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Abstract
A temporal graph can be represented by a graph with an edge labelling, such that an edge is present
in the network if and only if the edge is assigned the corresponding time label. A journey is a
labelled path in a temporal graph such that labels on successive edges of the path are increasing,
and if all vertices admit journeys to all other vertices, the temporal graph is temporally connected.
A temporal spanner is a sublabelling of the temporal graph such that temporal connectivity is
maintained. The study of temporal spanners has raised interest since the early 2000’s. Essentially
two types of studies have been conducted: the positive side where families of temporal graphs are
shown to (deterministically or stochastically) admit sparse temporal spanners, and the negative
side where constructions of temporal graphs with no sparse spanners are of importance. Often such
studies considered temporal graphs with happy or simple labellings, which associate exactly one
label per edge. In this paper, we focus on the negative side and consider proper labellings, where
multiple labels per edge are allowed. More precisely, we aim to construct dense temporally connected
graphs such that all labels are necessary for temporal connectivity. Our contributions are multiple:
we present exact or asymptotically tight results for basic graph families, which are then extended to
larger graph families; an extension of an efficient temporal graph labelling generator; and overall
denser labellings than previous work, whether it be global or local density.
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1 Introduction

A temporal graph is a graph which can evolve over time, through the appearing and/or
disappearing of edges. Numerous classical graph problems and parameters have been
extended to temporal graphs, such as colouring, connected components, maximum matchings,
and independent sets [19, 28, 30, 33]. In temporal graphs, connectivity may become very
poor when considering the graph at every distinct time step, but the graph may still
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8:2 On Inefficiently Connecting Temporal Networks

be connected when considering connectivity over time. Indeed, temporal connectivity is
motivated through many contexts in which temporal graphs naturally arise, most notably
the context of swarms of mobile entities with distance-based communication capabilities
(drone networks, insect colonies, and, particularly useful during the COVID-19 pandemic:
people) [12,14,15,21]. This temporal connectivity has since redefined classical connectivity
problems, such as (temporal) dominating sets, and (temporally) connected components, and
particularly interesting concerning this paper: (temporal) spanners [4, 6, 10,24].

After presenting a wide range of interesting changes and results concerning typical graph
problems with temporal paths instead of paths, Kempe, Kleinberg, and Kumar discuss
further interesting questions [20]. One of these is whether a temporally connected graph can
always be sparsified (that is, if labels can be removed) so as to obtain a “sparse” remaining
structure maintaining temporal connectivity. Such a structure is later called a temporal
spanner. Note that the static graph analogue would be asking whether a connected graph
always admits a spanning tree, which is of course always the case. They follow up with a
preliminary negative result, stating that some temporal graphs do not admit a linear size
spanner (hypercube graphs with each edge labelled with the corresponding dimension). The
real question then became whether dense temporal graphs could always admit a sparse
spanner, the intuition being that there exists many more ways to potentially sparsify a dense
graph. The question remained open for many years, until Axiotis and Fotakis answered in
the negative: they construct a non-trivial dense temporal graph in which some labels may
be removed but prove that a dense part has to remain to ensure temporal connectivity. [2]
A couple of years afterwards, a complementing positive result was presented by Casteigts,
Peters, and Schoeters: any temporal complete graph always admits a sparse spanner [10].
Following these, more papers surfaced related to temporal spanners: sharp thresholds on the
density of random temporal graphs to asymptotically almost surely admit particular sparse
spanners; positive and negative results regarding spanners which have a limited stretch, as
well as on temporal spanners which are blackout-resistant [5, 6, 11].

Another topic of interest in temporal graph theory is that of temporal network design,
where instead of analysing a given temporal graph, one would like to design a temporal graph
with some desired property or decide such a temporal graph does not exist. In most works
on temporal network design, the graph itself is given and a corresponding labelling needs
to constructed. One of the earliest such design problems was to create a gossip protocol,
that is, a schedule of pairwise communications between n agents, each having some piece of
information which can be transferred over successive communications, such that at the end
of the schedule, all agents are up to date with all the information. It is natural to minimise
the number of communications (e.g. the total cost of phone calls), and thus some tight
results arise with protocols using 2n− 3 communications, with the idea being to gather all
information to some agent and then broadcast the information out again, designing essentially
a temporal in-tree and a temporal out-tree resp. For more information, see survey [18]. More
recently in [29], Mertzios et al. reconsider and extend this work as a temporal graph design
problem. Direct results from gossiping apply, but more importantly, they include other
restrictions on the labelling, such as a maximum lifetime i.e. the labels cannot be greater
than some value, which was further investigated in [22]. Also, two measures of density, both
of interest for this paper, are defined regarding a temporal graph: the temporal cost, being
the total amount of labels; and the temporality, being the maximum amount of labels on
some edge. The former is a global density measure, and the latter a local one.

In this paper, we combine the study of temporal spanners and of temporal graph design,
by designing dense temporal graphs such that each label is necessary for temporal connectivity.
As opposed to most previous work we will not restrict ourselves to happy or simple labellings
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Measure \ Graph class Any class Trees
(Connected)

Cycles
(Hamiltonian)

Cacti
(Circumference c)

Maximum temporal cost T + ≤ n2 − n − 1
Theorem 2

2n − 3
Theorem 5

≥ 1
4 n2 + 3

4
Theorem 7

≥ 1
4 c2 + 2(n − c)

omitted (see [13])

Maximum temporality τ+ ≤ n − 1
Theorem 2

2
Theorem 4

≥ ⌈ 1
2 n⌉

Theorem 8
≥ ⌈ 1

2 c⌉
omitted (see [13])

Figure 1 Main results of our density measures on specific classes of graphs: ≤ indicates an upper
bound, ≥ indicates a lower bound. Results for Trees, and by extension Connected graphs, are tight.

