
Brief Announcement: Collision-Free Robot
Scheduling∗

Duncan Adamson
Leverhulme Research Centre for Functional Materials Design, University of Liverpool, UK

Nathan Flaherty
Leverhulme Research Centre for Functional Materials Design, University of Liverpool, UK

Igor Potapov #

Department of Computer Science, University Of Liverpool, UK

Paul G. Spirakis #

Department of Computer Science, University Of Liverpool, UK

Abstract
Robots are becoming an increasingly common part of scientific work within laboratory environments.
In this paper, we investigate the problem of designing schedules for completing a set of tasks at
fixed locations with multiple robots in a laboratory. We represent the laboratory as a graph with
tasks placed on fixed vertices and robots represented as agents, with the constraint that no two
robots may occupy the same vertex, or traverse the same edge, at the same time. Each schedule
is partitioned into a set of timesteps, corresponding to a walk through the graph (allowing for a
robot to wait at a vertex to complete a task), with each timestep taking time equal to the time for a
robot to move from one vertex to another and each task taking some given number of timesteps
during the completion of which a robot must stay at the vertex containing the task. The goal is to
determine a set of schedules, with one schedule for each robot, minimising the number of timesteps
taken by the schedule taking the greatest number of timesteps within the set of schedules.

We show that the problem of finding a task-fulfilling schedule in at most L timesteps is NP-
complete for many simple classes of graphs. Explicitly, we provide this result for complete graphs,
bipartite graphs, star graphs, and planar graphs. Finally, we provide positive results for line graphs,
showing that we can find an optimal set of schedules for k robots completing m tasks of equal
length of a path of length n in O(kmn) time, and a k-approximation when the length of the tasks is
unbounded.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases Graph Exploration, Scheduling, NP-Completeness, Approximation Al-
gorithms

Digital Object Identifier 10.4230/LIPIcs.SAND.2024.22

Related Version Full Version: https://arxiv.org/abs/2402.12019 [1]

1 Introduction

In this paper, we are interested in the scheduling of robots within chemistry labs, motivated
by a significant and expanding body of work concerning robotic chemists. Initial work on
these systems focused on building robots performing reactions within fixed environments
[4, 3], however recently Burger et al. [2] have presented a robot capable of moving within
a laboratory and completing tasks throughout the space. The works of Burger et al. [2]
and Liu et al. [5] provide the main motivation for this work, namely the problem of moving
robots within a laboratory environment (as presented by Burger et al. [2]) while avoiding
collisions (as investigated in the manufacturing context by Liu et al. [5]).

∗ A full version of this paper is available on arXiv [1]

© Duncan Adamson, Nathan Flaherty, Igor Potapov, and Paul G. Spirakis;
licensed under Creative Commons License CC-BY 4.0

3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024).
Editors: Arnaud Casteigts and Fabian Kuhn; Article No. 22; pp. 22:1–22:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3343-2435
https://orcid.org/0000-0002-2798-4084
mailto:potapov@liverpool.ac.uk
https://orcid.org/0000-0002-7192-7853
mailto:p.spirakis@liverpool.ac.uk
https://orcid.org/0000-0001-5396-3749
https://doi.org/10.4230/LIPIcs.SAND.2024.22
https://arxiv.org/abs/2402.12019
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Brief Announcement: Collision-Free Robot Scheduling

2 Preliminaries

In this problem, we consider a set of agents, which we call robots, moving on a given
graph G = (V, E) and completing a set of tasks T = {t1, t2, . . . , tm}. As mentioned in our
introduction, this problem originates in the setting of lab spaces, particularly in the chemistry
setting. As such, our definitions of robots and tasks are designed to mimic those found in
real-world problems. We associate each task with a vertex on which it is located and the
duration required to complete the task. We do not allow tasks to be moved by a robot, a task
can only be completed by a single robot remaining at the station for the entire task duration,
and any robot may complete any number of tasks, with no restrictions on which task a robot
can complete. This requirement reflects the motivation from chemistry, where tasks reflect
reactions that must be done within an exact time frame and at a fixed workstation.

