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Abstract
The gathering problem requires multiple mobile agents in a network to meet at a single location.
This paper investigates the gathering problem in carrier graphs, a subclass of recurrence of edge class
of time-varying graphs. By focusing on three subclasses of single carrier graphs – circular, simple,
and arbitrary – we clarify the conditions under which the problem can be solved, considering prior
knowledge endowed to agents and obtainable online information, such as the count and identifiers
of agents or sites. We propose algorithms for solvable cases and analyze the complexities and we
give proofs for the impossibility for unsolvable cases. We also consider general carrier graphs with
multiple carriers and propose an algorithm for arbitrary carrier graphs. To the best of our knowledge,
this is the first work that investigates the gathering problem in carrier graphs.
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1 Introduction

Imagine a group of friends attending a music festival in a large park. They have agreed to
meet somewhere to enjoy the festival together. However, they become separated in the crowd
and have no means of wireless communication. They decide to use the festival shuttle bus,
a public transportation carrier that travels around the park on a fixed schedule, to meet
at an undetermined location. The challenge of determining when to get on and off the bus
and how to ensure that everyone is at the same place is formalized as a gathering problem,
particularly, gathering problem in a carrier graph.

The gathering problem requires multiple mobile agents in a network to meet at a single
location. The gathering facilitates information sharing among agents working on collaborative
tasks. Distributed algorithms for this problem including the rendezvous problem (gathering
for two agents) have been well studied, especially for static graphs [1, 4, 10, 17].

Recently, distributed algorithms for highly dynamic graphs have been intensively studied.
These are dynamic graphs whose dynamics are not restricted locally in time or space, that is,
graphs are continuously changing over time. Casteigts et al. integrated several concepts of
dynamic graphs investigated separately as time-varying graphs and sorted them into 15 classes
[3]. One meaning class is connectivity over time COT (or temporally connected [8]) that is a
class of graphs where any pair of two nodes are connected over time in both directions (an

© Haozhi Zheng, Ryota Eguchi, Fukuhito Ooshita, and Michiko Inoue;
licensed under Creative Commons License CC-BY 4.0

3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024).
Editors: Arnaud Casteigts and Fabian Kuhn; Article No. 21; pp. 21:1–21:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zheng.haozhi.zd5@is.naist.jp
https://orcid.org/0009-0003-9168-0530
mailto:ry.eguchi@is.naist.jp
https://orcid.org/0000-0002-4836-2903
mailto:f-oosita@fukui-ut.ac.jp
https://orcid.org/0000-0001-9400-1095
mailto:kounoe@is.naist.jp
https://orcid.org/0000-0002-9837-5147
https://doi.org/10.4230/LIPIcs.SAND.2024.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


21:2 Gathering in Carrier Graphs: Meeting via Public Transportation System

agent can reach from one side to another side when it adequately waits and moves in some
intermediate nodes). Not surprisingly, due to its weak connectivity assumption, most results
for COT are negative and gathering algorithms achieve only weak properties [2, 16].

As subclasses of COT , more constrained (or more easily handled) classes are defined.
Classes Constant connectivity CC and T -interval connectivity INT T are graphs that guarantee
connectivity for any moment. A graph in INT T keeps the same spanning tree for any period
of T consecutive time steps, and CC is the same as 1-interval connectivity INT 1. These
classes have inclusion relation COT ⊃ CC = INT 1 ⊃ INT 2 ⊃ · · · . For 1-interval connected
graphs, especially 1-interval connected rings, gathering, and related problems have been well
studied [14, 9, 15, 18].

Another interesting subclasses of COT are recurrence of edges RE , time-bounded recurrence
of edges BRE and periodicity of edges PE . These are graphs where any edge recurrently
appears if it appears at least once. The recurrence of edges is bounded in time in BRE and
it is periodic in PE . The inclusion relation among these classes is COT ⊃ RE ⊃ BRE ⊃ PE .
The gathering problem has not been well studied in these classes. There is one work on
gathering problem considering COT , CC, RE , BRE and static graphs [2].

For a class of carrier graphs, that is a subclass of PE , the exploration problem has been
studied [6, 11]. The carrier graph (C-graph) models a system where one or more carriers
periodically visit sites in the system by following their routes. Agents can move sites with a
carrier when some carrier comes to their current site. Practical examples of this model include
public transportation systems like buses [20], planes [12] and satellites [19]. Furthermore,
this model also finds relevance in the context of ad-hoc data-routing schemes [13, 21]. The
exploration requires an agent to visit all the nodes in a network. This is closely related to
the gathering since agents need to explore a network to achieve gathering.

This paper considers the gathering problem in carrier graphs. This can be seen as
a problem where people try to meet at some station (unknown in advance) in a public
transportation system. We consider several assumptions on prior knowledge of agents such
as the counts of agents or sites, and, on acquirable information at sites such as identifiers or
the number of agents at the site or the site identifier, and for each assumption, clarify the
solvability of the problem and propose algorithms for solvable cases.

1.1 Related Works
The gathering problems targeting time-varying graphs are well studied for a family of
constantly connected graphs, especially 1-interval connected graphs [2, 14, 15, 18]. Di Luna
et al. first investigated the gathering problem in 1-interval connected rings [14]. They first
showed gathering at a single node is impossible in 1-interval connected rings and considered
the weak gathering that allows gathering at the same node, or the two end nodes of the same
edge. The feasible initial configurations (initial configurations from which the problem is
solvable) were clarified and gathering algorithms were proposed under several assumptions
on chirality and cross-detection. Michail et al. expanded targeting graphs beyond rings and
examined the solvability of the weak gathering problem for the class of 1-interval connected
graphs and initial configurations [15]. Shibata et al. considered the partial gathering problem
where each agent is required to gather with a group of at least g agents for a given g for
1-interval connected graphs [18]. They clarified the solvability and proposed algorithms for
solvable cases under several assumptions on g.

Ooshita and Datta considered weak gathering on rings in COT [16]. They proved that
in COT , weak gathering is impossible when agents cannot leave information at nodes or
when all agents should terminate. They also proposed a weak gathering algorithm without
termination when agents can leave information at nodes.
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Bournat et al. had a unique work on the gathering in time-varying graphs [2]. They
considered not only the constant connectivity class CC but also the family of recurrence of
edges classes RE (recurrence of edges) and BRE (time-bounded recurrence of edges). They
clarified the solvability for four variants of the gathering problem, gathering (all agents gather
in bounded time), eventual gathering (all agents gather in finite time), weak gathering (all
agents but at most one gather in bounded time, a different definition from [14]) and eventual
weak gathering (all agents but at most one gather in finite time), and proposed a single
algorithm that solves the strongest feasible variant for COT , CC, RE , BRE and static graphs.
This is the only work that considers the gathering problem for the family of recurrence of
edge classes, and there is no work on the gathering problem targeting carrier graphs.

The carrier graph model was introduced as a subclass of time-varying graphs by Flocchini
et al. [6]. This work considers anonymous systems (sites possess no IDs) and non-anonymous
systems (sites possess unique IDs), and for both systems established the necessary and
sufficient conditions for exploration. To showcase the time complexity differences across
various settings, they introduced three carrier graph classes – circular, simple, and arbitrary.
The agents in this research are constrained to move exclusively with the carrier and lack the
capability to wait on sites, analogous to the context of low-earth orbiting satellite systems.

