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Preface

This volume contains the papers that were presented at the 3nd Symposium on Algorithmic
Foundations of Dynamic Networks (SAND), held in Patras, Greece, June 5–7, 2024. SAND
is a new conference whose objective is to become the primary venue for original research
on fundamental aspects of computing in dynamic networks and computational dynamics,
bringing together researchers from computer science and related areas. SAND is seeking
important contributions from all viewpoints, including theory and practice, characterized by
a marked algorithmic aspect and addressing or being motivated by the role of dynamics in
computing. It welcomes both conceptual and technical contributions, as well as novel ideas
and new problems that will inspire the community and facilitate the growth of the area.

The program committee of SAND 2024 consisted of:
Arnaud Casteigts, University of Geneva, Switzerland (chair)
Fabian Kuhn, University of Freiburg, Germany (chair)
Karine Altisen, Verimag, France
Quentin Bramas, University of Strasbourg, France
Bernadette Charron-Bost, CNRS, ENS Paris PSL, France
Gianlorenzo D’Angelo, Gran Sasso Science Institute, Italy
Swan Dubois, Sorbonne Université & Inria, France
Jessica Enright, University of Glasgow, UK
Thomas Erlebach, Durham University, UK
Matthias Függer, CNRS & LMF, ENS Paris-Saclay, France
Emmanuel Godard, Université Aix-Marseille, France
Timothy Gomez, Massachusetts Institute of Technology, USA
Nicolas Hanusse, LaBRI. Bordeaux U., CNRS, France
Colette Johnen, University of Bordeaux, France
Spyros Kontogiannis, University of Patras, Greece
Bernard Mans, Macquarie University, Australia
Andrea Marino, Università degli Studi di Firenze, Italy
Yannic Maus, TU Graz, Austria
Alessia Milani, Aix-Marseille University, France
Kitty Meeks, University of Glasgow, UK
George Mertzios, Durham University, UK
Othon Michail, University of Liverpool, UK
Hendrik Molter, Ben-Gurion University of the Negev, Israel
Rotem Oshman, Tel-Aviv University, Israel
Matthew Patitz, University of Arkansas, USA
Giuseppe Prencipe, Università di Pisa, Italy
Michael Raskin, University of Bordeaux, France
Jason Schoeters, University of Cambridge, UK
Ana Silva, Universidade Federal do Ceara, Brazil
Paul Spirakis, University of Liverpool, UK
Kostas Tsichlas, University of Patras, Greece
Laurent Viennot, Inria de Paris, France
Petra Wolf, University of Bergen, Norway
Viktor Zamaraev, University of Liverpool, UK
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0:viii Preface

We are also very grateful to the non-PC-member reviewers who helped us evaluating
some of the submissions. Namely, Duncan Adamson, Nada Almalki, Emmanuel Arrighi,
Samuel Baguley, Josefran Bastos, Josh Brunner, Daniele Carnevale, Carlos Zapata Carratala,
Argyrios Deligkas, Jenny Diomidova, David Doty, Jérôme Féret, Nathan Flaherty, Thomas
Gebhart, Daniel Hader, Thekla Hamm, Allen Ibiapina, David Ilcinkas, Ekhine Irurozki,
Evangelos Kipouridis, Ralf Klasing, Nina Klobas, Manish Kumar, Patrick Lambein-Monette,
Raul Lopes, Nicolas Martins, Kaalkidan Sahele, Frédéric Simard, George Skretas, Frederick
Stock, John Sylvester, Kunihiro Wasa, Cai Wood.

SAND 2024 received 43 submissions. The review process was double-blind and each paper
was assigned to at least three members of the program committee with relevant expertise and
eventually reviewed by them and/or by additional reviewers whenever needed. The program
committee accepted 18 papers as regular papers, and 6 as brief announcements. These papers
cover a wide range of topics, including dynamic networks and distributed algorithms, mobile
computing and robotics, programmable matter, and temporal and dynamic graph algorithms.
Keynote talks were given by distinguished researchers, to whom we are grateful: Thomas
Erlebach (Durham University, UK), Thomas Nowak (ENS Paris-Saclay, France), and Andréa
W. Richa (Arizona State University, USA).

We wish to thank the members of the various committees of SAND as well as its advisory
board, for all the hard work that they have put and which has made it possible to set up
a new conference. All have been supportive throughout. We are grateful to the program
committee members and to the additional reviewers for devoting time and effort in order
to come up with a strong conference program. A special thanks goes to the chairs of the
organizing committee, Spyros Kontogiannis, Sotiris Nikoletseas, and Kostas Tsichlas. We
are also indebted to the chair of the SAND steering committee, Paola Flocchini, for all her
support, and to Sotiris Nikoletseas for handling all the financial aspects.

Above all, we thank the authors for submitting their work to SAND 2024. We can assure
the reader that in this volume they will find well-presented ideas and results that make
substantial contributions to our knowledge on the role of dynamics in computing. We do
believe that this volume will inspire further work and will contribute to the further growth
of this exciting research area.

June, 2024
Arnaud Casteigts and Fabian Kuhn
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Exploration and Rendezvous in Temporal Graphs
Thomas Erlebach #

Department of Computer Science, Durham University, Durham, UK

Abstract
Given a temporal graph G and a start vertex v in G, the temporal exploration problem (TEXP)
is the problem of determining a temporal walk that starts at v and visits all vertices of G, with
the objective of minimizing the time when the last unvisited vertex is reached. Studies have
investigated the (parameterized) complexity and approximability of TEXP and the worst-case
number of time steps required to complete an exploration. While many upper and lower bounds
have been obtained for different settings, there are still some large gaps that pose interesting open
problems. In this talk, we will give an overview of known results and techniques as well as open
problems. Furthermore, we will discuss recent results (from joint work with Konstantinos Dogeas,
Frank Kammer, Johannes Meintrup, and William K. Moses Jr) about exploiting symmetries in
temporal graphs to get faster exploration. We view the number of automorphism orbits of the
temporal graph as a new parameter, termed the orbit number, that may also be useful in other
contexts. Finally, we show how a subroutine for quickly exploring a single orbit of the graph can be
exploited to solve a certain rendezvous problem with two agents using a near-linear number of time
steps in every always-connected temporal graph.
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Distributed Computation with Bacteria
Thomas Nowak # Ñ

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, France
Institut Universitaire de France, France

Abstract
Computing via synthetically engineered bacteria is a vibrant and active field with numerous
applications in bio-production, bio-sensing, and medicine. Motivated by the lack of robustness and
by resource limitation inside single cells, distributed approaches with communication among bacteria
have recently gained in interest. In this talk, we describe the most important distributed approaches
to synthetic biology with bacteria and discuss the crucial task of mathematical modeling of these
systems. A particular problem is that of population growth happening concurrently, and possibly
interfering, with the desired bio-computation. Specifically, we present a fast protocol in systems
with continuous population growth for the majority consensus problem and prove that it correctly
identifies the initial majority among two inputs with high probability. We also present a fast protocol
that correctly computes the NAND of two inputs with high probability. By combining NAND gates
with the majority consensus protocol as an amplifier, it is possible to compute arbitrary Boolean
functions. The proposed protocols help set the stage for bio-engineered distributed computation
that directly addresses continuous stochastic population growth.

Own work presented in this talk is mostly based on joint work with Da-Jung Cho, Matthias
Függer, Corbin Hopper, Manish Kushwaha, and Quentin Soubeyran.
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Algorithmic Programmable Matter: From Local
Markov Chains to “Dumb” Robots
Andréa Werneck Richa # Ñ

School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

Abstract
Many programmable matter systems have been developed, including modular and swarm robotics,
synthetic biology, DNA tiling, and smart materials. We describe programmable matter as an
abstract collection of simple computational elements (particles) with limited memory that each
execute distributed, local algorithms to self-organize and solve system-wide problems, such as
movement, reconfiguration, and coordination. Self-organizing particle systems (SOPS) have many
interesting potential applications like coating objects for monitoring and repair purposes, and forming
nano-scale devices for surgery and molecular-scale electronic structures.

We describe some of our work on the algorithmic foundations of programmable matter, investigat-
ing how macro-scale system behaviors can naturally emerge from local micro-behaviors by individual
particles: We utilize tools from statistical physics and Markov chain analysis to translate Markov
chains defined at a system level into distributed, local algorithms for SOPS that drive the desired
emergent collective behavior for the problems of compression, separation, and foraging, among
others. We further establish the notion of algorithmic matter, where we leverage standard binary
computation, as well as physical characteristics of the robots and interactions with the environment
in order to implement our micro-level algorithms in actual testbeds composed of robots that are not
capable of any standard computation. We conclude by addressing full concurrency and asynchrony
in SOPS.

This is joint work with Dana Randall and Dan Goldman (Georgia Tech), Michael Strano (MIT),
Todd Murphey (Northwestern), Josh Daymude (Arizona State University), Sarah Cannon (Claremont
McKenna), Christian Scheideler (University of Paderborn) and their research labs.
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Harmonious Colourings of Temporal Matchings
Duncan Adamson #

Leverhulme Centre for Functional Material Design,
University of Liverpool, Liverpool, United Kingdom

Abstract
Graph colouring is a fundamental problem in computer science, with a large body of research
dedicated to both the general colouring problem and restricted cases. Harmonious colourings are
one such restriction, where each edge must contain a globally unique pair of colours, i.e. if an edge
connects a vertex coloured x with a vertex coloured y, then no other pair of connected vertices
can be coloured x and y. Finding such a colouring in the traditional graph setting is known to be
NP-hard, even in trees. This paper considers the generalisation of harmonious colourings to Temporal
Graphs, specifically (k, t)-Temporal matchings, a class of temporal graphs where the underlying
graph is a matching (a collection of disconnected components containing pairs of vertices), each
edge can appear in at most t timesteps, and each timestep can contain at most k other edges. We
provide a complete overview of the complexity landscape of finding temporal harmonious colourings
for (k, t)-matchings. We show that finding a Temporal Harmonious Colouring, a colouring that is
harmonious in each timestep, is NP-hard for (k,t)-Temporal Matchings when k ≥ 4, t ≥ 2, or when
k ≥ 2 and t ≥ 3. We further show that this problem is inapproximable for t ≥ 2 and an unbounded
value of k, and that the problem of determining the temporal harmonious chromatic number of a
(2, 3)-temporal matching can be determined in linear time. Finally, we strengthen this result by a
set of upper and lower bounds of the temporal harmonious chromatic number both for individual
temporal matchings and for the class of (k, t)-temporal matchings.
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1 Introduction

In real-world settings, networks are changing structures with connections between vertices
changing at each time step. Temporal graphs provide a natural means of modelling such a
network. Formally, a temporal graph G is defined by a static collection of vertices V and
sequence of edge sets E1, E2, . . . , ET , where T is the lifetime of the graph. The underlying
graph G of a temporal graph G is the static graph formed by taking the vertex set V and the
union of edge sets E1 ∪E2 ∪ · · · ∪ET . Temporal graphs have recently become a well-studied
object, with a particular focus on reachability [3, 5, 11] and exploration [6, 7, 13].

Graph colouring, despite being a fundamental problem in computer science, has remained
relatively unstudied within temporal graphs. The main reason for this is that, for the general
problems of vertex and edge colouring, finding such a static colouring on a temporal graph
is equivalent to finding a static colouring on the underlying graph. Recent work on graph
colouring in the temporal setting can be split into two broad directions. First is the work of
Yu, Bar, Basu, and Ramanathan [14] and Ghosal and Ghosh [8], who focused on finding a
sequence of colourings for each node, with the twin goals of minimising the total number
of colours and the number of changes of the colour of each vertex. Second is the work by
Mertzios, Molter, and Zamaraev [12] on sliding window colourings, where the goal is to
provide a colouring such that each (active) edge is coloured properly at least once within
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4:2 Harmonious Colourings of Temporal Matchings

Time Step 1 Time Step 2Static

Figure 1 An example of two harmonious colourings. Left is the harmonious colouring for the static
underlying graph, while the right provides a simple example of a harmonious temporal colouring.
Observe that the static colouring needs three colours in order to avoid having two edges with the
same pair of colours. In the temporal example, note that neither edge is active at the same time-step.
Therefore, both can have the same colours.

each window of a given size. In [12], the authors prove a series of results on the hardness of
this problem, as well as a number of exact and approximation algorithms for several special
cases of the problem. The computational aspects of this problem have been further studied
by Marino and Silva [10] who, in particular, considered the problem on temporal graphs
where each edge is either active for at least t times steps in a row or at least t snapshots over
the lifetime of the graph.

In this paper, we are interested in finding a harmonious colouring of a temporal graph.
Harmonious colourings of static graphs are colourings where the colour pair on each edge is
globally unique. In the static setting, this problem is known to be very challenging, with
hardness results for a wide variety of otherwise simple graph classes such as interval and
permutation graphs [1], bipartite permutation and quasi-threshold graphs [2], and trees [4].
Despite the challenge, the temporal setting offers a slight relaxation of the problem, namely
a requirement that the pair of colours on each edge is unique only within the same snapshot.
This means that any pair of edges that are not active at the same time may share a colouring.
Such a colouring is called a temporal harmonious colouring. Figure 1 illustrates that such a
colouring can be found using fewer colours than in the underlying graph.

Noting that this problem is trivially hard when any snapshot includes a graph that
is known to be hard to harmoniously colour, this paper focuses on the class of temporal
matchings. In a temporal path, the underlying graph is a matching graph. Beyond the general
class, we look at (k, t)-temporal matchings, where at each snapshot the graph contains at
most t active edges, and each edge can be active for at most k time steps within the lifetime
of the graph. Restricting the graphs in this way allows a more precise understanding of the
complexity landscape. Further, showing that this problem remains hard for perhaps the
simplest non-trivial graph class highlights the difference between the complexity of problems
on static graphs and temporal ones.

Our Contribution

This paper provides two main results. In Section 3, we show that the problem of finding
a temporal harmonious colouring is NP-complete for (2, 4)-temporal matchings and (3, 2)-
temporal matchings. This shows the problem to be highly challenging even for a relatively
simple class of temporal graphs. In addition to the hardness result, we show that the
problem of determining the temporal harmonious chromatic number (the minimum number
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of colours needed for a temporal harmonious colouring) can not be approximated within
polynomial time within a factor of n(1−ϵ)/2 for any positive value ϵ for any (k, 2)-temporal
paths when the value of k is unbounded. In Section 4, we show that the temporal chromatic
number (the minimum number of colours needed for a temporal harmonious colouring) of
(2, 3)-matchings can be determined in linear time. Finally, in Section 5, we provide a series
of bounds on the temporal harmonious chromatic number of (k, t)-temporal paths, including
a

√
4 min(k, t)− 2 lower bound and a t(k − 1) + 2 upper bound.

2 Notation and Definitions

We use the notation [n] to denote the set {1, 2, . . . , n}. For a graph G, we denote by V (G)
and E(G) its vertex set and edge set respectively. A temporal graph G is an ordered sequence
(G1, G2, . . . , GT ) of static graphs over the common set V of vertices. The static graphs Gi,
i ∈ [T ] are called snapshots of G, and T is called the lifetime of the temporal graph. We say
that the edges in E(Gi) are active at time step i. The underlying graph of the temporal
graph G is the graph formed by taking the union of its snapshots, i.e. (V,

⋃
i∈[T ] E(Gi)).

▶ Definition 1. A temporal graph G of lifetime T is a (k, t)-temporal graph if every edge
of its underlying graph is active in at most t time steps, and every snapshot has at most k
edges.

If the underlying graph of G is a path, we say that G is a (k, t)-temporal path; similarly,
if the underlying graph is a matching (i.e. graph of maximum degree at most 1), we say that
G is a (k, t)-temporal matching.

For a natural number c, a c-colouring of a graph G is a mapping ψ : V (G) → [c] such
that for any two adjacent vertices u, v we have ψ(u) ̸= ψ(v). If G admits a c-colouring we
say that G is c-colourable. The chromatic number of G is the smallest c such that G is c-
colourable. A c-colouring ψ ofG is harmonious if, for every pair of edges {v1, u1}, {v2, u2} ∈ E,
{ψ(v1), ψ(u1)} ≠ {ψ(v2), ψ(u2)}. The harmonious chromatic number of G is the smallest
value c such that G admits a harmonious c-colouring. Given a graph G and a natural number
c the Harmonious Colouring problem asks whether G admits a harmonious c-colouring or
not. The optimisation variant of this problem asks to find the harmonious chromatic number
of G.

▶ Definition 2. For a temporal graph G = (G1, G2, . . . , GT ) over a vertex set V , a c-colouring
ϕ : V → [c] of its underlying graph is a c-temporal harmonious colouring if ψ is a harmonious
colouring of every snapshot Gi, i ∈ [T ]. The smallest c such that G admits a c-temporal
harmonious colouring is the temporal harmonious chromatic number.

Temporal Harmonious Colouring (THC)

Input: A temporal graph G, and an integer c.
Output: Yes, if there exists a temporal harmonious c-colouring of G; No otherwise.

As in the static case, the Temporal Harmonious Colouring can be phrased as an optimi-
sation problem, asking for the temporal harmonious chromatic number of the input graph
G.

Since temporal graphs generalise (static) graphs, Temporal Harmonious Colouring
is at least as hard as the Harmonious Colouring problem. In particular, the NP-hardness of
the latter problem on trees [4] implies NP-hardness of the former on temporal graphs where
snapshots are restricted to trees. On the other hand, the Harmonious Colouring problem is
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rather simple in matchings. Indeed, if G is a matching with m edges, then its harmonious
chromatic number is the smallest c such that (c

2) = c(c−1)
2 ≥ m, i.e. the smallest number of

colours providing at least m unique pairs of different colours.
It turns out that in the temporal setting, the problem becomes much harder, even in

the simplest case of temporal graphs whose underlying graph is a matching. In particular,
we will show that Temporal Harmonious Colouring is NP-complete on (k, t)-temporal
matchings when k ≥ 4 and t ≥ 2 or when k ≥ 2 and t ≥ 3. On the other hand, we
show that the temporal harmonious chromatic number can be determined in linear time for
(2, 3)-temporal matchings. Thus, our results provide computational complexity dichotomy
for Temporal Harmonious Colouring on (k, t)-temporal matchings. We further provide
a set of bounds on the chromatic number of (k, t)-temporal paths.

3 Hardness of Harmonious Colourings on (k,t)-Temporal Matching

In this section, we show that the problem of finding a temporal harmonious colouring is
NP-hard even for (2, 4)-temporal matchings and (3, 2)-temporal matching. We start by
providing a tool for constructing temporal matchings from a static graph. Informally, the
goal is to construct a matching with a temporal harmonious chromatic number that can
be used to determine the chromatic number of the static graph for low-degree graphs. We
strengthen this reduction by showing that each snapshot contains at most 2 edges.

▶ Lemma 3. Let G = (V,E) be a static graph with a chromatic number χ and maximum
degree ∆ > 1, then there exists a (2,∆)-temporal matching G′ = (V ′, E′) such that the
temporal harmonious chromatic number of G′ is χ′ such that χ′ is the smallest value for
which χ ≤ χ′(χ′−1)

2 . Further, G′ has a lifetime of |E|.

Proof. For each vertex v ∈ V , a pair of vertices v1, v2 are added to V ′. A snapshot is
constructed for each edge (v, u) ∈ E, with the edge set Ev,u is constructed containing the
edges (v1, v2) and (u1, u2). Note that as each vertex v has degree at most ∆, the edge (v1, v2)
appears in at most ∆ timesteps. Under the current construction, the graph is a matching
rather than a path.

Let ψ be a temporal harmonious colouring of G′. Observe that at each snapshot, there
exists exactly 2 edges, with each edge corresponding to a vertex in G and the snapshot
corresponding to an edge in G. Therefore, for any colouring to be harmonious, given any
edge (v, u) ∈ E, the pairs (ψ(v1), ψ(v2)) and (ψ(u1), ψ(u2)) must be distinct. Therefore,
there must be a mapping from the set of distinct pairs of colours from [ψ′] to some set of
colours of size at most γ = χ′(χ′−1)

2 . Let ϕ be a γ-colouring of G such that each vertex of G
is coloured using the pair of colours given by the χ′ colouring of G′.

Assume, for the sake of contradiction, that ϕ is not a valid colouring of G. Then, there
must exist some edge (v, u) ∈ E such that ϕ(v) = ϕ(u). In this case, in the colouring of G′,
(ψ(v1), ψ(v2)) = (ψ(u1), ψ(u2)). However, as there exists some snapshot of G′ containing
the edges (v1, v2) and (u1, u2), this contradicts the assumption that G′ has a valid temporal
harmonious colouring. Therefore, ϕ must be a valid colouring of G. Further, if γ < χ, then
there must exist a colouring of G using fewer than χ colours, contradicting the assumption
that χ is the chromatic number of G.

In the other direction, let ψ be a χ-colouring of G. A colouring ψ′ of G′ is constructed via a
bijective mapping λ : [χ] 7→ {(x, y)|x, y ∈ [χ′], x > y}. Assume, for the sake of contradiction,
that ϕ′ is not a valid colouring of G′. Then, there must exist some snapshot at time
step i such that for the pair of edges (v1, v2), (u1, u2) ∈ Ei, (ϕ(v1), ϕ(v2)) = (ϕ(u1), ϕ(u2)).
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Following the above construction, such a snapshot must correspond to an edge (v, u) ∈ E.
As ψ is a valid χ-colouring of G ψ(v) ̸= ψ(u). Therefore, the λ(ψ(v)) ̸= λ((ψ(u))), and
hence (ψ′(v1), ψ′(v2)) ̸= (ψ′(u1), ψ′(u2)), contradicting the assumption that ψ′ is not a valid
colouring. Further, χ′ must be the smallest value such that χ ≤ χ′(χ′−1)

2 . ◀

▶ Theorem 4. The problem of determining if a given (k, t)-temporal matching G has a
temporal harmonious chromatic number of c is NP-complete for any k ≥ 2 and t ≥ 4.

Proof. Let G = (V,E) be a 3-regular graph. As established by Leven and Galil [9], determin-
ing if G has an edge colouring of size 3 is an NP-complete problem. In order to reduce the
problem of finding an edge colouring of G to finding a temporal harmonious colouring on a
(2, 4)-temporal graph, let H be the edge adjacency graph of G. Note that H has a maximum
degree of 4. Using Lemma 3, H can be transformed into a (2, 4)-temporal matching G′.

If H has a chromatic number of 3, then the temporal harmonious chromatic number
of G′ is exactly 3. Otherwise, if the chromatic number of H is either 4 or 5, the temporal
harmonious chromatic number of G′ is 4. Therefore, any algorithm to determine the temporal
harmonious chromatic number of a (2, 4)-temporal matching can also determine if a 3-regular
graph has a 3-edge colouring. Hence finding the temporal harmonious chromatic number of
a (2, 4)-temporal matching is NP-hard.

To show that the problem is NP-Complete, note that any colouring can be verified as a
temporal harmonious colouring in polynomial time. ◀

▶ Corollary 5. The problem of finding the temporal harmonious chromatic number of a
(k, t)-temporal path is NP-hard for any t ≥ 2, k ≥ 4.

▶ Corollary 6. The problem of finding the temporal harmonious chromatic number of a
(k, t)-temporal cycle is NP-hard for any t ≥ 2, k ≥ 4.

Building on the above results, we now show that determining the harmonious chromatic
number of a (3, 2)-temporal path is NP-complete.

▶ Theorem 7. The problem of determining if a given (k, t)-temporal matching G has a
temporal harmonious chromatic number of c is NP-complete for any k ≥ 3 and t ≥ 2.

Proof. This proof follows a similar outline to the proof of Theorem 4. As before, we take a
cubic graph G = (V,E) and construct a (3, 2)-temporal matching G′, such that the edge-
chromatic number of G is equal to the harmonious temporal harmonious chromatic number
of G′. The temporal matching G′ is constructed as follows. For each edge e ∈ E, a pair
of vertices e1, e2 are constructed and connected in the underlying graph of G′. For each
vertex v ∈ V , a snapshot is constructed containing the pair of vertices (e1, e2) for every edge
e incident to v. As in Lemma 3, this matching may be transformed into a path by adding
dummy vertices between the pairs.

To show that this problem is NP-hard, first assume that G has an edge chromatic number
of 3. For the sake of contradiction, assume further that the temporal harmonious chromatic
number of G′ is greater than 3. Let ψ be an edge colouring of G using 3 colours, and let

f(c) =


(1, 2) c = 1
(1, 3) c = 2
(2, 3) c = 3

be a function mapping the colours given by ψ to pairs of colours. For

each edge e ∈ E, let the colours of e1 and e2 be equal to the colours given by f(ψ(e)). As
the mapping f does not allow any pair of incident vertices to share a colour, this colouring
must be valid. Further, for each snapshot in G′, note that the only active edges are those
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4:6 Harmonious Colourings of Temporal Matchings

corresponding to edges incident to a given vertex in V . Therefore, any given snapshot is not
harmonious if and only if there is a pair of edges in G sharing a colour, contradicting the
assumption that ψ is a valid colouring of G. Hence, G′ has a temporal harmonious chromatic
number greater than 3 if and only if G does not have an edge colouring of size 3.

In the other direction, assume for the sake of contradiction that the temporal harmonious
chromatic number of G′ is 3, while the edge chromatic number of G is greater than 3. Let ϕ

be a vertex colouring of G′ and f ′(c) =


1 (1, 2) or (2, 1)
2 (1, 3) or (3, 1)
3 (2, 3) or (3, 2)

be a function mapping pairs of

vertex colours to a set of 3 colours. For each edge e ∈ E, let e be coloured f ′(ϕ(e1), ϕ(e2)).
For the edge chromatic number of G to be greater than 3, this colouring must not be feasible.
Observe that at each snapshot of G′, the colouring is harmonious. Therefore, given any pair
of edges e, h ∈ E such that e and h are incident to the vertex v, the pairs (ψ(e1), ψ(e2)) and
(ψ(h1), ψ(h2)) must be distinct. Hence, f(ψ(e1), ψ(e2)) ̸= f(ψ(h1), ψ(h2)) and by extension
the edges coloured using this mapping must be distinct. Therefore using the mapping given
by f , either G has a proper edge colouring with 3 colours, or G′ does not have a temporal
harmonious chromatic number of 3, contradicting the original assumption.

Hence, the temporal harmonious chromatic number of G′ is 3 if and only if the edge
chromatic number of G is 3. By extension the problem of computing the temporal harmonious
chromatic number of a (3, 2)-temporal matching is NP-hard. Further, any colouring can
be verified as a temporal harmonious colouring in polynomial time. Therefore the problem
of computing the temporal harmonious chromatic number of a (3, 2)-temporal matching is
NP-complete. ◀

▶ Corollary 8. The problem of finding the temporal harmonious chromatic number of a
(k, t)-temporal path is NP-hard for any t ≥ 3, k ≥ 2.

▶ Corollary 9. The problem of finding the temporal harmonious chromatic number of a
(k, t)-temporal cycle is NP-hard for any t ≥ 3, k ≥ 2.

3.1 Hardness of Approximation
Building on Theorem 4, this section shows that the temporal harmonious colouring problem
is hard to approximate even on (k, t)-temporal matchings. This bound utilises the tools of
Lemmas 3 as a basis for converting existing results on the inapproximability of colouring
problems to the temporal harmonious setting. In this section, we consider the more general
class of (∞, 2)-temporal matchings, where there is no bound on the number of times each
edge appears in the graph. By focusing on the restricted case of (∞, 2)-temporal graphs, we
show that the general case is at least as hard, and indeed likely to be much harder.

▶ Theorem 10. It is NP-hard to approximate the temporal harmonious number of a (∞, 2)-
temporal matching within a factor of n(1−ϵ)/2 for any ϵ > 0, where n is the number of vertices
in the graph.

Proof. From Zuckerman [15], it is known that it is NP-hard to approximate the harmonious
number of a graph G within a factor of n1−ϵ, for any ϵ > 0. Following the construction
given in Lemma 3, given any graph G with maximum degree ∆, and chromatic number χ, a
(2,∆)-temporal matching can be constructed with a temporal harmonious number γ such
that γ is the smallest value satisfying χ ≤ γ(γ−1)

2 ≤ γ2.
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Let α be a polynomial time approximation of χ, and β be a polynomial time approximation
of γ. Following [15], α ≥ n. Similarly, note that any approximation of γ provides an upper
bound of χ using the inequality γ2 ≥ α. Hence β is the smallest value such that β2 ≥ α and by
extension β ≥

√
α. Therefore, any

√
n1−ϵ approximation of γ provides a n1−ϵ approximation

of χ. Therefore, γ can not be approximated in polynomial time within n(1−ϵ)/2 for any
positive value ϵ for the class (∞, 2)-temporal matchings unless P = NP . ◀

4 Temporal Harmonious Chromatic Number of (2,3)-Temporal
Matchings

In this section, we strengthen the hardness result from Section 3 by showing that the temporal
harmonious chromatic number of (2, 3)-temporal matchings can be determined in linear time.
Note that any (2, 2)-temporal matching is also a (2, 3)-temporal matching, and thus this
linear bound also holds. This shows that the hardness bound from Section 3 is “tight”, in
the sense that the case of (2, 4) -temporal matchings and (3, 2)-temporal matchings are the
smallest values of k and t for which the problem is hard. Further, this highlights a large
gulf in the complexity space, moving from a problem that is solvable in linear time to an
NP-complete problem with a relatively small change in the parameters.

We start with the simple case of finding a temporal harmonious colouring of a (1, k)-
temporal matching.

▶ Lemma 11. A temporal harmonious colouring of any (1, k)-temporal matching with n

vertices and 2 colours can be found in O(n) time.

Proof. Observe that in a (1, k)-temporal matching, each snapshot contains at most 1 edge.
Therefore, any valid colouring is also a temporal harmonious colouring. As the underlying
graph is a matching, a 2-colouring can be found by a greedy algorithm, iterating over the set
of edges and colouring one end node colour 1, and the other node colour 2. ◀

We now provide the main result of this section, namely a proof that the temporal
harmonious chromatic number of (2, 3)-temporal matchings can be determined in linear
time. The high-level idea behind this proof is to provide a construction of the temporal edge
adjacency graph of the temporal matching G. Informally, such a graph represents edges with
vertices and connects them if and only if the corresponding edges are active in the same
snapshot. By finding a colouring of this graph, a mapping can be used to connect the colours
of the edges to the colours of vertex pairs. As the temporal edge adjacency graph has a
maximum degree of 3, the chromatic number of the graph can be determined in linear time
using Brooks’ Theorem.

▶ Theorem 12. The temporal harmonious chromatic number of a (2, 3)-temporal matching
G can be determined in linear time.

Proof. At a high level, this is done by reversing the construction from Lemma 3. We assume,
without loss of generality, that G does not contain any vertices of degree 0. Note that any
such vertices may be coloured arbitrarily without conflicting with the temporal harmonious
colouring condition. Let G′ = {V ′, E′} be the temporal edge adjacency graph of G. Formally,
G′ is constructed as follows. For every edge e ∈ G, a vertex is constructed in V ′ and labelled
with the edge e. Given a pair of edges e1, e2 ∈ G, an edge is constructed between ve1 and ve2

if and only if there exists some snapshot of G in which both e1 and e2 are active. Note that
for a (2, 3)-temporal matching, each edge appears in at most 3 snapshots, and each time step
contains at most 2 edges. Therefore, G′ has a degree of at most 3.
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4:8 Harmonious Colourings of Temporal Matchings

Let ψ be a colouring of G′ using c-colours. Let c′ be the smallest value such that
c ≤ c′(c′−1)

2 . A temporal harmonious c′-colouring ϕ of G is constructed from ψ by constructing
a mapping f from c to the set {{x, y}|x, y ∈ [c], x ̸= y}. Using this mapping, each edge e ∈ G
is coloured using f(ve). We first show that ϕ is a valid c′-colouring. Observe that each pair
in {{x, y}|x, y ∈ [c], x ̸= y} contains two unique colours from [c′], and further each vertex
belongs to only a single edge. Therefore, by assigning the colours from the pair f(ve) to the
two vertices, ϕ produces a valid c′-colouring of G. Further, as each pair of edges e1, e2 ∈ G
that are active in the same snapshot are assigned different colours by ψ, the pair of colours
on the vertices incident to e1 and e2 are distinct. Therefore, ψ is a temporal harmonious
c′-colouring. Therefore, given a c-colouring of the edge temporal graph G, a c′ colouring of
G can be determined in polynomial time.

As G′ is a cubic graph, G′ has a chromatic number of 4 if and only if G′ contains the
complete graph K4. As the clique K4 can be detected in linear time, it is possible to determine
if G′ has a chromatic number of 4 in polynomial time. By extension, if G′ has a chromatic
number of 4, then the smallest value c′ such that c′(c′−1)

2 ≥ 4 is 4. Hence the temporal
harmonious chromatic number of G is 4 if and only if G′ contains the graph K4 as a subgraph.
On the other hand, G′ has a chromatic number of 2 if and only if it is bipartite, and further,
it is possible to determine this in linear time. If G′ is bipartite, then the temporal harmonious
chromatic number c′ of G is 3 as 3 is the smallest value such that c′(c′−1)

2 ≥ 2. Further, G′

has a chromatic number of 1 if and only if G′ contains only disconnected vertices. In this
case, no pair of edges in G are active at the time step. Therefore any proper colouring of G
is also a temporal harmonious colouring. Finally, if G′ does not have a chromatic number
of 1, 2 or 4, then the chromatic number of G′ must be 3, and by extension, the temporal
harmonious chromatic number of G is 3. Therefore, the temporal harmonious chromatic
number of G can be determined in linear time for any (2, 3)-temporal matching. ◀

5 Further Bounds

This section strengthens the results of Section 3 by providing stronger bounds on the
temporal harmonious chromatic number of (k, t)-temporal paths. Note that any bounds on
(k, t)-temporal paths also apply to (k, t)-matchings. This is done in two ways. First, we
provide an upper bound by constructing a linear time greedy algorithm for finding a temporal
harmonious colouring using at most t(k − 1) + 2 colours. Secondly, we provide a series of
lower bounds to strengthen the upper bound.

▶ Lemma 13. Algorithm 1 finds a (t(k − 1) + 2)-colouring of any (k, t)-temporal path
G = (V,E1, E2, . . . , ET ) in O(n · k · t) time, where n is the number of vertices in G.

Proof. We assume, without loss of generality, that each node in G is labelled from 1 to n
such that vertex 1 is a terminal vertex on the path G and vertex i is incident to i + 1 for
every i ∈ [n − 1]. Note that the first vertex can be arbitrarily coloured in the first step
without violating the colouring constraint. Similarly, the second vertex can be coloured any
colour other than the colour of vertex 1. The remaining vertices are coloured in order from 3
to n. At each step, we treat the vertex as though were the terminal vertex. In doing so, it
becomes only necessary to check that the edge (i− 1, i) satisfies the harmonious condition
and that the colour of i is distinct from i− 1 to satisfy the colouring condition. Therefore, by
an exhaustive search of each previous edge, a list of colours that can be allowed at position i

can be determined.
As there are at most t time steps in which the edge (i − 1, i) is active, and at most k

edges at each snapshot, (i− 1, i) can conflict with at most t(k − 1) edges. Further, for each
edge (j − 1, j) appearing at the same timestep as (i− 1, i), the colour col(j − 1) is removed
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Algorithm 1 Greedy Algorithm.

1: procedure Colour(G = (V,E1, E2, . . . , ET ), c)
2: col(1)← 1
3: col(2)← 2.
4: for i ∈ V \ {1, 2} do
5: Colours← {1, 2, . . . c} \ {col(i− 1)}
6: for k ∈ ActiveT imesteps((i− 1, i)) do
7: for (j − 1, j) ∈ Ek do
8: if ((j, j + 1), (i− 1, i)) ∈ Ek then
9: if col(j) = col(i− 1) then

10: Colours← Colours \ {col(j + 1)}
11: end if
12: if col(j + 1) = col(i− 1) then
13: Colours← Colours \ {col(j)}
14: end if
15: end if
16: end for
17: end for
18: col(i)← min(Colours)
19: end for
20: end procedure

from the set of potential colours of i if and only if col(j) = col(i− 1). Similarly, the colour
col(j) is removed from the set of candidate colours of i if and only if col(j − 1) = col(i− 1).
As col(j) ̸= col(j − 1), at most 1 colour can be removed for each edge that appears in the
same timestep as (i− 1, i). Hence at most t(k − 1) + 1 colours are forbidden for i, therefore
as long as i has a palette of size at least t(k− 1) + 2, there must always be at least one colour
that i can choose. Therefore, G must have a (t(k − 1) + 2) colouring.

