
Space and Move-Optimal Arbitrary Pattern
Formation on Infinite Rectangular Grid by
Oblivious Robot Swarm
Avisek Sharma #

Department of Mathematics, Jadavpur University, India

Satakshi Ghosh #

Department of Mathematics, Jadavpur University, India

Pritam Goswami #

Department of Mathematics, Jadavpur University, India

Buddhadeb Sau #

Department of Mathematics, Jadavpur University, India

Abstract
Arbitrary Pattern Formation (APF) is a fundamental coordination problem in swarm robotics. It
requires a set of autonomous robots (mobile computing units) to form an arbitrary pattern (given as
input) starting from any initial pattern. This problem has been extensively investigated in continuous
and discrete scenarios, with this study focusing on the discrete variant. A set of robots is placed on
the nodes of an infinite rectangular grid graph embedded in the euclidean plane. The movements of
each robot is restricted to one of the four neighboring grid nodes from its current position. The robots
are autonomous, anonymous, identical, and homogeneous, and operate Look-Compute-Move cycles.
In this work, we adopt the classical OBLOT robot model, meaning the robots have no persistent
memory or explicit communication methods, yet they possess full and unobstructed visibility. This
work proposes an algorithm that solves the APF problem in a fully asynchronous scheduler assuming
the initial configuration is asymmetric. The considered performance measures of the algorithm are
space and number of moves required for the robots. The algorithm is asymptotically move-optimal.
Here, we provide a definition of space complexity that takes the visibility issue into consideration.
We observe an obvious lower bound D of the space complexity and show that the proposed algorithm
has the space complexity D + 4. On comparing with previous related works, we show that this is
the first proposed algorithm considering OBLOT robot model that is asymptotically move-optimal
and has the least space complexity which is almost optimal.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed algorithms, Oblivious robots, Optimal algorithms, Swarm
robotics, Space optimization, and Rectangular grid

Digital Object Identifier 10.4230/LIPIcs.SAND.2024.20

Related Version Full Version: https://doi.org/10.48550/arXiv.2309.11190 [14]

Funding The first and the third authors are supported by the University Grants Commission (UGC),
India. The second author is supported by the West Bengal State Government Fellowship Scheme.
The fourth author is supported by the Science and Engineering Research Board (SERB), India

1 Introduction

Swarm robotics involves a group of simple computing units referred to as robots that operate
autonomously without having any centralized control. Moreover, the robots are generally
anonymous (no unique identifier), homogeneous (all robots execute the same algorithm), and
identical (physically indistinguishable). Generally on activation, a robot first takes a snapshot
of its surroundings. This phase is called the Look phase. Then based on the snapshot an

© Avisek Sharma, Satakshi Ghosh, Pritam Goswami, and Buddhadeb Sau;
licensed under Creative Commons License CC-BY 4.0

3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024).
Editors: Arnaud Casteigts and Fabian Kuhn; Article No. 20; pp. 20:1–20:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aviseks.math.rs@jadavpuruniversity.in
https://orcid.org/0000-0001-8940-392X
mailto:satakshighosh.math.rs@jadavpuruniversity.in
https://orcid.org/0000-0003-1747-4037
mailto:pritamgoswami.math.rs@jadavpuruniversity.in
https://orcid.org/0000-0002-0546-3894
mailto:buddhadeb.sau@jadavpuruniversity.in
https://orcid.org/0000-0001-7008-6135
https://doi.org/10.4230/LIPIcs.SAND.2024.20
https://doi.org/10.48550/arXiv.2309.11190
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Arbitrary Pattern Formation on Rectangular Grid by Robot Swarm

inbuilt algorithm determines a destination point. This phase is called the Compute phase.
Finally, in the Move phase it moves towards the computed destination. These three phases
together are called a Look-Compute-Move (LCM) cycle of a robot.

Through collaborative efforts, these robot swarms can accomplish different tasks such as
gathering at a specific point, configuring into predetermined patterns, navigating networks,
etc. Presently, the field of robotics research is witnessing significant enthusiasm for swarm
robots. The inherent decentralized characteristics of these algorithms provide swarm robots
with a notable advantage, as distributed algorithms are both easily scalable and more resilient
in the face of errors. Furthermore, swarm robots boast a multitude of real-world applications,
including but not limited to tasks like area coverage, patrolling, network maintenance, etc.

In order to accomplish specific tasks, robots require some computational capabilities,
which can be determined by various factors such as memory, communication, etc. With
respect to memory and communication, the literature identifies two primary robot models.
The first one is called the classical OBLOT model. In this model, the robots are devoid of
persistent memory and communication abilities. Another robot model is the LUMI model
where the robots are equipped with a finite number of lights that can take a finite number
of different colors. These colors serve as persistent memory (as a robot can see its own
color) and communication architecture (as the colors of lights are visible to all other robots).
The responsibility for activating robots rests with an entity referred to as the Scheduler.
Within the existing literature, three primary types of schedulers emerge: Fully-Synchronous
(FSYN C), Semi-Synchronous (SSYN C), and Asynchronous (ASYN C). In the case of fully
synchronous and semi-synchronous schedulers, time is partitioned into rounds of uniform
length. The duration of the Look, Compute, and Move phases for all activated robots are
identical. Under a fully-synchronous scheduler, all robots become active at the onset of each
round, but in a semi-synchronous setup, not all robots may activate simultaneously in a given
round. In an asynchronous scheduler, round divisions are absent. At any given moment, a
robot can be either idle or engaged in any of the Look, Compute, or Move phases. The
duration of these phases and the spans of robot idleness are finite but unbounded.

The primary focus of this study is to solve the Arbitrary Pattern Formation (APF)
problem on an infinite rectangular grid while minimizing spatial utilization. The APF
problem involves a group of robots situated within an environment, aiming to create a
designated pattern. This pattern is conveyed to each robot as a set of points within a
coordinate system as an input. This problem has been extensively studied in the euclidean
plane ([2, 3, 4, 6, 7, 8, 16, 17]) and also on a continuous circle [13]. Bose et al. [1] first
proposed this problem on a rectangular grid. The rectangular grid is a natural discretization
of the plane. To the best of our knowledge, on the discrete domain, this problem has been
studied in [1, 5, 9, 10, 11, 12, 15]. In this paper, the focus is placed on an environment
characterized by an infinite rectangular grid. In the upcoming subsection, we delve into the
reasons behind the introduction of spatial constraint in the context of this problem.

