
Temporal Graph Realization from Fastest Paths
Nina Klobas #

Department of Computer Science, Durham University, UK

George B. Mertzios #

Department of Computer Science, Durham University, UK

Hendrik Molter #

Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Paul G. Spirakis #

Department of Computer Science, University of Liverpool, UK

Abstract
In this paper we initiate the study of the temporal graph realization problem with respect to the
fastest path durations among its vertices, while we focus on periodic temporal graphs. Given an
n × n matrix D and a ∆ ∈ N, the goal is to construct a ∆-periodic temporal graph with n vertices
such that the duration of a fastest path from vi to vj is equal to Di,j , or to decide that such a
temporal graph does not exist. The variations of the problem on static graphs has been well studied
and understood since the 1960’s (e.g. [Erdős and Gallai, 1960], [Hakimi and Yau, 1965]).

As it turns out, the periodic temporal graph realization problem has a very different computational
complexity behavior than its static (i. e., non-temporal) counterpart. First we show that the problem
is NP-hard in general, but polynomial-time solvable if the so-called underlying graph is a tree.
Building upon those results, we investigate its parameterized computational complexity with respect
to structural parameters of the underlying static graph which measure the “tree-likeness”. We prove
a tight classification between such parameters that allow fixed-parameter tractability (FPT) and
those which imply W[1]-hardness. We show that our problem is W[1]-hard when parameterized by
the feedback vertex number (and therefore also any smaller parameter such as treewidth, degeneracy,
and cliquewidth) of the underlying graph, while we show that it is in FPT when parameterized by
the feedback edge number (and therefore also any larger parameter such as maximum leaf number)
of the underlying graph.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathematics
of computing → Discrete mathematics

Keywords and phrases Temporal graph, periodic temporal labeling, fastest temporal path, graph
realization, temporal connectivity, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.SAND.2024.16

Related Version Full Version: https://arxiv.org/abs/2302.08860

Funding George B. Mertzios: Supported by the EPSRC grant EP/P020372/1.
Hendrik Molter : Supported by the ISF, grant nr. 1456/18, and by the European Union’s Horizon
Europe research and innovation programme under grant agreement 949707.
Paul G. Spirakis: Supported by the EPSRC grant EP/P02002X/1.

1 Introduction

The (static) graph realization problem with respect to a graph property P is to find a graph
that satisfies property P, or to decide that no such graph exists. The motivation for graph
realization problems stems both from “verification” and from network design applications
in engineering. In verification applications, given the outcomes of some experimental
measurements (resp. some computations) on a network, the aim is to (re)construct an
input network which complies with them. If such a reconstruction is not possible, this

© Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis;
licensed under Creative Commons License CC-BY 4.0

3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024).
Editors: Arnaud Casteigts and Fabian Kuhn; Article No. 16; pp. 16:1–16:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nina.klobas@durham.ac.uk
https://orcid.org/0000-0002-8024-5782
mailto:george.mertzios@durham.ac.uk
https://orcid.org/0000-0001-7182-585X
mailto:molterh@post.bgu.ac.il
https://orcid.org/0000-0002-4590-798X
mailto:p.spirakis@liverpool.ac.uk
https://orcid.org/0000-0001-5396-3749
https://doi.org/10.4230/LIPIcs.SAND.2024.16
https://arxiv.org/abs/2302.08860
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Temporal Graph Realization from Fastest Paths

proves that the measurements are incorrect or implausible (resp. that the algorithm which
made the computations is incorrectly implemented). One example of a graph realization
(or reconstruction) problem is the recognition of probe interval graphs, in the context
of the physical mapping of DNA, see [52, 53] and [36, Chapter 4]. In network design
applications, the goal is to design network topologies having a desired property [4, 38].
Analyzing the computational complexity of the graph realization problems for various natural
and fundamental graph properties P requires a deep understanding of these properties.
Among the most studied such parameters for graph realization are constraints on the
distances between vertices [7, 8, 10,16,17,41], on the vertex degrees [6, 22,35,37,40], on the
eccentricities [5, 9, 42,51], and on connectivity [15,29–31,34,37], among others.

In the simplest version of a (static) graph realization problem with respect to vertex
distances, we are given a symmetric n × n matrix D and we are looking for an n-vertex
undirected and unweighted graph G such that Di,j equals the distance between vertices vi

and vj in G. This problem can be trivially solved in polynomial time in two steps [41]: First,
we build the graph G = (V, E) such that vivj ∈ E if and only if Di,j = 1. Second, from this
graph G we compute the matrix DG which captures the shortest distances for all pairs of
vertices. If DG = D then G is the desired graph, otherwise there is no graph having D as its
distance matrix. Non-trivial variations of this problem have been extensively studied, such
as for weighted graphs [41,60], as well as for cases where the realizing graph has to belong to
a specific graph family [7, 41]. Other variations of the problem include the cases where every
entry of the input matrix D may contain a range of consecutive permissible values [7, 61, 63],
or even an arbitrary set of acceptable values [8] for the distance between the corresponding
two vertices.

In this paper we make the first attempt to understand the complexity of the graph
realization problem with respect to vertex distances in the context of temporal graphs, i. e.,
of graphs whose topology changes over time.

▶ Definition 1 (temporal graph [43]). A temporal graph is a pair (G, λ), where G = (V, E)
is an underlying (static) graph and λ : E → 2N is a time-labeling function which assigns to
every edge of G a set of discrete time-labels.

Here, whenever t ∈ λ(e), we say that the edge e is active or available at time t. In the
context of temporal graphs, where the notion of vertex adjacency is time-dependent, the
notions of path and distance also need to be redefined. The most natural temporal analogue
of a path is that of a temporal (or time-dependent) path, which is motivated by the fact that,
due to causality, entities and information in temporal graphs can “flow” only along sequences
of edges whose time-labels are strictly increasing.

▶ Definition 2 (fastest temporal path). Let (G, λ) be a temporal graph. A temporal path
in (G, λ) is a sequence (e1, t1), (e2, t2), . . . , (ek, tk), where P = (e1, . . . , ek) is a path in the
underlying static graph G, ti ∈ λ(ei) for every i = 1, . . . , k, and t1 < t2 < . . . < tk. The
duration of this temporal path is tk − t1 + 1. A fastest temporal path from a vertex u to a
vertex v in (G, λ) is a temporal path from u to v with the smallest duration. The duration of
the fastest temporal path from u to v is denoted by d(u, v).

In this paper we consider periodic temporal graphs, i. e., temporal graphs in which the
temporal availability of each edge of the underlying graph is periodic. Many natural and
technological systems exhibit a periodic temporal behavior. For example, in railway networks
an edge is present at a time step t if and only if a train is scheduled to run on the respective rail
segment at time t [3]. Similarly, a satellite, which makes pre-determined periodic movements,

N. Klobas, G. B. Mertzios, H. Molter, and P. G. Spirakis 16:3

v1 v2 v3 v4 v5

10t + 7 10t + 3 10t + 5 10t + 1

Figure 1 An example of a ∆-periodic temporal graph (G, λ, ∆), where ∆ = 10 and the 10-periodic
labeling λ : E → {1, 2, . . . , 10} is as follows: λ(v1v2) = 7, λ(v2v3) = 3, λ(v3v4) = 5, and λ(v4v5) = 1.
Here, the fastest temporal path from v1 to v2 traverses the first edge v1v2 at time 7, second edge
v2v3 a time 13, third edge v3v4 at time 15 and the last edge v4v5 at time 21. This results in the
total duration of 21 − 7 + 1 = 15 for the fastest temporal path from v1 to v5.

can establish a communication link (i. e., a temporal edge) with another satellite whenever
they are sufficiently close to each other; the existence of these communication links is also
periodic. In a railway (resp. satellite) network, a fastest temporal path from u to v represents
the fastest railway connection between two stations (resp. the quickest communication delay
between two moving satellites). Furthermore, periodicity appears also in (the otherwise quite
complex) social networks which describe the dynamics of people meeting [50,62], as every
person individually follows mostly a weekly routine.

