3 in a unary adder. However,
he found that no simulation was able to establish how long it would take to compute 2+3
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in the UTM. The straightforward compiler’s output from this simple Turing machine for
computing 2+3 results in a tape over 40 million symbols long (15 million in the program
and 25 million in the data). The UTM simulation of the Turing machine needs to constantly
move between the program and data sections, resulting in absurdly inefficient computation
times. No simulation was able to establish how long it would take to compute 2+3 in the
Magic game.

The same author created an optimised unary adder Turing machine with just 2 states,
and compiled a simplified computation of 1+1. This completed in a mere 3,958,876,878
game cycles (of each of the two players taking a turn). Even after nearly 8 billion game
turns, because of the multiple steps in translating the calculation into the UTM(2,18), the
output consisted of hundreds of creature tokens, which needed to be interpreted by carefully
counting how many tokens of type Myr were mixed in among the hundreds of tokens with
type Aetherborn, all in order to retrieve the output of “2”.

In this paper we set out a different construction, which embeds a full microcontroller
within Magic: The Gathering. In Section 2 we describe at a high level some key features
of the construction, and Section 3 specifies the programming language supported by the
microcontroller. Section 4 provides the details of we implement the framework, and we work
through an example instruction in Section 5. Section 6 contains our conclusions and discussion
of the implications. Finally, Appendix A provides several sample programs, Appendix B
explains which cards we use to modify other cards, and Appendix C supplies a decklist that
could be brought to a Magic tournament to assemble the construction.

2 Outline of the Construction

The rest of this paper describes a construction that simulates a fully general programming
language within Magic: The Gathering. Compared to [2] this is also Turing complete, but is
much more efficient and easy to program, and reports its outputs much more clearly. It also
allows reading input from each of the players of the two-player Magic game in which it is
embedded, and can be programmed to terminate in a win for either player or a draw, or of
course can keep running indefinitely.

As with the Turing machine construction, we start by assuming one player, Alice, draws a
combination of cards that allows her to take over the game, draw all the rest of her deck, and
remove all cards from the hand of the opponent, Bob. After the initial setup is completed,
she removes all player choices, so that neither player has any option but to let the program
execution continue, short of conceding the game. Thus the outcome of this tournament-legal
Magic game is entirely determined by the result of the program.

The program is written in a language of 12 symbols, represented by basic land cards,
which are allowed to occur any number of times in a player’s deck. Alice’s deck needs to
start off containing a lot of other cards, but once the microcontroller is set up and she has
drawn all her cards, she returns to her deck a sequence of cards from among these 12, which
encodes the program to be executed.

The program is read one card at a time. During Alice’s combat step we put one of these
cards, which we call the “program permanent”, onto the battlefield for long enough to read it,
then move it to the bottom of Alice’s deck. We in fact make Alice have three combat steps
each turn, and in each one, a program permanent is read and possibly other game actions are
(automatically) taken. Each instruction in the programming language is a sequence of three
symbols, interpreted by some set of “instruction permanents” that do extra things during
Alice’s or Bob’s turn.
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All instruction permanents that don’t apply to the current instruction are “inactive”,
i.e. have all their abilities removed. To do this we turn them into creatures with a certain
creature type (e.g. Angel), have a card which makes all Angels also Saprolings, make all
Saprolings lands, and remove abilities from all lands. Crucially, we can conditionally allow a
certain group of instruction permanents to regain their abilities by temporarily “phasing out”
the card which makes (e.g.) Angels into Saprolings. (Objects in Magic which are “phased
out” are treated by the rules as if they don’t exist.) We do this during one of Alice’s combat
steps, so those instruction permanents have their abilities during the rest of Alice’s turn
(including her later combat steps) and all of the other player Bob’s turn.

Permanents in Magic have zero or more colours, from the set of white, blue, black, red
and green. Permanents that are creatures have zero or more creature types, also drawn from
a well-defined set, but this set has over 200 types in it. We use both of these characteristics
extensively. All “inactive” permanents are made green Saproling creatures, and all green
creatures are given protection from certain creature types. We make extensive use of the
capabilities Magic offers to edit existing cards by changing colour words (using the card
Mind Bend), creature type text (using Artificial Evolution), colours (using Prismatic
Lace), and creature types (using a variety of cards according to circumstances).

In particular, we carefully apply restrictions so that any time an ability triggers that would
normally let its controller choose a target, there is precisely one legal target (or occasionally
no targets, which prevents the ability from going on the stack at all). We ensure that all
creatures attack and block where possible using Grand Melee, but make most creatures
unable to attack or block using Stormtide Leviathan. Any time a creature is able (and
thus forced) to attack, we arrange that either it can’t be blocked at all, or there is precisely
one creature forced to block it.

3 The Programming Language

The programming language we implement has the following features:
Twelve registers r0 . . . r11, each able to contain an arbitrarily large nonnegative integer.
An unlimited number of memory slots, each addressed by a nonnegative integer address;
each memory slot can hold a single arbitrarily large nonnegative integer.
A single Boolean flag that is set by certain instructions such as comparisons. The flag can
be read by certain instructions; most notably, jump instructions can be made conditional
on whether the flag is true or false.

The program is written in a language of 12 symbols, and each instruction is a sequence of
three symbols. For example, the sequence 0 1 2 (represented by cards Plains Island Swamp)
encodes the instruction “Add 1 2”, which will result in increasing the value of register r1 by
the value of r2. We provide the following instructions in the language:

5 Y Z (Y ̸=Z) Set rY rZ Set rY to the value of rZ .
5 Y Y Zero rY Set rY to zero.
0 Y Z Add rY rZ Set rY to rY + rZ .
4 1 Z Add1 rZ Set rZ to rZ + 1.
4 2 Z Halve rZ Set rZ to half the value of rZ , rounding down. Set

the flag to the remainder from the division.
1 Y Z (Y ̸=Z) SubCond rZ rY If rZ ≥ rY , set rZ to rZ − rY and set the flag to 0.

Otherwise, set the flag to 1.
1 Z Z Sub1Cond rZ If rZ ≥ 1, set rZ to rZ − 1 and set the flag to 0.

Otherwise, set the flag to 1.
6 Y Z Mult rZ rY Set rZ (note, not rY ) to rY × rZ .
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7 Y Z DivCeil rY rZ Set rY to ⌈rY /rZ⌉. If the division was exact, set the
flag to 0, otherwise set it to 1. If rZ = 0 or Y = Z,
this is undefined behaviour.

2 Y 0 AInput rY Set rY to a nonnegative integer of Alice’s choice.
2 Y 1 BInput rY Set rY to a nonnegative integer of Bob’s choice.
2 Y 2 SetF rY Set rY to the flag’s value.
2 Y 3 SetNF rY Set rY to the Boolean negation of the flag’s value

(1 if it’s 0 and vice versa).
2 Y 4 Rand6 rY Set rY to a random nonnegative integer less than 6.
2 Y 5 Rand20 rY Set rY to a random nonnegative integer less than 20.
10 Y Z NumBuild 12Y +Z Set r0 to 12Y +Z, except if the last instruction that

was executed was also a NumBuild instruction, in
which case multiply r0 by 144 and add 12Y +Z to it.
As its name suggests, this instruction can be used
repeatedly to build any nonnegative integer value in
r0, two base-12 digits at a time.

8 Y Z Store rZ rY Store the value of rY at memory address rZ .
9 Y Z Load rY rZ Load the value at memory address rZ into rY .
3 0 Z ′ JumpFwd Z ′ Jump forward by Z ′ instructions. If Z = 0, Z ′ is

r0, and otherwise, Z ′ is Z. Thus instead of a useless
command to jump 0 instructions, we gain the ability
to jump an arbitrary or computed distance.

3 1 Z ′ JumpBwd Z ′ Jump backward by Z ′ instructions. Backwards jumps
by more than the length of the program1 do nothing.

3 2 Z JumpFwdNF Z ′ Jump forward by Z ′ instructions if the flag is 0/false.
3 3 Z JumpBwdNF Z ′ Jump backward by Z ′ instructions if the flag is

0/false.
3 4 Z JumpFwdF Z ′ Jump forward by Z ′ instructions if the flag is 1/true.
3 5 Z JumpBwdF Z ′ Jump backward by Z ′ instructions if the flag is 1/true.
3 6 0 CallFwd r0 Call a function r0 instructions ahead: Jump forward

3r0 cards and push P − 3r0 onto the return stack. P
is the length of the program in cards1. If r0 = 0 or
3r0 > P , this is undefined behaviour.

3 7 Z Return Z ′ Return from a function Z ′ instructions long: Pop
a value S from the return stack, and jump forward
max(0, S −3Z ′) cards. If the return stack was empty,
end the game in a draw.

3 6 1 CallBwd r0 Call a function r0 instructions behind: Jump back-
ward 3r0 cards and push 3r0 onto the return stack.
If 3r0 ≥ P , this is undefined behaviour. May not be
used to call a function from within itself.