1.1 Motivation
In the majority of previous studies, the implementation of this problem on a grid necessitates
a substantial allocation of space (space of a configuration formed by a set of robots is the
dimension of the smallest enclosing square of the configuration), even when both the initial
and target configurations have minimal spatial requirements. This promptly gives rise to a
lot of problems. To begin with, in the scenario where the grid is of bounded dimensions, it is
possible that certain patterns cannot be formed, even if robots are initially located within
the bounded grid and the target pattern could potentially fit within the grid. This limitation

A. Sharma, S. Ghosh, P. Goswami, and B. Sau 20:3

arises due to the existence of intermediate configurations that demand a spatial extent that
cannot be accommodated within the confined grid. Moreover, when the spatial demand
for an APF algorithm on a grid increases, the count of patterns that can be formed within
a bounded grid becomes noticeably fewer compared to the count of patterns formable on
the same grid with a lower space requirement. To be more specific, patterns that are “big
enough” can not be formed if the space requirement is “big” on a bounded grid. So, the
requirement of large space compromises better utilization of the space.

Moreover, even if complete visibility is entertained for theoretical considerations, this
assumption does not hold practical validity within an unbounded environment. In the context
of a bounded region, it can be applied with the premise that the environment is finite, and
the entire environment falls within the visibility range of each robot. However, introducing
the concept of an infinite grid disrupts this assumption. In situations where the grid lacks
bounds, it is possible that due to substantial spatial requirements, certain robots might stray
beyond the visibility range of others. To the best of our knowledge, there remains an absence
of work that addresses the APF challenge within the constraints of limited visibility, an
asynchronous scheduler, and the absence of any global coordinate agreement. Thus in this
paper, the problem of APF on a grid with minimal spatial requirement has been considered.

1.2 Related Work

In the discrete setting, the problem is first studied in [1]. Here, the authors solved the problem
deterministically on an infinite rectangular grid with OBLOT robots in an asynchronous
scheduler. Later in [5], the authors studied the problem on a regular tessellation graph. In
[1], authors count the total required moves asymptotically and also give an asymptotic lower
bound for the move complexity, i.e., total number of moves required to solve the problem. In
[5], authors did not count the total number of moves required for their proposed algorithm.
In [9], the authors provided two deterministic algorithms for solving the problem in an
asynchronous scheduler. The first algorithm of [9] solves the APF problem for the OBLOT
model. The move complexity of this algorithm matches the asymptotic lower bound given
in [1]. Thus, this algorithm is asymptotically move-optimal. The second algorithm of [9]
solves the problem for the LUMI model, and this algorithm is asymptotically move-optimal.
Further authors showed that the algorithm is time-optimal, i.e., the number of epochs (a
time interval in which each robot activates at least once) to complete the algorithm is
asymptotically optimal. In [11], the authors provided a deterministic algorithm for solving
the problem with opaque (non-transparent) point robots in the LUMI model with an
asynchronous scheduler assuming one-axis agreement. In [10], the authors proposed two
randomized algorithms for solving the APF problem in an asynchronous scheduler. The
second algorithm works for the OBLOT model. This algorithm is asymptotically move-
optimal and time-optimal. The randomization in this algorithm is only used to break any
present symmetry in the initial configuration. If the initial configuration is asymmetric then
the algorithm is deterministic. The first algorithm works for opaque point robots with the
LUMI model. This algorithm is also asymptotically move-optimal and time-optimal. In [12],
the authors solve the problem with opaque fat robots (robots having nontrivial dimension)
with the LUMI model in an asynchronous scheduler assuming one-axis agreement. In [15],
the authors provide an asymptotically move-optimal algorithm solving this problem with
robots in the LUMI model. The work also considered a special requirement and showed that
the algorithm is space-optimal. In the next section, we formally state the space complexity
of an algorithm and discuss the space complexity of the mentioned works.

SAND 2024

20:4 Arbitrary Pattern Formation on Rectangular Grid by Robot Swarm

1.3 Space Complexity of APF Algorithms in Rectangular Grid
In [15], the authors considered the total space required to execute an algorithm. In Definition 1,
we define the space complexity of an algorithm executed by a set of robots on a rectangular
grid. Before that let’s define the dimension of a rectangle, vertices of which are on some grid
nodes, as m × n if the rectangle has m horizontal grid lines and n vertical grid lines.

▶ Definition 1. The space complexity of an algorithm executed by a set of robots on a
rectangular grid is the minimum dimension of the squares (whose sides are parallel with
the grid lines) such that no robot steps out of the square throughout the execution of the
algorithm.

Let the smallest enclosing rectangle (SER), the sides of which are parallel to grid lines, of
the initial configuration and pattern configuration formed by the robots, respectively, have
dimensions m × n (m ≥ n) and m′ × n′ (m′ ≥ n′). Let D = max{m, n, m′, n′}. Then the
minimum space complexity for an algorithm to solve the APF problem is D. Definition 1
assigns a real number to the space complexity that makes it easy to compare different APF
algorithms. But consider an APF algorithm that takes a space enclosed by an axis aligned
rectangle of dimension p × q. if M = max{m, m′} and N = max{n, n′}, then the APF
algorithm is better (as far as space is concerned) if p is closer to M and q is closer to N .

Space Complexity of the Previous APF Algorithms

(OBLOT model APF algorithms) The algorithm proposed in [1] has space-complexity at
least 2D in the worst case as one of the leaders, named tail moves far away from the rest of
the configuration. The first algorithm proposed in [9] is for the OBLOT model. It requires
the robots to form a compact line. The space complexity of these algorithms is D2 in the
worst case. The second randomized algorithm in [10] is for the OBLOT model. In this
algorithm, the leader robot moves upwards far away from the rest of the configuration. Thus,
it has a space complexity of at least 30D in the worst case.