In contrast, many real-world public transportation systems allow agents to stay at a
station, enabling them to await a potentially distinct carrier. Ilcinkas and Wade extended this
perspective by allowing agents to leave the carrier and wait on sites [11]. They demonstrated
that this added capability enables agents to reduce the number of moves in the worst case.
Additionally, this ability allows the agent agents not only to achieve exploration but also to
map the whole carrier graph.

Flocchini et al. studied the mapping of carrier graphs with “black holes” which are sites
that destroy agents [5, 7]. Their investigations delved into collectively mapping the graph by
multiple agents with the ability to leave messages at sites. The goal was to collaboratively
construct a map of the carrier graph while minimizing agent loss.

1.2 Our Contributions
This paper considers the gathering problem for carrier graphs. We examine the solvability
and propose algorithms (if solvable) for three classes of circular, simple, and arbitrary carrier
graphs with a single carrier. The solvability and the time complexity of the gathering problem
under several conditions are summarized in Table 1, where p, P , k, and n denote the period,
an upper bound of the period, the number of agents, and the number of sites, respectively.
Note that some of the results, e.g. for circular or simple graphs with knowledge of P , are
automatically derived from the results for the superclass, e.g. for arbitrary graphs with
knowledge of P . We also proof the impossibility for unsolvable cases.

Furthermore, we prove the impossibility of gathering in C-graphs with multiple carriers.
We also propose a gathering algorithm that terminates in at most 2M + (2p− 2)(m− 1) + 2p

rounds using existing exploration algorithms, where m and M denote the number of carriers
and the termination time of the exploration algorithm, respectively.

2 Preliminaries

2.1 Carrier graphs
We consider a system composed of a set S of n sites and a set C of m carriers. The sites
have unique identifiers (IDs) or no ID depending on assumptions, and carriers move among
the sites. Each carrier c has a unique identifier id(c) and an ordered sequence of sites
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Table 1 Time complexity of gathering algorithms on single carrier graphs.

Assumptions Graph Class
prior

knowledge
observation

ability Circular Simple Arbitrary

P - p + P ∗ p + P ∗ p + P ∗

k - p∗ p∗ p∗

n - 2p∗ p + n(n− 1)∗ Impossible
n agent ID 2p∗ p + n(n− 1)∗ Impossible
n site ID 2p∗ 2p 2p

- agent ID 3p 4p− 1 Impossible
- site ID 2p∗ 2p + 1∗ Impossible
- agent ID & site ID 2p∗ 2p + 1∗ Impossible

∗) algorithms with simultaneous termination

Table 2 Possibilities of gathering algorithms on general carrier graphs.

Assumptions Possibility

prior knowledge observation ability
P - Possible
k site ID Impossible
n - Impossible
n site ID Possible

π(c) = ⟨s0, s1, . . . , sp(c)−1⟩, si ∈ S, called a route, where the positive integer p(c) is called a
period of the route. The carrier c starts at site s0 at time 0 and then moves to the next site
along the route at each time unit in a cyclic manner (moving from sp(c)−1 to s0). We use
sp(c) as sp(c) = s0 for convenience. Letting π(c)[j] denote a site where c is located at time j,
π(c)[j] = si holds where i ≡p(c) j. A set of all the sites appear in π(c) is called a domain
of c, denoted as S(c) =

⋃
0≤i≤p(c)−1{si} where

⋃
c∈C S(c) = S holds. We have |S(c)| ≤ p(c)

since the same site can be visited several times along the route.
Each route π(c) defines an arc-labelled multi-graph G⃗(c) = (S(c), E⃗(c)), where E⃗(c) =

{(si, si+1, i) : 0 ≤ i < p(c)}. The set of all routes of carriers is denoted by R = {π(c) : c ∈ C},
and a period of R is defined as p(R) = max {p(c) : c ∈ C}. When no ambiguity arises, we will
simply denote p(R) as p. The arc-labelled multi-graph G⃗(C) = (S, E⃗), where E⃗ =

⋃
c∈C E⃗(c),

is called carrier graph, or shortly, C-graph. Especially, a carrier graph with only one carrier
is called a single carrier graph, or shortly, SC-graph.

For any C-graph G⃗(C), we define a static and undirected meeting graph H(C) that has
C as a set of nodes. In the meeting graph H(C), there is an edge between two nodes c and
c′ if and only if there exists a site s such that both s ∈ S(c) and s ∈ S(c′) hold. A C-graph
G⃗(C) is said to be connected if and only if H(C) is connected. In this paper, we will always
consider connected C-graphs.

We classify routes by their property into circular, simple, and arbitrary as follows.

▶ Definition 1. A route π(c) = ⟨s0, s1, . . . , sp(c)−1⟩ is simple if G⃗(c) contains no self-loop
or multiple arcs, that is si ̸= si+1, for 0 ≤ i < p(c), and (x, y, i), (x, y, j) ∈ E⃗(c) only if i = j.

▶ Definition 2. A simple route π(c) = ⟨s0, s1, . . . , sp(c)−1⟩ is circular if it contains no
repeated sites, that is |S(c)| = p(c).
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A carrier graph G⃗(C) = (S, E⃗) is said to be circular and simple if every route π(c) ∈ R

is circular and simple, respectively. Let CC , CS , and CA denote classes of circular, simple,
and arbitrary C-graphs, respectively. Obviously, we have CC ⊂ CS ⊂ CA.

We have the following lemma as |S(c)| ≤ p.

▶ Lemma 3. Every site is visited by some carrier at least once for any time interval [t, t′]
(t′ − t ≥ p− 1).

2.2 Mobile Agents

There are k mobile computational entities a0, a1, . . . , ak−1 ∈ A, called agents, in the system,
with unique identifiers as id(ai) ∈ N, 0 ≤ i ≤ k − 1. The prior knowledge of the system for
agents depends on the assumption considered.

Agents operate in a LOOK-COMPUTE-MOVE manner in each synchronous round j,
which is the interval between time j − 1 and time j where j ∈ N+. At the beginning of each
round, an agent gets information on the current site (LOOK operation). The number of
agents at the same site can be observed by default, while the ability to observe agents’ IDs
and the site’s ID is endowed by certain assumptions. The agent then determines whether it
will move or stay at the current site (COMPUTE operation). Then the agent performs the
move depending on the decision (MOVE operation). Agents’ memory is persistent across
rounds (non-oblivious). We assume that agents cannot observe other agents’ memory.

An agent can stay at the current site or move with one of the carriers. An agent ai can
move with or switch to a carrier c only when it is placed at the same site as c at the same
time. Agent ai at site s at time t will be at site s′ at time t + 1 if it moves with or switches
to carrier c, where (s, s′, i) ∈ E⃗ and t ≡p(c) i hold. Otherwise, agent ai stays at site s.

