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Abstract
We explore how geometric structures (or shapes) can be grown exponentially fast from a single
node, through a sequence of centralized growth operations, and if collisions during growth are to be
avoided. We identify a parameter k, representing the number of turning points within specific parts
of a shape. We prove that, if edges can only be formed when generating new nodes and cannot
be deleted, trees having O(k) turning points on every root-to-leaf path can be grown in O(k log n)
time steps and spirals with O(log n) turning points can be grown in O(log n) time steps, n being
the size of the final shape. For this case, we also show that the maximum number of turning points
in a root-to-leaf path of a tree is a lower bound on the number of time steps to grow the tree and
that there exists a class of paths such that any path in the class with Ω(k) turning points requires
Ω(k log k) time steps to be grown. In the stronger model, where edges can be deleted and neighbors
can be handed over to newly generated nodes, we obtain a universal algorithm: for any shape S it
gives a process that grows S from a single node exponentially fast.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases centralized algorithm, growth process, collision, programmable matter

Digital Object Identifier 10.4230/LIPIcs.SAND.2024.23

Related Version Full Version: https://arxiv.org/abs/2307.04385 [2]

1 Introduction

A growth operation (also called doubling [3] or expansion [8]) applied on a node u of a
geometric shape S, generates a new node in one of the points adjacent to u and possibly
translates some part of the shape. In this work, we explore the following two interrelated
questions: “What are the structural properties associated with exponential growth of geometric
shapes?” and “How can some of these properties be exploited and others avoided in order to
design algorithms that can grow desired shapes exponentially fast?”

Though our model takes inspiration from natural growth processes, it also shares features
with existing theoretical models of computation and robotics. Growth is a defining property
of both our model and self-assembly models. In the majority of self-assembly models, growth
is through passive attachment [7, 10] on the external layer of the formed structure, and, thus,
is relatively slow. Our algorithms can actively control the structure’s growth without any a
priori limitation on where to apply the growth operations, resulting in sub-linear and often
(poly)logarithmic growth in the size of the final structure. An example of a self-assembly
model incorporating active molecular dynamics is the Nubot model [11]. A difference between
our model and [11] is that our processes are only allowed to update instances through growth.
As is also the case in [11], most of our algorithms use the fast process of growing a line
as a sub-routine. Recently, there has been growing interest in studying the algorithmic
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foundations of programmable matter systems, focusing on their ability to alter their shape
through local reconfiguration [1, 4, 6, 9]. The growth processes that we study could serve
as a way to deploy programmable matter fast, either in its exact initial configuration or
in a rough version of it that can be then refined through other types of operations. An
assumption of our model is that individual operations have linear strength, meaning that
they have enough power to move any part of the structure. This is a common simplifying
assumption in the relevant literature [5, 11, 4] and can sometimes be dropped, e.g., when
more than one operation can be applied in parallel. Our model also has some relevance to
von Neumann’s concept of self-replicating machines.

2 Models and Problem

We consider a two-dimensional square grid, each point of which is identified by its x ≥ 0 and
y ≥ 0 integer coordinates, x indicating the column and y the row. A shape is defined as a
graph S = (V, E) drawn on the grid. V is a set of n nodes, where each node u occupies a
distinct point (ux, uy) of the grid. E ⊆ {uv | u, v ∈ V and u, v are adjacent} is a set of edges
between pairs of adjacent nodes, where two nodes u and v are adjacent if their orthogonal
distance on the grid is one. Our results hold for any geometry of individual nodes that does
not trivially make nearby nodes intersect. A shape is connected if the graph that defines it is
a connected graph. We restrict attention to connected shapes.

One or more growth operations applied in parallel to nodes of a shape S either cause
a collision or yield a new shape S′. There are two types of collisions: node collisions and
cycle collisions. We assume that the constructed shapes are equivalent up to translations.
Let T = (V, E) be a tree and u0 ∈ V its root. A single growth operation applied on a node
u ∈ V toward an adjacent point (x, y), results in either generating a new node u′ at point
(x, y) and connecting it to u, or, if (x, y) is already occupied by a node v connected to u,
generating u′ between u and v, connecting it to both u and v, and translating the subtree
T (v) by one unit away from u along the axis parallel to uv.

