
Brief Announcement: Collision Detection for
Modular Robots – It Is Easy to Cause Collisions
and Hard to Avoid Them
Siddharth Gupta # Ñ

BITS Pilani, Goa Campus, India

Marc van Kreveld #

Utrecht University, The Netherlands

Othon Michail #

University of Liverpool, United Kingdom

Andreas Padalkin #

Paderborn University, Germany

Abstract
We consider geometric collision-detection problems for modular reconfigurable robots. Assuming the
nodes (modules) are connected squares on a grid, we investigate the complexity of deciding whether
collisions may occur, or can be avoided, if a set of expansion and contraction operations is executed.
We study both discrete- and continuous-time models, and allow operations to be coupled into a
single parallel group. Our algorithms to decide if a collision may occur run in O(n2 log2 n) time,
O(n2) time, or O(n log2 n) time, depending on the presence and type of coupled operations, in a
continuous-time model for a modular robot with n nodes. To decide if collisions can be avoided, we
show that a very restricted version is already NP-complete in the discrete-time model, while the
same problem is polynomial in the continuous-time model. A less restricted version is NP-hard in
the continuous-time model.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Modular robots, Collision detection, Computational Geometry, Complexity

Digital Object Identifier 10.4230/LIPIcs.SAND.2024.26

Related Version Full Version: https://arxiv.org/abs/2305.01015 [6]

Funding Andreas Padalkin: This author was supported by the DFG Project SCHE 1592/10-1.

Acknowledgements The authors thank all participants of the Bertinoro Workshop on Distributed
Geometric Algorithms, in particular Peyman Afshani for suggesting the O(n log2 n) time solution for
detecting collisions when there are no couplings. We thank Irina Kostitsyna and Christian Scheideler
for the organization, and the latter also for proposing the collision detection problem. Finally, we
thank Jesper Nederlof for some useful observations.

1 Introduction

Modular reconfigurable robotics and the related concept of programmable matter concern
systems composed of interconnected elementary entities, called modules. The collection of
modules can coordinate its limited communication, computation, sensing, and local actuation
to accomplish nontrivial global tasks. Local actuation of modules is enabled through a set of
one or more mechanical operations that they can perform. An operation typically involves
the module that applies it as well as modules in its local neighborhood. Examples of such
operations are pushing, pulling, expanding, contracting, doubling, and rotating. Apart from

© Siddharth Gupta, Marc van Kreveld, Othon Michail, and Andreas Padalkin;
licensed under Creative Commons License CC-BY 4.0

3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024).
Editors: Arnaud Casteigts and Fabian Kuhn; Article No. 26; pp. 26:1–26:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:siddharthg@goa.bits-pilani.ac.in
https://guptasid.bitbucket.io/
https://orcid.org/0000-0003-4671-9822
mailto:m.j.vankreveld@uu.nl
https://orcid.org/0000-0001-8208-3468
mailto:othon.michail@liverpool.ac.uk
https://orcid.org/0000-0002-6234-3960
mailto:andreas.padalkin@upb.de
https://orcid.org/0000-0002-4601-9597
https://doi.org/10.4230/LIPIcs.SAND.2024.26
https://arxiv.org/abs/2305.01015
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Brief Announcement: Collision Detection for Modular Robots

their induced local changes, these operations are often capable of causing a more global effect
on the robotic structure within a limited period of time. An example is when a large part of
the structure moves due to the simultaneous application of one or more local operations.

The ability of local operations to globally affect the robotic structure is a double-edged
sword. On one hand, it is a convenient form of parallelism, where global structural changes
can happen faster. On the other hand, if not properly orchestrated, it could cause small
violations of the structure or even complete structural failure, such as uneven cycle growth,
global connectivity breaking, and self-intersection of the structure. We, hereafter, shall call
all structural violations and failures collisions. Operations that – when applied on individual
modules – can globally affect the structure, are sometimes called linear-strength operations.

