
Partial Temporal Vertex Cover with Bounded
Activity Intervals
Riccardo Dondi1 #

Università degli Studi di Bergamo, Italy

Fabrizio Montecchiani #

Università degli Studi di Perugia, Italy

Giacomo Ortali #

Università degli Studi di Perugia, Italy

Tommaso Piselli #

Università degli Studi di Perugia, Italy

Alessandra Tappini #

Università degli Studi di Perugia, Italy

Abstract
Different variants of Vertex Cover have recently garnered attention in the context of temporal graphs.
One of these variants is motivated by the need to summarize timeline activities in social networks.
Here, the activities of individual vertices, representing users, are characterized by time intervals.
In this paper, we explore a scenario where the temporal span of each vertex’s activity interval is
bounded by an integer ℓ, and the objective is to maximize the number of (temporal) edges that are
covered. We establish the APX-hardness of this problem and the NP-hardness of the corresponding
decision problem, even under the restricted condition where the temporal domain comprises only
two timestamps and each edge appears at most once. Subsequently, we delve into the parameterized
complexity of the problem, offering two fixed-parameter algorithms parameterized by: (i) the number
k of temporal edges covered by the solution, and (ii) the number h of temporal edges not covered by
the solution. Finally, we present a polynomial-time approximation algorithm achieving a factor of 3
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1 Introduction

The temporal graph model is designed to capture the dynamic evolution of interactions over
time [14, 12, 17, 13]. A temporal graph can be viewed as a labeled graph, where every edge
is endowed with time labels signifying the timestamps where the edge is defined, and thus
where the interaction represented by the edge is observed; see Figure 1 for an illustration.
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11:2 Partial Temporal Vertex Cover with Bounded Activity Intervals

Numerous foundational problems originally formulated for static graphs have recently
been extended to temporal graphs. On static graphs, the Vertex Cover problem asks for a
subset of vertices with minimum cardinality, such that it covers all the edges of the input
graph, that is, such that for each edge at least one of its endpoints belongs to the subset.
Following this line of research, different adaptations of Vertex Cover on temporal graphs have
been explored in the literature [1, 11, 19]. Here we focus on the approach introduced in [19],
motivated by the need to summarize interaction timelines of users in social networks.

Informally, a temporal vertex cover of a temporal graph G is a subset2 C of its vertices
and an assignment of time intervals to every vertex of C, such that for every edge e of G

and for every time label t of e, at least one end-vertex of e is part of C and the endowed
time interval includes t (see Section 2 for a formal definition). In other words, a temporal
vertex cover assigns an activity interval to a subset of users, such that for every observed
interaction at least one involved user is part of the solution and active. Based on this idea,
the objective function of the MinTimelineCover problem is to find a temporal vertex cover of
minimum size (i.e., minimizing the sum of the interval lengths).

Recently, a sequence of works investigated the computational complexity of the Min-
TimelineCover problem, proving that it is NP-hard [19], even in the restricted scenarios
when each label is associated with a single edge [4], and when the temporal graph is defined
over two timestamps only [7]. In terms of parameterized complexity, MinTimelineCover
parameterized by the solution size has first been shown to admit a fixed-parameter algorithm
for temporal graphs defined over two timestamps [7] and, subsequently, this restriction has
been removed [5].

The complexity of approximating MinTimelineCover has been also studied. A result given
in [7] implies that, assuming the Unique Games conjecture, MinTimelineCover cannot be
approximated within a constant factor, even for graphs defined on two timestamps only. On
the positive side, the problem can be approximated within factor O(T log n), on a temporal
graph with n vertices and T timestamps [6].

In this paper, we introduce and explore a new problem, ℓ-TimelineCover(k) and its
optimization version ℓ-MaxTimelineCover, in which we relax the constraint that all the
edges have to be covered, bounding instead the length of the vertex activity intervals by
an integer ℓ ≥ 1. This last constraint is motivated by the observation that a solution
of MinTimelineCover may define long activity intervals for some vertices, while in several
applications we observe short time activities of users [19]. Hence, the ℓ-TimelineCover(k)
problem asks for the definition of one interval of length at most ℓ for each vertex, so that
at least k edges of the temporal graph are covered (or the maximum number of edges are
covered for ℓ-MaxTimelineCover); see Figure 1 for an example. From a graph theory point
of view, ℓ-TimelineCover(k) can be seen as a temporal variant of Partial Vertex Cover [8, 16]:
Given a graph and two positive integers h and p, Partial Vertex Cover asks whether there
exists a set of at most h vertices that cover at least p edges of the graph.