2.3 The Gathering Problem

The goal of the gathering problem is to gather all the agents within finite time, that is to let
every agent a ∈ A move to the same site s ∈ S and terminate, within finite time, regardless
of the starting position. Moreover, the gathering problem with simultaneous termination
requires all the agents to terminate an algorithm simultaneously at the same site.

We assume that an agent starts its execution either spontaneously upon encountering
a carrier or upon encountering another moving agent. To evaluate the time complexity
of an algorithm, we measure the number of rounds from time 0 (representing the initial
configuration) to the point at which all agents have terminated their operations. We designate
the initiation of execution by the first agent as round 1, and subsequently, time 1 shows the
configuration after the execution of round 1.

3 Gathering with One Carrier

This section explores the gathering problem on SC-graphs. The process of congregating all
agents in an SC-graph is straightforward: agents are instructed to move with the carrier
whenever they encounter it. Consequently, all agents are assured to be located at the same
site at any round t ≥ p. However, the challenge is how each agent decides when to terminate
its execution. We will showcase the impossibility of gathering under certain assumptions.
Next, we will show several feasible assumptions under which we propose algorithms to solve
the gathering problem. We will prove their correctness and assess their time complexity.

SAND 2024
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3.1 Impossibilities
At first, we show the impossibility of gathering for arbitrary SC-graphs.

▶ Theorem 4. There does not exist any algorithm that solves the gathering problem in
arbitrary SC-graphs when the agents have no prior knowledge even when they can observe
IDs of agents and the current site ID.

Proof. For contradiction, suppose that there exists an algorithm A that solves the gathering
problem in the settings of the statement of the theorem.

Consider a SC-graph G with n sites s0, . . . , sn−1. Assume that a single carrier c has a
route π(c) = ⟨s0, . . . , sn−1⟩ and n agents a0, . . . , an−1 exist at sites s0, . . . , sn−1 initially. By
algorithm A, there exists T such that all agents gather and terminate at some site s ∈ S(c)
in T rounds.

We consider another SC-graph G′ with n′ +1 sites s′
0, . . . , s′

n′ . Assume that a single carrier
c′ has a route π(c′) = ⟨s′

0, . . . , s′
0, s′

1, . . . , s′
n′⟩ where c′ visits s′

0 repeatedly T times and then
visits s′

1, . . . , s′
n′ . Also assume that n′ agents a′

0, . . . , a′
n′−1 exist at sites s′

1, . . . , s′
n′ initially.

Note that the agents do not observe a carrier during the first T rounds. By algorithm A,
there exists T ′ such that all agents gather and terminate at some site s′ ∈ π(c′) in T ′ rounds.

Lastly, we construct another SC-graph G′′ from the above two graphs G and G′. The
sites of G′′ include s0, . . . , sn−1, s′

0, . . . , s′
n′ . Assume that n agents a0, . . . , an−1 are initially

placed at the same positions as G and n′ agents a′
0, . . . , a′

n′−1 are initially placed at the same
positions as G′. In this graph, we consider a single carrier c′′ such that c′′ moves similarly to
G during the first T rounds and moves similarly to G′ after that. That is, π(c′′)[j] = π(c)[j]
for 0 ≤ t < T and π(c′′)[j] = π(c′)[j] for T ≤ t < T ′. Let us consider the behavior of
agents a0, . . . , an−1 in graph G′′. During the first T rounds, carrier c′′ moves similarly to
G and consequently agents a0, . . . , an−1 behave similarly to G. Hence, agents a0, . . . , an−1
terminate at site s in T rounds. Next consider the behavior of agents a′

0, . . . , a′
n′−1. During

the first T rounds, none of them observes a carrier, which is the same as G′. During time T

to T ′, carrier c′′ moves similarly to G′. Hence, agents a′
0, . . . , a′

n′−1 behave similarly to G′

and terminate at site s′ in T ′ rounds. This implies that agents terminate at different two
nodes s and s′. This is a contradiction. ◀

▶ Theorem 5. There does not exist any algorithm that solves the gathering problem in
arbitrary SC-graphs when the agents only have knowledge of n, even when they can observe
IDs of agents.

Proof. For contradiction, suppose that there exists an algorithm A that solves the gathering
problem in the settings of the statement of the theorem. In the proof, we assume n = 2k + 2.

Consider a SC-graph G0 with n sites s0, . . . , sn−1. Assume that a single carrier c0 has
a route π(c0) = ⟨s0, . . . , sn−1⟩ and k agents a0, . . . , ak−1 exist at sites s0, . . . , sk−1 initially.
By algorithm A, there exists T such that all agents gather and terminate in T rounds. Let
Shalf = {s0, . . . , sk}. The following claim shows that we can change the movement of the
carrier so that agents gather and terminate in T rounds without going out from Shalf .

▷ Claim 6. There exists a SC-graph G1 with n sites s0, . . . , sn−1 such that (1) the single
carrier c1 visits only sites in Shalf during the first T rounds, and (2) when k agents a0, . . . , ak−1
are initially placed at the same positions as G0, they gather and terminate in T rounds.

Proof. First, we introduce some terms. The state of an agent is a tuple of its ID and the
values of all variables. A state of a site is a tuple of states of agents if agents exist, or empty
otherwise. We say a site is occupied if some agents exist on the site. For Gi (i ∈ {0, 1}), we
define ϕt

i(s) as the state of site s at time t in Gi. Let S = {s0, . . . , sn−1}.
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In the following, we inductively prove that, by defining π(c1) carefully, for 0 ≤ t ≤ T , (a)
π(c1)[t] ∈ Shalf holds, (b) every agent exists on a node in Shalf at time t, and (c) there exists
a bijection f t : S → S that maps site s of G0 to site f t(s) of G1 so that ϕt

1(f t(s)) = ϕt
0(s)

holds for any s ∈ S and π(c1)[t] = f t(π(c0)[t]) holds. Clearly, this implies the claim.
For the base case, consider time 0. We define π(c1)[0] = π(c0)[0] = s0 ∈ Shalf . This

implies condition (a) for t = 0. Since all agents in G1 are initially placed at the same positions
as G0, conditions (b) and (c) hold for t = 0 by defining f0(s) = s for any s ∈ S.

To prove inductive cases, for t = ℓ < T , assume that conditions (a) to (c) hold. That is,
ϕℓ

1(f ℓ(s)) = ϕℓ
0(s) holds for any s ∈ S and π(c1)[ℓ] = f ℓ(π(c0)[ℓ]) holds. Let v0 = π(c0)[ℓ],

w0 = π(c0)[ℓ+1], and v1 = π(c1)[ℓ] = f ℓ(v0). We define π(c1)[ℓ+1] as follows: π(c1)[ℓ+1] =
f ℓ(w0) if f ℓ(w0) ∈ Shalf holds, and otherwise π(c1)[ℓ + 1] = w ∈ Shalf such that w is not
occupied in G1 at time ℓ. In the latter case, from condition (b), w0 is not occupied in G0
at time ℓ, and hence we use some non-occupied site w ∈ Shalf instead of f ℓ(w0) /∈ Shalf .
From k < |Shalf |, such w definitely exists. This definition implies conditions (a) and (b) for
r = ℓ + 1.