To get the time complexity, we assume that each edge is labelled with the time step at
which it appears. Note that such a list can be computed by checking the set of active edges
for each snapshot in the graph. As there are at most n− 1 edges, each of which are active
for at most t time steps, this will take at most O(t · n) time. For each snapshot, at most k
edges need to be checked for each vertex. Therefore, as there are at most k time steps at
which each edge is active, the total complexity of this algorithm is O(n · k · t). ◀

Finally, we provide a lower bound on the temporal harmonious chromatic number of the
class of (k, t)-temporal matchings of

√
8(min(k, t)− 1). In doing so, we provide a clear gap

between the upper and lower bounds and leave open the question of the optimal bound for
(2, 2)-temporal matchings and (2, 3) temporal matchings. Further, we provide a lower bound
of
√
t on the temporal harmonious chromatic number for any (k, t)-temporal matching.

▶ Lemma 14. For any k, t ∈ N, there exists a (k, t)-temporal matching that has a temporal
harmonious chromatic number of

√
4 min(k, t)− 2.

Proof. This lemma is proven by constructing a (min(k, t),min(k, t))-temporal matching
G = (V,E1, E2, . . . , ET ) with a temporal harmonious chromatic number of

√
4 min(k, t)− 2.

We assume without loss of generality that k = t. Note that any (min(k, t),min(k, t))-temporal
matching is also a (k, t)-temporal matching. The set V is constructed by forming two sets T
and K. The set T contains t vertices labelled v1, v2, . . . , vt. The set K contains k vertices

SAND 2024



4:10 Harmonious Colourings of Temporal Matchings

labelled u1, u2, . . . , ut. For every i ∈ [t − 1], an edge is constructed between vi and vi+1.
Similarly, for every j ∈ [k− 1], an edge is constructed between uj and uj+1. Finally, an edge
is constructed between vt and u1.

The first k snapshots are constructed by having every edge of the form (vi, vi+1) active, as
well as exactly one edge of the form (uj , uj+1). Formally, for l ∈ [k], the time step l contains
has the active edges {(v1, v2), (v2, v3), . . . , (vt−1, vt), (ul, ul+1)}. Note that each such step
contains exactly t members. The final snapshot contains every edge between members of K
and the edge (vt, u1).

To determine the chromatic number of G, observe that by construction, every edge in
G requires a different pair of colours. As there are k + t − 1 = 2k − 1 edges in G, the
temporal harmonious chromatic number of G, χ must be satisfy 2k − 1 ≤ χ(χ−1)

2 ≤ χ2

2 .
Hence 4k − 2 ≤ χ2 and by extension χ ≥

√
4k − 2- In the general case, when k ̸= t, this can

be rewritten as
√

4 min(k, t)− 2 ◀

▶ Lemma 15. For any (k, t)-temporal matching G that is not also a (k − 1, t)-temporal
matching, the temporal harmonious chromatic number of G is at least

√
2 · k.

Proof. Note that if G is not a (k − 1, t)-temporal matching, then there must be at least one
snapshot containing k edges. Let χ be the temporal harmonious chromatic number of G.
Therefore, to colour every edge in this timestep with a unique pair of colours, χ must satisfy
χ(χ−1)

2 ≥ k. Hence χ2 ≥ 2k and by extension χ ≥
√

2k. ◀
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Abstract
Many fundamental distributed computing problems require coordinated access to a shared resource.
A distributed directory is an overlay data structure on an asynchronous graph G that helps to
access a shared token t. The directory supports three basic operations: publish, to initialize the
directory, lookup, to read the contents of the token, and move, to get exclusive update access to the
token. There are known directory schemes that achieve message complexity within polylog factors
of the optimal cost with respect to the number of nodes n and the diameter D of G. Motivated by
fault-tolerant distributed computing implementations, we consider the impact of edge failures on
distributed directories. We give a distributed directory overlay data structure that can tolerate edge
failures without disrupting the directory operations. The directory can be repaired concurrently
while it processes directory operations. We analyze the impact of the faults on the amortized cost
of the three directory operations compared to the optimal cost. We show that f edges failures
increase the amortized competitive ratio of the operations by at most factor f . We also analyze the
message complexity to repair the overlay structure, in terms of the number of messages that are
sent and the maximum distance a message traverses. For an edge failure, the repair mechanism uses
messages of size O(log n) that traverse distance at most D′, the graph diameter after the fault. To
our knowledge, this is the first asymptotic analysis of a fault-tolerant distributed directory.
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1 Introduction

Many distributed computing applications require finding and accessing a shared token, where
the token represents some shared resource. At all times, only the token owner has exclusive
access to the token which grants the owner the ability to modify the content that the token
represents. Distributed directories enable other nodes to find the token to read its contents or
to get exclusive access. Distributed directories have applications in shared memory and sensor
networks. Distributed transactional memory systems use distributed directories to atomically
access shared memory objects and execute transactions at the network nodes [10,21]. Sensor
networks use distributed directories to track moving objects [1, 23].

We study distributed directories that facilitate access to a shared token t on an asyn-
chronous weighted graph G = (V, E, w). The directory supports three operations: (i) publish,
which initializes the directory and announces the initial owner; (ii) lookup, which allows a
node to read the contents of the t; (iii) move, which moves t to a new owner for exclusive
access. These operations may be issued and processed concurrently by the nodes in G.
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Several directory schemes based on an overlay data structure on graph G have been
developed, for which the amortized total distance traversed by the messages in a lookup or
move operation is close to optimal, namely within some poly-log factor to the number of
nodes n and the diameter of the graph [10,19,21,22]. However, these directory protocols
are not fault tolerant. If an edge failure occurs, they are not able to maintain a directory
structure that can support publish, lookup, and move operations.

In reality, a directory is implemented on a distributed network, and it is typical to have
unreliable networks with link failures between nodes. As processing nodes need to continue to
operate correctly during or after the occurrence of failures, designing fault-tolerant distributed
algorithms is important. We provide a directory protocol that tolerates edge failures with
provable correctness and performance guarantees.

We consider the impact of f ≥ 1 edge failures. We assume that the edge failures do
not disconnect G, as otherwise, the token becomes unreachable in G making the directory
unusable. Nevertheless, edge failures may happen at arbitrary moments and concurrently.
Given the initial partition hierarchy, our protocol is fully distributed and handles the failures
without disrupting concurrent directory operations. We analyze the message complexity
of repairing the directory and provide performance bounds for the amortized cost of the
operations related to the number of failed edges f .

1.1 Contributions
We present a distributed directory that can handle edge failures without disrupting concurrent
directory operations. Our directory is inspired by the Spiral directory protocol [21]. Spiral
uses a sparse cover decomposition hierarchy of G that allows clusters at the same level to
overlap. Instead, we use a sparse partition hierarchy P of G that does not allow clusters
at the same level to overlap. As we will show, sparse partitions have improved asymptotic
performance in the directory operations, and are affected less by edge failures. We consider
two kinds of sparse partitions: weak, where the diameter of a cluster is with respect to all
nodes in G, and strong, where the diameter of a cluster is calculated within the cluster. Weak
partitions are available for more kinds of graphs than strong partitions [7, 11].

To evaluate the performance of the directory and the repair operations, we analyze their
communication cost. For the basic directory operations (publish, move, lookup) that send
messages sequentially, the communication cost is the sum of the distances traversed by the
sequential messages for each operation. For the repair mechanisms, we often send several
messages in parallel, here the communication cost consists of the total number of messages
and the maximum distance that any one of these messages traverses.

Table 1 shows the communication costs of directory operations before/after f edge failures:
Publish: A publish operation costs O(D · log n). After f ≥ 1 failures the publish
operation costs O(D′ · log n), where D is the diameter of G before the edge failures and
D′ is the diameter after the edge failures. Note here that we do not compare with the
optimal, as there is really no specific way that optimizes this step.
Lookup: For lookup, the message cost of our algorithm is an O(log3 n) approximation
of the optimal cost (compared to the shortest path to the token). This is a log n

factor improvement over Spiral [21]. With f edge failures, the approximation becomes
O(f · log3 n) for weak partitions, and O(f · log2 n + log3 n) for strong partitions.
Move: For move, the amortized cost of a sequence of move operations is an
O(log D · log2 n) approximation of the optimal. With f edge failures, the approximation
factor becomes O(f · log D′ · log2 n) for weak and O((f + log n) log D′ · log n) for strong
partitions.
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Table 1 Cost of operations for general/special graphs and weak/strong diameter partitions;
publish cost is absolute; lookup and move costs are approximation factors compared to the optimal
cost; failures are f ≥ 1; D′ is the diameter of G after the f failures; special graphs include constant
doubling dimension, constant pathwidth (weak and strong partitions) and also fixed minor-free,
chordal (weak partitions only) for which sparse partition schemes with σ, I ∈ O(1) are known [7].

Graph Partition Partition Parameters Failures Publish Lookup Move
general any (O(log n),O(log n)) none O(D · log n) O(log3 n) O(log D · log2 n)
general weak (O(log n),O(log n)) f O(D′ · log n) O(f · log3 n) O(f · log D′ · log2 n)
general strong (O(log n),O(log n)) f O(D′ · log n) O(f · log2 n + log3 n) O((f + log n) log D′ · log n)
special any (O(1),O(1)) none O(D) O(1) O(log D)
special any (O(1),O(1)) f O(D′) O(f) O(f · log D′)

Table 2 Cost of repair mechanism for general graphs and strong/weak partitions; σ is a sparse
partition parameter, generally of order O(log n); ρ is the locality parameter usually a constant; a
cluster at level i has diameter at most σρi independent of the number of failures; the hierarchy
consists of logρ D levels; D denotes the diameter of G before the edge failure, D′ denotes the diameter
of G after the edge failure; n denotes the number of nodes, m denotes the number of edges.

Operation Partition Size of Message Number of Messages Maximum Distance Traversed
by Individual Message

Initialize Shortest Path Tree Update any O(log n) O(n) O(D)
Update Shortest Path tree (per tree) any O(log n) O(m) O(D′)
Splitting a cluster (per level i

cluster)
strong O(log n) 1 σρi

weak O(log n) 2 σρi

Informing nodes within cluster of
split (per level i cluster)

strong O(log n) O(n) σρi

weak O(log n) O(n) 2σρi

Informing neighborhood of leader
change (per cluster)

any O(log n) O(n2) ρi

Update Directory Path (per level) any O(log n) O(1) O(D′)
Updating the Special Parent
Information of level i cluster

strong O(log n) 2 σρi′

weak O(log n) 2 2σρi′

For special kinds of graphs [7], we get better bounds which are O(1) (for f failures O(f))
approximation for lookup, and O(log D) (resp. O(f · log D′)) approximation for move, while
the cost of the publish operation is simply O(D) (resp. O(D′)).

We also analyze the repair communication costs (see Table 2). To maintain the sparse
partition, we store a spanning tree within each cluster of P . If an edge fails in the spanning
tree of a cluster X, we split X into two. This requires one message in a strong and two
messages in a weak sparse partition of size O(log n), traversing a distance of at most σρi

(the cluster diameter) in a strong partition and at most 2σρi in a weak partition, where σ

and ρ are parameters defining the sparse partition hierarchy (cf. Subsection 1.2). There are
additional steps, such as informing all nodes within X of the split, requiring O(n) messages
of size O(log n) traversing similar distance. More details are given below.

1.2 Techniques
Each level of the hierarchy P is a partition of V (G) into clusters obtained from a (σ, I)-sparse
partition scheme. At level i, each cluster has a diameter of at most σρi (where ρ is a constant),
and the ρi-neighborhood of a node intersects with at most I of these. The highest level of P
consists of a single cluster, while on the lowest level, each node of G forms its own cluster.
We pick a leader in each cluster X of P. The leader of the highest level is called the “root”.

The distributed directory maintains a directory path ϕ from the root to the current
owner of the token t (see Figure 2). On each level of P, exactly one leader node belongs
to ϕ and has pointers to the directory path nodes at the level above and below, forming
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a double linked list. All operations are executed through message passing. The directory
path is initialized by the first owner of t through a publish operation. A lookup or move
operation, issued by a node v, searches for ϕ by checking the level i leaders of the nodes
in the ρi-neighborhood of v, for all increasing levels i. When the operation discovers the
directory path, it follows ϕ toward the token t. A move operation changes the directory path
toward the new owner while it searches for ϕ.

To search for the directory path, node v needs to know the leaders of the nodes in its
ρi-neighborhood for 0 ≤ i ≤ h. To avoid double computation, every node pre-computes this
information. Edge failures can increase the distance between some nodes, thereby affecting
the precomputed ρi-neighborhoods. To update the preprocessed information, every node v

maintains a shortest path tree T (v). When an edge on T (v) fails we use King’s fully dynamic
algorithm for maintaining shortest path trees [13] to update it. To initialize the update of
the shortest path trees the endpoints of the failed edge inform the nodes whose shortest
path tree are affected. This requires at most O(n) messages of size O(log n) that traverse a
distance at most O(D), where D is the diameter of G before the edge failure.

To improve the performance of lookup operations, a leader node l(X) added to ϕ at
level i informs its level i′ leader li′(l(X)) for i′ = i + logρ(c′σ) for an appropriately chosen
constant c′. We call li′(l(X)) the special parent of l(X). When a lookup operation finds the
special parent of a node on the directory path, it traverses the directory path from there.

Upon an edge failure, both endpoints detect the failure immediately. In response to the
failure, we update P to maintain the directory’s performance. For each cluster X, we store a
spanning tree T (X). When an edge e on T (X) fails, we split X into X1 and X2. X1 has
the same leader as X, and X2 has a node incident to e as its leader. (If in a weak diameter
partition e is outside X, l(X2) is selected appropriately in X2.) This mechanism ensures that
the diameter of any level i cluster of P is at most 2σρi regardless of the number of failures.
The sparse partition scheme ensures that in a strong partition, at most one cluster splits per
level of P, and in a weak sparse partition, at most I clusters split. All these processes are
initialized by the two endpoints of the failed edge.

When a cluster X with a leader on the directory path splits, we update the directory path
to include the leader of the node that added l(X) to ϕ. This ensures that lookup and move
operations find ϕ at a level proportional to the distance between the token owner and the
node that issued the operation. To update the directory path, the leader nodes of l(X1) and
l(X2) need to communicate with each other and with the leader nodes on the directory path
at the level below and above X. The whole process requires O(1) messages of size O(log n),
traversing a distance of at most O(D′), where D′ is the diameter of G after the edge failure.

We update the special parent information and notify nodes in the ρi-neighborhood of
nodes in X2 about the leader change as we update P and ϕ. To update special parents for a
level i cluster X, two messages of size O(log n) are required, traversing a distance of at most
σρi′ in a strong partition and 2σρi′ in a weak partition, where i′ is the level of the special
parents. To notify the ρi-neighborhood of nodes in X2, O(n) messages of size O(log n) are
required, traversing a distance of ρi.

In unweighted graphs, a failure can at most double the diameter of G [3]. However, as
illustrated in Figure 1, the diameter increase in a weighted graph may not be bounded. To
accommodate such changes, we ensure that the number of layers in P equals logρ D′, where
D′ represents the current graph diameter. When adding layers to the partition hierarchy, we
extend the directory path accordingly.
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Figure 1 An example of a graph showing that we cannot bound the stretch in the diameter of the
graph. Assuming X > 1 the initial graph has diameter 3. If edge {u, v} fails, the diameter becomes
2 + X. Without further assumptions on X this cannot be bounded as a constant multiple of 3.

1.3 Related Work
An alternative way to implement a distributed directory is to use a spanning tree T on G.
The edges of T are directed toward the owner node of the token. If node u requests the
token, then the move request redirects the edges of the tree toward u (edge reversal). The
benefit of the tree is that it can easily handle distributed requests since concurrent move
operations are ordered when they intersect on the tree. Several protocols have been proposed
based on trees: Arrow [4, 9, 14, 20], Relay [24], Ivy [15], Arvy [12]. The approximation factor
of the operations is O(log DT ), with respect to the diameter DT of T . However, by using a
tree the performance of the lookup and move operations may be sub-optimal with respect to
G, as T may not accurately represent the distances in G. Considering the distance stretch s

of the tree the approximation becomes O(s log DT ), and s can be as large as the graph G

diameter D. Nevertheless, considering an appropriate overlay tree that preserves on average
the pairwise node distances of G [6], it is possible to get close to optimal performance on
the average case for a set of random source operation requests [8, 18]. Our approach, on the
other hand, has guaranteed performance for arbitrary sources of requests (not just random).

Another work [5] considers fault-tolerant routing and labeling schemes. These rely on
knowing the destinations of messages. In our case, the destinations are leaders which may
not be immediately known after the failures. Hence, we cannot rely on such routing schemes
directly to implement the fault-tolerant directory. Another line of research related to edge
failures maintains fault-tolerant sparse spanners of G that preserve the stretch (usually
poly-log) of the distances in G even after edge or node failures [2, 17].

Outline of the Paper

In Section 2, we give some necessary definitions and define our model. Section 3 presents
the basic directory scheme without failures and Section 4 describes our failure response
mechanisms and analyzes their costs. A performance analysis of the directory after f failures
is given in Section 5. In Section 6, we describe the integration of these mechanisms into
the protocol. We conclude in Section 7. Omitted proofs and the pseudocode appear in the
appendix. (The cases of concurrent edge failures and handling transient failures are discussed
in the full version of the paper.)

2 Definitions and Preliminaries

Let dG(u, v) denote the length of a shortest path between u and v in G. The r-neighborhood
of a node u, denoted NG,u(r), is the set of nodes that are within distance r to u. The
diameter of a graph is diam(G) = maxu,v∈V (G) dG(u, v). For a set X ⊆ V , let G[X] denote
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the subgraph of G induced by X. There are two ways to measure the diameter of X: (i)
weak diameter, diamG(X), which considers all possible shortest paths in G that may also
use nodes outside X; (ii) strong diameter, diamG[X](X), which considers only paths in X.

A partition of G is a collection of disjoint sets of nodes whose union is V . A sparse
partition is a partition that restricts both the diameter of each cluster and the number of
clusters within a specific distance. There are weak and strong sparse partitions that differ in
whether the weak or strong diameter of a cluster is restricted.

A (r, σ, I)-weak (strong) sparse partition of G satisfies two properties:
(i) each cluster has weak (strong) diameter at most rσ, and
(ii) the r-neighborhood of each node u ∈ V intersects at most I clusters.

A (σ, I)-weak (strong) sparse partition scheme is a procedure that gives a (r, σ, I)-weak (strong)
partition for any r > 0. Jia et al. [11] give a (O(log n), O(log n))-weak sparse partition scheme
for an arbitrary metric space and general graphs. Filtser [7] gives a (O(log n), O(log n))-
strong partition scheme for general graphs based on the clustering technique by Miller et
al. [16]. There are (O(1), O(1))-partition schemes for special network topologies such as for
low doubling-dimension and fixed minor-free graphs [7, 11].

2.1 Model
We model the distributed network as a weighted graph G = (V, E, w) with positive edge
weights of at least one. The weight of an edge e = {u, v} represents the cost of sending a
message over edge e. The cost of an operation is the sum of the edge weights the request
traverses. The goal of a distributed directory is to minimize the total communication cost for
a request in the worst case. The edge weight represents solely the cost of sending a message
but does not indicate the delay or latency of an edge. In particular, for the correctness of
our protocol, no message synchronization is needed.

Each node u stores a shortest path tree T (u) with root(T (u)) = u. The shortest path
trees are built such that the shortest paths are consistent, meaning the path from u to v

stored in T (u) is identical (reversed) to the path from v to u stored in T (v).
The communication in our network is asynchronous, and messages sent along the same

edge are delivered in the order they are sent. All messages have the same size O(log n) and
are transmitted along shortest paths.

Our directory is built on a sparse partition hierarchy P of G = (V, E, w). Our directory
works for strong and weak sparse partitions, but we show that they have different performances.
We construct P using any of the aforementioned partition schemes. We use diam(X) to
denote the strong or weak diameter of cluster X, depending on the partition type. The
partition hierarchy P comprises h = ⌈logρ D⌉ levels with an exponentially increasing locality
parameter ρ at each level. At level i (0 ≤ i ≤ h), we define Pi as a (ri, σ, I)-sparse partition
of G, where ri = min{D, ρi}. We define level -1 where each node of V is a cluster by itself
(r−1 = 0). At top level h, Ph comprises of a single cluster that covers the entirety of V .

We select a leader l(X) in each cluster X of P . At P−1, each node is the leader of its own
cluster, while the leader of the single cluster in Ph is called the root. Each node u ∈ V belongs
to exactly one cluster in each level of P , denoted by Ci(u), and its leader is li(u) = l(Ci(u)).
Each node knows the leader of all the clusters to which it belongs.

To maintain the sparse partition in the presence of edge failures, we store a spanning tree
T (X) for each cluster X. In a weak sparse partition, T (X) is the shortest path tree of l(X),
while in a strong sparse partition, T (X) is a shortest path tree of G[X] with root l(X). The
choice of spanning tree ensures that for any node u in X, the path on T (X) connecting u

and l(X) is at most diam(X). We denote the subtree of T (X) rooted in u by T\u(X). Every
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Figure 2 An example of a move operation. Left: a node issues a move request, which starts
the bottom-up formation of a new directory path. Middle: the new directory path intersects the
existing directory path ϕ; the part of ϕ from the intersection until the old owner will be deleted.
Right: the token has moved to the new owner and the directory path ϕ has been revised accordingly.

node u on T (X) knows T (X). In a weak sparse partition, u also knows which nodes belong
to X. To store this information, a node in a weak sparse partition requires O(Ihn) memory,
and a node in a strong sparse partition requires O(hn) memory.

3 Directory Scheme

The directory supports three operations: publish to build the initial directory path, lookup to
read the current value of the token, and move to request ownership of the token and update
the directory path. All three operations are executed through message passing. Nodes can
issue lookup and move operations at any moment and simultaneously. Lookup operations
simply get a copy of the token from the latest token owner. Concurrent move operations from
different nodes are ordered through the directory because there can only be one token owner
node at a time. Hence, the directory acts as a distributed queue for the move requests. The
queue ordering is implicit by the way the concurrent move operations intersect each other
in the directory data structure. The directory ensures that the previous token owner will
know which node is the next token owner. In this way, the token is passed from its previous
owner to the next in the queue. There is no requirement that the requests are served in a
particular order, but every move request has to be served eventually. (The pseudocode of
the directory is displayed in Algorithm 1 in Appendix C.)

The token resides at an owner node at the lowest level. There is a virtual directory path
ϕ that points to the owner (see Figure 2). The path ϕ consists of h + 2 leader nodes, one
node at every level of P . Let ϕi denote the leader node of ϕ at level i, for −1 ≤ i ≤ h, where
ϕ−1 is the token owner and ϕh is the root. For each level i, 0 ≤ i ≤ h − 1, leader ϕi has
pointers to ϕi−1 and ϕi+1 which form a virtual doubly linked list.

The directory path is created via the publish operation. The initial owner u sends a
publish-message to its leader nodes at every level of P, namely ϕi = li(u). This operation
creates the pointers from ϕi to ϕi−1 (both ways) for 0 ≤ i ≤ h. Theorem 1 measures the
cost of a publish operation and the length of the initial directory path. In the next result,
cost(publish) is the total distance that the publish-message traverses.

▶ Theorem 1. The cost of the publish operation and the length of the initial directory is
O(D).

Proof. To build the directory path, node u contacts each of its leader nodes. Therefore,
cost(publish) ≤

∑h
i=0 σρi = σρh+1−1

ρ−1 . Since the nodes on the directory path u’s leaders, the
distance between consecutive nodes is at most d(ϕi, ϕi+1) = d(li(u), li+1(u)) ≤ d(li(u), u) +
d(u, li+1(u)) ≤ σ(ρi + ρi+1). Summing over the entire directory path gives length(ϕ) ≤∑h−1

i=−1 σ(ρi + ρi+1) ≤ σ(ρ+1)(ρh+1−1)
(ρ−1)ρ = O(ρσh). ◀
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To locate the token, the issuer of a lookup or move operation first searches for the
directory path (Figure 2). Once a leader node of the directory path is found, the token owner
is reached by following ϕ. To search for the directory path, a node sends messages to leader
nodes near itself at increasing levels of P : Let Pi(v) be the set of clusters in Pi that intersect
NG,v(ρi), where |Pi(v)| ≤ I. Node v checks whether any of the leaders in Pi(v) equals ϕi for
0 ≤ i ≤ h. The search stops at the lowest level where a directory path leader is found (at
the root in the worst case). The next Lemma bounds the cost of searching level i for ϕ.

▶ Lemma 2. The sum of all distances that messages travel during the search of the directory
path at level i in a lookup or move operation issued by node u is O(ρiσI).

Proof. Node u contacts every leader in Pi(u). By definition, |Pi(u)| ≤ I. Further, if X

is in Pi(u), then there exists a node x in X with d(u, x) ≤ ρi. Therefore, d(u, l(X)) ≤
d(u, x) + d(x, l(X)) ≤ ρi + σρi. Summing over all clusters in Pi(u) gives the result. ◀

A move operation by node v modifies the directory path to denote the new ownership at
v. The new directory path is formed in a bottom-up way while v searches for the existing
directory path (Figure 2). Node v first adds l−1(v) to the directory path. Let ϕj , j ≥ 0, be
the first node of ϕ that v discovers. For levels 0 ≤ i < j, node v searches Pi(v) and adds
li(v) to the directory path when it does not find ϕi. At level j node v finds ϕj , which will
remain then in the directory path but its pointer changes to ϕ′

j−1. The move operation then
follows the old directory path toward ϕ−1. While going down the move operation deletes the
leaders from the old directory path, that is, ϕj−1 · · · ϕ−1 are removed from ϕ. Hence, the
new directory path is ϕh · · · ϕjϕ′

j−1 · · · ϕ′
−1.

Concurrent move operations create multiple partial directory paths. However, only the
latest directory path includes the root node. To ensure a unique complete directory path
(without splits or gaps) from the root to the owner, the upward phase of a move is atomic.
Contacting ϕi about the directory path triggers an immediate update of its downward pointer
to ϕ′

i−1, directing subsequent operations to the new path. As sub-paths merge, the distance
between consecutive nodes on the directory path can increase, as shown by the next lemma.

▶ Lemma 3. The distance between two consecutive nodes ϕi and ϕi+1 on the directory path
for −1 ≤ i < h is at most d(ϕi, ϕi+1) ≤ σ(ρi + ρi+1) + ρi+1,.

Proof. Consider two consecutive directory path nodes ϕi and ϕi+1. There were either added
by the same node v, in which case d(ϕi, ϕi+1) ≤ d(ϕi, v) + d(v, ϕi+1) ≤ σ(ρi + ρi+1), or some
node v added ϕi to ϕ and then found ϕi+1 during its search of level i + 1. In this case,
there must be a node w in v’s ρi+1-neighborhood that belongs to ϕi+1’s cluster. Hence,
d(ϕi, ϕi+1) ≤ d(ϕi, v) + d(v, w) + d(w, ϕi+1) ≤ σ(ρi + ρi+1) + ρi+1. ◀

The continuous modifications of the directory path imply that not all leaders on the
directory path contain the current token owner w in their cluster. To ensure that a lookup
operation issued by node u discovers the directory path at a level proportional to its distance
to w, we use the concept of a special parent (as in Spiral [21]). Every leader node li(x) that is
added to ϕ informs leader node li′(x), where i′ = i + logρ(c′σ), for an appropriately constant
c′. We call li′(x) the special parent of li(x) with respect to level i. When node u searches for
the directory path, it asks the leader nodes if they are part of the directory path, or if they
are the special parent of a node on the directory path. If it finds a special parent, it takes
the link to the node on the directory path and continues the search from there. Like the
directory path itself, special parent information is updated during a move operation. If a
move removes a node from the directory path while a lookup follows a link from a special
parent to that node, the lookup goes back to level i′ and continues the search from there.
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Using Lemmas 2 and 3, we obtain the following results for the lookup and move costs
when there are no failures. (The proofs of these two results appear in the full version of the
paper; here we focus on the fault analysis aspects.)

▶ Lemma 4. A lookup operation finds the token with a cost that is a O(σ2ρI) factor from
optimal.

Consider a sequence of move requests S = s1, . . . , sq, that execute in a sequential manner,
so that si starts only after si−1 completes, where i > 0.

▶ Lemma 5. The total cost of the move operations in S is a O(hρσ(σ + I)) factor from
optimal.

4 Responding to Edge Failures

In case of edge failures, our clustering may no longer satisfy the properties of a sparse
partition, and some of the shortest path trees that nodes store may become disconnected. To
guarantee the correctness and performance of our algorithm, we update our data structures
accordingly. To accomplish this, we modify the operations described in Section 3 as follows:
1. Each node on ϕ remembers the node that added it to ϕ.
2. When w contacts l(X) in a lookup or move operation to find the directory path, it

includes a list of the nodes from w’s ρi-neighborhood that it believes are part of X.
3. Node w contacts a level i leader node l(X) only if d(w, l(X)) ≤ ρi + 2σρi.

Whenever an edge e fails, our update mechanisms recompute all shortest path trees that
contained edge e, split every cluster whose spanning tree contained edge e, and update the
directory path accordingly. We discuss each of them below.

4.1 Updating Shortest Path Trees
Each node in our protocol stores a shortest path tree, which we update when an edge
e = {u, v} on the tree fails. We use King’s fully dynamic algorithm to maintain the shortest
path trees in the presence of edge failure [13]. Updating a single tree takes O(md) time,
where m is the number of edges in G \ {e}, and d is the maximum distance of a node to the
root of the tree. To use King’s centralized algorithm in a distributed system, we let the root
node compute the updated shortest path tree. This causes an additional cost because we
need to inform the root node of the available edges. Namely, we need to inform the root of
at most O(m) edges with a maximum distance of D′ from the root.

The updating of the shortest path trees is initialized by the endpoints of the failed edge
e = {u, v}, which can detect the failure immediately. The consistency assumption we placed
on the shortest path trees implies that u and v know if any tree needs to be updated.

▶ Observation 6. If edge e = {u, v} is part of the shortest path tree of a node w, then edge
e is also part of the shortest path tree of u and v.

To initialize the updates, nodes u and v send a broadcast along the remaining parts T (u)
and T (v). The next lemma bounds the cost of this operation.

▶ Lemma 7. To initialize the update of the shortest path tree, O(n) messages of size O(log n)
are required, that travel a maximum message distance of D, where D is the diameter of G

before the failure of e.
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4.2 Reclustering
When an edge e fails, we split every cluster X whose spanning tree contains e into two. For
the reclustering, we distinguish between the root level and clusters below the root level.
For clusters below level h, we define the two new clusters as X1 = X \ (X ∩ T\v(X)) and
X2 = X ∩ T\v(X). The leader node of X1 is the same as that of X, and for X2, either
v becomes the new leader (if using strong sparse partition) or the closest node to v in X

(if using weak sparse partition). The spanning tree for X1 is T (X) \ T\v(X) and for X2 is
T\v(X) rerooted at l(X2). The following lemma bounds the diameter and the number of the
generated clusters.

▶ Lemma 8. Let X be a cluster at level i, −1 ≤ i < h, and suppose at most f edges fail.
Then X splits into at most f + 1 clusters. Each new cluster Xj, generated from X, has
diameter at most diam(Xj) ≤ 2σρj.

Similar to the update of the shortest path tree, the splitting of the clusters is initiated
when the endpoints of the failed edge detect the failure. Recall that u and v both know
which clusters have e in their spanning tree. For every cluster X that needs to split the
path on T (X) from l(X) to one of the endpoints of e, say u, the part between u and l(X)
remains unaffected by the failure of e. Therefore, u can inform l(X) of the failure by sending
a message along T (X). If node v is not in X (i.e. weak diameter sparse partition), it chooses
a node w closest to it on T (X) from X ∩ T\v(X) to become the new leader node and sends a
message to w to inform it of the reclustering and its new leadership role.

▶ Lemma 9. Splitting a level i cluster requires one message in a strong and up to two messages
in a weak sparse partition. These have size log n and traverse a distance of at most σρi.

When l(X1) is informed about the failure and l(X2) knows whether it is part of the
directory tree (see Section 4.3), both broadcast the update to all nodes in their respective
cluster so that these can update their knowledge of T (X) and the leader for the nodes in X2.

▶ Lemma 10. To inform all nodes in X1 and X2 of the cluster change we need to send O(n)
messages, each of which has size O(log n). In a strong partition, the maximum distance a
message traverses is σρi and in a weak sparse partition, the maximum distance is 2σρi.

When the nodes in X2 are informed of the cluster change, they forward this information
to their ρi-neighborhood, so they can update their preprocessing information.

▶ Lemma 11. To inform the ρi-neighborhood of the nodes in X2 about the new leader requires
O(n2) messages of size O(log n). The maximum distance traversed by any message is ρi.

Initially, P consists of logρ D layers, where D = diam(G). To maintain this relationship
between the number of layers and the diameter, we add layers to P as the diameter increases.

Consider the single cluster X at level h. Before the edge failure, we have d(r, u) ≤ σρh

on T (X) for all nodes u ∈ V . Hence, if the failed edge e does not lie on T (X), then the
diameter of G is at most 2σρh. In this case, we do not modify the root level.

If edge e lies on T (X), then r’s updated shortest path tree tells us if we need to increase
the number of layers. Let V1 and V2 be the partition of the vertices of G defined by the
connected components of T (X) \ {e}, and assume w.l.o.g. that r ∈ V1. By Lemma 8,
diam(G[V1]) ≤ 2σρh and diam(G[V2]) ≤ 2σρh. Let v be the node in X2 closest to r before
the edge failure. If after the edge failure, the distance from r to v is d(x, r) > σρh+1 − 2σρh,
then we increase the number of layers to h′, where h′ = minz∈Z{σρz > d(x, r)} for all x ∈ V .
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We split the level h the same way that we split lower level clusters whose spanning tree
contains edge e. Levels h + 1, . . . , h′ − 1 are simply copies of level h, and the directory path
goes through the copy of the cluster that is part of the directory path at level h.

When the single cluster at level h splits, both leader nodes of the two generated clusters
inform the nodes in their clusters about the additional layers. This information can be
included in the usual message l(X1) and l(X2) sent to the nodes in their clusters when a
failure occurs. This message will cause the directory path nodes at levels h − (i + logρ(c′σ)) +
1, . . . , h′ − i + logρ(c′σ) to send a message to their special parent, so that this information is
also extended to the additional layers. Level h′ is a single cluster that contains the entire
graph. The leader node is r and the spanning tree is T (r).

4.3 Updating the Directory Path and Special Parents
We need to ensure that the directory path and special parent information are maintained
during cluster splitting. When a cluster X splits, we check if l(X) is on the directory path.
If it is not, then neither l(X1) nor l(X2) will be. If it is, then l(X) can determine whether
l(X1) or l(X2) becomes part of the directory path by checking if the node that added l(X) to
ϕ remains in X1. Once l(X) knows about l(X2)’s role, it informs v (using T (l(X))). If v is
not l(X2), then it forwards this message to l(X2). If l(X2) is to become part of the directory
path, then the message contains the ids of ϕi−1, ϕi+1, and the id of the node that added
l(X) to the directory path. With this, l(X2) sets its pointers to ϕi+1 and ϕi−1 and informs
them to update their pointers too. When they receive l(X2)’s message ϕi−1 and ϕi+1 send
a message to l(X) to remove its outdated directory path pointers. If l(X2) is not on the
directory path, then l(X)’s messages simply informs l(X2) that it is not part of ϕ.

φi+1

φi

φ′i

φi−1

X1
X2

φi+1

φi

φ′i

φi−1

X1
X2

φi+1

φi

φ′i

φi−1

X1
X2

φi+1

φi

φ′i

φi−1

X1
X2

φi+1

φi

φ′i

φi−1

X1
X2

v

Figure 3 The steps of updating the directory path at level i: 1) Node ϕi sends a message to ϕi−1

and ϕi+1 to inform them about the update. 2) Node ϕi informs ϕ′
i to join the directory path. If we

are using a weak sparse partition, node v acts as an intermediate in the message transfer. 3) ϕ′
i sets

pointers to ϕi−1 and ϕi+1 and sends them a message so they update their pointers too. 4) ϕi−1 and
ϕi+1 change their pointer to ϕ′

i and send a message to ϕi to remove its pointers. 5) ϕi removes its
pointers to ϕi+1 and ϕi−1.

For simplicity, we prevent consecutive nodes on the directory path to update concurrently
(when the modification is due to an edge failure). Therefore, if ϕi = l(X) needs to be replaced
by l(X2), then ϕi will first contact ϕi−1 and ϕi+1 to inform them of the update, before
messaging l(X2). Neither of them will be able to initialize an update on their level until the
update at level i is complete. In case two subsequent nodes attempt to initialize an update of
the directory path simultaneously, then the node with the lower id will be allowed to update
first. The process of updating the directory path is displayed in Figure 3. In the next lemma,
we bound the cost of updating the directory path.

