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Abstract
We analyze the complexity of Arborescence Reconfiguration on temporal digraphs (Temporal
Arborescence Reconfiguration). The problem, given two temporal arborescences in a temporal
digraph, asks for the minimum number of arc flips, i.e. arc exchanges, that result in a sequence
of temporal arborescences that transforms one into the other. We analyze the complexity of the
problem, taking into account also its approximation and parameterized complexity, even in restricted
cases. First, we solve an open problem showing that Temporal Arborescence Reconfiguration
is NP-hard for two timestamps. Then we show that even if the two temporal arborescences differ
only by two arcs, then the problem is not approximable within factor b ln |V (D)|, for any constant
0 < b < 1, where V (D) is the set of vertices of the temporal arborescences. Finally, we prove that
Temporal Arborescence Reconfiguration is W[1]-hard when parameterized by the number of
arc flips needed to transform one temporal arborescence into the other.
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1 Introduction

Arborescences, also called branchings, have been deeply studied in theoretical computer
science. Given a digraph (a directed graph) and a special vertex, called the root, an
arborescence is a directed rooted tree in the digraph that connects the root to every vertex of
the digraph. The computation of arborescences of a given digraph finds several applications,
for example in communications networks, where the goal is to compute a shortest way to
reach some devices [18], to analyze information flow in social networks [3], or in computational
biology to analyze mass spectrometry data [7] and reconstruct tumor evolutionary trees [8].

Arborescences have been recently considered also in the temporal graph setting [15, 11,
4, 13], where they can model urban mobility or information dissemination in social networks.
Temporal graphs have been studied to model the dynamic evolution of network relations
(edges or arcs), that are observed only at certain time instants [17, 9, 19, 10, 1]. In our model
of a temporal digraph D = (V, A), the arcs are triples (u, v, t), where u and v are vertices
and t is a positive integer, representing that the arc from u to v is seen at timestamp t. A
temporal arborescence T in D is a rooted tree, whose arcs are directed away from the root,
that contains every vertex of D and such that every path in T is time-respecting, that is the
timestamps on the arcs of every path are non-decreasing.
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10:2 On the Complexity of Temporal Arborescence Reconfiguration

In this contribution, we consider temporal arborescences through the lens of combinatorial
reconfiguration [12, 21]. Given two feasible solutions of a problem (in our case being temporal
arborescences of a temporal digraph), combinatorial reconfigurations explore the space of
feasible solutions and the distance between the two given solutions. Two feasible solutions are
adjacent if they can be transformed one into the other by means of a local operation (such as
exchanging two arcs). The goal of combinatorial reconfiguration is to study the reachability
of two elements of the space of feasible solutions, that is the possibility of transforming the
first solution into the second one by means of sequences of local operations, and possibly
obtaining a comparative metric by minimizing the number of such operations.

Given two temporal arborescences T1 and T2 in D, a reconfiguration of T1 into T2 is a
transformation of T1 into T2 with a sequence of modifications, one at a time, called arc flips,
where each modification exchanges two arcs. Note that an arc flip may exchange any two
arcs of D, the only constraint is that, by applying arc flips, a reconfiguration may compute
intermediate subgraphs, that must all be temporal arborescences in D.

We consider a problem related to the reconfiguration of temporal arborescences, called
Temporal Arborescence Reconfiguration, introduced in [13]. Given a digraph D,
and two arborescences T1 and T2 in D, Temporal Arborescence Reconfiguration
asks to compute a reconfiguration of T1 into T2 consisting of the minimum number of
operations. The problem is known to be NP-hard when the temporal graph is defined
over 3 timestamps or more [13], and polynomial-time solvable when the number number
of timestamps is 1, since in this case the digraph is static and for this case Temporal
Arborescence Reconfiguration can be solved in polynomial time [14]. The case of 2
timestamps remained open [13].

An interesting property shown in [13], is that the complexity of Temporal Arbores-
cence Reconfiguration depends on whether the two input temporal arborescences have
the same root or not. In the former case, the problem is solvable in polynomial-time, while
in the latter the problem is NP-hard, as discussed before.

A decision problem related to Temporal Arborescence Reconfiguration studied in
the literature is the reachability of two feasible solutions, that is whether, given two temporal
arborescences, one can be transformed into the other (without the requirement of minimizing
the number of arc flips). This decision problem is solvable in polynomial time [13] and always
admits a positive answer in static directed graphs [14] and when the two arborescences have
the same root [13].

Our Results. In this paper we further analyze the complexity of Temporal Arbores-
cence Reconfiguration, considering additional restrictions in the approximation and
parameterized complexity frameworks. Note that we consider the temporal graph model
of [13], which is a restricted model where each timestamp of an arc specifies its activation
time and the arc is present for all times after the activation time. The hardness results we
present hold also in this restricted model.

First, we solve the open problem in [13] for the case of two timestamps, and we show
in Section 3 that this restriction of Temporal Arborescence Reconfiguration is
NP-hard.