3 6 2 CallBwdR r0 Call a function r0 instructions behind (direct-
recursion-capable): Same as CallBwd, but push
P + 3r0, so that this may be used to call a func-
tion from within itself.

1 If the program is less than 6 cards long, P is the first multiple of the length that is at least 6.
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11 Y Z (Y ̸=Z) FLess rZ rY Set the flag to 1 if rZ < rY , 0 otherwise.
Flag-combining.

11 Z Z FIsZero rZ Set the flag to 1 if rZ = 0, 0 otherwise.
Flag-combining.

4 0 0 HaltD End the game in a draw.
4 0 1 HaltA End the game with Alice winning.
4 0 2 HaltB End the game with Bob winning.

“Flag-combining” is a property used by some instructions whose only purpose is to set the
flag. It means that flag values given by subsequent instructions are combined by logical OR
instead of replacing the flag’s value. This state ends when any of the following is executed:

Any instruction that uses the flag’s value.
Any jump instruction (including calls and returns, and regardless of whether the jump is
taken or not).

For example, this can be used to check whether r0 and r1 are equal, with FLess r0 r1
followed by FLess r1 r0.

The program is cyclic, which is to say it wraps around: after passing the final instruction
(by executing it or jumping past it) execution continues with the first instruction. Similarly
you can jump backwards beyond the start of the program and end up near the end of the
program.

Encountering a sequence that does not match any of the instructions above is undefined
behaviour.

These instructions are a superset of those required for a random-access register machine
such as Melzak’s Q-machine, which is Turing complete.[9]

4 Implementation of the Microcontroller

In this section we describe the various gadgets that make up the microcontroller as described
in the previous section. We defer discussion of how to set up the board state (including
modifying card types, creature types, colours, etc) to Appendix B.

Note: The following explanation is easier to read at [6] or [5], where the same information
is presented with interactive tooltips giving reminders of the significance of various creature
types, providing card rules text, and indicating which specific card modification techniques
from Appendix B are being used.

4.1 The program
The program is a sequence of the following cards: Plains, Island, Swamp, Moun-
tain, Forest, Wastes, Snow-Covered Plains, Snow-Covered Island, Snow-Covered
Swamp, Snow-Covered Mountain, Snow-Covered Forest, and Snow-Covered
Wastes 2. We call these cards “symbol cards” and assign them numbers 0, 1, 2, . . . ,
11 in the order listed.

2 To be released on 7th June 2024. To play the Microcontroller before that date, instead use Persistent
Petitioners and Infinite Reflection as described at [6].
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Most of the time, one of the cards in the program will be on the battlefield under Alice’s
control; we call this card the program permanent. The rest of the cards will be in Alice’s
library, with the next symbol in the program on top of the library, continuing in program
order from top to bottom, then continuing from the start of the program until the symbol
before the current symbol.

The program is made up of instructions that each consist of 3 cards. X, Y, and Z shall
refer to the numbers of the three cards that form the instruction currently being executed, in
that order. For example, the instruction “Add r1 r2” is represented by 0 1 2 (Plains Island
Swamp), and X is 0, Y is 1 and Z is 2.

4.2 Global environment control
On the battlefield is a Grand Melee (“All creatures attack each combat if able. All creatures
block each combat if able”) and a Stormtide Leviathan (“Creatures without flying or
islandwalk can’t attack”). Most creatures are unable to attack; when we want a creature to
be able to attack, we will give it flying or islandwalk. Bob’s creatures with islandwalk will
be unblockable because Alice controls the program permanent which is given type Island.

Both players have life total 1, and each has a Worship keeping their life totals at 1
through the damage they will be dealt. (Note that Worship only modifies the result of
damage; the damage itself is still dealt, so effects triggered on combat damage still trigger.)

4.3 Advancing through the program
Alice has a Vaevictis Asmadi, the Dire, whose rules text reads “Whenever Vaevictis
Asmadi, the Dire attacks, for each player, choose target permanent that player controls.
Those players sacrifice those permanents. Each player who sacrificed a permanent this way
reveals the top card of their library, then puts it onto the battlefield if it’s a permanent card.”.

We use the techniques in Appendix B to make Vaevictis Asmadi, the Dire into a
1/1 Sliver Beast Reflection. It attacks in Alice’s combat phase. Its ability is forced (see
subsection 4.6) to target the program permanent for Alice, and one particular permanent for
Bob. When it resolves, Alice sacrifices the program permanent, and Wheel of Sun and
Moon enchanting Alice sends it to the bottom of Alice’s library; then the next card (on
top of Alice’s library) is put onto the battlefield, becoming the new program permanent.
Meanwhile, Bob has been given a Tajuru Preserver stopping Bob’s permanent from being
sacrificed, and thus Bob does not reveal the top card of his library.

Alice controls Tetsuko Umezawa, Fugitive ensuring that Vaevictis Asmadi, the
Dire, and all her other creatures with power or toughness 1 or less, can’t be blocked.

4.4 Disabling and conditionally enabling permanents
For each of the 12 program cards, letting n be its number, we choose a creature type Xn. X0
is Aetherborn, X1 is Beeble, and so on through Cephalid, Drake, Eldrazi, Faerie, Gremlin,
Homarid, Illusion, Juggernaut, Kavu, and Lhurgoyf.

We have Alice control twelve token copies of Dralnu’s Crusade, whose printed rules
text reads “All Goblins get +1/+1. All Goblins are black and are Zombies in addition to
their other creature types.” However we use the techniques in Appendix B to edit each one to
instead to affect creatures with a different one of the 12 creature types Xn (n ∈ {0, 1, . . . , 11}),
and add type Saproling. Life and Limb makes Saprolings into lands, and also makes them
green, and then Blood Sun removes their abilities. So all creatures with any of the 12
creature types Xi have their abilities removed.
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Each of these Dralnu’s Crusades is made into a creature with creature type Sliver,
with power and toughness 2/1, and given flying. For each of the 12 basic land cards, the
corresponding Dralnu’s Crusade is equipped with a Strata Scythe imprinted with that
basic land card (“Equipped creature gets +1/+1 for each land on the battlefield with the
same name as the exiled card”).

All twelve Dralnu’s Crusades are forced to attack, and the one corresponding to the
current program permanent will be boosted to 3/2; the previously mentioned Tetsuko
Umezawa, Fugitive ensures that the others can’t be blocked.

Bob controls a Dream Fighter (“Whenever Dream Fighter blocks or becomes blocked
by a creature, Dream Fighter and that creature phase out”) with creature type Sliver and
granted reach (so it can block creatures with flying). This blocks the 3/2 Dralnu’s Crusade,
and they both phase out, so that creatures of the type corresponding to the current program
permanent are no longer made Saprolings. We have a Shadow Sliver ensuring that only
Slivers can block these Dralnu’s Crusades.

Figure 1 After Vaevictis Asmadi, the Dire puts a Wastes onto the battlefield, the only one of
Alice’s attacking Dralnu’s Crusades which Bob’s Dream Fighter can block is the one given +1/+1
by a Strata Scythe imprinted with Wastes.

This reads the first card of an instruction; creatures of the corresponding type will regain
their abilities after Dream Fighter’s ability resolves. We also choose a thirteenth creature
type (Monkey) denoted XA, and have another Dralnu’s Crusade making XA creatures
also Saprolings, but this one is not a creature; rather we make it an artifact so Bludgeon
Brawl makes it an Equipment, and attach it to Bob’s Dream Fighter, so it will phase out
when the Dream Fighter does. This means that creatures of type XA get to regain their
abilities after the first card is read, no matter what it is, but they will lose their abilities
again when Bob’s turn starts and the Dream Fighter phases back in.

We will also often want to use this conditional mechanism on noncreature permanents; to
do that, we make token creature copies of them using Urza, Prince of Kroog, combined
with Memnarch if necessary.

4.5 Reading the second and third cards
Alice controls a Bloodthirster (“Whenever Bloodthirster deals combat damage to a player,
untap it. After this combat phase, there is an additional combat phase. Bloodthirster can’t
attack a player it has already attacked this turn.”) It is made a 1/1 Sliver Beast Reflection
and given double strike. This also attacks, can’t be blocked because of Tetsuko Umezawa,
Fugitive, and adds a second combat phase. The second combat phase is used to read the
second card, using another copy of the above setup, but with all the creatures involved
granted an additional creature type of XA so that they do not attack or block in the first
combat phase (because they don’t have their abilities at that point). So there is a second
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Vaevictis Asmadi, the Dire to advance through the program, given types Sliver Beast
Reflection XA; a second Dream Fighter with reach and types Sliver XA; and another batch
of Dralnu’s Crusades for another 13 creature types Y0, Y1, . . . , Y11, and YA (Antelope,
Basilisk, Camel, Dauthi, Efreet, Fox, Gnome, Hippo, Inkling, Jellyfish, Kor, Lammasu, and
Metathran), the first 12 having Strata Scythes.