▶ Lemma 12. To update the directory path we send O(1) messages of size O(log n) which
travel a distance at most O(D′) where D′ = diam(G \ {e}).
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At the same time that we modify the directory path, we also update the special parent
information of l(X1) and l(X2). When l(X1) and l(X2) update ϕ, they also send a message
to their special parent instructing them to update their pointers accordingly.

▶ Lemma 13. To update the special parent information we send two messages of constant
size that traverse a distance of at most σρi in a strong sparse partition and at most 2σρi′ in
a weak sparse partition, where i′ = i + logρ(c′σ).

5 Analysis of Algorithm

We examine our protocol’s performance with up to f faults. Edge failures may stretch the
directory path, leading to delayed updates of special parent information. Consequently,
operations that occur during or immediately after a failure may experience additional costs,
referred to as transient operations. Once the directory path is rebuilt by a publish or move
operation and the special parent information is updated, operations are considered normal
operations. Here we analyze the cost of normal operations. (We discuss transient operations
in the full version of the paper.)

We first bound the length of the directory path after failures.

▶ Lemma 14. Suppose that since the last edge failure, the directory path has been rebuilt up
to level i. Then the length of the directory path up to level i is at most O(σρi).

Before we analyze the cost of lookup and move operations, we bound the number of
clusters affected by an edge failure.

▶ Lemma 15. A failure of edge e = {u, v} splits at most h clusters in a strong, and Ih

clusters in a weak sparse partition.

In addition, if an edge failure occurs, we may add extra layers to the directory to
accommodate the increased diameter. As explained in Section 4.2, the number of added
layers is proportional to the diameter increase.

We now analyze the cost of lookup and move operations when up to f failures occur.

▶ Theorem 16. Suppose we are using a strong sparse partition and that f edge failures have
occurred. After updating our data structures, a lookup operation finds the token with cost
that is O(σ2(I + f)ρ) factor from optimal.

Proof. Suppose node u issues a lookup request while the current owner is node v, where
u ̸= v, and ρi−1 ≤ dG(u, v) ≤ ρi. This implies the optimal cost is at least dG(u, v) ≥ ρi−1.

Let w be the directory path node at level i. By Lemma 14, the segment of ϕ from v to
w is at most c1σρi for some constant c1. Hence, dG(v, w) ≤ c1σρi. Therefore, dG(u, w) ≤
dG(u, v) + dG(v, w) ≤ c2σρi, for some constant c2 ≥ 1 + c1.

Let sw be the special parent of w, which is the leader of the cluster that includes w at level
i′ = i+logρ(c′σ), for a constant c′ ≥ c2. Since ρi′ = c′σρi, node sw is in the ρi′ -neighborhood
of u. Therefore, the lookup operation is guaranteed to discover sw at level i′.

We sum the cost of the search up to level i′. On each level, node u contacts at most I + f

leaders by Lemma 15. When node u contacts a cluster leader node l(X) at level i, then there
must be a node x in X such that d(u, x) ≤ ρi. Hence, the distance between u and l(X) is at
most d(u, l(X)) ≤ ρi + 2σρi ≤ cσρi for some c ≥ 1 + 2σ. Therefore,

cost upward phase ≤
i′∑

j=0
(I + f)cσρj = O(σ2(I + f)ρi).

The cost of the downward phase is given by Lemma 14. Thus, for strong sparse partitions,
the total cost of a lookup is O(σ2(I + f)ρi) which is O(σ2(I + f)ρ) factor from optimal. ◀
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▶ Theorem 17. Suppose we are using a weak sparse partition and that f edge failures have
occurred. After updating our data structures, a lookup operation finds the token with cost
that is O(σ2fIρ) factor from optimal.

Proof. The proof is identical to Theorem 16, except that after f edge failures Pi(u) ≤ fI,
according to Lemma 15. Thus, the lookup operation visits up to fI clusters on each level. ◀

▶ Theorem 18. Consider a sequence S of move requests S = s1, . . . , sq that are all issued
after the f th edge failure and which are executed sequentially. The total cost of the move
operations in S is a O(h′σρ((I + f) + σ) factor from optimal in a strong sparse partition
(for sufficiently large S).

Proof. Let Si = si1 , si2 , . . . , siz , 0 ≤ i ≤ h′, be the sub-sequence of S that reach level i in
their upward phase, where h′ is the highest level of P after the f failures. And let uij

be the
issuer of sij . Define si0 to be the last move operation prior to S that reached level i. If no
such operation exists, si0 is the initial publish operation.

Operation sij
forms a new directory path pij

that links the leaders of uij
up to level i − 1.

At level i, pij
links to ϕi, which is the level i leader of a node in uij

’s ρi-neighborhood.
We show that d(uij−1 , uij

) > ρi−1, for j > 0. Between sij−1 and sij
no operation modified

ϕi−1. Since sij reaches level i, it does not discover ϕi−1 = pij−1 at level i − 1. This implies
that uij−1 is not in the ρi−1−neighborhood of ui,j .

Let C∗(Si) denote the optimal cost of the operations in Si and C∗ be the optimal cost
of all operations. Since the distance between any two consecutive nodes in Si is more than
ρi−1, we have that C∗(Si) > |Si|ρi−1, which implies that

C∗(S) ≥ max
0≤i≤h′

C∗(Si) ≥
∑h′

i=0 C∗(Si)
h′ + 1 >

∑h′

i=0 |Si|ρi−1

h′ + 1 . (1)

The cost of searching for the directory path up to level i is, the same for a move and a
lookup operation. Hence, cost(Si upward phase) ≤ |Si|cσ2(I + f)ρi for some constant c.

For the downward phase, we need to be more careful because si1 could be a transient
operation for 0 ≤ i ≤ h′, that encounters two consecutive nodes ϕk and ϕk−1 with distance
up to d(ϕk, ϕk−1) = D′, where D′ is the diameter of G after the f edge failures. However, for
each sub-sequence Si, where 0 ≤ i ≤ h′, only si1 can be a transient operation as subsequent
operations will traverse the updated directory path. For normal move operations, we can
bound the downward phase by the length of the upward phase. Hence, we have

C(S) ≤ h′D′ + 2
h′∑

i=0
|Si|cσ2(I + f)ρi. (2)

From Equations 1 and 2, we get the competitive ratio for the move operations in S. For a
strong sparse partition we have

C(S)
C∗(S) ≤

(h′ + 1)(h′D′ + 2
∑h′

i=1 |Si|cσ2(I + f)ρi)∑h′

i=0 |Si|ρi−1
= O(h′σρ((I + f) + σ)),

where we assume the second term to be the dominating one, which holds for a sufficiently
large set of move operations S (namely, |S| = Ω(h′2D′)). ◀

▶ Theorem 19. The total cost of the move operations in S is a O(h′σρ(fI + σ)) factor from
optimal in a weak sparse partition (for sufficiently large S).

Proof. The proof is identical to Theorem 18, except that to search a single layer for the
directory path, node u needs to contact |Pk(uij

)| ≤ fI clusters in a weak sparse partition. ◀
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6 Adding Fault Tolerance to the Directory

In this Section, we explain how to integrate the fault-tolerance mechanisms into our directory.
Here, we consider failures of one edge at a time. (Concurrent edge failures are discussed in
the full version of the paper.) We first explain why we modified the directory operations as
described at the beginning of Section 4: The first modification lets us determine if we need
to update the directory path due to an edge failure. The second and third modifications
ensure correctness and performance during the upward phase of a lookup or move operation.

When node w searches for the directory path its preprocessing information determines
which nodes it contacts. If the leader of a node in w’s ρi-neighborhood changes due to a
cluster split, then w might contact the wrong leader if it does not get informed of the update
in time. By including a list of all nodes that w believes to be part of the cluster when
contacting a leader about ϕ, the leader can inform w if a node is no longer part of the cluster.
In this case, w knows that it needs to wait for a cluster update to contact all leaders.

The distance to a leader l(X) of a node x in w’s ρi-neighborhood is at most d(w, l(X)) ≤
d(w, x) + d(x, l(X)) ≤ ρi + 2σρi (by Lemma 8). If the distance between w and the node
whom it believes to be x’s level i leader is larger, then a cluster split must have occurred.
Therefore, instead of paying a too high cost, w waits for a cluster update info by node x.

We discuss the cases of edge failures on the shortest path tree and during move operations.
(The case of publish and lookup operations are covered in Appendix B.)

6.1 Edge Failure on the Shortest Path Tree
When an edge on T (w) fails, w updates T (w) immediately upon being informed of the failure,
regardless of whether w was in the middle of a directory operation. All directory operations
rely on T (w): publish uses it to contact the leaders of w at the lowest cost possible, move
and lookup further use on it to determine whose leaders to contact at each level.

If w is notified of the failure while performing an operation, it stops the operation, updates
T (w), and then resumes the operation. For a publish operation, w simply continues. For
lookup and move operations, node w takes into account the updated shortest path tree:
Suppose the edge failure increases the distance from x to w from d to d′, where ρj−1 < d ≤ ρj

and ρk−1 < d′ ≤ ρk, while w searches level i for the directory path. If j > i and k > j, then
the first time w contacts x’s leader node is at level k (unless w contacts x’s leader due to a
different node in the cluster). If j ≤ i and k > i, then w does not contact Ci(x), unless it
already did so before being informed about the edge failure, or because there is a different
node in w’s ρi-neighborhood that belongs to cluster Ci(x). The first time it contacts x’s
leader node is at level k. If j ≤ i and k ≤ i, then w will contact cluster Ci(x) during its level
i search and at each subsequent level until it finds the directory path. The downward phase
of a lookup or move operation is not affected by the edge failure on T (w).

6.2 Edge Failure during Move Operation
While Searching for the Directory Path

The search phase of a move issued by w can only be affected by the edge failure if w needs
to contact the leader of a cluster that splits due to the edge failure. Suppose that the level i

leader of a node x in w’s ρi-neighborhood changes due to a split of a cluster X.
There are two cases to consider depending on whether w is informed about the change

before or after contacting l(X). If w is informed before, then there is no issue. Otherwise,
two sub-cases arise. If l(X) is already aware of the failure, it informs w that it is not x’s
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leader, causing w to wait for the cluster update message from x. If not, l(X) responds to
w’s message as though x was still part of the cluster, and w does not need to contact x’s
new level i cluster since the information received from l(X) is valid for w’s new cluster.

The new directory path built during the search is unaffected by the failure of edge e.

While Following the Directory Path Downward

Assume the edge failure occurs while w’s move follows the directory path down. If the
downward phase of the move operation does not encounter any clusters that split, an update
at level i completes before the move reaches level i, or if the directory path remains unchanged,
then the failure does not affect this phase.

Suppose that the split of cluster X results in a modification to the directory path at level
i, and l(X) realizes the need for the modification before the move operation reaches ϕi+1.
Two cases arise: If l(X) has already initialized the modification at level i, ϕi sends a message
to ϕi+1 to inform it of the update. In this case, ϕi+1 does not forward the move message
until the modification is complete. If cluster X is waiting for a modification of the directory
path at a level above or below i, the move operation either halts before reaching level i if
the modification occurs above i. Or, if the modification occurs below i, the move operation
traverses the old pointers up to the modified level and removes them, preventing l(X) from
initializing a directory path modification.

7 Conclusions

We presented a fault-tolerant directory scheme based on sparse partitions that tolerates
edge failures. We showed that the performance of the directory is linearly affected by the
number of failures f . We showed how to adjust the clusters due to failures to transform the
σ and I parameters, such that σ simply doubles while I is affected by either a f factor (weak
diameter clusters), or f additive term (strong diameter clusters).

There are a few open questions that remain to be studied. One is to handle partitions of
G due to failures. The connected component that contains the token can still function and
respond to operation requests. A related problem is examining the impact of node failures.
If G has bounded-degree d a node failure corresponds to at most d edge failures, then the
techniques we developed could be adapted to analyze node failures.

Another line of research related to preserving distances is building fault-tolerant sparse
spanners. A sparse spanner of G is a subgraph H such that the pairwise distances on G are
stretched by a small factor on H. There exist fault-tolerant sparse spanners that maintain
the stretch of the distances even after edge or node failures [2, 17]. Inspired by this, a future
research direction is to design failure-oblivious sparse partitions with appropriate multiple
pre-selected leaders in each cluster. Such leaders would be able to handle the failures without
the need for cluster restructuring.
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A Omitted Proofs

▶ Observation 6. If edge e = {u, v} is part of the shortest path tree of a node w, then edge
e is also part of the shortest path tree of u and v.

Proof. If this was not the case, then the shortest paths from w to u and v stored in T (w)
cannot be consistent with the shortest paths from v and u to w stored in T (v) and T (u). ◀

▶ Lemma 7. To initialize the update of the shortest path tree, O(n) messages of size O(log n)
are required, that travel a maximum message distance of D, where D is the diameter of G

before the failure of e.

Proof. Broadcasting the id of the failed edge allows any node to detect if it needs to update
its shortest path tree. The remainders of T (u) and T (v) contain at most n nodes and the
maximum distance from any node to the root is at most D. ◀

▶ Lemma 8. Let X be a cluster at level i, −1 ≤ i < h, and suppose at most f edges fail.
Then X splits into at most f + 1 clusters. Each new cluster Xj, generated from X, has
diameter at most diam(Xj) ≤ 2σρj.

Proof. The connected components of T (X) \ F , where F is the set of failed edges, form the
final clusters. Since T (X) ∩ F ⊆ F , we remove at most f edges from T (X), which means
T (X) \ F has at most f + 1 connected components.

Let Xj be a cluster generated through the splitting of the initial cluster X. By construction,
the maximal distance of any node on T (X) to l(X) is at most σρj (with respect to T (X)).
Let uj be the node in Xj that was closest to l(X) on T (X) and a and b be any two nodes in
Xj . Then d(a, b) ≤ d(a, uj) + d(uj , b) ≤ 2σρj , because uj must have been on the path from
a, respectively b to l(X) on T (X). ◀
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▶ Lemma 9. Splitting a level i cluster requires one message in a strong and up to two messages
in a weak sparse partition. These have size log n and traverse a distance of at most σρi.

Proof. In any partition, node u sends a message to l(X) to inform it about the failure. As
l(X) knows T (X) it suffices to send u’s id. If in a weak sparse partition node v is not in X2,
it selects a node w closest to it in X2 to become l(X2). To inform w of its new leadership role,
v sends a message with e’s id along T (X) to w, so w can update its knowledge on T (X). ◀

▶ Lemma 10. To inform all nodes in X1 and X2 of the cluster change we need to send O(n)
messages, each of which has size O(log n). In a strong partition, the maximum distance a
message traverses is σρi and in a weak sparse partition, the maximum distance is 2σρi.

Proof. Node l(X1) broadcasts the id of u and l(X2) broadcasts its own id and the id of v.
This suffices to inform each node of its leader and to update T (X). As |X1 ∪ X2| = O(n),
we send at most O(n) messages. Our mechanisms ensure that in a strong sparse partition, a
node’s distance to its leader is at most the distance it had to l(X) before the failure, which is
σρi. In a weak sparse partition, the new diameter is at most 2σρi, according to Lemma 8. ◀

▶ Lemma 11. To inform the ρi-neighborhood of the nodes in X2 about the new leader requires
O(n2) messages of size O(log n). The maximum distance traversed by any message is ρi.

Proof. In our algorithm, each node in X2 sends the id of the new leader to every node in
its ρi-neighborhood using its shortest path tree. In the worst case, |X2| = O(n), and the
ρi-neighborhood of every node in X2 has size O(n). ◀

▶ Lemma 12. To update the directory path we send O(1) messages of size O(log n) which
travel a distance at most O(D′) where D′ = diam(G \ {e}).

Proof. One message is sent from l(X1) to v and forwarded to l(X2) to inform l(X2) whether
it is part of the directory path. The distance from l(X) to v is at most D′ and the distance
between v and l(X2) can be bounded by the diameter of X2, that is d(l(X2), v) ≤ 2σρi.

When l(X2) is part of the directory path, then l(X) contacts ϕi+1 and ϕi−1 about the
upcoming update. When l(X2) receives l(X1)’s message, it also sends a message to ϕi+1 and
ϕi−1. When they receive this message, they again a message to l(X). None of these messages
need to travel further than D′, because all messages are sent along shortest path trees. ◀

▶ Lemma 13. To update the special parent information we send two messages of constant
size that traverse a distance of at most σρi in a strong sparse partition and at most 2σρi′ in
a weak sparse partition, where i′ = i + logρ(c′σ).

Proof. Nodes l(X1) and l(X2) both send a message to their respective special parent. Both
l(X) and li′(l(X)) are in Ci′(l(X)) and both l(X2) and li′(l(X2)) are in Ci′(l(X2)), thus
these messages can be sent along the spanning trees of Ci′(l(X)) and Ci′(l(X2)). In a strong
sparse partition, the initial spanning tress of the clusters guarantee that the distance from
any node to the leader along the spanning tree is at most σρi′ . This property is maintained
even if clusters split. In a weak sparse partition, Lemma 8 tells us that the diameter of the
spanning tree of any cluster is at most 2σρi. ◀

▶ Lemma 14. Suppose that since the last edge failure, the directory path has been rebuilt up
to level i. Then the length of the directory path up to level i is at most O(σρi).
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Proof. Suppose the last time ϕ was modified at level i was by node u and the last time ϕ

was modified at level i + 1 was by node w. Then the modification at level i must have been
due to a move operation issued by u which found the directory path level i + 1. We thus
know that d(ϕi, ϕi+1) ≤ d(ϕi, u) + d(u, w) + d(w, ϕi+1). Because u found ϕ at level i + 1, we
have d(u, w) ≤ ρi+1. After the repair of the data structure, the diameter of a cluster X at
level i is at most diam(X) ≤ 2σρi. Thus, we obtain

length(ϕ1, . . . , ϕi) =
i−1∑

j=−1
d(ϕj , ϕj+1) ≤

i−1∑
j=−1

2σ(ρi + ρi+1) + ρi+1 = O(σρi). ◀

▶ Lemma 15. A failure of edge e = {u, v} splits at most h clusters in a strong, and Ih

clusters in a weak sparse partition.

Proof. A cluster X splits if T (X) contains e. In a strong sparse partition T (X) contains
only nodes from X. As a node belongs to only one cluster, this implies that in a strong
sparse partition at most cluster per level splits. In weak sparse partition, T (X) may contain
nodes not in X, but a node’s ρi-neighborhood intersects at most I clusters of Pi. Since a
cluster whose spanning tree contains e also contains u and v, at most I clusters on a level
need to be reclustering due to e failing. ◀

B Adding Fault Tolerance to the Directory (Cont.)

B.1 Edge Failure during Publish Operation

Suppose w issues a publish operation and an edge failure occurs before the publish operation
reaches level h. The publish operation is only affected if at some level i the leader of w

changes. If w is informed of the change before adding l(X) to the directory path, then w

will add its new level i leader to the directory path. If the directory path has already been
built to level i, then our failure mechanisms will update the directory path.

B.2 Edge Failure during Lookup Operation

While Searching for the Directory Path

The search for the directory path of the lookup operation is similar to that of the move
operation, but the lookup operation also uses the information provided by special parents
and it does not modify the directory path. We thus only discuss the impact of an edge failure
on the special parent information: When w’s lookup finds a special parent l(X) of a node
l(X ′) on the directory path the lookup follows the link from l(X) to l(X ′). If cluster X ′

splits and the directory path updates before the lookup reaches l(X ′), then w’s lookup will
go back to X and continue its search for the directory path there.

While Following the Directory Path Downward

The downward phase of a lookup is not affected by modifications to the directory path.
Suppose that the directory path gets modified at level i due to the edge failure. If the
directory path is updated before the lookup operation reaches level i, then the lookup follows
the updated path. Otherwise, the lookup operation follows the pointers from ϕi+1 to ϕi,
from ϕi to ϕi−1 as these are still intact.
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C Pseudocode of Basic Directory Algorithm

Algorithm 1 Directory Operations Issued by Node v.

Graph G has partition hierarchy P with topmost level h = ⌈logρ D⌉, for constant ρ > 1;
Directory path ϕ = ϕ−1, ϕ0, . . . , ϕh points toward the current owner of token t;

// Publish Operation
for level i from 0 to h do

ϕi ← li(v); // ϕi is set to be the leader of v at level i

Add bidirectional links between ϕi and ϕi−1;

// Lookup Operation
i← 0; // start level of upward phase
while none of the leaders of clusters in Pi(v) know about ϕ do

i++; // upward phase to discover ϕ

If a special parent pointer toward ϕi′ (i′ < i) was discovered at level i, then adjust i← i′;
// downward phase toward token
for level k ← i down to 0 do

Follow the downward pointer of ϕk;
Return value of token t from owner node ϕ−1;

// Move Operation
ϕ−1 ← v; // start forming new ϕ toward v

i← 0; // upward phase discovers previous ϕ

while none of the leaders of clusters in Pi(v) are ϕi do
ϕi ← li(v); // form new path ϕ

Add bidirectional links between ϕi and ϕi−1;
Inform special parent li′ at level i′ = i + logρ(c′σ) about ϕi;
i + +;

old← level i− 1 node pointed downwards by ϕi;
Add bidirectional links between ϕi and li−1(v); // adjust topmost node
Delete upward link of old and information at special parent of old;
// downward phase deletes old ϕ

while level of old is not −1 do
w ← node pointed by downward link of old;
Delete links between w and old and information at special parent of w;
old← w;

Transfer token t from old to v; // v is new owner
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1 Introduction

Given a network and a set of mobile agents, the black hole search problem (also termed
as BHS problem) consists of locating a malicious stationary node that has the power to
eliminate any number of incoming agents without leaving any trace of its existence. This
problem is not new, and it readily has many real-life implications. For example, the black
hole may be a node infected with a virus in a computer network, and in order to make the
network safe, the infected node should be located for further action. The first task for any
set of mobile agents ought to be to locate the black hole. To accomplish this task, at least
one agent needs to visit the node; we aim at an efficient BHS algorithm, where the minimum
number of agents gets consumed by the black hole so that at least one agent must remain
alive in order to locate the black hole within finite time. This problem has been extensively
studied in networks which are static, see, e.g., [1, 6, 8, 9, 14, 15, 17, 18, 20]. Recently, research
on black hole search problem has been mainly focused on dynamic networks; in particular,
the most relevant dynamic networks studied are time-varying graphs. These networks work
on temporal domains, which are mainly considered to be discrete time steps. More precisely,
the network is a collection of static graphs, in which some edges may disappear or reappear
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at each discrete time step, while the vertex set is fixed, with the additional constraint that at
each time step the underlying graph remains connected (also termed as 1-interval connected).
Presently, apart from the black hole search on a dynamic ring [11] and on a dynamic cactus
[2], nothing much is known about the black hole search problem on dynamic networks.

In this paper, we investigate this problem on a dynamic torus of size n × m (where
each ring is 1-interval connected and without loss of generality 3 ≤ n ≤ m), where a set of
agents synchronously perform the same execution, with the goal of locating the black hole.
Moreover, we consider that each node in the underlying torus has a whiteboard, used by the
agents to write\read some information used by the agents while executing a certain black
hole search algorithm.

We study two types of initial configurations of agents, under the assumption that each
agent executing the black hole search algorithm, can communicate among themselves when
they are at the same node, and they can also use the whiteboard present at each node of
the underlying graph in order to communicate with other agents. In the first configuration,
all agents are initially located at the same node; in the second configuration, the agents are
scattered along the nodes of the underlying network. In both configurations, all the nodes
where agents are initially located are not dangerous, i.e., they do not contain the black hole
(they are safe). Our primary objective is to design an efficient BHS algorithm such that: (a)
within a finite time, at least one agent survives, and (b) it gains knowledge of the black hole
location.

2 Related Works and Our Contribution

2.1 Related work
Network exploration by mobile agents is one of the fundamental problems in this domain,
and it was first introduced by Shannon [24]. After his pioneering work, this problem has
been extensively studied in various topologies such as rings [23], trees [10], general graphs [7]
under different models of communication (particularly, pebbles [12] and whiteboard [26]),
synchrony (synchronous [7], semi-synchronous [4] and asynchronous [19]) and both in static
[7] as well as dynamic networks (tori [22] and general graphs [21]).

The black hole search (BHS) problem is a special version of the exploration problem,
where, in the worst case the underlying network needs to be explored in order to locate
the black hole position. This problem was first introduced by Dobrev et al. [15], and after
that has received a lot of attention: indeed, it has been studied for directed [8] as well as
undirected graphs [6], and for different underlying networks, such as rings [6], tori [5], trees [9]
and general graphs [15]. In addition, different communication models have been considered
for this problem, including ‘Enhanced Token’ [13], “Pure Token” [20] and whiteboard [16].
Moreover, this problem has also been explored for different initial agent configurations. In
particular, Shi et al. [25] showed that, when the agents are co-located, a minimum of 2
co-located agents communicating via tokens can solve the BHS problem in hypercube, torus
and complete network with Θ(n) moves, whereas in the case where k agents (k > 3) are
scattered, then with only 1 token per agent it is shown that BHS can be solved in O(k2n2)
moves. All these above papers discuss black hole search in a static network, and very little
is known about the problem in dynamic networks. Di Luna et al. [11] first investigated
this problem in a dynamic ring, and they showed that when the agents are co-located, then
in face-to-face communication with 3 agents there is an optimal algorithm that works in
Θ(n2) moves and Θ(n2) rounds (where n is the size of the ring). Next, with whiteboard
communication, they reduced the complexity to Θ(n1.5) rounds and Θ(n1.5) moves. Lastly,
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when the agents are initially scattered and each node has a whiteboard, then again with
3 agents they showed that at least Θ(n2) moves and Θ(n2) rounds are required for any
BHS algorithm. In each case, they gave an optimal algorithm. Next, Bhattacharya et al.
[2] studied the BHS problem in a dynamic cactus graph, and proposed an agent optimal
algorithm when at most one edge can be dynamic; in the case when at most k (> 1) edges
can be dynamic, they proposed a lower bound of k + 2 and an upper bound of 2k + 3 agents.

In this paper, we further investigate the BHS problem in a dynamic torus, with the aim
of providing an efficient BHS algorithm. To the best of our knowledge, this is the first work
where the BHS problem is explored in the case of a dynamic torus. Previously, Gotoh et
al. [22] studied the exploration problem under link presence detection and no link presence
detection in dynamic tori, whereas Chalopin et al. [5] studied the BHS problem in a static
torus and gave tight bounds on the number of agents and tokens when the agents are initially
scattered.

2.2 Our Contribution
We investigate the BHS problem in a dynamic torus for two initial configurations: first, when
the set of agents are initially co-located, and next, when the agents can be initially scattered
in different nodes. When the agents are initially co-located, we provide the following results.

We establish the impossibility of correctly locating the black hole with n + 1 agents.
We show that with n + c (where c ≥ 2 and c ∈ Z+) co-located agents, any BHS algorithm
requires at least Ω(m log n) rounds.
With n + 3 agents we present a BHS algorithm that works in O(nm1.5) rounds.
With n + 4 agents we present an improved BHS algorithm that works in O(mn) rounds.

The following results are obtained when the agents are initially scattered.
We establish the impossibility of correctly locating the black hole with n + 2 agents.
We show that with k = n + c (where c ≥ 3 and c ∈ Z+) scattered agents, any BHS
algorithm requires Ω(mn) rounds.
With n + 6 agents we present a BHS algorithm that works in O(nm1.5) rounds.
With n + 7 agents we present a O(mn) round optimal BHS algorithm.

The list of results are summarised in the following Table 1.

Table 1 Summary of Results where LB, UB and IC represent lower bound, upper bound and
initial configuration of the agents, respectively.

IC Bound # Agents Rounds Results
Colocated LB n + 2 Ω(m log n) Cor 1 & Thm 3

UB n + 3 O(nm1.5) Thm 7
UB n + 4 O(nm) Thm 8

Scattered LB n + 3 Ω(nm) Cor 3 & Thm 5
UB n + 6 O(nm1.5) Thm 9
UB n + 7 O(nm) Thm 10

Organisation. The remainder of the paper is organised as follows. In Sections 3 and 4, we
explain the model and prove the lower bound results. Next, in Section 5, we discuss some
preliminary notation and basic subroutines which will be used by our algorithms. Further,
in Sections 6 and 7, we present and analyse our algorithms for the co-located and scattered
case. Finally, we list some concluding remarks in Section 8.

SAND 2024



6:4 Black Hole Search in Dynamic Tori

Due to the restrictions in the page limit, the pseudocodes of the algorithms, proofs of the
theorems and lemmas are omitted and can be found in the full version of this paper [3], which
also includes a detailed explanation of the states and predicates used in our algorithms.

3 Model and Problem Definition

Graph Model. The dynamic graph is modelled as an undirected time-varying graph (or
formally known as temporal graph) G = (G, V, E,T, ρ), where V is the set of vertices (or
nodes), E is the set of edges in G, T is defined to be the temporal domain, which is defined
to be Z+ as in this model we consider discrete time steps, also ρ : E × T → {0, 1} is
defined as the presence function, which indicates the presence of an edge at a given time.
The graph G = (V, E) is the underlying static graph of the dynamic graph G, also termed
as footprint of G. More specifically, the footprint G = (V, E) is a torus of size n × m,
where n represents the number of rows and m represents the number of columns, we define
V = {vi,j | 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1} and E is the set of edges, where the horizontal and
vertical edges are {(vi,j , vi,j+1 mod m)} and {(vi,j , vi+1 mod n,j)}, respectively. By the node
vi,j we invariably mean vi mod n,j mod m and these modulus functions are ignored further in
this paper. In order to restrict self-loop or multiple edges without loss of generality, we
assume 3 ≤ n ≤ m. A row ring Ri (resp, a column ring Cj) is the subgraph of G induced by
the set of vertices {vi,j | 0 ≤ j ≤ m − 1} (resp, {vi,j | 0 ≤ i ≤ n − 1}). The adversary has
the ability to make an edge reappear or disappear at any particular time step with the added
constraint that, irrespective of how many edges disappear or reappear, each row and column
ring at any time step must be connected; in other words, each row and column ring in G is
1-interval connected (so at any time, the adversary can make at most one edge disappear
from each row and column ring, in order to maintain the 1-interval connectivity property).
A disappeared edge is termed as a missing edge in this paper.

Every node vi,j ∈ G is labelled by a unique Id (i, j), whereas each node in G has 4
ports adjacent to it, where the ports corresponding to the edges (vi,j , vi,j−1), (vi,j , vi,j+1),
(vi,j , vi−1,j), (vi,j , vi+1,j), are denoted by west, east, south, north, respectively. In addition,
corresponding to each port of a node vi,j of G a whiteboard of storage of O(1)-bits is placed.
The purpose of the whiteboard is to store and maintain certain information, such as the
node Id or agent Id or the agent’s course of traversal (depending on the amount of storage
the whiteboard can store). Any incoming agent can read the existing information or write
any new information corresponding to a port along which it travels to the next node. Fair
mutual exclusion to all incoming agents restricts concurrent access to the whiteboard. In this
paper, we consider our temporal graph G to be an oriented dynamic torus, i.e., each row and
column ring in G has an orientation. In other words, the nodes of a row (or a column) ring
are marked in an increasing order along a counter-clockwise direction. The network G has
a malicious node or unsafe node also termed as a black hole, which vanishes any incoming
agent without leaving any of its trace. The remaining nodes in G are not malicious, hence
they are termed as safe nodes.

Agent Model. A set of k agents A = {a1, a2, . . . , ak} are assigned the task to locate the
black hole in G. We consider two initial configurations in this paper: first, the set of A

agents are initially co-located at a safe node (the node in G at which they are co-located
is termed as home), second, the agents are initially scattered along safe nodes in G. Each
agent in A has a distinct Id of size ⌊log k⌋ bits taken from the set [1, k], and every agent has
computational capabilities so that it can communicate with other agents when they are at
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the same node at the same time. Each agent has knowledge of the torus size, i.e., both n

and m are known to the agents, and also, each agent has an internal memory of O(log m)
bits. An agent moves from one node to another using the edges at each round; furthermore,
any number of agents can concurrently move along an edge at any round. These actions are
atomic in nature, so an agent cannot recognise the other agents concurrently passing through
the same edge at the same round, but it can see and communicate with all the other agents
present at the current node at the same round. These agents operate in synchronous rounds,
so in each round, every agent becomes active and takes a local snapshot of its current node.
The snapshot includes the presence of the ports of its current node at the current round,
the agent’s local memory (which contains the amount of information gathered by the agent
while communicating with other agents), the set of agents present at the current node, and
the contents of the whiteboard. Now, based on this information, the agent performs the
following actions:

Look: In this step, the agent takes the snapshot of the current node. This snapshot helps
the agent gather the information about the Ids of other agents residing at the same node,
the edges that currently exist at the current round and also the whiteboard information
at the current node.
Compute: On the basis of its earlier snapshot and local memory, the agent decides to
stay at the current node or move to another node. The direction of its movement is also
calculated in this step.
Move: In this step, if the agent decides to move along a specific direction and if the
corresponding edge is present, then it moves along this edge while updating the whiteboard
(if required, based on the algorithm) to the next node in the subsequent round.

Since, the agents operate in synchronous rounds, so each agent gets activated at each
round and performs the LCM cycle. So, the time taken by any algorithm is calculated in
terms of the rounds.

Configuration. A configuration Cr at a round r is defined to be the amalgamation of the
presence of the number of agents at a node, the local memory of each agent and contents
of the whiteboard at the start of round r. The transformation from Cr−1 to Cr depends
on multiple factors: first, the execution of the algorithm; second, the adversarial choices of
edges disappeared and reappeared in round r − 1. C0 is the initial configuration, where, in
the co-located case, the initial safe node is chosen by the adversary, whereas in the scattered
case, the adversary arbitrarily places the agents along the safe nodes.

▶ Definition 1 (Black Hole Search). Given a dynamic torus G of size n × m, an algorithm A
for a set of k agents solves the BHS problem if at least one agent survives and terminates.
The terminating agent must know the exact position of the black hole in the footprint of G.

The measures of the complexity for the BHS problem are as follows: the number of agents or
size, required to successfully execute A, the time or the number of rounds required to execute
A. Note that in this paper, we have assumed the fact that whenever an agent correctly
locates the black hole, the algorithm terminates, so all the other agents executing any action
get terminated immediately.

4 Lower Bound Results

In this section, we present the lower bound results on the number of agents and number of
rounds in both scenarios when the agents are either initially co-located or scattered.
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4.1 Co-located Agents
The next theorem gives impossibility result on the number of agents when they are co-located.

▶ Theorem 1. Given a dynamic torus G of size n × m, there does not exist a BHS algorithm
which correctly locates the black hole with k = n + 1 co-located agents and each node in G
contains a whiteboard of O(1) bits.

▶ Corollary 1. Any BHS algorithm on a dynamic torus G of size n × m requires at least
k = n + 2 co-located agents to correctly locate the black hole when each node in G has a
whiteboard of O(1) bits.

Next lemma gives a lower bound on the round complexity for any exploration algorithm
on a dynamic ring, where at least 2 agents are initially co-located.

▶ Lemma 1. In a dynamic ring of size n > 3 in presence of whiteboard, any exploration
algorithm with l (l ≥ 2) co-located agents require at least Ω(n) rounds to explore such a ring.

▶ Theorem 2 ([11]). In a dynamic ring of size n > 3, any BHS algorithm with 3 co-located
agents in presence of whiteboard requires Ω(n1.5) rounds, even if the agents have distinct Ids.

The following corollary follows from Lemma 1 and Theorem 2.

▶ Corollary 2. In a dynamic ring of size n > 3, any BHS algorithm with at least 4 co-located
agents in presence of whiteboard requires Ω(n) rounds, even if the agents have distinct Ids.

The next theorem gives a lower bound on the round complexity for any BHS algorithm
operating on a dynamic torus with k co-located agents.

▶ Theorem 3. Any BHS algorithm with k = n + c co-located agents, where c ∈ Z+ and
c ≥ 2, on a n × m dynamic torus requires at least Ω(m log n) rounds.