The positive effect of such operations has been studied from a theoretical point of view
in a number of papers, for different underlying models and types of operations. In the
crystalline model, square modules can expand and contract by extending and retracting their
faces. In [2], Aloupis et al. gave a universal centralized reconfiguration algorithm that, for
any pair of connected shapes SI , SF of the same number of modules n, can transform SI

into SF within O(log n) parallel time steps by performing Θ(n log n) individual operations.
In [8], Woods et al. proposed the nubot model, motivated by the programmable self-

assembly of molecules, such as DNA strands. The model allows insertion, deletion, and
rotation of modules. Their main result is a distributed, asynchronous algorithm which,
starting from a singleton, can grow any connected 2D shape and pattern of size n, within a
polylogarithmic (in n) number of parallel time steps in expectation.

Almalki and Michail [1], building on the insertion operations of [8] and the growth
processes on graphs by Mertzios et al. [7], investigated what families of shapes can be grown
in time polylogarithmic in their size by using only growth operations. They gave centralized
algorithms for growing a shape SF from a shape SI (possibly a singleton), which yield
polylogarithmic parallel time-step schedules for large classes of shapes.

The amoebot model of Derakhshandeh et al. [4] –and its recent canonical extension [3]–
is another model in which the main operations considered are expansions and contractions
of modules. Shape formation algorithms in this model are usually designed in a way that
operations are parallel but each is affecting only a local region around it and not larger parts
of the shape. Recently, Feldmann et al. [5] have proposed to add linear-strength operations
to the model, but they have left the details of such an extension for future work.

It is evident that most studies have restricted attention to those operations that are safe
to perform in parallel. These are either linear-strength operations that cannot collide or
operations that affect only the local region around them. In this paper, we explicitly pose
the algorithmic question of determining when a set of operations may cause a collision and
when a collision can be avoided. In particular, given a shape and a set of linear-strength
operations on that shape we aim to give centralized algorithms that can compute a schedule
of these (sets of) operations that would (i) cause a collision or (ii) avoid collisions. The
former subquestion is motivated by asynchronous distributed algorithms, in which any of the
possible interleavings of operations might be the one that the modules will actually realize;
the latter by the need to design efficient reconfiguration algorithms that avoid collisions,
instead of having collision-avoidance built into the model. To the best of our knowledge, the
present is the first study to explicitly consider these types of questions.

2 Model

We assume a 2-dimensional square grid where each cell has integer coordinates (x, y). Nodes
(modules) occupy cells, defining a set of occupied integer points such that no two nodes
occupy the same cell. We represent every node u = (ux, uy) as a square of size equal to and

S. Gupta, M. van Kreveld, O. Michail, and A. Padalkin 26:3

perfectly aligned with cell (ux, uy) of the grid. A shape S = (V, E) is a configuration of nodes
V together with their connectivity, represented by E. Only orthogonally adjacent nodes can
be connected, but adjacent nodes are not necessarily connected. We use n to denote |V | and
restrict our attention to connected shapes, throughout.

Operations and collisions. In general, applying one or more operations to a shape S either
causes a collision or yields a new shape S′. Collisions come in two types: node collisions and
cycle collisions. Given that all collisions here will be “self-collisions” of a connected shape,
we can assume without loss of generality (abbreviated “w.l.o.g.” throughout) that there is an
anchor node u0 ∈ V that is stationary and other nodes move relative to it. We begin with
the simpler case where the shape is a tree T = (V, E), where cycle collisions do not exist,
and then generalize to any connected shape S.

We start by defining single expansion and contraction operations1. An expansion operation
is applied to a pair of adjacent integer points uv, where either (i) u ∈ V and v /∈ V , or (ii)
u, v ∈ V and uv ∈ E holds. The remaining case where u, v ∈ V but uv /∈ E immediately
gives a collision. In case (i), the expansion generates a node at the empty cell v connected
to u. In case (ii), assume w.l.o.g. that u is closer to u0 in T than v. Let T (v) denote the
subtree of T rooted at v. Then, the expansion generates a node between u and v, connected
to both, which translates T (v) by one unit away from u along the axis parallel to uv. In
both cases, the new node starts as a unit-length segment that widens into a unit square. A
contraction operation is applied to a pair of nodes uv ∈ E, v being the furthest from the
anchor. It merges v with u by translating T (v) by one unit toward u while v narrows to a
unit-length segment. In both types of operations, if after T (v)’s translation two nodes occupy
the same cell then a collision has occurred. We call this type of collision a node collision and
more generally define it as the non-empty intersection of the areas of any two nodes at any
point in time. Otherwise, a new tree T ′ has been obtained.