Similarly, since the Bloodthirster has double strike, it will also give Alice a third combat
phase, which is used by another copy of the setup (with creature type YA) to make another
13 creature types Z0, Z1, . . . , Z11, and ZA conditional on the third card of the instruction
(Aurochs, Brushwagg, Camarid, Druid, Elephant, Ferret, Graveborn, Hamster, Imp, Jackal,
Kithkin, Licid, and Masticore).

Figure 2 More Dralnu’s Crusades attack in the second and third combat phases, and another of
each is blocked and phases out. They couldn’t attack before because of their types XA or YA.

4.6 Constraining targets

Almost all creatures will be green; any creature that isn’t naturally green and isn’t specified
to be differently coloured is made green by Prismatic Lace. A few creatures will be red or
blue instead, but even those are made green while inactive by Life and Limb.

A Masked Gorgon edited to give green and blue creatures protection from Reflections
means that only red creatures are legal targets for Reflections’ abilities. Similarly, a Masked
Gorgon edited to give green and red creatures protection from Beasts means that only blue
creatures are legal targets for Beasts’ abilities.

We will refer to the creature types Reflection and Beast as tR and tU respectively,
indicating their function. (“U” is the usual abbreviation for “blue” in Magic.)

As mentioned earlier, each Vaevictis Asmadi, the Dire has been made both a Beast
and a Reflection, so that green creatures, blue creatures, and red creatures are all illegal
targets for it; the intended target under Alice’s control is a noncreature land. The same
types are applied to the Bloodthirster for a different purpose, to stop it from blocking
on Bob’s turn (which is something else protection does), because it untaps itself and stays
untapped (as its own ability prevents it attacking in the later combat phases).
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Spectral Guardian makes noncreature artifacts illegal targets for anything. Alice and
Bob both control a Sterling Grove to make other enchantments illegal targets for anything.
Alice’s is made an artifact so it gains shroud from Spectral Guardian. Bob’s one does
not itself have shroud, and thus it is the only legal target under Bob’s control for Vaevictis
Asmadi, the Dire, but Bob has a Tajuru Preserver so he does not sacrifice anything.
We do however give Bob’s Sterling Grove protection from blue, which will be useful later
to stop some other things from targeting it.

Alice and Bob both have Ivory Mask, making both players illegal targets for anything.

4.7 Order of continuous effects, and one more of them
The Magic Comprehensive Rules [10] specific a system of “layers” for working out what
happens when multiple effects apply to the same permanent. For example, effects that make
one permanent a copy of another object apply in layer 1. All effects that change a permanent’s
type (such as creature, land, etc) or subtype (Angel, Goblin, etc) apply in layer 4. Anything
that adds or removes abilities applies in layer 6, and so on. Within a layer, if multiple effects
try to affect the same permanent, each object or effect has a “timestamp”, generally when
that object or effect was created. Within this document, we denote timestamps with circled
numbers: an effect with timestamp 1⃝ will take effect earlier than timestamp 2⃝.

The continuous effects mentioned so far are timestamped as follows:

1⃝: Stormtide Leviathan
2⃝: Dralnu’s Crusades and Blood Sun
3⃝: Life and Limb and protection-granting and shroud-granting effects

Any other continuous effect is timestamped 1⃝ unless otherwise stated.
The exception to timestamp order is “dependency”: if two effects would apply within

the same layer, but one will change the existence of the second or which objects the second
acts on or what it does to them, the first one applies first even if the second has an earlier
timestamp. This applies to our construction where abilities that will be removed by the
Blood Sun wait for it to be applied (and thus end up not being applied themselves).

The program permanent is a land so it is granted type Island by the Stormtide Le-
viathan, but it may be a Forest as well. We do not want Life and Limb to make the
program permanent a creature. So we also have Alice control an Illusionary Terrain,
made a creature with type ZA, within timestamp 1⃝ after the Stormtide Leviathan,
turning all Islands to Islands. This is not as ineffective as it sounds: rule 305.7 [10] says that
this removes all other types, so that the program permanent’s subtype is set to Island and
no others. Note that, because there are no Saprolings before 2⃝, the Stormtide Leviathan
does not have a dependency on the Life and Limb.

By being made a ZA, this Illusionary Terrain has its abilities removed by Blood Sun
most of the time, most importantly during Alice’s upkeep. Because the effect of setting
basic lands’ types is applied in layer 4, before the abilities are removed in layer 6, it still
functions despite the abilities being removed. However, the removal of abilities does shut off
its cumulative upkeep.

4.8 Registers
There are twelve registers named r0, r1, . . . , r11, each of which holds a nonnegative integer
value.
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Each register rn is a token copy of Joraga Warcaller under Bob’s control, given
copiable creature type Zn and additionally given creature type Rabbit, given indestructible
and vigilance, coloured red at timestamp 4⃝, with base power and toughness noncopiably
set to 2/2 but with two −1/−0 counters, and a number of +1/+1 counters on it equal to its
register value. (As always, see Appendix B or the tooltips in [6] for how all these changes
are accomplished.) Joraga Warcaller’s rules text says “Other Elf creatures you control get
+1/+1 for each +1/+1 counter on Joraga Warcaller”. Thus, after Z is read from the program,
the active register rZ regains its ability and adds its value to the power and toughness of
each other Elf that Bob controls. (This does not include the other registers; their Elf type is
overwritten.)

Note that each register’s power is equal to its value, whether it is rZ (having base power
2 and two −1/−0 counters) or not (having base power 1 from the Life and Limb, +1 power
from a Dralnu’s Crusade, and two −1/−0 counters).

All the registers are made red by Prismatic Lace at timestamp 4⃝, later than that
of the Life and Limb, so that they are always red even when inactive. But the inactive
registers are still Saprolings even though they’re red.

r0 also has Rhino added to its creature types; this will be useful for some instructions
that use specifically this register.

Figure 3 The first three registers. In this case r0 has value 3, r1 value 0 and r2 value 2. If Z = 0,
the Dralnu’s Crusade making Aurochs into Saprolings is phased out and Bob’s Elves get +3/+3.

For each n ∈ {0, 1, . . . , 11}, Bob has a Riders of Gavony giving Zn creatures protection
from Yetis. Each of these is made into a noncreature artifact with mana value 0 and attached
to the Dralnu’s Crusade that applies to Yn, so that they phase out together. As a result,
this means that each register except for rY has protection from Yetis. Then, a creature can
be given the types Reflection and Yeti so that it can only target rY ; we call this combination
trY .

Bob also has another Riders of Gavony giving Saprolings protection from Zubera
creatures. This means the inactive registers (those other than rZ) can’t be targeted by any
creature that’s a Zubera. Then, as above, creature types Reflection and Zubera together
mean that a creature can only target rZ ; we call this combination trZ .
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4.9 Memory
We provide an unlimited number of memory slots, each addressed by a nonnegative integer
address. Each memory slot can hold a single arbitrarily large nonnegative integer.

A nonzero value V at a memory address A is represented by a Mouse token with base
power and toughness V/V under Alice’s control with A +1/+1 counters on it. A zero value
is represented by an absence of such a token.

4.10 The flag
There is a Boolean flag that some instructions use. It is represented by a card, being in Bob’s
library for 0/false and in Bob’s hand for 1/true; this card must not have any abilities that
function in those zones other than characteristic-defining abilities. We assume that Bob has
at least one such card in his deck (most lands, planeswalkers, instants and sorceries would be
suitable). We remove all other cards from Bob’s hand, library and graveyard.

Wheel of Sun and Moon enchanting Bob allows us to set the flag to 0 by making Bob
discard the card. We give Bob a Tomorrow, Azami’s Familiar, allowing us to set the
flag to 1 by making Bob draw a card, while not making Bob lose the game if the flag was
already 1.

To stop Bob from playing this card, we give Bob a Nevermore and/or an Aggressive
Mining made into an artifact as appropriate.

4.11 Further environment control
To prevent any player choice involving the program permanent’s abilities, we use Root
Maze to make each new program permanent enter the battlefield tapped and Choke to
keep them tapped (recall that they are all made Islands). Also, Bob’s Sterling Grove has
its activated ability shut off by Suppression Bonds attached to it. Stony Silence and
Cursed Totem shut off activated abilities of artifacts and creatures.

Both players control a copy of Recycle, skipping both player’s draw steps. Mirror
Gallery disables the “legend rule”. And we give both players a Corrosive Mentor so that
black creatures controlled by either player have wither.

4.12 Instructions
Sadly length constraints prevent us including here the details of how each instruction is
implemented. See [4] for the full implementation details.

5 Example Instruction

For demonstration purposes, here is how an example turn cycle looks. Let us say the next
three cards on the top of Alice’s library are Wastes, Plains, Swamp. This triplet encodes
symbols 5 0 2, a Set instruction.