Then we consider the case when the two input temporal arborescences are very similar,
that is they differ only for a limited number of arcs. We show in Section 4 that if the two
temporal arborescences differ by two arc pairs, then the problem is not only NP-hard, but
also inapproximable within factor b ln |V (D)|, for any constant 0 < b < 1, where V (D) is the
set of vertices of the arborescences. We also observe that if the two temporal arborescences
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differ for one pair of arcs, then the problem is easily solvable in polynomial time. Note that
the result can be easily extended to the case where two temporal arborescences differ by
more than two arc pairs. For example, we can replicate the construction of Fig. 2 and Fig. 3
by adding many copies of the subtree rooted at y and of the subtrees rooted at vi,j . Each
copy has to be reconfigured independently, thus the the inapproximation ratio is the same as
in our result.

Finally, we consider the parameterized complexity of the problem, where the parameter is
the number of arc flips required by a reconfiguration. We prove in Section 5 that the problem
is W[1]-hard for this parameter (it is, in fact, W[1]-hard in the parameter “number of arc
flips plus maximum timestamp”), indicating that a fixed-parameter algorithm is unlikely. We
conclude the paper with Section 6 with some open problems. Note that some of the proofs
are not included due to page limit.

2 Preliminaries

A temporal digraph D = (V, A) is a pair where V is the set of vertices and A ⊆ V × V × N
is a set of (temporal) arcs. Note that an arc in a temporal graph is denoted by a triple
(u, v, t), where u ∈ V is the tail of the arc, v ∈ V is the head of the arc, and t ∈ N is called
a timestamp. In our version of a temporal graph, an arc (u, v, t) remains active from this
timestamp t, that is, once it is activated it exists in the temporal digraph from time t and
onwards. We may write V (D) and A(D) for the vertex and arc set of D, respectively. Note
that we allow multiple arcs between two vertices u and v, but they must be at different
timestamps.

For a triple e = (u, v, t), D−e (resp. D+e) is the temporal digraph obtained by removing
the arc e, if present (resp. adding the arc e, if absent).

An arborescence is a digraph in which there is a vertex u, called the root, such that there
is a unique directed path from u to any vertex. In other words, an arborescence is a tree in
which arcs are oriented away from the root. Let D = (V, A) be a digraph. A subgraph T of
D is a spanning arboresence of D if V (T ) = V (D) and T is an arborescence. Unless stated
otherwise, all arborescences are spanning, and we may simply call T an arborescence of D.

Given a temporal graph D, a temporal arborescence T of D is an arborescence of D,
such that T is time-respecting, that is for any pair of arcs (u, v, t), (v, w, t′) ∈ A(T ) that are
consecutive on some path of T , we have t ≤ t′.

An arc flip on a temporal arborescence T of D is an operation that removes an arc
(u, v, t) ∈ A(T ) and inserts an arc (x, y, t′) ∈ A(D) \ A(T ), such that T − (u, v, t) + (x, y, t)
is a temporal arborescence of D (hence spanning and time-respecting).

A reconfiguration of a temporal arborescence T1 of D is a sequence of arc flips, each one
producing a temporal arborescence. A reconfiguration from T1 to T2 is a reconfiguration that
transforms T1 into T2. A reconfiguration sequence R = (R1, R2, . . . , Rl) from T1 to T2 is a
sequence of temporal arborescences, where R1 = T1 and Rl = T2 such that each Ri, with
i ∈ [l], is a temporal arborescence of D and each Rj , j ∈ {2, ..., l}, can be obtained from
Rj−1 with an arc flip.

Now, we are ready to define the problem we are interested into.

▶ Problem 1. (Temporal Arborescence Reconfiguration)
Input: a temporal digraph D, two temporal arborescences T1, T2 of D, and an integer p ≥ 1.
Question: Does there exist a reconfiguration from T1 to T2 of at most p arc flips?

In the optimization version of Temporal Arborescence Reconfiguration, we aim
to minimize the number of arc flips.

SAND 2024
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3 NP-Hardness for Two Timestamps

We show that the Temporal Arborescence Reconfiguration problem is NP-hard even
on two timestamps (i.e. each arc has timestamp in {1, 2}) via a reduction from the Set
Cover problem. Let (S, U, k) be an instance of Set Cover, where U is the universe, S

is a collection of subsets of U , and k is an integer. The question is whether there exists a
subcollection S∗ ⊆ S of at most k sets of S such that for each u ∈ U there exists at least
one set of S∗ that contains u.

We denote U = {u1, . . . , un} and S = {S1, . . . , Sm}, and we define a corresponding
instance (D = (V, A), T1, T2, p) of Temporal Arborescence Reconfiguration. First
let S′ = {S′

i : Si ∈ S} be a copy of S and let U ′ = {u′
i : ui ∈ U} be a copy of U . We let

V = {r1, r2, r3} ∪ S ∪ S′ ∪ U ∪ U ′.

We then add to A the following sets of arcs (we strongly recommend referring to Figure 1):
Ar = {(r1, r2, 1), (r2, r1, 2), (r1, r3, 2), (r3, r2, 1)};
Ar1,U = {(r1, ui, 1) : ui ∈ U};
AU,U ′ = {(ui, u′

i, 1) : ui ∈ U};
Ar2,S = {(r2, Si, 2) : Si ∈ S};
Ar2,S′ = {(r2, S′

i, 1) : Si ∈ S};
Ar2,U = {(r2, ui, 2) : ui ∈ S};
AS,S′ = {(Si, S′

i, 2) : Si ∈ S};
AS′,U ′ = {(S′

i, u′
j , 1) : Si ∈ S ∧ uj ∈ Si};

Ar3,S′ = {(r3, S′
i, 1) : Si ∈ S};

Ar3,U ′ = {(r3, u′
i, 1) : ui ∈ U}.