Our main contribution can be summarized as follows.
We prove, in Section 3, that ℓ-TimelineCover(k) is NP-hard and ℓ-MaxTimelineCover is
APX-hard, even in the restricted case where the time domain consists of two timestamps
(and ℓ = 1) and each edge appears at most once. Note that if ℓ is equal to the number of
timestamps, then the problem admits a trivial solution where each vertex has an interval
equal to the number of timestamps and all the edges are covered. Denote by T the

2 We note that an equivalent definition can be made by replacing C with the entire vertex set of G, and
allowing for vertices with an empty assigned time interval.
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Figure 1 (Left) An example of a temporal graph ⟨G, λ⟩, where G is a graph and λ is a time-
labeling function that maps every edge of G onto a set of timestamps; for example, the edge {v1, v2}
is associated to timestamps {1, 2}, while the edge {v2, v3} to timestamps {3, 4}. (Center and Right)
A solution of ℓ-TimelineCover(12) (hence at least 12 temporal edges have to be covered), for ℓ = 2,
defines: interval [1, 2] for v1, v3, v5, thus covering edges at timestamps 1 and 2; interval [3, 4] for
v2, v4, v6, thus covering edges at timestamps 3 and 4. Note that the edges defined at timestamp 5
({v1, v3}, {v4, v6}) are not covered.

number of timestamps over which the temporal graph is defined. These results imply that
ℓ-TimelineCover(k) parameterized by ℓ + T admits no XP (and hence no FPT) algorithm,
unless P=NP.
Next, in Section 4, we focus on the parameterized complexity of the ℓ-TimelineCover(k)
problem and consider two parameters: the number h of temporal edges left uncovered by
the solution, and the number k of temporal edges that are covered by the solution. For
both parameterizations, we prove that the problem is fixed-parameter tractable.
Finally, in Section 5, we focus again on the approximability of the ℓ-MaxTimelineCover
problem, and we present a polynomial-time approximation algorithm of factor 3

4 .

In Section 2 we give some definitions and we introduce the ℓ-TimelineCover(k) and ℓ-
MaxTimelineCover problems. We conclude the paper in Section 6 with open problems that
naturally stem from our research. Some of the proofs are deferred to the journal version.

2 Preliminaries

A temporal graph is a pair ⟨G, λ⟩ such that G = (V, E) is a simple (undirected) graph and
λ : E → 2N is a time-labeling function that maps every edge of G onto a set of integers,
called timestamps in the following (see the example in Figure 1). Up to a relabeling, we can
assume that the minimum timestamp over all edges of G is equal to 1, while T denotes the
maximum timestamp (and hence it upperbounds the number of timestamps).

We say that an edge e ∈ E of a temporal graph ⟨G, λ⟩ is active in t ∈ λ(e) and the pair
(e, t) is called a temporal edge, while Et is the set of temporal edges active in t.

A temporal vertex cover of ⟨G, λ⟩ is a pair (C, σ), such that: (i) C ⊆ V ; (ii) σ maps each
vertex v of C to an interval [lv, rv] such that 1 ≤ lv ≤ rv ≤ T ; and (iii) for every edge e

and for every value t ∈ λ(e), there is a vertex v ∈ C such that t ∈ [lv, rv] and e = {u, v}.
An ℓ-partial temporal vertex cover of ⟨G, λ⟩ is a function σ, called assignment, such that:
(i) σ maps each vertex v of V to an interval [lv, rv] such that 1 ≤ lv ≤ rv ≤ T ; and (ii)
rv − lv + 1 ≤ ℓ. A temporal edge (e, t), where e = {u, v}, is covered by σ if either t ∈ [lu, ru]
or t ∈ [lv, rv]. Note that, in a ℓ-partial temporal vertex cover, we can assume w.l.o.g. each
vertex is assigned to an interval of length exactly ℓ.

We are now ready to formalize the definition of ℓ-TimelineCover(k) and of the corresponding
optimization version ℓ-MaxTimelineCover.

SAND 2024



11:4 Partial Temporal Vertex Cover with Bounded Activity Intervals

▶ Problem 1. ℓ-TimelineCover(k)
Input: a temporal graph ⟨G, λ⟩ and two positive integers ℓ and k.
Output: an ℓ-partial temporal vertex cover of ⟨G, λ⟩ that covers at least k temporal edges.

▶ Problem 2. ℓ-MaxTimelineCover
Input: a temporal graph ⟨G, λ⟩ and a positive integer ℓ.
Output: an ℓ-partial temporal vertex cover of ⟨G, λ⟩ that covers the maximum number of
temporal edges over all ℓ-partial temporal vertex covers of ⟨G, λ⟩.

3 Hardness for Single Labeling

In this section, we prove that ℓ-TimelineCover(k) is NP-hard, even if the input temporal
graph ⟨G, λ⟩ has the following properties: (1) each edge has a single label and (2) T = 2.
As a corollary of this result, we prove that ℓ-MaxTimelineCover is APX-hard for the same
restriction. The result is proven via a reduction from Max 2-3-SAT(h), a variant of Max
2-SAT(h) where each literal appears in at most three clauses. Given a set X of variables
and a set of clauses C on X, where each clause consists of exactly two literals and each
literal appears in at most three clauses, Max 2-3-SAT(h) asks for a truth assignment to the
variables in X that satisfies at least h clauses in C. Note that we assume that each clause in
C consists of exactly two literals. Indeed the APX-hardness proof of Max 2-3-SAT(h) in [3, 2]
constructs only clauses consisting of exactly two literals.

Construction. Consider an instance ⟨X, C, h⟩ of Max 2-3-SAT(h), where X = {x1, . . . , xq} is
a set of variables and C = {C1, . . . , Cz} is a set of clauses, each one defined over two literals.
A clause of C is written as xi,A ∨ xj,B, with A, B ∈ {T, F}, where xi,T (xi,F, respectively)
represents a positive literal (a negative literal, respectively).

