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Abstract
Boolean automata networks (aka Boolean networks) are space-time discrete dynamical systems,
studied as a model of computation and as a representative model of natural phenomena. A collection
of simple entities (the automata) update their 0-1 states according to local rules. The dynamics of
the network is highly sensitive to update modes, i.e., to the schedule according to which the automata
apply their local rule. A new family of update modes appeared recently, called block-parallel, which
is dual to the well studied block-sequential. Although basic, it embeds the rich feature of update
repetitions among a temporal updating period, allowing for atypical asymptotic behaviors. In
this paper, we prove that it is able to breed complex computations, squashing almost all decision
problems on the dynamics to the traditionally highest (for reachability questions) class PSPACE.
Despite obtaining these complexity bounds for a broad set of local and global properties, we also
highlight a surprising gap: bijectivity is still coNP.
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1 Introduction

Automata networks are distributed models of computation, defined locally by means of
individual entities (called automata) interacting with each other over discrete time, and
collectively performing global computations. The model originates from the seminal work of
McCulloch and Pitts on neural networks [32] (with local threshold Boolean functions). It
raised fundamental complexity and computability questions on their dynamics, with notable
considerations of feedback shift registers [26, 14], and perceptrons [39]. The Boolean case
serves as a framework for biological modelling, as proposed by Kauffman and Thomas on
gene regulation [28, 42], and repeatedly confirmed since the 1990s [33, 1, 19, 43] (where limit
dynamics receive biological interpretations matching experiments).

Our contribution is at the frontier between theoretical computer science, discrete math-
ematics, and systems biology. When working on Boolean automata networks, it is utmost
important to define the way automata update their state over time (namely the update
mode), in order to obtain a discrete dynamical system. Indeed:
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19:2 Complexity of Boolean Automata Networks Under Block-Parallel Update Modes

Even if the fixed points obtained under the parallel update mode are fixed points obtained
under any other update mode [20], specific update modes may generate additional fixed
points (e.g., block-parallel).
The limit cycles which are not fixed points, obtained under a given update mode, are not
necessarily conserved under another update mode [11, 23, 5, 22, 6].

In other words, a Boolean automata network may admit a large number of distinct dynamics
(depending on the update mode), which requires a strong attention, in particular when it is
employed as a phenomenological model in systems biology. In the context of gene regulatory
networks, chromatin dynamics has emerged as a full-fledged research track to understand
the temporality of mRNA transcriptional machinery (which has no clear biological answer
at present) [24, 7, 25, 16]. From a theoretical standpoint, advances on chromatin dynamics
tend to show that genetic expression is neither purely asynchronous nor purely synchronous,
hence supporting studies of in-between update modes.

In this line, this paper aims at studying the peculiar role and impact of block-parallel
update modes, shown to have relevant features from both formal and applied standpoints [12,
36], in the sense that (i) they can generate fixed points which are not fixed points of the
dynamical system obtained when the underlying network evolves synchronously, and (ii)
they can implement specific biological timers which are intrinsically governed by phenomena
exogenous to regulatory control. We take the lens of complexity theory, and provide ground
results on classical decision problems related to fixed points and limit cycles, reachability,
etc. These new complexity bounds highlight that most decision problems known to be
NP-complete under block-sequential update modes, such as the image/preimage problems,
and fixed point problems [17, 8, 35], are PSPACE-complete under block-parallel update modes.
It suggests that the “expressivity” of such update modes comes at a high cost in terms of
simulation, which strengthens the need for structural results. However, there are unexpected
exceptions, related to bijectivity and steadyness.

In Section 2, we define formally the model and present known results. Section 3 exposes
our results. Classical problems on computing images, preimages, fixed points and limit cycles
are characterized: they all jump from NP (under block-sequential update modes) to PSPACE
(under block-parallel update modes). Then we prove a general bound on the recognition of
functional subdynamics. Regarding global properties, recognizing bijective dynamics remains
coNP-complete, and recognizing constant dynamics becomes PSPACE-complete. The case of
identity recognition is much subtler, and we provide three incomparable bounds: a trivial
coNP-hardness one, a tough ModP-hardness, and a FPPSPACE-completeness result derived
from the recent literature. In Section 4, we summarize the results and expose perspectives.

2 Definitions and state of the art

We denote the set of integers by JnK = {0, . . . , n − 1}, the Booleans by B = {0, 1}, the
i-th component of a vector x ∈ Bn by xi ∈ B, and the restriction of x to domain I ⊂ JnK
by xI ∈ B|I|. For two graphs G = (V (G), A(G)) and H = (V (H), A(H)), we denote by
G ∼ H when they are isomorphic, i.e., when there is a bijection π : V (G) → V (H) such that
(x, y) ∈ A(G) ⇐⇒ (π(x), π(y)) ∈ A(H). We denote by G ⊏ H when G is a subgraph of H,
i.e., when G′ such that G′ ∼ G can be obtained from H by vertex and arc deletions.

Boolean automata network. A Boolean automata network (BAN) is a discrete dynamical
system on Bn. A configuration x ∈ Bn associates to each of the n automata among JnK a
Boolean state among B. The individual dynamics of a each automaton i ∈ JnK is described
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by a local function fi : Bn → B giving its new state according to the current configuration.
To get a dynamics, one needs to settle the order in which the automata update their state by
application of their local function. That is, an update schedule must be given. The most basic
is the parallel update schedule, where all automata update their state synchronously at each
step, formally as f : Bn → Bn defined by ∀x ∈ Bn : f(x) = (f0(x), f1(x), . . . , fn−1(x)). In
this work, we concentrate on the block-parallel update schedule, motivated by the biological
context of gene regulatory networks, where each automaton is a gene and the dynamics give
clues on cell phenotypes. Not all automata will be update simultaneously as in the parallel
update mode. They will instead be grouped by subsets. For simplicity in defining the local
functions of a BAN, we extend the fi : Bn → B notation to subsets I ⊆ JnK as fI : Bn → B|I|.
We also denote f(I) : Bn → Bn the update of automata from subset I, defined as:

∀i ∈ JnK : f(I)(x)i =
{
fi(x) if i ∈ I

xi otherwise.