Note that AS′,U ′ is the main set of arcs used to model the set cover instance into D.
Finally, we define the input temporal arborescences T1 (rooted at r1) and T2 (rooted at r3)
by specifying their arcs (illustrated in Figure 1, top-right and bottom-right, respectively):

A(T1) = {(r1, r2, 1), (r1, r3, 2)} ∪ Ar1,U ∪ AU,U ′ ∪ Ar2,S ∪ AS,S′

A(T2) = {(r3, r2, 1), (r2, r1, 2)} ∪ Ar2,U ∪ Ar2,S ∪ Ar3,S′ ∪ Ar3,U ′ .

One can verify that T1 and T2 are temporal arborescences using Figure 1.

▶ Theorem 1. The Temporal Arborescence problem is NP-hard even when the maximum
timestamp of an arc is 2.

Proof. Using the construction described above, we show that there exists S∗ ⊆ S of size at
most k that covers U if and only if T1 can be transformed into T2 using at most 3n+m+2+k

arc flips.
Suppose that there exists S∗ ⊆ S of size at most k that covers U . We reconfigure T1 into

T2 as follows (we say that an arc flip is correct if, after applying it, the resulting subgraph is
a temporal arborescence, hence time-respecting).
1. For each Si ∈ S∗ in an arbitrary order, remove (Si, S′

i, 2) and add (r2, S′
i, 1).

Each such arc flip is correct, since r1 can reach S′
i through (r1, r2, 1), (r2, S′

i, 1).
2. For each u′

j ∈ U ′ in an arbitrary order, let Si be a set of S∗ that contains uj . Remove
(uj , u′

j , 1) and add (S′
i, u′

j , 1), which exists by construction.
Each arc flip is correct since r1 can reach u′

j through the path r1 → r2 → S′
i → u′

j using
arcs of timestamp 1 only. Note that at this stage, r2 reaches the vertices in S, S′, and U ′

without going through r1.



R. Dondi and M. Lafond 10:5

r1

r2

r3

1

U

U ′

S′

S

2

2

1

1 2

2 1

r1

r2

r3

1

U

U ′

S′

S

2

2

1

1 2

2 1

r1

r2

r3

1

U

U ′

S′

S

2

2

1

1 2

2 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

Figure 1 Left: the temporal digraph D obtained from a set cover instance, with U = {u1, u2, u3}
and S = {S1, S2}, S1 = {u1, u2} and S2 = {u3}. Arcs pointing on ellipses indicate that all possible
arcs are present (e.g. r1 has every element of U in its out-neighborhood). The arborescences T1 and
T2 are shown in thick arcs, top-right and bottom-right, respectively.

3. For each uj ∈ U in an arbitrary order, remove (r1, uj , 1) and add (r2, uj , 2).
Each arc flip is correct since r1 can reach uj using the time-respecting path r1 → r2 → uj .
At this stage, r2 also reaches the vertices of U without going through r1.

4. Reroot to r2 by removing (r1, r2, 1) and adding (r2, r1, 2).
This arc flip is correct since before the arc flip, r2 was already able to reach each element
of U, U ′, S′, S without r1, and can now reach r1 and r3 through the time-respecting path
r2 → r1 → r3.

5. Reroot to r3 by removing (r1, r3, 2) and adding (r3, r2, 1).
This arc flip is correct since r3 reaches r2 at time 1, and thus r3 can reach r1, U, U ′, S′, S

through r2 with a time-respecting path.
6. For u′

j ∈ U ′ in an arbitrary order, remove the incoming arc incident to u′
j and add

(r3, u′
j , 1). This is easily seen to be correct since U ′ vertices are leaves before (and after)

the arc flips.
7. For S′

i ∈ S′ in an arbitrary order, remove the incoming arc incident to S′
i and add

(r3, S′
i, 1). This is easily seen to be correct since, because of the previous step, the S′

vertices are leaves before (and after) the arc flips.

One can check that this sequence of flips yields T2. As for the number of arc flips, by
summing the number of arc flips required for each of the above steps, we see that we require
at most |S∗| + |U ′| + |U | + 1 + 1 + |U ′| + |S′| ≤ k + 3n + m + 2, as desired.

SAND 2024



10:6 On the Complexity of Temporal Arborescence Reconfiguration

In the converse direction, suppose that there exists a reconfiguration sequence R =
(R1, R2, . . . , Rl) from T1 to T2 with l − 1 ≤ 3n + m + 2 + k, where T1 = R1 and T2 = Rl, and
each Ri can be obtained from Ri−1 with an arc flip, for i ∈ {2, . . . , l}. We gather a set of
facts to prove that U can be covered by at most k sets of S.

▶ Fact 1. For each i ∈ [l], the root of Ri is one of r1, r2, or r3.

Fact 1 holds because only r1, r2, and r3 can reach r1 in D.

▶ Fact 2. If r1 is the root of Ri for some i ∈ [l], then (r1, r3, 2) ∈ A(Ri) and (r1, r2, 1) ∈
A(Ri).