(one label per edge) but instead extend to consider proper labellings (multiple labels per edge
allowed). This is a double-edged sword: on the one hand this intuitively may allow for much
denser labellings, but on the other hand, a combinatorial explosion on the amount of possible
labellings occurs implying algorithmics may be more difficult in this setting. In a sense, we
are interested in designing the most inefficient temporal networks possible. Outside of the
already established applications of temporal spanners in related work, the negative results in
particular can have direct implications concerning adversarial behaviour in temporal network
game theory and the potential waste of temporal and structural resources [27, 32]. Lastly, a
slowly temporally connected network may allow for time to detect any anomalies/viruses
before the whole network is infected, while not hindering the supposedly essential connectivity
of the network, and may have applications for fraud detection in financial transactions [31].

In short, throughout the paper, we will steadily answer both of the following questions:
What is the densest temporal graph overall?
Given a graph class, what is the densest labelling all graphs can attain?

1.1 Contributions
First, in Section 2, we give standard graph theory and temporal graph theory notation and
define our setting as well as a global and a local density measure: maximum temporal cost
T + and maximum temporality τ+ respectively. Lower bounds from the literature and upper
bounds through analysis are presented. Then, in Section 3, we focus on tree graphs for
which we obtain tight results through an argument on bridge edges. These results do not
beat aforementioned lower bounds however. In Section 4, we focus on cycles, partly due to
a lower bound being a labelling on cycles, which shows promise for obtaining even denser
labellings. For this, we decide to extend labelling generator STGen from [7] so as to fit to our
setting and specifically to cycles. After executing it on small cycles, we obtain the intuition
for a complex labelling which beats the lower bounds for local density by a factor of 1.5,
and for global density by exactly 1 label. A non-trivial proof is given to show that all labels
of this labelling are indeed necessary and that the resulting temporal graph is temporally
connected, using a representation of temporal graphs called link streams and by reasoning on
journeys which are necessary. A summary of our results is presented in Figure 1, where n is
the number of vertices of a graph. We discuss and extend results in Section 5, and conclude.

Due to the page limit, technical proofs (marked with a ⋆) were moved to the appendix and
other parts were omitted. For these, the reader is referred to the full version on arXiv [13].

2 Preliminaries

In this paper, all graphs are simple and undirected (except for the reachability graph defined
below). A temporal graph is a tuple (G, λ) with graph G = (V, E), called the footprint or
underlying graph, and edge labelling λ : E → 2N. The labels correspond to when the edges

SAND 2024



8:4 On Inefficiently Connecting Temporal Networks

are present over the lifetime of the temporal graph. A pair (e, ℓ) with e ∈ E and ℓ ∈ λ(e) is
called a time edge. Reachability in temporal graphs is defined through temporal paths, also
called journeys, which are adjacent time edges j = (c1, c2, ..., ck) such that for all ci = (ei, ℓi)
with i ∈ [2, k] we have that ℓi > ℓi−1. We say u can reach v, or v can be reached by u, if
there exists a journey from u to v. A journey J is said to cover a set of vertices V ′ if for
all vertices v in V ′, v is part of some time edge of J . A temporal graph G′ = (G′, λ′) is a
temporal subgraph of G = (G, λ) if G′ is a subgraph of G and λ′ a sublabelling of λ. For a
label ℓ of temporal graph G, G−ℓ corresponds to the temporal subgraph of G without label ℓ

(if other labels exist in G with the same value, then these remain).
A temporal branching B = (T, λ) with root r is a tree T with |λ| = n− 1 such that vertex

r can reach all vertices. A temporal branching B = (T, λ′) with root v of a temporal graph
G = (G, λ) is a temporal subgraph of G which is a temporal branching, and it is spanning if
V (T ) = V (G). The reachability graph R(G) is defined on the same vertex set as G and an arc
exists from u to v if and only if u can reach v in G. If all vertices can reach all other vertices
in G, we say G is temporally connected. Note that a temporal graph is temporally connected
if and only if the corresponding reachability graph is complete (with arcs in both directions).
From [8], two temporal graphs G1 and G2 are reachability-equivalent1 if reachability graphs
R(G1) and R(G2) are isomorphic, denoted G1

R≃ G2.
A labelling is proper when no incident edges share a same label. In the rest of the paper,

all labellings are supposed proper, unless specifically stated otherwise. Using terms from
[1], a label ℓ in a temporal graph G is redundant if and only if it can be removed from G
without reducing reachability, i.e. G R≃ G−ℓ. Conversely, a label ℓ of G is necessary if and
only if G ̸R≃ G−ℓ. If a labelling contains only necessary labels, we call it a minimal labelling.
We call a temporal graph with a proper (resp. minimal) labelling a proper (resp. minimal)
temporal graph.

In [29], the authors defined two measures of density for a temporal graph G: the temporal
cost T (G), which is the total amount of labels in G; and the temporality τ(G) which is the
maximum amount of labels on an edge, among all edges. The former is intended as a global
density measure, whereas the latter is more of a local one, potentially of interest for example
in distributed or parallel computing. We adapt temporal cost in the following manner. The
three types of maximum temporality are defined analogously.

Let T +(G) be the maximum temporal cost of graph G, i.e. the maximum temporal cost
T (G = (G, λ)) of all proper minimal labellings λ such that G is temporally connected;
Let T +(Class) be the maximum temporal cost of graph class Class, i.e. the maximum
value x such that for all graphs G of Class, T +(G) ≥ x;
Let T + be the maximum temporal cost, i.e. the maximum temporal cost T +(G) among
all graphs G on n vertices.

We study three simple graph classes in this work, being Trees (Section 3), Cycles
(Section 4), and Cacti (omitted, see [13]), and in Section 5 superclasses are discussed.

2.1 Upper and lower bounds on T + and τ +

The upper bounds are both obtained through the following fact:

▶ Lemma 1. A minimal temporally connected graph G equals the union of any n spanning
temporal branchings with distinct roots of G.