Block-sequential update schedule. A block-sequential update schedule is an ordered parti-
tion of JnK, given as a sequence of subsets (Wi)i∈JℓK where Wi ⊆ JnK is a block. The automata
within a block are updated simultaneously, and the blocks are updated sequentially. During
one iteration (step) of the network, the state of each automaton is updated exactly once.
The update of each block is called a substep. This update mode received great attention
on many aspects. The concept of the update digraph is introduced in [4] and characterized
in [3] to capture equivalence classes of block-sequential update schedules (leading to the same
dynamics). Conversions between block-sequential and parallel update schedules are investig-
ated in [37] (how to parallelize a block-sequential update schedule), [22] (the preservation
of cycles throughout the parallelization process), and [9] (the cost of sequentialization of a
parallel update schedule).

Block-parallel update schedule. A block-parallel update schedule is a partitioned order
of JnK, given as a set of subsets µ = {Sk}k∈JsK where Sk = (ik0 , . . . , iknk−1) is a sequence of
nk > 0 elements of JnK for all k ∈ JsK, called an o-block (shortcut for ordered-block). Each
automaton appears in exactly one o-block. It follows an idea dual to the block-sequential
update mode: the automata within an o-block are updated sequentially, and the o-blocks are
updated simultaneously. The o-block sequences are taken circularly at each substep, until
we reach the end of each o-block simultaneously (which happens after the least common
multiple (lcm) of their sizes). The set of block-parallel update modes of size n is denoted
BPn. Formally, the update of f under µ ∈ BPn is given by f{µ} : Bn → Bn defined, with
ℓ = lcm(n1, . . . , ns), as f{µ}(x) = f(Wℓ−1) ◦ · · · ◦ f(W1) ◦ f(W0)(x), where for all i ∈ JℓK we
define Wi = {iki mod nk

| k ∈ [s]}. In order to compute the set of automata updated at each
substep, it is possible to convert a block-parallel update schedule into a sequence of blocks
of length ℓ (which is usually not a block-sequential update schedule, because repetitions of
automaton update may appear [36]). We defined this map as φ:

φ({Sk}k∈JsK) = (Wi)i∈JℓK with Wi = {iki mod nk
| k ∈ [s]}.

An example is given on Figure 1. The parallel update schedule corresponds to the block-
parallel update schedule µpar = {(i) | i ∈ JnK} ∈ BPn, with φ(µpar) = (JnK), i.e., a single
block containing all automata is updated at each step (there is only one substep).
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f(x) :

 f0(x) = x0 ∧ x1

f1(x) = ¬x0 ∨ (x1 ∧ ¬x2)
f2(x) = ¬x1 ∨ x2

µ = {(0), (1, 2)}
φ(µ) = ({0, 1}, {0, 2})

000

001

010

011

100

101

110

111

Figure 1 Example of an automata network of size n = 3 with a block-parallel update mode
µ ∈ BPn. Local functions (upper left), conversion of µ to a sequence of blocks (lower left), and
dynamics of f{µ} on configuration space B3 (right). One step is composed of two substeps: the first
substep updates the block {0, 1}, the second substep updates the block {0, 2}. As an example, in
computing the image of configuration 111, the first substep (update of automata 0 and 1) gives 101,
and the second substep (update of automata 0 and 2) gives 001.

Block-parallel update schedules have been introduced in [12], motivated by applications to
gene regulatory networks, and their ability to generate new stable configurations (compared
to block-sequential update schedules). A first theoretical study has been conducted in [36],
providing counting formulas and enumeration algorithms, subject to equivalence relations on
the produced dynamics.

Fixed point and limit cycle. A BAN f of size n under block-parallel update schedule
µ ∈ BPn defines a deterministic discrete dynamical system f{µ} on configuration space Bn.
Since the space is finite, the orbit of any configuration is ultimately periodic. For p ≥ 1, a
sequence of configurations x0, . . . , xp−1 is a limit cycle of length p when ∀i ∈ JpK : f{µ}(xi) =
xi+1 mod p. For p = 1 we call x ∈ Bn such that f{µ}(x) = x a fixed point.

Complexity. To be given as input to a decision problem, a BAN is encoded as a tuple of n
Boolean circuits, one for each local function fi : BN → B for i ∈ JnK. This encoding can be
seen as Boolean formulas for each automaton, and easily implements high-level descriptions
with if-then-else statements (used intensively in our constructions).

The computational complexity of finite discrete dynamical systems has been explored
on the related models of finite cellular automata [40] and reaction networks [13]. Regarding
automata networks, fixed points received early attention in [2] and [17], with existence
problems complete for NP. Because of the fixed point invariance for block-sequential update
schedules [38], the focus switched to limit cycles [6, 8], with problems reaching the second
level of the polynomial hierarchy. The interplay of different update schedules has been
investigated in [6]. Finaly, let us mention the general complexity lower bounds, established
for any first-order question on the dynamics, under the parallel update schedule [18].

3 Computational complexity under block-parallel updates

Computational complexity is important to anyone willing to use algorithmic tools in order
to study discrete dynamical systems. Lower bounds inform on the best worst case time or
space one can expect with an algorithm solving some problem. The n local functions of a
BAN are encoded as Boolean circuits, which is a convenient formalism corresponding to the
high level descriptions one usually employs. The update mode is given as a list of lists of
integers, each of them being encoded either in unary or binary (this makes no difference,
because the encoding of local functions already has a size greater than n).
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In this section we characterize the computational complexity of typical problems arising
in the framework of automata networks. We will see that almost all problems reach PSPACE-
completeness. The intuition behind this fact is that the description of a block-parallel update
mode may expend (through φ) to an exponential number of substeps, during which a linear
bounded Turing machine may be simulated via iterations of a circuit. We first recall this
folklore building block and present a general outline of our constructions (Subsection 3.1).
Then we start with results on computing images, preimages, fixed points and limit cycles
(Subsection 3.2), before studying reachability and global properties of the function f{µ}
computed by an automata network f under block-parallel update schedule µ (Subsection 3.3).

3.1 Outline of the PSPACE-hardness constructions
We will design polynomial time many-one reductions from the following PSPACE-complete
decision problem, which appears for example in [21].

Iterated Circuit Value Problem (Iter-CVP)
Input: a Boolean circuit C : Bn → Bn, a configuration x ∈ Bn, and i ∈ JnK.
Question: does ∃t ∈ N : Ct(x)i = 1?

▶ Theorem 1 (folklore). Iter-CVP is PSPACE-complete.