Let Q be a set of operations to be applied in parallel to a connected shape S, each
operation on a distinct pair of nodes or a node and an unoccupied point. We assume that all
operations in such a set are applied concurrently, have the same constant execution speed,
and their duration is equal to one time step. A node collision occurs if the trajectories of
any two nodes meet. If S is a connected shape with at least one cycle, then a set of parallel
operations Q on S either causes a cycle collision or its effect is essentially equivalent to the
application of Q on any spanning tree of S. In particular, a cycle collision occurs when two
parts of a cycle grow unequally. A set of operations is said to be collision free if it does not
cause any node or cycle collisions.

A growth process σ starts from an initial shape S0 – often a single node – and, in each
time step t ≥ 1, applies a set of parallel growth operations – possibly a single operation – on
the current shape St−1 to give the next shape St, until a final shape S is reached at a time
step tf . In this case, we say that σ grows S from S0 in tf time steps.

The different models and processes we consider are defined as follows.

▶ Definition 1. Let Sb
t and Se

t denote the shapes formed by the beginning and by the end
of time step t, respectively, and assume that Sb

1 = S0. A cycle-preserving growth process
applies a collision free set of parallel growth operations Qt to Sb

t , for all time steps t ≥ 1. A
cycle-breaking growth process additionally removes a – possibly empty – subset of the edges
of Sb

t , whose removal does not disconnect the shape, before applying Qt to it. If neighbor
handover is allowed, growth of a node u generating a new node u′ in direction d can hand
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any neighbor w of u perpendicular to d over to u′. In the connectivity graph model, for all
t ≥ 1, Sb

t+1 = Se
t holds. In the adjacency graph model, for all t ≥ 1, Sb

t+1 = AC(Se
t ) holds,

where AC(S) is the adjacency closure of a shape S.

Intuitively, the additional assumption in the adjacency graph model is that, at the end of
every time step, the graph model updates the shape by connecting all adjacent nodes that
are not connected. Combining the adjacency graph model with cycle-breaking processes
captures the less extreme case, in which the process can choose any spanning connected
sub-shape of the adjacency closure.

We study a reachability problem between classes of shapes through growth. The definition
of the problem is the same for all growth models of Definition 1.

▶ Problem 1. Let I be a class of initial shapes and F a class of final shapes. We want to
determine a bound τ such that for all S0 ∈ I and all S ∈ F there is a growth process σ that
grows S from S0 in τ time steps.

Given that our focus is on exponential growth, upper bounds must be of the form
τ = O(log n) or τ = (poly) log n. As there is a straightforward Ω(log n) lower bound, non-
trivial lower bounds should be at least ω(log n). In all instances of the problem that we study,
at least one of I and F is a singleton, the initial shape typically being a single node. Our
upper bounds are constructive: for each instance of the problem an algorithm is presented,
which for every (S0, S) from the respective classes gives a process that grows S from S0 in τ

time steps.

3 Technical Overview

In this section, we present the main results of our work, starting with the results of the
connectivity graph model and then moving on to the adjacency graph model.

Connectivity Graph Model. Starting growth from a single node, the class of shapes that can
be grown in this model is limited to tree structures only. We start by focusing on efficiently
growing trees. We identify a parameter k, representing the number of turning points within
specific parts of a shape. A node u of a shape S is called a turning point if either u is a leaf
or there are at least two neighbors v1 and v2 of u such that v1u is perpendicular to uv2. The
nodes between any two consecutive turning points of a path form a line segment.

Upper Bounds Trees with O(k) turning points on every root-to-leaf path can be grown in
O(k log n) time steps through a breadth-first search (BFS) on their line segments. Starting
from the root u0, the algorithm proceeds in phases, growing all maximal line segments at
distance i in parallel. Each line segment can be grown exponentially fast by doubling the
number of nodes in every time step.

▶ Theorem 2. Let T be any tree having O(k) turns on every root-to-leaf path. BFS on line
segments can grow T from a single node within O(k log n) time steps in the connectivity
graph model.

Similarly, spirals with O(log n) turning points can be grown within O(log n) time steps
through a pipelined version of BFS. For further details, see [2].
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Lower Bounds. We establish two lower bounds for trees and paths. For trees, we show
that the maximum number of turning points in a root-to-leaf path of the tree is a lower
bound on the number of time steps to grow the tree from a single node. Initially, we define a
growth process σ for S = (V, E) that induces a relation →σ on V , where u

t→σ v iff node
u generates node v at time step t. We also write u →σ v to mean u

t→σ v for some t ≥ 1
and u ⇝σ v iff u = u1 →σ u2 →σ · · · →σ ul = v, for some l ≥ 2. We omit σ, writing just
u

t→ v, u → v, or u⇝ v when the growth process is clear from context or when referring to
any growth process. The relation →σ defines a graph G→σ

= (V, E→σ
). Further, we define

a relation 7→σ induced by →σ on the turning points of tree shapes. Given a tree T and a
growth process σ for T , for any two turning points u, v of T we write u

t7→σ v iff (i) u
t→σ v

or (ii) u⇝ u′ t→σ v and u, u′, v are on the same line segment at the end of time step t.