At the start of Alice’s turn, most creatures are Saprolings and therefore have no abilities.
Recall that all creatures are forced to attack and block where able, but only creatures with
flying or islandwalk are allowed to attack. In Alice’s first combat phase, twelve flying 2/1
Dralnu’s Crusades attack along with the Bloodthirster and Vaevictis Asmadi, the
Dire, whose ability puts the Wastes onto the battlefield. This makes the Dralnu’s Crusade
affecting X5 get +1/+1 from its Strata Scythe, and so it gets blocked by Bob’s first Dream
Fighter and phases out. Creatures with type X5 or XA regain their abilities (unless they
also have another type making them a Saproling such as Yn).
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In the second combat phase (granted by Bloodthirster), another Vaevictis Asmadi,
the Dire and twelve more Dralnu’s Crusades attack, as their type XA is no longer causing
their flying ability to be removed. This Vaevictis’s ability puts the Wastes onto the bottom
of Alice’s library and the next card of the program in its place, the Plains. The Dralnu’s
Crusade affecting Y0 gets +1/+1 from its Strata Scythe and gets blocked by Bob’s second
Dream Fighter, whose type XA is no longer having its reach ability removed. Creatures
with type Y0 or YA regain their abilities.

In the third combat phase, Alice’s Archpriest of Iona with types X5 YA trY Cleric has
finally regained its abilities. Its ability triggers, and is forced to target r0, because its types
trY mean it can’t target any green or blue creatures or any of the other registers. r0 gains
flying, so it’ll be able to block, and gets a temporary +1/+1.

When the third set of Dralnu’s Crusades and the third Vaevictis Asmadi, the Dire
attack, Alice’s Shape Stealer with types X5 YA is also forced to attack. The Dralnu’s
Crusades all have shadow, so r0 can’t block any of them; the only creature r0 can block is
the Shape Stealer. Shape Stealer’s ability gives it base power equal to r0’s value +1,
which is why it has the −1/−0 counter so its actual power is r0’s value. It is given wither
because it is black, so the damage is dealt as −1/−1 counters, cancelling out all the +1/+1
counters on the register and setting r0’s value to 0.

In Bob’s combat phase, Halana and Alena, Partners triggers. Because it is an Elf,
its power is equal to r2’s value. And because it has types trY as well, just like with Alice’s
Archpriest of Iona, the only legal target for its trigger is r0. So it adds r2 +1/+1 counters
to rY . Then nothing else happens on the rest of Bob’s turn, and we move back to Alice’s
turn, when the three copies of Vaevictis Asmadi, the Dire will read three more cards
from the program.

Figure 4 The five steps of instruction 5 0 2, Set r0 r2.
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6 Implications and Conclusion

6.1 Readability and programmability
In sharp contrast to the impenetrable millions of tokens produced by the Turing machine in
[2], the game state will be clearly readable when a program in this construction terminates.
After the computation of sample program 1 “Calculate 10 cubed” (see Appendix A), there
will be one Mouse creature token with power and toughness 1000/1000. When sample
program 2 “Prime Factors” halts, for each prime factor of the input number, there will be one
Mouse creature token with power and toughness equal to that factor. When sample program
4 “Nim” halts, the result of the Magic game will be victory for Alice or Bob according to
who won the embedded game of Nim.

The programming language provided is comparable to other microcode programming
languages and assembly languages. It has some quirks but is perfectly usable to write
moderate-sized programs. Readers are invited to write their own programs in the simulator
we wrote to test the sample programs [3].

6.2 Tournament playability
The construction uses many different Magic cards, far more than are normally included in
tournament decks. But it is legal to bring a deck with more than 60 cards to a tournament;
players sometimes play decks with over 200 cards [7]. The only restriction is that you must
be able to physically shuffle the deck in a reasonable amount of time [11].

Appendix C contains a decklist of a 360-card deck which could be brought to a Legacy
tournament. The deck’s composition breaks down as 160 land cards to be used for the
program; 136 distinct named cards used in the microcontroller; 40 cards used during setup
to edit the text and characteristics of the cards used on the microcontroller; and 24 cards
used to generate an unbounded amount of mana, draw all the remaining cards, set up the
construction and remove all Bob’s cards.

With the correct draw, a player can take control of the game as early as the first turn,
and set up the construction. Getting that correct draw is much less likely than with a 60-card
deck, but this is a theoretical result anyway; the difference between a one in a million chance
and a one in several trillion is not particularly relevant.

There are minimal constraints on Bob’s deck (one card to serve as the flag must have no
abilities that function in the graveyard or hand), which will easily be satisfied by any normal
deck. So it is perfectly possible for a hapless player to sit down expecting a tournament
Magic game, have the opponent take over and set up the Microcontroller, and find that they
can only win the game by winning (say) a game of chess instead.

6.3 Computational implications
The previous construction in [2] was Turing complete, so this does not increase the amount
of computation possible inside Magic. However, the addition of input commands during
program execution adds a lot to the programs that can be usefully written, in terms of
ability to simulate multi-player games involving choices – see e.g. sample program 4 which
implements Nim. The language is clearly powerful enough to similarly write programs for
chess, checkers, go, or any similar two-player perfect knowledge game.

A common joke upon the publication of [2] was “Now we can write Magic Online [a
digital implementation of Magic] in Magic”. With the Turing machine-based construction,
all players would have had to pre-register all their moves before computation started. By
contrast, if a digital card game were implemented using the construction in this paper, players
could choose their moves during gameplay in response to the moves made by their opponent.
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Similarly, this result shows that the complexity of Magic includes any game or algorithm
which involves a finite (but potentially unbounded) sequence of choices, including responses
to another player’s choices. It is of course still not an especially practical environment to
perform any real computation.

We include sample program 3, which searches for a counterexample to the Collatz
conjecture, as a concrete demonstration of the possibility brought up in discussions of [2].
If Alice should set up the microcontroller and start this program, the game is a victory for
Bob as soon as the program finds a cycle of numbers that is a counterexample to the Collatz
conjecture. If (as is widely suspected) no such counterexample exists [8], or if it instead finds
a sequence that goes on forever without repeating, the game is a draw by infinite loop. This
provides an explicit Magic game state where all player choices have been removed but the
end result of the game is unknown to current mathematics.

6.4 Further research
It is clear that Magic is as computationally complex as it’s possible for a perfect knowledge
game to be. But not all two-player games are perfect knowledge, and Magic contains many
cards and mechanics that use hidden information. Our construction doesn’t use any of
these, but it’s possible future constructions could. This would allow embedding a wider
variety of games into Magic, such as two-player games where both players choose their moves
simultaneously.

It is also possible that there exist other tabletop games which support embedding this
kind of construction. But any such game would need to be in the small subset of tabletop
games which allow all of the following:

An unlimited number of player actions rather than a fixed number of turns
An unlimited number of at least one resource
Some way to constrain the actions players can perform
Enough flexibility in player choices to allow forcing one action to result in another

It may well be the case that Magic is the only widely played tabletop game meeting these
criteria which has enough depth of rules and scope for player creativity to allow this kind of
construction. If that is the case, we are very grateful to Wizards of the Coast for providing
such a versatile set of building blocks for us to play with.
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A Sample Programs

Readers are encouraged to explore the functionality of these sample programs firsthand by
executing them within the provided simulator interface [3] where they are preset options.

Sample Program 1 10 Cubed.

Symbols Instruction Comments
10 0 10 NumBuild 10 Initialise r0 to 10
5 1 0 Set r1=r0 r1 is the output
6 0 1 Multiply r1 r0 Now r1 is 100
6 0 1 Multiply r1 r0 Now r1 is 1000
4 0 0 HaltD We’re done.

The complete program is: 10 0 10 5 1 0 6 0 1 6 0 1 4 0 0 – or in cards: Snow-Covered
Forest, Plains, Snow-Covered Forest, Wastes, Island, Plains, Snow-Covered Plains, Plains,
Island, Snow-Covered Plains, Plains, Island, Forest, Plains, Plains.

After 5 of Alice’s turns and 4 of Bob’s, the game will end in a draw. Register r1 will have
1000 +1/+1 counters on it, the result of the calculation.

Sample Program 2 Prime Factors.

Symbols Instruction Comments
Register usage: r0: constant 2. r1: input number remaining to be factorised.

r2: copy of r1 for divisions. r3: current divisor. r4: how many factors found so far.
2 1 0 AInput 1 Read the input number into r1
4 1 3 Add1 r3 Initialise divisor to 1
10 0 2 NumBuild 2 Initialise r0 to constant 2

Main loop: test the next number
4 1 3 Add1 r3 Increment the divisor we’re testing
5 2 1 Set r2 r1 Prepare to test r1
7 2 3 DivCeil r2 r3 Divide and check remainder
3 5 4 JumpBwdF 4 If flag, r3 is not a factor

Found a factor: store it and the quotient
8 3 4 Store r3 r4 It is. Save r3 to a new memory slot,
4 1 4 Add1 r4 and increment number of factors found
5 1 2 Set r1 r2 Remember the new divided total
11 0 2 FLess r2 r0 Is r2 now 1?
3 3 8 JumpBwdNF 8 If not, continue. Could be another factor of r3 so recheck it.
4 0 0 HaltD If so, halt
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After execution finishes, there will be one memory entry for each prime factor in the
input number. For example, if Alice chooses 120, the program finishes after 57 turn cycles,
and memory consists of {2, 2, 2, 3, 5}.