1 Originally closure-equivalent, but changed to reachability-equivalent for journal version (private message).
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Proof. By contradiction, suppose that the union of some n spanning temporal branchings
with distinct roots of G does not equal G. This implies at least some label of G isn’t part of
the branchings, which means it can be removed without reducing reachability. However, G is
minimal so no redundant labels exist which is a contradiction. ◀

Lemma 1 allows us to reason on minimal temporally connected graphs through the
corresponding spanning temporal branchings: for the largest possible maximum temporal
cost T +, consider the branchings to all be using distinct labels; whereas the branchings all
using some same edge with distinct labels would result in the largest maximum temporality
τ+.

▶ Theorem 2 (⋆). The maximum temporal cost T + ≤ n2−n−1 and the maximum temporality
τ+ ≤ n− 1.

Observe that the idea of considering n root-distinct temporal branchings is used in
Observation 3 in [22] as well. We believe that their result could be improved slightly from
n(n− 1) to n(n− 1)− 1 in a similar fashion as we do for the maximum temporal cost T +.

Also in [22], Klobas et al. construct some minimal labellings which are strict, meaning
journeys are allowed to traverse at most one edge per time step. Among these labellings, the
one given in Lemma 4 happens to be proper, giving lower bounds T + ≥ 1

4 n2 and τ+ ≥ 1
4 n.

The idea of the labelling is to label every other edge of an even cycle graph with all even
labels up to n/2, and all other edges with all odd labels up to n/2. Let us refer to this
labelling as the parity labelling (see Figure 2).

During the open question session of a Dagstuhl seminar on temporal graphs (see [9] for
the report), some preliminary results of this work were presented, including a labelling of an
ad-hoc graph giving lower bounds T + ≥ 1

18 n2 + O(n) and τ+ ≥ ⌊ 1
3 n⌋. The idea is to force

journeys to go through the top edge using distinct labels. Let us refer to this labelling as the
ad-hoc labelling (see Figure 2).

1, 3, 5

2, 4, 6

1, 3, 5

1, 3, 5
1, 3, 5

1, 3, 5

1, 3, 5

2, 4, 6

2, 4, 6

2, 4, 6
2, 4, 6

2, 4, 6

(a) Parity labelling from [22] for n = 12.

1

83

82

81

24

25

16

8

17

26

10

19

28

9, 18, 27

2

81

(b) Ad-hoc labelling from [9] for n = 10.

Figure 2 Minimal labellings from the literature giving lower bounds on maximum temporal cost
T + and maximum temporality τ+.

Note that the parity labelling is denser regarding the temporal cost, but the ad-hoc
labelling is denser regarding temporality. Some natural questions arise from these bounds. It
seems that very sparse graphs (such as Cycles) can admit dense labellings, does that mean
that other sparse graphs, such as Trees, can admit dense labellings as well? Can one do
better than these labellings, and more specifically better in Cycles? These questions are
answered in the following sections.

SAND 2024



8:6 On Inefficiently Connecting Temporal Networks

3 Tree graphs

In this section we prove the following labelling is densest possible for tree graphs, considering
maximum temporal cost T + and maximum temporality τ+. The labelling originates from
gossiping strategies from e.g. [3,17] and has been used in temporal graph theory papers such
as in Theorem 2 in [1] and the pivot technique in [10]. We refer to it as the pivot labelling,
and define it as follows (see also Figure 3). Select an arbitrary pivot vertex p and construct
journeys from all other vertices towards p, using the reverse breadth-first search order. Then,
using the breadth-first search order, add journeys from p to all other vertices. The earliest
label of the second BFS is removed.

1

9

13
4

67

12

14

16

5

8

15

2

3

10

11

17

18p

(a) First (reverse) breadth-first search labelling.

9,29

13,23
4,33

6,327,27

12,26

14,25

16,20

5,34

8,28

15,24

2,36

3,31

10,30

11,22

17,21

18,19p

1,35

(b) Adding the second breadth-first search labelling.

Figure 3 The pivot labelling of an example tree graph. A first labelling converging to pivot
vertex p is shown, which is then complemented by a second broadcasting labelling from p. Label 19
(shown in red) is redundant and removed.

The resulting temporal graph is temporally connected since by design all vertices can
reach pivot vertex p at time n− 1, and starting at time n− 1, vertex p can reach all vertices.
It is also a minimal labelling since removing any label ≤ n− 1 on a path from a leaf vertex
f to p reduces the reachability of f , and removing any label > n− 1 makes it so f cannot be
reached by some other leaf vertex.

As stated by Theorem 2(a) in [1], the pivot labelling thus trivially gives the lower bound
T +(Trees) ≥ 2n− 3. Also, it trivially gives the lower bound of τ+(Trees) ≥ 2. To prove
these are tight, i.e. no denser labellings exist, we first present a lemma focusing on bridge
edges (edges which disconnect the graph if removed), and then apply it on tree graphs.

▶ Lemma 3. For any bridge edge e of graph G and any minimal labelling λ such that
G = (G, λ) is temporally connected, λ can assign at most two labels to e.

Proof. Consider a temporally connected graph G with bridge edge e = {u, v}, separating G
into two temporal subgraphs G1 (with vertex u) and G2 (with v). Suppose by contradiction
that the labelling λ of G assigns more than two labels to edge e, say k > 2 labels ℓ1, ℓ2, ..., ℓk,
and that this labelling is minimal. Define t−u to be the earliest time at which all vertices in
G1 are able to reach u. Similarly, define t+

v to be the latest time at which all vertices in G2
can be reached by v. Since G is temporally connected, there exists some label ℓi of e such
that t−u < ℓi < t+

v . Keeping ℓi is thus sufficient for maintaining reachability from all vertices
in G1 to all vertices in G2. A symmetrical argument can be used to find label ℓj which is
sufficient for maintaining reachability from all vertices in G2 to all vertices in G1. Together,
ℓi and ℓj are thus sufficient for reachability concerning journeys using edge e, and edge e

can trivially be ignored for reachability between vertices in G1 (resp. G2). This results in all
other labels on edge e being redundant, which is a contradiction since it is minimal. ◀
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▶ Theorem 4. τ+(Trees) = 2.