Proof. Given a dynamic torus of size n × m (with 3 ≤ n ≤ m) and k = n + c agents are
initially co-located at a safe node, observe by Corollary 2, l (where l ≥ 4) agents can perform
BHS in presence of whiteboard along a row ring of size m in at least Ω(m) rounds. Now, let
us consider there exists an algorithm H which is tasked to perform BHS along the dynamic
torus G, so concurrently exploring a set of rings by a set of l agents is always a better strategy
rather than exploring a ring one at a time by a set of agents. Hence, we consider H instructs
a set of l agents to explore a set of rings concurrently. So, if t (where t ≤ k

l ) rings are
concurrently explored by the set of k agents, then as each ring in G is 1-interval connected,
so the adversary has the ability to block an agent each in every t such rings. This means the
remaining agents left to explore for the next concurrent exploration is at least k − k

l , where
each of these concurrent exploration requires Ω(m) rounds and the number of rings till now
explored is k

l . In the next concurrent exploration, at least k− k
l

l row rings can be explored
in Ω(m) rounds, which further blocks this many agents, and the remaining agents left to
explore remaining graph is k − k

l − k− k
l

l , whereas the total number of row rings explored
yet is k

l + k− k
l

l . Continuing this way, we can define a recursion relation on the remaining
number of agents, T (α) = T (α − 1)(1 − 1

l ) and T (1) = k − k
l , where T (α) resembles that

at the α-th iteration this many agents are left to explore the remaining part of G and each
such concurrent exploration for black hole requires Ω(m) rounds. So, for α many iterations
H requires αΩ(m) = Ω(αm) rounds. Now, we try to approximate the value of α. Observe,
when T (α) ≤ 7, then either the whole torus is explored in the worst case for the black hole or
there is no further concurrency possible because in order to concurrently explore at least two
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rings in Ω(m) rounds, a minimum of 8 agents (as 4 agents are at least required to explore a
ring in Ω(m) rounds) are required to be left available, so if at most 7 agents are remaining
that means no concurrency is possible for any BHS algorithm. Hence, for T (α) ≤ 7, we
approximate the value of α.

T (α) ≤ 7 =⇒ T (α − 1)
(

1 − 1
l

)
≤ 7 =⇒ T (α − 1) ≤ 7l

l − 1

=⇒ T (α − 2)
(

1 − 1
l

)
≤ 7l

l − 1 ≤ 7
(

l

l − 1

)2
· · · =⇒ T (1) ≤ 7

(
l

l − 1

)α−1

=⇒ k

(
1 − 1

l

)
≤ 7

(
l

l − 1

)α−1
=⇒ k ≤ 7

(
l

l − 1

)α

=⇒ log k − log 7
log

(
l

l−1

) ≤ α

This implies α ≈ log n, as k = n + c and l ≥ 4. Hence, this means that for any algorithm
H, in order to either explore the whole dynamic torus for a black hole or to stop concurrent
exploration, at least α ≈ log n many concurrent exploration needs to be performed, where
each iteration takes Ω(m) rounds. This concludes that the total number of rounds at least
required by any algorithm with k = n + c, co-located agents is Ω(m log n). ◀

4.2 Scattered Agents

Next theorem shows the impossibility of BHS with k = n + 2 scattered agents.

▶ Theorem 4. Given a dynamic torus G of size n × m, there does not exist any BHS
algorithm which can correctly locate the black hole with k = n + 2 scattered agents, the result
holds as well even if the nodes in G has a whiteboard.

▶ Corollary 3. Any BHS algorithm on a dynamic torus G of size n × m requires at least
k = n + 3 scattered agents to correctly locate the black hole when each node in G has a
whiteboard of O(1) bits.

Following theorem is inspired from Theorem 4.2 in [22], which gives the lower bound on
the round complexity for any BHS algorithm with k scattered agents along G.

▶ Theorem 5. Any BHS algorithm with k = n + c scattered agents, where c ∈ Z+ and c ≥ 3,
on a n × m dynamic torus G requires at least Ω(mn) rounds.

5 Preliminaries

In this section, we explain all the subroutines, definitions and ideas used in our BHS algorithm,
but first, we explain the contents maintained by the agents on the whiteboard.

Whiteboard. The following data is stored and maintained in the whiteboard by the agents.
For each dir ∈ {east, west, north, south} with respect to each vi,j ∈ G we define the function
f : {east, west, north, south} → {⊥, 0, 1},

f(dir) =


⊥, if an agent is yet to visit the port dir

0, if no agent has marked the port dir as safe
1, if the port dir is marked safe, i.e., the node along dir is not black hole
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6:8 Black Hole Search in Dynamic Tori

Cautious Walk. This is a fundamental movement strategy used in a network with a black
hole, and it is used as a building block of all our algorithms. In this strategy, if two agents
are together, then this strategy ensures that only one among them enters the black hole
while the other survives. On the contrary, if only a single agent is present, then whenever it
visits a new node, it leaves some mark behind on the whiteboard so that whenever another
agent tries to visit this node along the same edge, it finds the mark and does not enter the
black hole.

This walk is performed in three rounds, where if an agent a1 (say) is alone (resp, with
another agent a2, say) then in the first round a1 decides to move one step along e = (u, v)
from u to v by marking f(e) = 0 (while a2 waits) and if it is safe, i.e., does not contain the
black hole, then in the next round a1 returns to u and marks the edge e safe by writing
f(e) = 1, then in the third step a1 (resp, a2) moves to v. This strategy ensures that no two
agents enter the black hole along the edge e.

Stuck. An agent a1 is defined to be stuck while exploring a 1-interval connected ring for
two reasons.

First, if while performing cautious walk along an edge e = (u, v), a1 at round r marks
f(e) = 0 at u and moves to v, while v is safe and a1 tries to return to u at round r + 1 to
mark f(e) = 1, finds e to be missing, in this situation a1 is stuck at v until e reappears.
Second, if while moving along dir, a1 finds e to be missing. In this situation, if more
than one agent is simultaneously trying to move along dir at the same round and if a1 is
the lowest Id among them, then a1 is stuck until e reappears, or, if a1 is alone, then in
that case also a1 is stuck until e reappears.

5.1 Subroutines
In this section, we will discuss the sub-routines used as a building block in our BHS algorithms
for both the co-located and scattered initial configurations. We have followed some of the
pseudocode convention from the papers [11] and [22]. In this paper, we use three kinds of
Move procedure in our algorithms, first, Move(dir | p1 : s1; p2 : s2; . . . ; pk : sk), second,
Move(dir → f(dir) | p1 : s1; p2 : s2; . . . ; pk : sk), and lastly, Move(dir → f(dir) → si | p1 :
s1; p2 : s2; . . . ; pk : sk), where pi is the predicate corresponding to the state si and f(dir)
represents the value with respect to dir (where dir ∈ {east, west, north, south}) in the
whiteboard, so depending on the algorithm we use either of these Move procedures. The
agent at each round, first takes a snapshot at its current location, and thereafter checks the
predicates p1, . . . , pk one after another. If no predicate is satisfied, then in the first Move
procedure, the agent moves along the direction dir, in the second Move procedure the agent
moves along dir while updating the whiteboard of the current node along dir to f(dir),
and lastly, in the third Move procedure, in addition to moving along dir and updating the
whiteboard, it also moves directly in to the state si. On the other hand, if some predicates
are satisfied, then the agent chooses the first satisfied predicate (say) pi, and the procedure
stops, and the agent moves into state si corresponding to pi. The predicate and state of the
form pj : time + i → sj indicates that if pj is satisfied then the agent enters the state sj after
time + i rounds, whereas the predicate and the state of the form pj : f(dir) → sj , indicates
that if pj is satisfied then the agent performs the action f(dir) and then moves to the state
sj . Further, these procedures are again executed in the subsequent rounds. In the following
part, we define the algorithm Cautious-WaitMoveWest().
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Cautious-WaitMoveWest(j, l): This algorithm works on 1-interval connected ring Ri

(say), where the main purpose is to make a certain number of agents reach the node vi,j along
the Cj-th column from any initial configuration. Further, whenever an agent reaches the
desired node, and it is not stuck, it waits at that node until further instruction is provided.

The algorithm works as follows: for the first 4(l − 1)m rounds, if an agent a1 is instructed
to perform Cautious-WaitMoveWest(j, l) along Ri, then it starts the following procedure,
if the agent a1 (say) is initially with another agent a2 (say) and since a1 is the lowest Id
among them, a1 starts cautious walk along west until it either gets stuck or has reached the
desired node. On the other hand the task of a2 is to follow a1 until a1 is stuck. While a1 is
stuck, a2 performs the following action. If a1 is stuck due to a missing edge along west, then
a2 instead of waiting reverses its direction to east and continues to perform cautious walk.
Otherwise, if a1 is stuck while returning back to mark a port safe along west which it has
in the last round marked unsafe while exploring and, then a2 waits for at most 3m rounds
since the round it encountered this situation, and then reverses its direction and continues to
perform cautious walk. On the other hand, if a1 is alone, then it performs cautious walk
until it either reaches the desired node or it is stuck. If a1 catches another agent stuck, and if
it is not the lowest Id among them, then it performs a similar action, as explained earlier in
case of a2. After 4(l − 1)m rounds have passed, the agents enter the state Return, in which
each agent not stuck due to a missing edge tries to reach the node vi,j .

▶ Observation 1 ([11]). Given a dynamic ring R and a cut U , where |U | > 1, if its footprint
is connected by edges ec and ecc (where ec and ecc are the clockwise and counter-clockwise
edges, respectively) to nodes in V \U (where V is the set of vertices not in U). If all the
agents at a round r are at U , and do not try to cross along ec, whereas there exists an agent
which tries to cross along ecc, then the adversary has the ability to prevent any agent from
crossing U .

Cautious-WaitMoveWest() ensures that this situation does not arise, as when an agent
is stuck on ec (or ecc), another agent after finding this situation waits for at most 3m rounds
(depending on the fact that whether the earlier agent is stuck while backtracking or it is
stuck because it has encountered a missing edge along west), and then reverses its movement
towards ecc (or ec), while the other agent remains stuck. Hence, there exists a round r where
an agent each is trying to cross ec, and another agent is trying to cross ecc.

The following lemma ensures the correctness of our algorithm in detecting the black hole
when the algorithm terminates.

▶ Lemma 2. If an agent executing Cautious-WaitMoveWest() terminates while moving
along a specific direction, then it correctly locates the black hole.

Next corollary states that in the worst case at most two agents can enter the black hole while
executing Cautious-WaitMoveWest().

▶ Corollary 4. Cautious-WaitMoveWest() ensures that at most two agents enters the
black hole.

The following lemma shows the complexity and correctness of reaching the desired node
while executing Cautious-WaitMoveWest().

▶ Lemma 3. If two agents along a safe row ring Ri of size m (m ≥ 3) execute our algorithm,
then at least one agent reaches the desired node within 7m rounds.

SAND 2024



6:10 Black Hole Search in Dynamic Tori

▶ Lemma 4. If three agents are executing Cautious-WaitMoveWest(j, 3) along Ri and
vi,j is the black hole, then at most 2 agents enter the black hole whereas the adversary has
the ability to stop the third agent from detecting the black hole location.

The next corollary states that if the black hole is located at the current ring, then within
15m (or 15n) rounds, the black hole is detected by a set of 4 agents.

▶ Corollary 5. A set of 4 agents, executing Cautious-WaitMoveWest(j, l) (where l ≥ 4)
along Ri can correctly locate the black hole in at most 15m rounds, where vi,j is the black
hole node.

The following corollary states that while executing Cautious-WaitMoveWest(j, l) the
worst situation happens with exactly 2 agents entering the black hole, which is when the
desired node to reach is vi,j and it is also the black hole node.

▶ Corollary 6. Cautious-WaitMoveWest(j, l) ensures that exactly 2 agents can be
consumed by the black hole when the desired node vi,j is also the black hole node.

The next lemma states that if at any round after the first 4m rounds since the start
Cautious-WaitMoveWest(j, l) along Ri, if there still exists at least 3 agents yet to reach
the desired node vi,j , then our algorithm ensures that in a period of 4m rounds since the
last agent has reached the desired node, at least one among these set of agents yet to reach
the desired node, reaches vi,j .

▶ Lemma 5. After the first 4m rounds have elapsed executing Cautious-
WaitMoveWest(j, l) (where l > 2), if at least 3 agents are still present along Ri then it
takes at most 4m rounds for an agent among them to reach the desired node, since the last
agent has reached the desired node.

The following corollary follows from Lemmas 3 and 5.

▶ Corollary 7. Our algorithm ensures that among l agents operating along Ri at least l − 2
agents reach the desired node within 4(l − 1)m rounds.

▶ Lemma 6. Among the remaining two agents which enter state Return after 4(l − 1)m
rounds has elapsed, at least one among them reaches the desired node.

The following theorem follows from Corollary 7 and Lemma 6.

▶ Theorem 6. If l agents (l ≥ 2) agents are in a safe ring Ri and they perform Cautious-
WaitMoveWest(j, l), then at least l −1 agents reach and stay on vi,j within 4(l −1)m+3m

rounds, since the start of execution of our algorithm.

Cautious-Move(west, j): This algorithm is a special version of our earlier algorithm, it
has two stages, and requires at least 2 agents. The first stage is exploration and works for
3m rounds, and the second stage is Exit. The algorithm works as follows: the lowest Id agent
becomes the Leader, whereas the other agents become the Follower. The Leader explores
new nodes in first stage and Follower follows the Leader until it either finds the Leader

to be stuck or Leader stops reporting either due to a missing edge or it has entered the
black hole. Whenever, the Follower finds the edge is missing and Leader is not reporting
and time < 3m it waits until the missing edge reappears or till time = 3m, whereas if it
finds that the edge exists and Leader is not reporting then it terminates the algorithm, by
declaring the node in which Leader has explored is the black hole node. On the other hand,
whenever the Leader is also stuck due to a missing edge along its moving direction, then
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both Leader and Follower wait until time = 3m. Whenever time > 3m, both Leader and
Follower enter the second stage, i.e., state Exit, in which, irrespective of the fact that they
are stuck or not, they try to return to their desired node, i.e., the node along Cj-th column,
while returning each agent irrespective of Leader or Follower is instructed to mark the port
of each node along their movement to 1 if not already marked so. Whenever the agents,
while returning back, encounter a missing edge, the lowest Id agent waits, and other agents
change direction.

The following two lemmas ensures that if l agents start executing Cautious-Move(),
then among them eventually l − 1 agents reach the desired node within at most 3lm rounds,
since the start of its execution.

▶ Lemma 7. If l (l ≥ 2) agents execute Cautious-Move(west, j) along a safe ring Ri,
then at least l − 1 agents reach vi,j within 3lm rounds.

▶ Corollary 8. If l agents enter the state Exit, then at least l − 1 agents reach vi,j by at most
3(l − 1)m rounds.

CautiousDoubleOscillation[11] We have used this BHS ring exploration algorithm as
a sub-routine in our BHS Torus exploration algorithm. This algorithm uses 3 agents to
explore the ring and successfully detect the black hole, if the black hole node is along that
ring, otherwise, it explores the ring. Among these three agents, one agent is recognised
as the Leader, whereas the remaining two agents are known to be as Avanguard and
Retroguard, respectively. The only difference is that both Avanguard and Retroguard
while exploring a new node marks the corresponding ports safe or unsafe in whiteboard
(where a port is safe implies that the adjacent node along a that port does not contain
the black hole), so this means if Retroguard enters the black hole while exploring a
sector of

√
m nodes along Ri (or

√
n nodes along Cj) then using the whiteboard instead

of a pebble, Leader can detect its location. As stated in [11], three agents executing
CautiousDoubleOscillation requires O(m1.5) rounds to detect the black hole along a
1-interval connected ring of size m.

6 Co-located Agents

In this section, we propose two BHS algorithms on n × m dynamic torus. First algorithm
requires n + 3 agents and works in O(nm1.5) rounds, whereas the second algorithm requires
n + 4 agents and works in O(nm) rounds.

6.1 BHS with n + 3 agents
The set of n + 3 agents, A = {a1, a2, . . . , an+3} are initially located at a safe node vi,j ,
also termed as home. Initially from home, a1 and a2 executes the algorithm Cautious-
Move(north, i), whereas a3 and a4 executes Cautious-Move(south, i). Once 12n rounds
have passed, at least 3 out of these 4 agents return to vi,j (refer corollary 8). Whenever
3 among 4 agents return back to home, the first three lowest Id agents become Leader,
Avanguard and Retroguard and and they are instructed to perform CautiousDou-
bleOscillation along Ri. Now, as per Lemmas 14 and 15 in [11] it takes at most
T = 25m1.5 + 7(m +

√
m) rounds to locate the black hole along Ri. So, after T rounds

since the start of CautiousDoubleOscillation, if the algorithm hasn’t terminated (or
the black hole is not detected) then these agents are instructed to return to vi,j which is
the desired node, irrespective of the fact, whether they are stuck or not. While returning,
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6:12 Black Hole Search in Dynamic Tori

if an agent encounters a missing edge, then the lowest Id agent waits, whereas the other
agent changes direction. Using this strategy, in at most 6m rounds, at least 2 among 3
agents return to vi,j (as this is similar to state Exit in algorithm Cautious-Move(), hence
by corollary 8 this bound holds). After which they all together start executing Cautious-
WaitMoveSouth(i − 1, 4), which enables at least 3 among n + 3 agents reach the node
vi−1,j and continue the same process. This process iterates for each Ri, where 0 ≤ i ≤ n − 1.

▶ Lemma 8. Our BHS algorithm ensures that there always exist 3 agents to perform
CautiousDoubleOscillation along Ri, where 0 ≤ i ≤ n − 1.

An iteration of our BHS algorithm is defined to be the collection of steps the set of
agents perform from the node vt,j (where suppose vi,j be the initial starting node) to
reach the node vt+1,j (where t > 0 t ∈ N+). More precisely, the agents at vt,j , first
perform CautiousDoubleOscillation along Rt, then they try to return back to vt,j ,
after which each agent along Cj try to reach the node vt+1,j while executing Cautious-
WaitMoveSouth(t − 1, 4), this whole process is defined to be one iteration. Now, the next
lemma gives the number of rounds required by the set of n + 3 while executing our BHS
algorithm to perform one iteration.

▶ Lemma 9. It takes at most T + 6m + 15n rounds to perform one iteration of the BHS
algorithm with n + 3 agents.

The following lemma and theorem gives the correctness and complexity of our BHS
algorithm.

▶ Lemma 10. Our algorithm correctly locates the black hole.

▶ Theorem 7. A group of n + 3 agents executing the BHS algorithm along a dynamic torus
of size n × m correctly locates the black hole in O(nm1.5) rounds.

6.2 BHS with n + 4 agents
In this case the set of n + 4 agents, A = {a1, a2, . . . , an+4} agents are initially co-located
at home = vi,j , say. The algorithm in this case is similar to the earlier BHS algorithm
with n + 3 agents; the only difference is that here in order to explore Rt, instead of 3, 4
agents are used, where the lowest and second lowest Id agents at vt,j perform Cautious-
Move(west, j) and the third lowest and fourth lowest Id agents are instructed to perform
Cautious-Move(east, j), instead of CautiousDoubleOscillation. The pseudocode is
explained in Algorithm 1.

Algorithm 1 BHS with n + 4 agents.
1 Instruct a1 and a2 to perform Cautious-Move(north, i).
2 Instruct a3 and a4 to perform Cautious-Move(south, i).
3 if time > 12n then
4 for t = i; t ≤ i − 1; t − − do
5 Instruct the lowest and second lowest Id agents at vt,j to perform

Cautious-Move(west, j).
6 Instruct the third lowest and fourth lowest Id agents at vt,j to perform

Cautious-Move(east, j).
7 ▷ time1 is defined as the time since the last call of Cautious-Move.
8 if time1 > 12m then
9 Perform Cautious-WaitMoveSouth(t − 1, 5).
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▶ Lemma 11. At least 3 among 4 agents executing Cautious-Move(west, j) and Cautious-
Move(east, j) along Rt at some i-th iteration of the for loop of Algorithm 1, reach vt,j within
12m rounds since the start of Cautious-Move() in the current iteration, where 0 ≤ t ≤ n−1.

▶ Lemma 12. Our BHS algorithm, with n + 4 agents, ensures that in every iteration of the
for loop of our algorithm, there always exists 4 agents to perform Cautious-Move(west, j)
and Cautious-Move(east, j).

The following lemma and theorem gives the correctness and complexity of our algorithm.

▶ Lemma 13. A set of n + 4 agents executing Algorithm 1, correctly locates the black hole.

▶ Theorem 8. A group of n + 4 agents executing Algorithm 1 along a dynamic torus of size
n × m correctly locates the black hole in O(nm) rounds.

7 Scattered Agents

This section proposes two BHS algorithms on an n × m dynamic torus. Our first algorithm
works with n + 6 agents and requires O(nm1.5) rounds, whereas our second algorithm works
with n + 7 agents and requires O(nm) rounds.

7.1 BHS with n + 6 agents
A set of n + 6 agents, A = {a1, a2, . . . , an+6} are initially scattered along different nodes of
the torus G, i.e., the agents are arbitrarily placed, where there may be more than one agent
at a node or there can be single agent at each n + 6 nodes in G.

At the first step, each agent performs Cautious-WaitMoveWest(0, 6) from any initial
configuration, so after time1 = 23m (g(6)+3m = 20m+3m) rounds has elapsed since the start
of Cautious-WaitMoveWest(0, 6), each agent currently along C0 is further instructed to
perform Cautious-WaitMoveSouth(0, 6), so after time2 = 23n (g(6) + 3n = 20n + 3n)
rounds has elapsed since Cautious-WaitMoveSouth(0, 6), if at least 3 agents have reached
the node v0,0, then 3 lowest Id agents at v0,0 become Leader, Avanguard and Retroguard,
respectively and are then instructed to perform CautiousDoubleOscillation along R0.
Hence, within T rounds from the start of CautiousDoubleOscillation either the black
hole is detected and the algorithm terminates or the ring R0 is explored. After T rounds since
the start of CautiousDoubleOscillation, these 3 agents are instructed to return to v0,0
by marking each node along their movement till v0,0 to 1 (as the ring is explored and there
is no black hole in this ring, so an agent can mark each port as safe, if not already marked
so). So, by corollary 8 in at most 6m rounds, at least 2 among these 3 agents return to v0,0,
after which, each agent in G are instructed to perform Cautious-WaitMoveWest(0, 6).

On the other hand, if two agents have reached v0,0 after 23n rounds have elapsed since
Cautious-WaitMoveSouth(0, 6), then the lowest Id agent cautiously walks along west

whereas the other agent cautiously walks along east. If along their movement they catches

another agent trying to move along the same direction, then they together perform Cautious-
Move() in the same direction. After 3m rounds has passed since they have started cautious
walk, these agents along R0 are instructed to return to v0,0 by marking each port along their
movement to 1. So, within 6m rounds, if 3 agents are along R0, then at least 2 among them
returns, or if 2 agents are along R0, then at least 1 among them returns, further each agent
along G is again instructed to perform Cautious-WaitMoveWest(0, 6). This process
iterates for each Ri ring (where 0 ≤ i ≤ n − 1), depending on whether 2 or 3 agents have
reached the node vi,0.
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The following lemma states that if 2 agents eventually reach the node vi,0 at some i-th
iteration, then this implies that among the n + 6 agents, already 3 agents have entered the
black hole from three different directions without the black hole getting detected.

▶ Lemma 14. If 2 agents reach vi,0 at the i-th iteration after the execution of Cautious-
WaitMoveSouth(i, 6) when time2 > 23n, and the algorithm has not terminated yet, then
this implies exactly 3 agents has entered black hole from three different directions.

This corollary gives the possible directions along which 3 agents might have entered the
black hole without still detecting it, while executing our algorithm.

▶ Corollary 9. If 3 agents enter black hole from 3 directions without detecting it, then 2
among these 3 directions are east and west, whereas the 3rd is either north or south.

The following lemma states that if eventually 2 agents reach the node vi,0 at some i-th
iteration while executing our BHS algorithm, then this implies that there must be another
agent stuck somewhere at a node along Ri other than the fact that 3 agents have already
entered the black hole and an agent each is already stuck along the remaining n − 1 row
rings. Otherwise only 2 agents must not have reached the node vi,0.

▶ Lemma 15. Our BHS algorithm with n + 6 agents, ensures that if at the i-th iteration
after time2 > 23n only 2 agents are present at vi,0, then there exists another agent stuck
somewhere along Ri.

The following lemma and theorem gives the correctness and complexity of our algorithm.

▶ Lemma 16. Our BHS algorithm with n + 6 agents correctly locates the black hole.

▶ Theorem 9. A group of n + 6 agents executing the BHS algorithm along a dynamic torus
of size n × m correctly locates the black hole in O(nm1.5) rounds.

7.2 BHS with n + 7 agents
In this case the set of n + 7 agents, A = {a1, a2, . . . , an+7} are scattered along the nodes of G.
The BHS algorithm with n+7 agents is almost similar to the earlier BHS algorithm with n+6
agents. The differences are as follows: at each iteration the agents are instructed to perform
Cautious-WaitMoveWest(0, 7) instead of Cautious-WaitMoveWest(0, 6). Next,
while exploring a ring Ri at the i-th iteration at least 3 agents reach vi,0 within time2 > 27m

(g(7)+3m = 24m+3m), whereas in earlier BHS algorithm with n+6 agents at least 2 agents
reach vi,0, within time2 > 23m. Next, if 3 agents reach vi,0, then our earlier algorithm, 2
agent scenario is similar to 3 agent scenario in this case. In our BHS algorithm with n + 6
agents, both agents are instructed to walk cautiously along west and east, respectively, but
now as we have one more agent, the two lowest Id agents among them perform Cautious-
Move(west, i), while the other walks cautiously along east. Otherwise, if 4 agents reach
vi,0, then this case is again similar to our 3 agent scenario in our earlier BHS algorithm
with n + 6 agents, in which these 3 agents perform CautiousDoubleOscillation whereas
in this algorithm as we have one more agent, so two lowest Id agents perform Cautious-
Move(west, 0) and the other two agents (i.e., 3rd lowest and 4th lowest Id agents) perform
Cautious-Move(east, 0), and all these process iterates for each row ring.

▶ Lemma 17. If 3 agents reach vi,0 when time2 > 27n, and the algorithm has not terminated,
then 3 agents have entered the black hole from three different directions.

▶ Lemma 18. Our BHS algorithm with n + 7 agents ensures that if at the i-th iteration
after time2 > 27n only 3 agents are present at vi,0, then there exists another agent stuck
somewhere along Ri.
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Lemmas 17 and 18 are just a consequence of Lemmas 14 and 15. Also, Corollary 9 holds
for this algorithm as well.

▶ Lemma 19. Our BHS algorithm with n + 7 agents correctly locates the black hole.

▶ Theorem 10. A group of n + 7 agents executing our algorithm along a dynamic torus of
size n × m correctly locates the black hole in O(nm) rounds.

8 Conclusion

In this paper, we have considered the black hole search problem on a dynamic torus, in
which each row and column are 1-interval connected. We have considered two types of initial
configuration of the agents, and in each case, gave the bounds (both upper and lower bound)
on number of agents and complexity in order to locate the black hole. To be specific, when the
agents are initially co-located, first, we give lower bounds of n + 2 and Ω(m log n) on number
of agents and rounds, respectively. Next, with n + 3 agents, we design a BHS algorithm that
works in O(nm1.5) rounds, whereas with n + 4 agents, we propose an improved algorithm
that works in O(nm) rounds.

When the agents are scattered, we give a lower bound of n + 3 and Ω(mn) on a number
of agents and rounds, respectively. Next, we propose two BHS algorithms, first, works with
n + 6 agents in O(nm1.5) rounds and second, works with n + 7 agents in O(nm) rounds
(round optimal algorithm).

Moreover, in this paper we have considered that each node in the dynamic torus is labeled.
A possible future work in this direction can be first to remove this assumption and give a
BHS algorithm and check if the bounds get changed. Secondly, for both these cases, finding
an agent optimal algorithm is another possible direction which can be pondered in to.
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Abstract
We study the problem of traveling in an unknown dynamic graph, to reach a destination with
minimum latency. At each step of the execution, an agent can decide to move to a neighboring
node if an edge exists at this time instant, wait at the current node in the hope that other links
will appear in the future, or move backward in time using an expensive time travel device. A travel
that makes use of backward time travel is called a space-time travel. Our aim is to arrive at the
destination with zero delay, which always requires the use of backward time travel if no path exists
to the destination during the first time instant.

Finding an optimal space-time travel is polynomial when the agent knows the entire dynamic
graph (including the future edges), even with additional constraints. However, we consider in this
paper that the agent discovers the dynamic graph while it is exploring it, in an online manner.

In this paper, we propose two models that define how an agent learns new knowledge about the
dynamic graph during the execution of its protocol: the T-online model, where the agent reaching
time t learns about the entire past of the network until t (even nodes not yet visited), and the
S-online model, where the agent learns about the past and future about the current node he is
located at. We present an algorithm with an optimal competitive ratio of 2 for the T-online model.
In the S-online model, we prove a lower bound of 2/3n − 7/4 and an upper bound of 2n − 3 on the
optimal competitive ratio when the cost function is linear.
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1 Introduction

We consider the problem of an agent moving in both space and time in a dynamic graph
representing a transportation network. The goal of the agent is to reach a destination node
in the aforementioned graph with a delay of zero, thanks to backward time-travels. As the
dynamic graph evolves, its edges may appear and disappear over time. The agent can wait
at a given node for an adjacent edge to appear (thus moving forward in time). However,
conversely to most known models, we consider that the agent can also go back in time, to
cross an adjacent edge that previously appeared in the past. However, moving backward in
time involves a cost that the agent seeks to minimize.

It has been shown by Bramas et al. [4] that finding optimal-delay optimal-costs travels can
be computed with a polynomial offline algorithm, even when assuming an upper constraint
on the cost. However, the offline setting considered by Bramas et al. [4] implies that the
agent knows the entire dynamic graph. For example, an agent at time t may only be aware
of the evolution of the dynamic graph up to time t (e.g., if this dynamic graph represents a
transportation network, unforeseen problems may arise in the future, while past availability
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periods have been tracked). Also, the dynamic graph itself may be infinite, which may cause
storage issues before running the offline algorithm. Thus, it is important to consider settings
where the agent that plans its space-time travel only has limited knowledge.

In this paper, we focus on online settings, where agents possess limited initial knowledge of
the underlying dynamic graph. We define two settings, referred to as T-Online and S-Online.
In the T-online setting, the agent does not know the future of the dynamic graph, but learns
everything about the temporal graph up to its current time instant (even the existence of
time-edges between nodes that were not yet visited). Thus, the agent has complete spatial
knowledge up to its current time instant, but still navigates T ime in an online fashion.
Conversely, in the S-online settings, the agent knows the entire past and future of the nodes
it has visited, but has no knowledge about yet unvisited nodes, and thus navigates Space in
an online fashion. The knowledge acquired by the agent in both settings is illustrated in
Fig. 3 and 4.

Related Work. Space-Time routing has been studied, mostly assuming forward time travel,
i.e., waiting, is available. Many studies (see e.g. Casteigts et al.[7] and references herein)
recently revisited popular problems previously studied in static graphs [6, 9, 19] in a dynamic
context.

Casteigts et al [8] studied the possibility of discovering a restless temporal path between
two nodes in a dynamic network with a waiting time constraint: at each step, the traveling
agent cannot wait more than c time instants, where c is a given constant. It turns out that
computing such paths is NP-Hard. Perhaps surprisingly, Villacis-Llobet et al [20] showed
that if one allows going several times through the same node, the obtained restless temporal
walk can arrive earlier, and finding it can be done in linear time. As previously mentioned,
this line of work only considers forward time travel (a temporal path cannot go back in time),
and focuses on offline settings.

Multi-criteria path computation problems have been extensively studied within computer
networks [10, 16, 17]. In this context, each edge is characterized by a weight vector, comprising
both cost and delay. Path computation algorithms thus have to maintain and explore all
non-comparable paths, whose number may grow exponentially with respect to the size of the
network, leading to the use of approximation schemes or heuristics. However, these works
always focus on static graphs and offline settings.

As aforementioned, Bramas et al. [4] have proposed path computation algorithms on
dynamic graphs with both forward and backward time-travel (assuming costly backward
time-travel). They demonstrated the polynomial solvability of finding the path with minimum
delay, even when constraining (or optimizing) the cost. Note that, conversely to us, such
travels may not always allow for a delay of 0, if the constraint on the cost is too stringent.
However, their study exclusively focuses on offline settings.

Related online problems in graphs include graph exploration and treasure hunting. Online
graph exploration has been extensively studied in the literature in models that are similar
to our S-online model, i.e., when visiting a node, the agent learns about the identifiers of
the neighboring nodes. Algorithms with optimal competitive ratios were found in various
classes of graphs such as cycles, tadpole graphs [5], trees [15], and arbitrary graphs [2], in
undirected and directed [14] graphs. The case where more than one agent explores the graph
has also been investigated [11, 12].

The treasure-hunting problem is equivalent to the problem of reaching a destination
node with minimum latency, if considering the destination as the node where the treasure
is located. Previous work on treasure hunting only considers static graph [1, 3], usually
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considering a different model where the agent sees outgoing edges, but lacks visibility of the
neighboring nodes identifiers. In [18], the authors considered a model similar to ours, where
the agent sees the neighboring nodes, and show that the optimal competitive ratio is Θ(n).
This result implies the same asymptotic bounds in our model when assuming a linear cost
function, but the exact bound remains unknown. Moreover, an exact bound in their setting
cannot be generalized to our setting as an edge with a given cost requires several nodes to
be emulated in our model.

To the best of our knowledge, our paper is the first to consider a problem similar to the
online graph exploration and treasure-hunting problem in dynamic graphs.

Contributions. In this paper, we provide the following contributions:
We introduce the problem of online space-time travel in dynamic networks and formally
define several settings. In particular (a) in the T-online setting, an agent learns the past
of the entire network when reaching a particular moment in time, and (b) in the S-online
setting, an agent learns the past and future interactions involving the node where it is
currently located.
We present a T-online algorithm with an optimal competitive ratio able to compute a
space-time travel with lowest delay and having a cost of at most two times the optimal
cost.
We present a lower bound of 2n/3 − 7/3 for the competitive ratio of S-online algorithms,
even if the cost function is the identity. In contrast, we provide a 2n − 3 competitive S-
online algorithm assuming a linear cost function. This algorithm is at most n2 competitive
for arbitrary (but feasible) cost functions.

Our work opens several problems, for instance, how to close the gap between our lower
and upper bound regarding the competitive ratio of S-online algorithms.

2 Model

In this section, we define the models and notations used throughout this paper, before
formalizing the aforementioned problems.

We represent the dynamic graph as an evolving graph, as introduced by Ferreira [13]: a
graph-centric view of the network that maps a dynamic graph as a sequence of static graphs.
The footprint of the dynamic graph (that includes all nodes and edges that appear at least
once during the lifetime of the dynamic graph), is fixed. Furthermore, we assume that the
set of nodes is fixed over time, while the set of edges evolves.

More precisely, an evolving graph G is a pair (V, (Et)t∈N), where V denotes the set of
vertices, N is the set of time instants, and for each t ∈ N, Et denotes the set of edges that
appears at time t. The snapshot of G at time t is the static graph G(t) = (V, Et), which
corresponds to the state, supposedly fixed, of the network in the time interval t, t + 1).
The footprint F(G) of G is the static graph corresponding the union of all its snapshots,
F(G) =

(
V,

⋃
t∈N Et

)
. We say ({u, v}, t) is a temporal edge of graph G if {u, v} ∈ Et. We

say that an evolving graph is connected if its footprint is connected.

Space-time Travel. We assume that at each time instant, an agent can travel along any
number of adjacent consecutive communication links. However, the graph may not be
connected at each time instant, hence it may be that the only way to reach a particular
destination node is to travel forward (i.e., wait) or backward in time, to reach a time instant
where an adjacent communication link exists. In more detail, an agent travels from a node s

to a node d using a space-time travel (or simply travel when it is clear from the context).

SAND 2024
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▶ Definition 1. A space-time travel of length k is a sequence ((u0, t0), (u1, t1), . . . , (uk, tk))
such that

∀i ∈ {0, . . . k}, ui ∈ V is a node and ti ∈ N is a time instant,
∀i ∈ {0, . . . k − 1}, if ui ̸= ui+1, then ti = ti+1 and {ui, ui+1} ∈ Eti i.e., there is a
temporal edge between ui and ui+1 at time ti.

By extension, the footprint of a travel is the static graph containing all edges
(and their adjacent nodes) appearing in the travel. Now, the itinerary of a travel
((u0, t0), (u1, t1), . . . , (uk, tk)) is its projection (u0, u1, . . . , uk) on nodes, while its schedule is
its projection (t0, t1, . . . , tk) on time instants. Let TG((u, t), (v, t′)) denote the set of travels
in G starting from node u at time t, and arriving at node v at time t′.