In the following, given ⟨X, C, h⟩, we define a corresponding instance ⟨G, λ, k, ℓ⟩ of ℓ-
TimelineCover(k), with k = 24q + h, ℓ = 1 and T = 2; see Figure 2 for an illustration. Note
that, since T = 2, the labels belong to interval [1, 2]. The set V is defined as follows:

V = {vi,T, vi,F, ai,1, ai,2, ai,3, ai,4, bi,1, bi,2, bi,3, bi,4 : xi ∈ X}.

Next, we define the set Et of temporal edges:

Et = {({vi,T, ai,p}, 1), ({vi,F, bi,p}, 1) : 1 ≤ p ≤ 4, 1 ≤ i ≤ q}∪

{({ai,s, bi,t}, 2) : 1 ≤ i ≤ q ∧ 1 ≤ s, t ≤ 4}∪

{({vi,A, vj,B}, 2) : 1 ≤ i, j ≤ q ∧ A, B ∈ {T, F} ∧ (xi,A ∨ xj,B) ∈ C}.

Clearly ⟨G, λ⟩ is defined over two timestamps. We prove below that each pair of vertices
of ⟨G, λ⟩ is connected by at most one temporal edge.

▶ Fact 1. Let ⟨X, C, h⟩ be an instance of Max 2-3-SAT(h), and let ⟨G, λ, k, ℓ⟩ be the corres-
ponding instance of ℓ-TimelineCover(k). For every edge e ∈ E, it holds |λ(e)| = 1.

Proof. The edges connecting vi,T and ai,p, 1 ≤ i ≤ q and 1 ≤ p ≤ 4, are active only at
timestamp 1 and the same property holds for the edges connecting vi,F and bi,p, 1 ≤ i ≤ q

and 1 ≤ p ≤ 4. The edges between ai,p and bi,s, with 1 ≤ p ≤ 4 and 1 ≤ s ≤ 4, for each
1 ≤ i ≤ q, are active only at timestamp 2. Finally, the edges between vi,A and vj,B , 1 ≤ i ≤ q

and 1 ≤ j ≤ q, are active only at timestamp 2. ◀
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v1,T v1,F v2,T v2,F

a1,1 b1,4a1,2 a1,3 a1,4 b1,1 b1,2 b1,3 b2,2 b2,3 b2,4a2,1 a2,2 a2,3 a2,4 b2,1

Figure 2 An example of a temporal graph G built by the reduction for clause (x1,T ∨ x2,F). The
temporal edges defined at timestamp 1 are dashed, while those defined at timestamp 2 are solid .

Correctness. A solution of ℓ-TimelineCover(k) on ⟨G, λ, k, ℓ⟩ is called canonical if every
temporal edge ({vi,T, ai,p}, 1), for 1 ≤ i ≤ q and 1 ≤ p ≤ 4, and every temporal edge
({vi,F, bi,p}, 1), for 1 ≤ i ≤ q and 1 ≤ p ≤ 4, are covered by such a solution. We start by
proving the following property.

▶ Lemma 1. Given an instance ⟨X, C, h⟩ of Max 2-3-SAT(h), consider a correspond-
ing instance ⟨G, λ, k, ℓ⟩ of ℓ-TimelineCover(k). Then, starting from a feasible solution
of ℓ-TimelineCover(k) on ⟨G, λ, k, ℓ⟩, we can compute a feasible canonical solution of ℓ-
TimelineCover(k) on ⟨G, λ, k, ℓ⟩ that covers at least the same number of temporal edges.

Proof. Consider an assignment σ to V and assume that there exist two vertices ai,p, bi,s ∈ V ,
for some i with 1 ≤ i ≤ q, 1 ≤ p, s ≤ 4 that are both assigned to t = 1. Notice that the
temporal edge ({ai,p, bi,s}, 2) is not covered and that each of ai,p, bi,s covers at most one
temporal edge (active in t = 1). Then we can modify the solution σ of ℓ-TimelineCover(k)
by assigning one of the two vertices, w.l.o.g. ai,p, to t = 2 so that the temporal edge
({ai,p, bi,s}, 2), is now covered, while ({vi,T, ai,p}, 1) is now possibly not covered. Notice that
by iteratively applying this modification we can compute a solution of ℓ-TimelineCover(k)
that covers the same number of temporal edges as σ, such that every ai,p or every bi,s is
assigned to t = 2. Indeed assume this is not the case, then there exist two vertices ai,p, bi,s

both assigned to t = 1, thus by applying the modification described before we can compute a
solution with the desired property.

Note that we assume that in σ either every ai,p, 1 ≤ p ≤ 4, or every bi,s, 1 ≤ s ≤ 4, is
assigned to t = 2 and that either every ai,p, 1 ≤ p ≤ 4, or every bi,s, 1 ≤ s ≤ 4, is assigned
to t = 1. Indeed, assume w.l.o.g. that every ai,p is assigned to t = 2, then all the temporal
edges defined in timestamp 2 and incident in some bi,s are covered by vertices ai,p. Hence
we can assume that every bi,s is assigned to 1.