In the following, we prove condition (c) for t = ℓ + 1. Let w1 = π(c1)[ℓ + 1] and define u0
as a site satisfying w1 = f ℓ(u0). We define bijection f ℓ+1 as follows:

If w1 = f ℓ(w0) holds, we define f ℓ+1(s) = f ℓ(s) for any s ∈ S.
If w1 ̸= f ℓ(w0) holds, we define f ℓ+1 by exchanging sites mapped from w0 and u0,
that is, f ℓ+1(w0) = f ℓ(u0) = w1, f ℓ+1(u0) = f ℓ(w0), and f ℓ+1(s) = f ℓ(s) for any
s ∈ S \ {w0, u0}.

In both cases, w1 = f ℓ+1(w0) and hence π(c1)[ℓ + 1] = f ℓ+1(π(c0)[ℓ + 1]) hold.
In the rest, we prove ϕℓ+1

1 (f ℓ+1(s)) = ϕℓ+1
0 (s) for any s ∈ S. We first consider an arbitrary

site x0 ∈ S \ {w0, u0}. Let x1 = f ℓ+1(x0) = f ℓ(x0). In this case, x0 (resp., x1) is not the
destination of a carrier in G0 (resp., G1) during the round between time ℓ to ℓ + 1. If x0 is
not occupied in G0 at time ℓ, x1 is also not occupied in G1 from ϕℓ

1(x1) = ϕℓ
0(x0). If x0 is

occupied, from ϕℓ
1(x1) = ϕℓ

0(x0) and π(c1)[ℓ] = f ℓ(π(c0)[ℓ]), agents on x1 in G1 and agents
on x0 in G0 observe the same site state and existence of a carrier, agents on x1 in G1 behave
as the same as those on x0 in G0. This implies ϕℓ+1

1 (f ℓ+1(x0)) = ϕℓ+1
1 (x1) = ϕℓ+1

0 (x0).
Next consider the case of x0 = w0 (including the case of u0 = w0). In this case, during

the round between time ℓ to ℓ + 1, carrier c0 moves from v0 to w0 in G0, and carrier c1
moves from v1 = f ℓ(v0) to w1 = f ℓ+1(w0) in G1. We can observe ϕℓ

1(w1) = ϕℓ
0(w0). Indeed

this is trivial if w1 = f ℓ(w0), and otherwise w0 and w1 are not occupied at time ℓ and
hence ϕℓ

1(w1) = ϕℓ
0(w0) holds. Similarly to the previous discussion, agents on v1 (resp.,

w1) in G1 and those on v0 (resp., w0) in G0 behave similarly. Consequently, carrier c1
carries agents (if any) to w1 such that the agents have the same states as G0. Hence,
ϕℓ+1

1 (f ℓ+1(w0)) = ϕℓ+1
1 (w1) = ϕℓ+1

0 (w0) holds.
Lastly, consider the case of x0 = u0 ̸= w0. In this case, u0 in G0 and f ℓ+1(u0) in G1 are

not occupied at time ℓ + 1. This implies ϕℓ+1
1 (f ℓ+1(u0)) = ϕℓ+1

0 (u0). ◁

Next we consider another SC-graph G′
0 with n sites s′

0, . . . , s′
n−1. Assume that a single

carrier c′
0 has a route π(c′

0) = ⟨s′
0, . . . , s′

0, s′
1, s′

2, . . . , s′
n−1⟩ where c′

0 visits s′
0 repeatedly T

times and then visits s′
1, . . . , s′

n−1. Also assume that k agents a′
0, . . . , a′

k−1 exist at sites
s′

1, . . . , s′
k initially. Note that the agents do not observe a carrier during the first T rounds.

By algorithm A, there exists T ′ such that all agents gather and terminate in T ′ rounds. Let
S′

half = {s′
0, . . . , s′

k}. Similarly to Claim 6, we can prove the following claim.

▷ Claim 7. There exists a SC-graph G′
1 with n sites s′

0, . . . , s′
n−1 such that (1) the single

carrier c′
1 visits only sites in S′

half during the first T ′ rounds, and (2) when k agents
a′

0, . . . , a′
k−1 are initially placed at the same positions as G′

0, they do not observe a carrier
during the first T rounds, and gather and terminate in T ′ rounds.
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Algorithm 1 Gather-With-Number-Of-Agents.

1: k ← total number of agents
2: for each round do
3: agents← the number of agents at the same site, carrier ← carrier at the same site
4: if agents = k then
5: Terminate
6: end if
7: if carrier ̸= ∅ then
8: Move with carrier

9: end if
10: end for

Lastly, we construct a SC-graph G2 from the above two graphs G1 and G′
1. The set of

sites of G2 is Shalf ∪ S′
half . Assume that initially k agents a0, . . . , ak−1 are located at sites

s0, . . . , sk−1 like G1 and other k agents a′
0, . . . , a′

k−1 are located at sites s′
1, . . . , s′

k like G′
1.

We consider a single carrier c2 such that c2 moves similarly to G1 during the first T rounds
and moves similarly to G′

1 after that up to round T ′ (and it can move arbitrarily). That
is, π(c2)[j] = π(c1)[j] for 0 ≤ j < T and π(c2)[j] = π(c′

1)[j] for T ≤ j < T ′. Let us consider
the behavior of agents a0, . . . , ak−1 in graph G2. During the first T rounds, carrier c2 moves
similarly to G1 and consequently agents a0, . . . , ak−1 behave similarly to G1. Hence, agents
a0, . . . , ak−1 terminate at a node in Shalf in T rounds. Next consider the behavior of agents
a′

0, . . . , a′
k′−1. During the first T rounds, none of them observes a carrier, which is the same

as G′
1. During time T to T ′, carrier c2 moves similarly to G′

1. Hence, agents a′
0, . . . , a′

k′−1
behave similarly to G′

1 and terminate at a node in S′
half in T ′ rounds. This implies that

agents terminate at different two sites s and s′. This is a contradiction. ◀

3.2 Possibilities
In this subsection, we present algorithms for SC-graphs for several scenarios on the initial
knowledge of agents and/or the information acquired in the LOOK operations.

3.2.1 With Prior Knowledge of agents amount k

We start with a simple case where each agent knows the number k of agents. This allows the
agents to determine when to terminate as they can observe the count of agents at the same
site. Each agent moves with a carrier whenever it encounters the carrier, and terminates
once it can see k agents.

▶ Theorem 8. Algorithm 1 solves the gathering problem with simultaneous termination
within p rounds for arbitrary SC-graphs if agents know the total number k of agents.

Proof. In this algorithm, any agent moves with the carrier whenever the carrier arrives at its
current site. Through this process, all k agents inevitably gather in p rounds and terminate
simultaneously, as a consequence of lines 5, 6, 8, 9, and Lemma 3. ◀

3.2.2 With Prior Knowledge of Period p

We present the algorithm when the agents initially know an upper bound of the period of
a given SC-graph in Algorithm 2. Let P denote an upper bound on the period p of the
single carrier. The idea of the algorithm is simple: The agents maintain a variable steps

initially set to 0, and increment the variable in each round. When the carrier appears in the
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Algorithm 2 Gather-With-Period.

