
Efficient Shape Formation by 3D Hybrid
Programmable Matter: An Algorithm for Low
Diameter Intermediate Structures
Kristian Hinnenthal # Ñ

Paderborn University, Germany

David Liedtke #Ñ

Paderborn University, Germany

Christian Scheideler #Ñ

Paderborn University, Germany

Abstract
This paper considers the shape formation problem within the 3D hybrid model, where a single
agent with a strictly limited viewing range and the computational capacity of a deterministic finite
automaton manipulates passive tiles through pick-up, movement, and placement actions. The goal
is to reconfigure a set of tiles into a specific shape termed an icicle. The icicle, identified as a
dense, hole-free structure, is strategically chosen to function as an intermediate shape for more
intricate shape formation tasks. It is designed for easy exploration by a finite state agent, enabling
the identification of tiles that can be lifted without breaking connectivity. Compared to the line
shape, the icicle presents distinct advantages, including a reduced diameter and the presence of
multiple removable tiles. We propose an algorithm that transforms an arbitrary initially connected
tile structure into an icicle in O(n3) steps, matching the runtime of the line formation algorithm
from prior work. Our theoretical contribution is accompanied by an extensive experimental analysis,
indicating that our algorithm decreases the diameter of tile structures on average.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Programmable Matter, Shape Formation, 3D Model, Finite Automaton

Digital Object Identifier 10.4230/LIPIcs.SAND.2024.15

Related Version Full Version: 10.48550/arXiv.2401.17734 [15]

Funding This work was supported by the DFG Project SCHE 1592/10-1.

1 Introduction

Advancements in molecular engineering have led to the development of a series of computing
DNA robots designed for nano-scale operations. These robots are intended to perform
simple tasks such as transporting cargo, facilitating communication, navigating surfaces
of membranes, and pathfinding [29, 1, 22, 4]. Envisioning the future of nanotechnology,
we anticipate a scenario where a collective of computing particles collaboratively acts as
programmable matter – a homogeneous material capable of altering its shape and physical
properties programmably. There are numerous potential applications: For environmental
remediation, particles may construct nanoscale filtration systems to remove pollutants from
air or water. They may also be deployed within the human body to construct intricate
structures for targeted drug delivery, perform nanoscale surgeries, or repair damaged tissues
at a cellular level. Additionally, they could assemble nanoscale circuits and components,
enabling the development of more efficient and compact electronic devices. Each of those
scenarios is an application of the shape formation problem, which is the subject of this paper.

© Kristian Hinnenthal, David Liedtke, and Christian Scheideler;
licensed under Creative Commons License CC-BY 4.0

3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024).
Editors: Arnaud Casteigts and Fabian Kuhn; Article No. 15; pp. 15:1–15:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kristian.hinnenthal@hsbi.de
https://www.uni-paderborn.de/person/32229
https://orcid.org/0000-0001-9464-295X
mailto:liedtke@mail.upb.de
https://www.uni-paderborn.de/person/55557
https://orcid.org/0000-0002-4066-0033
mailto:scheideler@upb.de
https://cs.uni-paderborn.de/ti/personal/prof-dr-rer-nat-christian-scheideler
https://orcid.org/0000-0002-5278-528X
https://doi.org/10.4230/LIPIcs.SAND.2024.15
https://doi.org/10.48550/arXiv.2401.17734
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Efficient Shape Formation by 3D Hybrid Programmable Matter

Over the past few decades, various models of programmable matter have emerged,
primarily distinguished by the activity of entities within them. Passive systems consist of
entities (called tiles) that undergo movement and bonding exclusively in response to external
stimuli, such as current or light, or based on their inherent structural properties, such as
specific glues on the surfaces of tiles. Examples of these passive systems include the DNA
tile assembly models aTAM, kTAM, and 2HAM, which are extensively discussed in the
survey [25], as well as population protocols [2], and slime molds [5]. In contrast, active
systems consist of entities (called particles, agents or robots) that independently perform
computation and movement to accomplish tasks. Notable examples encompass the Amoebot
model [7], modular self-reconfigurable robots [27, 30], the nubot model [34], metamorphic
robots [6, 31], and swarm robotics [33].

While fabricating computing DNA robots remains challenging, producing simple passive
tiles from folded DNA strands is efficient and scalable [14]. The hybrid model of programmable
matter [12, 13, 16, 23, 19] offers a compromise between feasibility and utility. This model
involves a small number of active agents with the computational capabilities of deterministic
finite automata together with a large set of passive building blocks, called tiles. Agents can
manipulate the structure of tiles by picking up a tile, moving it, and placing it at some spot.
A key advantage of the hybrid approach lies in the reusability of agents upon completing a
task, where in purely active systems, particles become part of the formed structure.

In this paper, we address the shape formation problem within the 3D hybrid model,
with the ultimate goal of transforming an arbitrary initial arrangement of tiles into a
predefined shape. We consider tiles in the shape of rhombic dodecahedra, i.e., polyhedra
featuring 12 congruent rhombic faces, positioned at nodes within the adjacency graph of
face-centered cubic (FCC) stacked spheres (see Figure 1a). Unlike rectangular tiles, the
rhombic dodecahedron presents a distinct advantage: it allows an agent to orbit around a tile
without risking connectivity. This property is particularly valuable in liquid or low gravity
environments, where it prevents unintended separation between the agents and the tiles.

Achieving universal 3D shape formation faces a key challenge: identifying tiles that can
be lifted without disconnecting the tile structure (referred to as removable tiles). Even if
such tiles exist, locating them requires exploring the tile structure, demanding Ω(D log(∆))
memory bits for graphs with a diameter D and degree ∆ [11]. When limited to constant
memory, navigating plane labyrinths requires two placeable markers (pebbles) [17, 3]. In
the 2D context, finding removable tiles is impossible without prior modification of the tile
structure, as discussed in [13]. In 3D, complexity increases significantly, with instances where
any tile movement can locally disconnect the structure. As discussed above, the agent is
unable to verify whether this disconnection also occurs globally. To address these challenges,
we make the assumption that the agent carries a tile initially, using it to uncover removable
tiles through successive tile movements. It is still entirely unclear whether otherwise a
removable tile can be found in all 3D instances. For that reason, our primary goal is to
construct an intermediate structure that is easily navigable by constant-memory agents and
allows the identification of removable tiles without relying on an initially carried tile.

1.1 Our Contribution
The intermediate structure we propose is termed an icicle, characterized by a platform
representing a parallelogram and downward-extending lines of tiles from the platform (see
Figure 1a). We present a single-agent algorithm that transforms any initially connected
tile structure into an icicle in O(n3) steps, matching the efficiency of the line formation
algorithm from prior work [16]. While both the icicle and the line enable agents without an

K. Hinnenthal, D. Liedtke, and C. Scheideler 15:3

initial tile to find removable tiles, the icicle presents distinct advantages. In the best-case
scenario, the diameter D of an icicle can be as low as O(n 1

3), whereas a line consistently
maintains a diameter of n. Furthermore, an icicle encompasses multiple removable tiles, which
removes the necessity to traverse the intermediate shape completely to locate a removable
tile. Our paper includes comprehensive simulation results, indicating that, on average, our
algorithm reduces the diameter of the tile structure. In addition, the runtime observed in the
simulations consistently falls below the bound established in our runtime analysis. Across
all simulations, the runtime remains well within the vicinity of n2. It is noteworthy that we
identified an edge case where the diameter could increase by a factor of O(n 1

3), although we
believe this to be the worst-case.

1.2 Related Work
The 3D variant of the hybrid model was introduced in [16], where the authors presented an
algorithm capable of transforming any connected input configuration into a line in O(n3)
steps. In [19], the authors address the coating problem, providing a solution that solves
the problem in worst-case optimal O(n2) steps. They assume a single active agent that has
access to a constant number of distinguishable tile types.