Proof. Tree graphs contain only bridge edges, so by Lemma 3 no edge of a tree graph
can have more than two labels in a minimal labelling, and this is attained by the pivot
labelling. ◀

Note that Theorem 4 implies that T +(Trees) ≤ 2n− 2, which is only off by 1 from the
lower bound. We finish this section with proving the latter to be tight.

▶ Theorem 5 (⋆). T +(Trees) = 2n− 3.

As a side note, we remark that the maximum temporal cost (resp. temporality) of tree
graphs corresponds to the minimum temporal cost (resp. temporality) of tree graphs. In
other words, all minimal temporally connected labellings of tree graphs contain exactly 2n−3
labels and exactly 2 labels on all edges except one, independently of whether one tries to
minimise or maximise the density. For proofs of these minimisation costs, we refer the reader
to [18] for the original proofs in the gossiping context, or to Theorem 2 in [22] and Corollary
3 in [29] in the temporal graph context.

For trees, the results are mixed: on one hand we exactly determined both maximum
temporal cost and maximum temporality of tree graphs T +(Trees) and τ+(Trees), but on
the other hand both are very sparse and do not improve upon lower bounds of maximum
temporal cost T + and maximum temporality τ+.

4 Cycle graphs

We focus here on finding dense labellings of cycle graphs, which we know exist thanks to the
parity construction. For this, we decided to adapt temporal graph generator STGen from
[7] (the description and adaptation of which is omitted in this version), which ultimately
leads us to the densest labelling in this paper, the generator labelling. The main idea is to
distribute even labels to an arbitrary edge, odd labels to the incident non-labelled edges, and
so forth for the next non-labelled edges switching between even and odd labels with some
additional complex rules.

Proving this labelling results in a minimal and temporally connected graph for any order
n cycle graph is complex due to the inherent unreadability of the multiple journeys in these
temporal graphs. For this reason, we introduce a different type of representation which
is very similar to the so-called link stream representation used in various temporal graph
theory papers [25,26,34], and thus by slight misuse of terminology, we simply refer to it as
the link stream representation. Link streams intuitively focus more on the time edge aspect
of a temporal graph, and less on the structure of the underlying graph. Since we already
know the underlying structure of the graph (being a cycle graph), link streams are perfect to
represent our generator labelling. As an illustrative example, the link stream representation
of Figure 4 is given in Figure 5, where all edges of the cycle are represented in one dimension,
the horizontal dimension, and time is represented in the other, the vertical dimension. A
“label” is thus represented as a time edge at the intersection of the corresponding edge and
time value.

In this representation, a journey informally corresponds to a (possibly steep) “staircase”
of time edges which, obeying the flow of time, cannot go down. We now remind and define
some concepts concerning journeys in this setting, all of which are illustrated in Figure 5.
A prefix of a journey (v1, ℓ1, v2, ℓ2, ..., ℓk−1, vk) is a part of the journey cut back from the
arrival vertex, i.e. (v1, ℓ1, v2, ℓ2, ..., ℓi−1, vi) for some i ≤ k, and a suffix of a journey is a part

SAND 2024



8:8 On Inefficiently Connecting Temporal Networks

Algorithm 1 Generator labelling (see also Figure 4).

input : even cycle graph G of order n, edge e of G

output : temporal graph G = (G, λ) with generator labelling λ

L, L1 ← oddNumbersBetween(1, n− 1) /* ascending order */
L2 ← evenNumbersBetween(1, n− 1) /* ascending order */
L′, L′1, L′2 ← ∅
ec, ecc ← e

while ec = e or ec ̸= ecc do
addLabels(L′, ec)
addLabels(L′, ecc)
e′ ← ec

for ℓ in L do
addLabel(ℓ, e′)
if e′ = ec then e′ ← ecc else e′ ← ec

moveSmallestLabelFromTo(L, L′)
removeLargestLabelFrom(L)
ec ← nextClockwiseEdge(ec)
ecc ← nextCounterClockwiseEdge(ecc)
if L = L1 then L← L2 else L← L1
if L′ = L′1 then L′ ← L′2 else L′ ← L′1

addLabel(largestLabel(ec) + 2, ec)

1, 3, 5, 7, 9, 11, 13, 15

(a) ec = ecc = e, L1 = (1, 3, 5, ..., 15) and L′
1 = ∅.

1, 3, 5, 7, 9, 11, 13, 15

2, 6, 10, 14

4, 8, 12

(b) L2 = (2, 4, 6, ..., 14) and L′
2 = ∅.

1, 3, 5, 7, 9, 11, 13, 15

2, 6, 10, 14

4, 8, 12

1, 5, 9, 13

1, 3, 7, 11

(c) L1 = (3, 5, 7, 9, 13) and L′
1 = (1).

1, 3, 5, 7, 9, 11, 13, 15

2, 6, 10, 14

4, 8, 12

1, 5, 9, 13

1, 3, 7, 11

2, 4, 8, 12

2, 6, 10
1, 3, 7, 11

1, 3, 5, 9

2, 4, 8

2, 4, 6, 10

1, 3, 5, 9

1, 3, 5, 7

2, 4, 6, 8

2, 4, 6

1, 3, 5, 7, 9

(d) L1 = ∅, L′
1 = (1, 3, 5, 7) and ec = ecc again.

Figure 4 The generator labelling for n = 16, starting on rightmost edge e, and repeating while
loop with lists in captions. After the while loop finishes, label 9 is added on the last (leftmost) edge.
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e

1

5

10

15

(a) Without journeys.

e

1

5

10

15

(b) With two clockwise journeys in red and one counter-clockwise journey in
blue. Only the outermost red journey (which goes around) is prefix-foremost.

e

15

1

5

10

(c) With all dominating journeys.