Before presenting the general outline of our constructions, we need a technical lemma
related to the generation of primes (proof in Appendix A).

▶ Lemma 2. For all n ≥ 2, a list of distinct prime integers p1, p2, . . . , pkn
such that

2 ≤ pi < n2 and 2n <
∏kn

i=1 pi < 22n2 can be computed in time O(n2), with kn = ⌊ n2

2 ln(n) ⌋.

Our constructions of automata netwoks and block-parallel update schedules for the
computational complexity lower bounds are based on the following.

▶ Definition 3. For any n ≥ 2, let p1, p2, . . . , pkn
be the kn primes given by Lemma 2, and

denote qj =
∑j

i=1 pi their cumulative series for j from 0 to kn. Define the automata network
gn on qkn automata JqknK with constant 0 local functions, where the components are grouped
in o-blocks of length pi, that is with µn =

⋃
i∈JknK{(qi, qi + 1, . . . , qi+1 − 1)}.

▶ Lemma 4. For any n ≥ 2, one can compute gn and µn in time O(n4), and |φ(µn)| > 2n.

Proof. The time bound comes from Lemma 2 and the fact that qkn
is in O(n4). The number

of blocks in φ(µn) is the least common multiple of its o-block sizes, which is the product∏kn

i=1 pi, hence from Lemma 2 we conclude that it is greater than 2n. ◀

The general idea is now to add some automata to gn and place them within singletons in
µn, i.e., each of them in a new o-block of length 1. We propose an example implementing a
binary counter on n bits.

▶ Example 5. Given n ≥ 2, consider gn and µn given by Lemma 4. Construct f from gn by
adding n Boolean components {qkn

, . . . , qkn+n}, whose local functions increment a binary
counter on those n bits, until it freezes to 2n − 1 (all bits in state 1). Construct µ′ from
µn as µ′ = µn ∪

⋃
i∈JnK{(qkn

+ i)}, so that the counter components are updated at each
substep. Observe that the pair f, µ′ can be still be computed from n in time O(n4). Figure 2
illustrates an example of orbit for n = 3, and one can notice that f{µ′} is a constant function
sending any x ∈ Bn to 0qkn 1n.

SAND 2024
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Substep 1: {0, 2, 5, 10, 17, 18, 19}

Substep 2: {1, 3, 6, 11, 17, 18, 19}

...

Figure 2 Substeps leading to the image of configuration 0qkn 010 in f{µ′} from Example 5 for
n = 3 (kn = 4 and qkn = 2 + 3 + 5 + 7 = 17). The last 3 bits implement a binary counter, freezing
at 7 (111). Above each substep the block of updated automata is given.

Remark that we will prove complexity lower bounds by reduction from Iter-CVP, where
n will be the number of inputs and outputs of the circuit to be iterated, hence the integer n
itself will be encoded in unary. As a consequence, the construction of Example 5 is computed
in polynomial time.

3.2 Images, preimages, fixed points and limit cycles
We start the study of the computational complexity of automata networks under block-
parallel update schedules with the most basic problem of computing the image f{µ}(x) of some
configuration x through f{µ} (i.e., one step of the evolution), which is already PSPACE-hard.
We conduct this study as decision problems. It is actually hard to compute even a single
bit of f{µ}(x). The fixed point verification problem is a particular case of computing an
image, which is still PSPACE-hard (unlike block-sequential update schedules for which this
problem is in P). Recall that the encoding of µ (with integers in unary or binary) has no
decisive influence on the input size, this latter being characterized by the circuits sizes and
in particular their number of inputs, denoted n, which is encoded in unary.

Block-parallel step bit (BP-Step-Bit)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn, x ∈ Bn, j ∈ JnK.
Question: does f{µ}(x)j = 1?

Block-parallel step (BP-Step)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn, x, y ∈ Bn.
Question: does f{µ}(x) = y?

Block-parallel fixed point verification (BP-Fixed-Point-Verif)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn, x ∈ Bn.
Question: does f{µ}(x) = x?

This first set of problems is related to the image of a given configuration x, which allows
the reasonings to concentrate on the dynamics of substeps for that single configuration x,
regardless of what happens for other configurations. Note that n will be the size of the
Iter-CVP instance, while the size of the automata network will be qkn

+ ℓ′ + n+ 1.

▶ Theorem 6. BP-Step-Bit, BP-Step and BP-Fixed-Point-Verif are PSPACE-complete.
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Proof. The problems BP-Step-Bit, BP-Step and BP-Fixed-Point-Verif are in PSPACE,
with a simple algorithm obtaining f{µ}(x) by computing the least common multiple of o-block
sizes and then using a pointer for each block throughout the computation of that number of
substeps (each substep evaluates local functions in polynomial time).

We give a single reduction for the hardness of BP-Step-Bit, BP-Step and BP-Fixed-
Point-Verif, where we only need to consider the dynamics of the substeps starting from
one configuration x. Given an instance of Iter-CVP with a circuit C : Bn → Bn, a
configuration x̃ ∈ Bn and i ∈ JnK, we apply Lemma 4 to construct gn, µn on automata set
P = Jqkn

K. Automata from P have constant 0 local functions, and the number of substeps is
ℓ = |φ(µn)| > 2n thanks to the prime’s lcm. We define a BAN f by adding:

ℓ′ = ⌈log2(ℓ)⌉ automata numbered B = {qkn
, . . . , qkn

+ ℓ′ − 1}, implementing a counter
that increments modulo ℓ at each substep, and remains fixed when xB encodes an integer
greater or equal to ℓ (case not considered in this proof);
n automata numbered D = {qkn + ℓ′, . . . , qkn + ℓ′ + n− 1}, whose local functions iterate
C : Bn → Bn while the counter is smaller than ℓ− 1, and go to state x̃ when the counter
reaches ℓ− 1, i.e., with

fD(x) =
{
C(xD) if xB < ℓ− 1,
x̃ otherwise; and

1 automaton numbered R = {qkn
+ ℓ′ + n}, whose local function fR(x) = xR ∨ xqkn +ℓ′+i

records whether a state 1 appeared at automaton in relative position i within D.
We also add singletons to µn for each of these additional automata, by setting

µ′ = µn ∪
⋃

j∈B∪D∪R

{(j)}.