Expanding the work on periodic temporal graphs (see [13, Class 8] and [3, 25, 58, 59]),
our study represents the first attempt to understand the complexity of a graph realization
problem in the context of temporal graphs. Therefore, we focus in this paper on the most
fundamental case, where all edges have the same period ∆ (while in the more general case,
each edge e in the underlying graph has a period ∆e). As it turns out, the periodic temporal
graph realization problem with respect to a given n×n matrix D of the fastest duration times
has a very different computational complexity behavior than the classic graph realization
problem with respect to shortest path distances in static graphs.

Formally, let G = (V, E) and ∆ ∈ N, and let λ : E → {1, 2, . . . , ∆} be an edge-labeling
function that assigns to every edge of G exactly one of the labels from {1, . . . , ∆}. Then we
denote by (G, λ, ∆) the ∆-periodic temporal graph (G, L), where for every edge e ∈ E we
have L(e) = {i∆ + x : i ≥ 0, x ∈ λ(e)}. In this case we call λ a ∆-periodic labeling of G; see
Figure 1 for an illustration. When it is clear from the context, we drop ∆ from the notation
and we denote the (∆-periodic) temporal graph by (G, λ). Given a duration matrix D, it is
easy to observe that, similarly to the static case, if Di,j = 1 then vi and vj must be connected
by an edge. We call the graph defined by these edges the underlying graph of D.

Our contribution. We initiate the study of naturally motivated graph realization problems
in the temporal setting. Our target is not to model unreliable communication, but instead to
verify that particular measurements regarding fastest temporal paths in a periodic temporal
graph are plausible (i. e., “realizable”). To this end, we introduce and investigate the following
problem, capturing the setting described above:

Simple periodic Temporal Graph Realization (Simple TGR)
Input: An integer n × n matrix D, a positive integer ∆.
Question: Does there exist a graph G = (V, E) with vertices {v1, . . . , vn} and a ∆-periodic

labeling λ : E → {1, 2, . . . , ∆} such that, for every i, j, the duration of the fastest
temporal path from vi to vj in the ∆-periodic temporal graph (G, λ, ∆) is Di,j?

We focus on exact algorithms. We start by showing NP-hardness of the problem (The-
orem 3), even if ∆ is a small constant. To establish a baseline for tractability, we show that
Simple TGR is polynomial-time solvable if the underlying graph is a tree (Theorem 5).

SAND 2024

16:4 Temporal Graph Realization from Fastest Paths

Building upon these initial results, we explore the possibilities to generalize our polynomial-
time algorithm using the distance-from-triviality parameterization paradigm [27,39]. That is,
we investigate the parameterized computational complexity of Simple TGR with respect to
structural parameters of the underlying graph that measure its “tree-likeness”.

We obtain the following results. We show that Simple TGR is W[1]-hard when para-
meterized by the feedback vertex number of the underlying graph (Theorem 4). To this
end, we first give a reduction from Multicolored Clique parameterized by the number
of colors [26] to a variant of Simple TGR where the period ∆ is infinite, that is, when
the labeling is non-periodic. Then we use a special gadget (the “infinity” gadget) which
allows us to transfer the result to a finite period ∆. The latter construction is independent
from the particular reduction we use, and can hence be treated as a reduction from the
non-periodic to the periodic setting. Note that our parameterized hardness result with respect
to the feedback vertex number also implies W[1]-hardness for any smaller parameter, such as
treewidth, degeneracy, cliquewidth, distance to chordal graphs, and distance to outerplanar
graphs.

We complement this hardness result by showing that Simple TGR is fixed-parameter
tractable (FPT) with respect to the feedback edge number k of the underlying graph (The-
orem 6). This result also implies an FPT algorithm for any larger parameter, such as the
maximum leaf number. A similar phenomenon of getting W[1]-hardness with respect to the
feedback vertex number, while getting an FPT algorithm with respect to the feedback edge
number, has been observed only in a few other temporal graph problems related to the
connectivity between two vertices [14,21,32].

Our FPT algorithm works as follows on a high level. First we distinguish O(k2) vertices
which we call “important vertices”. Then, we guess the fastest temporal paths for each pair
of these important vertices; as we prove, the number of choices we have for all these guesses
is upper bounded by a function of k. Then we also need to make several further guesses
(again using a bounded number of choices), which altogether leads us to specify a small (i. e.,
bounded by a function of k) number of different configurations for the fastest paths between
all pairs of vertices. For each of these configurations, we must then make sure that the labels
of our solution will not allow any other temporal path from a vertex vi to a vertex vj have
a strictly smaller duration than Di,j . This naturally leads us to build one Integer Linear
Program (ILP) for each of these configurations. We manage to formulate all these ILPs
by having a number of variables that is upper-bounded by a function of k. Finally we use
Lenstra’s Theorem [49] to solve each of these ILPs in FPT time. At the end, our initial
instance is a Yes-instance if and only if at least one of these ILPs is feasible.

The above results provide a fairly complete picture of the parameterized computational
complexity of Simple TGR with respect to structural parameters of the underlying graph
which measure “tree-likeness”. To obtain our results, we prove several properties of fastest
temporal paths, which may be of independent interest. Due to space constraints, proofs of
results marked with ⋆ are (partially) deferred to the full version on arXiv [46].

Related work. Graph realization problems on static graphs have been studied since the 1960s.
We provide an overview of the literature in the introduction. To the best of our knowledge,
we are the first to consider graph realization problems in the temporal setting. Very recently,
Erlebach et al. [24] have built upon our results and, among others, studied the case where
edges might appear more than once in each period. Many other connectivity-related problems
have been studied in the temporal setting [2,12,18,19,23,28,33,44,48,55,57,65], most of which
are much more complex and computationally harder than their non-temporal counterparts,
and some of which do not even have a non-temporal counterpart.

N. Klobas, G. B. Mertzios, H. Molter, and P. G. Spirakis 16:5

Several problems have been studied where the goal is to assign labels to (sets of) edges of
a given static graph in order to achieve certain connectivity-related properties [1, 20,45, 54].
The main difference to our problem setting is that in the mentioned works, the input is a
graph and the sought labeling is not periodic. Furthermore, the investigated properties are
temporal connectivity among all vertices [1, 45, 54], temporal connectivity among a subset of
vertices [45], or reducing reachability among the vertices [20]. In all these cases, the duration
of the temporal paths has not been considered.

Finally, there are many models for dynamic networks in the context of distributed
computing [47]. These models have some similarity to temporal graphs, in the sense that in
both cases the edges appear and disappear over time. However, there are notable differences.
For example, one important assumption in the distributed setting can be that the edge
changes are adversarial or random (while obeying some constraints such as connectivity),
and therefore they are not necessarily known in advance [47].

Preliminaries and notation. We already introduced the most central notion and concepts.
There are some additional definitions we need, to present our proofs and results which we
give in the following.

An interval in N from a to b is denoted by [a, b] = {i ∈ N : a ≤ i ≤ b}; similarly, [a] = [1, a].
An undirected graph G = (V, E) consists of a set V of vertices and a set E ⊆ V × V of
edges. For a graph G, we also denote by V (G) and E(G) the vertex and edge set of G,
respectively. We denote an edge e ∈ E between vertices u, v ∈ V as a set e = {u, v}.
For the sake of simplicity of the representation, an edge e is sometimes also denoted by
uv. A path P in G is a subgraph of G with vertex set V (P) = {v1, . . . , vk} and edge
set E(P) = {{vi, vi+1} : 1 ≤ i < k} (we often represent path P by the tuple (v1, v2, . . . , vk)).

Let v1, v2, . . . , vn be the n vertices of the graph G. For simplicity of the presentation
(and with a slight abuse of notation) we refer during the paper to the entry Di,j of the
matrix D as Da,b, where a = vi and b = vj . That is, we put as indices of the matrix D the
corresponding vertices of G whenever it is clear from the context.