1: P ← an upper bound on the carrier’s period, steps← 0, pre-agents ← 1
2: for each round do
3: agents← the number of agents at the same site, carrier ← carrier at the same site
4: if steps = P then
5: Terminate
6: else if agents = pre-agents then
7: steps← steps + 1
8: else
9: steps← 0

10: end if
11: pre-agents ← agents

12: if carrier ̸= ∅ then
13: Move with carrier

14: end if
15: end for

current site, the agent moves sites along the carrier. The value of steps is reset to 0 when
the number of agents in the carrier increases, which is detected by comparing the number of
agents at the current round and the number of agents in the previous round. The number
of agents in the previous round is maintained by another variable pre-agents. Finally, the
agents terminate when the value of steps is equal to the value of the upper bound of the
period. The algorithm finishes gathering within p + P rounds.

▶ Lemma 9. All the agents operating Algoritm 2 are located at the same site and have
identical steps values at the end of any round t ≥ p.

Proof. As illustrated in lines 15 and 16, an agent moves with the carrier upon encounter
and remains on the carrier until termination. From this observation, we can see that all
agents are present at the same site after round p, by Lemma 3. Let t0(≤ p) be the round
when the carrier encounters the last agent. Each agent operates steps← 0 at round t0, and
increments it by one in each round after round t0. That is all the agents have identical step

values at the end of each round t ≥ p > t0. ◀

▶ Theorem 10. Algorithm 2 solves the gathering problem for arbitrary SC-graphs within
p + P rounds if agents know an upper bound P of the period p of the carrier.

Proof. In the case of k = 1, the variable steps of the only agent increases every round until
steps = P . Then the agent terminates at the P -th round. In the case of k > 1, all k agents
congregate at the same location on the carrier with identical steps values by the end of any
round t ≤ p from Lemma 9. Hence, at a certain round r ≤ p + P , all k agents terminate
their execution at the same site simultaneously. ◀

Algoritm 2 can solve the problem when the initial knowledge of the agents is n (the
number of sites) in circular SC-graphs. This is because we have n = p by the definition of
the circular route (in Definition 2). Therefore, by substituting n for p, the agents can gather
within 2p rounds.

▶ Corollary 11. The gathering problem can be solved for circular SC-graphs within 2p rounds
if agents know the number n of sites.

In simple SC-graphs, the agent can obtain an upper bound n(n− 1) of the period, since
p ≤ n(n− 1) holds from the definition of the simple route (in Definition 1). Therefore, the
agents can gather within p + n(n− 1) rounds.
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Algorithm 3 Gather-With-Site-ID-and-n.

1: n← total number of sites, sites← ∅, explore-mode ← true

2: for each round do
3: current← current site ID, sites← {current} ∪ sites, carrier ← carrier at the same site
4: if |sites| = n then
5: explore-mode ← false

6: end if
7: if carrier ̸= ∅ then
8: if explore-mode = false ∧ current = min (sites) then
9: Terminate

10: else
11: Move with carrier

12: end if
13: end if
14: end for

▶ Corollary 12. The gathering problem can be solved for simple SC-graphs within p+n(n−1)
rounds if agents know the number n of sites.

The same strategy also can be applied to the situation where agents can observe the ID
of the current site in each LOOK operation in circular and simple SC-graphs. In this case,
agents find the period p while executing Algorithm 2. Each agent checks site IDs and the
number of moves when it moves with the carrier. When it encounters the same site (arc in
the case of simple SC-graphs) twice, it detects the end of the first cycle and gets the period
p. Let t0(≤ p) be the round when the carrier encounters the last agent. The value of steps

reaches to p at round t0 + p ≤ 2p, while the last agent gets the value p at round t0 + p in
circular SC-graphs and at t0 + p + 1 in simple SC-graphs. The strategy can work well if
agents decide termination when steps value becomes p + 1 in circular and simple SC-graphs.
The modified algorithm solves the gathering problem within 2p and 2p + 1 rounds in circular
and simple SC-graphs.

▶ Corollary 13. The gathering problem can be solved for circular and simple SC-graphs
within 2p and 2p + 1 rounds if agents can observe the current site’s ID.

Algorithms derived from Algorithm 2 also solve the problem with simultaneous termination
since Lemma 9 guarantees that the steps value is identical for all the agents before terminating.

3.2.3 With Prior Knowledge of n and Ability to Observe Site ID
Another straightforward approach directs the agents to gather at the site with the smallest
ID. Agents determine the minimum site ID while exploring the entire graph with knowledge
of the total number n of sites and the ability to observe the current site’s ID.

▶ Theorem 14. Algorithm 3 solves the gathering problem for arbitrary SC-graphs within 2p

rounds if agents can obtain the current site’s ID and know the total number n of sites.

Proof. In this algorithm, the operation is organized into two distinct phases denoted by the
parameter explore-mode. Initially, each agent operates in explore-mode, where the agent
explores the entire graph with the carrier. The agent exits explore-mode by round p when all
sites in the graph have been visited, as indicated by the condition |sites| = n. Subsequently,
the agent moves with the carrier up to p rounds toward the site with the smallest ID, where
it finally terminates. Since all the agents terminate the same site with the smallest ID, the
gathering is achieved within 2p rounds. ◀
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Algorithm 4 Gather-With-Agent-ID-Circular.

1: leader ← ⊥, landmark ← ⊥, leader-acknowledged← false

2: for each round do
3: agents← {IDs at the same site}, carrier ← carrier at the same site
4: if carrier ̸= ∅ then
5: if leader = ⊥ ∨min(agents) < leader then
6: leader ← min(agents), leader-acknowledged← false

7: end if
8: if leader = id then
9: if landmark ̸= ⊥ ∧ landmark ∈ agents then ▷ found the landmark

10: Terminate
11: else if landmark = ⊥ ∧ |agent| ≥ 2 then
12: landmark ← min (agents \ {id})
13: end if
14: Move with carrier

15: else if leader-acknowledged = false ∧ leader ∈ agents then
16: leader-acknowledged← true

17: Stay at the site ▷ start to wait for a leaderless carrier
18: else if leader /∈ agents then
19: Move with carrier ▷ head to the leader
20: else
21: Terminate ▷ found the leader
22: end if
23: end if
24: end for

Algoritm 3 does not attain gathering with simultaneous termination due to the lack of
information about other agents’ exploration progress.

3.2.4 With Ability to Observe Other Agents’ ID
An alternative approach involves designating a special agent as a leader, who terminates first.
Then, the remaining agents move to and terminate at the leader’s position. To determine
the leader agent, agents observe each other’s unique ID. The leader’s termination serves as a
signal for the other agents to gather at the designated position.

The algorithm for gathering in circular SC-graphs relies on the election of two special
agents, namely the leader and the landmark. All agents will learn the leader’s ID when the
election is over since the leader will meet every other agent during the leader election process.
The leader then moves to the location of the landmark and terminates with the landmark.
Subsequently, other agents observing a carrier without a leader will recognize that it is time
to head toward the leader. They will terminate upon encountering the leader again. The
following theorem holds for Algorithm 4. The proof is in the Appendix.