Now, consider the dynamics of substeps in computing the image of configuration x = 0qkn 0ℓ′
x̃0.

During the first ℓ− 1 substeps:
automata P have constant 0 local function;
automata B increment a counter from 0 to ℓ− 1;
automata D iterate circuit C from x̃; and
automaton R records whether the i-th bit of D has been in state 1 during some iteration.

During the last substep, automata B go back to 0n because of the modulo, and automata
D go back to state x̃. Since the number of substeps ℓ is greater than 2n (Lemma 4), the
iterations of C search the whole orbit of x̃, and at the end of the step automaton R has
recorded whether the Iter-CVP instance is positive (went to state 1) or negative (still in
state 0). The images are respectively y− = 0qkn 0ℓ′

x̃0 or y+ = 0qkn 0ℓ′
x̃1. This concludes the

reductions, to BP-Step-Bit by asking whether automaton R (numbered qkn
+ 2n) is in

state 1, to BP-Step by asking whether the image of x is y+, and to BP-Fixed-Point-Verif
because y− = x (coPSPACE-hardness). ◀

As a corollary, the associated functional problem of computing f{µ} is computable in
polynomial space and is PSPACE-hard for polynomial time Turing reductions (not for many-
one reductions, as there is no concept of negative instance for total functional problems).
Deciding whether a given configuration y has a preimage through f{µ} is also PSPACE-
complete (see Appendix A for details).

Now, we study the computational complexity of problems related to the existence of fixed
points and limit cycles in an automata network under block-parallel update schedule. Again,
we need to consider the image of all configurations, and have no control on neither the start

SAND 2024
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configuration x nor the end configuration y during the dynamics of substeps. In particular,
the counter may be initialized to any value, and the bit R may already be set to 1. We adapt
the previous reductions accordingly.

Block-parallel fixed point (BP-Fixed-Point)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn.
Question: does ∃x ∈ Bn : f{µ}(x) = x?

Block-parallel limit cycle of length k (BP-Limit-Cycle-k)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn.
Question: does ∃x ∈ Bn : fk

{µ}(x) = x?

Block-parallel limit cycle (BP-Limit-Cycle)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn, k ∈ N+.
Question: does ∃x ∈ Bn : fk

{µ}(x) = x?

On limit cycles we have a family of problems (one for each integer k), and a version where k
is part of the input (encoded in binary). It makes no difference on the complexity.

▶ Theorem 7. BP-Fixed-Point, BP-Limit-Cycle-k for any k ∈ N+ and BP-Limit-
Cycle are PSPACE-complete.

Proof. These problems still belong to PSPACE, because they amount to enumerating config-
urations and computing images by f{µ}, which can be performed from BP-Step (Theorem 6).

We start with the hardness proof for the fixed point existence problem, and we will then
adapt it to limit cycle existence problems. Given an instance C : Bn → Bn, x̃ ∈ Bn, i ∈ JnK
of Iter-CVP, we construct the same block-parallel update schedule µ′ as in the proof of
Theorem 6, and modify the local functions of automata B and R as follows:

automata B increment a counter modulo ℓ at each substep, and go to 0 when the counter
is greater than (or equal to) ℓ− 1; and
automaton R records whether a state 1 appears at the i-th bit of xD, and flips when the
counter is equal to ℓ− 1, i.e.,

fR(x) =
{
xR ∨ xqkn +ℓ′+i if xB < ℓ− 1,
¬xR otherwise.

Recall that automata D iterate the circuit when xB < ℓ− 1 and go to x̃ otherwise, and that
the number ℓ of substeps is larger than 2n.

If the Iter-CVP instance is positive, then configuration x = 0qkn 0ℓ′
x̃0 is a fixed point

of f{µ′}. Indeed, during the ℓ-th and last substep, the primes P are still in state 0qkn , the
counter B goes back to 0 (state 0ℓ′), the circuit D goes back to x̃, and automaton R has
recorded the 1 which is flipped into state 0.

Conversely, if there is a fixed point configuration x, then the counter must be at most
ℓ − 1 because of the modulo ℓ increment. Furthermore, automata D will encounter one
substep during which it goes to x̃, hence the resulting configuration on D will be in the
orbit of x̃, i.e., xD is in the orbit of x̃. Finally, automaton R will also encounter exactly one
substep during which it is flipped (when xB ≥ ℓ− 1). As a consequence, in order to go back
to its initial value xR, the state of R must be flipped during another substep, which can only
happen when it is in state 0 and automaton qkn

+ ℓ′ + i is in state 1. We conclude that the
i-th bit of a configuration in the orbit of x̃ is in state 1 during some iteration of the circuit
C, meaning that the Iter-CVP instance is positive. Remark that in this case, configuration
0qkn 0ℓx̃0 is one of the fixed points.



K. Perrot, S. Sené, and L. Tapin 19:9

For the limit cycle existence problems, we modify the construction to let the counter go
up to kℓ− 1. Precisely:

ℓ′ = ⌈log2(kℓ)⌉ automata B implement a binary counter which is incremented at each
substep, and goes to 0 when xB ≥ kℓ− 1;
n automata D iterate the circuit C if xB < ℓ− 1, else go to state x̃ (no change); and
1 automaton R records whether a state 1 appears in the i-th bit of xD, and flips when
the counter is equal to ℓ− 1.

The reasoning is identical to the case k = 1, except that the counter needs k times ℓ substeps,
i.e., k steps, in order to go back to its initial value. As a consequence, there is no x and
k′ < k such that fk′

{µ}(x) = x, and the dynamics has no limit cycle of length smaller than
k. Remark that when the Iter-CVP instance is positive, configurations (0qknBix̃0)i∈JkK

with Bi the ℓ′-bits encoding of iℓ form one of the limit cycles of length k. Also remark that
the encoding of k in binary within the input has no consequence, neither on the PSPACE
algorithm, nor on the polynomial time many-one reduction. ◀

Remark that our construction also applies to the notion of limit cycle x0, . . . , xp−1 where
it is furthermore required that all configurations are different (this corresponds to having the
minimum length p): the problem is still PSPACE-complete.