Now, we claim that at most one of vi,T, vi,F, 1 ≤ i ≤ q, is assigned to t = 2. Indeed,
assume that both vi,T, vi,F are assigned to t = 2 (thus not to t = 1). Since either every
vertex ai,p or every vertex bi,s is assigned to timestamp 2, it follows that either all temporal
edges ({vi,T, ai,p}, 1), with 1 ≤ i ≤ q, and 1 ≤ p ≤ 4, or all the temporal edges ({vi,F, bi,p}, 1),
1 ≤ i ≤ q, and 1 ≤ p ≤ 4 are not covered. Assume w.l.o.g. that every ai,p is assigned to time
t = 2. Since both vi,T and vi,F are assigned to time 2 and each literal in X belongs to at most
three clauses, each of vi,T, vi,F is assigned to t = 2 and it covers at most three temporal edges.
Then we can compute a solution of ℓ-TimelineCover(k) on ⟨G, λ, k⟩ by assigning vi,T to t = 1,
while each ai,p is assigned to t = 2 (or vi,F assigned to t = 1 and each bi,p is assigned to
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11:6 Partial Temporal Vertex Cover with Bounded Activity Intervals

t = 2). The number of covered temporal edges with respect to solution σ is increased at least
by one and we have that either vi,T is assigned to time 1 (if every ai,p is assigned to time 2)
or vi,F is assigned to time 1 (if every bi,p is assigned to time 2). Then every temporal edge
({vi,T, ai,p}, 1), 1 ≤ i ≤ q, and 1 ≤ p ≤ 4, and every temporal edge ({vi,F, bi,p}, 1), 1 ≤ i ≤ q,
and 1 ≤ p ≤ 4, is covered by the solution. Thus we have computed a canonical solution of
ℓ-TimelineCover(k) on ⟨G, λ, k, ℓ⟩ that covers at least the same number of temporal edges as
σ, hence concluding the proof. ◀

Now, we can prove the main result of this section.

▶ Theorem 2. ℓ-TimelineCover(k) is NP-hard even on temporal graphs defined on two
timestamps and where each edge is assigned a single time label.

Proof. Note that, by Fact 1, each edge is assigned a single time label and by construction,
the temporal graph is defined on two timestamps.

We start by proving the following fact.

▶ Fact 2. Given a solution of Max 2-3-SAT(h) on instance ⟨X, C, h⟩ we can compute in
polynomial time a canonical solution of ℓ-TimelineCover(k) on the corresponding instance
⟨G, λ, k, ℓ⟩ with k = 24q + h (hence that covers at least k temporal edges).

Proof. Consider a solution of Max 2-3-SAT(h) on instance ⟨X, C, h⟩, we define a solution σ

of ℓ-TimelineCover(k) on ⟨G, λ, k, ℓ⟩ as follows. For each variable xi, 1 ≤ i ≤ q, that is set
to true, then vi,F is assigned to t = 1, each ai,p, with 1 ≤ p ≤ 4, is assigned to t = 1, vi,T

is assigned to t = 2 and each bi,p, with 1 ≤ p ≤ 4, is assigned to t = 2. For each variable
xi, 1 ≤ i ≤ q, that is set to false, then vi,T is assigned to t = 1, each bi,p, with 1 ≤ p ≤ 4,
is assigned to t = 1, vi,F is assigned to t = 2 and each ai,p, with 1 ≤ p ≤ 4, is assigned to
t = 2. By construction the solution σ is canonical, hence the 8q temporal edges defined at
time t = 1 are covered. Each temporal edge ({ai,p, bi,s}, 2), with 1 ≤ p, s ≤ 4, is covered
(we have 16q such temporal edges). Finally, by construction, for each satisfied clause, the
corresponding temporal edge defined in t = 2 is covered (we have h such temporal edges). ◀

For the second direction, we prove the following fact.

▶ Fact 3. Given a solution of ℓ-TimelineCover(k) on the instance ⟨G, λ, k, ℓ⟩ with k = 24q +h

(hence that covers at least k temporal edges), we can compute in polynomial time a solution
Max 2-3-SAT(h) on instance ⟨X, C, h⟩ (hence that satisfies h clauses).

Proof. By Lemma 1 we can consider a canonical solution σ of ℓ-TimelineCover(k) on instance
⟨G, λ, k, ℓ⟩. By construction σ covers the 8q temporal edges defined at time t = 1. Notice that
we can assume that exactly one of vi,T, vi,F is assigned to t = 1. If both vi,T, vi,F are assigned
to t = 1, we can define all the vertices ai,p (all the vertices bj,p, respectively) assigned to
t = 1 and assign vi,T (vi,F, respectively) to t = 2. Hence exactly one of vi,T, vi,F is assigned to
t = 1, and exactly one of vi,T, vi,F is assigned to t = 2. Moreover, we can assume that for
each i with 1 ≤ i ≤ q, the temporal edges incident to ai,p and bi,s, with 1 ≤ p, s ≤ 4, are
covered.