Figure 5 The generator labelling for n = 16 in the link stream representation, with edge e shown
in the middle. The rightmost edge connects the outermost vertices, allowing journeys to go around.

SAND 2024



8:10 On Inefficiently Connecting Temporal Networks

of the journey cut back from the starting vertex, i.e. (vj , ℓj , vj+1, ℓj+1, ..., ℓk−1, vk) again
for some j ≤ k. A foremost journey from vertex u to vertex v is a journey which arrives at
the earliest time among all journeys from u to v. A prefix-foremost journey from u to v is
a journey which prefixes are all foremost, In other words, a prefix-foremost journey always
takes the earliest edges possible on its journey. We define a clockwise journey as a journey
which takes only time edges to the left, and a counter-clockwise journey is composed of only
time-edges going to the right. Finally, we define dominating journeys as clockwise (resp.
counter-clockwise) journeys such that no other clockwise (resp. counter-clockwise) journey
exists which covers all its vertices or more.

We show in a very technical proof by induction that the generator labelling essentially
“grows” domination journeys and creates new ones, as it is applied to larger and larger cycles
graphs, and that these dominating journeys are necessary and ensure temporal connectivity.

▶ Theorem 6 (⋆). The generator labelling yields a minimal temporally connected graph.

The temporal cost of the generator labelling is the largest presented in this paper, and
with it also comes the largest temporality, namely on edge e. In the full version of this work,
we show that the generator labelling works on all even cycles, and also give an adaptation
for odd cycles. Analysing both gives us the main results.

▶ Theorem 7. T +(Cycles) ≥ 1
4 n2 + 3

4 .

▶ Theorem 8. τ+(Cycles) ≥ ⌈ 1
2 n⌉.

5 Conclusion

In conclusion, we provided some general upper bounds and proved tight or lower bound
results for some basic graph classes on how dense a labelling they can admit. Also, our
proposed generator labelling beats the previously densest labellings, in both temporal cost
and temporality.

Since we allow a labelling to assign no labels to any edge, a density result for class C
translates as a lower bound for any class C′ if for all graphs G′ ∈ C′, there exists G ∈ C such
that G is an edge-deleted subgraph of G′. Conversely, a density result for class C implies an
upper bound for any superclasses of C. Together, this means that our (tight and lower bound)
results for Trees, Cycles, and Cacti, thus respectively transfer for Connected, the class
of connected graphs, Hamiltonian, the class of Hamiltonian graphs, and Circumference c,
the class of graphs of circumference c.

We omitted in this version (again, see full version on arXiv [13]) the section on cactus
graphs, where essentially the pivot labelling is used to gather information towards a largest
cycle in the graph, instead of towards a pivot vertex, then apply the generator labelling on
that cycle, and finally broadcast information outwards again with the pivot labelling, leading
to the density results presented in Figure 1.

In terms of future work, one clear option is to consider other types of labellings. There
are already some lower bounds known, such as Axiotis and Fotakis’ construction from [2] for
happy labellings, although we beat this construction slightly by adapting the ad-hoc labelling
to become a happy labelling (omitted in this version). A lower bound for strict labellings
comes from [23], in which Klobas et al. label all edges of an odd cycle with all integers up
to ⌊n

2 ⌋; another labelling attaining the same lower bound is the complete graph with label
1 on all edges. Another direction for future work is considering computational complexity
of associated problems. The corresponding minimisation problems are all polynomial-time
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solvable, with the exception of deciding whether the minimum temporality of a graph is 1,
which is NP-complete [16]. Our results only prove polynomial-time solvability for trees, and
containment in APX for cycles and cacti of large circumference.
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A Proof(s) of Section 2

▶ Theorem 2. The maximum temporal cost T + ≤ n2 − n− 1 and the maximum temporality
τ+ ≤ n− 1.

Proof. By Lemma 1, a minimal temporally connected graph equals the union of any of its n

distinct-root spanning temporal branchings.

https://doi.org/10.1201/b16132-87
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Concerning maximum temporal cost, the worst-case scenario for the total number of
labels in such a graph is when these temporal branchings are all disjoint. This results in a
labelling using n− 1 labels for each branching (as they are spanning), of which there are n,
resulting in a total of n2 − n labels.

Consider however the smallest label ℓ− used in the graph, say on edge e = {u, v}. This
label can only be part of the spanning temporal branching of root u, denoted Bu, or of the
spanning temporal branching of root v, denoted Bv, since it’s unreachable from any other
vertex. Suppose w.l.o.g. ℓ− is part of Bu. We know v must reach u through some journey in
Bv arriving at some time ℓ. Note that ℓ can be removed from Bv, and ℓ− added. Indeed,
for all w, any journey v ⇝ w in Bv is either maintained by the swap, or passes through u

earlier with ℓ−, meaning Bv remains a spanning temporal branching. Thus, label ℓ− can
be considered part of two spanning temporal branchings, decrementing the total amount of
labels to n2 − n− 1.

Concerning maximum temporality, the worst-case number of labels on an edge in such a
graph is when the spanning temporal branchings are all label-disjoint and all use one same
edge e = {u, v}, resulting in an edge having 1 label for each branching, of which there are n,
resulting in a total of n labels.

Note however that the label from the branching corresponding to root u, and the label
from branching corresponding to root v, are necessarily the same label, since otherwise the
later of the two would be redundant, as both branchings can use the earlier label. Thus edge
e would have n− 1 labels. ◀

B Proof(s) of Section 3

We first need the following lemma concerning dense path graphs.

▶ Lemma 9. T +(Paths) = 2n− 3

Proof. The pivot labelling and Lemma 3 apply to path graphs, implying that 2n − 3 ≤
T +(Paths) ≤ 2n− 2.