3.3 Reachability and general complexity bounds

In this part, we settle the computational complexity of the classical reachability problem,
which is unsurprisingly still PSPACE-hard by reduction from another model of computation
(see Appendix A for details). In light of what precedes, one may be inclined to think that any
problem related to the dynamics of automata networks under block-parallel update schedules
is PSPACE-hard. We prove that this is partly true with a general complexity bound theorem
on subdynamics existing within f{µ}, based on our previous results on fixed points and limit
cycles. However, we will also prove that a Rice-like complexity lower bound analogous to the
main results of [18], i.e., which would state that any non-trivial question on the dynamics
(on the functional graph of f{µ}) expressible in first order logics is PSPACE-hard, does not
hold (unless a collapse of PSPACE to the first level of the polynomial hierarchy). Indeed, we
will see that deciding the bijectivity (∀x, y ∈ Bn : f{µ}(x) = f{µ}(y) =⇒ x = y) is complete
for coNP. We conclude the section with a discussion on reversible dynamics.

From the fixed point and limit cycle theorems in Section 3.2, we now derive that any
particular subdynamics is hard to identify within f{µ} under block-parallel update schedule.
A functional graph is a directed graph of out-degree exactly one, and we assimilate f{µ}
to its functional graph. We define a family of problems, one for each functional graph G

to find as a subgraph of f{µ}, and prove that the problem is always PSPACE-hard. Since
PSPACE = coPSPACE, checking the existence of a subdynamics is as hard as checking the
absence of a subdynamics, even though the former is a local property whereas the latter is
a global property at the dynamics scale. This is understandable in regard of the fact that
PSPACE scales everything to the global level (one can search the whole dynamics in PSPACE),
because verifying that a given set of configurations (a certificate) gives the subgraph G is
difficult (Theorem 6).

Block-parallel G as subdynamics (BP-Subdynamics-G)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn.
Question: does G ⊏ f{µ}?
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G Subspace xn = 0 Subspace xn = 1

Figure 3 Construction of g in the proof of Theorem 8. Subspace xn = 0 contains a copy of f

with a potential limit cycle dashed. Subspace xn = 1 implements G′, and wires configurations of U

(grey area) to the potential limit cycle in the copy of f (remaining configurations are fixed points).

Remark that asking whether G appears as a subgraph or as an induced subgraph makes no
difference when G is functional (has out-degree exactly one), because f{µ} is also a functional
graph: it is necessarily induced since there is no arc to delete.

▶ Theorem 8. BP-Subdynamics-G is PSPACE-complete for any functional graph G.

Proof. A polynomial space algorithm for BP-G-Subdynamics consists in enumerating all
subsets S ⊆ Bn of size |S| = |V (G)|, and test for each whether the restriction of f{µ} to
S is isomorphic to G (functional graphs are planar hence isomorphism can be decided in
logarithmic space [10]).

For the PSPACE-hardness, the idea is to choose a fixed point or limit cycle in G, and
make it the decisive element whose existence or not lets G be a subgraph of the dynamics
or not. Since G is a functional graph, it is composed of fixed points and limit cycles, with
hanging trees rooted into them (the trees are pointing towards their root). Let G(v) denote
the unique out-neighbor of v ∈ V (G).

Let us first assume that G has a limit cycle of length k ≥ 2, or a fixed point with a tree of
height greater or equal to 1 hanging (the case where G has only isolated limit cycles is treated
thereafter). A fixed point is assimilated to a limit cycle of length k = 1. Let G′ be the graph
G without this limit cycle of size k, and let U be the vertices of G′ without out-neighbor (if
k = 1 then U ̸= ∅). We reduce from Iter-CVP, and first compute the f, µ of size n obtained
by the reduction from Theorem 7 for the problem BP-Limit-Cycle-k. We have that f{µ}
has a limit cycle of length k on configurations (0qknBix̃0)i∈JkK (or configuration 0qkn 0ℓx̃0 for
k = 1) if and only if the Iter-CVP instance is positive.

We construct g on n+1 automata, and the update schedule µ′ being the union of µ with a
singleton o-block for the new automaton. We assume that n ≥ |V (G)| − k, otherwise we pad
f, µ to that size (with identity local functions for the new automata). The idea is that g will
consist in a copy of f on the subspace xn = 0, and a copy of G′ on the subspace xn = 1 where
the images of the configurations corresponding to the vertices of U will be configurations of
the potential limit cycle of f{µ} (in the other subspace xn = 0). Other configurations in the
subspace xn = 1 will be fixed points. Figure 3 illustrates the construction. Recall that G is
fixed, and consider a mapping α : V (G) → {0, 1}n such that vertices of the limit cycle of
length k are sent to the configurations (0qknBix̃0)i∈JkK respectively (or 0qkn 0ℓx̃0 for k = 1).
We define:

g(x) =


f(xJnK)0 if xn = 0,
α(G(v))0 if xn = 1 and ∃v ∈ U : α(v) = xJnK,
α(G(v))1 if xn = 1 and ∃v ∈ G′ \ U : α(v) = xJnK,
x otherwise.

The obtained dynamics g{µ′} has one copy of f{µ} (in subspace xn = 0), with a copy of
G′ (in subspace xn = 1) which becomes a copy of G if configurations (0qknBix̃0)i∈JkK (or
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0qkn 0ℓx̃0 in the case k = 1) form a limit cycle of length k. Moreover, it becomes a copy of G
only if so by our assumption on the limit cycle or fixed point of G, because the remaining
configurations in subspace xn = 1 are all isolated fixed points. This concludes the reduction.

For the case where G is made of k isolated fixed points, we reduce from BP-Fixed-Point
and construct an automata network with k copies of the dynamics of f , by adding ⌈log2(k)⌉
automata with identity local functions. ◀

When the property of being a functional graph is dropped, that is when the out-degree of
G is at most one (otherwise any instance is trivially negative), problem BP-Subdynamics-G
is subtler. Indeed, one can still ask for the existence of fixed points, limit cycles and any
functional subdynamics PSPACE-complete by Theorem 8, but new problems arise, some of
which are provably complete only for coNP. The symmetry of existence versus non existence
is broken. In what follows, we settle that deciding the bijectivity of f{µ} is coNP-complete,
and then discuss the complexity of decision problems which are subsets of bijective networks,
such as the problem of deciding whether f{µ} is the identity. We conclude the section by
proving that it is nevertheless PSPACE-complete to decide whether f{µ} is a constant map.
These results hint at the subtleties behind a full characterization of the computational
complexity of BP-Subdynamics-G for all graphs of out-degree at most one.