Significant progress has been made in recent years regarding the 2D version of the hybrid
model. For instance, in [13], the authors address the 2D shape formation problem, presenting
algorithms for a single active agent that efficiently constructs line, block, and tree structures
- each being hole-free structures with specific advantages and disadvantages – in worst-case
optimal O(n2) steps. Another publication, [12], explores the recognition of parallelograms
with a specific height-to-length ratio. The most recent publication [23] solves the problem of
maintaining a line of tiles in presence of multiple agents and dynamic failures of the tiles.

Closely tied to the hybrid model is the well-established Amoebot model, where computing
particles traverse an infinite triangular lattice through expansions and contractions. In [8],
the authors showcase the construction of simple shapes like hexagons or triangles within
the Amoebot model. Expanding on this work, [9] introduces a universal shape formation
algorithm capable of constructing an arbitrary input shape using a constant number of
equilateral triangles, with the scale depending on the number of amoebots. Notably, this work
assumes common chirality, a sequential activation schedule, and randomization. Subsequent
improvements are presented in [10], where a deterministic algorithm is introduced, enabling
amoebots to form any Turing-computable shape without the need for common chirality or
randomization. In [20], the authors consider shape formation in the presence of a finite
number of faults, where a fault resets an amoebot’s memory. They solve the hexagon
formation problem, assuming the existence of a fault-free leader. A recent extension of the
Amoebot model, discussed in [24], considers joint movements of Amoebots. The authors
simulate various shape formation algorithms as a proof of concept.

In both [13] and this paper, shape formation algorithms are introduced that construct an
intermediate shape, intended to serve as the foundation for more advanced shape formation
algorithms. A similar strategy is explored in [18], where 2D lattice-based modular robots
initially transform into a canonical shape before achieving the final desired shape. An
approach that does not rely on canonical intermediate structures is considered in [26]. The
authors present primitives for the Amoebot model that establish shortest path trees within
the amoebot structure and subsequently directly route amoebots to their target position.

The concept of shape formation is extensively studied in the field of modular robotics
and metamorphic robots, often referred to as self-reconfiguration. A comprehensive survey
on this topic can be found in [28]. In the field of swarm robotics, shape formation is often
closely related to the problem of computing collision-free paths [32, 21].

SAND 2024

15:4 Efficient Shape Formation by 3D Hybrid Programmable Matter

(a) (b) (c) (d)

Figure 1 (a) An example configuration that has the shape of an icicle; the agent (depicted as a
sphere) is positioned at a tiled node within the platform representing a parallelogram. (b–d) The
twelve compass directions divided into upwards (b), plane (c) and downwards directions (d).

1.3 Model Definition

We consider a single active agent r with limited sensing and computational power that
operates on a finite set of passive tiles positioned at nodes of some specific underlying graph
G, which we define in the following. Consider the close packing of equally sized spheres
at each point of the infinite face-centered cubic lattice. Let G = (V, E) be the adjacency
graph of spheres in that packing, and consider an embedding of G in R3 in which all edges
have equal length, e.g., the trivial embedding where the edge length equals the radius of
the spheres. Cells in the dual graph of G w.r.t. that embedding have the shape of rhombic
dodecahedra, i.e., polyhedra with 12 congruent rhombic faces (see Figure 1a). This is also
the shape of every cell in the Voronoi tessellation of G, i.e., that shape completely tessellates
3D space. Consider a finite set of tiles that have the shape of rhombic dodecahedra. Tiles
are passive, in the sense that they cannot perform any computation or movement on their
own. A node v ∈ V is tiled, if there is a passive tile positioned at v; otherwise node v is
empty. Each node can hold at most one tile and each tile is placed at at most one node at a
time. Each node in V has precisely twelve neighbors whose relative positions are described
by the twelve compass directions une, uw, use, n, nw, sw, s, se, ne, dnw, dsw and de (see
Figures 1b–1d). Take note that G contains infinitely many copies of the infinite triangular
lattice, which serves as the underlying graph in the 2D variant. This allows us to visually
depict 3D examples as a stack of 2D hexagonal tiles, as shown in Figure 1.

A configuration C = (T , p) is the set T that contains all tiled nodes together with the
agent’s position p. We call C connected, if G|T is connected or if G|T ∪{p} is connected and
the agent carries a tile, where G|W denotes the subgraph of G induced by some nodeset W .
That is, we allow the subgraph induced by all tiled nodes to disconnect, as long as a tile
carried by the agent maintains connectivity. This constraint prevents the agent and tiles to
drift apart, e.g., in liquid or low gravity environments.

The agent r is the only active entity in this model. It has strictly limited sensing and
computing power and can act on passive tiles by picking up a tile, moving and placing it
at some spot. We assume that tiles can be moved through other tiles, e.g., by Particularly,
we assume an agent with the computational capabilities of a deterministic finite automaton
that performs discrete steps of Look-Compute-Move cycles. In the look-phase, the agent
observes whether its current position p and the twelve neighbors of p are tiled or empty. The
agent is equipped with a compass that allows it to distinguish the relative positioning of

K. Hinnenthal, D. Liedtke, and C. Scheideler 15:5

its neighbors using the twelve above mentioned compass directions. Its initial rotation and
chirality can be arbitrary, but we assume that it remains consistent throughout the execution.
For ease of presentation, our algorithms and their analysis are described according to the
robot’s local view, i.e., we do not distinguish between local and global compass directions.
Based on the information gathered in the look phase, the agent determines its next state
transition according to the finite automaton in the compute-phase. In the move phase, the
agent performs an action that corresponds to the prior state transition. It either (i) moves
to an empty or tiled node adjacent to p, (ii) places a tile at p, if p /∈ T and r carries a tile,
(iii) picks up a tile from p, if p ∈ T and r carries no tile, or (iv) terminates. The agent can
carry at most one tile at a time and during actions (ii) and (iii) the agent loses and gains
a tile, respectively. It’s worth noting that we allow the agent to move through tiles while
carrying one simultaneously. From a practical standpoint, this capability can be facilitated
by conceptualizing tiles as hollow and foldable. It is assumed that the agent is initially
positioned at a tiled node, as otherwise, there might be no valid action available. Additionally,
we assume that the agent initially carries a tile, a justification for which was provided in
Section 1. While the agent is technically a finite automaton, we describe algorithms from
a higher level of abstraction textually and through pseudocode. It is easy to see that a
constant number of variables of constant-size domain each can be incorporated into the
agent’s constantly many states.

1.4 Problem Statement
Consider an arbitrary initially connected configuration C0 = (T 0, p0) with p0 ∈ T . Super-
scripts in our notation generally refer to step numbers and may be omitted if they are clear
from the context. An algorithm solves the icicle formation problem, if its execution results in
a sequence of connected configurations C0 = (T 0, p0), . . . , CT = (T T , pT) such that nodes in
T T are in the shape of an icicle (which we define below), Ct results from Ct−1 for 1 ≤ t ≤ T

by applying some action (i)–(iii) to pt−1, and the agent terminates (iv) in step T .
For some node v ∈ V , we denote v + x the node that is neighboring v in some compass

direction x and −x the opposite compass direction of x, e.g., −une = dsw. We call a
maximal consecutive array of tiles in direction n and s a column, in direction nw and se a
row, and in direction une and dsw a tower. A parallelogram is a maximal consecutive array
of equally sized columns c0, ..., cm (ordered from west to east) whose southernmost tiles at
nodes v0, ..., vm are contained in the same row, i.e., vi + se = vi+1 for all 0 ≤ i < m. In a
partially filled parallelogram, column c0 can have smaller size than columns c1, ..., cm.

An icicle is defined as a connected set of towers whose uppermost tiles are contained
within the same (partially filled) parallelogram, as illustrated in Figure 1a. In other words,
tiles “grow” from a single uppermost parallelogram in the dsw direction, hence the chosen
name “icicle”. Notably, in an icicle, any tile with a neighboring tile at une but not at dsw
(some locally dsw-most tile below the parallelogram) can be picked up without violating
connectivity (it is removable). If there is no such tile, i.e., all towers have size one, the
northernmost tile of the westernmost column is removable.