(LUMI model APF algorithms) The second algorithm proposed in [9] is for the LUMI
model. This algorithm requires a step-looking configuration where each robot occupies a
unique vertical line. Therefore, the space complexity of the algorithm can be D2 in the
worst case. This algorithm needs each robot to have a light with three distinct colors. The
first randomized algorithm in [10] for LUMI model has space-complexity at least D + 2.
The authors also did not count the number of lights and colors required for the robots.
With a closer look, we observe that this algorithm uses at least 31 distinct colors. Further,
deterministic APF algorithms proposed in [11, 12] solved it for obstructed visibility. These
works also need the robots to form a compact line, hence the space complexity of these
algorithms is D2 in the worst case. The proposed algorithm in [15] has space-complexity
D + 1 and it requires three distinct colors.

We say that the first algorithm proposed in [10] and algorithm proposed in [15] are
almost space-optimal, as the space-complexity is of the form D + c, D is a lower bound of
the space-complexity and c is a constant independent of D. If we consider the rectangle to
measure the space, then a rectangle of dimension M × N is minimally required to solve the
APF problem. The first algorithm in [10] and the algorithm in [15] takes space enclosed by
rectangle of dimension (M + 2) × (N + 2) and (M + 1) × N respectively. We can consider
these algorithms as so far the best APF algorithms as far as space complexity is concerned.
For the rest of the algorithms one dimension of the rectangle that encloses the required space
shoots up twice (algorithm in [1]) or 30 times (2nd algorithm in [10]) or squares (algorithm

A. Sharma, S. Ghosh, P. Goswami, and B. Sau 20:5

in [9, 11, 12]). For the rectangle version, if an APF algorithm takes a space of enclosing
rectangle of dimension (M + c1) × (N + c2), where c1 and c2 are constants independent of
M and N , then the algorithm is said to be almost optimal. The challenge of this work is to
reconfigure the (oblivious and silent) robots in an optimal space avoiding the occurrence of
symmetric configurations and collision among robots while keeping the number of movements
asymptotically optimal.

Our Contribution

First a deterministic algorithm for solving APF in an infinite discrete line is presented. Then
exploiting that algorithm this manuscript presents a deterministic algorithm for solving
APF in an infinite rectangular grid which is almost space-optimal as well as asymptotically
move-optimal. Precisely, the space complexity for the algorithm is D + 4 and this algorithm
takes a space enclosing the rectangle of dimension (M + 4) × (N + 1). The move-complexity
of the algorithm is O(kD)1, where k is the number of robots. The robot model is the classical
OBLOT model and the scheduler is fully asynchronous. To the best of our knowledge so
far, this is the first deterministic algorithm solving APF problem in the OBLOT robot
model that has the least space-complexity and optimal move-complexity (See Table 1 for
comparison with the previous works). The architecture of the description of the algorithm
and correctness proof are motivated from [1].

Table 1 Comparison table.

Work Model Visibility Deterministic/
Randomised

Space
complexity

[1] OBLOT Unobstructed Deterministic ≥ 2D
1st algorithm in [9] OBLOT Unobstructed Deterministic D2

2nd algorithm in [10] OBLOT Unobstructed Randomised2 ≥ 30D
2nd algorithm in [9] LUMI Unobstructed Deterministic D2

1st algorithm in [10] LUMI Obstructed Randomised ≥ D+2
[11] LUMI Obstructed Deterministic D2

[12] LUMI Obstructed
(fat robot)

Deterministic D2

[15] LUMI Unobstructed Deterministic D + 1
Algorithm in this
work

OBLOT Unobstructed Deterministic D + 4

2 Model and Problem Statement

Robot

The robots are assumed to be identical, anonymous, autonomous, and homogeneous. Robots
are oblivious, i.e., they do not have any persistent memory to remember previous configura-
tions or past actions. Robots do not have any explicit means of communication with other
robots. The robots are modeled as points on an infinite rectangular grid graph embedded on

1 In [10], the authors provides this tight lower bound
2 The randomisation is only used to break any symmetry present in the initial configuration

SAND 2024

20:6 Arbitrary Pattern Formation on Rectangular Grid by Robot Swarm

a plane. Initially, robots are positioned on distinct grid nodes. A robot chooses the local
coordinate system such that the axes are parallel to the grid lines and the origin is its current
position. Robots do not agree on a global coordinate system. The robots do not have a
global sense of clockwise direction. A robot can only rest on a grid node. Movements of the
robots are restricted to the grid lines, and through a movement, a robot can choose to move
to one of its four adjacent grid nodes.

Look-Compute-Move Cycle

A robot has two states: sleep/idle state and active state. On activation, a robot operates
in Look-Compute-Move (LCM) cycles, which consist of three phases. In the Look phase, a
robot takes a snapshot of its surroundings and gets the position of all the robots. We assume
that the robots have full, unobstructed visibility. In the Compute phase, the robots run
an inbuilt algorithm that takes the information obtained in the Look phase and obtains a
position. The position can be its own or any of its adjacent grid nodes. In the Move phase,
the robot either stays still or moves to the adjacent grid node as determined in the Compute
phase.

Scheduler

The robots work asynchronously. There is no common notion of time for robots. Each robot
independently gets activated and executes its LCM cycle. The time length of LCM cycles,
Compute phases, and Move phases of robots may be different. Even the length of two LCM
cycles for one robot may be different. The gap between two consecutive LCM cycles, or the
time length of an LCM cycle for a robot, is finite but can be unpredictably long. We consider
the activation time and the time taken to complete an LCM cycle to be determined by an
adversary. In a fair adversarial scheduler, a robot gets activated infinitely often.

Grid Terrain and Configurations

Let G be an infinite rectangular grid graph embedded on R2. The G can be formally defined
as a geometric graph embedded on a plane as P × P, which is the cartesian product of two
infinite (from both ends) path graphs P. Suppose a set of k > 2 robots is placed on G. Let
f be a function from the set of vertices of G to N ∪ {0}, where f(v) is the number of robots
on the vertex v of G. Then the pair (G, f) is said to be a configuration of robots on G. For
the initial configuration (G, f), we assume f(v) ≤ 1 for all v.

