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Abstract
We consider random simple temporal graphs in which every edge of the complete graph Kn appears
once within the time interval [0, 1] independently and uniformly at random. Our main result is
a sharp threshold on the size of any maximum δ-clique (namely a clique with edges appearing at
most δ apart within [0, 1]) in random instances of this model, for any constant δ. In particular,
using the probabilistic method, we prove that the size of a maximum δ-clique is approximately
2 log n

log 1
δ

with high probability (whp). What seems surprising is that, even though the random simple
temporal graph contains Θ(n2) overlapping δ-windows, which (when viewed separately) correspond
to different random instances of the Erdős-Rényi random graphs model, the size of the maximum
δ-clique in the former model and the maximum clique size of the latter are approximately the same.
Furthermore, we show that the minimum interval containing a δ-clique is δ − o(δ) whp. We use this
result to show that any polynomial time algorithm for δ-Temporal Clique is unlikely to have very
large probability of success.
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1 Introduction

Dynamic network analysis, i.e. analysis of networks that change over time, is currently one
of the most active topics of research in network science and theory. Many modern real-life
networks are dynamic in nature, in the sense that the network structure undergoes discrete
changes over time [15,19,21]. Here we deal with the discrete-time dynamicity of the network
links (edges) over a fixed set of nodes (vertices), according to which edges appear in discrete
times and are absent otherwise. This concept of dynamic network evolution is given by
temporal graphs [12, 16], which are also known by other names such as evolving graphs [3, 8],
or time-varying graphs.
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▶ Definition 1 (Temporal Graph). A temporal graph is a pair G = (G, λ), where G = (V, E)
is an underlying (static) graph and λ : E → 2N is a time-labeling function which assigns to
every edge of G a discrete-time label. Whenever |λ(e)| ≤ 1 for every e ∈ E, G is called a
simple temporal graph.

Our focus is on simple temporal graphs (in which edges appear only once), as, due to their
conceptual simplicity, they offer a fundamental model for temporal graphs and they prove to
be good prototypes for studying temporal computational problems. More specifically, we
consider simple temporal graphs whose edge labels are chosen uniformly at random from a
very large set of possible labels (e.g. the label of each edge is chosen uniformly at random
within [1, N ] where N → ∞). This can be equivalently modeled by choosing the time labels
uniformly at random as real numbers in the interval [0, 1], which leads to the following
definition.

▶ Definition 2 (Random Simple Temporal Graph). A random simple temporal graph is a pair
G = (G, λ), where G = (V, E) is an underlying (static) graph and {λ(e) : e ∈ E} is a set of
independent random variables uniformly distributed within [0, 1].

Note that, in Definition 2, the probability that two edges lave equal labels is zero. For
every v ∈ V and every time slot t, we denote the appearance of vertex v at time t by
the pair (v, t). For Q ⊆ V , the restricted temporal graph (G, λ)|Q is the temporal graph
(G[Q], {λ(e) : e ∈ E(G[Q])}.

In the seminal paper of Casteigts, Raskin, Renken, and Zamaraev [5], the authors consider
a related (essentially equivalent to ours) model of random simple temporal graphs based on
random permutation of edges. They provide a thorough study of the temporal connectivity
of such graphs and they provide sharp thresholds for temporal reachability. Their work
motivated our research in this paper.

In many applications of temporal graphs, information can naturally only move along edges
in a way that respects the ordering of their timestamps (i.e. time labels). That is, information
can only flow along sequences of edges whose time labels are increasing (or non-decreasing).
Motivated by this fact, most studies on temporal graphs have focused on “path-related”
problems, such as e.g. temporal analogues of distance, diameter, reachability, exploration,
and centrality [1, 4–7,10,13,14,16,20,24]. In these problems, the most fundamental notion
is that of a temporal path from a vertex u to a vertex v, which is a path from u to v

such that the time labels of the time labels of the edges are increasing (or at least non-
decreasing) in the direction from u to v. To complement this direction, several attempts
have been recently made to define meaningful “non-path” temporal graph problems which
appropriately model specific applications. Some examples include temporal cliques, cluster
editing, temporal vertex cover, temporal graph coloring, temporally transitive orientations of
temporal graphs [2, 9, 11,17,18,22,23].

What is common to most of the path-related problems is that their extension from static
to temporal graphs often follows easily and quite naturally from their static counterparts. For
example, requiring a graph to be (temporally) connected results in requiring the existence of
a (temporal) path among each pair of vertices. In the case of non-path related problems, the
exact definition and its application is not so straightforward. For example, defining cliques
in a temporal graph as the set of vertices that interact at least once in the lifetime of the
graph would be a bit counter intuitive, as two vertices may just interact at the first time
step and never again. To help with this problem, Viard et al. [22] introduced the idea of the
sliding time window of some size δ, where they define a temporal clique as a set of vertices
where in all δ consecutive time steps each pair of vertices interacts at least once. There
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is a natural motivation for this problem, namely to be able to find the contact patterns
among high-school students. Following the idea of Viard et al. [22], many other problems on
temporal graph were defined wiusing sliding time windows. For an overview of recent works
on sliding windows in temporal graphs, see [15].