1.5 Structure of the Paper
In Section 2, we introduce all essential terminology. Following that, we present a non-halting
icicle-formation algorithm in Section 3, prove that it converges any initially connected
configuration into an icicle in Section 4, and provide its termination criteria and runtime
analysis in Section 5. Finally, we discuss the results obtained from simulation in Section 6.

SAND 2024

15:6 Efficient Shape Formation by 3D Hybrid Programmable Matter

(a) (b) (c)

Figure 2 Illustrating the x-, y-, and z-coordinate axes (a), the bounding cylinder (b), which
infinitely extends in directions une and dsw as indicated by the arrows, and the bounding box (c)
of an example configuration. For ease of distinction, tiles are shaded according to their z-coordinate,
with brighter shades representing lower z-coordinates. In the example, there is one layer that
contains two fragments (darkest shade of gray), and four layers that each contain a single fragment.

2 Preliminaries

We assign x, y and z coordinates to each node v ∈ V , denoted by c(v) = (x(v), y(v), z(v)),
where the x-coordinates grow from se to nw, y-coordinates from s to n, and z-coordinates
from dsw to une (see Figure 2a). The coordinates transition between neighbors as follows:

▶ Observation 1. Let w be some reference node with c(w) = (0, 0, 0). The following holds:
c(w + une) = (0, 0, 1) c(w + uw) = (1,−1, 1) c(w + use) = (0,−1, 1)
c(w + n) = (0, 1, 0) c(w + nw) = (1, 0, 0) c(w + sw) = (1,−1, 0)
c(w + s) = (0,−1, 0) c(w + se) = (−1, 0, 0) c(w + ne) = (−1, 1, 0)
c(w + dsw) = (0, 0,−1) c(w + de) = (−1, 1,−1) c(w + dnw) = (0, 1,−1)

Given some nodeset S, let xS
min, xS

max be the minimum and maximum x-coordinate of
any node in S, and define yS

min, yS
max, zS

min and zS
max accordingly. We normalize coordinates

according to the minimum coordinates in the initial set of tiled nodes T 0, i.e., we set we
set xT 0

min = yT 0

min = zT 0

min = 0. The bounding cylinder C(S) is the set of all nodes (both
empty and tiled) whose coordinates are bounded by the minimum and maximum x- and
y-coordinates in S, i.e., C(S) = {v ∈ V | xS

min ≤ x(v) ≤ xS
max, yS

min ≤ y(v) ≤ yS
max} (see

Figure 2b). Similarly, in the bounding box B(S) we further bound by the z-coordinate, i.e.,
B(S) = {v ∈ C(S) | zS

min ≤ z(v) ≤ zS
max}. We refer to the extent of a bounding box along

the x-, y- and z-axes as its width, height, and depth. Note that by the choice of our coordinate
axes, the bounding box is always a filled (potentially degenerated) parallelepiped (a 3D
rhomboid; see Figure 2c). A node v is inside the bounding cylinder (box) of S, if v ∈ C(S)
(v ∈ B(S)); otherwise, v is outside of the bounding cylinder (box) of S.

A layer Li is the set of all nodes with z-coordinate i that are contained in the bounding
cylinder of all tiled nodes, i.e., Li = {v ∈ C(T) | z(v) = i}. We refer to nodes with
z-coordinate greater than and less than i as the nodes above and below layer Li, respectively.
The nodeset of a connected component of G|Li∩T is called a fragment (of Li) (see Figure 2).

K. Hinnenthal, D. Liedtke, and C. Scheideler 15:7

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3 The parallelogram formation algorithm on a 2D configuration. The agent performs
multiple steps between each depicted configuration. In (a) and (b) the agent finds a westernmost
column, and in (j) the agent terminates. In all other cases, a tile is shifted from the cross to the
circle, where the dashed lines indicate the path traversed before placing the tile. The path back to
where the tile is picked up as well as the movement to the next column (e.g., (e)–(f)) is not shown.

3 The Algorithm

From a high-level perspective, the agent iteratively transforms locally uppermost fragments
into partially filled parallelograms. This involves rearranging tiles within the same layer
and, at times, positioning tiles below the current layer to ensure connectivity. Whenever the
agent encounters tiles of some layer above, it moves further upwards. Once a parallelogram
is successfully formed, the subsequent step entails its projection. Essentially, during this
projection, each tile in the fragment is shifted to the first empty node in the dsw direction.

In the following, we provide detailed textual descriptions of the parallelogram formation
and projection procedures BuildPar and Project, as well as the full icicle formation
algorithm BuildIcicle. For completeness, their pseudocodes can be found in Appendix A.

3.1 A 2D Parallelogram Formation Algorithm

Refer to Figure 3 for an illustrative example of the algorithm in action. The algorithm
initiates with the agent searching for a locally westernmost column. In configurations
where multiple columns share the same x-coordinate and are locally westernmost, the agent
prioritizes finding the northernmost among them. This is achieved by moving in the nw, sw,
and n directions, prioritized in that order, until no more tile is encountered in any of these
directions. Eventually the agent stops upon reaching the northernmost tiled node v of some
column c. We refer to the steps involved in finding column c as the search phase.

SAND 2024

15:8 Efficient Shape Formation by 3D Hybrid Programmable Matter

(a) (b) (c) (d) (e)

(f)

Figure 4 During a projection, the agent (black disk) shifts each tile of a fragment in direction
dsw. Detailed in (a-d) is the projection of a single column; (e) is a snapshot of the configuration
after the projection. The special case of a parallelogram with a height of one is shown in (f). To
maintain connectivity in that case, the agent moves sw + dnw to transition below the next column.

Subsequently, it executes the BuildPar procedure, which we describe in the following:
Starting from node v, the agent traverses each column in the configuration from n to s.
If, during the traversal of the first column c, the agent encounters either a more western
column (as depicted in Figure 3b) or a column with the same x-coordinate as c to the north
while moving n in the next column c′, it discontinues the current traversal and transitions to
the search phase. Notably, in the latter case, it first fully traverses column c′ in direction
n and afterwards moves to the first column west of c′. This technical detail will play an
important role in the runtime analysis. While traversing a column in the s direction, the agent
actively looks for an empty node that violates the shape of a (partially filled) parallelogram
with westernmost column c. Specifically, it checks the two empty nodes immediately above
(excluding column c) and below each column, as well as each empty neighbor to the east of
the column. Upon finding such a violating empty node w, the agent first places its carried
tile at w and then returns to column c to retrieve the tile from v. Subsequently, this exchange
of tiles is termed as a tile shift from v to w or as shifting (the tile) from v to w (recall that
the agent initially carries a tile that was never placed at any node). After picking up the
tile at v, the agent moves to an adjacent tile and transitions to the search phase again. The
agent terminates at the empty node s of the easternmost column once the configuration is
fully traversed without encountering any violating nodes. Any of the following conditions are
sufficient for an empty node w to be considered violating: (1) w has a tile at n, ne and se
(e.g., Figure 3c), (2) w has a tile at s and se (e.g., Figure 3d) and is not n of the westernmost
column (recall that we allow the parallelogram to be partially filled), (3) w has a tile at nw
and n (e.g., Figures 3e–3g and 3i), (4) w has a tile at nw, sw and s (e.g., Figure 3h).