Block-parallel bijectivity (BP-Bijectivity)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn.
Question: is f{µ} bijective?

Remark that, because the space of configurations is finite, injectivity, surjectivity and
bijectivity are equivalent properties of f{µ}.

▶ Lemma 9. Let f : Bn → Bn a BAN and µ ∈ BPn a block-parallel update mode. Then f{µ}
is bijective if and only if f(W ) is bijective for every block W of φ(µ).

Proof. The right to left implication is obvious since f{µ} is a composition of bijections
f(W ). We prove the contrapositive of the left to right implication, assuming the existence
of a block W in φ(µ) such that f(W ) is not bijective. Let Wℓ be the first such block in
the sequence φ(µ), so there exist x, y ∈ Bn such that x ̸= y but f(Wℓ)(x) = f(Wℓ)(y) = z.
By minimality of ℓ, the composition g = f(Wℓ−1) ◦ · · · ◦ f(W0) is bijective, hence there also
exist x′, y′ ∈ Bn with x′ ̸= y′ such that g(x′) = x and g(y′) = y. That is, after the ℓ-th
substep the two configurations x′ and y′ have the same image z, and we conclude that
f{µ}(x′) = f{µ}(y′) = f(Wp−1) ◦ · · · ◦ f(Wℓ+1)(z) therefore f{µ} is not bijective. ◀

Lemma 9 shows that bijectivity can be decided at the local level of circuits (not iterated),
which can be checked in coNP and gives Theorem 10.

▶ Theorem 10. BP-Bijectivity is coNP-complete.

Proof. A coNP algorithm can be established from Lemma 9, because it is equivalent to
check the bijectivity at all substeps. A non-deterministic algorithm can guess a temporality
t ∈ J|φ(µ)|K (in binary) within the substeps, two configurations x, y, and then check in
polynomial time that they certify the non-bijectivity of that substep as follows. First,
construct W the t-th block of φ(µ), by computing t modulo each o-block size to get the
automata from that o-block. Second, check that f(W )(x) = f(W )(y).

The coNP-hardness is a direct consequence of that complexity lower bound for the
particular case of the parallel update schedule [35, Theorem 5.17]. ◀
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We now turn our attention to the recognition of identity dynamics.

Block-parallel identity (BP-Identity)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn.
Question: does f{µ}(x) = x for all x ∈ Bn?

This problem is in PSPACE, and is coNP-hard by reduction from the same problem in the
parallel case [35, Theorem 5.18]. However, it is neither obvious to design a coNP-algorithm
to solve it, nor to prove PSPACE-hardness by reduction from Iter-CVP.

▶ Open problem 11. BP-Identity is coNP-hard and in PSPACE. For which complexity
class is it complete?

A major obstacle to the design of an algorithm, or of a reduction from Iter-CVP to
BP-Identity, lies in the fact that, by Theorem 10, “hard” instances of the latter are bijective
networks (because non-bijective instances can be recognized in our immediate lower bound
coNP, and they are all negative instances of BP-Identity). A reduction would therefore be
related to the lengths of cycles in the dynamics of substeps, and whether they divide the
least common multiple of o-block sizes (for x ∈ Bn such that f(x) = x) or not (f(x) ̸= x).

Nonetheless, we are able to prove another lower bound, related to the hardness of
computing the number of models of a given propositional formula. The canonical ModP-
complete problem takes as input a formula ψ and two integers k, i encoded in unary, and
consists in deciding whether the number of models of ψ is congruent to k modulo the i-th
prime number (which can be computed in polytime). It generalizes classes ModkP (such as
the parity case Mod2P = ⊕P), and it is notable that #P polytime truth-table reduces to
ModP [29].

▶ Theorem 12. BP-Identity is ModP-hard (for polytime many-one reduction).

Proof. Given a formula ψ on n variables, m and i in unary, we apply Lemma 4 to construct
gn, µn on automata set P = JqknK. Automata from P have identity local functions, and the
number of substeps is ℓ = |φ(µn)| > 2n. Let pi be the i-th prime number. We add:

ℓ′ = ⌈log2(ℓ)⌉ automata numbered B = {qkn
, . . . , qkn

+ ℓ′ − 1}, implementing a ℓ′ bits
binary counter that increments modulo ℓ at each substep, except for configurations with
a counter greater of equal to ℓ which are left unchanged.
ℓ′′ = ⌈log2(pi)⌉ automata numbered R = {qkn + ℓ′, . . . , qkn + ℓ′ + ℓ′′ − 1}, whose local
functions are:

fR(x) =


xR −m+ 1 mod pi if xB = 0 and xB satisfies ψ
xR −m mod pi if xB = 0 and xB does not satisfy ψ
xR + 1 mod pi if 0 < xB < 2n and xB satisfies ψ
xR otherwise.

We also add singletons to µn for each of these additional automata, with µ′ = µn ∪⋃
j∈B∪R{(j)}. The resulting dynamics of f{µ′} proceeds as follows.

Configurations x such that xB ≥ ℓ verify f{µ′}(x) = x, because all local functions are
identities in this case. For configurations x such that xB < ℓ, during the dynamics of
substeps from x to f{µ′}(x), the counter xB takes exactly once the values from 0 to ℓ− 1,
with f{µ′}(x)B = xB (it goes back to its initial value). Meanwhile, at each substep with
xB < 2n, the record of automata R is incremented if and only if xB satisfies ψ, with a
substraction of m when xB = 0. Since ℓ > 2n each valuation of ψ is checked exactly once,
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and xR gets added the number of models of ψ minus m, modulo pi (when 2n ≤ xB < ℓ

automata R are left unchanged). Consequently, we have f{µ′}(x)R = xR if and only if it has
been incremented m times modulo pi, i.e., f, µ′ is a positive instance of BP-Identity if and
only if ψ, m, i is a positive instance of Mod-SAT (the number of models of ψ is congruent
to k modulo pi). ◀

Our attemps to prove PSPACE-hardness failed, for the following reasons. To get bijective
circuits one could reduce from reversible Turing machines (RTM) and problem Reversible
Linear Space Acceptance [31]. A natural strategy would be to simulate a RTM for an
exponential number of subteps, and then simulate it backwards for that same number of
substeps, while ending in the exact same configuration (identity map) if and only if the
simulation did not halt or was not in the orbit of the given input w. The difficulty with this
approach is that the dynamics of substeps must not be the identity map when a conjunction
of two temporally separated events happens: first that the simulation has halted, and second
that the starting configuration was w. It therefore requires to remember at least one bit
of information, which is subtle in the reversible setting. Indeed, the constructions of [31]
and [34] consider only starting configurations of the Turing machine in the initial state and
with blank tapes. However, in the context of Boolean automata networks, any configuration
must be considered (hence any configuration of the simulated Turing machine).