▶ Definition 2. A travel ((u0, t0), (u1, t1), . . . , (uk, tk)) is simple if for all i ∈ {2, . . . , k} and
j ∈ {0, . . . , i − 2}, we have ui ̸= uj.

Intuitively, a travel is simple if its footprint is a line (i.e., a simple path) and contains at
most one time-travel per node (as a consequence, no node appears three times consecutively
in a simple travel).

▶ Definition 3. The delay of a travel T = ((u0, t0), (u1, t1), . . . , (uk, tk)), denoted delay(T )
is defined as tk − t0.

The Backward cost of a travel.

▶ Definition 4. The backward-cost is the cost of going to the past. The backward-cost
function f : N∗ → R+ returns, for each δ ∈ N, the backward-cost f(δ) of traveling δ time
instants to the past. As we assume that there is no cost associated to forward time travel
(that is, waiting), we extend f to Z by setting f(−δ) = 0, for all δ ∈ N. In particular, the
backward-cost of traveling 0 time instants in the past is zero. When it is clear from context,
the backward-cost function is simply called the cost function.

▶ Definition 5. The backward-cost (or simply cost) of a travel T = ((u0, t0), (u1, t1), . . . , (uk,

tk)), denoted cost(T ) is defined as follows:

cost(T ) =
k−1∑
i=0

f(ti − ti+1)

▶ Definition 6. Let T1 = ((u0, t0), (u1, t1), . . . , (uk, tk)) and T2 = ((u′
0, t′

0),(u′
1, t′

1), . . . , (u′
k′ ,

t′
k′)) be two travels. If (uk, tk) = (u′

0, t′
0), then the concatenated travel T1 ⊕ T2 is defined as

follows:

T1 ⊕ T2 = ((u0, t0), (u1, t1), . . . , (uk, tk), (u′
1, t′

1), . . . , (u′
k′ , t′

k′))

▶ Remark 7. One can easily prove that cost(T1 ⊕ T2) = cost(T1) + cost(T2). In the following,
we sometimes decompose a travel highlighting an intermediate node: T = T1 ⊕ ((ui, ti)) ⊕ T2.
Following the definition, this means that T1 ends with (ui, ti), and T2 starts with (ui, ti), so
we also have T = T1 ⊕ T2 and cost(T ) = cost(T1) + cost(T2).

Our notion of space-time travel differs from the classical notion of journey found in the
literature related to dynamic graphs [13] as we do not assume time instants monotonically
increase along a travel. As a consequence, some evolving graphs may not allow a journey
from A to B yet allow one or several travels from A to B.

We say a travel is cost-optimal, if there does not exist a travel with the same departure
and arrival node and times as T having a smaller cost. One can easily prove the following
Property.
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▶ Property 1. Let T be a cost-optimal travel from node u to node v arriving at time t, and
T ′ a sub-travel of T i.e., a travel such that T = T1 ⊕ T ′ ⊕ T2. Then T ′ is also cost-optimal.

In the remaining of this paper, we consider a given evolving graph G = (V, (Et)t∈N), a
given cost function f, a source nodes s and a destination node d in V .

Problem specification. We consider an agent that travels in the evolving graph, starting
from a node s at time 0. When at a node u at time t, the agent can either wait, go back in
time, or traverse an edge to a neighboring node v if the temporal edge ({u, v}, t) exists. If it
waits, it stays in the same node, but the time is incremented by one. If it goes back in time,
the new time can be any t′, 0 ≤ t′ < t, and the cost of this operation is f(t − t′). Note that
when traveling in space the agent can traverse several edges during a single time instant.
When time-traveling, the agent may travel back or forward in time to any time instant but
will remain on the same node.

The goal of the agent is to reach the destination d with minimal delay, i.e., arriving
at time 0. Notice that a backward time-travel is always necessary if no path exists to the
destination during the first time instant, and that reaching d at time 0 is always possible if
the footprint is connected.

This problem is trivial when the agent knows the entire evolving graph [4] (even when
the cost is constrained, and when the backward time travels are limited in amplitude). In
this paper, we consider that the agent has a limited initial knowledge of the evolving graph,
and it can learn more information by moving in the graph (moving in the topological or
temporal sense).

Online Algorithms. An online algorithm A is a function that takes as input tuple (G′, t, u)
where G′ is a sub-graph of G representing the partial information of the agent, t the current
time, and u a node where the agent is located. The algorithm outputs the action performed
by the agent: wait, go back at time t′ < t or traverse an edge. For simplicity, we can consider
without loss of generality that the output is a space-time travel T that exists in G′. By doing
so, the agent may learn new information about the traversed nodes or they can wait to learn
new information about the future. A single action (wait, go back in time, or traverse an
edge) can be seen as an elementary space-time travel.

We consider only deterministic algorithms so that executing an online algorithm on a
given evolving graph G makes the agent follow a single space-time travel (maybe of infinite
length if the agent loops for infinity). On a given evolving graph G, the cost obtained by an
online algorithm A is denoted Cost(A, G) and is the cost of the space-time travel performed
by the agent on this graph. For comparison, we denote by Cost(opt, G) the optimal cost
given by an optimal offline algorithm.

Our goal is to find an algorithm that minimizes the competitive ratio defined as follows.

▶ Definition 8. An online algorithm has competitive ratio ρ if in any evolving graph G, we
have

Cost(A, G)
Cost(opt, G) ≤ ρ

Acquiring new Knowledge. The way the agent learns about the evolving graph depends on
the model. We consider two cases. First, in the T-online model, when an agent reaches time t,
they learns about all the temporal edges ({u, v}, t′) ∈ E with t′ ≤ t, for all u, v ∈ V . In other
words, they learns about the entire graph up to this time. Second, in the S-online setting,
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7:6 Online Space-Time Travel Planning in Dynamic Graphs

when an agent reaches a node u, it learns about all the temporal edges ({u, v}, t′) ∈ E, for
all t′ ≥ 0 and for all v ∈ V . In other words, it learns all the information, past and future,
concerning the current node.

Observe that the definition of competitive ratio does not depend on the setting, as the
offline optimal algorithm gives the same solution regardless of the setting. The setting just
impacts the knowledge of the agent, so in practice, different knowledge should give different
algorithms, and it might not be possible to obtain the same competitive ratio in two different
settings. Hence, we are also interested in finding lower bounds for the competitive ratio in
each setting.

x0 x1 x2 x3 x4 x5 x6 x7

space

0
1
2
3
4
5
6
7

time

Figure 1 Possible representation of an evolv-
ing graph. Possible travels from x0 to x7 are
shown in red, green, and blue. Note that the
blue and green travels require sending an agent
to the past (to a previous time instant).

x0
x1 x2 x3 x4 x5 x6 x7

Figure 2 Footprint of the evolving graph
represented in Figure 1.
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n
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Figure 3 Example of the state of an agent
during a T-online travel. The agent at position
u does not know about the dashed edges

known Vunexplored

x0 x1 x2 x3 x4 x5 x6 x7

space
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1
2
3
4
5
6
7

time
u

Figure 4 Example of the state of an agent
during an S-online travel. The agent at position
u does not know about the dashed edges, nor
the unknown nodes outside Vunexplored.

Visual representation of online space-time travels. To help visualize the problem, consider
a set of n + 1 nodes denoted x0, x1, x2, . . . , xn. Then, the associated evolving graph can
be seen as a vertical sequence of graphs mentioning for each time instant which edges are
present. A possible visual representation of an evolving graph can be seen in Fig. 1. One can
see the evolution of the topology (consisting of the nodes x0 to x7) over time through eight
snapshots performed from time instants 0 to 7. Several possible travels are shown in red,
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green, and blue. The red travel only makes use of forward time travel (that is, waiting) but
is the earliest arriving travel in this class (arriving at time 7, while it is possible to arrive
at time 4). The green and blue travels both make use of backward time travel and arrive
at time 0, so they have minimal travel delay. Similarly, the red travel concatenated with
((x7, 7), (x7, 0)) (i.e., a backward travel to reach x7 at time 0) also has minimal travel delay.
However, if we assume that the cost function is the identity (f : d 7→ d) then the green travel
has a backward cost of 5, the blue travel has a backward cost of 4, and the concatenated red
travel has a backward cost of 7.

The main challenge arises when an agent explores the graph in an online manner,i.e.,
learns about the graph while it is exploring it. Figure 3 and 4 illustrate the current knowledge
of the agent after it traversed the red travel and is currently at node u. In Figure 3, the agent
is T-online and knows about the entire past of the graph, i.e., it knows about all the edges
that occurred at time 4 or before, regardless of the nodes involved. The agent knows about a
possible travel to reach destination x7, but does not know if it is cost-optimal depending on
the cost function (with a cost function f : x 7→ x, it knows that the blue travel is optimal).

In contrast, in Figure 4, the agent is S-online and knows about the past and the future
of all the visited nodes x0, . . . x3. In this case, the agent does not know a travel to the
destination yet, but it is challenging to decide what node to explore first to minimize the
cost.

3 Backward-cost Function Classes

The cost function f represents the cost of going back to the past. It has been shown by
Bramas et al. [4] that it is necessary for f to be non-negative and that it attains its minimum
(not just converge to it) on every interval that includes infinity, for an optimal-delay optimal
cost travel to exist. These conditions were also shown to be sufficient for an offline algorithm
to find an optimal solution.

▶ Definition 9. A cost function f is user optimizable if it is non-negative, and it attains
its minimum when restricted to any interval [C, ∞), with C > 0. Let UO be the set of user
optimizable cost functions.

For simplicity, in this paper, we only consider user friendly cost functions as defined by
Bramas et al. [4]:

▶ Definition 10. A cost function f is user friendly if it is user optimizable, non-decreasing,
and sub-additive1. Let UF be the set of user friendly cost functions.

Indeed, following the methodology by Bramas et al. [4], the optimal output of an algorithm
using a user friendly function can be transformed into an optimal solution assuming the cost
function is only user optimizable.

4 T-Online Algorithm with Optimal Competitive Ratio

In this section, we consider the T-online setting. In other words, the future of the evolving
graph is unknown to the algorithm: at a time t, only the snapshots at time instants t′ ≤ t

are known. We first prove that there exists no algorithm with a competitive ratio smaller
than 2, even if the cost function is the identity. Then we present our T-online Algorithm 1
and we show that it has an optimal competitive ratio.

1 sub-additive means that for all a, b ∈ N, f(a + b) ≤ f(a) + f(b)
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x0 x1 x2 x3 x4 x5 x6 x7 x8
0

1

2

i

time
...

...

Figure 5 Definition of the evolving graphs Gi, with 9 nodes (n = 8). The blue travel T8 has a
backward-cost of 8. The red travel Ti has a backward cost of i.

▶ Theorem 11. Assuming f : x 7→ x, if the future is unknown, there exists no T-online
algorithm with competitive ratio 2 − ε, with ε > 0.

Proof. Assume for the sake of contradiction that algorithm A is a T-online algorithm and
has a competitive ratio of 2 − ε, with ε > 0. Let n be an even integer greater than 5

ε . For any
i > 3, let Gi be an evolving graph whose footprint is a line with n + 1 nodes x0, x1, . . . , xn

defined in the following way:
Gi(0) is the graph where half of the edges are present:

Ei(0) = {{xk, xk+1} | k ∈ [0, n] ∧ k ≡ 1 mod 2}.

Gi(2) is the graph where the other half of the edges are present:

Ei(2) = {{xk, xk+1} | k ∈ [0, n] ∧ k ≡ 0 mod 2}.

Gi(i) is a line graph : Ei(i) = {{xk, xk+1} | k ∈ [0, n − 1]}.
for all j /∈ {0, 2, i}, Gi(j) is a graph with no edge : Ei(j) = ∅.

It is clear that, in all such graphs Gi, there exists a travel from x0 to xn, denoted by Tn,
with backward-cost n, using the edges present at time 0 and 2 (the blue travel in Figure 5).
In addition, there exists a travel, denoted Ti, of backward-cost i in the evolving graph Gi

(the red travel in Figure 5).
If i > n, the optimal travel is Tn, and if i < n the optimal travel is Ti.
Let us now run Algorithm A on the evolving graph G2n, with source being x0 and

destination xn. Clearly, the algorithm cannot wait until time instant 2n otherwise the
backward cost would be at least 2n, which is two times more than the backward cost of the
optimal path Tn. This implies that Algorithm A cannot distinguish between (hence runs
exactly in the same way in) graphs Gi, with i ≥ 2n. Let tmax be the maximum time instant
reached by Algorithm A in G2n. Then we can even say that A cannot distinguish between
graphs Gi with i > tmax.

Claim 1: In Gi, with i > tmax, Algorithm A outputs a travel with a backward-cost of at least
n + tmax − 2
Proof of the Claim: The travel T = A(Gi) that A outputs must contain the same temporal
edges as Tn because those are the only edges that exist before time i (recall that tmax < i).
Let tj be the time instant reached by Algorithm A at node xj , for all j = 0, . . . , n. Since
at each node the travel either arrives at time 2 or leaves at time 2, then ∀j ∈ [0..n], tj ≥ 2.
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To move from node xj to node xj+1 the travel T includes a backward trip of cost tj , if
j ≡ 1 mod 2, and of cost tj − 2, otherwise. Let tjmax = tmax = max(tj), we have that

cost(T ) =
∑

j∈Odd(n)

tj +
∑

j∈Even(n)

tj − 2 ≥
{

2 |Odd(n)| + tmax − 2 if jmax is odd
2 (|Odd(n)| − 1) + tmax if jmax is even

Where Even(n), resp. Odd(n), denotes the set of even, resp. odd, numbers smaller or
equal to n, Since |Odd(n)| = n/2, we obtain in both case cost(J) ≥ n + tmax − 2

Claim 2: tmax ≤ n − 4
Proof of the Claim: Since algorithm A has a competitive ratio of 2 − ε, then, if it runs in
the evolving graph G2n, it must return a path of backward-cost at most

(2 − ε)Cost(opt, G2n) = (2 − ε)n < 2n − 5

(recall that nε > 5), so it cannot reach time instant n − 3. Indeed, if the algorithm waits
until time instant tmax ≥ n − 3, then, using the previous claim, the backward-cost of the
travel would be at least n + n − 5.

Now we run Algorithm A on graph Gtmax+1. Using Claim 1, we know that A returns a
travel of cost at least n + tmax − 2. However, in Gtmax+1, since tmax + 4 ≤ n (Claim 2), the
optimal travel is Ttmax+1 having a cost of tmax + 1. We obtain the following inequality:

cost(A(Gtmax+1)) ≥ n + tmax − 2 ≥ tmax + 4 + tmax − 2 ≥ 2(tmax + 1)
≥ 2Cost(opt, Gtmax+1)

This contradicts the fact that A has a competitive ratio of 2 − ε. ◀

Our Algorithm 1 works as follows: the agent remains in the initial node and waits to
learn more about the network until it finds a space-time travel to the destination. Since
it does not know whether this is an optimal travel, it waits until it is sure that this is the
case, and then goes back in time and enjoys its trip. Computing the best space-time travel
given a sub-graph is possible in polynomial time using the existing offline algorithm [4]. Our
algorithm assumes that the cost function tends to infinity when the input goes to infinity. It
is easy to see that this assumption is necessary to achieve a constant competitive ratio. For
instance, with a constant cost function that is equal to 1, one can create two indistinguishable
(up to time n) dynamic graphs where a travel with cost n − 2 exists before time t = n. Then,
the first graph contains no other travel, and the second contains another travel with cost
1 but requires a path available at time t ≫ n arbitrarily large. Not knowing which graph
it is put in (at time n, the agent’s knowledge about the two graphs is identical), the agent
either waits indefinitely to see if the second travel exists, or follows the first travel with a
competitive ratio of n − 2. A similar argument can be constructed when the cost function is
upper bounded by some number C when its input goes to infinity.

▶ Theorem 12. For any f ∈ UF that diverges to infinity, Algorithm 1 is a T-online algorithm
with a competitive ratio of 2.

Proof. Let Tmax be the final value of the variable in our algorithm, so it is the space-time
travel used by the agent after the agent returns back at time 0. Let

tmax = max{t | f(t + 1) < cost(Tmax)}.
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Algorithm 1 T-Online Algorithm.
Input :

G′: the known evolving graph
time: the current time
u: the current node (here u is always the starting node s)

Let Tmax be an optimal space-time travel in G′, if it exists, starting at time 0, from node s

to node d.
if Tmax does not exist or f(time + 1) < cost(Tmax) then

wait 1 time instant;
else

go back at time 0, then follow the travel Tmax;

0
1

ds

time

Figure 6 Evolving graph G used to prove that an S-online algorithm has a competitive ratio of
at least 2n/3 − 7/3.

First, we prove that Tmax is an optimal offline travel. Indeed, the algorithm reached time
tmax so all the other travels that are not discovered by our algorithm require temporal edges
appearing after time tmax, so their backward-costs are at least f(tmax + 1), which is at least
cost(Tmax) by definition. Hence cost(Tmax) is the optimal backward-cost.

When the algorithm terminates, the travel T that is returned is ((s, 0),(s, tmax),(s, 0))
⊕ Tmax. It has a backward-cost of f(tmax) + cost(Tmax). Since f(tmax) ≤ cost(Tmax), the
Lemma is proved. ◀

5 S-Online Algorithm

In this section, we study the S-online setting, where an agent knows only about the nodes
they have explored. In this case, we show a lower bound of 2n/3 − 7/3 for the competitive
ratio, even when the cost function is the identity. We then present an algorithm that has a
competitive ratio of 2n − 3 when the cost function is linear.

▶ Theorem 13. Assuming a cost function is f : x 7→ x, an S-online algorithm cannot have a
competitive ratio smaller than 2n/3 − 7/3, where n denotes the number of nodes in the graph.

Proof. Assume for the purpose of contradiction that there exists an S-online algorithm A

with a competitive ratio c.
Consider an evolving graph G consisting of k paths of length 3 having one node s in

common and append a node d to one of the paths, as illustrated in Figures 6 and 7. Links
connecting nodes at hop-distance 1 from s and nodes at hop-distance 2 from s appear at
time 1, and all the other links appear at time 0. The number of nodes is n = 3k + 2.

An agent traveling in this graph initially knows about all the neighbors of s does not
know their neighbors. Since all the edges connected to s appear at the same time 0, they are
indistinguishable. We can consider without loss of generality that the branches are explored
from left to right, direction according to Figure 7 (a branch is explored when the node at
hop-distance 3 is visited). Visiting a branch costs f(1), and going back to s also costs f(1), so
when the agent finally visits the last branch that is connected to d, they have paid 2(k −1)+1.
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0

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0
0

Figure 7 The same evolving graph G shown in Figure 6 as a static graph where the label
represents the time where the edge is present.

In the end the travel costs

2(k − 1) + 1 = 2k − 1 = 2(n − 2)
3 − 1 = 2n/3 − 7/3

while the optimal travel costs 1. So the competitive ratio is 2n/3 − 7/3. ◀

One important question is whether or not the lower bound is higher when assuming a
cost function f that is not linear. Interestingly, one can observe that, to create a worst-case
using non-linear functions, one must use longer paths because the travel cost of a two-hop
travel is the same in one way and the other, so longer travels are required to create travels
having higher cost. Moreover, following k smaller backward travels costs at most k times the
equivalent single but larger backward travel. So we conjecture that the lower bound is the
same for any cost function in UO.

We now present our Algorithm 2. At a given step, the agent is located at a node u at time
t and knows a subgraph G′ of G. Among the known nodes, some are not yet explored, called
Vunexplored. For a node v in Vunexplored, the agent does not know its entire neighborhood.
In particular, it does not know if it is connected to the destination d. Indeed, d is either
unknown or unexplored (otherwise the agent has already reached the destination). The goal
of the agent is to find a travel towards the destination that is not too expensive. A possible
travel to d is either in G′ or goes through a node in Vunexplored. A travel in G to d that
is not in G′ must go through a node v ∈ Vunexplored, so its cost is at least the cost of a
travel towards v at time 0. So the main idea of the algorithm is to explore nodes one by one
starting from the one that could potentially be an optimal travel to the destination d i.e.,
the agent visits first a node v ∈ Vunexplored whose travel from s to v at time 0 is minimal.

To illustrate a step of the algorithm, consider Figure 4. The agent at position u does not
know any travel towards d, but it knows that a travel must either go through x4 or x5. In
the best case, if it goes through x4, a travel to d costs at least 3 (it costs 2 to reach x4 using
the edge (x3, x4) at time 1 plus at best a backward travel to 0 if d is directly connected to
x4. If it goes through x5, a travel to d costs at least 4. So in this situation, the agent travels
towards x4. When it reaches x4, the agent realizes that it is not connected to d and that a
travel to d passing through x4 costs at least 5 (the green travel in Figure 1) so the agent
decides to explore next x5. Then it explores x6 and finally d = x7.

▶ Theorem 14. Assuming the cost function is linear, Algorithm 2 is an S-online algorithm
with a competitive ratio of 2n − 3, where n denotes the number of nodes.
Assuming non-linear f ∈ UF , the competitive ratio of Algorithm 2 is at most n2.

Proof. Consider first that the cost function is linear. After each iteration of the algorithm,
at least one new node v is explored.
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Algorithm 2 S-Online Algorithm.
Input :

G′: the known evolving graph
time: the current time
u: the current node

Let Vunexplored be the set of nodes known but unexplored;
Let H = {Tv = TG′ ((s, 0), (v, 0))|v ∈ Vunexplored};
/* Recall that TG′ ((s, 0), (v, 0) is the set of travels from s to v arriving and

departing at time 0 */
Let Tv be a space-time travel in H with minimum cost
Follow an optimal space-time travel towards (v, 0) in G′, from the current location u.

The cost of the travel from s to v arriving at time 0 is at most the cost Cost(opt, G) of
the optimal travel from s to d arriving at time 0. Indeed, if d is unknown, all travels goes
through at least one unexplored node, meaning that the cost to reach d is higher or equal
than the cost to reach v. If d is known, the travels towards d are included in the set H.

Note that when traveling back to s at time 0 from v at time 0, backward time jumps
become waiting, and vice-versa. Hence, an outbound trip requiring several, small waits and
a large backward-time jump translate in a return trip with a large wait and several small
backward-time jumps, which, intuitively, mais lead to different costs.

However, because we first assume the cost function to be linear (i.e. f(a+b) = f(a)+f(b),
the cost of the outbound trip is the same as the cost of the return trip. Thus, to visit the
next unexplored node v′, the agent has to, in the worst case, go back to s and then travel to
v′, incurring a cost of 2Cost(opt, G). In the worst case, the destination d is the last visited
node. The total cost is at most 2(n − 2)Cost(opt, G) for the first n − 2 nodes (all except s

and d) plus the last travel towards d, i.e., at most 2(n − 2)Cost(opt, G) + Cost(opt, G) and
the competitive ratio is 2n − 3.

Now, suppose the cost function f ∈ UF is non-linear. In this case, the costs of the
outbound and return trip may be different.

Let T be a k-hop travel from s to a node v, arriving and departing at time 0. Let Tr

be the associated returned trip. Observe that the sum of the amplitude (denoted ∆ in the
following) of all backward-time jumps is the same in both directions (i.e., for T and Tr).
Also, it is clear that each backward jump performed in Tr has amplitude smaller than ∆ and
since f is non-decreasing, each of these jumps costs at most f(∆). Since there are at most
k ≤ n backwards jumps in Tr, we know that, cost(Tr) ≤ k × f(∆). As f is also sub-additive,
we know that f(∆) ≤ cost(T ). Thus, we have cost(Tr) ≤ k × cost(T ).

Hence, using the same proof as in the previous case, we obtain in the worst case, a cost
of at most n × Cost(opt, G) to explore the next node v, which results in a total cost of at
most n2Cost(opt, G). ◀

6 Discussion and Open Problems

One may notice that the strategies used in Algorithm 2 are similar to some works related
to online static graph exploration and treasure hunting. These similarities raise interesting
questions regarding possible relations between these problems and possible applications of
existing works to our novel model.
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Studying this question is challenging due to the many different existing models. For
instance, many papers about treasure hunting in static graphs assume that the agent located
at a node does not learn about the identifier of the neighboring nodes, but only about
the outgoing edges [3, 1]. This results in bounds based on the number of edges, while our
algorithm performance only depends on the number of nodes.

One paper by Komm et al. [18] considers that an agent learns about the identifier of its
neighbors (a model dubbed fixed graph). Interestingly, our models align with theirs under
the assumption of a linear cost function. We, however, give a more refined bound about the
competitive ratio, implying perhaps a more precise bound for the model given by Komm et
al. [18] (which briefly mentions an asymptotically linear competitive ratio before focusing on
the impact of advice fed to the agent).

When assuming a non-linear cost function, our problem seems to exhibit similarities with
the treasure-hunting problem in directed graphs when agents see the neighboring nodes (a
problem that, to our knowledge, is unexplored in the literature).

Our work in the S-online setting can thus be seen as the first generalization of the
treasure-hunting problem in dynamic graphs. It is interesting to see that such generalizations
bear similarities to their static counterparts. However, these outcomes depend on the agent’s
ability to engage in time travel. In the absence of such capabilities, certain assumptions about
the graph may be needed to make up for the absence of backward time travel. For instance,
one might consider assumptions such as periodicity, or the presence of bounded-recurrent
edges, allowing for the traversal of disappearing edges by waiting for their reappearance,
instead of traveling back in time. The study of relations between the settings studied in this
paper and more general ones, as well as the study of associated complexity results, are open.

7 Conclusion

We presented the first online solutions to the delay-optimal cost-optimal space-time travel
problem in dynamic networks.

We first showed that, when the future is unknown, even assuming an identity cost function,
no online algorithm can exhibit a competitive ratio of less than two, and we present a very
simple online algorithm with a competitive ratio of two, for a larger class of cost functions.

Then, when the graph itself is unknown and has to be explored to gain connectivity
knowledge, we showed that there exists a linear (in the size of the graph) lower bound on the
competitive ratio, even when the cost function is the identity, and we present an algorithm
with a linear (in the size of the graph) competitive ratio assuming any linear cost function.
Refining the constants between our lower and upper bound is left for future work.
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Abstract
A temporal graph can be represented by a graph with an edge labelling, such that an edge is present
in the network if and only if the edge is assigned the corresponding time label. A journey is a
labelled path in a temporal graph such that labels on successive edges of the path are increasing,
and if all vertices admit journeys to all other vertices, the temporal graph is temporally connected.
A temporal spanner is a sublabelling of the temporal graph such that temporal connectivity is
maintained. The study of temporal spanners has raised interest since the early 2000’s. Essentially
two types of studies have been conducted: the positive side where families of temporal graphs are
shown to (deterministically or stochastically) admit sparse temporal spanners, and the negative
side where constructions of temporal graphs with no sparse spanners are of importance. Often such
studies considered temporal graphs with happy or simple labellings, which associate exactly one
label per edge. In this paper, we focus on the negative side and consider proper labellings, where
multiple labels per edge are allowed. More precisely, we aim to construct dense temporally connected
graphs such that all labels are necessary for temporal connectivity. Our contributions are multiple:
we present exact or asymptotically tight results for basic graph families, which are then extended to
larger graph families; an extension of an efficient temporal graph labelling generator; and overall
denser labellings than previous work, whether it be global or local density.
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1 Introduction

A temporal graph is a graph which can evolve over time, through the appearing and/or
disappearing of edges. Numerous classical graph problems and parameters have been
extended to temporal graphs, such as colouring, connected components, maximum matchings,
and independent sets [19, 28, 30, 33]. In temporal graphs, connectivity may become very
poor when considering the graph at every distinct time step, but the graph may still
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8:2 On Inefficiently Connecting Temporal Networks

be connected when considering connectivity over time. Indeed, temporal connectivity is
motivated through many contexts in which temporal graphs naturally arise, most notably
the context of swarms of mobile entities with distance-based communication capabilities
(drone networks, insect colonies, and, particularly useful during the COVID-19 pandemic:
people) [12,14,15,21]. This temporal connectivity has since redefined classical connectivity
problems, such as (temporal) dominating sets, and (temporally) connected components, and
particularly interesting concerning this paper: (temporal) spanners [4, 6, 10,24].

After presenting a wide range of interesting changes and results concerning typical graph
problems with temporal paths instead of paths, Kempe, Kleinberg, and Kumar discuss
further interesting questions [20]. One of these is whether a temporally connected graph can
always be sparsified (that is, if labels can be removed) so as to obtain a “sparse” remaining
structure maintaining temporal connectivity. Such a structure is later called a temporal
spanner. Note that the static graph analogue would be asking whether a connected graph
always admits a spanning tree, which is of course always the case. They follow up with a
preliminary negative result, stating that some temporal graphs do not admit a linear size
spanner (hypercube graphs with each edge labelled with the corresponding dimension). The
real question then became whether dense temporal graphs could always admit a sparse
spanner, the intuition being that there exists many more ways to potentially sparsify a dense
graph. The question remained open for many years, until Axiotis and Fotakis answered in
the negative: they construct a non-trivial dense temporal graph in which some labels may
be removed but prove that a dense part has to remain to ensure temporal connectivity. [2]
A couple of years afterwards, a complementing positive result was presented by Casteigts,
Peters, and Schoeters: any temporal complete graph always admits a sparse spanner [10].
Following these, more papers surfaced related to temporal spanners: sharp thresholds on the
density of random temporal graphs to asymptotically almost surely admit particular sparse
spanners; positive and negative results regarding spanners which have a limited stretch, as
well as on temporal spanners which are blackout-resistant [5, 6, 11].

Another topic of interest in temporal graph theory is that of temporal network design,
where instead of analysing a given temporal graph, one would like to design a temporal graph
with some desired property or decide such a temporal graph does not exist. In most works
on temporal network design, the graph itself is given and a corresponding labelling needs
to constructed. One of the earliest such design problems was to create a gossip protocol,
that is, a schedule of pairwise communications between n agents, each having some piece of
information which can be transferred over successive communications, such that at the end
of the schedule, all agents are up to date with all the information. It is natural to minimise
the number of communications (e.g. the total cost of phone calls), and thus some tight
results arise with protocols using 2n− 3 communications, with the idea being to gather all
information to some agent and then broadcast the information out again, designing essentially
a temporal in-tree and a temporal out-tree resp. For more information, see survey [18]. More
recently in [29], Mertzios et al. reconsider and extend this work as a temporal graph design
problem. Direct results from gossiping apply, but more importantly, they include other
restrictions on the labelling, such as a maximum lifetime i.e. the labels cannot be greater
than some value, which was further investigated in [22]. Also, two measures of density, both
of interest for this paper, are defined regarding a temporal graph: the temporal cost, being
the total amount of labels; and the temporality, being the maximum amount of labels on
some edge. The former is a global density measure, and the latter a local one.

In this paper, we combine the study of temporal spanners and of temporal graph design,
by designing dense temporal graphs such that each label is necessary for temporal connectivity.
As opposed to most previous work we will not restrict ourselves to happy or simple labellings
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Measure \ Graph class Any class Trees
(Connected)

Cycles
(Hamiltonian)

Cacti
(Circumference c)

Maximum temporal cost T + ≤ n2 − n − 1
Theorem 2

2n − 3
Theorem 5

≥ 1
4 n2 + 3

4
Theorem 7

≥ 1
4 c2 + 2(n − c)

omitted (see [13])

Maximum temporality τ+ ≤ n − 1
Theorem 2

2
Theorem 4

≥ ⌈ 1
2 n⌉

Theorem 8
≥ ⌈ 1

2 c⌉
omitted (see [13])

Figure 1 Main results of our density measures on specific classes of graphs: ≤ indicates an upper
bound, ≥ indicates a lower bound. Results for Trees, and by extension Connected graphs, are tight.

(one label per edge) but instead extend to consider proper labellings (multiple labels per edge
allowed). This is a double-edged sword: on the one hand this intuitively may allow for much
denser labellings, but on the other hand, a combinatorial explosion on the amount of possible
labellings occurs implying algorithmics may be more difficult in this setting. In a sense, we
are interested in designing the most inefficient temporal networks possible. Outside of the
already established applications of temporal spanners in related work, the negative results in
particular can have direct implications concerning adversarial behaviour in temporal network
game theory and the potential waste of temporal and structural resources [27, 32]. Lastly, a
slowly temporally connected network may allow for time to detect any anomalies/viruses
before the whole network is infected, while not hindering the supposedly essential connectivity
of the network, and may have applications for fraud detection in financial transactions [31].

In short, throughout the paper, we will steadily answer both of the following questions:
What is the densest temporal graph overall?
Given a graph class, what is the densest labelling all graphs can attain?

1.1 Contributions
First, in Section 2, we give standard graph theory and temporal graph theory notation and
define our setting as well as a global and a local density measure: maximum temporal cost
T + and maximum temporality τ+ respectively. Lower bounds from the literature and upper
bounds through analysis are presented. Then, in Section 3, we focus on tree graphs for
which we obtain tight results through an argument on bridge edges. These results do not
beat aforementioned lower bounds however. In Section 4, we focus on cycles, partly due to
a lower bound being a labelling on cycles, which shows promise for obtaining even denser
labellings. For this, we decide to extend labelling generator STGen from [7] so as to fit to our
setting and specifically to cycles. After executing it on small cycles, we obtain the intuition
for a complex labelling which beats the lower bounds for local density by a factor of 1.5,
and for global density by exactly 1 label. A non-trivial proof is given to show that all labels
of this labelling are indeed necessary and that the resulting temporal graph is temporally
connected, using a representation of temporal graphs called link streams and by reasoning on
journeys which are necessary. A summary of our results is presented in Figure 1, where n is
the number of vertices of a graph. We discuss and extend results in Section 5, and conclude.

Due to the page limit, technical proofs (marked with a ⋆) were moved to the appendix and
other parts were omitted. For these, the reader is referred to the full version on arXiv [13].

2 Preliminaries

In this paper, all graphs are simple and undirected (except for the reachability graph defined
below). A temporal graph is a tuple (G, λ) with graph G = (V, E), called the footprint or
underlying graph, and edge labelling λ : E → 2N. The labels correspond to when the edges
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8:4 On Inefficiently Connecting Temporal Networks

are present over the lifetime of the temporal graph. A pair (e, ℓ) with e ∈ E and ℓ ∈ λ(e) is
called a time edge. Reachability in temporal graphs is defined through temporal paths, also
called journeys, which are adjacent time edges j = (c1, c2, ..., ck) such that for all ci = (ei, ℓi)
with i ∈ [2, k] we have that ℓi > ℓi−1. We say u can reach v, or v can be reached by u, if
there exists a journey from u to v. A journey J is said to cover a set of vertices V ′ if for
all vertices v in V ′, v is part of some time edge of J . A temporal graph G′ = (G′, λ′) is a
temporal subgraph of G = (G, λ) if G′ is a subgraph of G and λ′ a sublabelling of λ. For a
label ℓ of temporal graph G, G−ℓ corresponds to the temporal subgraph of G without label ℓ

(if other labels exist in G with the same value, then these remain).
A temporal branching B = (T, λ) with root r is a tree T with |λ| = n− 1 such that vertex

r can reach all vertices. A temporal branching B = (T, λ′) with root v of a temporal graph
G = (G, λ) is a temporal subgraph of G which is a temporal branching, and it is spanning if
V (T ) = V (G). The reachability graph R(G) is defined on the same vertex set as G and an arc
exists from u to v if and only if u can reach v in G. If all vertices can reach all other vertices
in G, we say G is temporally connected. Note that a temporal graph is temporally connected
if and only if the corresponding reachability graph is complete (with arcs in both directions).
From [8], two temporal graphs G1 and G2 are reachability-equivalent1 if reachability graphs
R(G1) and R(G2) are isomorphic, denoted G1

R≃ G2.
A labelling is proper when no incident edges share a same label. In the rest of the paper,

all labellings are supposed proper, unless specifically stated otherwise. Using terms from
[1], a label ℓ in a temporal graph G is redundant if and only if it can be removed from G
without reducing reachability, i.e. G R≃ G−ℓ. Conversely, a label ℓ of G is necessary if and
only if G ̸R≃ G−ℓ. If a labelling contains only necessary labels, we call it a minimal labelling.
We call a temporal graph with a proper (resp. minimal) labelling a proper (resp. minimal)
temporal graph.

In [29], the authors defined two measures of density for a temporal graph G: the temporal
cost T (G), which is the total amount of labels in G; and the temporality τ(G) which is the
maximum amount of labels on an edge, among all edges. The former is intended as a global
density measure, whereas the latter is more of a local one, potentially of interest for example
in distributed or parallel computing. We adapt temporal cost in the following manner. The
three types of maximum temporality are defined analogously.