Let P = (u = v1, v2, . . . , vp = v) be a path from u to v in G. Recall that, in our paper,
every edge has exactly one time label in every period of ∆ consecutive time steps. Therefore,
as we are only interested in the fastest duration of temporal paths, many times we refer
to (P, λ, ∆) as any of the temporal paths from u = v1 to v = vp along the edges of P ,
which starts at the edge v1v2 at time λ(v1v2) + c∆, for some c ∈ N, and then sequentially
visits the rest of the edges of P as early as possible. We denote by d(P, λ, ∆), or simply
by d(P, λ) when ∆ is clear from the context, the duration of any of the temporal paths
(P, λ, ∆); note that they all have the same duration. Many times we also refer to a path
P = (u = v1, v2, . . . , vp = v) from u to v in G, as a temporal path in (G, λ, ∆), where we
actually mean that (P, λ, ∆) is a temporal path with P as its underlying (static) path.

We remark that a fastest path between two vertices in a temporal graph can be computed
in polynomial time [11, 64]. Hence, given a ∆-periodic temporal graph (G, λ, ∆), we can
compute in polynomial-time the matrix D which consists of durations of fastest temporal
paths among all pairs of vertices in (G, λ, ∆).

2 Hardness results for Simple TGR

In this section we present our main computational hardness results. We first show that
Simple TGR is NP-hard even for constant ∆.

▶ Theorem 3 (⋆). Simple TGR is NP-hard for all ∆ ≥ 3.

SAND 2024

16:6 Temporal Graph Realization from Fastest Paths

Next, we investigate the parameterized hardness of Simple TGR with respect to struc-
tural parameters of the underlying graph. We show that the problem is W[1]-hard when
parameterized by the feedback vertex number of the underlying graph. The feedback vertex
number of a graph G is the cardinality of a minimum vertex set X ⊆ V (G) such that G − X

is a forest. The set X is called a feedback vertex set. Note that, in contrast to the previous
result (Theorem 3), the reduction we use to obtain the following result does not produce
instances with a constant ∆.

▶ Theorem 4 (⋆). Simple TGR is W[1]-hard when parameterized by the feedback vertex
number of the underlying graph.

Proof. We present a parameterized reduction from the W[1]-hard problem Multicolored
Clique parameterized by the number of colors [26]. Here, given a k-partite graph H =
(W1 ⊎ W2 ⊎ . . . ⊎ Wk, F), we are asked whether H contains a clique of size k. If w ∈ Wi,
then we say that w has color i. W.l.o.g. we assume that |W1| = |W2| = . . . = |Wk| = n.
Furthermore, for all i ∈ [k], we assume the vertices in Wi are ordered in some arbitrary but
fixed way, that is, Wi = {wi

1, wi
2, . . . , wi

n}. Let Fi,j with i < j denote the set of all edges
between vertices from Wi and Wj . We assume w.l.o.g. that |Fi,j | = m for all i < j (if not we
can add k maxi,j |Fi,j | vertices to each Wi and use those to add up to maxi,j |Fi,j | additional
isolated edges to each Fi,j). Furthermore, for all i < j we assume that the edges in Fi,j are
ordered in some arbitrary but fixed way, that is, Fi,j = {ei,j

1 , ei,j
2 , . . . , ei,j

m }.
We give a reduction to a variant of Simple TGR where the period ∆ is infinite (that

is, the sought temporal graph is not periodic and the labeling function λ : E → N maps
to the natural numbers) and we allow D to have infinity entries, meaning that the two
respective vertices are not temporally connected. Note that, given the matrix D, we can
easily compute the underlying graph G, as follows. Two vertices v, v′ are adjacent in G if
and only if Dv,v′ = 1, as having an edge between v and v′ is the only way that there exists
a temporal path from v to v′ with duration 1. For simplicity of the presentation of the
reduction, we describe the underlying graph G (which directly implies the entries of D where
Dv,v′ = 1) and then we provide the remaining entries of D. At the end of the proof, we show
how to obtain the result for a finite ∆ (by introducing a so-called “infinity gadget”) and a
matrix D of durations of fastest paths which only has finite entries.

In the following, we give an informal description of the main ideas of the reduction. The
construction uses several gadgets, where the main ones are an “edge selection gadget” and a
“verification gadget”.

Every edge selection gadget is associated with a color combination i, j in the Multi-
colored Clique instance, and its main purpose is to “select” an edge connecting a vertex
from color i with a vertex from color j. Roughly speaking, the edge selection gadget consists
of m paths, one for every edge in Fi,j (see Figure 2 for reference). The distance matrix
D will enforce that the labels on those paths effectively order them temporally, that is, in
particular, the labels on one of the paths will be smaller than the labels on all other paths.
The edge corresponding to this path is selected.

We have a verification gadget for every color i. They interact with the edge selection
gadgets as follows. The verification gadget for color i is connected to all edge selection
gadgets that involve color i. More specifically, this is connected to every path corresponding
to an edge at a position in the path that encodes the endpoint of color i of that edge (again,
see Figure 2 for reference). Intuitively, the distances in the verification gadget are only
realizable if the selected edges all have the same endpoint of color i. Hence, the distances of
all verification gadgets can be realized if and only if the selected edges form a clique.

N. Klobas, G. B. Mertzios, H. Molter, and P. G. Spirakis 16:7

alignment gadget
c
o
n
n
e
c
to

r
g
a
d
g
e
t

edge selection gadget for i, j

v
e
rifi

c
a
tio

n
g
a
d
g
e
t
fo
r
j

w⋆

v̂0v̂′
0

v̂1

v̂2

v̂3v̂′
3

v̂0v̂′
0

v̂1

v̂2

v̂3v̂′
3

v̂0 v̂′
0

v̂1

v̂2

v̂3 v̂′
3

v̂0 v̂′
0

v̂1

v̂2

v̂3 v̂′
3

x1 x2 x3

. . .

xm

v⋆
i,j

u1
0 u2

0 u3
0

. . . um
0

u1
1 u2

1 u3
1

. . . um
1

u1
2 u2

2 u3
2

. . . um
2

.

.

.
.
.
.

.

.

.
.
.
.

u1
n u2

n u3
n

. . . um
n

u1
n+1 u2

n+1 u3
n+1

. . . um
n+1

.

.

.
.
.
.

.

.

.
.
.
.

u1
4n u2

4n u3
4n

. . . um
4n

v⋆⋆
i,j

yj

vj
0

vj
1

.

.

.

vj
i−1

vj
i

.

.

.

vj
j−1

ûj
1

ûj
2

.

.

.

vj
j

.

.

.

vj
k

Figure 2 Illustration of part of the underlying graph G and a possible labeling. Edges incident
with vertices v̂1, v̂2 of connector gadgets are omitted. Gray vertices form a feedback vertex set.
The double line connections, between a vertex vj

i−1 in the verification gadget, and u3
1 in the edge

selection gadget, and, between a vertex u3
2 in the edge selection gadget, and vj

i in the verification
gadget, consist of 5n vertices aj,i,3

1 , aj,i,3
2 , . . . , aj,i,3

5n and bj,i,3
1 , bj,i,3

2 , . . . , bj,i,3
5n , respectively.

Furthermore, we use an alignment gadget which, intuitively, ensures that the labelings
of all gadgets use the same range of time labels. Finally, we use connector gadgets which
create shortcuts between all vertex pairs that are irrelevant for the functionality of the other
gadgets. This allows us to easily fill in the distance matrix with the corresponding values.
We ensure that all our gadgets have a constant feedback vertex number, hence the overall
feedback vertex number is quadratic in the number of colors of the Multicolored Clique
instance and we get the parameterized hardness result.

In the following, for every gadget, we give a formal description of the underlying graph
of this gadget (i. e., not the complete distance sub-matrix of the gadget). Due to space
constraints, we defer the description of the distance matrix D and the formal proof of
correctness for the reduction to [46].

SAND 2024

16:8 Temporal Graph Realization from Fastest Paths

Given an instance H of Multicolored Clique, we construct an instance D of Simple
TGR (with infinity entries and no periods) as follows.