Regarding iterated circuits simulating reversible cellular automata (for which the whole
configuration space is usualy considered), the literature focuses on decidability issues [27, 41],
but a recent contribution fits our setting and we derive the following. FPPSPACE is the class
of functions computable in polynomial time with an oracle in PSPACE.

▶ Theorem 13 ([15, Theorem 5.7]). There is a one-dimensional reversible cellular automaton
for which simulating any given number of iterations, with periodic boundary conditions, is
complete for FPPSPACE

▶ Corollary 14. Given (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn such that f{µ} is bijective,
x ∈ Bn and t ∈ J|φ(µ)|K in binary, computing the configuration at the t-th substep is complete
for FPPSPACE.

Proof. For a fixed reversible cellular automaton (of any dimension), given a configuration of
size n and a time t, one can compute in polynomial time a block-parallel update schedule µ
and circuits for the local functions of a Boolean automata network of large enough size (to
encode the CA’s state space in binary), such that:

|φ(µ)| > t (by Lemma 4; these automata are left aside with identity local functions),
one substep of f{µ} simulates one step of the CA; and
f{µ} is bijective (because the CA is reversible, padding with identity).

This gives a functional Turing many-one reduction from Theorem 13. ◀

Intuitively, the dynamics of substeps embeds complexity. The relationship to the com-
plexity of computing the configuration after the whole step composed of |φ(µ)| substeps
(image through f{µ}), in order to reach BP-Identity, is not obvious.

Being a constant map is another global property of the dynamics, which turns out to be
PSPACE-complete to recognize for BANs under block-parallel update schedules.

Block-parallel constant (BP-Constant)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn.
Question: does there exist y ∈ Bn such that f{µ}(x) = y for all x ∈ Bn?
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0qkn1ℓ
′
0n1

Positive instance

0qkn1ℓ
′
0n1 0qkn1ℓ

′
0n0

xB = 0
Negative instance

Figure 4 Illustration of the dynamics obtained for the reduction to BP-Constant in the proof
of Theorem 15. Configurations x with the counter automata B initialized to xB = 0 either go to
0qkn 1ℓ′

0n1 (left, positive instance), or to 0qkn 1ℓ′
0n0 (right, negative instance). Only the bit of

automata R changes.

▶ Theorem 15. BP-Constant is PSPACE-complete.

Proof. To decide BP-Constant, one can simply enumerate all configurations and compute
their image (Theorem 6) while checking that it always gives the same result.

For the PSPACE-hardness proof, we reduce from Iter-CVP. Given a circuit C : Bn → Bn,
a configuration x̃ and i ∈ JnK, we apply Lemma 4 to construct gn, µn on automata set
P = Jqkn

K. Automata from P have constant 0 local functions, and the number of substeps is
ℓ = |φ(µn)| > 2n. We add (Figure 4 illustrates the obtained dynamics):

ℓ′ = ⌈log2(ℓ)⌉ automata numbered B = {qkn
, . . . , qkn

+ ℓ′ − 1}, implementing a ℓ′-bits
binary counter that increments at each substep, and sets all automata from B in state 1
when the counter is greater or equal to ℓ− 1;
n automata numbered D = {qkn

+ ℓ′, . . . , qkn
+ ℓ′ + n − 1}, whose local functions are

given below; and
1 automaton numbered R = {qkn

+ ℓ′ + n}, whose local function is given below.

fD(x) =


C(x̃) if xB = 0
C(xD) if 0 < xB < ℓ− 1
0n otherwise

fR(x) =


x̃i if xB = 0
xR ∨ xqkn +ℓ′+i if 0 < xB < ℓ

1 otherwise

We also add singletons to µn for these additional automata, via µ′ = µn ∪
⋃

j∈B∪D∪R{(j)}.
For any configuration x with a counter not initialized to 0, i.e., with xB ̸= 0, the

counter will reach and remain in the all 1 state before the last substep, therefore automata
from D will be updated to 0n and automaton R will be updated to 1. We conclude that
f{µ′}(x) = 0qkn 1ℓ′

0n1. For configurations x with xB = 0, substeps proceed as follows:
automata B count until ℓ−1 at the penultimate substep (recall that ℓ = |φ(µn)| = |φ(µ′

n)|),
which finally brings them all in state 1 during the last substep;
automata D iterate the circuit C, starting from C(x̃) during the first substep; and
automaton R records whether a 1 appears or not in the whole orbit of x̃ (recall that
ℓ = |φ(µ′

n)| > 2n), starting from x̃ itself during the first substep (even though xD ̸= x̃)
and without encountering the “1 otherwise” case.

We conclude that the image of x on automata P is 0qkn , on B is 1ℓ′ , on D is 0n, and on R it
depends whether the Iter-CVP instance is positive (automaton R in state 1) or negative
(automaton R in state 0). This completes the reduction: the image is always 0qkn 1ℓ′

0n1 if
and only if the Iter-CVP instance is positive. ◀
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4 Conclusion and perspectives

Block-sequential update schedules have a number of substeps limited by the fact that every
automaton is updated only once. Block-parallel update schedules overcome this restriction,
thus significantly raising the n (number of automata) upper bound for the number of substeps
(Lemma 4 gives a backbone construction with more than 2n substeps). This greatly increases
the expressiveness of block-parallel dynamics, and we have demonstrated that this gain in
computational power comes along with higher complexity costs. A fundamental point is that
computing a single transition becomes PSPACE-hard in this context (Theorem 6), whereas
it is feasible in polynomial time for all block-sequential update schedules [37]. We derive
multiple consequences on the PSPACE-completeness of classical decision problems related
to the existence of preimages, fixed points, limit cycles, and the recognition of constant
dynamics. These problems are NP-complete (existence problems), or coNP-complete (global
dynamical properties) for block-sequential modes (see [35]), hence one might be tempted to
extrapolate to the following conjecture, which is false (unless a drastic complexity collapse).