Let T +(G) be the maximum temporal cost of graph G, i.e. the maximum temporal cost
T (G = (G, λ)) of all proper minimal labellings λ such that G is temporally connected;
Let T +(Class) be the maximum temporal cost of graph class Class, i.e. the maximum
value x such that for all graphs G of Class, T +(G) ≥ x;
Let T + be the maximum temporal cost, i.e. the maximum temporal cost T +(G) among
all graphs G on n vertices.

We study three simple graph classes in this work, being Trees (Section 3), Cycles
(Section 4), and Cacti (omitted, see [13]), and in Section 5 superclasses are discussed.

2.1 Upper and lower bounds on T + and τ +

The upper bounds are both obtained through the following fact:

▶ Lemma 1. A minimal temporally connected graph G equals the union of any n spanning
temporal branchings with distinct roots of G.

1 Originally closure-equivalent, but changed to reachability-equivalent for journal version (private message).
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Proof. By contradiction, suppose that the union of some n spanning temporal branchings
with distinct roots of G does not equal G. This implies at least some label of G isn’t part of
the branchings, which means it can be removed without reducing reachability. However, G is
minimal so no redundant labels exist which is a contradiction. ◀

Lemma 1 allows us to reason on minimal temporally connected graphs through the
corresponding spanning temporal branchings: for the largest possible maximum temporal
cost T +, consider the branchings to all be using distinct labels; whereas the branchings all
using some same edge with distinct labels would result in the largest maximum temporality
τ+.

▶ Theorem 2 (⋆). The maximum temporal cost T + ≤ n2−n−1 and the maximum temporality
τ+ ≤ n− 1.

Observe that the idea of considering n root-distinct temporal branchings is used in
Observation 3 in [22] as well. We believe that their result could be improved slightly from
n(n− 1) to n(n− 1)− 1 in a similar fashion as we do for the maximum temporal cost T +.

Also in [22], Klobas et al. construct some minimal labellings which are strict, meaning
journeys are allowed to traverse at most one edge per time step. Among these labellings, the
one given in Lemma 4 happens to be proper, giving lower bounds T + ≥ 1

4 n2 and τ+ ≥ 1
4 n.

The idea of the labelling is to label every other edge of an even cycle graph with all even
labels up to n/2, and all other edges with all odd labels up to n/2. Let us refer to this
labelling as the parity labelling (see Figure 2).

During the open question session of a Dagstuhl seminar on temporal graphs (see [9] for
the report), some preliminary results of this work were presented, including a labelling of an
ad-hoc graph giving lower bounds T + ≥ 1

18 n2 + O(n) and τ+ ≥ ⌊ 1
3 n⌋. The idea is to force

journeys to go through the top edge using distinct labels. Let us refer to this labelling as the
ad-hoc labelling (see Figure 2).

1, 3, 5

2, 4, 6

1, 3, 5

1, 3, 5
1, 3, 5

1, 3, 5

1, 3, 5

2, 4, 6

2, 4, 6

2, 4, 6
2, 4, 6

2, 4, 6

(a) Parity labelling from [22] for n = 12.

1

83

82

81

24

25

16

8

17

26

10

19

28

9, 18, 27

2

81

(b) Ad-hoc labelling from [9] for n = 10.

Figure 2 Minimal labellings from the literature giving lower bounds on maximum temporal cost
T + and maximum temporality τ+.

Note that the parity labelling is denser regarding the temporal cost, but the ad-hoc
labelling is denser regarding temporality. Some natural questions arise from these bounds. It
seems that very sparse graphs (such as Cycles) can admit dense labellings, does that mean
that other sparse graphs, such as Trees, can admit dense labellings as well? Can one do
better than these labellings, and more specifically better in Cycles? These questions are
answered in the following sections.
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8:6 On Inefficiently Connecting Temporal Networks

3 Tree graphs

In this section we prove the following labelling is densest possible for tree graphs, considering
maximum temporal cost T + and maximum temporality τ+. The labelling originates from
gossiping strategies from e.g. [3,17] and has been used in temporal graph theory papers such
as in Theorem 2 in [1] and the pivot technique in [10]. We refer to it as the pivot labelling,
and define it as follows (see also Figure 3). Select an arbitrary pivot vertex p and construct
journeys from all other vertices towards p, using the reverse breadth-first search order. Then,
using the breadth-first search order, add journeys from p to all other vertices. The earliest
label of the second BFS is removed.

1

9

13
4

67

12

14

16

5

8

15

2

3

10

11

17

18p

(a) First (reverse) breadth-first search labelling.

9,29

13,23
4,33

6,327,27

12,26

14,25

16,20

5,34

8,28

15,24

2,36

3,31

10,30

11,22

17,21

18,19p

1,35

(b) Adding the second breadth-first search labelling.

Figure 3 The pivot labelling of an example tree graph. A first labelling converging to pivot
vertex p is shown, which is then complemented by a second broadcasting labelling from p. Label 19
(shown in red) is redundant and removed.

The resulting temporal graph is temporally connected since by design all vertices can
reach pivot vertex p at time n− 1, and starting at time n− 1, vertex p can reach all vertices.
It is also a minimal labelling since removing any label ≤ n− 1 on a path from a leaf vertex
f to p reduces the reachability of f , and removing any label > n− 1 makes it so f cannot be
reached by some other leaf vertex.

As stated by Theorem 2(a) in [1], the pivot labelling thus trivially gives the lower bound
T +(Trees) ≥ 2n − 3. Also, it trivially gives the lower bound of τ+(Trees) ≥ 2. To prove
these are tight, i.e. no denser labellings exist, we first present a lemma focusing on bridge
edges (edges which disconnect the graph if removed), and then apply it on tree graphs.

▶ Lemma 3. For any bridge edge e of graph G and any minimal labelling λ such that
G = (G, λ) is temporally connected, λ can assign at most two labels to e.

Proof. Consider a temporally connected graph G with bridge edge e = {u, v}, separating G
into two temporal subgraphs G1 (with vertex u) and G2 (with v). Suppose by contradiction
that the labelling λ of G assigns more than two labels to edge e, say k > 2 labels ℓ1, ℓ2, ..., ℓk,
and that this labelling is minimal. Define t−u to be the earliest time at which all vertices in
G1 are able to reach u. Similarly, define t+

v to be the latest time at which all vertices in G2
can be reached by v. Since G is temporally connected, there exists some label ℓi of e such
that t−u < ℓi < t+

v . Keeping ℓi is thus sufficient for maintaining reachability from all vertices
in G1 to all vertices in G2. A symmetrical argument can be used to find label ℓj which is
sufficient for maintaining reachability from all vertices in G2 to all vertices in G1. Together,
ℓi and ℓj are thus sufficient for reachability concerning journeys using edge e, and edge e

can trivially be ignored for reachability between vertices in G1 (resp. G2). This results in all
other labels on edge e being redundant, which is a contradiction since it is minimal. ◀
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▶ Theorem 4. τ+(Trees) = 2.

Proof. Tree graphs contain only bridge edges, so by Lemma 3 no edge of a tree graph
can have more than two labels in a minimal labelling, and this is attained by the pivot
labelling. ◀

Note that Theorem 4 implies that T +(Trees) ≤ 2n− 2, which is only off by 1 from the
lower bound. We finish this section with proving the latter to be tight.

▶ Theorem 5 (⋆). T +(Trees) = 2n− 3.

As a side note, we remark that the maximum temporal cost (resp. temporality) of tree
graphs corresponds to the minimum temporal cost (resp. temporality) of tree graphs. In
other words, all minimal temporally connected labellings of tree graphs contain exactly 2n−3
labels and exactly 2 labels on all edges except one, independently of whether one tries to
minimise or maximise the density. For proofs of these minimisation costs, we refer the reader
to [18] for the original proofs in the gossiping context, or to Theorem 2 in [22] and Corollary
3 in [29] in the temporal graph context.

For trees, the results are mixed: on one hand we exactly determined both maximum
temporal cost and maximum temporality of tree graphs T +(Trees) and τ+(Trees), but on
the other hand both are very sparse and do not improve upon lower bounds of maximum
temporal cost T + and maximum temporality τ+.

4 Cycle graphs

We focus here on finding dense labellings of cycle graphs, which we know exist thanks to the
parity construction. For this, we decided to adapt temporal graph generator STGen from
[7] (the description and adaptation of which is omitted in this version), which ultimately
leads us to the densest labelling in this paper, the generator labelling. The main idea is to
distribute even labels to an arbitrary edge, odd labels to the incident non-labelled edges, and
so forth for the next non-labelled edges switching between even and odd labels with some
additional complex rules.

Proving this labelling results in a minimal and temporally connected graph for any order
n cycle graph is complex due to the inherent unreadability of the multiple journeys in these
temporal graphs. For this reason, we introduce a different type of representation which
is very similar to the so-called link stream representation used in various temporal graph
theory papers [25,26,34], and thus by slight misuse of terminology, we simply refer to it as
the link stream representation. Link streams intuitively focus more on the time edge aspect
of a temporal graph, and less on the structure of the underlying graph. Since we already
know the underlying structure of the graph (being a cycle graph), link streams are perfect to
represent our generator labelling. As an illustrative example, the link stream representation
of Figure 4 is given in Figure 5, where all edges of the cycle are represented in one dimension,
the horizontal dimension, and time is represented in the other, the vertical dimension. A
“label” is thus represented as a time edge at the intersection of the corresponding edge and
time value.

In this representation, a journey informally corresponds to a (possibly steep) “staircase”
of time edges which, obeying the flow of time, cannot go down. We now remind and define
some concepts concerning journeys in this setting, all of which are illustrated in Figure 5.
A prefix of a journey (v1, ℓ1, v2, ℓ2, ..., ℓk−1, vk) is a part of the journey cut back from the
arrival vertex, i.e. (v1, ℓ1, v2, ℓ2, ..., ℓi−1, vi) for some i ≤ k, and a suffix of a journey is a part

SAND 2024



8:8 On Inefficiently Connecting Temporal Networks

Algorithm 1 Generator labelling (see also Figure 4).

input : even cycle graph G of order n, edge e of G

output : temporal graph G = (G, λ) with generator labelling λ

L, L1 ← oddNumbersBetween(1, n− 1) /* ascending order */
L2 ← evenNumbersBetween(1, n− 1) /* ascending order */
L′, L′1, L′2 ← ∅
ec, ecc ← e

while ec = e or ec ̸= ecc do
addLabels(L′, ec)
addLabels(L′, ecc)
e′ ← ec

for ℓ in L do
addLabel(ℓ, e′)
if e′ = ec then e′ ← ecc else e′ ← ec

moveSmallestLabelFromTo(L, L′)
removeLargestLabelFrom(L)
ec ← nextClockwiseEdge(ec)
ecc ← nextCounterClockwiseEdge(ecc)
if L = L1 then L← L2 else L← L1
if L′ = L′1 then L′ ← L′2 else L′ ← L′1

addLabel(largestLabel(ec) + 2, ec)

1, 3, 5, 7, 9, 11, 13, 15

(a) ec = ecc = e, L1 = (1, 3, 5, ..., 15) and L′
1 = ∅.

1, 3, 5, 7, 9, 11, 13, 15

2, 6, 10, 14

4, 8, 12

(b) L2 = (2, 4, 6, ..., 14) and L′
2 = ∅.

1, 3, 5, 7, 9, 11, 13, 15

2, 6, 10, 14

4, 8, 12

1, 5, 9, 13

1, 3, 7, 11

(c) L1 = (3, 5, 7, 9, 13) and L′
1 = (1).

1, 3, 5, 7, 9, 11, 13, 15

2, 6, 10, 14

4, 8, 12

1, 5, 9, 13

1, 3, 7, 11

2, 4, 8, 12

2, 6, 10
1, 3, 7, 11

1, 3, 5, 9

2, 4, 8

2, 4, 6, 10

1, 3, 5, 9

1, 3, 5, 7

2, 4, 6, 8

2, 4, 6

1, 3, 5, 7, 9

(d) L1 = ∅, L′
1 = (1, 3, 5, 7) and ec = ecc again.

Figure 4 The generator labelling for n = 16, starting on rightmost edge e, and repeating while
loop with lists in captions. After the while loop finishes, label 9 is added on the last (leftmost) edge.
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e

1

5

10

15

(a) Without journeys.

e

1

5

10

15

(b) With two clockwise journeys in red and one counter-clockwise journey in
blue. Only the outermost red journey (which goes around) is prefix-foremost.

e

15

1

5

10

(c) With all dominating journeys.

Figure 5 The generator labelling for n = 16 in the link stream representation, with edge e shown
in the middle. The rightmost edge connects the outermost vertices, allowing journeys to go around.

SAND 2024



8:10 On Inefficiently Connecting Temporal Networks

of the journey cut back from the starting vertex, i.e. (vj , ℓj , vj+1, ℓj+1, ..., ℓk−1, vk) again
for some j ≤ k. A foremost journey from vertex u to vertex v is a journey which arrives at
the earliest time among all journeys from u to v. A prefix-foremost journey from u to v is
a journey which prefixes are all foremost, In other words, a prefix-foremost journey always
takes the earliest edges possible on its journey. We define a clockwise journey as a journey
which takes only time edges to the left, and a counter-clockwise journey is composed of only
time-edges going to the right. Finally, we define dominating journeys as clockwise (resp.
counter-clockwise) journeys such that no other clockwise (resp. counter-clockwise) journey
exists which covers all its vertices or more.

We show in a very technical proof by induction that the generator labelling essentially
“grows” domination journeys and creates new ones, as it is applied to larger and larger cycles
graphs, and that these dominating journeys are necessary and ensure temporal connectivity.

▶ Theorem 6 (⋆). The generator labelling yields a minimal temporally connected graph.

The temporal cost of the generator labelling is the largest presented in this paper, and
with it also comes the largest temporality, namely on edge e. In the full version of this work,
we show that the generator labelling works on all even cycles, and also give an adaptation
for odd cycles. Analysing both gives us the main results.

▶ Theorem 7. T +(Cycles) ≥ 1
4 n2 + 3

4 .

▶ Theorem 8. τ+(Cycles) ≥ ⌈ 1
2 n⌉.

5 Conclusion

In conclusion, we provided some general upper bounds and proved tight or lower bound
results for some basic graph classes on how dense a labelling they can admit. Also, our
proposed generator labelling beats the previously densest labellings, in both temporal cost
and temporality.

Since we allow a labelling to assign no labels to any edge, a density result for class C
translates as a lower bound for any class C′ if for all graphs G′ ∈ C′, there exists G ∈ C such
that G is an edge-deleted subgraph of G′. Conversely, a density result for class C implies an
upper bound for any superclasses of C. Together, this means that our (tight and lower bound)
results for Trees, Cycles, and Cacti, thus respectively transfer for Connected, the class
of connected graphs, Hamiltonian, the class of Hamiltonian graphs, and Circumference c,
the class of graphs of circumference c.

We omitted in this version (again, see full version on arXiv [13]) the section on cactus
graphs, where essentially the pivot labelling is used to gather information towards a largest
cycle in the graph, instead of towards a pivot vertex, then apply the generator labelling on
that cycle, and finally broadcast information outwards again with the pivot labelling, leading
to the density results presented in Figure 1.

In terms of future work, one clear option is to consider other types of labellings. There
are already some lower bounds known, such as Axiotis and Fotakis’ construction from [2] for
happy labellings, although we beat this construction slightly by adapting the ad-hoc labelling
to become a happy labelling (omitted in this version). A lower bound for strict labellings
comes from [23], in which Klobas et al. label all edges of an odd cycle with all integers up
to ⌊n

2 ⌋; another labelling attaining the same lower bound is the complete graph with label
1 on all edges. Another direction for future work is considering computational complexity
of associated problems. The corresponding minimisation problems are all polynomial-time
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solvable, with the exception of deciding whether the minimum temporality of a graph is 1,
which is NP-complete [16]. Our results only prove polynomial-time solvability for trees, and
containment in APX for cycles and cacti of large circumference.
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A Proof(s) of Section 2

▶ Theorem 2. The maximum temporal cost T + ≤ n2 − n− 1 and the maximum temporality
τ+ ≤ n− 1.

Proof. By Lemma 1, a minimal temporally connected graph equals the union of any of its n

distinct-root spanning temporal branchings.

https://doi.org/10.1201/b16132-87
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Concerning maximum temporal cost, the worst-case scenario for the total number of
labels in such a graph is when these temporal branchings are all disjoint. This results in a
labelling using n− 1 labels for each branching (as they are spanning), of which there are n,
resulting in a total of n2 − n labels.

Consider however the smallest label ℓ− used in the graph, say on edge e = {u, v}. This
label can only be part of the spanning temporal branching of root u, denoted Bu, or of the
spanning temporal branching of root v, denoted Bv, since it’s unreachable from any other
vertex. Suppose w.l.o.g. ℓ− is part of Bu. We know v must reach u through some journey in
Bv arriving at some time ℓ. Note that ℓ can be removed from Bv, and ℓ− added. Indeed,
for all w, any journey v ⇝ w in Bv is either maintained by the swap, or passes through u

earlier with ℓ−, meaning Bv remains a spanning temporal branching. Thus, label ℓ− can
be considered part of two spanning temporal branchings, decrementing the total amount of
labels to n2 − n− 1.

Concerning maximum temporality, the worst-case number of labels on an edge in such a
graph is when the spanning temporal branchings are all label-disjoint and all use one same
edge e = {u, v}, resulting in an edge having 1 label for each branching, of which there are n,
resulting in a total of n labels.

Note however that the label from the branching corresponding to root u, and the label
from branching corresponding to root v, are necessarily the same label, since otherwise the
later of the two would be redundant, as both branchings can use the earlier label. Thus edge
e would have n− 1 labels. ◀

B Proof(s) of Section 3

We first need the following lemma concerning dense path graphs.

▶ Lemma 9. T +(Paths) = 2n− 3

Proof. The pivot labelling and Lemma 3 apply to path graphs, implying that 2n − 3 ≤
T +(Paths) ≤ 2n− 2.

Suppose w.l.o.g. the vertices of a path graph to be, from one leaf vertex to the other, v1,
v2 etc. up to vn. Note that for a path graph to be temporally connected, we only need to
ensure that both extremities, v1 and vn, can reach each other, via a journey in one direction,
and a journey in the other. Indeed, any other pair of vertices can use these journeys to reach
each other. Thanks to this, we can reason on temporally connected path graphs and only
need to worry about the reachability between these two leaf vertices, instead of between all
vertices.

Suppose by contradiction that a minimal temporally connected path graph G exists with
2n− 2 labels. By our previous argument, we have that any label which is not part of either
the journey from v1 to vn, or of the journey from vn to v1, is redundant. Each of these two
journeys is composed of n− 1 labels, meaning that to obtain 2n− 2 necessary labels from
only these two journeys, we must have that all labels on the two journeys must be distinct.
There must exist one edge ei such that the corresponding labels have the smallest difference
among all edges of path G. By the temporal nature of journeys, there cannot be more than
one such edge as the difference must necessarily increase on edges further away from ei.
Consider the labels on edge ei and incident edges ei−1 and ei+1, denoted ℓ→i , ℓ←i , ℓ→i−1, ℓ←i−1,
ℓ→i+1, and ℓ←i+1. (If edge ei only has one incident edge, then ignore the following concerning
the non-existent other edge and labels.) Consider labels ℓ→i−1 < ℓ→i < ℓ→i+1 to be part of
v1 ⇝ vn, and ℓ←i−1 > ℓ←i > ℓ←i+1 to be part of vn ⇝ v1. Suppose w.l.o.g. that ℓ→i > ℓ←i . Thus
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we have that ℓ→i+1 > ℓ→i > ℓ←i and also ℓ←i+1 < ℓ←i < ℓ→i . On edge ei−1 however, two cases
are possible:

ℓ→i−1 < ℓ←i : this means label ℓ→i is redundant as ℓ→i−1 < ℓ←i < ℓ→i+1;
ℓ←i−1 > ℓ→i : this means label ℓ←i is redundant as ℓ←i+1 < ℓ→i < ℓ←i−1.

Due to the inequalities presented, and the fact that the difference between ℓ←i−1 and ℓ→i−1
must be larger than the difference between ℓ←i and ℓ→i , at least one of the previous cases
must be present, meaning at least one label must be redundant which is a contradiction. ◀

▶ Theorem 5. T +(Trees) = 2n− 3.

Proof. Since path graphs are tree graphs, Lemma 9 gives an upper bound of 2n− 3, which
is attained by the pivot labelling. ◀

C Proof(s) of Section 4

The following technical lemmas are needed to then prove minimality of the generator labelling.

▶ Lemma 10. In a cycle graph G = (V, E) without any journey covering V , a clockwise
journey J = (({vj , vj−1}, t1), ({vj−1, vj−2}, t2), ..., ({vi, vi−1}, tk)) is dominating if and only
if:

it starts at the earliest date possible, i.e. there exists no time edge ({vj , vj−1}, t) nor
({vj+1, vj}, t) with t < t1;
it ends at the latest date possible, i.e. there exists no time edge ({vi, vi−1}, t) nor
({vi−1, vi−2}, t) with t > tk;
no other time edges exist between successive time edges, i.e. for all successive pairs of
time edges ({va, va−1}, tb) and ({va−1, va−2}, tc > tb) of J , there exists no time edge
({va, va−1}, t) or ({va−1, va−2}, t) with tb < t < tc.

A symmetric characterisation holds for counter-clockwise journeys.

Proof. Let us focus on clockwise journeys, the proof being symmetric for counter-clockwise
journeys. Suppose by contradiction that a journey J obeys the three criteria, but is not
dominating, meaning there exists some other distinct clockwise journey J ′ covering the same
vertex set (or more). A case analysis follows depending on which vertex J ′ starts.

If journey J ′ starts from any vertex that J covers, except for vj , then to ensure J ′
covers the vertices of J , it needs to go all the way around the cycle graph and thus cover V ,
which is explicitly excluded in this lemma.

If J ′ starts at vertex vj , and it contains some earlier time edge than the corresponding
time edge in J , then J doesn’t respect criterion three (as this earlier time edge exists
between successive time edges of J ). If instead it contains a later time edge, then J ′ must
rejoin or cross J at some point (since J uses the latest date of edge {vi, vi−1} by criterion
two), implying J again does not respect criterion three. Of course, if J ′ does not contain
any earlier or later time edge than J , then it will end in the same manner as J without any
way of continuing by criterion two, meaning it is identical to J .

Lastly, if J ′ starts on any other vertex, then since J respects criterion one, J ′ must
arrive later than t1 on edge {vj , vj−1}. By the same argument as before concerning J ′ having
a later time edge than J , the former must rejoin or cross the latter at some point, implying
J does not respect criterion three.

Since all cases end in some contradiction, being either J breaking one of the criteria or
J ′ being identical to J , we can thus conclude that J is dominating. ◀
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▶ Lemma 11. In a cycle graph G = (V, E) without any journey covering V , a pair of
clockwise and counter-clockwise journeys is necessary if:

both start at some same vertex v;
both are prefix-foremost;
both are a suffix of a dominating journey;
and they do not cross (except on vertex v).

Proof. We prove that such a pair of clockwise and counter-clockwise journeys, say journey
J w

v which clockwise goes up to vertex w, and journey J u
v which counter-clockwise goes up

to vertex u, is necessary for reachability from v to w and from v to u respectively. W.l.o.g.
we give the proof for the former only, the proof for the latter being symmetric. We first
prove that no counter-clockwise journey can reach vertex w, and then that the only clockwise
journey that can reach w is journey J w

v , from which it follows that this journey is necessary.
First note that vertex v cannot reach further than u in a counter-clockwise manner.

Indeed, if by contradiction we suppose there is some counter-clockwise journey J u′

v from v

to vertex u′ such that u′ is positioned further than u, then w.l.o.g. we may consider J u′

v

to be prefix-foremost (if it is not, then we can make it so by changing its time edges for
the earliest possible). Since J u

v and J u′

v are both prefix-foremost clockwise journeys, we
know that J u

v must be a prefix of journey J u′

v , i.e. J u′

v is the concatenation of journeys J u
v

and say J u′

u . Journey J u
v is a suffix of a dominating journey Jd, meaning no other counter-

clockwise journey covers the vertices of Jd or more, but now we obtain our contradiction:
the concatenation of Jd and J u′

u covers more vertices (the only case where this wouldn’t
be true is if Jd covered V which is explicitly excluded from the lemma statement). Since
J w

v and J u
v don’t cross (except on vertex v), we now know that v cannot reach w through a

counter-clockwise journey.
To finish the proof, we show J w

v is the only clockwise journey that can reach w, meaning
all its edges are necessary. Suppose by contradiction another clockwise journey J exists from
v to w. It cannot be a prefix-foremost journey, as by definition this would be journey J w

v .
Since J is not prefix-foremost, it uses some edge e with label l′ whereas J w

v uses edge e with
some label l < l′. However, we remind the reader that J w

v is a suffix of a dominating journey
Jd. Altogether, this means another journey exists covering the same vertices as Jd, being
the concatenation of the prefix of Jd up to vertex v, and J . By definition of dominating
journeys, this is a contradiction. ◀

We note that if the pair of journeys from Lemma 11 collectively covers V , then vertex v

can reach all vertices through these journeys.

▶ Theorem 6. The generator labelling yields a minimal temporally connected graph.

Proof. The proof is by induction. Consider cycle graph C8 as our base case. Apply the
generator labelling starting on some edge e. Let e be composed of vertices v−2 and v−1,
and let vertices vi be the vertices in the clockwise direction of e, with i the (clockwise)
hop distance between e and vi, and similarly, let vertices v−(i+2) be the vertices in the
counter-clockwise direction of e, with i the (counter-clockwise) hop distance between e and
v−(i+2). Compute the dominating journeys, see Figure 6. Let us define some specific sets
of time edges as follows. Let the five earliest time edges on edges {v−2, v−1}, {v−1, v1} and
{v1, v2} be referred to as the seed, and the three latest time edges as the trunk. Let the
latest two time edges on edges {v−4, v−3} and {v−3, v−2} be referred to as a branch, as well
as the ones on edges {v2, v3} and {v3, v4}. More specifically, let the former be branch B2, as
the dominating clockwise journey starting at vertex v2 ends in these edges, and the latter

SAND 2024



8:16 On Inefficiently Connecting Temporal Networks

B−2 as the dominating counter-clockwise journey starting at vertex v−2 ends here. Finally,
let the other time edges be referred to as the base. Note that all time edges are part of some
dominating journey, and that all dominating journeys start on a time edge with time 1 in the
base (except for the two dominating journeys starting in the seed) and that all dominating
journeys end in the latest time edges of branches (except for two dominating journeys ending
in the trunk).

It is possible to claim minimality and temporal connectivity for this small temporal graph,
although we specifically point out that Lemma 11 can be used on all vertices (except for
those of the seed) to prove necessity of all dominating journeys starting on these vertices,
and reachability of all these vertices. Note that now only the time edges of the base remain
to be proven necessary. The time edges of the counter-clockwise dominating journey can be
proven necessary by applying Lemma 11 on vertex v−2, but it cannot be applied to vertex
v2 to prove the remaining time edges necessary, as its counter-clockwise prefix-foremost
journey is not dominating. However, they are proven necessary through the ad hoc argument:
without these edges v2 cannot reach v−4, as any clockwise journey by definition cannot reach
it except for its clockwise dominating journey which relied on these time edges, and any
counter-clockwise journey reaches at most vertex v4. Concerning reachability of the vertices
of the seed, it is possible for them to use the dominating journeys starting in the seed to
go to any other vertex (note that these journeys do not cross outside of in the seed, but do
cover V ).

Now, in the inductive step, this structure of seed, base, trunk and branches remains
or gets extended when growing the generator labelling for some Cn to some Cn+4. More
precisely, the seed remains as is, the base gets extended with so-called roots, the trunk with
a so-called apex, and the branches with leaves. Also, two new branches are created in every
inductive step, which sprout from the top of the trunk. Underlying all this, we prove that in
the inductive step, the dominating journeys get extended slightly, are modified, or created,
in a precise manner which ultimately allows us to again use Lemma 11 to prove minimality
and temporal connectivity, in a very similar manner as how we did for C8.

Now, suppose we have a cycle graph C4k with the generator labelling which has been
proven minimal and temporally connected, specifically through applying Lemma 11 on
all vertices except for the seed. Add vertices v2k+1, v2k+2, v−2k−1, and v−2k−2 and the
corresponding edges to the link stream representation so as to obtain cycle C4k+4. See Figure 6.
This effectively breaks dominating journeys which previously used edge {v−2k, v2k}, whose
time edges now belong to edge {v−2k, v−2k−1}. We will patch these halves of dominating
journeys back together in what follows, although not exactly with their original half. Note
that now the generator labelling for C4k+4 is exactly this labelling, with some additional
time edges which are all later, i.e. for all additional time edges (e, t), there exists no already
present time edge (e, t′ > t). Let the three additional time edges extending the trunk be
referred to as the apex, let the leaves be the pairs of additional time edges extending the
branches (as well as creating branches B2k and B−2k from the trunk), and let the remaining
additional time edges be the roots, which extend the base.

Let us start by proving these additional edges are all part of some dominating journey.
Leaves extending branches Bi extend the corresponding dominating journey starting from

vertex vi. The three conditions from Lemma 10 hold for this extended journey, as it still
starts at time 1, no additional time edges have been added in between the time edges it uses,
and it ends at the latest time possible at the top of its respective leaves. Regarding the leaves
that create a new branch B2k and B−2k, these extend dominating journeys from vertices
v2k and v−2k which ended at the top of the trunk before (we can observe two of these exist
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(a) Base case cycle graph C8, with seed, base, trunk and two branches.

e

1

5

10

(b) Induction step cycle graph Cn (here n = 12) before extending to Cn+4.

e

15
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(c) Apex, leaves, and roots extending Cn to obtain Cn+4, adding two branches.

Figure 6 Illustration of the proof by induction for Theorem 6, with the seed (light green), trunk
(brown), branches (green) and base (light brown). At the induction step, the apex, leaves, and roots
are shown in the same but less transparent colour as the structures they extend.
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in C8, and below we prove that in every inductive step two new such journeys are created).
These extended journeys remain dominating by the same argument as for other branches.
All leaves are thus part of a dominating journey. Note that this extends (by exactly two time
edges) basically half of all previously existing dominating journeys.

The other half of previous dominating journeys are broken up through the addition of
the four new vertices and edges. The roots serve to patch these journeys back together.
Note that before, all these dominating journeys started in the base, cycled around, and
climbed through the branches to finish at the top of some branch. More specifically, such a
dominating journey starting from a vertex vi finished at the top of branch Bi−1 for i > 0
and at the top of branch Bi+1 otherwise (an exception being the journey starting from v−3
which ends at the second largest time edge of the branch B−2). We show this remains true
after the inductive step. The reconstructed dominating journey, suppose from vertex vi for
i > 0 (the explanation being symmetric for i < 0), starts of with the same time edges it had
before in the base until it reaches the roots. This means this part of the journey respects two
of the conditions of Lemma 10, being it starts at time 1, and no time edges exist in between
its time edges as this journey was dominating before and the additional time edges are all
later. Now the earliest four time edges possible are taken to continue this journey in the
roots, cycling around to the other side of the link stream. This also respects the condition of
having no time edges in between these four time edges, as the roots are densely packed by
definition. The journey is now four time steps too late to reconnect with the other half it had
before, connect it instead with the half of the journey which previously started from vertex
vi−4 for which it arrived through the roots perfectly on time. This latter half also respects
the condition of having no time edges in between its time edges due to part of a dominating
journey before, and no additional time edges have been added in between these time edges.
Since our journey now follows the part of the dominating journey which previously started at
vi−4, it arrives at branch Bi−5, but can now continue through the leaves of Bi−3 and finally
Bi−1 to end at the latest edge. By construction, this continuation through the leaves respects
the conditions of Lemma 10 since there are no time edges in between, and it ends at the
latest time possible. There are two exceptions to this: the reconstruction of the dominating
journey starting from vertex v3 only uses three time edges from the roots, before directly
ending in the leaves of branch B2, and the one starting from vertex v5 directly goes up
through the leaves of B2 and B4 after the roots. Both reconstructed journeys are dominating
as well. Note that now all dominating journeys starting at vertices vi with −2k ≤ i ≤ 2k

have been extended (the ones cycling around have been broken apart and refitted first but in
terms of length have been extended as well) by exactly two time edges compared to their
previous length in C4k.

Observe that some of the earliest roots have not been shown to be part of a dominating
journey yet, and also that some halves of previous dominating journeys have not been refitted
together yet. We show another four dominating journeys exist which start from the four
new vertices, use these earliest roots, as well as the remaining parts of previous dominating
journeys, and two of these journeys use the time edges of the apex. Proving these four
journeys are dominating is done through again applying Lemma 10 with the arguments
already explained for the other dominating journeys, and thus we decide to forgo doing this
again four more times. The dominating journey starting at v−2k−1 goes clockwise, starting at
time 1 and the four earliest roots, then it continues with the part of the previous dominating
journey ending in branch B−2k+4, and goes up through the leaves of branches B−2k+2 and
B−2k, finishing at the latest time edge of the latter. Starting at vertex v−2k−2, we have a
counter-clockwise dominating journey, starting at time 1 using only one root, linking up with
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part of a previous dominating journey which finished at branch B2k−2, which is extended
further through branch B2k and the apex to end on the second latest time edge. We note
that the last two dominating journeys do not cross, except on the first edge, and cover V .
Continuing, we have a clockwise dominating journey starting at v2k+2 and time 1, using
two roots before using part of a previous dominating journey leading up to branch B−2k−2,
continuing through the leaves of B−2k and ending in the apex on the largest time edge.
Finally, there is a counter-clockwise dominating journey from vertex v2k+1 using three roots
cycling around the link stream, pairing up with part of a previous dominating journey leading
up to branch B2k−4 which then continues through leaves of B2k+2 and B2k to end on the
largest time edge of that branch. Again, these two journeys do not cross, except on the first
edge, and cover V .

Thus, we have that all time edges are part of a dominating journey, and that basically
the same journeys from C4k remain in C4k+4 (albeit some of them recombined differently)
and were extended by exactly two time edges. Since for all vertices but those of the seed,
Lemma 11 was used to prove necessity of the corresponding dominating journeys, this lemma
can be used again for these vertices to prove necessity of their corresponding dominating
journeys, as well as reachability of these vertices to all others. For the time edges and vertices
of the seed, the argument used for C8 can be generalized to prove necessity and reachability
as well. Finally, the last four dominating journeys which start on the four new vertices, can
use Lemma 11 as well, since their clockwise and counter-clockwise prefix-foremost journeys
are dominating and can collectively cover V .

In conclusion, we have proven that the base case, being the generator labelling for C8,
is minimal and temporally connected. Then, for any inductive step from C4k to C4k+4,
minimality and temporal connectivity are conserved in this labelling. Thus, the generator
labelling produces a minimal and temporally connected graph for any size 4k. (The generator
labelling works for C4 as well, it is easy to check, but the structure of the labelling was easier
to explain with C8, as for C4 the labelling is composed of only the seed.) ◀
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Abstract
In this paper, we settle the main open question of [Michail, Skretas, Spirakis, ICALP’17], asking
what is the family of two-dimensional geometric shapes that can be transformed into each other
by a sequence of rotation operations, none of which disconnects the shape. The model represents
programmable matter systems consisting of interconnected modules that perform the minimal
mechanical operation of 90° rotations around each other. The goal is to transform an initial shape
of modules A into a target shape B. Under the necessary assumptions that the given shapes are
connected and have identical colourings on a checkered colouring of the grid, and using a seed of
only constant size, we prove that any pair of such shapes can be transformed into each other within
an optimal O(n2) rotation operations none of which disconnects the shape.
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1 Introduction

Programmable matter refers to matter that can change its physical properties algorithmically.
It is envisioned as a collection of modules connected to each other to form a shape. Due to size
and other constraints of the individual modules, limited actuation and sensing capabilities
are available to them, which a program uses to enable the interaction of the material with its
surroundings and to control its structural dynamics. The relevant theoretical literature has
almost exclusively focused on designing algorithms (either centralised or distributed) for the
task of transforming a given initial shape A into a given target shape B and characterising the
families of shapes that can be transformed into each other within a given programmable matter
model. Transformations should additionally be efficient, which for sequential transformations
is measured by the total number of individual actuation operations.

In [20] (and its journal version [21]), Michail et al. studied a model of programmable matter
in which modules are represented by nodes drawn within the cells of a two-dimensional square
grid. Nodes are connected to any nodes orthogonally adjacent to them (their neighbours) to
form a shape. The collection of nodes can be reconfigured between shapes through minimal
types of movements. One of the considered movements was rotation: a node can rotate
90° around a neighbour provided that the rotating node’s trajectory is free from other
nodes. The authors introduced the problem of characterising which families of connected
shapes can be transformed into each other via rotation movements. If global connectivity
need not be preserved, they proved that the a decision version of the problem (called Rot-
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Transformability) is in P1. They proved this through a constructive exact characterisation
of the shapes that can be transformed into each other. For the RotC-Transformability
version of the problem, in which global connectivity must be preserved after every movement,
they proved inclusion in PSPACE and highlighted that surprisingly small seeds can enable
transformations that are otherwise infeasible. The main problem they left open was asking if
there exists a universal centralised transformation for RotC-Transformability under the
assumption of a constant-size seed.