Formally, we define a task ti as a tuple (di, vi) where di is the duration of the task, and
vi is the vertex at which the task is located. We use |ti| to denote the duration of the task
ti. In general, the reader may assume that for a graph G = (V, E) containing the vertex set
V = {v1, v2, . . . , vn}, the notation it is used to denote the index of the vertex at which task
t = (d, vit

) is located. This will be specified throughout the paper where relevant.
To complete tasks, we assign each robot a schedule, composed of an alternating sequence

of walks and tasks. We note that each schedule can begin and end with either a walk and a
walk, a walk and a task, a task and a walk, or a task and a task. We treat each schedule
as a set of commands to the robot, directing it within a given time frame. In this way,
we partition the schedule into a set of time steps, with each time step allowing a robot to
move along one edge or complete some fraction of a task, with a task t requiring exactly |t|
time steps to complete. We call the time span of a schedule the total number of timesteps
required to complete it. We denote the time span of the schedule C containing the walks
w1, w2, . . . , wℓ and tasks t1, t2, . . . , tm by |C| =

(∑
i∈[1,ℓ] |wi|

)
+

(∑
j∈[1,m] |tj |

)
. Given a

walk w directly following the task t in the schedule C, we require that the first edge traversed
in w begins at the vertex vit on which t is located. Similarly, we require that the task t′

following the walk w′ in the schedule C is located on the last vertex in the last edge in w′.
The walk representation W(C) of a schedule C is an ordered sequence of edges formed

by replacing the task ti = (d, vi) in C with a walk of length |ti| = d consisting only of the
edge (vi, vi), then concatenate the walks together in order. Note that |W(C)| = |C|. For a
given robot R assigned schedule C, in timestep j R is located on the vertex v ∈ V that is
the end vertex of the ith edge in W(C), i.e. the vertex v such that W(C)[i] = (u, v). We
require the first vertex in the walk representation of any schedule C assigned to robot R to
be the starting vertex of R, i.e. some predetermined vertex representing where R starts on
the graph. If the schedule C containing the task t is assigned to robot R, we say that t is
assigned to R.

Given a set of schedules C = (C1, C2, . . . , Ck) for a set of k robots R1, R2, . . . , Rk, and set
of tasks T = (t1, t2, . . . , tm). we say that C is task completing if for every task t ∈ T there
exists exactly one schedule Ci such that t ∈ Ci. We call C collision-free if there is no timestep
where any pair of robots occupy the same vertex or traverse the same edge. Formally, C is
collision-free if, for every Ci, Cj where i ≠ j and time-step s ∈ [1, |Ci|], W(Ci)[s] = (v, u)
and W(Cj)[s] = (v′, u′) satisfies u ̸= u′ and (v, u) ̸= (u′, v′).

For the remainder of this paper, we assume every robot in the graph is assigned exactly 1
schedule. Given 2 sets of schedules C and C′, we say C is faster than C′ if maxCi∈C |Ci| <

maxC′
j
∈C′ |C ′

j |.Given a graph G = (V, E), a set of k robots R1, R2, . . . , Rk starting on vertices
sv1, sv2, . . . , svk, and a set of tasks T , a fastest task-completing, collision-free set of k

schedules is the set of schedules C such that any other set of task-completing, collision-free
schedules is no faster than C. Note that there may be multiple such sets of schedules.

D. Adamson, N. Flaherty, I. Potapov, and P. G. Spirakis 22:3

▶ Problem 1 (k-Robot Scheduling). Given a graph G = (V, E), set of k robots
R1, R2, . . . , Rk starting on vertices sv1, sv2, . . . , svk, and set of tasks T , what is the fastest
task-completing, collision-free set of k-schedules C = (C1, C2, . . . , Ck) such that Ci can be
assigned to Ri, ∀i ∈ [1, k]?

3 Results

Hardness Results

We have found that the Robot Scheduling problem is NP-Hard, and that hardness remains
even when we restrict the class of graphs we consider, the known results are shown in Table 1.

Table 1 Our results for different graph classes and numbers, k, of robots.

Setting Result
General graphs, k ∈ N NP-complete

Complete graphs, k ≥ 2 NP-complete
Bipartite graphs, k ≥ 2 NP-complete

Star graphs (and trees), k ≥ 2 NP-complete
Planar graphs, k ∈ N NP-complete

Path graphs, with m tasks of equal duration, k ∈ N Optimal O(kmn) time Algorithm
(Theorem 7)

Path graphs, k ∈ N k-approximation Algorithm
(Theorem 8)

Algorithmic Results for Path Graphs

1-Robot Scheduling on Path Graphs. In this section, we provide an algorithm for finding
the optimal schedule for a single robot on a path. Corollary 3 shows that the time needed to
complete the fastest schedule can be computed via a closed-form expression.