▶ Theorem 15. Algorithm 4 solves the gathering problem within 3p rounds for circular
SC-graphs when k > 1, if agents can obtain the IDs of other agents at the same site.

Proof. We show that Algorithm 4 makes all agents gather within 3p rounds. The proof
proceeds with showing some claims.

▷ Claim 16. There are no terminated agents at round t < p.
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Proof. If an agent terminates as a leader (line 10), it first sets some ID to landmark variable
and meets again its landmark to terminate. If an agent terminates as non-leader (line 21),
it first meets with the leader and meets the leader again to terminate. Both cases require
agents to encounter the carrier at least twice. To encounter the carrier twice, any agent
needs p + 1 rounds. ◁

▷ Claim 17. By round p, the agents riding the carrier include the agent with the smallest
agent ID, and it moves with the carrier until termination.

Proof. In the first cycle of the carrier’s move, every agent first encounters the carrier and
moves with the carrier as a leader if it has the smallest ID among agents at the site (line 14).
This implies the agent amin with the smallest ID becomes a leader (sets its own id to leader

variable) when it first encounters the carrier at round t0 (≤ p) and solely moves with the
carrier until termination at round p + 1 or later by Claim 16. ◁

We then show that amin again meets its landmark by round 2p.

▷ Claim 18. The agent amin arrives at the landmark’s site by round t = 2p.

Proof. When amin first meets other agents, it sets one agent ID aland to its landmark. We
first show that amin first meets aland by round p. When amin first encounters the carrier, if
there are other agents at the same site, amin selects aland among these agents, that is, amin

first meets aland by p. Otherwise, since one agent moves with the carrier after the carrier
encounters some agents, this means that amin is the first agent that the carrier encounters
and will meet aland at its initial location by round p. Let t (≤ p) be the round when amin

meets aland first time. Since aland does not become a leader, it remains to stay at the site.
Since amin moves with the carrier until termination by Claim 17, it again meets aland at
time t + p (≤ 2p). ◁

After reaching the landmark’s location, the leader terminates its execution. Subsequently,
any agents situated at distinct sites observe the leaderless carrier and move along it. Following
an additional p rounds from the leader’s termination, the carrier returns to the leader’s site,
bringing all agents to this site.

In summary, the algorithm guarantees the gathering of all agents to a solitary site. This
gathering is accomplished within 3p rounds for circular SC-graphs. ◀

The leader election process on circular SC-graphs does not work for simple SC-graphs
as it is, since a site may appear multiple times along a simple route. Fortunately, a simple
route includes no repeated arcs. We can use an arc as a landmark. Algorithm 5 for simple
SC-graphs has a similar approach to that for circular SC-graphs. It elects the smallest
agent as the leader, and the leader sets landmark by placing two agents pre-landmark and
post-landmark at both endpoints of the landmark when it first meets two other agents. The
leader’s termination is triggered upon observing pre-landmark and post-landmark in this
order in consecutive two rounds.

In Algorithm 5, two variables pre-landmark and post-landmark are used to indicate a
landmark. An agent sets a landmark when first meets two other agents. To do so, agents
move with the carrier while there are two or fewer agents together before setting a landmark
(while leader-acknowledged is false). The leader terminates if it again meets pre-landmark

and post-landmark in this order in consecutive rounds. Other agents behave similarly to
Algorithm 4. They stay at the site to wait for a leaderless carrier, but if it is selected as a
post-landmark (leader-acknowledged is false and it has the second smallest ID among agents
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Algorithm 5 Gather-With-Agent-ID-Simple.

1: leader ←⊥, pre-landmark ← ⊥, post-landmark ← ⊥
2: leader-acknowledged← false, visit-pre-landmark ← false, post-landmark-move← false

3: for each round do
4: agents← {IDs at the same site}, carrier ← carrier at the same site
5: if carrier ̸= ∅ then
6: if leader = ⊥ ∨min (agents) < leader then
7: leader ← min (agents), leader-acknowledged← false

8: end if
9: if leader = id then

10: if pre-landmark ̸= ⊥ ∧ pre-landmark ∈ agents then
11: visit-pre-landmark ← true

12: else if visit-pre-landmark then
13: if post-landmark ∈ agents then ▷ found the landmark
14: Terminate
15: else
16: visit-pre-landmark ← false

17: end if
18: else if pre-landmark = ⊥ ∧ |agents| ≥ 3 then
19: pre-landmark ← 3rd-min(agents), post-landmark ← 2nd-min(agents)
20: end if
21: Move with carrier

22: else if leader-acknowledged = false ∧ |agents| ≥ 3 ∧ leader ∈ agents then
23: leader-acknowledged← true

24: if 2nd-min(agents) = id then
25: post-landmark-move← true

26: Move with carrier

27: else
28: Stay at the site ▷ start to wait for a leaderless carrier
29: end if
30: else if post-landmark-move = true then
31: post-landmark-move← false

32: Stay at the site ▷ start to wait for a leaderless carrier
33: else if leader-acknowledged = false ∨ leader ̸∈ carrier then
34: Move with carrier ▷ elect or head to the leader
35: else
36: Terminate ▷ found the leader
37: end if
38: end if
39: end for

in the current site) it has one more move. After the leader terminates, the other agents see a
leaderless carrier and head to the leader with the carrier. The following theorem holds for
Algorithm 5.

▶ Theorem 19. Algorithm 5 solves the gathering problem within 4p− 1 rounds for simple
SC-graphs when k > 2 if agents can obtain the IDs of other agents at the same site.

Proof. We will see a difference from Algorithm 4. Let amin denote the agent with the
smallest ID.

▷ Claim 20. The agent amin arrives at the landmark’s arc by round 3p− 1.

Proof. When amin first meets two other agents, it sets two agent IDs apre_land and apost_land

to its pre-landmark and post-landmark, respectively. We first show that amin first meets
apre_land and apost_land by round 2p−2. The agent amin meets at least one agent by round p
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as in Algorithm 4. However, if amin meets only one agent a′ at that time, it has to move more
with the carrier to meet more agents (a′ accompanies amin since its leader-acknowledged is
false). The worst case is that amin is initially located at π(c)[p−1], and one agent is located
at π(c)[0] and the other agents are located at π(c)[p− 3]. In this case, The second-smallest
agent a′ once set its landmark at (π(c)[p − 3], π(c)[p − 2]) at rounds p − 2 and p − 3 and
all the agents except amin and a′ stay one of the endpoints. Thus, amin takes another
p − 2 moves to meet the pre-landmark of a′ at π(c)[p − 3] and sets amin’s landmark at
(π(c)[p− 3], π(c)[p− 2]) at round 2p− 2 and 2p− 3. Then amin takes another p moves to
again meet its pre-landmark and post-landmark in this order. That is, amin again arrives
at the landmark’s arc at time 3p− 1. ◁

After reaching the landmark’s location, the leader terminates its execution. Subsequently,
any agents situated at distinct sites observe the leaderless carrier and move along it. Following
an additional p rounds from the leader’s termination, the carrier returns to the leader’s site,
bringing all agents to this site.