Sample Program 3 Collatz (3n + 1).

Symbols Instruction Comments
Register usage: r0: built numbers. r1, r2, r3: constants 1, 2, 3.

r4: source of the current chain. r6: temp read memory.
r7: current number being checked. r8: either half r7 or 3r7 + 1.

4 1 1 Add1 r1 Initialise r1 to 1
10 0 2 NumBuild 2 Create constant 2
5 2 0 Set r2 r0 Store constant 2 in r2
10 0 3 NumBuild 3 Create constant 3
5 3 0 Set r3 r0 Store constant 3 in r3
10 4 2 NumBuild 12 × 4 + 2 Start searching at 50
5 4 0 Set r4 r0 Initialise current search root
5 7 4 Set r7 r4 Start checking at current search root

Label 0: we have a new r7 to investigate
11 2 7 FLess r7 r2 Is r7 = 1?
10 1 4 NumBuild 12 × 1 + 4 Create longjump distance 16
3 4 0 JumpFwdF r0 If so, jump to label 3
9 6 7 Load r6 r7 Load memory r7 into r6
11 6 6 FIsZero r6 Is this a new number?
3 4 3 JumpFwdF 3 If so, go to label 1
11 2 6 FLess r6 r2 Is this a number that we know gets to 1?
3 4 11 JumpFwdNF 1 If so, jump to label 3
4 0 2 HaltB If not, we found a loop & disproved the Collatz conjecture!

Label 1: r7 is a number we’ve not seen before
5 8 7 Set r8 r7 Prepare to halve r8
4 2 8 Halve r8 Halve r8. Did that leave remainder?
3 2 3 JumpFwdNF 3 If not, r8 is what we want at Label 2
5 8 7 Set r8 r7 Set r8 to r7...
6 3 8 Mult r8 r3 ...×3...
4 1 8 Add1 r8 ...+1.

Label 2: r8 is the next number in the sequence
8 8 7 Store r7 r8 Store r7 in memory r8
5 7 8 Set r7 r8 Now investigate r8
10 1 7 NumBuild 12 × 1 + 7 Create longjump distance 19
3 1 0 JumpBwd r0 Go back to label 0

Label 3: A number r4 got down to 1. Label the chain with 1s.
5 7 4 Set r7 r4 Restart at r4
9 6 7 Load r6 r7 Load memory r7 into r6
11 2 6 FLess r6 r2 Is r6 = 1?
3 4 3 JumpFwdF 3 If so, skip to end of the loop
8 1 7 Store r7 r1 Save 1 into r7
5 7 6 Set r7 r6 Set r7 to the number we read
3 1 6 JumpBwd 6 Go back 6
4 1 4 Add1 r4 We’re done with r4’s chain. Next number!
3 0 7 JumpFwd 7 Loop around to just before label 0
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Space constraints prevent us from including Sample Program 4 “Nim” here. See [3] to
see and run this sample program and all the others.

B Card Modification Techniques

Here we detail the techniques used while setting up the microcontroller to accomplish
the various modifications to cards described in Section 4 and in the instructionse (whose
implementation is omitted from this paper for space reasons, but can be seen at [4]). We
assume Alice has generated an arbitrarily large amount of mana and drawn all the cards she
needs using Dimir Guildmage. We are able to repeatedly cast the instants and sorceries
used below by repeatedly casting Archaeomancer and bouncing it with Capsize.

Editing creature types: Artificial Evolution
Editing colour words: Mind Bend
Copiably setting creature type and/or colour and making creatures 1/1: Croaking
Counterpart combined with Artificial Evolution and Spectral Shift
Adding copiable creature types: Glasspool Mimic in conjunction with Artificial
Evolution
Non-copiably setting creature type: Use Blade of Shared Souls to temporarily make
the creature a copy of Proteus Machine. Use Backslide to turn it face down, then
turn it face up and set its creature type.
Adding non-copiable creature types: Olivia Voldaren, modified by Artificial Evolution
to change Vampire to another type.
Copiably setting power and toughness, for positive toughness: Saw in Half after adjusting
as necessary with Belbe’s Armor, Enrage, and/or Drana, Kalastria Bloodchief.
Copiably setting power and toughness to 0/0 and adding type artifact: Have an Engin-
eered Plague on Shapeshifter creatures. Cast Hulking Metamorph prototyped, and
decline to copy anything; it’s now 2/2. Cast Saw in Half on it, producing token copies
that are base 1/1, net 0/0, and then they can copy other creatures while setting base
P/T to 0/0. Grumgully, the Generous adds a +1/+1 counter to keep it alive.
Non-copiably setting power and toughness to the same number: Gigantoplasm
Copiably setting mana value to 0: Vizier of Many Faces copiably removes the mana
cost, making the mana value 0. (This is usually done so that Bludgeon Brawl does
not make this give a power boost.) We can repeat this if necessary using Lithoform
Engine to copy the Embalm ability, untapped by Twiddle.
Copiably setting card type to (only) artifact: Imposter Mech, after targeting the
original with Donate.
Adding type artifact: Memnarch
Copiably adding type creature: Urza, Prince of Kroog, in conjunction with Memnarch
if necessary, and with the creature type edited by Artificial Evolution.
Copiably adding flying: Irenicus’s Vile Duplication copiably adds flying.
Adding keyword ability counters – flying, indestructible, reach, first strike, double strike,
lifelink, deathtouch, vigilance, trample: Kathril, Aspect Warper, having used Dimir
Guildmage to discard other cards used in the construction: Healer’s Flock; Darksteel
Myr; Halana and Alena, Partners; Sylvia Brightspear; Questing Beast; and
Quartzwood Crasher. Regrowth gets back the discarded cards afterwards.
Adding protection from a colour: Have a Council Guardian enter the battlefield,
and use Ballot Broker to make sure the right colour wins the vote. Then use True
Polymorph to turn it into what it should be.
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Adding islandwalk: Fishliver Oil, copied with Mythos of Illuna
Adding “Whenever this creature deals combat damage to a player, draw a card.”: Use
Blade of Shared Souls to temporarily make the creature a copy of an Ascendant
Spirit, which itself is copiably an Angel by Glasspool Mimic+Artificial Evolution,
and then activate its last ability to add this ability. Generate the snow mana with a
Snow-Covered land repeatedly untapped by Twiddle.
Removing flying: Use Blade of Shared Souls to temporarily make the creature a copy
of Mist Dragon, and use its ability to remove flying.
Adding +1/+1 counters: Kathril, Aspect Warper and Resourceful Defense
Adding −1/−0 counters: Jabari’s Influence to get the first one, and multiple copies of
Resourceful Defense to get more.
Adding +1/+0 counters: Dwarven Armorer produces +1/+0 counters. Multiple copies
of Resourceful Defense multiply the counters and then move them, as necessary.
Creating arbitrary tokens: Rotlung Reanimator with Artificial Evolution creates
tokens of arbitrary types, and Saw in Half sets their sizes after adjusting with Belbe’s
Armor.
Setting colours: Prismatic Lace
Giving Bob control of cards: Donate

Example: We make each Vaevictis Asmadi, the Dire into a 1/1 Sliver Beast Reflection
by casting Croaking Counterpart targeting a real Vaevictis Asmadi, the Dire, then
responding by casting Artificial Evolution targeting Croaking Counterpart to change
Frog to Sliver. Once the 1/1 Sliver is present, we return Artificial Evolution to our hand
using Archaeomancer. We cast Glasspool Mimic; edit it with Artificial Evolution
replacing Shapeshifter with Beast; cast Capsize with buyback on the Archaeomancer;
recast Archaeomancer using Leyline of Anticipation to get back Artificial Evolution
again; then use Artificial Evolution one more time to replace Rogue with Reflection. Then
Glasspool Mimic resolves and becomes a 1/1 Sliver Beast Reflection copy of Vaevictis
Asmadi, the Dire. We can create further token copies of this with Mythos of Illuna
(all the creature type additions are copiable), and then use Capsize to return the original
Glasspool Mimic to our hand for the next time we need to use it.

C Decklist

Table 4 on the facing page contains a decklist suitable for bringing to a Legacy tournament
which could set up the microcontroller. Adjust the number of basic lands according to
the program you wish to write; the following decklist contains enough to write the Collatz
sample program. You can also leave out cards that are only used in instructions that aren’t
present in the program you wish to write. E.g. Oubliette is only used in Call and Return
instructions.



Howe C. Y. and A. Churchill 31:19

Table 4 Decklist to play the Magic Microcontroller in a Legacy tournament.