Fact 2 is true because (r1, r3, 2) is the only incoming arc of r3 and must thus be in
Ri. This prevents using (r3, r2, 1) because of the time-respecting condition. The only other
incoming arc of r2 is (r1, r2, 1) and it must thus be in Ri as well.

▶ Fact 3. If r1 is the root of Ri for some i ∈ [l − 1], then r3 is not the root of Ri+1.

To see that Fact 3 holds, we know by Fact 2 that (r1, r3, 2), (r1, r2, 1) ∈ A(Ri). To make
r3 the root in Ri+1 we have to remove (r1, r3, 2), and add some outcoming arc of r3. But
adding (r3, r2, 1) makes r2 of in-degree 2, and adding an arc from r3 to some element of
S′ ∪ U ′ makes it impossible to reach r1 from r3. Therefore, the root of Ri+1 is either r1 or r2.

We now proceed with the construction of a set cover. Let a ∈ [l] be the minimum index
such that r2 is the root of Ra (note that there must exist such a Ra since the root of T2 is r3
and by Fact 3 the re-rooting from r1 to r3 cannot be done with an arc flip). By Fact 1 and
Fact 3, we know that r1 is the root of Ra−1, so that Ra is the first time the root is switched.
By Fact 2, (r1, r2, 1) ∈ A(Ra−1) and, because (r2, r1, 2) is the only incoming arc of r1, the
only way to switch the root from r1 to r2 is by removing (r1, r2, 1) and adding (r2, r1, 2). This
means that in Ra−1, there cannot be an arc from r1 to U , as otherwise (r2, r1, 2) followed
by such an arc would not be time-respecting. This implies that in Ra−1, all arcs from r2 to
U are present, since these are the only other incoming arcs of the U vertices. This in turn
implies that in Ra−1, there cannot be an arc from U to U ′ because of the time-respecting
condition. Also, by Fact 2, (r1, r3, 2) ∈ A(Ra−1) and the arcs from r3 to U ′ cannot be used
because of the time-respecting condition. Therefore, all in-neighbors of U ′ vertices are in S′.
In fact by construction, for each u′

j ∈ U ′, the in-neighbor of u′
j in Ra−1 is some S′

i ∈ S′ such
that uj ∈ Si. Since every e ∈ AS′,U ′ is active at timestamp 1, every path from r1 to a U ′

vertex in Ra−1 only uses arcs of timestamps 1. Such a path cannot use an arc in which r3 is
the tail, again because of the (r1, r3, 2) arc. Thus such a path must use an arc of Ar2,S′ . Let

S∗ = {Si : (r2, S′
i, 1) ∈ A(Ra−1)}.

Note that because each u′
j ∈ U ′ has an S′ in-neighbor such that the corresponding S set

contains uj , S∗ is a set cover. It remains to argue that |S∗| ≤ k.
Observe that A(Ra−1) \ A(T1) contains at least |U | + |U ′| + |S∗| = 2n + |S∗| arcs, since it

has all arcs of Ar2,U , the arcs from S′ to U ′, and the arcs from r2 to {S′
i : Si ∈ S∗}. Thus at

least 2n + |S∗| + 1 arc flips are needed to get to Ra. Then, A(T2) \ A(Ra) contains at least
1 + |S′| + |U | = 1 + n + m arcs, namely (r3, r2, 1) and the arcs from Ar3,S′ and Ar3,U ′ (which
are not in Ra−1, and thus not in Ra, because (r1, r3, 2) ∈ A(Ra−1) by Fact 2). Therefore,
the number of arc flips required from T1 to T2 is at least 3n + m + 2 + |S∗|, from which it
follows that |S∗| ≤ k.

Since Set Cover is known to be NP-hard [16], the reduction we have described implies
that also Temporal Arborescence Reconfiguration for two timestamps is NP-hard.

◀
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4 Inapproximability for Distance Two

In this section we show that, unless P = NP , Temporal Arborescence Reconfigur-
ation is not approximable within factor b ln |V (D)|, for any constant 0 < b < 1, even if
the two input temporal arborescences have distance two, that is that is the number of arcs
in A(T1) \ A(T2) and the number of arcs in in A(T2) \ A(T1) is equal to two. We prove
the result via an approximation preserving reduction from the Set Cover problem. Let
(S, U) be an instance of Set Cover1, where U = {u1, . . . , un} and S = {S1, . . . , Sm}. Con-
struct (D = (V, A), T1, T2), an instance of Temporal Arborescence Reconfiguration
associated with (U, S), as follows (refer to Fig. 2 for the structure of D).

V ={r1, r2, y} ∪ {vi,z : Si ∈ S, i ∈ [m], z ∈ [n2]} ∪ {wi : i ∈ [n], ui ∈ U}.