A more general version of the model is one that combines rotation and sliding, where a
node can additionally slide over pairs of consecutive nodes. For this version, Dumitrescu
et al. [14] had studied distributed transformations and had conjectured that universal
connectivity-preserving transformation is possible. This was proven to be correct in [13]
and independently in [20]. Both the rotation and the combined rotation and sliding models
aim to represent minimal and, thus, cost- and energy-efficient mechanical operations and
to show that real implementations of programmable matter using them could hope to have
universal reconfiguration capabilities. The focus on minimal operations is also justified by
the engineering objective to minimise the size of individual modules in order to improve the
granularity of the material without sacrificing its global actuation capabilities.

However, with rotation alone not all pairs of connected shapes of the same number of
nodes can be transformed into each other. For example, there are shapes, like a rhombus,
that are completely blocked and other shapes, like a line, that are blocked within a small
final strongly connected component of the shape-reachability graph if connectivity is to be
preserved. Because of this, universal transformation by rotation cannot be achieved without
additional assumptions. Such an assumption, introduced in [20], is to use a small additional
set of nodes, called a seed (or d-seed, where d is the number of nodes of the seed), that
when placed appropriately on the perimeter of the shape can trigger the otherwise infeasible
transformation. The question posed was: Is there a reasonably small seed (i.e., of constant
size), whose availability enables universal connectivity-preserving transformation when the
only available movement is rotation?

Direct progress on this open question was made by Connor et al. [6] and Connor and
Michail [5]. In [6], a 4-seed was shown to be sufficient for solving the problem on a restricted
family of shapes, called nice shapes. These were first defined in [3] as all shapes S having a
central line L, where, for all nodes u ∈ S, either u ∈ L or u is connected to L by a line of
nodes perpendicular to L. The first breakthrough towards universality was achieved in [5],
where the problem was shown to be solvable for all orthogonally convex shapes by using a
minimal 3-seed 2. The family of nice shapes and that of orthogonally convex shapes are not
directly comparable as each contains at least one shape that does not belong to the other.
Nevertheless, orthogonally convex shapes have appeared to be much richer in structure and
harder to transform. We extend the techniques developed in [5] to obtain an O(1)-seed
universal transformation, that is, one that works for all pairs of connected colour-consistent
shapes. Two shapes are colour-consistent if they have identical colourings on a checkered
colouring of the grid: as a node cannot change colour by rotating, any shapes that can be
transformed into each other must be colour-consistent.

1 Polynomial time in this context refers to the worst-case time complexity of an algorithm that decides
if two given shapes A and B can be transformed into each other. It should not be confused with the
efficiency of a transformation between the shapes, which is measured in total movements for sequential
transformations and in time-steps of parallel movements for parallel transformations.

2 A shape S is orthogonally convex if for any two nodes u, v in a horizontal or vertical line of the grid, all
cells between u and v are occupied by S.



M. Connor, O. Michail, and G. Skretas 9:3

There is a lower bound on the number of worst-case movements required by a transform-
ation, which is quadratic in the number of nodes. It is based on a measure of “distance”
between the initial and the target shape, and applies to all models in which every movement
reduces the total distance by at most a constant, also affecting solutions that do not preserve
connectivity. Because of this, optimal sequential transformations perform O(n2) movements.

In another model which bares some similarities to the rotation and the combined rotation
and sliding models, Akitaya et al. [1] studied a different type of movement, called pivoting.
Pivoting allows a square-shaped node to emulate sliding and rotation. Both these operations
happen by fixing an arm on a shared corner between two squares and rotating one of the
squares along that arm. The rotation movement we consider here is not directly comparable
to pivoting. Pivoting requires more empty space around the moving node than rotation. On
the other hand, it can “slide” a node to an orthogonally adjacent cell, thus, in contrast to
what holds for rotation, pivoting nodes have no a priori unreachable locations. Akitaya et
al. accomplished universal transformation in O(n2) pivoting movements using a “bridging”
procedure assisted by at most 5 seed-nodes, which they called musketeers.

2 Contribution and Approach

We study RotC-Transformability, the problem of characterising the families of connected
shapes that can be transformed into each other via rotation movements without breaking
connectivity. As our focus is on the feasibility and complexity of transformations, our approach
is naturally based on structural characterisations and centralised procedures. Structural
and algorithmic progress is expected to facilitate more applied future developments, such as
distributed implementations.

When rotation is combined with sliding, the algorithmic strategy to establish universality
[13, 20] is quite intuitive. The goal is to show that any two connected shapes of the same
number of nodes can be transformed into each other. Due to reversibility of these movements,
it is sufficient to show that any connected shape S of n nodes can be transformed into
a straight line of length n. The line is the canonical shape of this strategy and all its
transformations will go through it. The strategy is based on the observation that, by
combining rotation and sliding, a node can traverse the perimeter of S. To transform S

into a line, a position on the perimeter of S from which the line can grow to its full length
is fixed. It can then be shown that there is always a node to remove from the perimeter
without disconnecting the shape. The algorithm moves the node along the perimeter until it
reaches the line and places it in the empty cell adjacent to the furthest endpoint of the line.
It then repeats by removing another node from the perimeter.

Rotation alone is also quite powerful if connectivity need not be preserved. As there is
an infinite family of shapes which are completely blocked under rotation (the rhombi), one
cannot hope to achieve universality. Nevertheless, there is a strategy that works for all the
remaining shapes [20]. The canonical shape of this strategy is the line-with-leaves, a family
of shapes with maximal colour capacity. The transformation removes nodes from the shape
in pairs and transports them to the line-with-leaves, which can be constructed anywhere on
the grid, not necessarily being connected to the original shape.

When connectivity must be preserved, transformations by rotation alone can be notoriously
difficult. There are two main sources of this difficulty. We still cannot hope to achieve
universal transformation free from additional assumptions due to blocked shapes, whose class
is now increased by the requirement to preserve connectivity. Moreover, as it cannot change
colour in a checkered colouring of the grid, a node cannot in general traverse the perimeter
of a shape. It was known from [20] that this remains impossible for up to 4 nodes working
together: 4 or less nodes cannot traverse the perimeter of a straight line.
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9:4 An O(1)-Musketeers Universal Transformation for Rotating Robots

The transformations of [6] and [5] are based on the approach of using a small set of nodes
(called a robot) that work together to traverse the perimeter of the shape and transport
other nodes, thus simulating the single-node traversal of the combined rotation and sliding
model. The robot of [6] consisted of 4 nodes and the robot of [5] of 6 nodes. The reason
that the 4-robot of [6] does not violate the lower bound of [20] on the number of nodes
needed to traverse the perimeter, is that, due to their special structure, nice shapes can be
transformed through partial traversals of their perimeter. Both papers used seeds of 4 and 3
nodes, respectively, to enable the initial formation of the robot and deal with blocked shapes.

The result of [5] is that, under the assumption of a 3-seed, any pair of colour-consistent
orthogonally convex shapes can be transformed into each other. The 3-seed is optimal: there
are blocked shapes for which non-trivial transformations cannot be enabled by a smaller
seed. The transformation uses the 3-seed to remove a 6-robot. It proceeds in phases to
transform the given shape into a canonical shape, which is an orthogonally convex variant of
the line-with-leaves. In each phase, the 6-robot removes the next node from the perimeter
according to an elimination sequence, transports it around the perimeter until it reaches the
canonical shape, and places the node in the next available cell of the canonical shape.

A key difficulty in generalising the approach of [5] to any shape is that the perimeter
of an arbitrary shape can be a lot harder to traverse. Though, as in [5], there is always a
node on the perimeter that can be removed, a robot of nodes might not have enough space
to reach that node and it is not even clear if it can successfully traverse the perimeter with
or without carrying the node. For example, all removable nodes might be concealed within
pockets formed by the perimeter that are too narrow for the robot to access and there can
be concave parts of the perimeter to which the traversal of [5] does not readily transfer. As
a result, both the elimination sequence and the robot traversal must be carefully redesigned.

We overcome these difficulties and show how to transform any shape S into a variant of
a line-with-leaves by a sequence of O(n2) rotations. Reversibility of rotation then implies
a universal transformation between pairs of shapes going through the line-with-leaves. We
first argue that there is a placement of an O(1)-seed on S from which a “good” initial
configuration for the transformation can be obtained, having a 6-robot and an adequate
initialisation of the line-with-leaves on the reachable part of the perimeter of S. We show how
to compute an elimination sequence of the nodes of S that guarantees a generation sequence
of the line-with-leaves that never exceed its colour capacity. As long as there are reachable
nodes to be removed as required by the elimination sequence, the 6-robot picks a reachable
node, transports (as a 7-robot) the node to the line-with-leaves, and places the node in an
appropriate cell adjacent to the line-with-leaves, as specified by the corresponding generation
sequence. This entails showing that both a 6-robot and a 7-robot can traverse the whole
reachable perimeter of S, by traversing reachable parts and bypassing unreachable parts. If
there are no reachable nodes to be removed, we show how closing a “bottleneck lid” and
compressing the shape (if needed) allows the elimination sequence to keep making progress.

In Section 3, we discuss other related work. In Section 4, we formally define the model
used in this paper. Section 5 presents the universal transformation. In Section 6, we conclude
and state some open problems.

3 Other Related Work

As the development of these systems continues, it becomes increasingly necessary to develop
theoretical models which are capable of describing and explaining the emergent properties,
possibilities and limitations of such systems in an abstract and fundamental manner. To this
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end, models have been developed for programmable matter. For example, algorithmic self-
assembly [11, 23, 24] focuses on programming molecules like DNA to grow in a controllable
way, and the Abstract Tile Assembly Model [25, 30], the Kilobot model [26], the Robot
Pebbles system [17], and the nubot model [31], have all been developed for this area. Network
Constructors [22] is an extension of population protocols [4] that allows for network formation
and reconfiguration. The latter model is formally equivalent to a restricted version of chemical
reaction networks, which “are widely used to describe information processing occurring in
natural cellular regulatory networks” [27, 12]. The CATOMS system [28, 29, 15] is a further
implementation which constructs 3D shapes by first creating a “scaffolding structure” as a
basis for construction. Finally, there is extensive research into the amoebot model [8, 7, 10, 9],
where finite automata on a triangular lattice follow a distributed algorithm to achieve a
desired goal, including a recent extension [16] to a circuit-based model.

Almalki and Michail [2], building on the insertion operations of [31] and the growth
processes on graphs by Mertzios et al. [19], investigated what families of shapes can be grown
in time polylogarithmic in their size by using only growth operations.

4 Model

We consider the case of programmable matter on a two-dimensional square grid, with each
cell of the grid being uniquely referred to by its (x, y) coordinates. Such a system consists of
a set V of n nodes. Each node is viewed as a spherical module fitting inside a cell of the grid.
At any point, each node occupies a cell, with the positioning of the nodes defining a shape,
and two nodes may not occupy the same cell. It also defines an undirected neighbouring
relation E ⊂ V × V , where uv ∈ E iff ox(u) = ox(v) and |oy(u) − oy(v)| = 1 or oy(u) = oy(v)
and |ox(u) − ox(v)| = 1, that is, if u and v occupy horizontally or vertically adjacent cells of
the grid. We use N(u) to denote the set of neighbours of a node u in a given shape. A shape
is connected if the graph induced by its neighbouring relation is a connected graph.

In general, shapes can transform to other shapes via a sequence of one or more mechanical
operations, which we refer to as movements. We consider only one type of movement: rotation.
In this movement, a single node moves relative to one or more neighbouring nodes. A single
rotation movement of a node u is a 90° rotation of u around one of its neighbours. Let (x, y)
be the current position of u and let its neighbour be v occupying the cell (x, y − 1). Then, u

can rotate 90° clockwise (counterclockwise) around v iff the cells (x + 1, y) and (x + 1, y − 1)
((x − 1, y) and (x − 1, y − 1), respectively) are both empty. By rotating the whole system 90°,
180°, and 270°, all possible rotation movements can be defined. See Figure 1 for an example.

Figure 1 An example of rotation movement. A node on the black dot (in the row y − 1) and
empty cells at positions (x + 1, y) and (x + 1, y − 1) are required for this movement.

Let A and B be two connected shapes. We say that A transforms to B via a rotation r,
denoted A

r→ B, if there is a node u in A such that if u applies r, then the shape resulting
after the rotation is B. We say that A transforms in one step to B (or that B is reachable in
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one step from A), denoted A → B, if A
r→ B for some rotation r. We say that A transforms

to B (or that B is reachable from A) if there is a sequence of shapes A = S1, S2, . . . , St = B,
such that Si → Si+1 for all 1 ≤ i ≤ t − 1. Rotation is a reversible movement, a fact that we
use in our results. As a condition of the problem we consider, all shapes S1, S2, . . . , St must
be connected shapes.

At the start of each transformation, we will be assuming the existence of a seed: a small
connected shape M placed on the perimeter of the given shape S to trigger the transformation.
This is essential because under the constraints of a model with rotation-only movement, there
are shapes S that are κ-blocked, meaning that at most κ movements can be made before a
configuration is repeated.

For the sake of providing clarity to our transformations, we say that every cell in the
two-dimensional grid has a colour from {red, black} in such a way that the cells form a
black and red checkered colouring of the grid, similar to the colouring of a chessboard. This
represents a property of the rotation movement, which is that any given node in a coloured
cell can only enter cells of the same colour. We define c(u) ∈ {black, red} as the colour of
the cell occupied by the node u for a given chessboard colouring of the grid. We represent
this in our figures by colouring the nodes red or black.

Any shape S consists of b(S) black and r(S) red nodes. Two shapes A and B are
colour-consistent if b(A) = b(B) and r(A) = r(B). For any shape S of n nodes, the parity of
S is the colour of the majority of nodes in S. If there is no strict majority, we pick any as
the parity colour.

We use σ and variants to denote sequences of nodes. A k-subsequence σ′ of a sequence σ

is any subsequence of σ where |σ′| = k. For a given colouring of the grid, the colour sequence
c(σ) of a sequence of nodes σ = (u1, u2, . . . , un) is defined as c(σ) = (c(u1), c(u2), . . . , c(un)).
A sequence σ′ is colour-order preserving with respect to σ if c(σ′) = c(σ).

The perimeter of a connected shape S is the minimum-area polygon that completely
encloses S in its interior, existence of an interior and exterior directly following from the
Jordan curve theorem [18]. The cell perimeter of S consists of every cell of the grid not
occupied by S that contributes at least one of its edges to the perimeter of S. The external
surface of S consists of all nodes u ∈ S such that u occupies a cell defining at least one of
the edges of the perimeter of S. The extended external surface of S is defined by adding to
the external surface all nodes of S whose cell shares a corner with the perimeter of S.

The orthogonal convex hull H(S) of a connected shape S is defined as the intersection
of all orthogonally convex shapes of which S is a subshape. Given a connected shape S, a
pocket is a maximal connected set of empty cells exterior to the shape and interior to its
orthogonal convex hull H(S). The boundary of a pocket consists of a line segment which is a
subchain of the perimeter of H(S), called the pocket lid, and a subchain of the perimeter of
the shape, called the pocket subchain.

Place a c × c square K on a subchain of the perimeter of S which is exterior to its convex
hull and shift it around. A c × c-narrow pocket is a maximal subset of a pocket of S which
can never overlap with K. The bottleneck of a c × c-narrow pocket is the subchain which
separates the cells reachable by K from the cells within the pocket which are unreachable.
The c × c-reachable boundary of S is defined as the areas of the perimeter that are reachable
by K, plus the bottlenecks. A shape S has a c × c-wide exterior if it has no c × c-narrow
pockets. Throughout the paper, a bottleneck lid is the lid of a 4 × 4-narrow pocket.

A black parity (similarly for red parity) line-with-leaves [21] is a straight line with one or
more black leaves attached to its red nodes. A double-line-with-leaves L is a shape obtained
by joining together the endpoints of two lines-with-leaves L1 and L2 which have opposite
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colour parities and the same orientation. Additionally, both endpoints of the red parity
line-with-leaves must be black and both endpoints of the black parity line-with-leaves must
be red. We call the straight line formed by joining the straight lines of L1 and L2 the core
line of L.

5 The Universal Transformation

In this section, we give the technical details of the universal transformation. Given any two
connected colour-consistent shapes S and S′, our goal is to transform S into S′. We assume a
seed M of d = O(1) nodes, meaning that we are free to place any connected shape of d nodes
on the perimeter of the shape. The transformation will establish the following theorem.

▶ Theorem 26. Let S and S′ be any two connected colour-consistent shapes. Then, there
is a connected shape M of d = O(1) nodes and a placement of M on the perimeter of S, such
that S ∪ M can be transformed into S′ via O(n2) rotation movements.

To prove Theorem 26 it is sufficient to show that, for any shape S and some placement of
a d-seed M on the perimeter of S, S ∪ M can be transformed into a double-line-with-leaves.
By reversibility of rotation and the fact that we can transform any pair of colour-consistent
double-lines-with-leaves into each other, it follows that any S can be transformed into any
S′ via the double-line-with-leaves canonical shape.

The following is an intuitive description of our strategy. We will show that there is a
placement of the d-seed on the perimeter of S from which a “good” starting configuration
for the transformation can be obtained. A 6-robot formed by the d-seed sets up the shape to
be in a configuration having the following structures on the perimeter of the shape: (i) a
“ladder” on which the double-line-with-leaves will be built, (ii) a reservoir of 7 nodes to be
used for the compression subroutine, and (iii) a 6-robot. Then, as long as there are reachable
nodes to be removed, the 6-robot picks a removable node, transports it (as a 7-robot), and
places it on the double-line-with-leaves. This involves proving that the 6-robot (7-robot)
can traverse the 4 × 4-reachable boundary (5 × 5, respectively) of S, by traversing reachable
parts and bypassing unreachable parts, and that there is an order of removing nodes from
the perimeter of S, until S is eliminated. This order, called an elimination sequence, removes
small clusters of nodes such that no removal of a node disconnects the shape and nodes
are only removed from the perimeter of the shape. Whenever there is no cluster of nodes
that the 6-robot can reach, we show how to reconfigure S into another shape that has a
reachable cluster of nodes. In particular, if no cluster of nodes exists on the perimeter that
is also reachable, then there exists a pocket lid that we can close with auxiliary nodes, such
that a cycle C on the perimeter is created. We can then compress C in a way that a cluster
of nodes becomes reachable and, after removing the cluster, there exists a cycle C ′ on the
perimeter of the shape. The 6-robot transports, one by one, the nodes of the cluster to the
double-line-with-leaves, and removes any auxiliary nodes used to close a lid, before moving
on to the next cluster.

5.1 Perimeter Traversal
We begin by showing that the 6-robot and the 7-robot can both traverse the perimeter of
the shape, by visiting reachable parts and bypassing unreachable parts.

In [5], it was shown that a 6-robot and a 7-robot can both traverse the perimeter of
an orthogonally convex shape. We say that a shape S, which is not orthogonally convex,
is traversable by orthogonally convex movement, if the movements from [5] can be used to
traverse its perimeter.
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▶ Theorem 1 ([5]). For any orthogonally convex connected shape S, a 6-robot and a 7-robot
are both capable of traversing the perimeter of S.

As in [5], a 6-robot is a 3 × 2 group of connected nodes used to transport nodes around
the shape. By using rotation movements, the 6-robot can slide across and climb lines of the
perimeter. These movements of the robot are the outcome of a sequence of rotations, and
should not be confused with the sliding of individual nodes of [14, 13, 20].

We prove that a 6-robot can traverse the 4 × 4-reachable boundary and a 7-robot can
traverse the 5 × 5-reachable boundary of any connected shape S by orthogonally convex
movement. Beginning with the 6-robot, our strategy is to show that shapes with 4 × 4-wide
exteriors are traversable by orthogonally convex movement. We then show that for shapes
with 4 × 4-narrow pockets, the robot can avoid entering those pockets by crossing them.

We assume that a 6-robot, which we will try to move around the perimeter of S, is
given on the 4 × 4-reachable boundary as a 3 × 2 rectangle. For the 7-robot, we consider
the 5 × 5-reachable boundary as the 7-robot requires more space to move. We first prove
that shapes with a 4 × 4-wide exterior (5 × 5) have sufficient space for the 6-robot (7-robot,
respectively) to perform the climbing and sliding movements of [5], through which the robot
can traverse the perimeter of the shape.

▶ Lemma 2. The perimeter of a connected shape S with a 4 × 4-wide exterior (5 × 5-wide
exterior) can be traversed by orthogonally convex movement by a 6-robot (7-robot, respectively).

Next, we show that it is possible to traverse small pockets by crossing them. We use the
term gap to refer to the part of the pocket as well as lines of nodes neighbouring it, which
are relevant for crossing operations. We first give our representation of the cases which we
consider for these operations, as well as the variables we will be using to describe them.

Assume without loss of generality that the movement of the robot when crossing the
gap is to the right, and if necessary, upwards. We have five coordinates: xl, xr, yd, yu and
ym (see Figure 2 in the Appendix). These coordinates in turn are used to calculate the
three variables we use: size is equal to |xr − xl|, depth = |ym − yd| and incline = |yu − ym|.
Intuitively, size represents the horizontal distance between the first and last nodes of the
gap, depth represents the vertical distance between the first node of the gap and the bottom
of the gap, and incline represents the vertical distance between the first and last nodes of
the gap. We say that a gap is level if incline = 0.

We first show that gaps of size ≤ 3 can be crossed by the 6-robot, by considering a set of
cases which cover every possible situation. We assume the robot is above the gap in both
the initial and final locations. This is to ensure that the movements do not need to make
assumptions about the structure of the rest of the shape. We then prove that the robot can
always reach this desired starting location, even in edge cases. It follows from this and from
Theorem 1 that it is possible for the 6-robot to traverse the 4 × 4-reachable boundary of
any shape. See Figure 3 in the Appendix for the main cases we consider in our proof, and
Figures 4 and 5 for two examples of crossing a gap.

▶ Lemma 3. The 6-robot can cross any gap of size ≤ 3 and the 7-robot any gap of size ≤ 4.

▶ Lemma 4. The 6-robot and the 7-robot can position themselves at the start of any gap.

▶ Theorem 5. The 4 × 4-reachable boundary (5 × 5-reachable boundary) of any connected
shape S can be traversed by the 6-robot (7-robot, respectively).
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5.2 Elimination Sequence
In this section, we present the sequence in which the 6-robot transports the nodes of the shape
S. The elimination sequence of [5] for orthogonally convex shapes, was designed to preserve
connectivity and respect the colour capacity of the line-with-leaves, which was the canonical
shape. For general connected shapes, we must additionally ensure that removed nodes should
lie in a position that the 6-robot can reach. We first give an elimination sequence for the
relaxed case in which nodes can be removed from anywhere on the extended external surface
of the shape. We will then add the requirement that removed nodes must be reachable by a
6-robot. Apart from simplifying exposition, the relaxed elimination sequence could be useful
to any future transformations that would somehow circumvent the reachability issue.

Let S be a connected shape. An elimination sequence σ = (u1, u2, . . . , un) of a shape S

is a permutation of the nodes of S satisfying the following properties. Let St = St−1 \ {ut},
where 1 ≤ t ≤ n and S0 = S. Observe that Sn is always the empty shape. The first property
is that, for all 1 ≤ t ≤ n − 1, St must be a connected shape. Moreover, for all 1 ≤ t ≤ n, ut

must be a node on the extended external surface of St−1. Essentially, σ defines a sequence
S = S0[u1]S1[u2]S2[u3] . . . Sn−1[un]Sn = ∅, where, for all 1 ≤ t ≤ n, the connected shape St

is obtained by removing node ut from the extended external surface of shape St−1.
Our strategy for the elimination sequence is to remove nodes in small clusters that have

some “nice” properties. Each such cluster will contains 2 to 4 nodes, and is either a pair of
neighbouring nodes, or a node together with a subset of its neighbours, which must be leaves.
We want to show that removing any of these clusters does not disconnect the shape, and
that the clusters have specific colour properties. We first give some necessary definitions.

▶ Definition 6. Let S = (V, E) be a connected shape. Node u ∈ V is a separator node if
S′ = (V \ {u}, E′), where E′ = E \ {uv ∈ E | v ∈ N(u)}, is a disconnected shape.

▶ Definition 7. Let S = (V, E) be a connected shape. Node u is a local separator node, if u

is a separator node and there exists a subset N ′(u) of N(u), such that S′ = (V ′, E′), where
V ′ = V \ N ′(u) and E′ = E \ {uv ∈ E | v ∈ N ′(u)}, is a connected shape and u is not a
separator node in S′.

▶ Definition 8. We define a cluster of nodes C, to be a set of nodes on the extended external
surface of a shape S that satisfies one of the following two properties:
1. C contains two neighbouring nodes u, v such that removing u and then v, or v and then

u does not disconnect the shape.
2. C contains a local separator node u, and every neighbour of u that is a leaf in S.

Intuitively, our algorithm computes an elimination sequence as follows. Operating in
phases until the whole shape is eliminated, it marks the extended external surface of the
shape and repeatedly finds and removes clusters of marked nodes. The order in which the
nodes of a cluster are added to the elimination sequence is the order in which the nodes will
be transported by the 6-robot. When there is no cluster of marked nodes, the algorithm
moves on to the next phase, marking the new extended external surface and searching
for clusters of marked nodes. The pseudocode is given in Algorithm 1 in the Appendix.
Connectivity-preservation is guaranteed by the separator properties of the clusters.

▶ Lemma 9. Let S be a connected shape on which we execute Algorithm 1 and let σ be the
elimination sequence produced by the algorithm. For all 1 ≤ t ≤ n − 1, St is a connected
shape.
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We also need to show that the algorithm terminates. We do this by making use of the
fact that the extended external surface of a connected shape defines a cactus graph.

▶ Definition 10. Given a connected shape S = (V, E), we define a graph S′ = (V ′, E′) on its
external extended surface as follows. V ′ contains every node of the extended external surface
and uv ∈ E′ iff u and v are consecutively visited in a clockwise walk on the perimeter of S.

▶ Lemma 11. The graph of Definition 10 is a cactus graph.

▶ Lemma 12. Let S be a connected shape on which we execute Algorithm 1. Algorithm 1
terminates and outputs a sequence σ = (u1, u2, . . . , un) that is a permutation of the nodes of
S, where for all 1 ≤ t ≤ n, ut is a node on the extended external surface of St−1.

▶ Theorem 13. When executed on any connected shape S, Algorithm 1 terminates giving as
output an elimination sequence of S.

Proof. Follows from Lemmas 9 and 12. ◀

The following lemma will be later used to show that the order of colours of the elimination
sequence produced by Algorithm 1 respects the colour capacity of a double-line-with-leaves.

▶ Lemma 14. Consider a connected shape S on which we execute Algorithm 1 and let σ

be the elimination sequence produced by the algorithm. There exists a way to split σ into
consecutive subsequences σ1σ2 · · · σk such that every subsequence contains consecutive nodes
from σ and has one of the following colour sequences: bbbr,bbr,br,rrrb,rrb,rb.

5.3 Adding Reachability
In the previous section, we showed that, in principle, there exists an elimination sequence.
However, in the actual transformation the 6-robot must be able to reach the nodes to be
removed. In this section, we show how to restructure a shape that has no cluster of nodes on
the reachable part of the extended external surface, so that such a cluster becomes available.

▶ Observation 15. There exist shapes such that no cluster of nodes on their extended external
surface is reachable by the 6-robot. For example, trees concealing their endpoints within
narrow spirals.

In contrast to what holds for orthogonally convex shapes [5], we cannot hope to eliminate
a general shape only by directly removing nodes from its extended external surface. As a
consequence, further reconfiguration is needed and the elimination sequence of Algorithm
1 must be modified accordingly. First, we extend the definition of the extended external
surface to account for nodes that are reachable by the 6-robot.

We say a node u in shape S is reachable if node u resides on the c × c-reachable boundary
of S. The reachable external surface of a connected shape A is a shape B, not necessarily
connected, consisting of all nodes u ∈ A such that u occupies a cell defining at least one of
the line segments of A’s c × c-reachable boundary. The reachable extended external surface
of a connected shape A, is defined by adding to A’s reachable external surface all nodes of A

whose cells share a corner with A’s reachable boundary.
Whenever we have a shape S, where every cluster of nodes is not reachable by the 6-robot,

we employ a restructuring strategy, where the 6-robot moves nodes around on shape S, until
a cluster of nodes can be reached by the 6-robot. First, we modify Algorithm 1 so that the
algorithm marks every node of the reachable extended external surface (see Algorithm 2 in
the Appendix). This guarantees that every node of the elimination sequence is reachable.
Additionally, whenever there exists no cluster of nodes on the reachable extended external
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surface, we call a restructuring subroutine. After restructuring is finished, we mark every
node of the reachable extended external surface and continue removing clusters. The above
two steps are repeated until the shape is empty.

Our strategy for restructuring is based on compression (see Algorithm 3 in the Appendix).
This involves the process of creating a cycle on the reachable extended external surface of
the shape by adding some auxiliary nodes. Once this is achieved, we show how we can
move some nodes on the extended reachable external surface of the shape such that (i) we
“compress” the cycle on the extended external surface by removing some nodes from the
cycle and making the cycle smaller and (ii) the removed nodes form a cluster of nodes that
will reside on the reachable extended external surface of the shape. We show that we can
always add auxiliary nodes to the shape, such that we create a cycle C on the extended
external surface, where one of the concave corner nodes of C is reachable, and either is not a
separator node or it is a local separator node.

▶ Definition 16. Let C be a cycle on the extended external surface of a connected shape
S. We say that a node u is a concave corner of cycle C if u ∈ C, u has two neighbouring
nodes v, w, where v, w ∈ C, and the cell adjacent to both v and w is part of the interior of
the shape.

▶ Definition 17. Consider a connected shape S that contains a pocket P . Closing a lid L of
pocket P is the process of placing nodes in the empty cells of the pocket P that are adjacent
to the pocket lid L.

▶ Lemma 18. The number of nodes needed to close a bottleneck lid is at most 7.

▶ Lemma 19. Consider any connected shape S = (V, E), where no cluster of nodes resides
on the reachable extended external surface. Then, there exists one pocket lid that can be
closed such that the new shape S′ has a cycle C on the extended external surface, where one
of the concave corner nodes of C is both reachable and is either a local separator node or it
is not a separator node.

Using Lemma 19, we can show that after closing a lid, a cluster of nodes can be removed.
However, since the number of auxiliary nodes needed to close a lid can be larger than the
size of a cluster, this strategy is not guaranteed to succeed. To circumvent this, we use a
compression technique starting from concave corner of the shape. After compressing the
shape, we still have a cycle C on the extended external surface, where one of the concave
corner nodes of C is both reachable and is either a local separator node or it is not a separator
node. Additionally, after the compression, we will have a cluster of nodes on the reachable
extended external surface that is not part of C. This allows us to compress at least once
using the same auxiliary nodes, and then we can remove the auxiliary nodes that were used
to close the lid.

▶ Lemma 20. Consider any connected shape S = (V, E) that has no cluster of nodes on its
reachable extended external surface, where we close a lid with the auxiliary node set VA that
creates a cycle C on the extended external surface, where one of the corner nodes u1 of C

is reachable and is a local separator node. There exists a way to compress the shape such
that the extended external surface contains a cycle C ′, where every auxiliary node is in C ′.
Additionally, the reachable extended external surface contains a cluster of nodes that is not
part of C ′.

▶ Theorem 21. Let S be a connected shape where no cluster of nodes on the extended
external surface is reachable by the 6-robot. Executing Algorithm 3 on S reconfigures S into
a connected shape S′ that has a reachable cluster of nodes on the extended external surface.
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Proof. Algorithm 3 adds auxiliary nodes to a pocket lid in order to create a cycle C on
the extended external surface of S. Lemma 19 guarantees that we can find pocket lid to
close with auxiliary nodes, that also creates a reachable concave corner node of C. Then,
Lemma 20 guarantees that we can use this node in order to compress the cycle C into a
cycle C ′, such that a cluster of nodes is reachable by the 6-robot, and that cluster of nodes
does not contain any node in C ′. Since C ′ is a cycle, we can remove the auxiliary nodes
without disconnecting the shape. ◀

5.4 Generation Sequence
Given a connected shape S of n nodes, a generation sequence σ = (u1, u2, . . . , un) of shape S

is a permutation of the nodes of S satisfying the following properties. Let St = St−1 ∪ {ut},
where 1 ≤ t ≤ n and S0 = ∅. Observe that Sn = S. Any shape generation sequence also
satisfies the following properties, which it shares with the shape elimination sequence. The
first property is that, for all 1 ≤ t ≤ n − 1, St must be a connected shape. Moreover, for all
1 ≤ t ≤ n, ut must be placed in the cell perimeter of St−1. Essentially, σ defines a sequence
∅ = S0[u1]S1[u2]S2[u3] . . . Sn−1[un]Sn = S , where, for all 1 ≤ t ≤ n, a connected shape St is
obtained by adding the node ut to the cell perimeter of St−1. The generation sequence that
we are going to compute, constructs a double-line-with-leaves.

Given as input an elimination sequence by Algorithm 2, Algorithm 4 will return a
generation sequence that constructs a double-line-with-leaves. The algorithm, first constructs
the unique bi-coloured pair of the core line and then extends it by placing nodes on both
sides of the line.

The algorithm constructs a straight double-line-with-leaves, expects the first two nodes
to be a bi-coloured pair and every subsequence to arrive afterwards to have one of the
colour sequences as described in Lemma 14. The algorithm positions the first bi-coloured
pair horizontally with the red coloured node on the left and the black coloured node on
the right. Let (xl, y0) be the position of the leftmost node on the core line of the double-
line-with-leaves and (xr, y0) be the position of the rightmost node on the core line of the
double-line-with-leaves.

Every subsequence has size 2, 3 or 4 and has colours br, bbr, bbbr or rb, rrb, rrrb. If a
subsequence arrives starting with a black node (possible subsequences are br, bbr, bbbr), the
first black node is placed at position (xl−1, y0), the last node (which must be red), is placed
at (xl−2, y0), and any possible other black nodes are placed at positions (xl, y1), (xl, y−1). If
a subsequence arrives starting with a red node (possible subsequences are rb, rrb, rrrb), the
first red node is placed at position (xr+1, y0), the last node (which must be black), is placed
at (xr+2, y0), and any possible other red nodes are placed at positions (xr, y1), (xr, y−1). The
algorithm preserves the invariant that after the placement of the first bi-coloured pair and
after the placement of every subsequent subsequence that arrives, the leftmost and rightmost
positions of the line, called (xl, y0) and (xr, y0), have red and black nodes, respectively, and
positions (xr, y1), (xr, y−1), (xr, y1), (xr, y−1) are empty. See Algorithm 4 in the Appendix
for the pseudocode.

▶ Lemma 22. Let σ be a bicoloured sequence of nodes that fulfils all the following conditions:
The set of the first two nodes in σ is bi-coloured.
σ can be split into consecutive subsequences σ1σ2 · · · σk such that every subsequence
contains consecutive nodes from σ and also has one of the following colour sequences:
bbbr, bbr, br, rrrb, rrb, rb.

Then there is a double-line-with-leaves generation sequence σ′ = (u′
1, u′

2, . . . , u′
n) which is

colour-order preserving with respect to σ.



M. Connor, O. Michail, and G. Skretas 9:13

▶ Theorem 23. Given a shape elimination sequence σ computed by Algorithm 2, Algorithm 4
returns a generation sequence which is colour-order-preserving with respect to σ and which
constructs a double-line-with-leaves.

Proof. Follows from Lemmas 14 and 22. ◀

5.5 Wrapping up
To complete the result, we show how the transformation is initialised, including where the
double-line-with-leaves will be constructed, and argue that picking the next node in the
elimination sequence and placing it on the double-line-with-leaves is always possible.

At the beginning of the transformation, the 6-robot transports 5 nodes from the original
seed, and places them as a straight vertical path of length 5, called a ladder atop one of
the topmost nodes of the initial shape. Then, the first bi-coloured pair that arrives to the
elimination sequence is placed perpendicular to the ladder and the double-line-with-leaves
extends perpendicular to the ladder. This ladder of 5 nodes guarantees that the construction
of the double-line-with-leaves will never create any narrow pockets and this implies that the
6-robot and 7-robot can reach any part of the double-line-with-leaves.