Card Purpose Card Purpose

4 Ancient Tomb Bootstrap 4 Lotus Petal Bootstrap
4 Grim Monolith Infinite mana 4 Power Artifact Infinite mana
4 Gemstone Array Infinite mana 4 Dimir Guildmage Draw rest of deck
13 Plains Program 13 Snow-Covered Plains Program
13 Island Program 18 Snow-Covered Island Program
13 Swamp Program 13 Snow-Covered Swamp Program
18 Mountain Program 8 Snow-Covered Mountain Program
18 Forest Program 10 Snow-Covered Forest Program
13 Wastes Program 10 Snow-Covered Wastes Program
1 Memnarch Make token copies 1 Mythos of Illuna Make token copies
1 Capsize Set up 1 Archaeomancer Set up
1 Artificial Evolution Edit cards 1 Mind Bend Edit cards
1 Prismatic Lace Edit cards 1 Spectral Shift Edit cards
1 Glasspool Mimic Add types 1 Olivia Voldaren Add types
1 Proteus Machine Set creature types 1 Backslide Set creature types
1 Argent Mutation Set up 1 Leyline of Anticipation Set up
1 Gigantoplasm Edit power/toughness 1 Croaking Counterpart Set up
1 Saw in Half Edit power/toughness 1 Belbe’s Armor Edit power/toughness
1 Enrage Edit power/toughness 1 Drana, Kalastria Bloodchief Edit power/toughness
1 Engineered Plague Edit power/toughness 1 Grumgully, the Generous Edit power/toughness
1 Hulking Metamorph Edit power/toughness 1 Vizier of Many Faces Edit mana value
1 Lithoform Engine Edit mana value 1 Twiddle Edit mana value
1 Imposter Mech Edit types 1 Donate Edit control
1 Astral Dragon Add types and abilities 1 Irenicus’s Vile Duplication Add abilities
1 Urza, Prince of Kroog Add types 1 Kathril, Aspect Warper Add abilities
1 Council Guardian Add abilities 1 Ballot Broker Add abilities
1 True Polymorph Add abilities 1 Fishliver Oil Add abilities
1 Blade of Shared Souls Change types and abilities 1 Ascendant Spirit Add abilities
1 Mist Dragon Remove abilities 1 Resourceful Defense Add counters
1 Jabari’s Influence Add counters 1 Fishliver Oil Add abilities
1 Dwarven Armorer Add counters 1 Sealock Monster Add types
1 True Polymorph Add abilities 1 Grand Melee Control combat
1 Stormtide Leviathan Control combat 1 Tetsuko Umezawa, Fugitive Control combat
1 Worship Control combat 1 Vaevictis Asmadi, the Dire Advance program
1 Wheel of Sun and Moon Advance program 1 Tajuru Preserver Advance program
1 Dralnu’s Crusade Conditional mechanism 1 Life and Limb Conditional mechanism
1 Blood Sun Conditional mechanism 1 Strata Scythe Conditional mechanism
1 Healer’s Flock Keyword abilities 1 Dream Fighter Conditional mechanism
1 Shadow Sliver Conditional mechanism 1 Bludgeon Brawl Conditional mechanism
1 Bloodthirster Advance program 1 Masked Gorgon Constrain targets
1 Spectral Guardian Constrain targets 1 Sterling Grove Constrain targets
1 Ivory Mask Constrain targets 1 Illusionary Terrain Control types
1 Joraga Warcaller Registers 1 Riders of Gavony Registers
1 Nevermore Control choices 1 Aggressive Mining Control choices
1 Root Maze Control choices 1 Tomorrow, Azami’s Familiar Flag
1 Choke Control choices 1 Suppression Bonds Control choices
1 Stony Silence Control choices 1 Cursed Totem Control choices
1 Recycle Control state 1 Mirror Gallery Control state
1 Corrosive Mentor Add abilities 1 Halana and Alena, Partners Instructions
1 Archpriest of Iona Instructions 1 Shape Stealer Instructions
1 Necrogen Mists Instructions 1 Halfdane Instructions
1 Tanuki Transplanter Instructions 1 Furtive Homunculus Instructions
1 Omnath, Locus of Mana Instructions 1 Wrathful Red Dragon Instructions
1 Belligerent Brontodon Instructions 1 Smog Elemental Instructions
1 Hornet Nest Instructions 1 Phantom Steed Instructions
1 War Elemental Instructions 1 Tocatli Honor Guard Instructions
1 Ward Sliver Instructions 1 Godhead of Awe Instructions
1 Wandering Wolf Instructions 1 Behind the Scenes Instructions
1 Spinneret Sliver Instructions 1 Quartzwood Crasher Instructions
1 Arwen, Weaver of Hope Instructions 1 Aether Flash Instructions
1 Charisma Instructions 1 Skeleton Key Instructions
1 Serpent of Yawning Depths Instructions 1 Field Marshal Instructions
1 Questing Beast Instructions 1 Vigor Instructions
1 Toralf, God of Fury Instructions 1 Gideon’s Intervention Instructions
1 Progenitor Mimic Instructions 1 Volcano Hellion Instructions
1 Artificer Class Instructions 1 Syr Elenora, the Discerning Instructions
1 Slithering Shade Instructions 1 Suntail Hawk Instructions
1 Strength-Testing Hammer Instructions 1 Ancient Gold Dragon Instructions
1 Rat Colony Instructions 1 Goblin Pyromancer Instructions
1 Celestial Convergence Instructions 1 Alert Heedbonder Instructions
1 Spiritual Sanctuary Instructions 1 Abyssal Specter Instructions
1 Catacomb Dragon Instructions 1 Taii Wakeen, Perfect Shot Instructions
1 Excruciator Instructions 1 Aegar, the Freezing Flame Instructions
1 Khorvath Brightflame Instructions 1 Sylvia Brightspear Instructions
1 Mangara’s Equity Instructions 1 Darksteel Myr Instructions
1 Ojutai, Soul of Winter Instructions 1 Angrath’s Marauders Instructions
1 Kangee, Aerie Keeper Instructions 1 Shimmer Instructions
1 Fiery Emancipation Instructions 1 Chains of Mephistopheles Instructions
1 Captain’s Claws Instructions 1 Steely Resolve Instructions
1 Reaper King Instructions 1 Akron Legionnaire Instructions
1 Discordant Spirit Instructions 1 Blinding Angel Instructions
1 Meishin, the Mind Cage Instructions 1 Bower Passage Instructions
1 Darksteel Myr Instructions 1 Moonsilver Spear Instructions
1 Spellbane Centaur Instructions 1 Melira’s Keepers Instructions
1 Spiteful Shadows Instructions 1 Empyrial Archangel Instructions
1 Lich Instructions 1 Justice Instructions
1 Rotlung Reanimator Instructions 1 Oubliette Instructions
1 Willbreaker Instructions 1 Razorjaw Oni Instructions
1 Sosuke, Son of Seshiro Instructions 1 Syphon Sliver Instructions
1 Dormant Sliver Instructions 1 Skanos Dragonheart Instructions
1 Corpsejack Menace Instructions 1 Okk Instructions
1 Bishop of Binding Instructions 1 Tamiyo, Collector of Tales Instructions
1 Shimmer Instructions 1 Sporemound Instructions
1 Polyraptor Instructions 1 Chief of the Scale Instructions
1 Gruul Ragebeast Instructions 1 Sliver Hivelord Instructions
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1 The surveyed paper

This note is surveys the paper [6]

D. Krasnoshchekov and V. Polishchuk. Order-k α-hulls and α-shapes.
Information Processing Letters, 114(1-2):76–83, 2014.
https://doi.org/10.1016/j.ipl.2013.07.023
Publicly available version: https://www.itn.liu.se/~valpo40/pages/ka.pdf

Convex hull of a point set S ⊂ R2, which may be defined as the complement of the union
of all halfplanes that contain no points of S, gives a rough description of the “shape” of S

(Fig. 1, left). α-hull (the complement of the union of all disks of radius α that contain no
points of S; in particular, convex hull is α-hull for α = ∞) and α-shape (a “straight-line”
version of α-hull) [2] of S outline the shape more precisely (Fig. 1, right).

As rightly stated in [6], “Often the set of points representing a geometric object is obtained
by sampling the object in the presence of noise, which can introduce outliers in the data”;
the outliers may distort the shape (Fig. 2a,b). The surveyed paper defined generalizations
of α-hull and α-shape: k-order α-hull (the complement of the union of all disks of radius
α that contain less than k points of S) and k-order α-shape (a “straight-line” version of
k-order α-hull– the exact definition is somewhat technical; see [6, Definition 2.6]). The
generalizations are “capable of ignoring a certain amount of outliers, which results in a more
robust shape reconstruction” (Fig. 2c,d).

Another generalization of convex hull of S is k-hull (the locus of points such that any
halfplane through a point in the k-hull contains at least k points from S) [1], widely used in
statistics where it is known under the name of k-depth contour because it is the level set

© Kien Huynh and Valentin Polishchuk;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Fun with Algorithms (FUN 2024).
Editors: Andrei Z. Broder and Tami Tamir; Article No. 32; pp. 32:1–32:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FUN.2024.32
https://doi.org/10.1016/j.ipl.2013.07.023
https://www.itn.liu.se/~valpo40/pages/ka.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


32:2 Eating Ice-Cream with a Colander

Figure 1 Convex hull (left) misses important features of the shape (e.g., the hole). α-shape (right)
does a better job. Yellow are the empty circles; for the convex hull, the circles are infinite-radius
(halfplanes). The images are generated with the applet [7] (downloadable from [11]) accompanying
the surveyed paper.