A is defined as

A = A1 ∪ A2 ∪ A3

where:

A1 ={(r1, r2, 2)} ∪ {(r1, y, 1)} ∪ {(r1, vi,1, 4) : i ∈ [m]} ∪
{(vi,j , vi,j+1, 4) : i ∈ [m], j ∈ [n2 − 1]} ∪ {(y, wi, 2) : i ∈ [n]}

A2 ={(r2, r1, 2)} ∪ {(r2, y, 1)} ∪ {(r1, vi,1, 4) : i ∈ [m]} ∪
{(vi,j , vi,j+1, 4) : i ∈ [m], j ∈ [n2 − 1]} ∪ {(y, wi, 2) : i ∈ [n]}

A3 ={(r1, y, 3)} ∪ {(r1, vi,1, 3) : i ∈ [m]} ∪ {(vi,j , vi,j+1, 3) : i ∈ [m], j ∈ [n2 − 1]} ∪
{(vi,n2 , wj , 3) : uj ∈ Si, i ∈ [m], j ∈ [n]}

Now, T1 is the temporal arborescence induced by A1, that is T1 = (V, A1), and T2 is the
temporal arborescence induced by A2, that is T2 = (V, A2) (see Fig. 3). Note that |A1 \A2| =
|A2 \ A1| = 2, since A1 \ A2 = {(r1, r2, 2), (r1, y, 1)}, while A2 \ A1 = {(r2, r1, 2), (r2, y, 1)}.

We define a reconfiguration from T1 to T2 as canonical if it has the following properties.
First, in some order, each wi, i ∈ [n], is disconnected from y as follows (we call this the
disconnection step of the reconfiguration):
1. For some j ∈ [m], each arc on the path from r1 to vj,n2 , associated with timestamp 4, is

flipped with the arc having the same endpoints and timestamp 3 (starting from (r1, vj,1, 4)
and ending with (vj,n2−1, vj,n2 , 4)).

2. Each arc (y, wi, 2), i ∈ [n], is flipped with an arc (vj,n2 , wi, 3), j ∈ [m], so that there is a
path from r1 to vj,n2 with all the arcs having timestamps 3.

Once the disconnection step is applied and each wi, i ∈ [n], is disconnected from y, a
canonical reconfiguration flips arc (r1, y, 1) and (r1, y, 3). Then the root of the temporal
arborescence is changed by flipping arcs (r1, r2, 2) and (r2, r1, 2). After these arc flips,
(r1, y, 3) is flipped with arc (r2, y, 1). In order to compute T2, each arc (vj,n2 , wi, 3), j ∈ [m]
and i ∈ [n], flipped in the disconnection step, is flipped with (y, wi, 2). Finally, for each path
from r1 to vj,n2 , j ∈ [m], having arcs with timestamp 3, each arc on the path is flipped with
the arc having the same endpoints and timestamp 4 (starting from (vj,n2−1, vj,n2 , 3) and
ending with (r1, vj,1, 3)).

We start by proving that a canonical reconfiguration is correct, that is it computes only
temporal arborescences.

1 Since in this section we consider optimization versions of problems, we do not include in the problem
instances the value of a solution
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Figure 2 The input digraph D associated with an instance of Set Cover. Each dashed arrow
outgoing from vi,2, i ∈ [m], represent a path containing vertices vi,j , j ∈ {3, ..., n2 − 1}, and not
shown in the figure. The dashed arrows outgoing from v1,n2 , vi,n2 , vm,n2 represent arcs connecting
these vertices with some vertices wz, z ∈ [n] (the precise arcs depends on the instance of Set
Cover).
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Figure 3 Arborescence T1 (left) and T2 (right). The four arcs in bold belong to exactly one the
two temporal arborescence, the other arcs belong to both T1 and T2.
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▶ Lemma 2. Each arborescence computed by a canonical reconfiguration from T1 to T2 is a
temporal arborescence of D.

We prove now the first direction of the reduction.

▶ Lemma 3. Let (S, U) be an instance of Set Cover and let (D, T1, T2) be the corresponding
instance of Temporal Arborescence Reconfiguration. Given a a set cover of size k

we can compute in polynomial time a reconfiguration from T1 to T2 consisting of 2kn2 +2n+3
flips.

Now, we consider the second part of the reduction, where we prove that a reconfiguration
from T1 to T2 must apply the disconnection step of a canonical reconfiguration.

▶ Lemma 4. Let (S, U) be an instance of Set Cover and let (D, T1, T2) be the corresponding
instance of Temporal Arborescence Reconfiguration. Given a reconfiguration from
T1 to T2 consisting of 2kn2 + 2n + 3 arc flips we can compute in polynomial time a solution
of Set Cover on instance (S, U) of size k.

Proof. We start by proving that a reconfiguration from T1 to T2 must apply the disconnection
step of a canonical reconfiguration.

First, consider arc (r1, r2, 2) of T1 and arc (r2, r1, 2) of T2. Note that (r1, r2, 2) ((r2, r1, 2),
respectively) is the only arc of D incoming into r2 (into r1, respectively). Hence whenever
(r1, r2, 2) is flipped, and hence removed, by a reconfiguration, it must be flipped with (r2, r1, 2),
and r2 must become the root of the computed temporal arborescence, otherwise either both
r1 and r2 have not incoming arcs or r2 is not connected with other vertices of the temporal
arborescence. Note that this arc flip defines r2 as the root of the computed arborescence
and creates a temporal path (r2, r1, 2), (r1, y, 1), if this latter arc (of T1) belongs to the
arborescence, which is not time-respecting. It follows that before (r1, r2, 2) and (r2, r1, 2)
are flipped, (r1, y, 1) must be flipped with another arc that must be incoming to y (since r1
remains the root of the arborescence), that is with (r2, y, 1) or (r1, y, 3).