Now, construct a truth assignment as follows. For each 1 ≤ i ≤ q, if vi,T is assigned to
t = 2, then set the corresponding variable xi to true, if vi,F is assigned to t = 2, then set
the corresponding variable xi to false. By construction if a temporal edge ({xi,A, xj,B}, 2) is
covered, then the corresponding clause is satisfied, thus we have defined a truth assignment
that satisfies at least h clauses, hence a solution of Max 2-3-SAT(h), concluding the proof. ◀
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By Fact 2 and by Fact 3 it follows that we have designed a polynomial-time reduction
from Max 2-3-SAT(h) to ℓ-TimelineCover(k). By the NP-hardness of Max 2-3-SAT(h) (the
decision version) [3], it follows that also ℓ-TimelineCover(k) on temporal graphs defined on
two timestamps and where each edge is assigned a single time label is NP-hard. ◀

We note that the reduction described above can be used to prove the APX-hardness of
ℓ-MaxTimelineCover, thus implying that ℓ-MaxTimelineCover does not admit a PTAS. Later,
in Section 5, we will prove that ℓ-MaxTimelineCover admits an approximation algorithm of
factor 3

4 .

▶ Theorem 3. ℓ-MaxTimelineCover is APX-hard.

Proof. The result follows from the fact that essentially the same reduction described
in this section is an L-reduction from the optimization version of Max 2-3-SAT(h) to ℓ-
MaxTimelineCover (for details on L-reduction we refer to [20]).

Denote by I an instance of the optimization version of Max 2-3-SAT(h) and by I ′ the
corresponding instance of ℓ-MaxTimelineCover. Let OPTS(I) be the value of an optimum
solution of the optimization version of Max 2-3-SAT(h) on instance I. Let OPTM (I ′) be the
value of an optimum solution of ℓ-MaxTimelineCover on instance I ′.

By Fact 2, we have that

OPTM (I ′) ≤ 24q + OPTS(I)

and, observing that, since there is a truth assignment that satisfies at least 1
2 q clauses, we

have that OPTS(I) ≥ 1
2 q. It follows that

OPTM (I ′) ≤ 24q + OPTS(I) ≤ 48 OPTS(I) + OPTS(I) = 49 OPTS(I)

Consider the value A′ (number of covered temporal edges) of a feasible solution of ℓ-
MaxTimelineCover on instance I ′ and the value A (number of satisfied clauses) of a feasible
solution of the optimization version of Max 2-3-SAT(h) on instance I.

By Fact 3, we have that, given a feasible solution of ℓ-MaxTimelineCover of value A′ on I ′

we can compute in polynomial time a feasible solution of the optimization version of Max
2-3-SAT(h) on instance I of value A such that

|OPTS(I) − A| ≤ |OPTM (I ′) − A′|

Thus we have designed an L-reduction from the optimization version of Max 2-3-SAT(h)
to ℓ-MaxTimelineCover. Since the optimization version of Max 2-3-SAT(h) is known to be
APX-hard [2, 3], the APX-hardness holds also for ℓ-MaxTimelineCover. ◀

4 Fixed Parameter Tractability

In this section, we show that ℓ-TimelineCover(k) is FPT when parameterized by: the number
h = |E| − k of temporal edges that may not be covered by the solution (Section 4.1);
parameter k and parameter n + ℓ (Section 4.2), where n denotes the number of vertices of
the input graph.

4.1 Parameter h
The result is obtained by a parameterized reduction to Almost 2-SAT(p), which is known to be
FPT when parameterized by p [18, 15], with a similar approach applied for MinTimelineCover
in [7]. We recall that, given a 2-CNF formula and a positive integer p, Almost 2-SAT(p) asks
whether it is possible to remove at most p clauses so that the resulting formula is satisfiable.
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11:8 Partial Temporal Vertex Cover with Bounded Activity Intervals

▶ Theorem 4. ℓ-TimelineCover(k) is FPT when parameterized by h.

Proof. Given an instance I = ⟨G, λ⟩ of ℓ-TimelineCover(k) and denoted by h = |E| − k the
number of temporal edges that are not covered, we define a corresponding instance I ′ of
Almost 2-SAT(p), with p = h, as follows. To ease the notation, we shall assume that all
timestamps t ∈ [1, T ] are such that Et ≠ ∅; if this is not the case, the algorithm can be easily
modified to avoid any computation in those timestamps t for which Et = ∅.

For each vertex v ∈ V and for each timestamp i ∈ [1, T ], we create a variable vi.
For each vertex v ∈ V , for each timestamp i ∈ [1, T ], and for each j > i + ℓ, we create
h + 1 copies of clause (vi ∨ vj), which is called a vertex clause.
For each edge {u, v} ∈ E such that λ({u, v}) = i (with i ∈ [1, T ]), we create a clause
(ui ∨ vi), which is called a temporal edge clause.

Intuitively, each copy of the vertex clauses models the fact that a vertex is assigned to an
interval of length exactly ℓ. More formally, denoted by i the first timestamp of the interval
that is assigned to a vertex v, the clause (vi ∨ vj) ensures that, for each j > i + ℓ, time j

does not belong to the interval assigned to v. Also, a temporal edge clause (ui ∨ vi) models
the fact that a temporal edge (e = {u, v}, i) is covered, because u or v is assigned some time
interval that includes i.