Figure 2 Figure 3 from [6], together with its caption.

of the “location depth” (aka halfspace depth). The rich field of statistical data depth has
produced a number of depth functions (many of which generalize convex hull in the sense
that the points on the convex hull have depth 1) which are unimodal functions of distance
to the “center” – the deepest point defined by S (the center may not belong to S). k-order
α-hull, which is a generalization of k-hull, allows the depth to have local maxima, allowing
each cluster of data to have its own depth function (Fig. 3).

Fischer [4], inspired by Edelsbrunner and Mücke [3], had a fun view of the space as
an infinite piece of icecream, with points S being chocolate chips in it; then α-hull is the
icecream that remains after a person, allergic to chocolate, eats as much icecream as possible
with a scoop of radius α. The surveyed paper extended this fun view of α-hulls, suggesting
how convex hull, k-hull and k-order α-hull may be obtained by eating as much icecream as
possible with various kitchenware (Fig. 4).
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Figure 3 Figure 6 from [6], together with its caption.

Figure 4 Figure 2 from [6]: The family picture.

2 The paper history

The paper was born in discussions between geophysicists (who needed to do robust shape
analysis of seismological data) and algorithmists (computational gasometers who were
interested in developing extensions of α-shapes and k-hulls); the results of the joint work
were presented in a poster already in 2008 [5]. The algorithmic/combinatorial results on
k-order α-hulls and α-shapes were submitted to SODA 2009 and WADS 2009 none of which
saw the potential of the introduced notions; FUN 2010 (to which the paper was submitted
as “Eating Ice-Cream with Colander”) did not find the kitchenware amusing enough.

Due to lack of luck with algorithmic conferences, the obtained results (both seismic
data analysis and algorithmic/combinatorial results on k-order α-hulls and α-shapes) were
submitted to Geophysical Journal International which liked the seismology results, but fairly
suggested that the algorithmic part should be reviewed by experts in an algorithmic journal
(to get a “stamp of correctness”). By this time, the seismology colleagues were rightly anxious
to get the results out, so IPL was chosen as the algorithms venue “Devoted to the Rapid
Publication” [10]. After a 1.5-year review (see the paper header: “Received 20 January
2012, Revised 24 July 2013, Accepted 27 July 2013”) the paper was accepted, and it was
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no problem to publish the results from application of the techniques immediately [8, 9].
By now, the surveyed paper gathered 38 citations on Google Scholar, in subjects ranging
from computer graphics to hydrology to seismology to urban airspace optimization. Overall,
the subject is quite pictorial, see, e.g., the video [7] that accompanied the presentation of
interactive applet [11] at SoCG 2010 (the web version of the applet requires Java in the
browser, but the standalone version, downloadable from [11], may be run on any machine).

References
1 Richard Cole, Micha Sharir, and Chee K Yap. On k-hulls and related problems. In Proceedings

of the sixteenth annual ACM symposium on Theory of computing, pages 154–166, 1984.
2 Herbert Edelsbrunner, David Kirkpatrick, and Raimund Seidel. On the shape of a set of

points in the plane. IEEE Transactions on information theory, 29(4):551–559, 1983.
3 Herbert Edelsbrunner and Ernst P Mücke. Three-dimensional alpha shapes. ACM Transactions

On Graphics (TOG), 13(1):43–72, 1994.
4 Kaspar Fischer. Introduction to alpha shapes. Utrecht University, 2000.
5 Dmitry Krasnoshchekov and Valentin Polishchuk. Robust curve reconstruction with k-order

α-shapes. In 2008 IEEE International Conference on Shape Modeling and Applications, pages
279–280. IEEE, 2008.

6 Dmitry Krasnoshchekov and Valentin Polishchuk. Order-k α-hulls and α-shapes. Information
Processing Letters, 114(1-2):76–83, 2014.

7 Dmitry N Krasnoshchekov, Valentin Polishchuk, and Arto Vihavainen. Shape approximation
using k-order alpha-hulls. In Symposium on Computational geometry, pages 109–110, 2010.

8 Mikko Nikkilä, Valentin Polishchuk, and Dmitry Krasnoshchekov. Robust estimation of seismic
coda shape. Geophysical Journal International, 197(1):557–565, 2014.

9 Eli Packer, Peter Bak, Mikko Nikkilä, Valentin Polishchuk, and Harold J Ship. Visual analytics
for spatial clustering: Using a heuristic approach for guided exploration. IEEE Transactions
on Visualization and Computer Graphics, 19(12):2179–2188, 2013.

10 A. Tarlecki. Information processing letters. URL: https://www.sciencedirect.com/journal/
information-processing-letters.

11 A. Vihavainen. k-order alpha-shapes. URL: https://www.cs.helsinki.fi/group/compgeom/
kapplet/.

https://www.sciencedirect.com/journal/information-processing-letters
https://www.sciencedirect.com/journal/information-processing-letters
https://www.cs.helsinki.fi/group/compgeom/kapplet/
https://www.cs.helsinki.fi/group/compgeom/kapplet/


Retrospective: Avoiding the Disk Bottleneck in the
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Abstract
The paper titled “Avoiding the Disk Bottleneck in the Data Domain Deduplication File System” [3]
describes several fundamental ideas behind the file system that drives Data Domain’s deduplication
storage products. Initially submitted to the 2007 ACM SIGOPS Symposium on Operating System
Principles (SOSP), the paper was rejected by its program committee. It was subsequently submitted
and accepted for publication at the USENIX Conference on File And Storage Technologies (FAST) in
2008. Twelve years later, it was honored with the USENIX Test-of-Time Award. This retrospective
explores the paper’s historical significance and impact, analyzes the reasons behind its initial rejection,
and suggests methods to enhance the paper review process in the academic community.
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1 Innovation History

Founded in October 2001, Data Domain, Inc. aimed to replace traditional tape libraries in
data centers with advanced disk-based storage products for backup and disaster recovery
purposes. This vision was inspired by similar transitions happening at the time in the
consumer electronics sector, where MP3 players (such as Apple’s iPod) and Digital Video
Recorders (DVRs) were supplanting music cassettes and VCR tapes, respectively. Both
leveraged lossy compression methods (MP3 and MP4), achieving compression ratios of at
least 10X, thus rendering disk-based devices economically competitive with their tape-based
counterparts.

There were two significant challenges in developing disk-based storage systems to supplant
tape libraries in data centers. The first challenge involved developing a compression method
capable of achieving a 10X compression ratio to make disk-based systems economically
economically competitive with similar capacity tape libraries. However, unlike the lossy
compressions for audio and video data used in consumer products, the compression needed
for this purpose had to be lossless. Traditional lossless compression methods, such as the
Ziv-Lempel algorithm [4], typically only managed 2-3X compression, which varied according
to the nature of the data.

The second challenge was to ensure high deduplication throughput while maintaining low
costs. This was necessary to ensure that backups could be completed within a limited window
of a few hours, thereby preventing any disruption to the normal daytime operations of the
primary storage systems. Achieving this balance of high-throughput and cost-effectiveness
was imperative. Although there were proposals about deduplication file systems [2, 1], none
of them addressed this challenge.

In January 2002, we developed the key ideas for a high-throughput deduplication system
designed to overcome both major challenges. We quickly implemented these strategies into a
basic prototype and conducted tests using production backup data from three data centers.
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The encouraging results from these tests validated our ideas to create a high-throughput
deduplication file system on cost-effective, standard hardware, achieving 20-30X lossless
compression for backup data.

The technology validation convinced us to move forward with the design and development
of a deduplication storage product. Additionally, we designed a data protection ecosystem
that utilized these deduplication storage systems for storing local backups and efficiently
transferred deduplicated backup data to the cloud for disaster recovery, eliminating the need
for tape libraries in data centers and transporting tapes to remote sites. By 2004, we had
successfully completed and released the products.

2 Paper Submission, Rejection and Publication

After five years of developing and successfully launching three generations of products in the
market, we decided to document and share some of the key ideas behind the Data Domain
file system. We submitted our paper to the ACM SIGOPS Symposium on Operating System
Principles (SOSP) in 2007.

Regrettably, the SOSP program committee did not accept our submission, citing a lack
of detailed evaluations as the primary reason. This decision came as a surprise to us, given
that our deduplication file system was considered state-of-the-art in the storage industry,
and our product line had generated over $100 million in revenue with over an 80% gross
margin that year.

The reviewers did not recognize that their expected detailed comparative evaluations
would require significant modifications to the file system, an unrealistic demand for a complex
and sophisticated industry product. Therefore, after making minor edits, we resubmitted
our paper to the USENIX Conference on File and Storage Technologies (FAST), where it
was published in February 2008 [3].