In summary, the algorithm guarantees the gathering of all agents to a solitary site. This
gathering is accomplished within 4p− 1 rounds for circular SC-graphs. ◀

Given the inherently asynchronous nature of the termination process, achieving the goal
of gather with simultaneous termination remains unattainable.

4 Gathering on Multi-Carrier C-Graphs

4.1 Impossibility

According to Flocchini et al. [6], exploration on anonymous C-graphs (sites’ IDs not
observable) is impossible without knowledge of P , even if n and k are given, and is impossible
without knowledge of either P or n when the site ID is visible, even if k is given. Thus,
gathering on anonymous C-graphs is impossible without prior knowledge of P as shown by
Theorem 21.

▶ Theorem 21. There is no algorithm that solves the problem of gathering on C-graphs that
agents terminate before every site is visited.

Proof. Assume algorithm A solves the gathering problem without making all agents visit
every site. Let G1 be a C-graph that a site s1 ∈ S(G1) will not be visited by an agent A1
operating A starting from a certain initial configuration. Similarly, let G2 be a copy of G1
so that an agent A2 will not visit a site s2 ∈ S(G2) in an execution starting from the same
initial configuration as before. Then, let G3 be a C-graph that is a combination of G1 and G2.
That is, S(G3) has all the carriers and sites of G1 and G2, and all the carriers and agents are
located at the same sites as before at the round 0. Let a carrier c move periodically between
s1 and s2, so that the C-graph G3 becomes connected. Because A1 will terminate without
visiting s1 and so for A2 and s2, the two agents will never meet.This is a contradiction. ◀

In non-anonymous C-graphs, solving the gathering problem is trivial because agents must
explore, as indicated by Theorem 21. This exploration leads agents to move to the site with
the smallest ID.
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Algorithm 6 Gather-With-Multiple-Carriers.

1: For each agent i, explores and maps the graph G⃗(Ci) by AE

2: p← p(Ci), m← |Ci|, n← |S(Ci)|
3: destination← min(Ci)
4: Compute the foremost path to destination then move to it
5: Wait until round M + (2p− 2)(m− 1)
6: Wait until an agent comes for at most M rounds
7: Operate Algorithm 2 with period p

4.2 Gathering on Anonymous C-graphs
When gathering on an anonymous C-graph with multiple carriers, we adopt a two-tiered
approach. Initially, agents gather in the meeting graph H(C), which means arriving at the
same carrier’s route. Then, agents use algorithms designed for SC-graphs to gather on that
carrier. If agents have learned about the identities (IDs), routes, and timetables of all carriers,
as well as the topology of the C-graph, agents can directly gather at the carrier with the
smallest ID with at most (2p− 2)(m− 1) rounds as Lemma 22 shows. Another 2p round
is then required for operating Algorithm 2 to gather all the agents on the same site since
agents know the period of the carrier of the smallest ID.

▶ Lemma 22. The foremost path (the path that an agent arrives at its destination at the
earliest time) from any site to any carrier costs at most (2p− 2)(m− 1) rounds.

Proof. The basic scenario involves two connected carriers c1 and c2. Since there are at most
p sites in each carrier, the longest path from c1 to c2 is p− 1. In the worst case, the agent
at a shared site needs to wait for the carrier’s coming for p − 1 rounds. Therefore, the
accumulative time for the foremost path is at most 2p− 2.

Since the longest foremost path involves at most m carriers with m − 1 times carrier
switching, the foremost path costs at most (2p− 2)(m− 1) rounds. ◀

For an unknown C-graph, agents can learn the required knowledge by assigning names to
the visited sites so that each agent will make a private map of the C-graph after visiting
every site. Suppose we have an algorithm AE that maps the C-graph in M rounds, the
gathering problem can be solved in at most M + (2p− 2)(m− 1) + 2p rounds.

▶ Theorem 23. The Algorithm 6 solves the gathering problem for C-graphs in 2M + (2p−
2)(m− 1) + 2p rounds with a mapping algorithm AE, which maps the C-graph in M rounds.

Proof. The topology and the dynamics are known to the agent by round M as the exploration
ends. Therefore, every agent will be at a site belonging to the route of the carrier with the
smallest ID by the M + (2p − 2)(m − 1)-th round. That allows Algorithm 2 to solve the
gathering problem in another 2p rounds.

In a scenario where each agent starts up at the beginning of round 0, agents agree on
the global time so that every agent begins Algorithm 2 at round 2M + (2p− 2)(m− 1) that
ensures the gathering at round 2M + (2p− 2)(m− 1) + 2p.

Otherwise, when each agent starts up separately, there is a delay d between the first and
last started agents. As we suppose an agent will start its gathering process after encountering
another moving agent, the delay d can be at most M rounds. The Line 6 eliminates the
effects of the delay and leads to a gathering time of 2M + (2p− 2)(m− 1) + 2p rounds. ◀

Ilcinkas and Wade [11] propose an exploration algorithm Explore-With-Wait that
maps a C-graph. Given the a priori knowledge of an upper bound B = O(p) on the maximum
period p, the worst-case time complexity is Θ(np). Subsequently, the time complexity of a
Explore-With-Wait version of Algorithm 6 is Θ(np) as m = O(n).
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5 Conclusion

In this study, we started an exploration of a variant of the gathering problem: gathering in
carrier graphs, a particular class of time-varying graphs.

Throughout our investigation, we analyzed several factors that affect the feasibility and
the time complexity of gathering in single carrier graphs. Then, we extended our algorithms
to solve the gathering problem in general carrier graphs.

Open questions remaining include exploring the impact of communication abilities on
the gathering problem in C-graphs, identifying additional factors that may influence the
feasibility of gathering, and extending our findings to encompass a wider array of dynamic
graph classes, such as bounded-recurrent-edge graphs.

References
1 Steve Alpern and Shmuel Gal. The theory of search games and rendezvous, volume 55 of

International series in operations research and management science. Kluwer, 2003. doi:
10.1007/b10080.

2 Marjorie Bournat, Swan Dubois, and Franck Petit. Gracefully degrading gathering in dynamic
rings. In Stabilization, Safety, and Security of Distributed Systems - 20th International
Symposium, volume 11201 of Lecture Notes in Computer Science, pages 349–364. Springer,
2018. doi:10.1007/978-3-030-03232-6_23.

3 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. Int. J. Parallel Emergent Distributed Syst., 27(5):387–408,
2012. doi:10.1080/17445760.2012.668546.

4 Yoann Dieudonné, Andrzej Pelc, and David Peleg. Gathering despite mischief. ACM Trans.
Algorithms, 11(1):1:1–1:28, 2014. doi:10.1145/2629656.

5 Paola Flocchini, Matthew Kellett, Peter C. Mason, and Nicola Santoro. Finding good coffee
in paris. In Evangelos Kranakis, Danny Krizanc, and Flaminia L. Luccio, editors, Fun with
Algorithms - 6th International Conference, volume 7288 of Lecture Notes in Computer Science,
pages 154–165. Springer, 2012. doi:10.1007/978-3-642-30347-0_17.

6 Paola Flocchini, Bernard Mans, and Nicola Santoro. On the exploration of time-varying
networks. Theoretical Computer Science, 469:53–68, 2013. doi:10.1016/j.tcs.2012.10.029.