Note that p = h, and that I ′ can be computed in polynomial time. We now prove that I ′

is a yes-instance of Almost 2-SAT(p) if and only if I is a yes-instance of ℓ-TimelineCover(k).
Let I be a yes-instance of ℓ-TimelineCover(k). Since I is a yes-instance, we know that

k′ ≥ k temporal edges are covered and hence h′ = |E| − k′ ≤ h temporal edges are not
covered. The corresponding Almost 2-SAT(p) instance I ′ contains h′ clauses that are not
satisfied, and these clauses are temporal edge clauses. Indeed, since we have h + 1 copies
for each vertex clause, having one vertex clause that is not satisfied would imply that h + 1
clauses of the formula are not satisfied, but we observed h′ ≤ h. By removing the h′ ≤ p

temporal edge clauses that are not satisfied, the formula is satisfied. This implies that I ′ is a
yes-instance of Almost 2-SAT(p).

Now, let I ′ be a yes-instance of Almost 2-SAT(p). Since I ′ is a yes-instance, the formula
is satisfied by removing at most p = h clauses. Since the formula contains h + 1 = p + 1
copies of each vertex clause, the clauses that are not satisfied are temporal edge clauses,
while all vertex clauses are satisfied. Each unsatisfied temporal edge clause in I ′ implies
that there is a temporal edge in I that is not covered. It follows that I is a yes-instance of
ℓ-TimelineCover(k). ◀

4.2 Parameter k

We shall assume that every vertex is incident to at least one temporal edge, otherwise, we
can just remove such a vertex and solve the problem for the obtained subgraph of G. We
distinguish two cases.

• Case 1: k ≤ n
2 . We first compute a spanning forest F of the graph G. Assuming

w.l.o.g. that G contains no isolated vertex, we note that F has at least n
2 edges. We then

root each tree of F , and randomly select k edges from F . Next, we associate each temporal
edge ({u, v}, i) of the k selected edges to vertex v, where u is the parent of v in the forest.
This implies that no two temporal edges are associated to the same vertex. Let (e, i) be one
of such temporal edges and let v be the vertex associated to it. We map v to an interval
[i, i + ℓ − 1]. We apply the process mentioned above for each of the k edges. This approach
allows us to cover k temporal edges.
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• Case 2: k > n
2 . In this case, we use dynamic programming as follows. First, to ease

the notation, we shall assume that all timestamps t ∈ [1, T ] are such that Et ̸= ∅; if this
is not the case, the algorithm can be easily modified to avoid any computation in those
timestamps t for which Et = ∅.

Suppose that we already performed our computations on each timestamp smaller than i,
with i ∈ [2, T ], and that we are now analyzing timestamp i. Suppose we have the records
Ri−1

1 , . . . , Ri−1
g associated with timestamp i − 1; the cardinality g of this set of records

depends on the parameter k and will be analyzed later. Each record Ri−1
j , with j ∈ [1, g], is

composed of the following information:
A table Ai−1

j where we store all the vertices v that we previously assigned to an interval
starting in timestamp x, with i − ℓ ≤ x ≤ i − 1. In this table, we also associate to v

the value x of the first timestamp where v is assigned. These vertices are said to be
on-vertices or simply on.
A set of vertices A

i−1
j that were previously assigned to an interval starting in timestamp

x such that x + ℓ < i − 1 by the algorithm. Notice that these vertices are not going to
cover any temporal edge (e, q) where q ≥ i. These vertices are said to be off-vertices or
simply off.
A number si−1

j of temporal edges that are covered by the vertices in Ai−1
j and A

i−1
j . This

is the score of the record.
Observe that the number of possible different sets of off-vertices is a function of n, which is
upperbounded by 2k because k ≥ n

2 by assumption. Also, the score of possible different costs
is upperbounded by k by definition, since we only care about covering k edges. Concerning
the vertices that are on-vertices in some interval [x, x + ℓ − 1], observe that we can assume
that there are no more than k temporal edges active in this interval, since in this case we
can simply assign this interval to every vertex of the graph and the solution is trivial. Also,
we assume that we assign a vertex to an interval [x, x + ℓ − 1] if and only if there exists a
temporal edge (e, x) incident to v. If this is not the case, we could simply associate v to the
interval that starts with the first timestamp where a temporal edge incident to v is covered,
thus covering not fewer temporal edges with v. Since there are less than k temporal edges
(e, q) such that q ∈ [x, x + ℓ − 1] and by the above assumption, we can assume w.l.o.g. that
there are less than k vertices that are on-vertices in each record.

Now, we prove the next lemma:

▶ Lemma 5. For each i − 1 ∈ [2, T ], where Ri−1
1 , . . . , Ri−1

g are the records at timestamp
i − 1, we have g ∈ O(2k log k) and maxg

i=1 |Ri−1
j | ∈ O(k log T ).