Edge selection gadget. We first introduce an edge selection gadget Gi,j for color combina-
tion i, j with i < j. We start with describing the vertex set of the gadget.

A set Xi,j of vertices x1, x2, . . . , xm.
Vertex sets U1, U2, . . . , Um with 4n + 1 vertices each, that is, Uℓ = {uℓ

0, uℓ
1, uℓ

2, . . . , uℓ
4n}

for all ℓ ∈ [m].
Two special vertices v⋆

i,j , v⋆⋆
i,j .

The gadget has the following edges.
For all ℓ ∈ [m] we have edge {xℓ, v⋆

i,j}, {v⋆
i,j , uℓ

0}, and {uℓ
4n, v⋆⋆

i,j}.
For all ℓ ∈ [m] and ℓ′ ∈ [4n], we have edge {uℓ

ℓ′−1, uℓ
ℓ′}.

Verification gadget. For each color i, we introduce the following vertices. What we
describe in the following will be used as a verification gadget for color i.

We have one vertex yi and k + 1 vertices vi
ℓ for 0 ≤ ℓ ≤ k.

For every ℓ ∈ [m] and every j ∈ [k] \ {i} we have 5n vertices ai,j,ℓ
1 , ai,j,ℓ

2 , . . . , ai,j,ℓ
5n and 5n

vertices bi,j,ℓ
1 , bi,j,ℓ

2 , . . . , bi,j,ℓ
5n .

We have a set Ûi of 13n + 1 vertices ûi
1, ûi

2, . . . , ûi
13n+1.

We add the following edges. We add edge {yi, vi
0}. For every ℓ ∈ [m], every j ∈ [k] \ {i}, and

every ℓ′ ∈ [5n − 1] we add edge {ai,j,ℓ
ℓ′ , ai,j,ℓ

ℓ′+1} and we add edge {bi,j,ℓ
ℓ′ , bi,j,ℓ

ℓ′+1}.
Let 1 ≤ j < i (skip if i = 1), let ej,i

ℓ ∈ Fj,i, and let wi
ℓ′ ∈ Wi be incident with ej,i

ℓ . Then
we add edge {vi

j−1, ai,j,ℓ
1 } and we add edge {ai,j,ℓ

5n , uℓ
ℓ′−1} between ai,j,ℓ

5n and the vertex uℓ
ℓ′−1

of the edge selection gadget of color combination j, i. Furthermore, we add edge {vi
j , bi,j,ℓ

1 }
and edge {bi,j,ℓ

5n , uℓ
ℓ′} between bi,j,ℓ

5n and the vertex uℓ
ℓ′ of the edge selection gadget of color

combination j, i.
We add edge {vi

i−1, ûi
1} and for all ℓ′′ ∈ [13n] we add edge {ûi

ℓ′′ , ûi
ℓ′′+1}. Furthermore,

we add edge {ûi
13n+1, vi

i}.
Let i < j ≤ k (skip if i = k), let ei,j

ℓ ∈ Fi,j , and let wi
ℓ′ ∈ Wi be incident with ei,j

ℓ . Then
we add edge {vi

j−1, ai,j,ℓ
1 } and edge {ai,j,ℓ

5n , uℓ
3n+ℓ′−1} between ai,j,ℓ

5n and the vertex uℓ
3n+ℓ′−1

of the edge selection gadget of color combination i, j. Furthermore, we add edge {vi
j , bi,j,ℓ

1 }
and edge {bi,j,ℓ

5n , uℓ
3n+ℓ′} between bi,j,ℓ

5n and the vertex uℓ
3n+ℓ′ of the edge selection gadget of

color combination i, j.
Furthermore, we use connector gadgets, two for each edge selection gadget, and two for

every verification gadget. They consist of six vertices v̂0, v̂′
0, v̂1, v̂2, v̂3, v̂′

3 and, intuitively, are
used to connect many vertex pairs by fast paths, which will make arguing about possible
labelings in Yes-instances much easier. Finally, we have an alignment gadget, which is a star
with a center vertex w⋆ and a leaf for every other gadget. Intuitively, this gadget is used to
relate labels of different gadgets to each other. A formal description of these two gadgets is
given in [46].

This finishes the description of the underlying graph G. For an illustration see Figure 2.
We can observe that the vertex set containing vertices v⋆

i,j and v⋆⋆
i,j of each edge selection

gadget, vertices vi
ℓ with 0 ≤ ℓ ≤ k of each verification gadget, vertices v̂1 and v̂2 of each

connector gadget, and vertex w⋆ of the alignment gadget forms a feedback vertex set in G

with size O(k2).
As mentioned before, due to space constraints, we defer the description of the distance

matrix D and a formal correctness proof of the reduction to [46].

N. Klobas, G. B. Mertzios, H. Molter, and P. G. Spirakis 16:9

V

z1

z2 z3

z4

v v′

t

t+ 2

t+ n10 − 1

t+ 1 t+ n10 t+ 1 t+ n10

Figure 3 Illustration of the infinity gadget. Gray vertices need to be added to the feedback vertex
set.

Infinity gadget. Finally, we show how to get rid of the infinity entries in D and how
to allow a finite ∆. To this end, we introduce the infinity gadget. We add four vertices
z1, z2, z3, z4 to the graph and we set ∆ = n11. Let V denote the set of all remaining vertices.
We set the following durations.

For all v ∈ V we set d(z1, v) = 2, d(z2, v) = d(v, z2) = 1, d(z3, v) = d(v, z3) = 1, and
d(z4, v) = 2. Furthermore, we set d(v, z1) = n11 and d(v, z4) = n10 − 1.
We set d(z1, z2) = d(z2, z1) = 1, d(z2, z3) = d(z3, z2) = 1, and d(z3, z4) = d(z4, z3) = 1.
We set d(z1, z3) = 3, d(z3, z1) = n11 − 1, d(z2, z4) = n10 − 2, and d(z4, z2) = n11 − n10 + 4.
We set d(z1, z4) = n10 and d(z4, z1) = 2n11 − n10 + 2.
For every pair of vertices v, v′ ∈ V where previously the duration of a fastest path from v

to v′ was specified to be infinite, we set d(v, v′) = n10.
Now we analyse which implications we get for the labels on the newly introduced edges.
Assume λ({z1, z2}) = t, then we get the following. For all v ∈ V we have that d(z1, v) = 2 and
hence we get that λ({z2, v}) = t+1. Since d(z1, z4) = n10, we have that λ(z3, z4) = t+n10 −1.
From this follows that for all v ∈ V , since d(z4, v) = 2, that λ({z3, v}) = t + n10. Finally,
since d(z1, z3) = 3, we have that λ({z2, z3}) = t+2. For an illustration see Figure 3. It is easy
to check that all duration requirements between vertex pairs in {z1, z2, z3, z4} are met and
that all duration requirements between each vertex v ∈ V and each vertex in {z1, z2, z3, z4}
are met. Furthermore, it is easy to check that the gadget increases the feedback vertex set
by two (z2 and z3 need to be added).

Lastly, consider two vertices v, v′ ∈ V . Note that before the addition of the infinity
gadget, by construction of G we have that d(v, v′) ≤ n9 + 2 or d(v, v′) = ∞. Furthermore,
if D is a Yes-instance, we have shown in the correctness proof of the reduction that the
difference between the smallest label and the largest label is at most n9 + 1. This implies
that for a vertex pair v, v′ ∈ V with d(v, v′) = ∞ we have in the periodic case with ∆ = n11,
that d(v, v′) ≥ n11 − n9 > n10. Which means, after adding the vertices and edges of the
infinity gadget, we indeed have that d(v, v′) = n10. For all vertex pairs v, v′ where in the
original construction we have d(v, v′) ̸= ∞, we can also see that adding the infinity gadget
and setting ∆ = n11 does not change the duration of a fastest path from v to v′, since all
newly added temporal paths have duration at least n10. We can conclude that the originally
constructed instance D is a Yes-instance if and only if it remains a Yes-instance after adding
the infinity gadget and setting ∆ = n11. ◀

SAND 2024

16:10 Temporal Graph Realization from Fastest Paths

u w v
Pu,v

Pu,w

1 3 5 7

9

Figure 4 An example of a temporal graph (with ∆ ≥ 9), where the fastest temporal path Pu,v

(in blue) from u to v is of duration 7, while the fastest temporal path Pu,w (in red) from u to a
vertex w, that is on a path Pu,v, is of duration 1 and is not a subpath of Pu,v.