Symmetries

Let (G, f) be a configuration. A symmetry of (G, f) is an automorphism ϕ of the graph G
such that f(v) = f(ϕ(v)) for each node v of G. A symmetry ϕ of (G, f) is called trivial if ϕ is
an identity map. If there is no non-trivial symmetry of (G, f), then the configuration (G, f)
is called an asymmetric configuration and otherwise a symmetric configuration. Note that
any automorphism of G = P × P can be generated by three types of automorphisms, which
are translations, rotations, and reflections. Since there are only a finite number of robots, it
can be shown that (G, f) cannot have any translation symmetry. Reflections can be defined
by an axis of reflection that can be horizontal, vertical, or diagonal. The angle of rotation
can be of 90◦ or 180◦, and the center of rotation can be a grid node, the midpoint of an edge,
or the center of a unit square. We assume the initial configuration to be asymmetric. The
necessity of this assumption is discussed after the problem statement.

A. Sharma, S. Ghosh, P. Goswami, and B. Sau 20:7

Problem Statement

Suppose a swarm of robots is placed in an infinite rectangle grid such that no two robots
are on the same grid node and the configuration formed by the robots is asymmetric. The
Arbitrary Pattern Formation (APF) problem asks to design a distributed deterministic
algorithm following which the robots autonomously can form any arbitrary but specific
(target) pattern, which is provided to the robots as an input, without scaling it. The target
pattern is given to the robots as a set of vertices in the grid with respect to a cartesian
coordinate system. We assume that the number of vertices in the target pattern is the same
as the number of robots present in the configuration. The pattern is considered to be formed
if a configuration is formed and that is the same with target pattern up to translations,
rotations, and reflections. The algorithm should be collision-free, i.e., no two robots should
occupy the same node at any time, and two robots must not cross each other through the
same edge.

Admissible Initial Configurations

We assume that in the initial configuration there is no multiplicity point, i.e., no grid node
that is occupied by multiple robots. This assumption is necessary because all robots run
the same deterministic algorithm, and two robots located at the same point have the same
view. Thus, it is deterministically impossible to separate them afterward. Next, suppose the
initial configuration has a reflectional symmetry with no robot on the axis of symmetry or
a rotational symmetry with no robot on the point of rotation. Then it can be shown that
no deterministic algorithm can form an asymmetric target configuration from this initial
configuration. However, if the initial configuration has reflectional symmetry with some
robots on the axis of symmetry or rotational symmetry with a robot at the point of rotation,
then symmetry may be broken by a specific move of such robots. But making such a move
may not be very easy as the robots’ moves are restricted to their adjacent grid nodes only.
In this work, we assume the initial configuration to be asymmetric.

3 Space-optimal Arbitrary Pattern Formation on a Grid Line

In this section, we solve this problem on a discrete straight line. Suppose we have an infinite
path graph P = {(i, i + 1) | i ∈ Z} embedded on a straight line. Suppose k robots are placed
on P at distinct nodes. A configuration is defined similarly as done in the previous section
by considering G = P. The target pattern is given as a set of k distinct positive integers.

Leader Election and Global Coordinate Setup

We assume the initial configuration of robots does not have reflectional symmetry. First, we
set up a global coordinate system that can be agreed upon by all the robots. Suppose C is a
configuration having no reflectional symmetry. For a configuration, we define the smallest
enclosing line segment (SEL) to be the smallest line segment in length that contains all the
robots in the configuration. Let L = AB be the SEL of the configuration C. Consider two
binary strings of length |AB| (the length of a line segment is the number of grid points on
the line segment) called λA and λB with respect to the endpoints of L. Let λA = {ai}|AB|

i=1
such that ai = 1 if and only if the node on the AB line segment having distance i − 1 from
A is occupied by a robot. Similarly, we define λB. Since C has no reflectional symmetry,
λA and λB are different. Therefore one of them is lexicographically smaller than the other.

SAND 2024

20:8 Arbitrary Pattern Formation on Rectangular Grid by Robot Swarm

Suppose λA is lexicographically smaller than λB. Then A is considered as the origin and−−→
AB is considered as the positive (right) direction. Also, the robot located at A is said to be
head and the robot located at B is said to be tail. We denote C \ {tail} as C′.

Target Embedding

Next we embed the pattern in the following way. Considering the integers given in the target
pattern on the number line proceed similarly as done above for C. Let Ctarget be the target
configuration and A′B′ be the SEL of Ctarget. Consider two binary strings λA′ and λB′ . If
both the strings are equal then the target pattern has a reflectional symmetry. In this case,
embed the pattern such that all the target positions are on the right side of the origin except
the left most one which is on the origin. If the strings are different then we suppose λA′ is
the lexicographically smaller one. In this case, embed the pattern such that A = A′ and
all the target positions are on the right side of the origin. After embedding, the farthest
target position from the origin is said to be the tail-target and denoted as ttarget. We define,
C′

target = Ctarget \ {ttarget}.

Proposed APF algorithm a Line

Next, we describe our proposed algorithm ApfLine. If in a snapshot of a robot, another
robot is seen on an edge then the robot discards the snapshot and goes to sleep. Therefore,
for simplicity, we assume that any snapshot taken by a robot contains a still configuration
C. The head never moves in the algorithm. Firstly, if C′ = C′

target then the tail moves to
ttarget. Otherwise, if ttarget is at the right of the tail, then the tail moves right and the other
robots remain static. If C′ ̸= C′

target, and the tail is at the ttarget or to the right of the ttarget,
then inner robots move to make C′ = C′

target. Let ri be the ith robot from the left and ti be
the ith target position from the left. We try to design the algorithm such that ri moves to
ti. The r1 robot is the head and it is already on t1. If ti is towards the left of ri and the
left adjacent grid node is empty, then an inner robot ri moves towards the left. If for each
inner robot rj which is not currently on tj , tj is at the right of the rj , then an inner robot
ri moves right if ti is at the right of the ri and the right adjacent grid node is empty (The
pseudo-code of the algorithm is given in Algorithm 1).