3.2 An Icicle Formation Algorithm
From a high-level perspective, the construction of an icicle involves the iterative transformation
of a locally uppermost fragment into a parallelogram, followed by a projection of the fragment
in the dsw direction. When applying the parallelogram construction algorithm in a 2D
configuration, the agent can always shift the tile at the northernmost node v of a locally
westernmost column without violating connectivity (Figure 5a illustrates that connectivity

K. Hinnenthal, D. Liedtke, and C. Scheideler 15:9

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r) (s) (t)

Figure 5 Illustrating all scenarios in which the northernmost node of a locally westernmost
column is not removable. For brevity, (a—r) only illustrate the agent’s movement (indicated by
arrows) to the empty node (with a dashed outline) that is tiled next; (s) and (t) also portray the
subsequent tile shifts. In (r), the agent may alternatively enter BuildPar if the outlined node were
tiled. Note that (s) and (t) only show instances where a tile at dsw (s) and de (t) is encountered.

is preserved in the only critical 2D case). In a 3D configuration, the situation becomes
more intricate. There are multiple cases in which the tile at v must remain in its immediate
neighborhood to avoid violating connectivity. Additionally, there is a case in which the tile
at v cannot be moved at all unless neighboring tiles are also moved. We categorize these
cases based on specific properties of node v, which we define as follows:

▶ Definition 1. Let v ∈ T be an arbitrary tiled node. Denote by N(v) the neighborhood of v

(exluding v), and by NT (v) its subset of only tiled nodes. Node v is removable, if the tiled
neighbors of v are locally connected, i.e., G|NT (v) is connected. Node v is shiftable, if G|NT (v)
is disconnected and there exists a node w ̸= v (termed bridge node of v) for which G|NT (v)∪{w}
is connected. Any node that is neither removable nor shiftable is termed unmovable.

We now state the full icicle algorithm: The agent starts in the search phase where it
repeatedly moves uw, use, une, nw, sw and n until it eventually stops at some node v.

If node v is removable, the parallelogram traversal procedure BuildPar is entered. There
are three possible outcomes: the agent returns from the procedure after finding a more
western column or some tile above, after placing a tile, or at the empty node s of the
fragment’s easternmost column. In the first case, the agent transitions to the search phase.
In the second case, the agent first moves back to pick up the tile at node v, then moves to
the next tile at s or se, and afterwards transitions to the search phase. In the third case, the
current fragment forms a correctly shaped parallelogram and the agent proceeds by executing
the Project procedure. During Project, each tile of the fragment is projected in the dsw
direction. Starting with the easternmost column, tiles are projected columnwise from east to
west and within the columns from n to s (see Figures 4a–4e). Let v0, ..., vk be the nodes of
the currently projected column ordered from n to s. For each i = 0, ..., k, the agent performs
a tile shift from vi to the first empty node wi in direction dsw of vi. After picking up the
last tile of the column at vk, the agent moves nw and continues the projection in the western
neighboring column. In the special case of a degenerated parallelogram with a height of
one, after picking up a tile, the agent moves sw and dnw instead (see Figure 4f). These
additional steps ensure that connectivity is maintained during the projection. Once the last
tile of the fragment is projected, the agent transitions to the search phase in the layer below.

SAND 2024

15:10 Efficient Shape Formation by 3D Hybrid Programmable Matter

Otherwise, if the agent stops at a non-removable node v, it acts according to the case
distinction outlined below, prioritized in the given order (refer to Figure 5 for a graphical
overview). Subsequently, the agent transitions to the search phase, concluding our algorithm.

▶ Case A. If v + se is a bridge node of v (thereby v is shiftable and v + se is empty), then
shift the tile from v to v + se (see Figures 5a–5g), and move to v + s afterwards.

▶ Case B. If v + de is a bridge node of v, and at least one neighboring tile is not at dsw
or se, then shift the tile from v to v + de (see Figures 5h–5q), and move to the first tile at
v + s, v + se or v + ne. Additionally, if v + s is empty and both v + se and v + ne are tiled,
then traverse the next column starting at v + se in direction s. If during that traversal a tile
at uw, use or sw is encountered, then immediately transition to the search phase.

▶ Case C. If the only tiled neighbors of v are at dsw and se, then move se and observe node
w = v + se + dsw. If w is empty, then shift the tile from v to w (see Figure 5r), and move
to v + se afterwards. Otherwise, if w is already tiled, move back to v and enter BuildPar.

▶ Case D. If the only tiled neighbors of v are at dnw, s and ne (v is unmovable, see Figure 5s),
then follow these steps: First, move s until some node w is entered that has a neighboring
tile at uw, use, sw, dsw, se or de, or until there is no more tile in direction s. If w has a tile
at uw, use or sw, then immediately transition to the search phase. Otherwise, shift each
tile in the column that is somewhere n of w in direction de (including w if w + de is empty).
To be precise, let vk, vk−1, ..., v1, v be the nodes of the column ordered from s to n starting
at vk = w + n (or vk = w if w + de is empty). Perform a tile shift from vi to vi + de for
each i with k ≥ i > 0. After the tile shift at vi with i > 0, move ne + dnw to be positioned
at vi−1 + de (to preserve connectivity). Once the final tile is picked up, move to v + ne.

▶ Case E. If the only tiled neighbors of v are at dnw and s (see Figure 5t), then proceed
analogously to the previous case, with the exception that tiles at dsw are disregarded. Addi-
tionally, make the following adaptations: If no tile at uw, use, sw, se or de is encountered,
then project the whole column (which is a parallelogram of width one) in direction dsw.
Otherwise, after performing the final tile shift in direction de, repeatedly move s (on empty
nodes) and enter the first tiled node at s or se (which must exist since we did not project).

The following remarks aim to clarify the choices made in the above case distinction:
In case C, the node v + de serves as a bridge node for v; however, the agent takes an
additional step by attempting to shift the tile to v + se + dsw. This decision stems from
the fact that v + de is not within the bounding cylinder of tiles observable from node v.
Similarly, in case D, v + dsw serves as a bridge node for v. Although v + dsw is within
the bounding cylinder of observable tiles, it shares the same x- and y-coordinates as v. It is
essential to our analysis that tiles are never placed outside of the bounding cylinder, and that,
except for projections, tiles consistently advance to the east or south. In case B, the agent
removes the last tile of some column c and instead of immediately transitioning to the search
phase, it first traverses the next column c′ in the s direction. Similarly to the BuildPar
procedure, where the agent first traverses the next column c′ fully in direction n whenever a
more northern column of the same x-coordinate as c is found, this additional traversal is
crucial for the runtime analysis. To elaborate, if column c′ has multiple adjacent columns to
the west, then directly entering the search phase would result in repeatedly traversing the
same tiles within column c′. However, with the additional traversal in direction s in case B
(and in direction n in procedure BuildPar), we can ensure that each tile of c′ is visited only
a constant number of times whenever the agent does not currently perform a tile shift.

K. Hinnenthal, D. Liedtke, and C. Scheideler 15:11

4 Analysis

Due to space constraints, the proofs of our lemmas are only sketched here. Complete proofs
can be found in the full version of the paper [15]. In the following, Ci = (T i, pi) denotes
the configuration that results from the execution of BuildIcicle for i steps. We start by
showing that our algorithm complies with the connectivity constraint of the 3D hybrid model.

▶ Lemma 2. If the agent disconnects G|T i in step i, then G|T i+4 is connected, and for all
i < j < i + 4: G|T j∪{pj} is connected and the agent carries a tile.

One can show that G|T i can only disconnect during the projection of a parallelogram of
height one, and during consecutive tile shifts in cases D and E. These are the cases for which
we explicitly preserve connectivity by moving not on, but instead adjacent to tiled neighbors.

▶ Lemma 3. If during the execution of BuildIcicle a tile is shifted from some node v to
some node w, then there are tiled nodes ux, uy ∈ T with x(w) = x(ux) and y(w) = y(uy).

The lemma is proven through an extensive case distinction that includes the four conditions
under which a node is tiled during the BuildPar procedure, as well as any tile shift that may
result when the agent exits the search phase at a node v that is not removable. There are at
most 26 = 64 such cases, since v can have tiled neighbors in at most six directions. We argue
that the 20 cases depicted in Figure 5 are complete by providing 44 distinct neighborhoods
for which v is removable. Similarly, we can prove the following lemma by considering cases
where a tile is picked up instead of dropped.