3 Algorithms for Simple TGR

In this section, to complement the discussed hardness aspects of Simple TGR, we present
some algorithmic results. We start by restricting the underlying graph G of the input
matrix D of Simple TGR to be a tree and get the following.

▶ Theorem 5 (⋆). Simple TGR can be solved in polynomial time on trees.

The main reason, for which Simple TGR is straightforward to solve on trees, is twofold:
between any pair of vertices vi and vj in the tree T , there is a unique path P in T from
vi to vj , and
in any periodic temporal graph (T, λ, ∆) and any fastest temporal path P =
((e1, t1), . . . , (ei, ti), . . . , (ej , tj), . . . , (eℓ−1, tℓ−1)) from v1 to vℓ we have that the sub-path
P ′ = ((ei, ti), . . . , (ej−1, tj−1)) is also a fastest temporal path from vi to vj .

However, these two nice properties do not hold when the underlying graph is not a tree. For
example, in Figure 4, the fastest temporal path from u to v is Pu,v (depicted in blue) goes
through w, however the sub-path of Pu,v that stops at w is not the fastest temporal path
from u to w. The fastest temporal path from u to w consists only of the single edge uw

(with label 9 and duration 1, depicted in red).
Nevertheless, we prove that we can still solve Simple TGR efficiently if the underlying

graph is similar to a tree; more specifically we show the following result, which turns out to
be non-trivial.

▶ Theorem 6 (⋆). Simple TGR is in FPT when parameterized by the feedback edge number
of the underlying graph.

From Theorem 4 and Theorem 6 we immediately get the following, which is the main
result of the paper.

▶ Corollary 7. Simple TGR is:
in FPT when parameterized by the feedback edge number or any larger parameter, such
as the maximum leaf number.
W[1]-hard when parameterized by the feedback vertex number or any smaller parameter,
such as: treewidth, degeneracy, cliquewidth, distance to chordal graphs, and distance to
outerplanar graphs.

Before presenting the structure of our algorithm for Theorem 6, observe that, in a static
graph, the number of paths between two vertices can be upper-bounded by a function f(k)
of the feedback edge number k of the graph [14]. Therefore, for any fixed pair of vertices u

and v, we can “guess” the edges of the fastest temporal path from u to v (by guess we mean
enumerate and test all possibilities). However, for an FPT algorithm with respect to k, we
cannot afford to guess the edges of the fastest temporal path for each of the O(n2) pairs of
vertices. To overcome this difficulty, our algorithm follows this high-level strategy:

N. Klobas, G. B. Mertzios, H. Molter, and P. G. Spirakis 16:11

Figure 5 An example of a graph with its important vertices: U (in blue), U∗ (in green) and Z∗

(in orange). Corresponding feedback edges are marked with a thick red line, while dashed edges
represent the edges (and vertices) “removed” from G′ at the initial step.

We identify a small number f(k) of “important vertices”.
For each pair u, v of important vertices, we guess the edges of the fastest temporal path
from u to v (and from v to u).
From these guesses we can still not deduce the edges of the fastest temporal paths between
many pairs of non-important vertices. However, as we prove, it suffices to guess only a
small number of specific auxiliary structures (to be defined later).
From these guesses we deduce fixed relationships between the labels of most of the edges
of the graph.
For all the edges, for which we have not deduced a label yet, we introduce a variable. With
all these variables, we build an Integer Linear Program (ILP). Among the constraints
in this ILP we have that, for each of the O(n2) pairs of vertices u, v in the graph, the
duration of one specific temporal path from u to v (according to our guesses) is equal to
the desired duration Du,v, while the duration of each of the other temporal path from u

to v is at least Du,v.
By making each of the above combinations of guesses, we essentially enumerate all possible
ways that our instance of Simple TGR has a solution, and for each of these possible
ways we create an ILP. That is, our instance of Simple TGR has a solution if and only if
at least one of these ILPs has a feasible solution. As each ILP can be solved in FPT time
with respect to k by Lenstra’s Theorem [49] (the number of variables is upper bounded
by a function of k), we obtain our FPT algorithm for Simple TGR with respect to k.

We now present the first part of our FPT algorithm, that is, identifying important
vertices and guessing information about the fastest temporal paths. A full description of the
algorithm is deferred to [46].

Important vertices. Let D be the input matrix of Simple TGR, and let G be its underlying
graph, on n vertices and m edges. From the underlying graph G of D we first create a graph
G′ by iteratively removing vertices of degree one from G, and denote with Z = V (G) \ V (G′),
the set of removed vertices. Then we determine the set U (the “vertices of interest”), and
the set U∗ (the neighbors of the vertices of interest), as follows. Let T be a spanning tree of
G′, with F being the corresponding feedback edge set of G′. Let V1 ⊆ V (G′) be the set of
leaves in the spanning tree T , V2 ⊆ V (G′) be the set of vertices of degree two in T which
are incident to at least one edge in F , and let V3 ⊆ V (G′) be the set of vertices of degree at
least 3 in T . Then |V1| + |V2| ≤ 2k, since every leaf in T and every vertex in V2 is incident
to at least one edge in F , and |V3| ≤ |V1| by the properties of trees. We denote with

U = V1 ∪ V2 ∪ V3

the set of vertices of interest. It follows that |U | ≤ 4k. We set U∗ to be the set of vertices in
V (G′) \ U that are neighbors of vertices in U , i. e.,

U∗ = {v ∈ V (G′) \ U : u ∈ U, v ∈ N(u)}.

SAND 2024

16:12 Temporal Graph Realization from Fastest Paths

v1
3

v2

5

v3

6

v4

7

v5

11

v6

17

v7

14

v8

10

v9

9

v10

8
v11

5

w
P Q

Figure 6 In the above graph vertices v1, v11, w are in U , while v2, v10 are in U∗. Numbers above
all vi represent the values of the fastest temporal paths from w to each of them (i. e., the entries
in the w-th row of matrix D). From the basic guesses we know the fastest temporal path P from
w to v2 (depicted in blue) and the fastest temporal path Q from w to v10. From the values of
durations from w to each vi we cannot determine the fastest paths from w to all vi. More precisely,
we know that w reaches v2, v3, v4, v5 (resp. v10, v9, v9, v7) by first using the path P (resp. Q) and
then proceeding through the vertices, but we do not know how w reaches v6 the fastest. Therefore
we have to introduce some more guesses.