Algorithm 1 ApfLine (for a generic robot r).

1 if C′ = C′
target then

2 tail moves towards ttarget;
3 else
4 if ttarget is at the right of the tail then
5 tail moves towards right;
6 else
7 if r = ri is an inner robot then
8 if ti is at the left of ri then
9 if left adjacent grid node is empty then

10 r moves towards left;
11 else if for each inner robot rj which is not currently on tj , tj is at the right of the rj

then
12 if ti is at the right of ri then
13 if right adjacent grid node is empty then
14 r moves towards right;

A. Sharma, S. Ghosh, P. Goswami, and B. Sau 20:9

▶ Theorem 2. From any asymmetric initial configuration, the algorithm ApfLine can form
any target pattern on an infinite grid line within finite time under an asynchronous scheduler.

Proof. See the full version [14]. ◀

4 The Proposed Apf Algorithm on a Rectangular Grid

4.1 Agreement of a Global Coordinate System and Target Embedding

Let C be an asymmetric configuration. Consider the smallest enclosing rectangle (SER)
containing all the robots where the sides of the rectangle are parallel to the grid lines. Let
R = ABCD be the SER of the configuration, a m × n rectangle with |AD| = m ≥ n = |AB|.
The length of the sides of R is considered to be the number of grid points on that side. If all
the robots are on a grid line, then R is just a line segment. In this case, R is considered a
m × 1 “rectangle” with A = B, D = C, and AB = CD = 1.

For a side, say AB, of R we define a binary string, denoted as λAB, as follows. Let
(A = A1, A2, . . . , Am = D) be the sequence of grid points on the AD line segment and
(B = B1, B2, . . . , Bm = C) be the sequence of grid points on the BC line segment. Scan
the line segment AB from A to B. Then scan the line segments AiBi one by one in the
increasing order of i. The direction of scanning the line segment AiBi is set as follows: Scan
it from Bi to Ai if i is even and scan it from Ai to Bi if i is odd. While scanning, for each
grid point put 0 or 1 according to whether it is empty or occupied, respectively (See λAB in
Fig. 1).

Figure 1 ABCD is the SER of the configuration. λAB = 01101101010011010100 is the largest
lexicographic string, and rh and rt are respectively the head and tail robots of the configuration.

If m > n > 1, then for each corner point A, B, C, and D, consider the binary strings
λAB, λBA, λCD and λDC , respectively. If m = n > 1, then for each corner point, we have
to associate two binary strings with respect to the two sides adjacent to the corner point.
Then we have eight binary strings λAB, λBA, λAD, λDA, λBC , λCB, λDC and λCD. If any
two strings of them are equal then it can be shown that C has a (reflectional or rotational)
symmetry. Since C is asymmetric, we can find a unique lexicographically largest string (See
Fig. 1). Let λAB be the lexicographically largest string, and then A is considered the leading
corner of the configuration. The leading corner is taken as the origin, and −−→

AB is as the
x-axis, and −−→

AD is as the y-axis.
If R is an m × 1 rectangle, then λAB and λBA are the same string. Then we have two

strings to compare. Since the configuration is asymmetric, these two strings must be distinct.
Then we shall have a leading corner, say A = B. For this case, A is considered as the origin,
and −−→

AD as the y-axis. There will be no agreement of the x-axis in this case but since all the
robots are on the y-axis, so x-coordinate of the positions of the robots are 0 at this time.

SAND 2024

20:10 Arbitrary Pattern Formation on Rectangular Grid by Robot Swarm

If C is asymmetric then a unique string can be elected and hence, all robots can agree
on a global coordinate system. By “up” (“down”) and “right” (“left”), we shall refer to the
positive (“negative”) directions of the x-axis and y-axis of the coordinate system, respectively.
The robot responsible for the first 1 in this string is considered the head robot of C and the
robot responsible for the last 1 is considered the tail of C. The robot other than the head
and tail is termed the inner robot. We define, C′ = C \ {tail} and C′′ = C \ {head, tail}.

Target Pattern Embedding

Here we discuss how robots are supposed to embed the target pattern when they agree on
a global coordinate system. The target configuration Ctarget is given with respect to some
arbitrary coordinate system. Let the R′ = A′B′C ′D′ be the SER of the target pattern, an
m′ × n′ rectangle with |A′D′| ≥ |A′B′| > 1. We associate binary strings similarly for R′ as
done for R. Let λA′B′ be the lexicographically largest (but may not be unique because the
Ctarget can be symmetric) among all other strings for R′. The first target position on this
string λA′B′ is said to be head-target and denoted as htarget and the last target position is
said to be tail-target and denoted as ttarget. The rest of the target positions are called inner
target positions. Then the target pattern is to be embedded such that A′ is the origin,

−−−→
A′B′

direction is along the positive x-axis, and
−−−→
A′D′ direction is along the positive y-axis. Next,

let us consider the case when |A′B′| = 1, that is when the SER of the target pattern is a line
A′D′. Let λA′D′ be the lexicographically largest string between λA′D′ and λD′A′ . Then the
target is embedded in such a way that A′ is at the origin and

−−−→
A′D′ direction is along the

positive y-axis. The positive x-axis direction can be decided randomly by the robot which
first moves out of that line making the SER a rectangle. We define, C′

target = Ctarget \{ttarget}
and C′′

target = Ctarget \ {htarget, ttarget}.

4.2 Outline of the Proposed Algorithm
The algorithm is logically divided into seven phases3. A robot infers which phase it is in from
the configuration visible at that time. It does so by checking which conditions in Table 2
are fulfilled. We assume that in a visible configuration, no robot is seen on an edge. We
maintain such assumption by an additional condition that, if a robot sees a configuration
where a robot is on an edge then discard the snapshot and go to sleep.