Suppose w.l.o.g. the vertices of a path graph to be, from one leaf vertex to the other, v1,
v2 etc. up to vn. Note that for a path graph to be temporally connected, we only need to
ensure that both extremities, v1 and vn, can reach each other, via a journey in one direction,
and a journey in the other. Indeed, any other pair of vertices can use these journeys to reach
each other. Thanks to this, we can reason on temporally connected path graphs and only
need to worry about the reachability between these two leaf vertices, instead of between all
vertices.

Suppose by contradiction that a minimal temporally connected path graph G exists with
2n− 2 labels. By our previous argument, we have that any label which is not part of either
the journey from v1 to vn, or of the journey from vn to v1, is redundant. Each of these two
journeys is composed of n− 1 labels, meaning that to obtain 2n− 2 necessary labels from
only these two journeys, we must have that all labels on the two journeys must be distinct.
There must exist one edge ei such that the corresponding labels have the smallest difference
among all edges of path G. By the temporal nature of journeys, there cannot be more than
one such edge as the difference must necessarily increase on edges further away from ei.
Consider the labels on edge ei and incident edges ei−1 and ei+1, denoted ℓ→i , ℓ←i , ℓ→i−1, ℓ←i−1,
ℓ→i+1, and ℓ←i+1. (If edge ei only has one incident edge, then ignore the following concerning
the non-existent other edge and labels.) Consider labels ℓ→i−1 < ℓ→i < ℓ→i+1 to be part of
v1 ⇝ vn, and ℓ←i−1 > ℓ←i > ℓ←i+1 to be part of vn ⇝ v1. Suppose w.l.o.g. that ℓ→i > ℓ←i . Thus
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we have that ℓ→i+1 > ℓ→i > ℓ←i and also ℓ←i+1 < ℓ←i < ℓ→i . On edge ei−1 however, two cases
are possible:

ℓ→i−1 < ℓ←i : this means label ℓ→i is redundant as ℓ→i−1 < ℓ←i < ℓ→i+1;
ℓ←i−1 > ℓ→i : this means label ℓ←i is redundant as ℓ←i+1 < ℓ→i < ℓ←i−1.

Due to the inequalities presented, and the fact that the difference between ℓ←i−1 and ℓ→i−1
must be larger than the difference between ℓ←i and ℓ→i , at least one of the previous cases
must be present, meaning at least one label must be redundant which is a contradiction. ◀

▶ Theorem 5. T +(Trees) = 2n− 3.

Proof. Since path graphs are tree graphs, Lemma 9 gives an upper bound of 2n− 3, which
is attained by the pivot labelling. ◀

C Proof(s) of Section 4

The following technical lemmas are needed to then prove minimality of the generator labelling.

▶ Lemma 10. In a cycle graph G = (V, E) without any journey covering V , a clockwise
journey J = (({vj , vj−1}, t1), ({vj−1, vj−2}, t2), ..., ({vi, vi−1}, tk)) is dominating if and only
if:

it starts at the earliest date possible, i.e. there exists no time edge ({vj , vj−1}, t) nor
({vj+1, vj}, t) with t < t1;
it ends at the latest date possible, i.e. there exists no time edge ({vi, vi−1}, t) nor
({vi−1, vi−2}, t) with t > tk;
no other time edges exist between successive time edges, i.e. for all successive pairs of
time edges ({va, va−1}, tb) and ({va−1, va−2}, tc > tb) of J , there exists no time edge
({va, va−1}, t) or ({va−1, va−2}, t) with tb < t < tc.

A symmetric characterisation holds for counter-clockwise journeys.

Proof. Let us focus on clockwise journeys, the proof being symmetric for counter-clockwise
journeys. Suppose by contradiction that a journey J obeys the three criteria, but is not
dominating, meaning there exists some other distinct clockwise journey J ′ covering the same
vertex set (or more). A case analysis follows depending on which vertex J ′ starts.

If journey J ′ starts from any vertex that J covers, except for vj , then to ensure J ′
covers the vertices of J , it needs to go all the way around the cycle graph and thus cover V ,
which is explicitly excluded in this lemma.

If J ′ starts at vertex vj , and it contains some earlier time edge than the corresponding
time edge in J , then J doesn’t respect criterion three (as this earlier time edge exists
between successive time edges of J ). If instead it contains a later time edge, then J ′ must
rejoin or cross J at some point (since J uses the latest date of edge {vi, vi−1} by criterion
two), implying J again does not respect criterion three. Of course, if J ′ does not contain
any earlier or later time edge than J , then it will end in the same manner as J without any
way of continuing by criterion two, meaning it is identical to J .

Lastly, if J ′ starts on any other vertex, then since J respects criterion one, J ′ must
arrive later than t1 on edge {vj , vj−1}. By the same argument as before concerning J ′ having
a later time edge than J , the former must rejoin or cross the latter at some point, implying
J does not respect criterion three.

Since all cases end in some contradiction, being either J breaking one of the criteria or
J ′ being identical to J , we can thus conclude that J is dominating. ◀
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▶ Lemma 11. In a cycle graph G = (V, E) without any journey covering V , a pair of
clockwise and counter-clockwise journeys is necessary if:

both start at some same vertex v;
both are prefix-foremost;
both are a suffix of a dominating journey;
and they do not cross (except on vertex v).

Proof. We prove that such a pair of clockwise and counter-clockwise journeys, say journey
J w

v which clockwise goes up to vertex w, and journey J u
v which counter-clockwise goes up

to vertex u, is necessary for reachability from v to w and from v to u respectively. W.l.o.g.
we give the proof for the former only, the proof for the latter being symmetric. We first
prove that no counter-clockwise journey can reach vertex w, and then that the only clockwise
journey that can reach w is journey J w

v , from which it follows that this journey is necessary.
First note that vertex v cannot reach further than u in a counter-clockwise manner.