Proof. Overall, each table in one record contains O(k) items. Concerning the size of a
single item, each item of Ai−1

j , for each j ∈ [1, g], represents a value in O(T ). Thus,
maxg

i=1 |Ri−1
j | ∈ O(k log T ). Concerning the value of g, we note that the number of possible

values x associated with a vertex in Ai−1
j is at most k, because there are k possible temporal

edges incident to v in an interval of length ℓ starting in x. Consequently, we have O(2k log k)
distinct records, i.e., g ∈ O(2k log k). ◀

Algorithm description. In the base case, consider timestamp 1. Let S1, . . . , S2n be all the
possible subsets of vertices of V and assume that S1, . . . , Sg, with g ≤ 2n, are the possible
subsets of the vertices that have a temporal edge active in timestamp 1. For each j ∈ [1, g],
we create a record R1

j by setting: A1
j = Sj and each of such vertices is associated to the value

(timestamp) 1; A
1
j = ∅; the score s1

j can be computed in O(k) time.
We now consider the inductive case. Let Ri−1

1 , . . . , Ri−1
g be the set of records computed

at timestamp i − 1. For each Ri−1
j , where j ∈ [1, g], we proceed as follows. We consider the

vertex set V \ (Ai−1
j ∪ A

i−1
j ) and every possible subset of this set. For each subset S, we

SAND 2024



11:10 Partial Temporal Vertex Cover with Bounded Activity Intervals

construct a new record Ri
p that we will associate with time i. We assume that these and

only these are the vertices that are associated with the interval [i, i + ℓ − 1] for the partial
solution described by Ri

p. Let S′ be the set of vertices in Ai−1
j that are assigned to interval

[i − ℓ, i − 1]; note that the information about which vertices of Ai−1
j are assigned to interval

[i − ℓ, i − 1] is contained in Ai−1
j (these are the vertices of Ai−1

j that are associated with
timestamp i − ℓ − 1).

The vertices of Ri
p that are on-vertices (hence those in Ai

p), are going to be the vertices
in (Ai−1

j \ S′) ∪ S; each vertex in S is associated with value i, each vertex in Ai
p \ S has

the same timestamp it is associated with in Ai−1
j . Note that we assume that each vertex

u in S has a temporal edge defined in i and covered by u.
The off-vertices of Ri

p (hence those in A
i

p) are going to be the vertices in Ai−1
j ∪ S′.

The score of Ri
p is si−1

j + s, where s is the number of temporal edges covered by vertices
of S (that we just associated with an interval [i, i + ℓ − 1]) that are not covered by vertices
in Ai−1

j . Computing the score s of Ri
p requires O(k2) time. Indeed, there exist at most k

temporal edges in the interval [i, i + ℓ − 1]. We identify the temporal edges defined in
[i, i + ℓ − 1] and not covered by on-vertices of Ai−1

j in O(k2) time (for each temporal edge
defined in [i, i + ℓ − 1] we can check if it is covered by some on-vertex of Ai−1

j in O(k)
time, since Ai−1

j contains less than k on-vertices). Then, for each uncovered temporal
edge, we check that it is covered by some vertex in S in O(k2) time (for each temporal
edge we can check if it is covered by some vertex of S in O(k) time, since S contains at
most k vertices).

Following from the discussion above, the time complexity needed to perform the above
operations does not depend on ℓ, but only on k. Since the number of vertices of the graph is
n ≤ 2k, updating a record requires O(f(k)) time, where f(·) is a computable function.

Hence, by Lemma 5 we have the following theorem.

▶ Theorem 6. ℓ-TimelineCover(k) is FPT when parameterized by k.

It is worth noting that, since in each timestamp a vertex can cover at most n − 1 edges,
it follows that k ≤ ℓ · n2. Thus, we observe the following.

▶ Theorem 7. ℓ-TimelineCover(k) is FPT when parameterized by n + ℓ.

5 A 3
4-Approximation Algorithm

In this section, we present an approximation algorithm achieving factor 3
4 based on randomized

rounding and inspired by the approximation algorithm given in [9] for Max Sat.

▶ Theorem 8. There is a polynomial-time approximation algorithm for ℓ-MaxTimelineCover
with factor 3

4 .

To prove Theorem 8, we first define an ILP formulation for the ℓ-MaxTimelineCover
problem (Section 5.1). Next, we describe an algorithm based on randomized rounding an LP
relaxation of this formulation (Section 5.2).

5.1 ILP formulation
We present an Integer Linear Programming (ILP) formulation of ℓ-MaxTimelineCover. We
make use of the following variables:
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For each temporal edge ({vi, vj}, t), the variable ei,j,t is 1 if ({vi, vj}, t) is covered, and it
is 0 otherwise.
For each vertex vi and for each t ∈ [1, T − ℓ + 1], the variable Ai(t) is 1 if vi is assigned
to interval [t, t + ℓ − 1], and it is 0 otherwise.

max
∑
i,j,t

ei,j,t (1)

s. t.

ei,j,t ≤
∑

t1∈[t−ℓ+1,t]

Ai(t1) +
∑

t2∈[t−ℓ+1,t]

Aj(t2) ∀({vi, vj}, t) (2)

∑
t

Ai(t) ≤ 1 ∀vi ∈ V (3)

ei,j,t ∈ {0, 1}, ∀({vi, vj}, t) (4)
Ai(t) ∈ {0, 1} ∀vi ∈ V, (5)

∀t ∈ [1, 2, . . . , T − ℓ]

Inequality (2) guarantees that a variable ei,j,t can be set to 1 only if at least one end-vertex
is mapped to an interval containing t, while inequality (3) guarantees that each vertex is
mapped to at most one interval.