A Preview of the Algorithm

Firstly the tail robot moves upwards to reach a horizontal line such that neither the
horizontal line nor other horizontal lines above it contain any robot or target position
(Phase I).
Next the head robot moves left to reach the origin (Phase II).
Then the tail robot moves a few steps upwards to remove the chance of occurrence of
symmetry during the later inner robot movements (phase I).
Then the tail robot moves rightwards to reach a vertical line such that neither the
vertical line nor any vertical line to the right of it contains any robot or target positions
(Phase III).

3 The phases are assigned numerical names, yet the sequence of these numerals doesn’t precisely correspond
to the sequence of their execution during algorithm execution.

A. Sharma, S. Ghosh, P. Goswami, and B. Sau 20:11

After that a spanning line is considered (Figure 2) and inner robots carefully move along
this line (Function Rearrange) to take their respective target position avoiding collision
or forming any symmetric configuration (Phase IV).
After that the tail moves horizontally to reach the vertical line that contains ttarget

(Phase V).
Then the head robot moves horizontally to reach htarget (Phase VI).
After that the tail moves vertically to reach ttarget (Phase VII).

Table 2 Set of conditions on an asymmetric configuration C having SER ABCD such that the
origin is at A.

C0 C = Ctarget

C1 C′ = C′
target

C2 C′′ = C′′
target

C3 x-coordinate of the tail = x-coordinate of ttarget

C4 There is neither any robot except the tail nor any target positions
on or above Ht, where Ht is the horizontal line containing the tail

C5 y-coordinate of the tail is odd
C6 SER of C is not a square
C7 There is neither any robot except the tail nor any target positions

on or at the right of Vt, where Vt is the vertical line containing the
tail

C8 The head is at origin
C9 If the tail and the head are relocated respectively at C and A, then

the new configuration remains asymmetric
C10 C′ has a symmetry with respect to a vertical line

4.3 Detail Discussion of the Phases

Phase I

A robot infers itself in Phase I if ¬(C4 ∧ C5 ∧ C6) ∧ ¬(C1 ∧ C3) is true. In this phase, the
tail moves upward and all other robots remain static. The aim of this phase is to make
C4 ∧ C5 ∧ C6 true.

Phase II

A robot infers itself in Phase II if (C4 ∧ C5 ∧ C6 ∧ ¬C8) ∧ ((C2 ∧ ¬C3) ∨ ¬C2) is true. In this
phase, the head moves towards the left, and other robots remain static. This phase aims to
make C8 true.

Phase III

A robot infers itself in Phase III if C4 ∧ C5 ∧ C6 ∧ C8 ∧ ¬C2 ∧ ¬C7 is true. The aim of this
phase is to make C7 true. In this phase, there are two cases to consider. The robots will
check whether C10 is true or not. If C10 is false, then robots check whether C9 is true or not.
If C9 is not true then the tail moves upward. Otherwise, the tail moves right or upwards
in accordance with m > n + 1 or m = n + 1 (dimension of the current SER is m × n with
m ≥ n). If C10 is true, then the tail moves left or upwards in accordance with m > n + 1 or
m = n + 1. Other robots remain static in both cases.

SAND 2024

20:12 Arbitrary Pattern Formation on Rectangular Grid by Robot Swarm

Phase IV

A robot infers itself in Phase IV if C4 ∧ C5 ∧ C6 ∧ C7 ∧ C8 ∧ ¬C2 is true. In this phase, the
inner robots execute function Rearrange to make C2 true.

Function Rearrange

In this function inner robots move to take their respective target positions. Let C be the
current configuration. Let ABCD be the SER of C. According to the assumption exactly
two nonadjacent vertices are occupied by robots in rectangle ABCD. Specifically, these two
robots are the head and the tail of the configuration. Let the head and tail be located at A

and C respectively. Consider the path P starting from A to C as illustrated in bold edges in
Fig. 2. Inner robots adopt algorithm ApfLine considering this path as the line. Here, we
define a robot r′ at the left (right) side of r if r′ is closer to the head (tail) than r in P.
Let us order the target positions. Denote htarget as t1, then the next closest target position
from the head in P as t2. Similarly, denote the ith closest target positions in P from the
head as ti. Note that, tk is the ttarget. Similarly order all the robots, {ri}k

i=1, where r1 is
the head and ri (i > 1) is the ith closest robot from the head on P.

Figure 2 Path joining the nodes A and C mentioned in bold edges.

If ti is at the left of ri and there are no other robots in the sub-path of P starting from
the position of ri to ti, then ri moves to ti. The movement strategy is described as follows.
If ri and ti are at the same vertical (or, horizontal) line then ri moves through the vertical
(or, horizontal) line joining ri and ti. Suppose, ri and ti are not at the same vertical line or
horizontal line. If the downward adjacent vertex of ri is at the right of ti then ri moves
downwards. If the downward adjacent vertex is at the left of ti, then ri moves to its left
adjacent node on P.

If there is no robot rj such that tj is at the left of rj , then movements of an inner robot
towards right start. If ti is at the right of ri, and there are no other robots in the sub-path
of P starting from the position of ri to ti, then ri moves to ti. The movement strategy is
described as follows. If ri and ti are at the same vertical (or, horizontal) line then ri moves
through the vertical (or, horizontal) line joining ri and ti. Suppose, ri and ti are not at the
same vertical line or horizontal line. If the upward adjacent vertex of ri is at the left of ti

then ri moves upwards. If the upward adjacent vertex is at the right of ti, then ri moves to
its right adjacent on node P (pseudo code of the function Rearrange is given Algorithm 2).