▶ Lemma 4. For each i ≥ 0 there is a tiled node v ∈ T i with x(v) = 0.

We want to measure the progress of tiles within the bounding cylinder towards the east
and south by considering their x- and y-coordinates. As part of the BuildPar procedure and
cases B, D, and E, the y-coordinate of tiles can increase when their x-coordinate decreases.
Although the size of the bounding cylinder cannot increase by Lemma 3, it may decrease.
In such instances, by Lemma 4, the resulting bounding cylinder always aligns with the
eastern side of the initial bounding cylinder C(T 0). To address this, we introduce a combined
representation of the x- and y-coordinates w.r.t. the bounding cylinder C(T) for arbitrary T .

Let yT
max and yT

min be the maximum and minimum y-coordinates within C(T), and let
h = yT

max − yT
min + 1 be the height of C(T), i.e., the cylinder’s extent along the y-axis. We

define the xy-coordinate of some node v ∈ C(T) as xy(v) = x(v) · h + y(v)− yT
min.

Consider the following definitions, which we refer to as P1–P3, that relate to some
fragment F ⊆ T . We show that at some point any configuration contains a fragment that
fulfills P1–P3. Afterwards, we show that this configuration converges to an icicle.

▶ Definition 5. Let F ⊂ T be an arbitrary fragment.
P1: F is a platform, if {v + x | v ∈ F, x ∈ {uw, use, une}} ∩ T is an empty set.
P2: F is covering, if for each node v ∈ T there is a node w ∈ F with xy(w) = xy(v).
P3: F is an aligned parallelogram, if for each node v ∈ F it holds that for all i with
xy(v) ≥ i ≥ 0 there is a node w ∈ F with xy(w) = i.

P1 characterizes a locally uppermost fragment, P2 a fragment covering the xy-coordinates
of all tiled nodes, and P3 a fragment wherein tiles have the shape of a parallelogram aligned
along the southern, eastern, and northern sides of the bounding cylinder. We can now use
P1–P3 to give an alternative definition of the icicle shape.

SAND 2024

15:12 Efficient Shape Formation by 3D Hybrid Programmable Matter

▶ Definition 6. A Configuration C = (T , p) is an icicle, if it contains a fragment F that
satisfies P1–P3, and for any node v ∈ T \ F it holds that v + une ∈ T .

Any tiled node that is not contained in the fragment F specified in Definition 6, must be
somewhere dsw = −une of F , as otherwise the number of tiles would be infinite. Hence,
each node v ∈ T \ F is contained in a tower of tiles whose uppermost tile is contained in F ,
and thereby Definition 6 is equivalent to our definition of an icicle from Section 1.4.

Subsequently, we only consider configurations in which the agent leaves the search phase
at some node v. This must eventually occur since moving upwards increases its z-coordinate,
and moving in directions sw, nw, or n increases its xy-coordinate. Both coordinates are
bounded within any finite set of tiled nodes. To simplify notation, we use Ci = (T i, pi) to
represent the configuration where the agent leaves the search phase for the i-th time.

Consider the potential function Φi =
∑

v∈T i xy(v) + |Pi|, where Pi denotes the set of all
platforms, i.e., fragments satisfying P1. We first show its monotonicity and lower bound.

▶ Lemma 7. For each i ≥ 0 it holds that Φi ≥ Φi+1 ≥ 0, and if Φi = Φi+1, then (1) no tile
was shifted between step i and i + 1, or (2) a fragment was projected between step i and i + 1.

The lemma mostly follows from the observation that within procedure BuildPar tiles
are visited in decreasing order of their xy-coordinates, and that each tile shift in cases A–E
decreases the x-coordinate of at least one tile. The number of platforms can only increase by
one as a result of case D, which is compensated by two tiles with decreasing x-coordinate.

▶ Lemma 8. If pi ∈ F i where F i is a fragment in Ci that satisfies P1–P3, then pi+1 ∈ F i+1

where F i+1 is a fragment in Ci+1 that satisfies P1–P3.

The proof of the previous lemma is straight forward. Since F i satisfies P1, the agent
cannot leave F i to a layer above. Since it satisfies P2 and cases A–E necessitate a tile below
that is not covered by F i, the agent must enter BuildPar within F i. Finally, since F i

satisfies P3, the agent must project F i directly after the BuildPar procedure. As a result,
F i+1 is a direct copy of F i in direction dsw which also satisfies P1–P3.

▶ Lemma 9. For each i ≥ 0 there is a step j > i such that (1) Φi > Φj or (2) pj ∈ F j

where F j is a fragment of configuration Cj that satisfies P1–P3.

If (2) holds in step i, the lemma follows from Lemma 8. Otherwise, by Lemma 7, either
no tile was shifted or a projection was performed between step i and i + 1. In the first case,
the agent must have progressed further west or upwards, which can happen only finitely
many times since the configuration is finite. In the second case, we can show that after
finitely many consecutive projections the agent is positioned in a fragment of larger size.
Analogously the size of that fragment is bounded by the number of tiles, such that eventually
either the potential decreases again or the latter statement (2) holds, concluding the lemma.

The initial number of platforms is at most n, and the initial xy-coordinate of any tiled
node is at most n2. Hence, the initial potential is Φ0 = O(n3). Consequently, Lemma 8 and
Lemma 9 imply that eventually the agent is positioned in a fragment satisfying P1–P3.

For the second part of our analysis, dedicated to demonstrating convergence towards an
icicle, we introduce another potential function Ψi. This function is defined as the number
of empty nodes within the bounding box B(T i) that have a tile somewhere in the dsw
direction. Formally, U i = {v ∈ B(T i) \ T i | v + k ·dsw ∈ T i for some k > 0} and Ψi = |U i|.

▶ Lemma 10. Let pi ∈ F i where F i satisfies P1–P3. If Ψi > 0, then Ψi+1 < Ψi.

K. Hinnenthal, D. Liedtke, and C. Scheideler 15:13

The lemma is proven by showing that the projection of F i results in at least one node
in U i to be tiled. Here, we can simply pick the node with maximum z-coordinate from U i.
Additionally, any node in U i+1 must already be contained in U i, since the projection of F i

cannot create an empty node that has a tile somewhere une. Otherwise that tile would
contradict that F i is covering (P2) and a platform (P1).

Once the agent enters a configuration where it is positioned within a fragment satisfying
P1–P3, it consistently remains within such a fragment in subsequent configurations according
to Lemma 8. By Lemma 9, such a configuration must eventually be reached, and by the
previous lemma, our second potential Ψi is strictly monotonically decreasing afterwards. It
follows that the set of empty nodes within B(T i) that have a tile somewhere in the dsw
direction must eventually be empty. Consequently, any tiled node within the bounding box
that is not contained in the singular uppermost fragment satisfying P1–P3 must possess
a neighboring tile at une. Hence, the entire configuration satisfies Definition 6, which is
captured by the following theorem, serving as the conclusion of our analysis:

▶ Theorem 11. The sequence of configurations resulting from the execution of BuildIcicle
on any initially connected configuration C0 = (T 0, p0) with p0 ∈ T 0 converges to an icicle.

5 Termination Criteria and Runtime

Once the agent is positioned within a fragment satisfying P1–P3, it remains within such
a fragment and subsequently exclusively performs projections. In the case where the con-
figuration is already an icicle (see Definition 6), every tiled node in the configuration must
be traversed during these projections. This condition is essential for our termination check.
The agent maintains a flag term, which it flags as true upon initiating a projection. This
flag only reverts to false if the agent detects any violation of Definition 6 during the ongoing
projection, i.e., whenever a tiled node v is observed for which v + une /∈ F and v + une /∈ T ,
where F is the fragment in which the projection was initiated. Once term still holds after
a projection, the agent terminates. Note that the flag is reverted, even if v + une is tiled
immediately afterwards. As an example, if a tile shift from some node w ∈ F to v + une is
performed as part of a projection, then node v is observed before the tile is placed at v + une.
Although it is possible that the configuration is an icicle after tiling node v + une, the agent
cannot verify it during that projection, as it does not traverse node v or any node dsw of v.