In the next definition we introduce the notion of a δ-temporal clique in a random simple
temporal graph, and the corresponding maximization problem.
▶ Definition 3 (δ-Temporal Clique). Let (G, λ) be a random simple temporal graph with
n vertices, let δ ∈ [0, 1], and let Q ⊆ V be a subset of vertices such that G[Q] is a clique.
The restricted temporal graph (G, λ)|Q is a δ-temporal clique, if |λ(e) − λ(e′)| ≤ δ, for every
two edges e, e′ which have both their endpoints in Q.

δ-Temporal Clique

Input: A simple temporal graph (G, λ).
Output: A δ-temporal clique Q of (G, λ) with maximum cardinality |Q|.

Our contribution. In this work, we consider simple random temporal graphs where the
underlying (static) graph is the complete graph on n vertices, and we provide a sharp threshold
on the size of maximum δ-cliques in random instances of this model, for any constant δ. In
particular, using the probabilistic method, we prove that the size of a maximum δ-clique
is approximately 2 log n

log 1
δ

whp (Theorem 4). What seems surprising is that, even though the
random simple temporal graph contains Θ(n2) overlapping δ-windows, which (when viewed
separately) correspond to different random instances of the Erdős-Rényi model Gn,δ (in which
edges appear independently with probability δ), the size of the maximum δ-clique and the
maximum clique size of the latter are approximately the same. Furthermore, we show that
the minimum interval containing a δ-clique is δ − o(δ) whp (Theorem 5). We use this result
to show that any polynomial time algorithm for δ-Temporal Clique is unlikely to have
very large probability of success (Theorem 7). Finally, we discuss some open problems related
to the average case hardness of δ-Temporal Clique in the general case.

2 Existence of δ-Temporal Clique

We employ the first and second moment probabilistic methods to show the following threshold
property.
▶ Theorem 4. Let (Kn, λ) be a random simple temporal graph where the underlying graph is
the complete graph with n vertices, and let δ ∈ (0, 1) be a constant. Define k0

def= 2 log n
log 1

δ

. As
n → ∞ we have the following:
(i) With high probability, (Kn, λ) has no δ-temporal clique of size (1 + o(1))k0.
(ii) With high probability, (Kn, λ) contains a δ-temporal clique of size (1 − o(1))k0.

For the proof of the above theorem, we first give an exact formula for the probability that
a graph H appears as a subgraph within a δ-window, and then we show that the expected
number E

[
X(k)] of δ-cliques of size at most k0 goes to ∞ (while the expected number of

δ-cliques of larger size goes to 0), and also that
E
[
(X(k))2]

E2[X(k)] goes to 1 for k ≤ (1 − ϵ)k0, as
n → ∞. Furthermore, our main theorem implies the following:
▶ Theorem 5. Let (Kn, λ) be a random simple temporal graph where the underlying graph
is the complete graph with n vertices, and let δ ∈ (0, 1) be a constant. Let also k0 = 2 log n

log 1
δ

and let Q be any δ-temporal clique of size at least (1 − o(1))k0. Define the interval ∆(Q) def=
[min(λ(e) : e ∈ Q), max(λ(e) : e ∈ Q)]. Then |∆(Q)| = δ − o(δ) whp.
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3 Average case hardness implications and open problems

The threshold given in Theorem 4 on the size of the maximum δ-clique reveals an interesting
connection between simple random temporal graphs (Kn, λ) and Erdős-Rényi random graphs
Gn,δ. On one hand, notice that, if we only consider edges with labels within a given δ-
window, then the corresponding graph is an instance of Gn,δ, which has maximum clique size
asymptotically equal to k0

def= 2 log n
log 1

δ

whp. On the other hand, the random simple temporal
graph contains Θ(n2) different instances of Gn,δ, but the size of a maximum δ-clique size is
asymptotically the same. One explanation why this happens is that the different instance
of Gn,δ contained in the random simple temporal graph are highly dependent, even if these
correspond to disjoint δ-windows (indeed, edges with labels appearing in one window do not
appear in the other and vice versa).

It is therefore interesting to ask whether we can use the above connection algorithmically.
One direction is clearly easier than the other: If there is a polynomial time algorithm AER(δ)
that can find a clique of size q = Θ(k0) in a random instance of Gn,δ whp, then we can use
this algorithm to find an asymptotically equally large δ-clique in a random instance of (Kn, λ)
with the same probability of success. We note that, finding a clique of size asymptotically
close to k0 in Gn,δ is believed to be hard in the average case and there is no known algorithm
for this problem that runs in polynomial time in n.

For the other direction, we conjecture that the following reduction may be possible:

▶ Conjecture 6. Suppose that, for any δ ∈ [0, 1] there is a polynomial time algorithm
ASRT (δ) that finds an (1 − o(1))-approximation of a maximum δ-clique in a random instance
of (Kn, λ) whp. Then ASRT (δ) can be used to design a polynomial time algorithm that finds
an (1 − o(1))-approximation of a maximum in Gn,δ whp.

It is clear that the probability of success of ASRT (δ) in the above Conjecture cannot be
equal to 1 unless P = NP . In the following Theorem we also prove that the probability of
success is unlikely to be too large.

▶ Theorem 7. Suppose that, for any constant δ ∈ (0, 1), the probability of success of algorithm
ASRT (δ) is 1−exp(−ω(n2)). Then ASRT (δ/2) can be used to find a clique of size (1−o(1))k0
in Gn,δ whp.
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