A. Sharma, S. Ghosh, P. Goswami, and B. Sau 20:13

Algorithm 2 Function Rearrange for a robot r = ri.
1 if ti is at the left of ri then
2 if there are no other robot in the sub-path of P starting from position of ri to ti then
3 if ri and ti are at the same vertical (or, horizontal) line then
4 ri moves towards ti through the vertical (or, horizontal) line joining ri and ti;
5 else
6 if the downward adjacent vertex of ri is at the right of ti then
7 ri moves downwards;
8 else
9 ri moves to its left adjacent node on P;

10 else if ti is at the right of ri then
11 if there is no inner robot rj such that tj is at the left of rj then
12 if there are no other robot in the sub-path of P starting from position of ri to ti then
13 if ri and ti are at the same vertical (or, horizontal) line then
14 ri moves towards ti through the vertical (or, horizontal) line joining ri and ti;
15 else
16 if the upwards adjacent vertex of ri is at the left of ti then
17 ri moves upwards;
18 else
19 ri moves to its right adjacent node on P;

Phase V

A robot infers itself in Phase V if C2 ∧ C4 ∧ C5 ∧ C6 ∧ C8 ∧ ¬C3 is true. In this phase, the
tail moves horizontally to make C3 true. Let Ht be the horizontal line containing the tail
and T ′ be the point on the Ht that has the same x-coordinate with ttarget. If C10 is not true
then the tail moves horizontally towards T ′. Next let C10 be true. Let ABCD be the SER
of the current configuration C and AB′C ′D′ be the SER of C′. Let C ′′ be the point where
line B′C ′ intersects with Ht. Let E be the point on the Ht (See Figure 3). Let the tail robot
be at T . If both T and T ′ are at the right side of C ′′ or in on the line segment DE, then the
tail moves towards T ′. Otherwise, the tail moves leftward.

Figure 3 An image related to Phase V.

SAND 2024

20:14 Arbitrary Pattern Formation on Rectangular Grid by Robot Swarm

Phase VI

A robot infers itself in Phase VI if ¬C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 is true. In this phase, the
head moves horizontally to reach htarget. After the completion of this phase, ¬C0 ∧ C1 ∧ C3
becomes true.

Phase VII

A robot infers itself in Phase VII if ¬C0 ∧ C1 ∧ C3 is true. In this phase, the tail moves
vertically to reach ttarget.

4.4 Correctness and Performance of the Proposed Algorithm
In this section, we prove the correctness of the proposed algorithm. First, we show that any
initial asymmetric configuration for which C0 is not true falls in one of the seven phases (See
Figure 4). Then we show that from any asymmetric initial configuration, the algorithm allows
the configuration to satisfy C0 = true after passing through several phases (See Figure 5).
The correctness proof details are omitted from this paper due to space constraint. See the
full version of the paper in [14].

(Phase VII)

(Phase I)

(Phase II)

(Phase III)(Phase IV)

(Phase VI)

(Phase V)(Phase II)

Figure 4 For any configuration with C0 = false belongs to one of the seven phases.

▶ Theorem 3. The proposed algorithm can form any pattern consisting of k points by a
set of k oblivious asynchronous robots if the initial configuration formed by the robots is an
asymmetric configuration and has no multiplicity point.

Recall the Definition 1 of the space complexity of an algorithm executed by a set of
robots on an infinite rectangular grid. In Theorem 4, we calculate the space complexity of
the proposed algorithm. The move complexity is recorded in the Theorem 5. Proofs of these
theorems are available in full version of the paper [14].

A. Sharma, S. Ghosh, P. Goswami, and B. Sau 20:15

Phase II

Phase III

Phase IV

Phase I

Phase V

Phase VI

Phase VII

Figure 5 Phase transition digraph.

▶ Theorem 4. Let D = max{m, n, m′, n′} where m × n (m ≥ n) is the dimension of the
SER of the initial configuration and m′ × n′ (m′ ≥ n′) is the dimension of the SER of the
target configuration. Then the space complexity of the proposed algorithm is at most D + 4.
More precisely, if M = max{m, m′} and N = max{n, n′}, then the proposed algorithm takes
the space enclosed by a rectangle of dimension (M + 4) × (N + 1).

▶ Theorem 5. The proposed algorithm requires each robot to make O(D) movements, hence
the move-complexity of the proposed algorithm is O(kD).

5 Conclusion

This work first provides an algorithm that solves the APF problem in an infinite line by a
robot swarm. Then adopting the method, it provides another algorithm that solves the APF
in an infinite rectangular grid by a robot swarm. The robots are autonomous, anonymous,
identical, and homogeneous. The robot model used here is the classical OBLOT model.
The robots work under a fully asynchronous scheduler. The proposed algorithm is almost
space-optimal (Theorem 4) and asymptotically move-optimal (Theorem 5).

A few limitations of this work are the following. Here we assume that the initial
configuration is asymmetric. Finding complete characterization of the initial configurations
from which APF can be solved deterministically is an interesting future direction. Next,
the version of the APF problem under consideration does not permit multiple points in the
target configuration. More precisely, the number of target positions in the target pattern
is equal to the number of robots within the system. Solving a more generalized version of
the problem that allows target patterns with target positions less than the total number of
robots, is a possible future direction. Next, the proposed algorithm is almost space optimal,
so finding out the exact lower bound when starting from an asymmetric initial configuration
is an interesting direction. Also, this does not consider time-optimality, so considering all the
three parameters space, move and time at the same time can be an interesting future work.

References
1 Kaustav Bose, Ranendu Adhikary, Manash Kumar Kundu, and Buddhadeb Sau. Arbitrary

pattern formation on infinite grid by asynchronous oblivious robots. Theoretical Computer
Science, 815:213–227, 2020. doi:10.1016/j.tcs.2020.02.016.

SAND 2024

https://doi.org/10.1016/j.tcs.2020.02.016

20:16 Arbitrary Pattern Formation on Rectangular Grid by Robot Swarm

2 Kaustav Bose, Archak Das, and Buddhadeb Sau. Pattern formation by robots with inac-
curate movements. In Quentin Bramas, Vincent Gramoli, and Alessia Milani, editors, 25th
International Conference on Principles of Distributed Systems, OPODIS 2021, December
13-15, 2021, Strasbourg, France, volume 217 of LIPIcs, pages 10:1–10:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.OPODIS.2021.10.

3 Quentin Bramas and Sébastien Tixeuil. Probabilistic asynchronous arbitrary pattern formation
(short paper). In Borzoo Bonakdarpour and Franck Petit, editors, Stabilization, Safety, and
Security of Distributed Systems - 18th International Symposium, SSS 2016, Lyon, France,
November 7-10, 2016, Proceedings, volume 10083 of Lecture Notes in Computer Science, pages
88–93, 2016. doi:10.1007/978-3-319-49259-9_7.