In general, by adhering to this termination procedure, the agent consistently performs
one additional projection once the configuration converges to an icicle. Since the algorithm
only terminates following a projection in which it could observe all tiled nodes and only if, in
this case, Definition 6 is satisfied, the correctness of our algorithm is established.

The algorithm’s runtime can be expressed as the sum ttotal = tproj + tshift + tmove, where
tproj accounts for all steps performed during the projection subroutine, tshift for steps that
are performed as part of some tile shift (outside of a projection), and tmove for any remaining
step. We bound each term individually by O(n3), which gives a runtime of O(n3) in total.

▶ Lemma 12. The total number of steps performed during projections is tproj = O(n3).

The proof can be outlined as follows: Each projection takes time O(n). There are O(n)
platforms initially, each of which require O(n) projections until the number |P| of platforms
reduces by one. Additional platforms can only be created as a result of the execution of
case D. For these platforms one can show that a single projection suffices to reduce the
number of platforms. Additionally, the execution of case D decreases the x-coordinate of at
least two tiles, which implies that at most n2

2 platforms can be created.

SAND 2024

15:14 Efficient Shape Formation by 3D Hybrid Programmable Matter

▶ Lemma 13. Let i be the first step following an arbitrary projection, and j > i the next step
in which a projection is initiated. Between step i and j at most O(n) steps are performed
outside of tile shifts, and any tile shift from some node v to w takes O(xy(v)− xy(w)) steps.

The latter statement is easy to show. Especially, any tile shift in cases A–E requires only
O(1) steps, but reduces the xy-coordinate of some tile by Ω(h). For the former statement, one
must consider all cases in which the agent moves outside of tile shifts. The most challenging
case is where the agent lifts the last tile of a column and then takes O(h) steps afterward. If
that occurs in case B, then the above outlined difference between O(1) steps and a reduction
of Ω(h) in the xy-coordinate accounts for the O(h) additional steps. If a column is removed
in the BuildPar procedure, one can show that either the previous or the subsequent tile
shift decreases the xy-coordinate of a tile by Ω(h), and the claim follows analogously.

As argued above, O(n2) projections are performed in total, which together with Lemma 13
implies that tother = O(n3). The xy-coordinate of any tile is at most n2, non-increasing, and
cannot be negative (see Lemmas 3 and 7). Together with Lemma 13, each tile contributes
O(n2) steps to tshift, which implies that tshift = O(n3). This concludes our final theorem:

▶ Theorem 14. BuildIcicle has a runtime of O(n3) steps.

6 Experimental Analysis

While our algorithm matches the runtime bound of the 3D line formation algorithm [16],
the icicle offers distinct advantages over the line. The diameter of an icicle can be as low as
O(n 1

3), whereas a line consistently maintains a diameter of n. Unfortunately, our algorithm
does not improve the diameter if the initial configuration already closely resembles a line.
On the other hand, we conjecture that if the initial diameter is as low as O(n 1

3) (which is
the best case in 3D), then our algorithm can only increase the diameter by a factor of O(n 1

3).
We support our conjecture with the following simulation results on configurations where
initially all tiles are contained in a sphere of radius O(n 1

3).
We conducted a total of 12,250 simulations using the icicle formation algorithm on

random configurations. For each value of n within the range 10 ≤ n < 500, we sampled 25
random configurations as follows: empty nodes were repeatedly chosen uniformly at random
within a sphere of radius 4n

1
3 , and a tile was placed on each selected node until a connected

component of tiled nodes with a size of at least n was formed. Subsequently, any tile outside
of that component was removed, the agent was placed at a randomly chosen tile within the
component, and the algorithm was simulated until termination. We measured the runtime
as well as the difference in diameter, which are plotted in Figure 6.

Due to the nature of the described random generation process, configurations of size
larger than 500 were also sampled, although less frequently. Specifically, we observed an
average sampling rate of approx. 24.4 configurations for sizes at most 450, contrasting with
approx. 15.4 configurations for sizes exceeding 450. This discrepancy contributes to the
noticeable increase in variance as the configuration size approaches the 500 threshold.

The runtime remains well in the vicinity of n2, which can be attributed to the initial
close packing of tiles in our random configurations. Instances where the diameter increases
(highlighted by red dots) are infrequent, and their occurrence diminishes as the configuration
size increases. This trend implies a general decrease in diameter in the average case.

We identified a configuration with an initial diameter of O(n 1
3), where the diameter

subsequently increases by a factor of Θ(n 1
3). This particular configuration, which we consider

to be the worst-case scenario, is discussed in Appendix B.

K. Hinnenthal, D. Liedtke, and C. Scheideler 15:15

0 100 200 300 400 500

n

0

1

2

3

4

5
#

ro
u
n
d
s
×1

0
5

n2

mean

0 100 200 300 400 500

n

−80

−60

−40

−20

0

∆
d
ia

m
et

er

0

mean

Figure 6 The results stem from 12,250 simulations involving random configurations ranging in
sizes from 10 to 550. The upper plot shows the number of steps until termination. The lower plot
shows the difference in diameter between the input and output configurations. The simulations in
which the diameter increases are highlighted by red dots.

7 Future Work

In this work, we introduced an algorithm capable of transforming any initially connected
configuration into an icicle within O(n3) steps, complemented by proofs of correctness and
runtime analysis. While our algorithm’s experimental results are promising, future work
should include a formal proof to substantiate the claimed upper bound of O(n 1

3) on the
increase in diameter. Additionally, the adaptability of our algorithm to the multi-agent case
poses an intriguing challenge for future investigation. Given that the algorithm comprises
distinct phases potentially executed in an interleaved manner, addressing its integration into
a multi-agent framework presents a non-trivial research direction.

References

1 M. Akter, J. J. Keya, K. Kayano, A. M. R. Kabir, D. Inoue, H. Hess, K. Sada, A. Kuzuya,
H. Asanuma, and A. Kakugo. Cooperative cargo transportation by a swarm of molecular
machines. Science Robotics, 7(65), 2022. doi:10.1126/scirobotics.abm0677.

2 D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in networks
of passively mobile finite-state sensors. Distributed Computing, 18(4), March 2006. doi:
10.1007/s00446-005-0138-3.

3 M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier to search
than graphs). In 19th Annual Symposium on Foundations of Computer Science (sfcs 1978),
1978. doi:10.1109/SFCS.1978.30.

SAND 2024

https://doi.org/10.1126/scirobotics.abm0677
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1109/SFCS.1978.30

15:16 Efficient Shape Formation by 3D Hybrid Programmable Matter

4 J. Chao, J. Wang, F. Wang, X. Ouyang, E. Kopperger, H. Liu, Q. Li, J. Shi, J. hu, L. Wang,
W. Huang, F. Simmel, and C. Fan. Solving mazes with single-molecule dna navigators. Nature
Materials, 18, March 2019. doi:10.1038/s41563-018-0205-3.

5 H. Chen, C. Li, M. Mafarja, A. A. Heidari, Y. Chen, and Z. Cai. Slime mould algorithm: a
comprehensive review of recent variants and applications. International Journal of Systems
Science, 54(1), 2023. doi:10.1080/00207721.2022.2153635.

6 G.S. Chirikjian. Kinematics of a metamorphic robotic system. In Proceedings of the 1994
IEEE International Conference on Robotics and Automation, 1994. doi:10.1109/ROBOT.1994.
351256.

7 Z. Derakhshandeh, S. Dolev, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann.
Amoebot - a new model for programmable matter. In Proceedings of the 26th ACM Symposium
on Parallelism in Algorithms and Architectures, 2014. doi:10.1145/2612669.2612712.