We assume that no node is ever adjacent to more than one operation.

Coupling. Let Q be a set of operations to be applied in parallel to a connected shape S,
each operation on a distinct pair of nodes or a node and an unoccupied cell. We call such a
set a coupling, and the operations it contains are coupled or parallel. We assume that all
operations in Q are applied concurrently, have the same constant execution speed, and their
duration is equal to one unit of time.

Let T = (V, E) be a tree and u0 ∈ V its anchor. We set u0 to be the root of T . We
want to determine the displacement of every v ∈ V \ {u0} due to the parallel application of
the operations in Q. As u0 is stationary and each operation translates a subtree, only the
operations on the unique u0v path contribute to v’s displacement. In particular, any such
operation contributes one of the unit vectors ⟨−1, 0⟩, ⟨0, −1⟩, ⟨+1, 0⟩, ⟨0, +1⟩ to the motion
vector v⃗ of v. Moreover, for any node u ∈ V that expands toward an empty cell, we add a
new node v with a corresponding unit motion vector v⃗. We can use the set of motion vectors
to determine whether the trajectories of any two nodes will collide at any point.

Now, let S be any connected shape with at least one cycle and any node u0 be its anchor.
Then, a set of operations Q on S either causes a cycle collision or its effect is essentially
equivalent to the application of Q on any spanning tree of S rooted at u0. Let u, v be any

1 We believe that our definitions and techniques can be extended to alternative versions of expansion and
contraction – including the case where the operations can be reversed – and to different geometries such
as a triangular grid.

SAND 2024

26:4 Brief Announcement: Collision Detection for Modular Robots

two nodes on a cycle. If p1 and p2 are the two uv paths of the cycle, then v⃗p1 = v⃗p2 must
hold: the displacement vectors of v along the paths p1 and p2 are equal. Otherwise, we
cannot maintain all nodes or edges of the cycle. Such a violation is called a cycle collision.
We call a set of operations that does not cause any node or cycle collisions collision free.

Discrete and continuous time. We consider two different models for the scheduling of
the operations. In the discrete-time model, each operation or coupling starts at a different
integer time and takes one unique unit of time. In other words, no two operations are active
at the same time unless they are coupled. In the continuous-time model, we do not make the
integer starting-time assumption. Operations can start at any time and their active times
can overlap. Coupled operations start and finish at the same time. Our assumption that
each operation takes one unit of time to complete and has constant execution speed holds for
both timing models. In the discrete-time model, only the order of the operations (individual
or coupled) matters for having collisions or not. In the continuous-time model, the precise
starting times of the operations matter.

Problem definitions. We now define the problems considered. Given a shape S and an
assignment of operations on S that involve any node at most once, a coupling partition of
operations on S is a collection of sets {Q1, Q2, . . . , Qk}, where each Qi (possibly a singleton)
denotes a subset of the operations that should be performed in parallel.
Colliding Schedule. Given a shape S = (V, E) from a given family of shapes and a
coupling partition of operations {Q1, Q2, . . . , Qk} on S, decide if a starting time t0(Qi) ∈ R
for each coupled set Qi exists such that the application of the operations according to these
starting times causes a collision.
Collision-free Schedule. Given a shape S = (V, E) from a given family of shapes and a
coupling partition of operations {Q1, Q2, . . . , Qk} on S, decide if a starting time t0(Qi) ∈ R
for each coupled set Qi exists such that the application of the operations according to these
starting times is collision free.

The discrete special cases of these problems, Discrete Colliding Schedule and
Discrete Collision-free Schedule, respectively, are obtained by requiring all t0(Qi)’s
to be unique integers.