4 Quentin Bramas and Sébastien Tixeuil. Arbitrary pattern formation with four robots. In
Taisuke Izumi and Petr Kuznetsov, editors, Stabilization, Safety, and Security of Distributed
Systems - 20th International Symposium, SSS 2018, Tokyo, Japan, November 4-7, 2018,
Proceedings, volume 11201 of Lecture Notes in Computer Science, pages 333–348. Springer,
2018. doi:10.1007/978-3-030-03232-6_22.

5 Serafino Cicerone, Alessia Di Fonso, Gabriele Di Stefano, and Alfredo Navarra. Arbitrary
pattern formation on infinite regular tessellation graphs. Theor. Comput. Sci., 942:1–20, 2023.
doi:10.1016/j.tcs.2022.11.021.

6 Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Embedded pattern formation
by asynchronous robots without chirality. Distributed Comput., 32(4):291–315, 2019. doi:
10.1007/s00446-018-0333-7.

7 Yoann Dieudonné, Franck Petit, and Vincent Villain. Leader election problem versus pattern
formation problem. In Nancy A. Lynch and Alexander A. Shvartsman, editors, Distributed
Computing, 24th International Symposium, DISC 2010, Cambridge, MA, USA, September
13-15, 2010. Proceedings, volume 6343 of Lecture Notes in Computer Science, pages 267–281.
Springer, 2010. doi:10.1007/978-3-642-15763-9_26.

8 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Arbitrary pattern
formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci., 407(1-3):412–
447, 2008. doi:10.1016/j.tcs.2008.07.026.

9 Satakshi Ghosh, Pritam Goswami, Avisek Sharma, and Buddhadeb Sau. Move optimal
and time optimal arbitrary pattern formations by asynchronous robots on infinite grid.
International Journal of Parallel, Emergent and Distributed Systems, 0(0):1–23, 2022. doi:
10.1080/17445760.2022.2124411.

10 Rory Hector, Gokarna Sharma, Ramachandran Vaidyanathan, and Jerry L. Trahan. Optimal
arbitrary pattern formation on a grid by asynchronous autonomous robots. In 2022 IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2022, Lyon, France,
May 30 - June 3, 2022, pages 1151–1161. IEEE, 2022. doi:10.1109/IPDPS53621.2022.00115.

11 Manash Kumar Kundu, Pritam Goswami, Satakshi Ghosh, and Buddhadeb Sau. Arbitrary
pattern formation by asynchronous opaque robots on infinite grid. CoRR, abs/2205.03053,
2022. doi:10.48550/arXiv.2205.03053.

12 Manash Kumar Kundu, Pritam Goswami, Satakshi Ghosh, and Buddhadeb Sau. Arbitrary pat-
tern formation by opaque fat robots on infinite grid. International Journal of Parallel, Emergent
and Distributed Systems, 37(5):542–570, 2022. doi:10.1080/17445760.2022.2088750.

13 Brati Mondal, Pritam Goswami, Avisek Sharma, and Buddhadeb Sau. Arbitrary pattern
formation on a continuous circle by oblivious robot swarm. In Proceedings of the 25th
International Conference on Distributed Computing and Networking, ICDCN 2024, Chennai,
India, January 4-7, 2024, pages 94–103. ACM, 2024. doi:10.1145/3631461.3631545.

14 Avisek Sharma, Satakshi Ghosh, Pritam Goswami, and Buddhadeb Sau. Space and move-
optimal arbitrary pattern formation on infinite rectangular grid by oblivious robot swarm.
CoRR, abs/2309.11190, 2023. doi:10.48550/arXiv.2309.11190.

15 Avisek Sharma, Satakshi Ghosh, Pritam Goswami, and Buddhadeb Sau. Space and move-
optimal arbitrary pattern formation on a rectangular grid by robot swarms. In Proceedings of

https://doi.org/10.4230/LIPIcs.OPODIS.2021.10
https://doi.org/10.1007/978-3-319-49259-9_7
https://doi.org/10.1007/978-3-030-03232-6_22
https://doi.org/10.1016/j.tcs.2022.11.021
https://doi.org/10.1007/s00446-018-0333-7
https://doi.org/10.1007/s00446-018-0333-7
https://doi.org/10.1007/978-3-642-15763-9_26
https://doi.org/10.1016/j.tcs.2008.07.026
https://doi.org/10.1080/17445760.2022.2124411
https://doi.org/10.1080/17445760.2022.2124411
https://doi.org/10.1109/IPDPS53621.2022.00115
https://doi.org/10.48550/arXiv.2205.03053
https://doi.org/10.1080/17445760.2022.2088750
https://doi.org/10.1145/3631461.3631545
https://doi.org/10.48550/arXiv.2309.11190

A. Sharma, S. Ghosh, P. Goswami, and B. Sau 20:17

the 25th International Conference on Distributed Computing and Networking, ICDCN 2024,
Chennai, India, January 4-7, 2024, pages 65–73. ACM, 2024. doi:10.1145/3631461.3631542.

16 Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Formation
of geometric patterns. SIAM Journal on Computing, 28(4):1347–1363, 1999. doi:10.1137/
S009753979628292X.

17 Masafumi Yamashita and Ichiro Suzuki. Characterizing geometric patterns formable by
oblivious anonymous mobile robots. Theoretical Computer Science, 411(26):2433–2453, 2010.
doi:10.1016/j.tcs.2010.01.037.

SAND 2024

https://doi.org/10.1145/3631461.3631542
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1016/j.tcs.2010.01.037

	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Space Complexity of APF Algorithms in Rectangular Grid

	2 Model and Problem Statement
	3 Space-optimal Arbitrary Pattern Formation on a Grid Line
	4 The Proposed Apf Algorithm on a Rectangular Grid
	4.1 Agreement of a Global Coordinate System and Target Embedding
	4.2 Outline of the Proposed Algorithm
	4.3 Detail Discussion of the Phases
	4.4 Correctness and Performance of the Proposed Algorithm

	5 Conclusion