8 Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann. An algorithmic
framework for shape formation problems in self-organizing particle systems. In Proceedings of
the Second Annual International Conference on Nanoscale Computing and Communication,
2015. doi:10.1145/2800795.2800829.

9 Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann. Universal
shape formation for programmable matter. In Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, 2016. doi:10.1145/2935764.2935784.

10 G. A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and Y. Yamauchi. Shape forma-
tion by programmable particles. Distrib. Comput., 33(1), February 2020. doi:10.1007/
s00446-019-00350-6.

11 P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration by a finite
automaton. In Mathematical Foundations of Computer Science 2004, 2004.

12 R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, and C. Scheideler. Shape
recognition by a finite automaton robot. In 43rd International Symposium on Mathematical
Foundations of Computer Science (MFCS 2018), volume 117, 2018. doi:10.4230/LIPIcs.
MFCS.2018.52.

13 R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, C. Scheideler, and T. Strothmann.
Forming tile shapes with simple robots. Natural Computing, 19(2), June 2020. doi:10.1007/
s11047-019-09774-2.

14 A. Heuer-Jungemann and T. Liedl. From dna tiles to functional dna materials. Trends in
Chemistry, 1(9), 2019. doi:10.1016/j.trechm.2019.07.006.

15 K. Hinnenthal, D. Liedtke, and C. Scheideler. Efficient shape formation by 3d hybrid pro-
grammable matter: An algorithm for low diameter intermediate structures, 2024.

16 K. Hinnenthal, D. Rudolph, and C. Scheideler. Shape formation in a three-dimensional model
for hybrid programmable matter. In Proc. of the 36th European Workshop on Computational
Geometry (EuroCG 2020), 2020.

17 F. Hoffmann. One pebble does not suffice to search plane labyrinths. In International
Conference on Fundamentals of Computation Theory, 1981.

18 F. Hurtado, E. Molina, S. Ramaswami, and V. Sacristán. Distributed reconfiguration of
2d lattice-based modular robotic systems. Autonomous Robots, 38(4), April 2015. doi:
10.1007/s10514-015-9421-8.

19 I. Kostitsyna, D. Liedtke, and C. Scheideler. Universal coating in the 3d hybrid model, 2023.
doi:10.48550/arXiv.2303.16180.

20 I. Kostitsyna, C. Scheideler, and D. Warner. Fault-tolerant shape formation in the amoebot
model. In 28th International Conference on DNA Computing and Molecular Programming
(DNA 28), 2022. doi:10.4230/LIPIcs.DNA.28.9.

21 G. Li, D. St-Onge, C. Pinciroli, A. Gasparri, E. Garone, and G. Beltrame. Decentralized
progressive shape formation with robot swarms. Autonomous Robots, 43(6), August 2019.
doi:10.1007/s10514-018-9807-5.

https://doi.org/10.1038/s41563-018-0205-3
https://doi.org/10.1080/00207721.2022.2153635
https://doi.org/10.1109/ROBOT.1994.351256
https://doi.org/10.1109/ROBOT.1994.351256
https://doi.org/10.1145/2612669.2612712
https://doi.org/10.1145/2800795.2800829
https://doi.org/10.1145/2935764.2935784
https://doi.org/10.1007/s00446-019-00350-6
https://doi.org/10.1007/s00446-019-00350-6
https://doi.org/10.4230/LIPIcs.MFCS.2018.52
https://doi.org/10.4230/LIPIcs.MFCS.2018.52
https://doi.org/10.1007/s11047-019-09774-2
https://doi.org/10.1007/s11047-019-09774-2
https://doi.org/10.1016/j.trechm.2019.07.006
https://doi.org/10.1007/s10514-015-9421-8
https://doi.org/10.1007/s10514-015-9421-8
https://doi.org/10.48550/arXiv.2303.16180
https://doi.org/10.4230/LIPIcs.DNA.28.9
https://doi.org/10.1007/s10514-018-9807-5

K. Hinnenthal, D. Liedtke, and C. Scheideler 15:17

22 H. Li, J. Gao, L. Cao, X. Xie, J. Fan, H. Wang, H. Wang, and Z. Nie. A dna molecular robot
autonomously walking on the cell membrane to drive the cell motility. Angewandte Chemie
International Edition, 60, September 2021. doi:10.1002/anie.202108210.

23 N. Nokhanji, P. Flocchini, and N. Santoro. Fully dynamic line maintenance by hybrid
programmable matter. In 2022 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2022. doi:10.1109/IPDPSW55747.2022.00087.

24 A. Padalkin, M. Kumar, and C. Scheideler. Shape formation and locomotion with joint
movements in the amoebot model. ArXiv, abs/2305.06146, 2023.

25 M. J. Patitz. An introduction to tile-based self-assembly and a survey of recent results. Natural
Computing, 13(2), June 2014. doi:10.1007/s11047-013-9379-4.

26 T. Peters, I. Kostitsyna, and B. Speckmann. Fast reconfiguration for programmable matter.
In 37th International Symposium on Distributed Computing, DISC 2023, 2023. doi:10.4230/
LIPIcs.DISC.2023.27.

27 N. Tan, A. A. Hayat, M. R. Elara, and K. L. Wood. A framework for taxonomy and evaluation
of self-reconfigurable robotic systems. IEEE Access, 8, 2020. doi:10.1109/ACCESS.2020.
2965327.

28 P. Thalamy, B. Piranda, and J. Bourgeois. A survey of autonomous self-reconfiguration
methods for robot-based programmable matter. Robotics and Autonomous Systems, 120, 2019.
doi:10.1016/j.robot.2019.07.012.

29 A. J. Thubagere, W. Li, R. F. Johnson, Z. Chen, S. Doroudi, Y. L. Lee, G. Izatt, S. Wittman,
N. Srinivas, D. Woods, E. Winfree, and L. Qian. A cargo-sorting dna robot. Science, 357(6356),
2017. doi:10.1126/science.aan6558.

30 T. Tucci, B. Piranda, and J. Bourgeois. A distributed self-assembly planning algorithm for
modular robots. In Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems, 2018.

31 J. E. Walter, J. L. Welch, and N. M. Amato. Distributed reconfiguration of metamorphic
robot chains. Distributed Computing, 17(2), August 2004. doi:10.1007/s00446-003-0103-y.

32 H. Wang and M. Rubenstein. Shape formation in homogeneous swarms using local task
swapping. IEEE Transactions on Robotics, 36(3), 2020. doi:10.1109/TRO.2020.2967656.

33 J. Werfel, K. Petersen, and R. Nagpal. Designing collective behavior in a termite-inspired
robot construction team. Science, 343(6172), 2014. doi:10.1126/science.1245842.

34 D. Woods, H. Chen, S. Goodfriend, N. Dabby, E. Winfree, and P. Yin. Active self-assembly of
algorithmic shapes and patterns in polylogarithmic time. In Proceedings of the 4th Conference
on Innovations in Theoretical Computer Science, 2013. doi:10.1145/2422436.2422476.

A Deferred Pseudocode

The pseudocode for the 2D parallelogram formation algorithm, as detailed in Section 3.1, is
given by Algorithm 1. Specifically, lines 12–34 within Algorithm 1 describe the BuildPar
procedure, utilized by both the parallelogram and icicle formation algorithms. Note that the
checks for tiles above (lines 13–14) can be disregarded in the 2D setting, as they only become
relevant in the icicle formation algorithm. The Project procedure is given in Algorithm 3,
and the full icicle formation algorithm in Algorithm 2. Whenever multiple directions of
movement are specified, their precedence is implicit in the provided order.

In Algorithm 1, the agent traverses a column in the s direction in lines 12–21 and the next
column in the n direction in lines 26–31. Following the check for whether the empty node
above the next column should be tiled (line 32), the agent recursively executes BuildPar
starting at the n-most node of the next column (line 33). The procedure may return with
the agent being in various states, such as positioned on a tiled or empty node, with or
without a tile. In the main loop of the algorithm, BuildPar is executed repeatedly, and
distinctions between these states are made to either terminate (line 4), retrieve the tile at
which BuildPar was previously entered (lines 5–11), or enter the search phase (line 2).