1-Robot Scheduling Algorithm. Let P be a path graph of length n, let T = (t1, t2, . . . , tm)
be a set of tasks, and let R be the single robot starting on vertex sv = vis . We assume, without
loss of generality, that tj is located on vij

such that vij
is left of vij+1 , i.e. ∀j ∈ [1, m−1], ij <

ij+1. Note that there may exist some task ti located on sv without contradiction. Using this
notation, the optimal schedule C = {C} is:

C = { (vs, vs+1), (vs+1, vs+2), . . . , (vim−1, vim
), tm, (vim

, vim−1), (vim−1, vim−2), . . . ,
(vim+1+1, v + im+1), tm−1, . . . , (vi1+1, vi1), t1 } if |is − im| ≤ |is − i1|.
C = { (vs, vs−1), (vs−1, vs−2), . . . , (vi1+1, vi1), t1, (vi1 , vi1+1), (vi1+1, vi2+2), . . . ,
(vi2−1, vi2), t2, . . . , (vim−1, vim), tm } if |is − im| > |is − i1|.

▶ Lemma 2. The fastest task-completing schedule for 1-Robot Scheduling on a path
graph P of length n with m tasks T = (t1, t2, . . . , tm) located on vertices vi1 , vi2 , . . . , vim , and
a robot R starting on vertex vs can be constructed in O(n) time.

SAND 2024

22:4 Brief Announcement: Collision-Free Robot Scheduling

▶ Corollary 3. The fastest task-completing schedule for 1-Robot Scheduling on a path
graph P of length n with m tasks T = (t1, t2, . . . , tm) located on vertices vi1 , vi2 , . . . , vim

and
a robot R starting on vertex vs requires

min(|s − i1|, |s − im|) + im − i1 +
∑
t∈T

t

timesteps.

2-Robot Scheduling on Path Graphs. We now move to 2-Robot Scheduling on a
path. First, we provide a new algorithm generalising the above algorithm for 1-Robot
Scheduling . Later, we further generalise this to k-Robot Scheduling on a path; however,
it is valuable to consider 2-Robot Scheduling first, both to illuminate the main algorithmic
ideas and to provide a base case for later inductive arguments. We start by providing an
overview of our algorithm, which we call the partition algorithm.

The 2-Partition Algorithm. Let P be a path graph of length n, let T = (t1, t2, . . . , tm) be
the set of tasks, and let RL and RR be the pair of robots starting on vertices svL = viL

and svR = viR
respectively. We call RL the left robot and RR the right robot, with the

assumption that svL is left of svR. We denote by ij the index of the vertex containing the
task tj , and assume that ij < ij+1, for every j ∈ [1, n − 1]. For notation, let C1(P, T, sv)
return the optimal schedule for a single robot starting at sv on the path P for completing
the task set T .

We construct the schedule by partitioning the tasks into 2 sets, TL = (t1, t2, . . . , tq) and
TR = (tq+1, tq+2, . . . , tm). We determine the value of q by finding the value which minimises
max(|C1(P1,max(ℓ,iq

, (t1, t2, . . . , tℓ), svL)|, |C1(Pmin(iq+1,vr),m, (tq+1, tq+2, . . . , tm), svR)|. We
will use C2(P, T, (svL, svR)) to denote the schedule returned by this process.

▶ Lemma 4. Given an instance of 2-Robot Scheduling on an n-length path P with a set
of equal-length tasks T = (t1, t2, . . . , tm), and starting vertices svL = viL

, svR = viR
, for any

schedule C = (Cℓ, Cr) where the rightmost task tR assigned to the left robot is right of the
leftmost TL assigned to the right robot, there exists some schedule C′ = (C ′

ℓ, C ′
r) that takes no

more time than C and does not contain any such tasks.

▶ Lemma 5. Given an instance of 2-Robot Scheduling on an n-length path P with a
set of tasks T = (t1, t2, . . . , tm) where the duration of ti is equal to the duration of tj for
every i, j ∈ [1, m]. Further, let svL and svR be the starting vertices of the robots. Then
C2(P, T, (svL, svR)) is a fastest set of schedules for this instance and can be found in O(m)
time.

▶ Theorem 6. Given an instance of 2-Robot Scheduling on an n-length path P , with a
set of tasks T = (t1, t2, . . . , tm) and starting vertices svL and svR. Then C2(P, T, (svL, svR))
is within a factor of 2 of the fastest set of schedules solving this instance.

k-robots on the path. Now, we generalise the 2 robots on a path instance to an arbitrary
number. To do so, we build a dynamic programming algorithm based on the same principles
as the previous partition algorithm.