5.2 The Approximation Algorithm
The 3

4 -factor approximation algorithm for the ℓ-MaxTimelineCover problem is presented
in Algorithm 1. The algorithm solves in polynomial time an LP relaxation of the ILP
formulation described in Section 5.1, where variables ei,j,t ∈ [0, 1] and Ai(t) ∈ [0, 1]. We
denote by A∗

i (t) and e∗
i,j,t the values of variables Ai(t) and ei,j,t, respectively, of the optimal

solution of the LP relaxation.
Starting from a solution of the relaxation, the approximation algorithm defines a solution

for ℓ-MaxTimelineCover by assigning each vertex vi ∈ V to interval [t, t+ℓ−1] with probability
A∗

i (t).

Algorithm 1 3
4 -approximation algorithm for the ℓ-MaxTimelineCover problem.

Solve the LP relaxation of the ILP formulation from Section 5.1, with constraints ei,j,t ∈ [0, 1]
and Ai(t) ∈ [0, 1]
Let e∗

i,j,t and A∗
i (t) be the values of a solution to the relaxation of the ILP from Section 5.1

For every vertex vi, define it active in interval [t, t + ℓ − 1] with probability A∗
i (t)

Let E(σ) be the expected value of a solution σ returned by Algorithm 1. Denote by
P [ei,j,t] the probability that the temporal edge ({vi, vj}, t) is covered. It holds that

E(σ) =
∑
i,j,t

P [ei,j,t].

Consider now P [ei,j,t], it holds that

P [ei,j,t] = 1 − P [ei,j,t],

where ei,j,t is the event that the temporal edge ({vi, vj}, t) is not covered by solution σ. We
have that

1 − P [ei,j,t] = 1 − P [({vi, vj}, t) not cov. by vi ∧ ({vi, vj}, t) not cov. by vj ]. (6)
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Now, we have that

P [({vi, vj}, t) not cov. by vi ∧ ({vi, vj}, t) not cov. by vj ] =1 −
∑

t1∈[t−ℓ+1,t]

A∗
i (t1)

1 −
∑

t2∈[t−ℓ+1,t]

A∗
j (t2)

 (7)

By combining the previous equations we have that

1 − P [ei,j,t] = 1 −

1 −
∑

t1∈[t−ℓ+1,t]

A∗
i (t1)

1 −
∑

t2∈[t−ℓ+1,t]

A∗
j (t2)

 . (8)

From the arithmetic mean inequality, we have that

1 −

1 −
∑

t1∈[t−ℓ+1,t]

A∗
i (t1)

1 −
∑

t2∈[t−ℓ+1,t]

A∗
j (t2)

 ≥

1 −

(
1 −

∑
t1∈[t−ℓ+1,t] A∗

i (t1) + 1 −
∑

t2∈[t−ℓ+1,t] A∗
j (t2)

2

)2

=

1 −

(
1 −

(
∑

t1∈[t−ℓ+1,t] A∗
i (t1) +

∑
t2∈[t−ℓ+1,t] A∗

j (t2)
2

)2

.

Recall that e∗
i,j,t is the value of variable ei,j,t returned by the relaxation of the ILP

formulation of Section 5.1. By Inequality (2) of this formulation, we have that:∑
t1∈[t−ℓ+1,t]

A∗
i (t1) +

∑
t2∈[t−ℓ+1,t]

A∗
j (t2) ≥ e∗

i,j,t. (9)

Thus

1 − P [ei,j,t] ≥

1 −

(
1 −

(
∑

t1∈[t−ℓ+1,t] A∗
i (t1) +

∑
t2∈[t−ℓ+1,t] A∗

j (t2)
2

)2

≥ 1 −
(

1 −
e∗

i,j,t

2

)2

.

Hence, P [ei,j,t] can be bounded as follows:

P [ei,j,t] = 1 − P [ei,j,t] ≥ 1 −
(

1 −
e∗

i,j,t

2

)2

.

The function

1 −
(

1 −
e∗

i,j,t

2

)2

is a concave function and it has value 0 for e∗
i,j,t = 0 and value 3

4 for e∗
i,j,t = 1. It follows

that

P [ei,j,t] ≥ 1 −
(

1 −
e∗

i,j,t

2

)2

≥ 3
4e∗

i,j,t,

thus concluding the proof.
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6 Conclusion

In this paper, we introduced and studied the ℓ-TimelineCover(k) problem (and its optimization
version ℓ-MaxTimelineCover), a variant of the classical Vertex Cover problem inspired by
a recent stream of work on temporal graphs. We have established the NP-hardness of ℓ-
TimelineCover(k) and the APX-hardness of ℓ-MaxTimelineCover, under the restricted condition
where the temporal domain consists of only two timestamps and each edge appears at most
once. We have presented two fixed-parameter algorithms for the following parameters: (i) the
number k of temporal edges covered by the solution, and (ii) the number h of temporal edges
not covered by the solution. Furthermore, we have contributed a 3

4 -approximation algorithm
for ℓ-MaxTimelineCover based on randomized rounding.

There are some interesting research directions to explore. First, the parameterized
complexity of the problem can be further investigated, similarly to what has been done
for MinTimelineCover in [7]. Second, it would be interesting to improve the approximation
factor for ℓ-MaxTimelineCover, possibly considering the semidefinite programming technique
applied for Max Sat [10]. A third possible direction involves expanding the definition of
vertex activity by permitting a finite number of intervals during which a vertex can be active,
as done for MinTimelineCover in [7, 19].
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