SAND 2024

https://doi.org/10.1002/anie.202108210
https://doi.org/10.1109/IPDPSW55747.2022.00087
https://doi.org/10.1007/s11047-013-9379-4
https://doi.org/10.4230/LIPIcs.DISC.2023.27
https://doi.org/10.4230/LIPIcs.DISC.2023.27
https://doi.org/10.1109/ACCESS.2020.2965327
https://doi.org/10.1109/ACCESS.2020.2965327
https://doi.org/10.1016/j.robot.2019.07.012
https://doi.org/10.1126/science.aan6558
https://doi.org/10.1007/s00446-003-0103-y
https://doi.org/10.1109/TRO.2020.2967656
https://doi.org/10.1126/science.1245842
https://doi.org/10.1145/2422436.2422476

15:18 Efficient Shape Formation by 3D Hybrid Programmable Matter

In Algorithm 2, lines 16–22 are dedicated to handling case B, where a tile is shifted in
the de direction to maintain connectivity. Lines 23–29 cover case D, and lines 30–40 cover
case E. These cases involve shifting multiple tiles of a column in the de direction. For concise
pseudocode, the handling of case A is delegated to the BuildPar procedure, and the check
for a tile at v + se + dsw from case C is integrated into lines 4—5.

B Worst-Case Configuration

In the following, we present what we believe to be the worst-case configuration. Consider
the configuration C depicted in Figure 7a that consists of three layers. The middle layer
contains k = Θ(n 1

3) fragments F1, ..., Fk ordered from east to west, where each Fi has size

Algorithm 1 2DParallelogramFormation.

1 while true do
2 while {p + nw, p + sw, p + n} ∩ T ̸= ∅ do move to tile at nw, sw or n
3 firstColumn← true; run BuildPar
4 if p /∈ T then return ▷ terminate s of easternmost column
5 else if r carries no tile then
6 if firstColumn then
7 while p + n ∈ T do move n
8 else
9 while {p + sw, p + s} ∩ T ̸= ∅ do move to tile at sw or s

10 while {p + nw, p + sw, p + n} ∩ T ̸= ∅ do move to tile at nw, sw or n
11 pickup tile; move to tile at s, se or ne

procedure BuildPar
12 while p ∈ T do
13 if p + uw ∈ T or p + use ∈ T or p + une ∈ T then ▷ irrelevant in 2D
14 move to tile at uw, use or une ; return
15 else if firstColumn and p + sw ∈ T then
16 move sw; return ▷ found more western column
17 else if p + ne ∈ T and p + se /∈ T then
18 move se; place tile; move nw; return ▷ place tile below eastern column
19 else if p + n, p + se ∈ T and p + ne /∈ T then
20 move ne; place tile; move sw; return ▷ place tile above eastern column
21 move s
22 if p + n, p + ne, p + se ∈ T then
23 place tile; move n ▷ place tile below current column
24 else if p + ne ∈ T then
25 move ne; move n; firstColumn← false ▷ move to top of next column
26 while p ∈ T do
27 if p + sw /∈ T and p + NW ∈ T then
28 while p + n ∈ T do move n
29 while p + nw /∈ T do move s
30 return ▷ found more northern column
31 move n
32 if p + s, p + se ∈ T then place tile ▷ place tile above current column
33 else move s; run BuildPar
34 return

K. Hinnenthal, D. Liedtke, and C. Scheideler 15:19

Algorithm 2 BuildIcicle.

1 while true do
2 while {p + x | x ∈ {uw, use, une, nw, sw, n}} ∩ T ̸= ∅ do
3 move to tile at uw, use, une, nw, sw or n
4 if G|NT (p) or G|NT (p)∪{p+se} is connected or G|NT (p)∪{p+se+dsw} is connected

with p + se + dsw ∈ T then
5 firstColumn← true; run BuildPar
6 if p /∈ T then move n; run Project
7 else if r carries no tile then ... ▷ same as lines 8–15 from Algorithm 1

16 else if G|NT (p)∪{p+de} is connected then
17 if NT (p) = {p + dsw, p + se} then
18 move se + dsw; place tile; move une + nw; pickup tile; move se
19 else move de; place tile; move uw; pickup tile
20 if p + se, p + ne ∈ T and p + s /∈ T then
21 move se; while {p + uw, p + use, p + sw, p + s} ∩ T = {p + s} do move s
22 else move to tile at s, se or ne
23 else if NT (p) = {p + dnw, p + s, p + ne} then
24 while {p + x | x ∈ {uw, use, sw, dsw, se, de, s}} ∩ T = {p + s} do move s
25 if {p + x | x ∈ {uw, use, sw}} ∩ T = ∅ then
26 if p + de ∈ T then move n
27 move de; place tile; move uw; pickup tile
28 while p + n ∈ T do move se + dnw; place tile; move uw; pickup tile
29 move ne
30 else if NT (p) = {p + dnw, p + s} then
31 while {p + x | x ∈ {uw, use, sw, se, de, s}} ∩ T = {p + s} do move s
32 if {p + x | x ∈ {uw, use, sw}} ∩ T = ∅ then
33 if {p + x | x ∈ {se, de}} ∩ T = ∅ then move n; run Project
34 else
35 ... ▷ same as lines 26–28
38 while p /∈ T do
39 move s; if p + se ∈ T then move se

O(i) and the agent’s initial position is p0 ∈ F1. Additionally, the configuration contains a
fragment F0 of size one east of the agent’s initial position. Observe that the bounding box of
Fi contains no node from Fi+1 for any i with 0 < i < k. It follows that the agent builds and
projects parallelograms in the order F1, ..., Fk. Since the bounding box of Fi contains p0 for
all i > 0, it further follows that k tiles are projected from p0 in direction dsw. Only then,
the agent traverses the lower layer and eventually finds fragment F0 where it moves further
upwards. Now consider the configuration that consists of Θ(n 1

3) copies of C in direction
une (see Figure 7b). That configuration has diameter O(n 1

3) initially. Throughout the icicle
formation algorithm, some tile at node p0 is projected Θ(n 2

3) times, which implies that the
resulting icicle has depth and thereby also diameter Θ(n 2

3).

SAND 2024

15:20 Efficient Shape Formation by 3D Hybrid Programmable Matter

Algorithm 3 Project.

procedure Project
1 if p + n, p + s /∈ T then ▷ parallelogram of height one
2 do
3 while p ∈ T do move dsw
4 place tile; while p + une ∈ T do move une
5 pickup tile
6 if p + nw ∈ T then move sw; move dnw else move dsw; return
7 while p + une ∈ T
8 else
9 do

10 while p + n ∈ T do move n
11 while p ∈ T do move dsw
12 place tile; while p + une ∈ T do move une
13 pickup tile
14 if p + s ∈ T then move s
15 else if p + nw ∈ T then move nw
16 else move dsw; return
17 while p ∈ T

(a) (b)

Figure 7 Illustrating what we believe to be the worst case configuration in terms of increase in
diameter. In (a), the three lowest layers of the configuration are depicted in detail. The second-lowest
layer contains k = Θ(n 1

3) fragments Fi, each of size O(i), and the agent’s initial position p0 ∈ F1.
Observe that the bounding box of each Fi contains p0. The whole configuration is depicted in (b)
and consists of Θ(n 1

3) copies of the layers depited in (a) in direction une (indicated by the arrows).

	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Model Definition
	1.4 Problem Statement
	1.5 Structure of the Paper

	2 Preliminaries
	3 The Algorithm
	3.1 A 2D Parallelogram Formation Algorithm
	3.2 An Icicle Formation Algorithm

	4 Analysis
	5 Termination Criteria and Runtime
	6 Experimental Analysis
	7 Future Work
	A Deferred Pseudocode
	B Worst-Case Configuration