The k-Partition Algorithm. Let P be a path of length n, T = {t1, t2, . . . , tm} be a
set of tasks, and let sv1, sv2, . . . , svk be the starting vertices of the robots R1, R2, . . . , Rk

respectively, with the assumption that Ri starts left of Ri+1, for every i ∈ [1, k − 1]. Further,
we denote by it the index such that vit contains task t, and assume that itj < itj+1 (i.e.

D. Adamson, N. Flaherty, I. Potapov, and P. G. Spirakis 22:5

task tj is left of tj+1) for every j ∈ [1, m − 1]. We construct a k × m table S, with S[c, ℓ]
containing the time required to complete the fastest collision-free schedule completing tasks
t1, t2, . . . , tℓ with robots R1, R2, . . . , Rc.

First, observe that S[1, ℓ] can be computed, for every ℓ ∈ [1, m], in O(m) time. Now,
assuming the value of S[c − 1, ℓ] has been computed for every ℓ ∈ [1, m], the value of
S[c, r] is computed by finding the value r′ such that max(|C1(P, (tr′+1, tr′+2, . . . , tr))|, S[c −
1, r′]) is minimised, formally S[c, r] = minr′∈[1,r] max(|C1(P, (tr′+1, tr′+2, . . . , tr))|, S[c −
1, r′]). Letting S be an auxiliary table such that S[c, ℓ] contains the schedule corresponding
to the time given in S[c, ℓ], a task-completing collision-free schedule for the k-Robot
Scheduling instance is given in S[k, m].

Let Sk(P, T, (sv1, sv2, . . . , svk)) return the schedule determined by this table. Note that
for S2(P, T, (sv1, sv2)), this becomes equivalent to the 2-partition algorithm.

▶ Theorem 7. Given an instance of k-Robot Scheduling on a path P = (V, E) with equal
duration tasks T = (t1, t2, . . . , tm) on vertices vi1 , vi2 , . . . , vim

and k robots R1, R2, . . . , Rk

starting at sv1, sv2, . . . , svk = vj1 , vj2 , . . . , vjk
, there are no schedules taking less time than

the schedule returned by Sk(P, T, (sv1, sv2, . . . , svk)). Further, this schedule can be found in
O(kmn) time.

▶ Theorem 8. Given an instance of k-Robot Scheduling on a path P = (V, E) with
tasks T = (t1, t2, . . . , tm) on vertices vi1 , vi2 , . . . , vim

and k robots R1, R2, . . . , Rk starting at
sv1, sv2, . . . , svk = vj1 , vj2 , . . . , vjk

, the schedule returned by Sk(P, T, (sv1, sv2, . . . , svk)) is
no more than a factor of k slower than the optimal. Further, this schedule can be found in
O(km2) time.

4 Conclusion

We have shown that our definition of k-Robot Scheduling is hard, even on highly
constrained classes of graphs while being solvable for path graphs with equal-length tasks
and approximable for tasks of any length. While these results paint a strong picture of the
complexity of this problem, we are left with several open questions. The most direct is as
to whether our approximation algorithm for path graphs can be improved or if an optimal
algorithm can be found. We conjecture that a polynomial time algorithm exists for this
setting; however, at present, no such algorithm has been found. The second natural direction
is to look at the remaining classes of graphs that have not been covered by our existing
results. The most obvious of these are cycles, which, while closely related to paths, can
not be solved by naive application of our current tools. While it seems likely that similar
optimality and approximation results can be found, these are currently open problems.

References
1 Duncan Adamson, Nathan Flaherty, Igor Potapov, and Paul Spirakis. Collision-free robot

scheduling, 2024. arXiv:2402.12019.
2 B. Burger, P. M. Maffettone, V. V. Gusev, C. M. Aitchison, Y. Bai, X. Wang, X. Li, B. M.

Alston, B. Li, R. Clowes, et al. A mobile robotic chemist. Nature, 583(7815):237–241, 2020.
3 R. D. King. Rise of the robo scientists. Scientific American, 304(1):72–77, 2011.
4 J. Li, S. G. Ballmer, E. P. Gllis, S. Fujii, M. J. Schmidt, A. M. E. Palazzolo, J. W. Lehmann,

G. F. Morehouse, and M. D. Burke. Synthesis of many different types of organic small
molecules using one automated process. Science, 347(6227):1221–1226, 2015.

5 S. Liu, J. Shen, W. Tian, J. Lin, P. Li, and B. Li. Balanced task allocation and collision-free
scheduling of multi-robot systems in large spacecraft structure manufacturing. Robotics and
Autonomous Systems, 159:104289, 2023.

SAND 2024

https://arxiv.org/abs/2402.12019

	1 Introduction
	2 Preliminaries
	3 Results
	4 Conclusion