▶ Conjecture 16 (false). If a problem is NP-hard or coNP-hard and in PSPACE for block-
sequential update schedules then it is PSPACE-complete for block-parallel update schedules.

The recognition of bijective dynamics disproves Conjecture 16: according to Lemma 9, a
single substep is necessary and sufficient to break the bijectivity of the automata network’s
dynamics, hence bringing the question to the circuit level (of substeps), in coNP. It also
prevents to level the Rice-like complexity lower bound theorem presented in [18], to PSPACE-
hardness. Recognition problems are nonetheless still NP-hard or coNP-hard for non-trivial
first order questions, because parallel is a particular case of block-parallel.

The reachability problem, which is PSPACE-complete for block-sequential modes, remains
PSPACE-complete for block-parallel modes (Theorem 18). Intuitively, on the one hand the
idea of reachability can be embedded in a single transition step of block-parallel update,
because it may have an exponential number of substeps. On the other hand, the sequence of
reachability problems at the level of substeps combines into a reachability problem at the
level of steps which is still in PSPACE.

The recognition of identity dynamics is not fully characterized (Open problem 11 and
Theorem 12). A fine interplay between computing in a reversible setting (since non-bijective
dynamics can be identified in NP) and the length of limit cycles in the dynamics of substeps
(to loop back to the starting configuration and be the identity map) is still to be discovered.
Computing the interaction graph (feasible in DP, just above NP and coNP) may give some
insights but, contrary to block-sequential modes having identity dynamics if and only if the
interaction graph is made of n positive loops, it is possible to design more complex identity
dynamics under block-parallel update schedules.

After determining the complexity of recognizing preimages, image points or fixed points
in Subsection 3.2, the next logical step would be the complexity of counting them. This is
not an easy step to make from the constructions presented in the present work, which are
not parcimonious (for the definition of #PSPACE, see [30]).

An important remark for the community is that, while all the proofs in this paper were
written with Boolean automata networks in mind, the results also hold for non-Boolean
automata networks.

Another avenue of research could be questions about the existence of a block-parallel
update schedules verifying a certain property, as in [8, 6] for block-sequential update schedules.
Given that the fixed point invariance is broken under block-parallel update schedules, it
opens the way for more questions. The ability to create new fixed points (how and when
does it happen?) is in itself a meaningful track of research.
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A Omitted proofs

Proof of Lemma 2. By the prime number theorem, there are approximately N
ln(N) primes

lower than N . As a consequence, distinct prime integers p1, p2, . . . , pkn
with kn = ⌊ n2

ln(n2) ⌋
can be computed in time O(n2) using Atkin sieve algorithm. Since 2 ≤ pi < n2, we have
2kn ≤

∏kn

i=1 pi < n2kn . It holds that 2kn = 2⌊ n2
2 ln(n) ⌋ > 2n, and n2kn ≤ n

n2
ln(n) with

log2

(
n

n2
ln(n)

)
=

n2

ln(n)

logn(2) = n2

ln(2)

meaning that n2kn ≤ 2
n2

ln(2) < 22n2 . ◀

Block-parallel preimage (BP-Preimage)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn, y ∈ Bn.
Question: does ∃x ∈ Bn : f{µ}(x) = y?

▶ Theorem 17. BP-Preimage is PSPACE-complete.

The difficulty in this reduction is that we need to take into account the image of every
configuration x. We modify the preceding construction by setting automata D to x̃ when
the counter B encodes 0.

Proof. The algorithm for BP-Preimage computes the image of each configuration (enu-
merated in polynomial space with a simple counter) using the same procedure as BP-Step
(Theorem 6), and decides whether there is some x such that f{µ}(x) = y.

Given an instance C : Bn → Bn, x̃ ∈ Bn, i ∈ JnK of Iter-CVP, we construct the same
block-parallel update schedule µ′ as in the proof of Theorem 6, and modify the local functions
of automata D and R as follows:

fD(x) =


C(x̃) if xB = 0
C(xD) if 0 < xB < ℓ− 1
0n otherwise

fR(x) =
{
x̃i if xB = 0
xR ∨ xqkn +ℓ′+i otherwise

The purpose is that D iterates the circuit from x̃ when the counter is initialized to 0, and
that R records whether the i-th bit of D has been in state 1 (including the initial substep).
We set y = 0qkn 0ℓ0n1.

If the Iter-CVP instance is positive, then we have f{µ′}(0qkn 0ℓ0n0) = y (automata B
go back to 0qkn , automata D iterate circuit C from x̃ and end in state 0n, and automaton R
has recorded that the i-th bit of D has been to state 1).

Conversely, if there is a configuration x such that f{µ′}(x) = y, then the automata from
the counter B must have started in state xB = 0qkn , because of the increment modulo ℓ

which is the number of substeps. We deduce that D iterate circuit C for the whole orbit of x̃
and end in state 0n, and that automaton R records the answer to the Iter-CVP instance.
Since it it ends in state yR = 1 by our assumption that f{µ′}(x) = y, we conclude that it is
positive. ◀

Block-parallel reachability (BP-Reachability)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn, x, y ∈ Bn.
Question: does ∃t ∈ N : f t

{µ}(x) = y?
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▶ Theorem 18. BP-Reachability is PSPACE-complete.

Proof. The problem belongs to PSPACE, because is can naively be solved by simulating the
dynamics of f{µ} starting from configuration x, for 2n time steps.

Reachability problems in cellular automata and related models are known to be PSPACE-
complete on finite configurations [40]. We reduce from the reachability problem for reaction
systems, which can be seen as a particular case of Boolean automata networks, and is also
known to be PSPACE-complete [13]. Given a reaction system (S,A) where S is a finite set of
entities, and A is a set of reactions of the form (R, I, P ) where R are the reactants, I the
inhibitors and P the products, we construct the BAN of size n = |S| with local functions:

∀i ∈ JnK : fi(x) =
∨

(R,I,P )∈A
such that i∈P

 ∧
j∈R

xj ∧
∧
k∈I

¬xk

 .

A configuration x ∈ Bn of the BAN corresponds to a state of the reaction system with
each automaton indicating the presence or absence of its corresponding entity. The parallel
evolution of f (under µpar) is in direct correspondance with the evolution of the reaction
system. ◀
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