Consider (r2, y, 1) and notice that arcs (r1, y, 1) and (r2, y, 1) cannot be flipped, since this
flip creates a temporal path (r1, r2, 2), (r2, y, 1), which is not time-respecting, and we have
observed that (r1, r2, 2) is not flipped before (r1, y, 1). Arcs (r1, y, 1) and (r1, y, 3) cannot be
flipped unless y is a leaf, that is all the arcs (y, wi, 2), with i ∈ [n], have been flipped. Indeed,
if an arc (y, wi, 2), i ∈ [n], belongs to a temporal arborescence, then by flipping (r1, y, 1)
and (r1, y, 3) we have a temporal path (r1, y, 3), (y, wi, 2), which is not time-respecting. It
follows that, before (r1, y, 1) is flipped each vertex wi, i ∈ [n], must first be disconnected
from y. By construction the only incoming arcs to a vertex wi, i ∈ [n], other than (y, wi, 2),
are (vj,n2 , wi, 3), for some j ∈ [m], hence each vertex wi must first be disconnected from y

by flipping an arc (y, wi, 2) with an arc (vj,n2 , wi, 3), for some j ∈ [m]. This implies that the
disconnection step of the canonical reconfiguration is applied. This requires that each arc on
the path from r1 to vj,n2 , which have timestamp 4 in T1, is flipped with the arc having the
same endpoints and timestamp 3.

Consider the temporal arborescence T ′ constructed by the disconnection step. For each
wi, i ∈ [n], the disconnection step flips all the arcs of one path from r1 to some vj,n2 , j ∈ [m],
such that ui ∈ Sj ; then we can define a set cover as follows:

S∗ = {Sj : the path from r1 to wj,n2 is modified in the disconnection step}.

We claim that S∗ contains at most k sets. Note that a reconfiguration from T ′ to T2 requires,
as in a canonical reconfiguration, to delete arcs in A(T ′) \ (A(T2) ∩ A(T1)) and insert arcs in
(A(T2) ∩ A(T1)) \ A(T ′).
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Recall that the reconfiguration of T1 in T2 consists of 2kn2 + 2n + 3 flips. If S∗ consists
of at least k + 1 sets, then by the definition of S∗ the disconnection step includes at least
k + 1 paths, thus requiring at least 2(k + 1)n2 arc flips for these paths, plus 2n arc flips for
the arcs incident in wi, i ∈ [n]. We have that 2(k + 1)n2 + 2n > 2kn2 + 2n + 3, since n ≥ 2.
Hence S∗ contains at most k sets, thus completing the proof. ◀

Based on Lemma 3 on Lemma 4, on the fact that the digraph D contains O(n2m) vertices
and on the hardness of approximation of Set Cover [2, 5, 20], we can prove the following
result.

▶ Theorem 5. Temporal Arborescence Reconfiguration is not approximable within
factor b ln |V (D)|, for any constant 0 < b < 1, unless P = NP, even when the two input
temporal arborescences differ for two pairs of arcs.

Distance One
We have shown that Temporal Arborescence Reconfiguration is hard (also to
approximate) when T1 = (V, A(T1)) and T2 = (V, A(T2)) have distance two. On the other
hand when T1 and T2 have distance one, thus A(T1) \ A(T2) contains a single arc a1 and
A(T2) \ A(T1) contains a single arc a2, the problem is easy to solve in polynomial time.
Indeed, since by flipping a1 with a2 in T1, hence by removing a1 and inserting a2, we obtain
T2, it follows that the arc flip produces a spanning time-respecting arborescence and thus
can always be applied.

5 W[1]-Hardness

In all the above reductions (Section 3 and Section 4) and also the reduction in [13], the
number of required arc flips is always a function of n. Therefore, an algorithm with complexity
of the form f(p)nc, with constant c and f only depending on p (number of arc flips of a
reconfiguration from T1 to T2), is not excluded. We show that this is unlikely by proving
that the Temporal Arborescence Reconfiguration problem is W[1]-hard under this
parameter p, and that in fact it is W[1]-hard in parameter p + max(u,v,t)∈A(D) t.

We reduce Multicolored Clique to Temporal Arborescence Reconfiguration.
Multicolored Clique, given an undirected graph G = (V, E), whose vertices are colored
with k colors, asks whether there exists a clique, called multicolored clique, containing one
vertex from each color. The problem is W[1]-hard when the parameter is the number of
colors [6].

Let G = (V, E) be an instance a Multicolored Clique, with vertices partitioned into
color classes V1, . . . , Vk. For i, j ∈ [k], we will denote Ei,j = {uv ∈ E : u ∈ Vi, v ∈ Vj}.
Construct an instance (D, T1, T2, p) of Temporal Arborescence Reconfiguration as
follows.

Let us first construct D, which is shown in Figure 4 (we provide the main intuitions after
the description of the construction). We define the vertex set of D as V (D) = R ∪ C ∪ U ,
where

R ={r0, r1, . . . , rk},

C ={c1, c2, . . . , ck},

U ={u′ : u ∈ V (G)}.

For i ∈ [k], we will denote Ui = {u′ : u ∈ Vi}.
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Figure 4 Main construction for the W[1]-hardness proof. Left: the temporal graph D. Top-right:
the initial temporal arborescence T1. Bottom-right: the target temporal arborescence T2. Note that
the timestamps 0 of arcs (rk, ci) are not shown.