3 Impacts

The Data Domain product line, powered by the deduplication file system described in our
paper, dominated the backup storage market, capturing over 65% of the market share
since its launch. Its revenue soared to $570 million in 2009 and surpassed $1 billion in
2010, supplanting the traditional tape libraries in data centers. The system’s efficient
high-compression ratio enabled the product line to sustain a gross margin exceeding 80%.

In the academic sphere, the paper has been extensively cited within the storage systems
research community. In recognition of its lasting influence, the paper was awarded the
USENIX Test-of-Time Award at the FAST Conference in 20201.

4 What’s Not Included

The paper does not cover several key components of the deduplication file system:
A concurrent GC (Garbage Collection) component to reclaim storage space of deleted
data. The physical space of a data segment can be reclaimed only when it is not used
by any file. The challenge is to accomplish this on-disk garbage collection using a small
amount of memory and to keep up with the high deduplication throughput.

1 https://www.usenix.org/conferences/test-of-tiemsme-awards
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Concurrent Garbage Collection (GC): This component is essential for reclaiming storage
space from deleted data. It only frees up the physical space of a data segment when it is
no longer used by any file. On average, a data segment is shared by over 10 files in a
deduplication file system. The challenge lies in performing this on-disk garbage collection
efficiently using minimal memory while maintaining high deduplication throughput.
Physical Data Replication: This component handles the replication of physical data
containers over the Internet without the need to rebuild metadata structures remotely. It
is designed for high-throughput, 1-to-1 data replications across high-speed network links.
Logical Data Replication: Unlike physical data replication, this file-level protocol transfers
individual physical segments. It is particularly useful for many-to-1 data replications to
prevent the transfer of duplicated data segments at the destination, significantly reducing
network bandwidth requirements.
Software RAID: This component implements an abstraction layer for block storage,
ensuring reliability in the event of disk failures, power outages, OS software malfunctions,
and during the replacement of failed disks.
Error Detection and Correction: This component regularly scans the storage space to
identify and correct data corruptions using stored error codes. Because corruption in a
single data segment could compromise many files, its role is essential for maintaining
data integrity.

To fully comprehend the Data Domain deduplication file system, one must be familiar with
these components. It would have been advantageous for the community to read papers about
them.

5 Reflections

Why was a high-impact paper rejected by a reputable conference? Several hypotheses can be
considered:

Expertise of Reviewers: The reviewers may not have been experts in storage systems,
potentially lacking an understanding of the significance of advancements in the field.
Expectations for Evaluations: Academic reviewers are trained to expect detailed com-
parative evaluations, feasible with a simulator but unrealistic with a complex industry
product.
Credibility of Claims: Reviewers could have found it difficult to believe that Data
Domain’s deduplication file system could achieve a 10X higher compression ratio and
operate 10X faster than optimized, known compression tools.

Every program committee strives to select the best papers for its conference and aims to
avoid overlooking high-impact submissions. To mitigate these issues, program committees
could ensure that reviewers are chosen for their expertise in the relevant subject matter and
that they have realistic expectations for evaluations of industry products. Additionally, a
blend of anonymous and open review processes might help the committee better understand
the credibility of the systems discussed in the papers during their final deliberations.

How can we determine if a systems paper has made a significant impact? Alan Perlis once
remarked, “The proof of a system’s value is its existence.”2 This insightful quote underscores
that the real-world application and longevity of a system attest to its value and impact.

2 http://www.cs.yale.edu/homes/perlis-alan/quotes.html
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Abstract
In 1986 I submitted a note “Short Programs for functions on curves” to the STOC conference. It
was rejected. Since it seemed to be a paper that would only be interesting to a very small group of
people, I didn’t try to publish it, but instead circulated it among people who, I thought, would be
interested in it. However, about 11 years later I was contacted by Dan Boneh, to whom I had given
a copy a few years previously, who said that the algorithm in my paper had important applications.
Since then it has become a core algorithm in the field of “Pairing Based Cryptography”.

2012 ACM Subject Classification Computing methodologies → Number theory algorithms; Security
and privacy → Public key encryption

Keywords and phrases Elliptic Curves, Finite Fields, Weil Pairing, Straight Line Program

Digital Object Identifier 10.4230/LIPIcs.FUN.2024.34

Category Salon des Refusés

Related Version Short Programs for Functions on Curves: unpublished
Unpublished: https://crypto.stanford.edu/miller/miller.pdf
Full Version: https://link.springer.com/article/10.1007/s00145-004-0315-8

1 Prehistory

The paper that I want to discuss is “Short Programs for functions on curves” [16] which I
wrote in 1986, while I was a member of the Mathematics Department at the IBM TJ Watson
Research Center, and submitted to the STOC conference. It was rejected. Since it seemed
to be a paper that would only be interesting to a very small group of people, I didn’t try to
publish it, but instead circulated it among people whom I thought would be interested.

The main result of the paper was an efficient algorithm for the calculation of the Weil
Pairing for Elliptic Curves over Finite Fields. At the time of writing, the field of Elliptic
Curves was considered a very arcane branch of Number Theory. In 1985 I presented a paper
“Use of Elliptic Curves in Cryptography” [15] at the annual Crypto conference in Santa
Barbara. At the time, and for many years thereafter, using Elliptic Curves for cryptography
seemed to be a very obscure niche. However, it eventually had great effect. For example a
large percentage of the use of public key now uses Elliptic Curves.

The Weil Pairing was introduced by Andre Weil in 1940 [23], and has essential use in the
Number Theoretic analysis of the arithmetic of Elliptic Curves. In response to a challenge
of Manuel Blum, I tried to relate the discrete logarithm problem on Elliptic Curves to the
more familiar problem in the multiplicative group of finite fields (which is what’s used in
the original Diffie-Hellman key distribution protocol), I realized that the Weil pairing might
be able to relate the two groups if it could be computed efficiently. Although it could be
calculated as a ratio of two polynomials in the coordinates of the points, the degrees of
the numerator and denominator were exponential in the size of the inputs. After seeing a
talk by Erich Kaltofen [11], I realized that the needed result could be calculated by a short
straight line program whose length was linear in the size of the inputs. The paper that I
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wrote described the algorithm. It also gave a partial answer to a question raised by Rene
Schoof [19] (in another influential papers that was rejected by the FOCS conference in 1984)
about the structure of an Elliptic Curve group.

2 Influence

The first mention of it was in a talk entitled “Elliptic Curves and Number Theoretic
Algorithms” [12] given by Hendrik Lenstra at the International Congress of Mathematicians
in Berkeley a few months later. I gave a copy of the paper to Burt Kaliski, then a graduate
student at MIT, who used it in an essential way in his Ph.D. thesis “Elliptic Curves and
Cryptography: A Pseudorandom bit generator and other tools” [10], and was the first (that
I know of) to implement the algorithm. I gave a copy to Scott Vanstone at University of
Waterloo who then used the algorithm in his influential paper with Menezes and Okamoto
“Reducing elliptic curve logarithms to logarithms in a finite field” [14, 13].

I also gave a copy of the paper to Dan Boneh in 1994, when he was a graduate student
at Princeton. A few years later, Dan got in touch and asked if it was ok with me for the
Stanford CS department to make of copy of the paper available on the web. He told me that
my algorithm had important applications. Indeed, using the algorithm was a crucial step in
the realization of Shamir’s idea of “Identity Based Encryption” [21] described in the paper
of Boneh and Franklin “Identity-based encryption from the Weil pairing” [4]. Antoine Joux
in “A one round protocol for tripartite Diffie–Hellman” [8] also used my algorithm in an
essential way. The three authors shared the Gödel prize [2] for their work.

3 Pairing Based Cryptography

Starting with the papers of Joux, and Boneh-Franklin, the field of “Pairing Based Cryptog-
raphy” blossomed. For a number of years there was a conference on the subject “Pairing
Based Cryptography” [22, 7, 20, 9, 1, 5] I gave the keynote address at the 2009 conference.
Pairing based cryptography is still is a very lively field.

Because of its importance of my paper, Arjen Lenstra asked me in 2003 to write an
extended version of the original paper for a special issue of the Journal of Cryptology, which
appeared the next year [17] . According to Google Scholar, the unpublished manuscript has
483 citations in the published literature, and the extended version has 805 citations. Both
are still being cited, with 28 citations in 2023.

4 Lasting Influence

Because it is now such an important part of the literature of cryptography, it has stopped
being cited by many papers. A google search for “Miller’s algorithm” “pairing” produces
6250 hits. It has become standard terminology to speak of the “Miller loop” (which gets
5300 hits on google when “pairing” is included). The annual CFAIL conference [6], in 2019,
gave me the inagural “Distinguished Failure Award” for keeping the original manuscript
unpublished for so long. In 2008 NIST hosted a conference on Pairing Based Cryptography
[18]. In the video “Pairings in Cryptography” [3] by Dan Boneh, at the 36 minute mark,
there’s a discussion of my paper being rejected from STOC and its influence.
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5 Intended Survey

I’ll discuss the applications of the original paper, in particular give a survey of the field of
pairing based cryptography.
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