Again, using the tree structure, we get that for any u ∈ U its neighborhood is of size
|N(u)| ∈ O(k), since every neighbor of u is the first vertex of a (unique) path to another
vertex in U . It follows that |U∗| ∈ O(k2). From the construction of Z (i. e., by exhaustively
removing vertices of degree one from G), it follows that G[Z] (the graph induced in G by Z)
is a forest, i. e., consists of disjoint trees. Each of these trees has a unique neighbor v in G′.
Denote by Tv the tree obtained by considering such a vertex v and all the trees from G[Z]
that are incident to v in G. We then refer to v as the clip vertex of the tree Tv. In the case
where v is a vertex of interest we define also the set Z∗

v of representative vertices of Tv, as
follows. We first create an empty set Cw for every vertex w that is a neighbor of v in G′. We
then iterate through every vertex r that is in the first layer of the tree Tv (i. e., vertex that is a
child of the root v in the tree Tv), check the matrix D and find the vertex w ∈ NG′(v) that is
on the smallest duration from r. In other words, for an r ∈ NTv

(v) we find w ∈ NG′(v) such
that Dr,w ≤ Dr,w′ for all w′ ∈ NG′(v). We add vertex r to Cw. In the case when there exists
also another vertex w′ ∈ NG′(v) for which Dr,w′ = Dr,w, we add r also to the set Cw′ . In fact,
in this case Cw′ = Cw. At the end we create |NG′(v)| ∈ O(k) sets Cw, whose union contains
all children of v in Tv. For every two sets Cw and Cw′ , where w, w′ ∈ NG′(v), we have that
either Cw = Cw′ , or Cw ∩ Cw′ = ∅. We interpret each of these sets {Cw : w ∈ NG′(v)} as an
equivalence class of the neighbors of v in the tree Tv. Now, from each equivalence class Cw

we choose an arbitrary vertex rw ∈ Cw and put it into the set Z∗
v . We repeat the above

procedure for all trees Tu with the clip vertex u from U , and define Z∗ as

Z∗ =
⋃

v∈U

Z∗
v . (1)

Since |U | ∈ O(k) and for each u ∈ U it holds |NG′(u)| ∈ O(k), we get that |Z∗| ∈ O(k2).
Finally, the set of important vertices is defined as the set U ∪ U∗ ∪ Z∗. For an illustration
see Figure 5.

Guesses. For every pair of important vertices u, v ∈ U ∪ U∗ ∪ Z∗, we guess the sequence of
edges in the fastest temporal path from u to v. Since U ∪ U∗ ∪ Z∗ ∈ O(k2) and there are
kO(k) possibilities for a sequence of edges between a fixed vertex pair, we have kO(k5) overall
possible guesses. We defer further details to [46] (see guesses G-1 to G-6).

With the information provided by the described guesses we are still not able to determine
all fastest paths. For example consider the case depicted in Figure 6. Therefore we introduce
additional guesses that provide us with sufficient information to determine all fastest paths.
To do this we have to first define the following.

N. Klobas, G. B. Mertzios, H. Molter, and P. G. Spirakis 16:13

▶ Definition 8. Let U ⊆ V (G′) be a set of vertices of interest and let u, v ∈ U . A path
P = (u = v1, v2, . . . , vp = v) of length at least 2 in graph G′, where all inner vertices are not
in U , i. e., vi /∈ U for all i ∈ {2, 3, . . . , p − 1}, is called a segment from u to v. We denote it
as Su,v.

Note by Definition 8 that Su,v ̸= Sv,u. Observe that a temporal path in G′ between
two vertices of interest is either a segment, or it consists of a sequence of some segments.
Furthermore, since we have at most 4k interesting vertices in G′, we can deduce the following
important result.

▶ Corollary 9. There are O(k2) segments in G′.

To describe the next guesses, we introduce the following notation. Let u, v, x be three vertices
in G′. We write u⇝ x → v to denote a temporal path from u to v that passes through x,
and then goes to v (via one edge). We guess the following structures.
G-7. Inner segment guess I. Let Su,v = (u = v1, v2, . . . , vp = v) and Sw,z = (w =

z1, z2, . . . , zr = z) be two segments in G′. We want to guess the fastest temporal path
v2 → u⇝ w → z2. We repeat this procedure for all pairs of segments. Since there are
O(k2) segments in G′, there are kO(k5) possible paths of this form.
Recall that Su,v ̸= Sv,u for every u, v ∈ U . Furthermore note that we did not assume
that {u, v} ∩ {w, z} = ∅. Therefore, by repeatedly making the above guesses, we also
guess the following fastest temporal paths: v2 → u⇝ z → zr−1, v2 → u⇝ v → vp−1,
vp−1 → v ⇝ w → z2, vp−1 → v ⇝ z → zr−1, and vp−1 → v ⇝ u → v2. For an example
see Figure 7a.

G-8. Inner segment guess II. Let Su,v = (u = v1, v2, . . . , vp = v) be a segment in G′, and
let w ∈ U ∪ Z∗. We want to guess the following fastest temporal paths w ⇝ u → v2,
w ⇝ v → vp−1 → · · · → v2, and v2 → u⇝ w, v2 → v3 → · · · v ⇝ w.
For fixed Su,v and w ∈ U ∪ Z∗ we have kO(k) different possible such paths, therefore
we make kO(k5) guesses for these paths. For an example see Figure 7b.

G-9. Split vertex guess I. Let Su,v = (u = v1, v2, . . . , vp = v) be a segment in G′, and
let us fix a vertex vi ∈ Su,v \ {u, v}. In the case when Su,v is of length 4, the fixed
vertex vi is the middle vertex, else we fix an arbitrary vertex vi ∈ Su,v \ {u, v}. Let
Sw,z = (w = z1, z2, . . . , zr = z) be another segment in G′. We want to determine the
fastest paths from vi to all inner vertices of Sw,z. We do this by inspecting the values
in matrix D from vi to inner vertices of Sw,z. We split the analysis into two cases.
a. There is a single vertex zj ∈ Sw,z for which the duration from vi is the biggest.

More specifically, zj ∈ Sw,z \ {w, z} is the vertex with the biggest value Dvi,zj .
We call this vertex a split vertex of vi in the segment Swz. Then it holds that
Dvi,z2 < Dvi,z3 < · · · < Dvi,zj

and Dvi,zr−1 < Dvi,zr−2 < · · · < Dvi,zj
. From this

it follows that the fastest temporal paths from vi to z2, z3, . . . , zj−1 go through w,
and the fastest temporal paths from vi to zr−1, zr−2, . . . , zj+1 go through z. We
now want to guess which vertex w or z is on a fastest temporal path from vi to zj .
Similarly, all fastest temporal paths starting at vi have to go either through u or
through v, which also gives us two extra guesses for the fastest temporal path from
vi to zj . Therefore, all together we have 4 possibilities on how the fastest temporal
path from vi to zj starts and ends. Besides that we want to guess also how the fastest
temporal paths from vi to zj−1, zj+1 start and end. Note that one of these is the
subpath of the fastest temporal path from vi to zj , and the ending part is uniquely
determined for both of them, i. e., to reach zj−1 the fastest temporal path travels
through w, and to reach zj+1 the fastest temporal path travels through z. Therefore

SAND 2024

16:14 Temporal Graph Realization from Fastest Paths

we have to determine only how the path starts, namely if it travels through u or v.
This introduces two extra guesses. For a fixed Su,v, vi and Sw,z we find the vertex zj

in polynomial time, or determine that zj does not exist. We then make four guesses
where we determine how the fastest temporal path from vi to zj passes through
vertices u, v and w, z and for each of them two extra guesses to determine the fastest
temporal path from vi to zj−1 and from vi to zj+1. We repeat this procedure for all
pairs of segments, which results in producing kO(k5) new guesses. Note, vi ∈ Su,v is
fixed when calculating the split vertex for all other segments Sw,z.

b. There are two vertices zj , zj+1 ∈ Sw,z for which the duration from vi is the biggest.
More specifically, zj , zj+1 ∈ Sw,z \ {w, z} are the vertices with the biggest value
Dvi,zj = Dvi,zj+1 . Then it holds that Dvi,z2 < Dvi,z3 < · · · < Dvi,zj = Dvi,zj+1 >

Dvi,zj+2 > · · · > Dvi,zr−1 . From this it follows that the fastest temporal paths
from vi to z2, z3, . . . , zj go through w, and the fastest temporal paths from vi to
zr−1, zr−2, . . . , zj+1 go through z. In this case we only need to guess the following
two fastest temporal paths vi ⇝ w → z2 and vi ⇝ z → zr−1. Each of these paths we
then uniquely extend along the segment Sw,z up to the vertex zj , resp. zj+1, which
give us fastest temporal paths from vi to zj and from vi to zj+1. In this case we
introduce only two more guesses. We repeat this procedure for all pairs of segments.
which results in creating kO(k5) new guesses.