3 Algorithms for Colliding Schedule

In this section, we present algorithms to decide whether a connected shape can have collisions
for some schedule of operations. We first consider the continuous model followed by the
discrete model. We distinguish the cases based on the type of coupling.

We assume that the topology of S is that of a tree. We refer the readers to [6] for details
regarding general graphs. In the case of continuous model, we get the following results.

▶ Theorem 1. Let S be a shape consisting of n unit square nodes with operations defined on
the edges between adjacent nodes, and let the adjacency structure of S be a single tree. Then
we can solve Colliding Schedule

in O(n2 log2 n) time if couplings exist;
in O(n2) time if each coupling has constant size, or is horizontal-only or vertical-only;
in O(n log2 n) time if the operations are not coupled.

S. Gupta, M. van Kreveld, O. Michail, and A. Padalkin 26:5

We can also solve Discrete Colliding Schedule in polynomial time. The algorithm
without coupling is still correct, but with coupling we need a different approach. Thus, we
get the following results.

▶ Theorem 2. Let S be a shape consisting of n unit square nodes with operations defined on
the edges between adjacent nodes, and let the adjacency structure of S be a single tree. Then
we can solve Discrete Colliding Schedule

in O(n17/3) time if couplings exist;
in O(n5) time if each coupling has constant size, or is horizontal-only or vertical-only;
in O(n log2 n) time if the operations are not coupled.

4 Continuous and Discrete Collision-free Schedule

So far we considered detecting whether collisions might occur for an input instance. In this
section, we consider the problem of deciding if all operations can be performed without any
collisions, for a suitable choice of operation order or starting times. We show that, even if
there are only expansions that are w.l.o.g. horizontal and couplings have size O(1), in the
discrete-time model the problem is NP-complete. Interestingly, the same problem is solvable
in polynomial time in the continuous-time model. When we add vertical expansions, the
problem is NP-hard in the continuous-time model.

▶ Theorem 3. Discrete Collision-free Schedule is NP-complete even if all operations
are horizontal expansions and all couplings have size O(1).

▶ Theorem 4. Collision-free Schedule is solvable in linear time if all operations are
horizontal.

▶ Theorem 5. Collision-free Schedule is NP-hard.

References
1 Nada Almalki and Othon Michail. On geometric shape construction via growth operations.

Theor. Comput. Sci., 984:114324, 2024.
2 Greg Aloupis, Sébastien Collette, Erik D. Demaine, Stefan Langerman, Vera Sacristán Adinolfi,

and Stefanie Wuhrer. Reconfiguration of cube-style modular robots using O(log n) parallel
moves. In ISAAC, volume 5369 of Lecture Notes in Computer Science, pages 342–353. Springer,
2008.

3 Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. The canonical amoebot
model: algorithms and concurrency control. Distributed Comput., 36(2):159–192, 2023.

4 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Scheideler,
and Thim Strothmann. Brief announcement: amoebot - a new model for programmable matter.
In SPAA, pages 220–222. ACM, 2014.

5 Michael Feldmann, Andreas Padalkin, Christian Scheideler, and Shlomi Dolev. Coordinating
amoebots via reconfigurable circuits. J. Comput. Biol., 29(4):317–343, 2022.

6 Siddharth Gupta, Marc J. van Kreveld, Othon Michail, and Andreas Padalkin. Collision
detection for modular robots - it is easy to cause collisions and hard to avoid them. CoRR,
abs/2305.01015, 2023.

7 George B. Mertzios, Othon Michail, George Skretas, Paul G. Spirakis, and Michail Theofilatos.
The complexity of growing a graph. In ALGOSENSORS, volume 13707 of Lecture Notes in
Computer Science, pages 123–137. Springer, 2022.

8 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng Yin.
Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In ITCS,
pages 353–354. ACM, 2013.

SAND 2024

	1 Introduction
	2 Model
	3 Algorithms for Colliding Schedule
	4 Continuous and Discrete Collision-free Schedule