As for the arc set A(D), add the following arc sets:
R-R arcs: for each i ∈ {0, 1, . . . , k − 1}, add the arc ei = (ri, ri+1, 3k); the arc e′

i =
(ri, ri+1, k − i); and the arc fi = (ri+1, ri, 4k).
r0-U arcs: for each u ∈ V (G), add the arc (r0, u′, 4k).
ri-Ui arcs: for each color class i ∈ [k] and each u ∈ Vi, add the arc (ri, u′, k + i). Note
that i > 0, hence r0 is not concerned here.
Ui-Uj arcs: for each i, j ∈ [k] with j < i and each uv ∈ Ei,j with u ∈ Vi and v ∈ Vj ,
add an arc (u′, v′, k + i). That is, each vertex u′ has an outgoing arc to v′ whenever v is
a neighbor of u in a “lower” color class. In terms of Figure 4, this means that all arcs
between the Ui sets go upwards. The tail of the arc determines its timestamp.
R-C arcs: for each color class i ∈ [k], add the arcs (ri−1, ci, 3k) and (rk, ci, 0).
Ui-ci arcs: for each color class i ∈ [k], and each u ∈ Vi, add the arc (u′, ci, 3k − 1).

The arcs of the initial temporal arborescence T1 consist of: the R-R arcs ei for i ∈
{0, 1, . . . , k − 1}, so that there is a path of arcs at time 3k from r0 to rk; the r0-U arcs
(r0, u′, 4k) for u ∈ V ; the R-C arcs (ri−1, ci, 3k) for i ∈ [k].
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The arcs of the target temporal arborescence T2 consist of the same arc set as T1, except
that: no ei arc is in T2, and instead each R-R arc fi is in T2; no (ri−1, ci, 3k) arc is present,
and instead each R-C arc (rk, ci, 0) is in T2. It is not difficult to verify that T1 and T2 are
temporal arborescences (hence time-respecting).

The intuition behind this construction is as follows. To transform T1 into T2, one must
first re-root from r0 to r1, then to r2, and so on until rk is the root. If we re-root from r0 to
r1, we need to insert the arc (r1, r0, 4k). This cannot be done in the very first arc flip though,
because the arc (r0, c1, 3k) in the R-C group would violate temporality. So any solution must
first create an alternate path from r0 to c1 before the first re-rooting. One can show that the
only way to achieve this is to choose some u′

1 ∈ U1 and create the path r0 → r1 → u′
1 → c1,

using arcs at times k, k + 1, 3k − 1. Once this is done, we can safely re-root to r1.
Next, we must re-root to r2. As before, we cannot insert (r2, r1, 4k) because of (r1, c2, 3k).

So we must create an alternate path r1 → r2 → u′
2 → c2 for some u′

2 ∈ U2. However this
time, the arc (r1, u′

1, k + 1) from the previous step is also an issue and we must also have an
alternate path from r1 to u′

1. The key idea is that the most efficient way to do this is, after
choosing u′

2, to apply a flip that removes (r1, u′
1, k + 1) and inserts (u′

2, u′
1, k + 2). This arc

exists only if u2u1 ∈ E(G), forcing us to choose u′
2, u′

1 that form a clique of size 2.
The same idea applies for every i ∈ [k]. Before re-rooting from ri−1 to ri, we must find

an alternate path ri−1 → ri → u′
i → ci by choosing some u′

i ∈ Ui. At this point, there are
u′

1, . . . , u′
i−1 that are used as in-neighbors of c1, . . . , ci−1. The most efficient setup is to choose

u′
i that allows inserting the (u′

i, u′
j , k + i) arcs for all those j < i, requiring all corresponding

uj ’s to be neighbors of ui in G. In other words, there are k phases to apply, one for each
re-rooting to each ri, and at each phase i we must choose a ui (and corresponding u′

i) that
is a neighbor of all the previously chosen uj ’s, thereby forming a clique. The specific arc
timestamps in the construction are chosen to enforce this behavior.

We will show that G contains a multicolored clique if and only if T1 can be transformed
into T2 using at most p = 2k +

∑k
i=1(i + 3) arc flips. In essence, each term in the summation

represents the arc flips needed to re-root from ri−1 to ri, and the 2k term is there for a
cleanup phase after having re-rooted to rk. Note that since p is a function of k only, this
shows W [1]-hardness in parameter p being the number of required arc flips. Also note that
in fact, all timestamps assigned to arcs are a function of k, so the problem is W[1]-hard in
parameter p + t, where t = max(u,v,t′)∈A(D) t′.

▶ Theorem 6. The Temporal Arborescence problem is W[1]-hard when parameterized
by the number of arc flips plus the maximum timestamp.

Proof. First note that the construction of D from G can be carried out in polynomial time.
As mentioned above, we show that G contains a multicolored clique if and only if T1 can be
transformed into T2 using at most p = 2k +

∑k
i=1(i + 3) arc flips.

(⇒) Suppose that G has a multicolored clique K = {u1, . . . , uk}, where for each i ∈ [k] the
vertex ui belongs to color class Vi. As shown in Figure 5, starting from T1, one can re-root
from r0 to r1 (each step can easily be checked to maintain a temporal arborescence, hence
time-respecting):

Remove e0 = (r0, r1, 3k) and insert e′
0 = (r0, r1, k), so that r0 reaches r1 with the arc at

time k instead of the arc at time 3k;
Remove (r0, u′

1, 4k) and insert (r1, u′
1, k + 1), which is now possible. Then remove

(r0, c1, 3k) and insert (u′
1, c1, 3k − 1);

Remove e′
0 and insert (r1, r0, 4k), thereby re-rooting to r1.
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Figure 5 A sequence of arc flips to re-root from r0 to r1.