For an example see Figure 7b.
G-10. Split vertex guess II. Let w ∈ U ∪ Z∗ and let Su,v = (u = v1, v2, . . . , vp = v). We

want to guess a split vertex of w in Su,v, and the fastest temporal path that reaches it.
We again have two cases, first one where vi is a unique vertex in Su,v that is furthest
away from w, and the second one where vi, vi+1 are two incident vertices in Su,v, that
are furthest away from w. All together we make two guesses for each pair w, Su,v. We
repeat this for all vertices in U ∪ Z∗, and all segments, which produces kO(k5) new
guesses. For an example see Figure 7c. Detailed analysis follows arguing from above
(as in G-9) and is deferred to [46].

There are two more guesses G-11 and G-12 that are deferred to [46]. We prove in [46]
that, for all guesses G-1 to G-12, there are in total at most f(k) possible choices, and for
each one of them we create an ILP with at most f(k) variables and at most f(k) · |D|O(1)

constraints. Each of these ILPs can be solved in FPT time by Lenstra’s Theorem [49]. For
detailed explanation and proofs of this part see [46].

4 Conclusion

We believe that our work spawns several interesting future research directions and builds a
base upon which further temporal graph realization problems can be investigated.

There are several structural parameters which can be considered to obtain tractability
which are either larger than or incomparable to the feedback vertex number. We believe that
the vertex cover number or the tree depth are promising candidates. Furthermore, we can
consider combining a structural parameter such as the treewidth with ∆.

There are many natural variants of our problem that are well-motivated and warrant
consideration. We believe that one of the most natural generalizations of our problem is to
allow more than one label per edge in every ∆-period. A well-motivated variant (especially
from the network design perspective) of our problem is to consider the entries of the duration
matrix D as upper-bounds on the duration of fastest paths rather than exact durations. This
problem variant has very recently been studied by Mertzios et al. [56].

N. Klobas, G. B. Mertzios, H. Molter, and P. G. Spirakis 16:15

u=v1 v2 vp−1 vp=v

w=z1 z2 zr−1 zr=z

(a) Example of an Inner segment guess I (G-7),
where we guessed the fastest temporal paths of the
form v2 → u ⇝ w → z2 (in blue) and v2 → u ⇝
z → zr−1 (in red).

u=v1 v2 vp−1 vp=v

w

(b) Example of an Inner segment guess II (G-8),
where we guessed the fastest temporal paths of the
form w ⇝ u → v2 (in blue) and w ⇝ v → vp−1 (in
red).

u=v1 v2 vi vp−1 vp=v

w=z1 z2 zj−1 zj zj+1 zr−1 zr=z

(c) Example of a Split vertex guess I (G-9), where,
for a fixed vertex vi ∈ Su,v, we calculated its cor-
responding split vertex zj ∈ Sw,z , and guessed the
fastest paths of the form vi → vi−1 → · · · → u ⇝
z → zr−1 · · · → zj (in blue) and vi → vi+1 →
· · · → v ⇝ w → z2 → · · · → zj−1 (in red).

u=v1 v2 vi vi+1 vp−1 vp=v

w

(d) Example of a Split vertex guess II (G-10), where,
for a vertex of interest w, we calculated its corres-
ponding split vertex vi ∈ Su,v, and guessed the
fastest paths of the form w ⇝ u → v2 → · · · → vi

(in blue) and w ⇝ v → vp−1 → · · · → vi+1 (in
red).

Figure 7 Illustration of the guesses G-7, G-8, G-9, and G-10.

References

1 Eleni C Akrida, Leszek Gąsieniec, George B. Mertzios, and Paul G Spirakis. The complexity
of optimal design of temporally connected graphs. Theory of Computing Systems, 61:907–944,
2017.

2 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Christoforos Raptopoulos. The
temporal explorer who returns to the base. Journal of Computer and System Sciences,
120:179–193, 2021.

3 Emmanuel Arrighi, Niels Grüttemeier, Nils Morawietz, Frank Sommer, and Petra Wolf. Multi-
parameter analysis of finding minors and subgraphs in edge-periodic temporal graphs. In
Proceedings of the 48th International Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM), pages 283–297, 2023.

4 John Augustine, Keerti Choudhary, Avi Cohen, David Peleg, Sumathi Sivasubramaniam, and
Suman Sourav. Distributed graph realizations. IEEE Transactions on Parallel and Distributed
Systems, 33(6):1321–1337, 2022.

5 Amotz Bar-Noy, Keerti Choudhary, David Peleg, and Dror Rawitz. Efficiently realizing interval
sequences. SIAM Journal on Discrete Mathematics, 34(4):2318–2337, 2020.

6 Amotz Bar-Noy, Keerti Choudhary, David Peleg, and Dror Rawitz. Graph realizations:
Maximum degree in vertex neighborhoods. In Proceedings of the 17th Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT), pages 10:1–10:17, 2020.

SAND 2024

16:16 Temporal Graph Realization from Fastest Paths

7 Amotz Bar-Noy, David Peleg, Mor Perry, and Dror Rawitz. Composed degree-distance
realizations of graphs. In Proceedings of the 32nd International Workshop on Combinatorial
Algorithms (IWOCA), pages 63–77, 2021.

8 Amotz Bar-Noy, David Peleg, Mor Perry, and Dror Rawitz. Graph realization of distance
sets. In Proceedings of the 47th International Symposium on Mathematical Foundations of
Computer Science (MFCS), pages 13:1–13:14, 2022.

9 Mehdi Behzad and James E Simpson. Eccentric sequences and eccentric sets in graphs. Discrete
Mathematics, 16(3):187–193, 1976.

10 Robert E Bixby and Donald K Wagner. An almost linear-time algorithm for graph realization.
Mathematics of Operations Research, 13(1):99–123, 1988.

11 Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and
foremost journeys in dynamic networks. International Journal of Foundations of Computer
Science, 14(02):267–285, 2003.

12 Arnaud Casteigts, Timothée Corsini, and Writika Sarkar. Invited paper: Simple, strict, proper,
happy: A study of reachability in temporal graphs. In Proceedings of the 24th International
Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), pages 3–18,
2022.

13 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed
Systems, 27(5):387–408, 2012.

14 Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding
temporal paths under waiting time constraints. Algorithmica, 83(9):2754–2802, 2021.

15 Wai-Kai Chen. On the realization of a (p, s)-digraph with prescribed degrees. Journal of the
Franklin Institute, 281(5):406–422, 1966.

16 Fan Chung, Mark Garrett, Ronald Graham, and David Shallcross. Distance realization
problems with applications to internet tomography. Journal of Computer and System Sciences,
63(3):432–448, 2001.

17 Joseph C. Culberson and Piotr Rudnicki. A fast algorithm for constructing trees from distance
matrices. Information Processing Letters, 30(4):215–220, 1989.

18 Argyrios Deligkas and Igor Potapov. Optimizing reachability sets in temporal graphs by
delaying. Information and Computation, 285:104890, 2022.

19 Jessica Enright, Kitty Meeks, George B. Mertzios, and Viktor Zamaraev. Deleting edges
to restrict the size of an epidemic in temporal networks. Journal of Computer and System
Sciences, 119:60–77, 2021.

20 Jessica Enright, Kitty Meeks, and Fiona Skerman. Assigning times to minimise reachability in
temporal graphs. Journal of Computer and System Sciences, 115:169–186, 2021.

21 Jessica A. Enright, Kitty Meeks, and Hendrik Molter. Counting temporal paths. In Proceedings
of the 40th International Symposium on Theoretical Aspects of Computer Science (STACS),
volume 254, pages 30:1–30:19, 2023.

22 Paul Erdős and Tibor Gallai. Graphs with prescribed degrees of vertices. Mat. Lapok,
11:264–274, 1960.

23 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration.
Journal of Computer and System Sciences, 119:1–18, 2021.

24 Thomas Erlebach, Nils Morawietz, and Petra Wolf. Parameterized algorithms for multi-label
periodic temporal graph realization. In Proceedings of the 3rd Symposium on Algorithmic
Foundations of Dynamic Networks (SAND), pages 12:1–12:16, 2024. doi:10.4230/LIPIcs.
SAND.2024.12.