7 Paola Flocchini, Nicola Santoro, Peter C. Mason, and Matthew Kellett. Black hole search
in the network and subway models. Theoretical Computer Science, 50:158–184, 2012. doi:
10.1007/s00224-011-9341-8.

8 Tsuyoshi Gotoh, Paola Flocchini, Toshimitsu Masuzawa, and Nicola Santoro. Tight bounds
on distributed exploration of temporal graphs. In Pascal Felber, Roy Friedman, Seth Gilbert,
and Avery Miller, editors, 23rd International Conference on Principles of Distributed Systems,
volume 153 of LIPIcs, pages 22:1–22:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPICS.OPODIS.2019.22.

9 Tsuyoshi Gotoh, Yuichi Sudo, Fukuhito Ooshita, and Toshimitsu Masuzawa. Dynamic ring
exploration with (h, S) view. Algorithms, 13(6):141, 2020. doi:10.3390/A13060141.

10 Jion Hirose, Junya Nakamura, Fukuhito Ooshita, and Michiko Inoue. Gathering with a
strong team in weakly byzantine environments. In Proceedings of the 22nd International
Conference on Distributed Computing and Networking, ICDCN ’21, pages 26–35. Association
for Computing Machinery, 2021. doi:10.1145/3427796.3427799.

11 David Ilcinkas and Ahmed M. Wade. Exploration of carrier-based time-varying networks: The
power of waiting. Theoretical Computer Science, 841:50–61, 2020. doi:10.1016/j.tcs.2020.
07.003.

12 Ari Keränen and Jörg Ott. DTN over aerial carriers. In Martin May, Gunnar Karlsson, and
Ellen W. Zegura, editors, Proceedings of the 4th ACM workshop on Challenged networks, pages
67–76. ACM, 2009. doi:10.1145/1614222.1614234.

https://doi.org/10.1007/b10080
https://doi.org/10.1007/b10080
https://doi.org/10.1007/978-3-030-03232-6_23
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1145/2629656
https://doi.org/10.1007/978-3-642-30347-0_17
https://doi.org/10.1016/j.tcs.2012.10.029
https://doi.org/10.1007/s00224-011-9341-8
https://doi.org/10.1007/s00224-011-9341-8
https://doi.org/10.4230/LIPICS.OPODIS.2019.22
https://doi.org/10.3390/A13060141
https://doi.org/10.1145/3427796.3427799
https://doi.org/10.1016/j.tcs.2020.07.003
https://doi.org/10.1016/j.tcs.2020.07.003
https://doi.org/10.1145/1614222.1614234


H. Zheng, R. Eguchi, F. Ooshita, and M. Inoue 21:17

13 Cong Liu and Jie Wu. Scalable routing in cyclic mobile networks. IEEE Trans. Parallel
Distributed Syst., 20(9):1325–1338, 2009. doi:10.1109/TPDS.2008.218.

14 Giuseppe Antonio Di Luna, Paola Flocchini, Linda Pagli, Giuseppe Prencipe, Nicola Santoro,
and Giovanni Viglietta. Gathering in dynamic rings. Theor. Comput. Sci., 811:79–98, 2020.
doi:10.1016/J.TCS.2018.10.018.

15 Othon Michail, Paul G. Spirakis, and Michail Theofilatos. Beyond rings: Gathering in 1-
interval connected graphs. Parallel Process. Lett., 31(4):2150020:1–2150020:31, 2021. doi:
10.1142/S0129626421500201.

16 Fukuhito Ooshita and Ajoy K. Datta. Brief announcement: Feasibility of weak gathering
in connected-over-time dynamic rings. In Stabilization, Safety, and Security of Distributed
Systems - 20th International Symposium, volume 11201 of Lecture Notes in Computer Science,
pages 393–397. Springer, 2018. doi:10.1007/978-3-030-03232-6_27.

17 Andrzej Pelc. Deterministic rendezvous algorithms. In Paola Flocchini, Giuseppe Prencipe,
and Nicola Santoro, editors, Distributed Computing by Mobile Entities, Current Research in
Moving and Computing, volume 11340 of Lecture Notes in Computer Science, pages 423–454.
Springer, 2019. doi:10.1007/978-3-030-11072-7_17.

18 Masahiro Shibata, Yuichi Sudo, Junya Nakamura, and Yonghwan Kim. Partial gathering
of mobile agents in dynamic rings. In Colette Johnen, Elad Michael Schiller, and Stefan
Schmid, editors, Stabilization, Safety, and Security of Distributed Systems - 23rd International
Symposium, volume 13046 of Lecture Notes in Computer Science, pages 440–455. Springer,
2021. doi:10.1007/978-3-030-91081-5_29.

19 Shin-Ywan Wang, J. Leigh Torgerson, Joshua Schoolcraft, and Yan Brenman. The deep
impact network experiment operations center monitor and control system. In 2009 Third IEEE
International Conference on Space Mission Challenges for Information Technology, pages
34–40, 2009. doi:10.1109/SMC-IT.2009.13.

20 Xiaolan Zhang, Jim Kurose, Brian Neil Levine, Donald F. Towsley, and Honggang Zhang.
Study of a bus-based disruption-tolerant network: mobility modeling and impact on routing.
In Evangelos Kranakis, Jennifer C. Hou, and Ram Ramanathan, editors, Proceedings of the
13th Annual International Conference on Mobile Computing and Networking, pages 195–206.
ACM, 2007. doi:10.1145/1287853.1287876.

21 Wenrui Zhao and M.H. Ammar. Message ferrying: proactive routing in highly-partitioned
wireless ad hoc networks. In The Ninth IEEE Workshop on Future Trends of Distributed
Computing Systems, pages 308–314, 2003. doi:10.1109/FTDCS.2003.1204352.

SAND 2024

https://doi.org/10.1109/TPDS.2008.218
https://doi.org/10.1016/J.TCS.2018.10.018
https://doi.org/10.1142/S0129626421500201
https://doi.org/10.1142/S0129626421500201
https://doi.org/10.1007/978-3-030-03232-6_27
https://doi.org/10.1007/978-3-030-11072-7_17
https://doi.org/10.1007/978-3-030-91081-5_29
https://doi.org/10.1109/SMC-IT.2009.13
https://doi.org/10.1145/1287853.1287876
https://doi.org/10.1109/FTDCS.2003.1204352

	1 Introduction
	1.1 Related Works
	1.2 Our Contributions

	2 Preliminaries
	2.1 Carrier graphs
	2.2 Mobile Agents
	2.3 The Gathering Problem

	3 Gathering with One Carrier
	3.1 Impossibilities
	3.2 Possibilities
	3.2.1 With Prior Knowledge of agents amount k
	3.2.2 With Prior Knowledge of Period p
	3.2.3 With Prior Knowledge of n and Ability to Observe Site ID
	3.2.4 With Ability to Observe Other Agents' ID


	4 Gathering on Multi-Carrier C-Graphs
	4.1 Impossibility
	4.2 Gathering on Anonymous C-graphs

	5 Conclusion