Indeed, if by contradiction we suppose there is some counter-clockwise journey J u′

v from v

to vertex u′ such that u′ is positioned further than u, then w.l.o.g. we may consider J u′

v

to be prefix-foremost (if it is not, then we can make it so by changing its time edges for
the earliest possible). Since J u

v and J u′

v are both prefix-foremost clockwise journeys, we
know that J u

v must be a prefix of journey J u′

v , i.e. J u′

v is the concatenation of journeys J u
v

and say J u′

u . Journey J u
v is a suffix of a dominating journey Jd, meaning no other counter-

clockwise journey covers the vertices of Jd or more, but now we obtain our contradiction:
the concatenation of Jd and J u′

u covers more vertices (the only case where this wouldn’t
be true is if Jd covered V which is explicitly excluded from the lemma statement). Since
J w

v and J u
v don’t cross (except on vertex v), we now know that v cannot reach w through a

counter-clockwise journey.
To finish the proof, we show J w

v is the only clockwise journey that can reach w, meaning
all its edges are necessary. Suppose by contradiction another clockwise journey J exists from
v to w. It cannot be a prefix-foremost journey, as by definition this would be journey J w

v .
Since J is not prefix-foremost, it uses some edge e with label l′ whereas J w

v uses edge e with
some label l < l′. However, we remind the reader that J w

v is a suffix of a dominating journey
Jd. Altogether, this means another journey exists covering the same vertices as Jd, being
the concatenation of the prefix of Jd up to vertex v, and J . By definition of dominating
journeys, this is a contradiction. ◀

We note that if the pair of journeys from Lemma 11 collectively covers V , then vertex v

can reach all vertices through these journeys.

▶ Theorem 6. The generator labelling yields a minimal temporally connected graph.

Proof. The proof is by induction. Consider cycle graph C8 as our base case. Apply the
generator labelling starting on some edge e. Let e be composed of vertices v−2 and v−1,
and let vertices vi be the vertices in the clockwise direction of e, with i the (clockwise)
hop distance between e and vi, and similarly, let vertices v−(i+2) be the vertices in the
counter-clockwise direction of e, with i the (counter-clockwise) hop distance between e and
v−(i+2). Compute the dominating journeys, see Figure 6. Let us define some specific sets
of time edges as follows. Let the five earliest time edges on edges {v−2, v−1}, {v−1, v1} and
{v1, v2} be referred to as the seed, and the three latest time edges as the trunk. Let the
latest two time edges on edges {v−4, v−3} and {v−3, v−2} be referred to as a branch, as well
as the ones on edges {v2, v3} and {v3, v4}. More specifically, let the former be branch B2, as
the dominating clockwise journey starting at vertex v2 ends in these edges, and the latter
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B−2 as the dominating counter-clockwise journey starting at vertex v−2 ends here. Finally,
let the other time edges be referred to as the base. Note that all time edges are part of some
dominating journey, and that all dominating journeys start on a time edge with time 1 in the
base (except for the two dominating journeys starting in the seed) and that all dominating
journeys end in the latest time edges of branches (except for two dominating journeys ending
in the trunk).

It is possible to claim minimality and temporal connectivity for this small temporal graph,
although we specifically point out that Lemma 11 can be used on all vertices (except for
those of the seed) to prove necessity of all dominating journeys starting on these vertices,
and reachability of all these vertices. Note that now only the time edges of the base remain
to be proven necessary. The time edges of the counter-clockwise dominating journey can be
proven necessary by applying Lemma 11 on vertex v−2, but it cannot be applied to vertex
v2 to prove the remaining time edges necessary, as its counter-clockwise prefix-foremost
journey is not dominating. However, they are proven necessary through the ad hoc argument:
without these edges v2 cannot reach v−4, as any clockwise journey by definition cannot reach
it except for its clockwise dominating journey which relied on these time edges, and any
counter-clockwise journey reaches at most vertex v4. Concerning reachability of the vertices
of the seed, it is possible for them to use the dominating journeys starting in the seed to
go to any other vertex (note that these journeys do not cross outside of in the seed, but do
cover V ).

Now, in the inductive step, this structure of seed, base, trunk and branches remains
or gets extended when growing the generator labelling for some Cn to some Cn+4. More
precisely, the seed remains as is, the base gets extended with so-called roots, the trunk with
a so-called apex, and the branches with leaves. Also, two new branches are created in every
inductive step, which sprout from the top of the trunk. Underlying all this, we prove that in
the inductive step, the dominating journeys get extended slightly, are modified, or created,
in a precise manner which ultimately allows us to again use Lemma 11 to prove minimality
and temporal connectivity, in a very similar manner as how we did for C8.

Now, suppose we have a cycle graph C4k with the generator labelling which has been
proven minimal and temporally connected, specifically through applying Lemma 11 on
all vertices except for the seed. Add vertices v2k+1, v2k+2, v−2k−1, and v−2k−2 and the
corresponding edges to the link stream representation so as to obtain cycle C4k+4. See Figure 6.
This effectively breaks dominating journeys which previously used edge {v−2k, v2k}, whose
time edges now belong to edge {v−2k, v−2k−1}. We will patch these halves of dominating
journeys back together in what follows, although not exactly with their original half. Note
that now the generator labelling for C4k+4 is exactly this labelling, with some additional
time edges which are all later, i.e. for all additional time edges (e, t), there exists no already
present time edge (e, t′ > t). Let the three additional time edges extending the trunk be
referred to as the apex, let the leaves be the pairs of additional time edges extending the
branches (as well as creating branches B2k and B−2k from the trunk), and let the remaining
additional time edges be the roots, which extend the base.