25 Thomas Erlebach and Jakob T. Spooner. A game of cops and robbers on graphs with periodic
edge-connectivity. In Proceedings of the 46th International Conference on Current Trends in
Theory and Practice of Informatics (SOFSEM), pages 64–75, 2020.

https://doi.org/10.4230/LIPIcs.SAND.2024.12
https://doi.org/10.4230/LIPIcs.SAND.2024.12

N. Klobas, G. B. Mertzios, H. Molter, and P. G. Spirakis 16:17

26 Michael R. Fellows, Danny Hermelin, Frances Rosamond, and Stéphane Vialette. On the
parameterized complexity of multiple-interval graph problems. Theoretical Computer Science,
410(1):53–61, 2009.

27 Michael R. Fellows, Bart M. P. Jansen, and Frances A. Rosamond. Towards fully multivariate
algorithmics: Parameter ecology and the deconstruction of computational complexity. European
Journal of Combinatorics, 34(3):541–566, 2013.

28 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche.
Temporal graph classes: A view through temporal separators. Theoretical Computer Science,
806:197–218, 2020.

29 András Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM Journal on
Discrete Mathematics, 5(1):25–53, 1992.

30 András Frank. Connectivity augmentation problems in network design. Mathematical Pro-
gramming: State of the Art 1994, 1994.

31 H. Frank and Wushow Chou. Connectivity considerations in the design of survivable networks.
IEEE Transactions on Circuit Theory, 17(4):486–490, 1970.

32 Eugen Füchsle, Hendrik Molter, Rolf Niedermeier, and Malte Renken. Delay-robust routes in
temporal graphs. In Proceedings of the 39th International Symposium on Theoretical Aspects
of Computer Science (STACS), pages 30:1–30:15, 2022.

33 Eugen Füchsle, Hendrik Molter, Rolf Niedermeier, and Malte Renken. Temporal connectivity:
Coping with foreseen and unforeseen delays. In Proceedings of the 1st Symposium on Algorithmic
Foundations of Dynamic Networks (SAND), pages 17:1–17:17, 2022.

34 D.R. Fulkerson. Zero-one matrices with zero trace. Pacific Journal of Mathematics, 10(3):831–
836, 1960.

35 Petr A. Golovach and George B. Mertzios. Graph editing to a given degree sequence. Theoretical
Computer Science, 665:1–12, 2017.

36 Martin Charles Golumbic and Ann N. Trenk. Tolerance Graphs. Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 2004.

37 Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the Society
for Industrial and Applied Mathematics, 9(4):551–570, 1961.

38 Martin Grötschel, Clyde L Monma, and Mechthild Stoer. Design of survivable networks.
Handbooks in Operations Research and Management Science, 7:617–672, 1995.

39 Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A structural view on parameterizing problems:
Distance from triviality. In Proceedings of the 1st International Workshop on Parameterized
and Exact Computation (IWPEC), pages 162–173, 2004.

40 S. Louis Hakimi. On realizability of a set of integers as degrees of the vertices of a linear
graph. I. Journal of the Society for Industrial and Applied Mathematics, 10(3):496–506, 1962.

41 S. Louis Hakimi and Stephen S. Yau. Distance matrix of a graph and its realizability. Quarterly
of applied mathematics, 22(4):305–317, 1965.

42 Pavol Hell and David Kirkpatrick. Linear-time certifying algorithms for near-graphical
sequences. Discrete Mathematics, 309(18):5703–5713, 2009.

43 David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems for
temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.

44 Nina Klobas, George B. Mertzios, Hendrik Molter, Rolf Niedermeier, and Philipp Zschoche.
Interference-free walks in time: Temporally disjoint paths. Autonomous Agents and Multi-Agent
Systems, 37(1):1, 2023.

45 Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis. The complexity of
computing optimum labelings for temporal connectivity. In Proceedings of the 47th International
Symposium on Mathematical Foundations of Computer Science (MFCS), pages 62:1–62:15,
2022.

46 Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis. Realizing temporal
graphs from fastest travel times. CoRR, abs/2302.08860, 2023. doi:10.48550/arXiv.2302.
08860.

SAND 2024

https://doi.org/10.48550/arXiv.2302.08860
https://doi.org/10.48550/arXiv.2302.08860

16:18 Temporal Graph Realization from Fastest Paths

47 Fabian Kuhn and Rotem Oshman. Dynamic networks: Models and algorithms. SIGACT
News, 42(1):82–96, March 2011.

48 Pascal Kunz, Hendrik Molter, and Meirav Zehavi. In which graph structures can we efficiently
find temporally disjoint paths and walks? In Proceedings of the 32nd International Joint
Conference on Artificial Intelligence (IJCAI), pages 180–188, 2023.

49 Hendrik W. Lenstra. Integer programming with a fixed number of variables. Mathematics of
Operations Research, 8:538–548, 1983.

50 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

51 Linda Lesniak. Eccentric sequences in graphs. Periodica Mathematica Hungarica, 6:287–293,
1975.

52 Ross M. McConnell and Jeremy P. Spinrad. Construction of probe interval models. In
Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
866–875, 2002.

53 F.R. McMorris, Chi Wang, and Peisen Zhang. On probe interval graphs. Discrete Applied
Mathematics, 88(1):315–324, 1998. Computational Molecular Biology DAM - CMB Series.

54 George B. Mertzios, Othon Michail, and Paul G. Spirakis. Temporal network optimization
subject to connectivity constraints. Algorithmica, 81(4):1416–1449, 2019.

55 George B. Mertzios, Hendrik Molter, Malte Renken, Paul G. Spirakis, and Philipp Zschoche.
The complexity of transitively orienting temporal graphs. In Proceedings of the 46th In-
ternational Symposium on Mathematical Foundations of Computer Science (MFCS), pages
75:1–75:18, 2021.

56 George B. Mertzios, Hendrik Molter, and Paul G. Spirakis. Realizing temporal transportation
trees. CoRR, abs/2403.18513, 2024. doi:10.48550/arXiv.2403.18513.

57 Hendrik Molter, Malte Renken, and Philipp Zschoche. Temporal reachability minimization:
Delaying vs. deleting. In Proceedings of the 46th International Symposium on Mathematical
Foundations of Computer Science (MFCS), pages 76:1–76:15, 2021.

58 Nils Morawietz, Carolin Rehs, and Mathias Weller. A timecop’s work is harder than you
think. In Proceedings of the 45th International Symposium on Mathematical Foundations of
Computer Science (MFCS), volume 170, pages 71–1, 2020.

59 Nils Morawietz and Petra Wolf. A timecop’s chase around the table. In Proceedings of the 46th
International Symposium on Mathematical Foundations of Computer Science (MFCS), 2021.

60 A.N. Patrinos and S. Louis Hakimi. The distance matrix of a graph and its tree realization.
Quarterly of Applied Mathematics, 30:255–269, 1972.

61 Elena Rubei. Weighted graphs with distances in given ranges. Journal of Classification,
33:282–297, 2016.

62 Piotr Sapiezynski, Arkadiusz Stopczynski, Radu Gatej, and Sune Lehmann. Tracking human
mobility using wifi signals. PloS one, 10(7):e0130824, 2015.

63 H. Tamura, M. Sengoku, S. Shinoda, and T. Abe. Realization of a network from the upper
and lower bounds of the distances (or capacities) between vertices. In Proceedings of the 1993
IEEE International Symposium on Circuits and Systems (ISCAS), pages 2545–2548, 1993.

64 Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu. Efficient
algorithms for temporal path computation. IEEE Transactions on Knowledge and Data
Engineering, 28(11):2927–2942, 2016.

65 Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The complexity of
finding separators in temporal graphs. Journal of Computer and System Sciences, 107:72–92,
2020.

http://snap.stanford.edu/data
https://doi.org/10.48550/arXiv.2403.18513

	1 Introduction
	2 Hardness results for Simple TGR
	3 Algorithms for Simple TGR
	4 Conclusion