Note that this requires 4 = 1 + 3 flips. Now let i ≥ 2 and let us see how to re-root from
ri−1 to ri (illustrated in Figure 6). Assume that we have reached a temporal arborescence
such that: ri−1 is the root; (ri−1, u′

i−1, k + i − 1) is active; (u′
i−1, u′

j , k + i − 1) is active for
each j < i − 1; (u′

j , cj , 3k − 1) is active for each j ≤ i − 1. Also assume that ri−1 reaches r0
using the fj upwards arcs at time 4k, and that r0 uses 4k arcs to reach all the v′

j other than
u′

1, . . . , u′
i−1. Note that all these conditions hold for i = 2 after applying the re-rooting from

r0 to r1. We show how to re-root from ri−1 to ri, such that the same properties hold but
with ri as the root. To achieve this:

ri−1

ri

ci 3k

4k

cj

ch

k+i-1

k+i-1

3k-1

3k
ri−1

ri

ci
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cj
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3k-1

ci−1 ci−1 ci−1

u′i u′i

Figure 6 A sequence of arc flips to re-root from ri−1 to ri. Here, we assume h < j < i − 1.
The middle state is obtained by two arc flips that insert e′

i−1 and (ri, u′
i). The rightmost state is

obtained by making u′
i the in-neighbor of every u′

j , j < i. The last step is not shown and consists in
flipping e′

i−1 to fi−1 to re-root to ri.

Remove ei−1 = (ri−1, ri, 3k) and add e′
i−1 = (ri−1, ri, k − (i − 1)), so that ri−1 now

reaches ri with an arc at timestamp k − i + 1. This preserves temporality since this is
akin to lowering the timestamp for the arc from ri−1 to ri, which is an outcoming arc
from the root ri−1.
Remove (r0, u′

i, 4k) and add (ri, u′
i, k + i). This preserves temporality since the new path

from ri−1 to u′
i uses arcs at respective times k − i + 1 and k + i.

Remove (ri−1, ci, 3k) and add (u′
i, ci, 3k − 1), which is correct since the latter has time

3k − 1 > k + i.
For each j < i−1, remove the incoming arc (u′

i−1, u′
j , k + i − 1) of u′

j and add (u′
i, u′

j , k + i)
(which exists because uiuj ∈ E(G)).
This is temporarily correct since u′

i is currently reachable with arcs of timestamp at
most k + i, each arc from u′

i to u′
j has timestamp k + i, and each arc from u′

j to cj has
timestamp 3k − 1 > k + i.
Remove (ri−1, u′

i−1, k + i − 1) and add (u′
i, u′

i−1, k + i), which preserves temporality as
in the previous step.
Finally, re-root ro ri by removing e′

i−1 and adding fi−1 = (ri, ri−1, 4k). This preserves
temporality because, at this point we have the situation from Figure 6 on the right. The
only vertices that ri−1 was reaching without going through ri were ri−2, . . . , r0 and u′

vertices using (r0, u′, 4k) arcs, and all the underlying paths consisted of arcs at time 4k.
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Observe that all the assumptions made before handling step i are true for the next step.
Also note that to re-root from ri−1 to ri, the above requires 3 + (i − 2) + 2 = i + 3 flips.

Once we reach a point where rk is the root, we can: replace every (u′
j , cj , 3k − 1) with

(rk, cj , 0) for j ∈ [k] (k arc flips); remove all the (u′
k, u′

j , 2k) arcs and insert (r0, u′
j , 4k) for

j < k (k − 1 arc flips); replace (rk, u′
k, 2k) with (r0, u′

k, 4k) (1 arc flip). This last step adds
2k arc flips.

Overall, we have reached T2 using
∑k

i=1(i + 3) + 2k = p arc flips.

(⇐) Suppose that T1 can be transformed into T2 using at most p flips. It can be shown
that this implies that u1, . . . , uk form a multicolored clique of G. The proof is omitted for
space reasons and can be found in the full version – the main idea is that the steps described
in the forward direction are essentially forced to achieve p flips. Since Multicolored
Clique is W[1]-hard (for parameter k), the parameterized reduction we have described
implies that Temporal Arborescence Reconfiguration is W[1]-hard for parameters
number of arc flips plus maxmum timestamp. ◀

6 Conclusion

We have analyzed the complexity Temporal Arborescence Reconfiguration, proving
that it is NP-hard for two timestamps, it is inapproximable within factor b ln |V (D)|, for any
0 < b < 1, if the two temporal arborescences differ only for two arc pairs, and it is W[1]-hard
when parameterized by the number of arc flips needed to transform one arborescence into
the other plus maximum timestamp.

A natural future direction is to further study the approximation complexity of the problem,
in particular if it is possible to achieve a c ln |V (D)| approximation factor, for some constant
c ≥ 1. A second future direction is to further investigate the problem when the input
temporal digraph has specific properties (for example bounded treewidth or bounded degree),
both in the approximation and parameterized complexity framework.
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