Let us start by proving these additional edges are all part of some dominating journey.
Leaves extending branches Bi extend the corresponding dominating journey starting from

vertex vi. The three conditions from Lemma 10 hold for this extended journey, as it still
starts at time 1, no additional time edges have been added in between the time edges it uses,
and it ends at the latest time possible at the top of its respective leaves. Regarding the leaves
that create a new branch B2k and B−2k, these extend dominating journeys from vertices
v2k and v−2k which ended at the top of the trunk before (we can observe two of these exist
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(a) Base case cycle graph C8, with seed, base, trunk and two branches.

e
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(b) Induction step cycle graph Cn (here n = 12) before extending to Cn+4.

e

15

1

5

10

(c) Apex, leaves, and roots extending Cn to obtain Cn+4, adding two branches.

Figure 6 Illustration of the proof by induction for Theorem 6, with the seed (light green), trunk
(brown), branches (green) and base (light brown). At the induction step, the apex, leaves, and roots
are shown in the same but less transparent colour as the structures they extend.
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in C8, and below we prove that in every inductive step two new such journeys are created).
These extended journeys remain dominating by the same argument as for other branches.
All leaves are thus part of a dominating journey. Note that this extends (by exactly two time
edges) basically half of all previously existing dominating journeys.

The other half of previous dominating journeys are broken up through the addition of
the four new vertices and edges. The roots serve to patch these journeys back together.
Note that before, all these dominating journeys started in the base, cycled around, and
climbed through the branches to finish at the top of some branch. More specifically, such a
dominating journey starting from a vertex vi finished at the top of branch Bi−1 for i > 0
and at the top of branch Bi+1 otherwise (an exception being the journey starting from v−3
which ends at the second largest time edge of the branch B−2). We show this remains true
after the inductive step. The reconstructed dominating journey, suppose from vertex vi for
i > 0 (the explanation being symmetric for i < 0), starts of with the same time edges it had
before in the base until it reaches the roots. This means this part of the journey respects two
of the conditions of Lemma 10, being it starts at time 1, and no time edges exist in between
its time edges as this journey was dominating before and the additional time edges are all
later. Now the earliest four time edges possible are taken to continue this journey in the
roots, cycling around to the other side of the link stream. This also respects the condition of
having no time edges in between these four time edges, as the roots are densely packed by
definition. The journey is now four time steps too late to reconnect with the other half it had
before, connect it instead with the half of the journey which previously started from vertex
vi−4 for which it arrived through the roots perfectly on time. This latter half also respects
the condition of having no time edges in between its time edges due to part of a dominating
journey before, and no additional time edges have been added in between these time edges.
Since our journey now follows the part of the dominating journey which previously started at
vi−4, it arrives at branch Bi−5, but can now continue through the leaves of Bi−3 and finally
Bi−1 to end at the latest edge. By construction, this continuation through the leaves respects
the conditions of Lemma 10 since there are no time edges in between, and it ends at the
latest time possible. There are two exceptions to this: the reconstruction of the dominating
journey starting from vertex v3 only uses three time edges from the roots, before directly
ending in the leaves of branch B2, and the one starting from vertex v5 directly goes up
through the leaves of B2 and B4 after the roots. Both reconstructed journeys are dominating
as well. Note that now all dominating journeys starting at vertices vi with −2k ≤ i ≤ 2k

have been extended (the ones cycling around have been broken apart and refitted first but in
terms of length have been extended as well) by exactly two time edges compared to their
previous length in C4k.

Observe that some of the earliest roots have not been shown to be part of a dominating
journey yet, and also that some halves of previous dominating journeys have not been refitted
together yet. We show another four dominating journeys exist which start from the four
new vertices, use these earliest roots, as well as the remaining parts of previous dominating
journeys, and two of these journeys use the time edges of the apex. Proving these four
journeys are dominating is done through again applying Lemma 10 with the arguments
already explained for the other dominating journeys, and thus we decide to forgo doing this
again four more times. The dominating journey starting at v−2k−1 goes clockwise, starting at
time 1 and the four earliest roots, then it continues with the part of the previous dominating
journey ending in branch B−2k+4, and goes up through the leaves of branches B−2k+2 and
B−2k, finishing at the latest time edge of the latter. Starting at vertex v−2k−2, we have a
counter-clockwise dominating journey, starting at time 1 using only one root, linking up with
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part of a previous dominating journey which finished at branch B2k−2, which is extended
further through branch B2k and the apex to end on the second latest time edge. We note
that the last two dominating journeys do not cross, except on the first edge, and cover V .
Continuing, we have a clockwise dominating journey starting at v2k+2 and time 1, using
two roots before using part of a previous dominating journey leading up to branch B−2k−2,
continuing through the leaves of B−2k and ending in the apex on the largest time edge.
Finally, there is a counter-clockwise dominating journey from vertex v2k+1 using three roots
cycling around the link stream, pairing up with part of a previous dominating journey leading
up to branch B2k−4 which then continues through leaves of B2k+2 and B2k to end on the
largest time edge of that branch. Again, these two journeys do not cross, except on the first
edge, and cover V .

Thus, we have that all time edges are part of a dominating journey, and that basically
the same journeys from C4k remain in C4k+4 (albeit some of them recombined differently)
and were extended by exactly two time edges. Since for all vertices but those of the seed,
Lemma 11 was used to prove necessity of the corresponding dominating journeys, this lemma
can be used again for these vertices to prove necessity of their corresponding dominating
journeys, as well as reachability of these vertices to all others. For the time edges and vertices
of the seed, the argument used for C8 can be generalized to prove necessity and reachability
as well. Finally, the last four dominating journeys which start on the four new vertices, can
use Lemma 11 as well, since their clockwise and counter-clockwise prefix-foremost journeys
are dominating and can collectively cover V .

In conclusion, we have proven that the base case, being the generator labelling for C8,
is minimal and temporally connected. Then, for any inductive step from C4k to C4k+4,
minimality and temporal connectivity are conserved in this labelling. Thus, the generator
labelling produces a minimal and temporally connected graph for any size 4k. (The generator
labelling works for C4 as well, it is easy to check, but the structure of the labelling was easier
to explain with C8, as for C4 the labelling is composed of only the seed.) ◀
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