▶ Lemma 3. In the connectivity model, let T = (V, E) be a tree and σ a growth process for
T starting from u0 ∈ V . For any root-to-leaf path (u0, u1, . . . , ul) of T , where the uis are
restricted to the turning points of the path, u0 7→ u1 7→ · · · 7→ ul holds.

The theorem below formalizes the lower bound for growing trees.

▶ Theorem 4. Let T = (V, E) be a tree and k any positive integer satisfying that for every
root u0 ∈ V there is a root-to-leaf path in T containing at least k turning points. Then any
growth process σ for T in the connectivity model requires at least k − 1 time steps. This lower
bound is maximized for the maximum such k.

For paths, we show that there exists a class of paths such that any path in the class with
Ω(k) turning points requires Ω(k log k) time steps to be grown from a single node. Let P be
a path with k turning points and (tp1, tp2, . . . , tpk) be their order in P . Let σ be a process
that grows P from a single node. Without loss of generality, we can assume that σ starts
from a turning point tpi of the path P . We prove that the sets {tpi+1, tpi+2, . . . , tpk} and
{tp1, tp2, . . . , tpi−1} of turning points are generated in the order (tpi+1, tpi+2, . . . , tpk) and
(tpi−1, tpi−2, . . . , tp1), respectively by σ. Moreover, σ respects the direction of P at every
node while generating the next node from it.

Let P be an incompressible (meaning that it has no columns or rows without any turning
points) spiral path between u and v with k turning points. Moreover, let u be the internal
endpoint of P . The following lemma gives a lower bound on the number of time steps taken
by any process that grows P from a single node starting from u.

▶ Lemma 5. Let P be an incompressible spiral path between u and v with k turning points.
Moreover, let u be the internal endpoint of P . Let σ be any process that grows P from a
single node starting from u. Then, σ requires Ω(k log k) time steps.

Let (tp1 = u, tp2, . . . , tpk = v) be the order of turning points of P from u to v. We know
that σ generates the turning points in the order (tp1 = u, tp2, . . . , tpk = v). Let GTj be the
time step when the turning point tpj was generated by σ, for any j ≥ 2. Let P̂ (t) be the
path constructed by σ after time step t. Further, let a and b be two vertices of P . We denote
by P [a, b] the path between a and b (including both a and b) of P . Moreover, we denote by
|a − b|P the number of edges in P [a, b]. Also, we denote by X(a, P ) the x-coordinate of the
vertex a in P . To prove the above lemma, we first prove the following lemma about the path
constructed by σ.

▶ Lemma 6. For any j ≥ 5, the path P̂ (GTj − 1) grown by σ till time step GTj − 1 should
be the same as the subpath P [tp1, tpj−1] of P between tp1 = u and tpj−1.
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The lower bound follows by applying Lemma 5 on a path consisting of two interleaved spirals
of equal size and observing that at least one of the two must be grown from its internal
endpoint. See [2] for the full proof.

▶ Theorem 7. Let σ be a process that grows a path from a single node. Then, there exists a
path for which σ takes Ω(k log k) time steps.

Adjacency Graph Model. In this model, every pair of adjacent nodes is also connected
in the shape. We study both cycle-preserving and cycle-breaking types of processes. For
cycle-preserving processes, we cannot directly perform BFS on line segments through cycle-
preserving growth due to the dependence between adjacent line segments. We give a modified
BFS that overcomes this by growing adjacent line segments in different phases, and we prove
that if a shape S has a spanning tree with O(k) turning points on every root-to-leaf path,
then the adjacency closure of S can be grown from a single node within O(k log n) time steps.
For a complete description of this approach, see [2]. For cycle-breaking processes with the
additional assumption that neighbors can be handed over to newly generated nodes (neighbor
handover), our main result is an efficient universal algorithm that gives an O(log n) time
steps growth process for any connected shape S. The algorithm achieves this by specifying
an elimination order of the nodes within the shape and then inverting this order to produce
the growth process.

▶ Theorem 8. Given any connected shape, S with dimensions l×w, the elimination algorithm
grows S from a single node in O(log l + log w) time steps.
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