We now show that it is possible to remove nodes from a shape S in the order of a shape
elimination sequence generated by Algorithm 2, and place them on the double-line-with-
leaves L in the order of a double-line-with-leaves generation sequence created by Algorithm
4, crossing the ladder in the process.

▶ Lemma 24. Given a shape elimination sequence σ generated by Algorithm 2 for a shape S

which starts with the node u, and a double-line-with-leaves generation sequence σ′ generated by
Algorithm 4 for a double-line-with-leaves L, the 6-robot is able to traverse the 4 × 4 reachable
boundary of S ∪ L, pick u up, and become a 7-robot. It can then traverse the 5 × 5 reachable
boundary of (S \ {u}) ∪ L and place u on L.

▶ Theorem 25. Let σ be the shape elimination sequence generated by Algorithm 2 for a shape
S, and a double-line-with-leaves generation sequence σ′ which is colour-order preserving with
respect to σ (as generated by Algorithm 4), the 6-robot can remove nodes from S according to
σ and construct the double-line-with-leaves according to σ′.

Putting everything together, including the fact that a 6-robot can be used to transform
any pair of colour-consistent double-lines-with-leaves into each other, we get:

▶ Theorem 26. Let S and S′ be any connected colour-consistent shapes. Then, there is a
connected shape M of d = O(1) nodes and a placement of M on the perimeter of S, such
that S ∪ M can be transformed into S′ via O(n2) rotation movements.

6 Conclusions

We have shown that by using a seed of constant size, it is possible to transform any pair
of connected shapes A and B on a two-dimensional square grid into each other in an
optimal O(n2) time. This leaves a few open problems to be addressed. First, the issue of
creating a distributed version of the algorithm. This will not only make the algorithm more
immediately applicable to real-world programmable matter scenarios, which usually assume
that each module acts independently, but also opens up the possibility of a “pipelined” or
parallel version which may be able to perform the transformation in only O(n) parallel time
movements.

SAND 2024



9:14 An O(1)-Musketeers Universal Transformation for Rotating Robots

Another issue is the size of the seed. It may be possible to reduce the seed’s size to
as little as 3 nodes, which would be equivalent to [5]. However, if all removable nodes are
concealed then this might not be enough, unless a new approach, possibly by “drilling” into
boundaries of the shape, is adopted.

Third, a potential comparison could be made to the pivoting model result of [1], to
compare the similarities and differences of each approach to universal transformation. Finally,
it may be possible to extend the results from shapes on a two-dimensional square grid, to
those in a three-dimensional environment. Universal transformation in a three-dimensional
environment which does not disconnect the shape is another challenging goal with interesting
potential applications.
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A Appendix

Figure 2 A visual representation of a gap, with the variables we use in our proof.
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Figure 3 The main cases we consider in our proof. For all cases where the incline > 1, we
only need to show that the robot can reach the other side of the gap, all movement afterwards is
equivalent to climbing movements from [5]. All cases with incline < 1 are mirrored versions of cases
with incline > 1. Our movements generally do not depend on connectivity with the bottom, so
depth is mostly irrelevant, with the exception of a single edge case. All gaps with a size greater than
those considered here are part of the 4 × 4 or 5 × 5-reachable boundary, for the 6-robot and 7-robot
respectively, and per Lemma 2 can be traversed.
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Figure 4 3-node inclined pocket traversal for incline = 1. Figures are read in columns, top-down.

Figure 5 4-node pocket traversal for the 7-robot with the load in the bottom position with
incline = 1.
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Algorithm 1 Algorithm that computes a shape elimination sequence which does not
require the nodes to be reachable by the 6-robot.

Input: Connected shape S = (V, E)
Output: Elimination sequence σ

1 while (S is not empty) do
2 Mark every node u that belongs to the extended external surface of S;
3 while (there exists a marked pair of nodes u, v satisfying property 1 of Definition 8)

do
4 Remove u, v from S and append them to σ in the order specified by

Definition 8;
5 end
6 while (there exists a marked node u satisfying property 2 of Definition 8) do
7 Remove the leaf neighbours of u from S and append them to σ;
8 Remove u from S and append it to σ;
9 end

10 Unmark every marked node of S;
11 end
12 return σ

Algorithm 2 Algorithm that computes a shape elimination sequence.

Input: Connected shape S = (V, E), k = 0
Output: Elimination sequence σ

1 while (S ̸= ∅) do
2 Mark every node that belongs to the reachable extended external surface of S;
3 k = 0;
4 while (there exists a marked pair of nodes u, v satisfying property 1 of Definition 8)

do
5 k + +;
6 Remove u, v from S and append them to σ in the order specified by

Definition 8;
7 end
8 while (there exists a marked node u ∈ S satisfying property 2 of Definition 8) do
9 k + +;

10 Remove the leaf neighbours of u from S and append them to σ;
11 Remove u from S and append it to σ;
12 end
13 Unmark every marked node u ∈ S;
14 if k = 0 then
15 Call Algorithm 3 with input S = (V, E);
16 end
17 end
18 return σ
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Algorithm 3 Algorithm that reconfigures a connected shape to have a cluster of nodes
on the reachable extended external surface.

Input: Connected shape S = (V, E) with no cluster of nodes on the reachable
extended external surface

Output: Connected shape S′ = (V, E′) with a cluster of nodes on the reachable
extended external surface

1 Close a lid using up to 7 auxiliary nodes to create a cycle C with the properties of
Lemma 19;

2 Compress the cycle C;
3 Remove the auxiliary nodes used to close the lid;
4 return S′

Algorithm 4 Algorithm that constructs a double-line-with-leaves generation sequence.
Input: Elimination Sequence σ split into subsequences
Output: Double-line-with-leaves generation sequence σ′ = (u′

1, u′
2, . . . , u′

n) which is
colour-order preserving with respect to σ

1 if c(u1) == red and c(u2) == black then
2 u′

1 = (xl, y0), u′
2 = (xl+1, y0);

3 else
4 u′

1 = (xl+1, y0), u′
2 = (xl, y0);

5 end
6 Remove u1, u2 from σ;
7 i = 3, b = 0, r = 0;
8 while σ ̸= ∅ do
9 Remove the next subsequence σj from σ;

10 if c(ui) == black then
11 u′

i = (xl−b−1, y0);
12 if |σj | == 2 then
13 u′

i+1 = (xl−b−2, y0);
14 else if |σj | == 3 then
15 u′

i+1 = (xl−b, y1), u′
i+2 = (xl−b−2, y0);

16 else if |σj | == 4 then
17 u′

i+1 = (xl−b, y1), u′
i+2 = (xl−b, y−1), u′

i+3 = (xl−b−2, y0);
18 b = b + 2, i = i + |σj |;
19 else if c(ui) == red then
20 - u′

i = (xl+1+r+1, y0);
21 if |σj | == 2 then
22 u′

i+1 = (xl+1+r+2, y0);
23 else if |σj | == 3 then
24 u′

i+1 = (xl+1+r, y1), u′
i+2 = (xl+1+r+2, y0);

25 else if |σj | == 4 then
26 u′

i+1 = (xl+1+r, y1), u′
i+2 = (xl+1+r, y−1), u′

i+3 = (xl+1+r+2, y0);
27 r = r + 2, i = i + |σj |;
28 end
29 end
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We analyze the complexity of Arborescence Reconfiguration on temporal digraphs (Temporal
Arborescence Reconfiguration). The problem, given two temporal arborescences in a temporal
digraph, asks for the minimum number of arc flips, i.e. arc exchanges, that result in a sequence
of temporal arborescences that transforms one into the other. We analyze the complexity of the
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only by two arcs, then the problem is not approximable within factor b ln |V (D)|, for any constant
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arc flips needed to transform one temporal arborescence into the other.
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1 Introduction

Arborescences, also called branchings, have been deeply studied in theoretical computer
science. Given a digraph (a directed graph) and a special vertex, called the root, an
arborescence is a directed rooted tree in the digraph that connects the root to every vertex of
the digraph. The computation of arborescences of a given digraph finds several applications,
for example in communications networks, where the goal is to compute a shortest way to
reach some devices [18], to analyze information flow in social networks [3], or in computational
biology to analyze mass spectrometry data [7] and reconstruct tumor evolutionary trees [8].

Arborescences have been recently considered also in the temporal graph setting [15, 11,
4, 13], where they can model urban mobility or information dissemination in social networks.
Temporal graphs have been studied to model the dynamic evolution of network relations
(edges or arcs), that are observed only at certain time instants [17, 9, 19, 10, 1]. In our model
of a temporal digraph D = (V, A), the arcs are triples (u, v, t), where u and v are vertices
and t is a positive integer, representing that the arc from u to v is seen at timestamp t. A
temporal arborescence T in D is a rooted tree, whose arcs are directed away from the root,
that contains every vertex of D and such that every path in T is time-respecting, that is the
timestamps on the arcs of every path are non-decreasing.
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10:2 On the Complexity of Temporal Arborescence Reconfiguration

In this contribution, we consider temporal arborescences through the lens of combinatorial
reconfiguration [12, 21]. Given two feasible solutions of a problem (in our case being temporal
arborescences of a temporal digraph), combinatorial reconfigurations explore the space of
feasible solutions and the distance between the two given solutions. Two feasible solutions are
adjacent if they can be transformed one into the other by means of a local operation (such as
exchanging two arcs). The goal of combinatorial reconfiguration is to study the reachability
of two elements of the space of feasible solutions, that is the possibility of transforming the
first solution into the second one by means of sequences of local operations, and possibly
obtaining a comparative metric by minimizing the number of such operations.

Given two temporal arborescences T1 and T2 in D, a reconfiguration of T1 into T2 is a
transformation of T1 into T2 with a sequence of modifications, one at a time, called arc flips,
where each modification exchanges two arcs. Note that an arc flip may exchange any two
arcs of D, the only constraint is that, by applying arc flips, a reconfiguration may compute
intermediate subgraphs, that must all be temporal arborescences in D.

We consider a problem related to the reconfiguration of temporal arborescences, called
Temporal Arborescence Reconfiguration, introduced in [13]. Given a digraph D,
and two arborescences T1 and T2 in D, Temporal Arborescence Reconfiguration
asks to compute a reconfiguration of T1 into T2 consisting of the minimum number of
operations. The problem is known to be NP-hard when the temporal graph is defined
over 3 timestamps or more [13], and polynomial-time solvable when the number number
of timestamps is 1, since in this case the digraph is static and for this case Temporal
Arborescence Reconfiguration can be solved in polynomial time [14]. The case of 2
timestamps remained open [13].

An interesting property shown in [13], is that the complexity of Temporal Arbores-
cence Reconfiguration depends on whether the two input temporal arborescences have
the same root or not. In the former case, the problem is solvable in polynomial-time, while
in the latter the problem is NP-hard, as discussed before.

A decision problem related to Temporal Arborescence Reconfiguration studied in
the literature is the reachability of two feasible solutions, that is whether, given two temporal
arborescences, one can be transformed into the other (without the requirement of minimizing
the number of arc flips). This decision problem is solvable in polynomial time [13] and always
admits a positive answer in static directed graphs [14] and when the two arborescences have
the same root [13].

Our Results. In this paper we further analyze the complexity of Temporal Arbores-
cence Reconfiguration, considering additional restrictions in the approximation and
parameterized complexity frameworks. Note that we consider the temporal graph model
of [13], which is a restricted model where each timestamp of an arc specifies its activation
time and the arc is present for all times after the activation time. The hardness results we
present hold also in this restricted model.

First, we solve the open problem in [13] for the case of two timestamps, and we show
in Section 3 that this restriction of Temporal Arborescence Reconfiguration is
NP-hard.

Then we consider the case when the two input temporal arborescences are very similar,
that is they differ only for a limited number of arcs. We show in Section 4 that if the two
temporal arborescences differ by two arc pairs, then the problem is not only NP-hard, but
also inapproximable within factor b ln |V (D)|, for any constant 0 < b < 1, where V (D) is the
set of vertices of the arborescences. We also observe that if the two temporal arborescences
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differ for one pair of arcs, then the problem is easily solvable in polynomial time. Note that
the result can be easily extended to the case where two temporal arborescences differ by
more than two arc pairs. For example, we can replicate the construction of Fig. 2 and Fig. 3
by adding many copies of the subtree rooted at y and of the subtrees rooted at vi,j . Each
copy has to be reconfigured independently, thus the the inapproximation ratio is the same as
in our result.

Finally, we consider the parameterized complexity of the problem, where the parameter is
the number of arc flips required by a reconfiguration. We prove in Section 5 that the problem
is W[1]-hard for this parameter (it is, in fact, W[1]-hard in the parameter “number of arc
flips plus maximum timestamp”), indicating that a fixed-parameter algorithm is unlikely. We
conclude the paper with Section 6 with some open problems. Note that some of the proofs
are not included due to page limit.

2 Preliminaries

A temporal digraph D = (V, A) is a pair where V is the set of vertices and A ⊆ V × V × N
is a set of (temporal) arcs. Note that an arc in a temporal graph is denoted by a triple
(u, v, t), where u ∈ V is the tail of the arc, v ∈ V is the head of the arc, and t ∈ N is called
a timestamp. In our version of a temporal graph, an arc (u, v, t) remains active from this
timestamp t, that is, once it is activated it exists in the temporal digraph from time t and
onwards. We may write V (D) and A(D) for the vertex and arc set of D, respectively. Note
that we allow multiple arcs between two vertices u and v, but they must be at different
timestamps.

For a triple e = (u, v, t), D−e (resp. D +e) is the temporal digraph obtained by removing
the arc e, if present (resp. adding the arc e, if absent).

An arborescence is a digraph in which there is a vertex u, called the root, such that there
is a unique directed path from u to any vertex. In other words, an arborescence is a tree in
which arcs are oriented away from the root. Let D = (V, A) be a digraph. A subgraph T of
D is a spanning arboresence of D if V (T ) = V (D) and T is an arborescence. Unless stated
otherwise, all arborescences are spanning, and we may simply call T an arborescence of D.

Given a temporal graph D, a temporal arborescence T of D is an arborescence of D,
such that T is time-respecting, that is for any pair of arcs (u, v, t), (v, w, t′) ∈ A(T ) that are
consecutive on some path of T , we have t ≤ t′.

An arc flip on a temporal arborescence T of D is an operation that removes an arc
(u, v, t) ∈ A(T ) and inserts an arc (x, y, t′) ∈ A(D) \ A(T ), such that T − (u, v, t) + (x, y, t)
is a temporal arborescence of D (hence spanning and time-respecting).

A reconfiguration of a temporal arborescence T1 of D is a sequence of arc flips, each one
producing a temporal arborescence. A reconfiguration from T1 to T2 is a reconfiguration that
transforms T1 into T2. A reconfiguration sequence R = (R1, R2, . . . , Rl) from T1 to T2 is a
sequence of temporal arborescences, where R1 = T1 and Rl = T2 such that each Ri, with
i ∈ [l], is a temporal arborescence of D and each Rj , j ∈ {2, ..., l}, can be obtained from
Rj−1 with an arc flip.

Now, we are ready to define the problem we are interested into.

▶ Problem 1. (Temporal Arborescence Reconfiguration)
Input: a temporal digraph D, two temporal arborescences T1, T2 of D, and an integer p ≥ 1.
Question: Does there exist a reconfiguration from T1 to T2 of at most p arc flips?

In the optimization version of Temporal Arborescence Reconfiguration, we aim
to minimize the number of arc flips.
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3 NP-Hardness for Two Timestamps

We show that the Temporal Arborescence Reconfiguration problem is NP-hard even
on two timestamps (i.e. each arc has timestamp in {1, 2}) via a reduction from the Set
Cover problem. Let (S, U, k) be an instance of Set Cover, where U is the universe, S

is a collection of subsets of U , and k is an integer. The question is whether there exists a
subcollection S∗ ⊆ S of at most k sets of S such that for each u ∈ U there exists at least
one set of S∗ that contains u.

We denote U = {u1, . . . , un} and S = {S1, . . . , Sm}, and we define a corresponding
instance (D = (V, A), T1, T2, p) of Temporal Arborescence Reconfiguration. First
let S′ = {S′

i : Si ∈ S} be a copy of S and let U ′ = {u′
i : ui ∈ U} be a copy of U . We let

V = {r1, r2, r3} ∪ S ∪ S′ ∪ U ∪ U ′.

We then add to A the following sets of arcs (we strongly recommend referring to Figure 1):
Ar = {(r1, r2, 1), (r2, r1, 2), (r1, r3, 2), (r3, r2, 1)};
Ar1,U = {(r1, ui, 1) : ui ∈ U};
AU,U ′ = {(ui, u′

i, 1) : ui ∈ U};
Ar2,S = {(r2, Si, 2) : Si ∈ S};
Ar2,S′ = {(r2, S′

i, 1) : Si ∈ S};
Ar2,U = {(r2, ui, 2) : ui ∈ S};
AS,S′ = {(Si, S′

i, 2) : Si ∈ S};
AS′,U ′ = {(S′

i, u′
j , 1) : Si ∈ S ∧ uj ∈ Si};

Ar3,S′ = {(r3, S′
i, 1) : Si ∈ S};

Ar3,U ′ = {(r3, u′
i, 1) : ui ∈ U}.

Note that AS′,U ′ is the main set of arcs used to model the set cover instance into D.
Finally, we define the input temporal arborescences T1 (rooted at r1) and T2 (rooted at r3)
by specifying their arcs (illustrated in Figure 1, top-right and bottom-right, respectively):

A(T1) = {(r1, r2, 1), (r1, r3, 2)} ∪ Ar1,U ∪ AU,U ′ ∪ Ar2,S ∪ AS,S′

A(T2) = {(r3, r2, 1), (r2, r1, 2)} ∪ Ar2,U ∪ Ar2,S ∪ Ar3,S′ ∪ Ar3,U ′ .

One can verify that T1 and T2 are temporal arborescences using Figure 1.

▶ Theorem 1. The Temporal Arborescence problem is NP-hard even when the maximum
timestamp of an arc is 2.

Proof. Using the construction described above, we show that there exists S∗ ⊆ S of size at
most k that covers U if and only if T1 can be transformed into T2 using at most 3n+m+2+k

arc flips.
Suppose that there exists S∗ ⊆ S of size at most k that covers U . We reconfigure T1 into

T2 as follows (we say that an arc flip is correct if, after applying it, the resulting subgraph is
a temporal arborescence, hence time-respecting).
1. For each Si ∈ S∗ in an arbitrary order, remove (Si, S′

i, 2) and add (r2, S′
i, 1).

Each such arc flip is correct, since r1 can reach S′
i through (r1, r2, 1), (r2, S′

i, 1).
2. For each u′

j ∈ U ′ in an arbitrary order, let Si be a set of S∗ that contains uj . Remove
(uj , u′

j , 1) and add (S′
i, u′

j , 1), which exists by construction.
Each arc flip is correct since r1 can reach u′

j through the path r1 → r2 → S′
i → u′

j using
arcs of timestamp 1 only. Note that at this stage, r2 reaches the vertices in S, S′, and U ′

without going through r1.
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Figure 1 Left: the temporal digraph D obtained from a set cover instance, with U = {u1, u2, u3}
and S = {S1, S2}, S1 = {u1, u2} and S2 = {u3}. Arcs pointing on ellipses indicate that all possible
arcs are present (e.g. r1 has every element of U in its out-neighborhood). The arborescences T1 and
T2 are shown in thick arcs, top-right and bottom-right, respectively.

3. For each uj ∈ U in an arbitrary order, remove (r1, uj , 1) and add (r2, uj , 2).
Each arc flip is correct since r1 can reach uj using the time-respecting path r1 → r2 → uj .
At this stage, r2 also reaches the vertices of U without going through r1.

4. Reroot to r2 by removing (r1, r2, 1) and adding (r2, r1, 2).
This arc flip is correct since before the arc flip, r2 was already able to reach each element
of U, U ′, S′, S without r1, and can now reach r1 and r3 through the time-respecting path
r2 → r1 → r3.

5. Reroot to r3 by removing (r1, r3, 2) and adding (r3, r2, 1).
This arc flip is correct since r3 reaches r2 at time 1, and thus r3 can reach r1, U, U ′, S′, S

through r2 with a time-respecting path.
6. For u′

j ∈ U ′ in an arbitrary order, remove the incoming arc incident to u′
j and add

(r3, u′
j , 1). This is easily seen to be correct since U ′ vertices are leaves before (and after)

the arc flips.
7. For S′

i ∈ S′ in an arbitrary order, remove the incoming arc incident to S′
i and add

(r3, S′
i, 1). This is easily seen to be correct since, because of the previous step, the S′

vertices are leaves before (and after) the arc flips.

One can check that this sequence of flips yields T2. As for the number of arc flips, by
summing the number of arc flips required for each of the above steps, we see that we require
at most |S∗| + |U ′| + |U | + 1 + 1 + |U ′| + |S′| ≤ k + 3n + m + 2, as desired.
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10:6 On the Complexity of Temporal Arborescence Reconfiguration

In the converse direction, suppose that there exists a reconfiguration sequence R =
(R1, R2, . . . , Rl) from T1 to T2 with l − 1 ≤ 3n + m + 2 + k, where T1 = R1 and T2 = Rl, and
each Ri can be obtained from Ri−1 with an arc flip, for i ∈ {2, . . . , l}. We gather a set of
facts to prove that U can be covered by at most k sets of S.

▶ Fact 1. For each i ∈ [l], the root of Ri is one of r1, r2, or r3.

Fact 1 holds because only r1, r2, and r3 can reach r1 in D.

▶ Fact 2. If r1 is the root of Ri for some i ∈ [l], then (r1, r3, 2) ∈ A(Ri) and (r1, r2, 1) ∈
A(Ri).

Fact 2 is true because (r1, r3, 2) is the only incoming arc of r3 and must thus be in
Ri. This prevents using (r3, r2, 1) because of the time-respecting condition. The only other
incoming arc of r2 is (r1, r2, 1) and it must thus be in Ri as well.

▶ Fact 3. If r1 is the root of Ri for some i ∈ [l − 1], then r3 is not the root of Ri+1.

To see that Fact 3 holds, we know by Fact 2 that (r1, r3, 2), (r1, r2, 1) ∈ A(Ri). To make
r3 the root in Ri+1 we have to remove (r1, r3, 2), and add some outcoming arc of r3. But
adding (r3, r2, 1) makes r2 of in-degree 2, and adding an arc from r3 to some element of
S′ ∪ U ′ makes it impossible to reach r1 from r3. Therefore, the root of Ri+1 is either r1 or r2.

We now proceed with the construction of a set cover. Let a ∈ [l] be the minimum index
such that r2 is the root of Ra (note that there must exist such a Ra since the root of T2 is r3
and by Fact 3 the re-rooting from r1 to r3 cannot be done with an arc flip). By Fact 1 and
Fact 3, we know that r1 is the root of Ra−1, so that Ra is the first time the root is switched.
By Fact 2, (r1, r2, 1) ∈ A(Ra−1) and, because (r2, r1, 2) is the only incoming arc of r1, the
only way to switch the root from r1 to r2 is by removing (r1, r2, 1) and adding (r2, r1, 2). This
means that in Ra−1, there cannot be an arc from r1 to U , as otherwise (r2, r1, 2) followed
by such an arc would not be time-respecting. This implies that in Ra−1, all arcs from r2 to
U are present, since these are the only other incoming arcs of the U vertices. This in turn
implies that in Ra−1, there cannot be an arc from U to U ′ because of the time-respecting
condition. Also, by Fact 2, (r1, r3, 2) ∈ A(Ra−1) and the arcs from r3 to U ′ cannot be used
because of the time-respecting condition. Therefore, all in-neighbors of U ′ vertices are in S′.
In fact by construction, for each u′

j ∈ U ′, the in-neighbor of u′
j in Ra−1 is some S′

i ∈ S′ such
that uj ∈ Si. Since every e ∈ AS′,U ′ is active at timestamp 1, every path from r1 to a U ′

vertex in Ra−1 only uses arcs of timestamps 1. Such a path cannot use an arc in which r3 is
the tail, again because of the (r1, r3, 2) arc. Thus such a path must use an arc of Ar2,S′ . Let

S∗ = {Si : (r2, S′
i, 1) ∈ A(Ra−1)}.

Note that because each u′
j ∈ U ′ has an S′ in-neighbor such that the corresponding S set

contains uj , S∗ is a set cover. It remains to argue that |S∗| ≤ k.
Observe that A(Ra−1) \ A(T1) contains at least |U | + |U ′| + |S∗| = 2n + |S∗| arcs, since it

has all arcs of Ar2,U , the arcs from S′ to U ′, and the arcs from r2 to {S′
i : Si ∈ S∗}. Thus at

least 2n + |S∗| + 1 arc flips are needed to get to Ra. Then, A(T2) \ A(Ra) contains at least
1 + |S′| + |U | = 1 + n + m arcs, namely (r3, r2, 1) and the arcs from Ar3,S′ and Ar3,U ′ (which
are not in Ra−1, and thus not in Ra, because (r1, r3, 2) ∈ A(Ra−1) by Fact 2). Therefore,
the number of arc flips required from T1 to T2 is at least 3n + m + 2 + |S∗|, from which it
follows that |S∗| ≤ k.

Since Set Cover is known to be NP-hard [16], the reduction we have described implies
that also Temporal Arborescence Reconfiguration for two timestamps is NP-hard.

◀
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4 Inapproximability for Distance Two

In this section we show that, unless P = NP , Temporal Arborescence Reconfigur-
ation is not approximable within factor b ln |V (D)|, for any constant 0 < b < 1, even if
the two input temporal arborescences have distance two, that is that is the number of arcs
in A(T1) \ A(T2) and the number of arcs in in A(T2) \ A(T1) is equal to two. We prove
the result via an approximation preserving reduction from the Set Cover problem. Let
(S, U) be an instance of Set Cover1, where U = {u1, . . . , un} and S = {S1, . . . , Sm}. Con-
struct (D = (V, A), T1, T2), an instance of Temporal Arborescence Reconfiguration
associated with (U, S), as follows (refer to Fig. 2 for the structure of D).

V ={r1, r2, y} ∪ {vi,z : Si ∈ S, i ∈ [m], z ∈ [n2]} ∪ {wi : i ∈ [n], ui ∈ U}.

A is defined as

A = A1 ∪ A2 ∪ A3

where:

A1 ={(r1, r2, 2)} ∪ {(r1, y, 1)} ∪ {(r1, vi,1, 4) : i ∈ [m]} ∪
{(vi,j , vi,j+1, 4) : i ∈ [m], j ∈ [n2 − 1]} ∪ {(y, wi, 2) : i ∈ [n]}

A2 ={(r2, r1, 2)} ∪ {(r2, y, 1)} ∪ {(r1, vi,1, 4) : i ∈ [m]} ∪
{(vi,j , vi,j+1, 4) : i ∈ [m], j ∈ [n2 − 1]} ∪ {(y, wi, 2) : i ∈ [n]}

A3 ={(r1, y, 3)} ∪ {(r1, vi,1, 3) : i ∈ [m]} ∪ {(vi,j , vi,j+1, 3) : i ∈ [m], j ∈ [n2 − 1]} ∪
{(vi,n2 , wj , 3) : uj ∈ Si, i ∈ [m], j ∈ [n]}

Now, T1 is the temporal arborescence induced by A1, that is T1 = (V, A1), and T2 is the
temporal arborescence induced by A2, that is T2 = (V, A2) (see Fig. 3). Note that |A1 \A2| =
|A2 \ A1| = 2, since A1 \ A2 = {(r1, r2, 2), (r1, y, 1)}, while A2 \ A1 = {(r2, r1, 2), (r2, y, 1)}.

We define a reconfiguration from T1 to T2 as canonical if it has the following properties.
First, in some order, each wi, i ∈ [n], is disconnected from y as follows (we call this the
disconnection step of the reconfiguration):
1. For some j ∈ [m], each arc on the path from r1 to vj,n2 , associated with timestamp 4, is

flipped with the arc having the same endpoints and timestamp 3 (starting from (r1, vj,1, 4)
and ending with (vj,n2−1, vj,n2 , 4)).

2. Each arc (y, wi, 2), i ∈ [n], is flipped with an arc (vj,n2 , wi, 3), j ∈ [m], so that there is a
path from r1 to vj,n2 with all the arcs having timestamps 3.

Once the disconnection step is applied and each wi, i ∈ [n], is disconnected from y, a
canonical reconfiguration flips arc (r1, y, 1) and (r1, y, 3). Then the root of the temporal
arborescence is changed by flipping arcs (r1, r2, 2) and (r2, r1, 2). After these arc flips,
(r1, y, 3) is flipped with arc (r2, y, 1). In order to compute T2, each arc (vj,n2 , wi, 3), j ∈ [m]
and i ∈ [n], flipped in the disconnection step, is flipped with (y, wi, 2). Finally, for each path
from r1 to vj,n2 , j ∈ [m], having arcs with timestamp 3, each arc on the path is flipped with
the arc having the same endpoints and timestamp 4 (starting from (vj,n2−1, vj,n2 , 3) and
ending with (r1, vj,1, 3)).

We start by proving that a canonical reconfiguration is correct, that is it computes only
temporal arborescences.

1 Since in this section we consider optimization versions of problems, we do not include in the problem
instances the value of a solution
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Figure 2 The input digraph D associated with an instance of Set Cover. Each dashed arrow
outgoing from vi,2, i ∈ [m], represent a path containing vertices vi,j , j ∈ {3, ..., n2 − 1}, and not
shown in the figure. The dashed arrows outgoing from v1,n2 , vi,n2 , vm,n2 represent arcs connecting
these vertices with some vertices wz, z ∈ [n] (the precise arcs depends on the instance of Set
Cover).
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Figure 3 Arborescence T1 (left) and T2 (right). The four arcs in bold belong to exactly one the
two temporal arborescence, the other arcs belong to both T1 and T2.
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▶ Lemma 2. Each arborescence computed by a canonical reconfiguration from T1 to T2 is a
temporal arborescence of D.

We prove now the first direction of the reduction.

▶ Lemma 3. Let (S, U) be an instance of Set Cover and let (D, T1, T2) be the corresponding
instance of Temporal Arborescence Reconfiguration. Given a a set cover of size k

we can compute in polynomial time a reconfiguration from T1 to T2 consisting of 2kn2 +2n+3
flips.

Now, we consider the second part of the reduction, where we prove that a reconfiguration
from T1 to T2 must apply the disconnection step of a canonical reconfiguration.

▶ Lemma 4. Let (S, U) be an instance of Set Cover and let (D, T1, T2) be the corresponding
instance of Temporal Arborescence Reconfiguration. Given a reconfiguration from
T1 to T2 consisting of 2kn2 + 2n + 3 arc flips we can compute in polynomial time a solution
of Set Cover on instance (S, U) of size k.

Proof. We start by proving that a reconfiguration from T1 to T2 must apply the disconnection
step of a canonical reconfiguration.

First, consider arc (r1, r2, 2) of T1 and arc (r2, r1, 2) of T2. Note that (r1, r2, 2) ((r2, r1, 2),
respectively) is the only arc of D incoming into r2 (into r1, respectively). Hence whenever
(r1, r2, 2) is flipped, and hence removed, by a reconfiguration, it must be flipped with (r2, r1, 2),
and r2 must become the root of the computed temporal arborescence, otherwise either both
r1 and r2 have not incoming arcs or r2 is not connected with other vertices of the temporal
arborescence. Note that this arc flip defines r2 as the root of the computed arborescence
and creates a temporal path (r2, r1, 2), (r1, y, 1), if this latter arc (of T1) belongs to the
arborescence, which is not time-respecting. It follows that before (r1, r2, 2) and (r2, r1, 2)
are flipped, (r1, y, 1) must be flipped with another arc that must be incoming to y (since r1
remains the root of the arborescence), that is with (r2, y, 1) or (r1, y, 3).

Consider (r2, y, 1) and notice that arcs (r1, y, 1) and (r2, y, 1) cannot be flipped, since this
flip creates a temporal path (r1, r2, 2), (r2, y, 1), which is not time-respecting, and we have
observed that (r1, r2, 2) is not flipped before (r1, y, 1). Arcs (r1, y, 1) and (r1, y, 3) cannot be
flipped unless y is a leaf, that is all the arcs (y, wi, 2), with i ∈ [n], have been flipped. Indeed,
if an arc (y, wi, 2), i ∈ [n], belongs to a temporal arborescence, then by flipping (r1, y, 1)
and (r1, y, 3) we have a temporal path (r1, y, 3), (y, wi, 2), which is not time-respecting. It
follows that, before (r1, y, 1) is flipped each vertex wi, i ∈ [n], must first be disconnected
from y. By construction the only incoming arcs to a vertex wi, i ∈ [n], other than (y, wi, 2),
are (vj,n2 , wi, 3), for some j ∈ [m], hence each vertex wi must first be disconnected from y

by flipping an arc (y, wi, 2) with an arc (vj,n2 , wi, 3), for some j ∈ [m]. This implies that the
disconnection step of the canonical reconfiguration is applied. This requires that each arc on
the path from r1 to vj,n2 , which have timestamp 4 in T1, is flipped with the arc having the
same endpoints and timestamp 3.

Consider the temporal arborescence T ′ constructed by the disconnection step. For each
wi, i ∈ [n], the disconnection step flips all the arcs of one path from r1 to some vj,n2 , j ∈ [m],
such that ui ∈ Sj ; then we can define a set cover as follows:

S∗ = {Sj : the path from r1 to wj,n2 is modified in the disconnection step}.

We claim that S∗ contains at most k sets. Note that a reconfiguration from T ′ to T2 requires,
as in a canonical reconfiguration, to delete arcs in A(T ′) \ (A(T2) ∩ A(T1)) and insert arcs in
(A(T2) ∩ A(T1)) \ A(T ′).
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Recall that the reconfiguration of T1 in T2 consists of 2kn2 + 2n + 3 flips. If S∗ consists
of at least k + 1 sets, then by the definition of S∗ the disconnection step includes at least
k + 1 paths, thus requiring at least 2(k + 1)n2 arc flips for these paths, plus 2n arc flips for
the arcs incident in wi, i ∈ [n]. We have that 2(k + 1)n2 + 2n > 2kn2 + 2n + 3, since n ≥ 2.
Hence S∗ contains at most k sets, thus completing the proof. ◀

Based on Lemma 3 on Lemma 4, on the fact that the digraph D contains O(n2m) vertices
and on the hardness of approximation of Set Cover [2, 5, 20], we can prove the following
result.

▶ Theorem 5. Temporal Arborescence Reconfiguration is not approximable within
factor b ln |V (D)|, for any constant 0 < b < 1, unless P = NP, even when the two input
temporal arborescences differ for two pairs of arcs.

Distance One
We have shown that Temporal Arborescence Reconfiguration is hard (also to
approximate) when T1 = (V, A(T1)) and T2 = (V, A(T2)) have distance two. On the other
hand when T1 and T2 have distance one, thus A(T1) \ A(T2) contains a single arc a1 and
A(T2) \ A(T1) contains a single arc a2, the problem is easy to solve in polynomial time.
Indeed, since by flipping a1 with a2 in T1, hence by removing a1 and inserting a2, we obtain
T2, it follows that the arc flip produces a spanning time-respecting arborescence and thus
can always be applied.

5 W[1]-Hardness

In all the above reductions (Section 3 and Section 4) and also the reduction in [13], the
number of required arc flips is always a function of n. Therefore, an algorithm with complexity
of the form f(p)nc, with constant c and f only depending on p (number of arc flips of a
reconfiguration from T1 to T2), is not excluded. We show that this is unlikely by proving
that the Temporal Arborescence Reconfiguration problem is W[1]-hard under this
parameter p, and that in fact it is W[1]-hard in parameter p + max(u,v,t)∈A(D) t.

We reduce Multicolored Clique to Temporal Arborescence Reconfiguration.
Multicolored Clique, given an undirected graph G = (V, E), whose vertices are colored
with k colors, asks whether there exists a clique, called multicolored clique, containing one
vertex from each color. The problem is W[1]-hard when the parameter is the number of
colors [6].

Let G = (V, E) be an instance a Multicolored Clique, with vertices partitioned into
color classes V1, . . . , Vk. For i, j ∈ [k], we will denote Ei,j = {uv ∈ E : u ∈ Vi, v ∈ Vj}.
Construct an instance (D, T1, T2, p) of Temporal Arborescence Reconfiguration as
follows.

Let us first construct D, which is shown in Figure 4 (we provide the main intuitions after
the description of the construction). We define the vertex set of D as V (D) = R ∪ C ∪ U ,
where

R ={r0, r1, . . . , rk},

C ={c1, c2, . . . , ck},

U ={u′ : u ∈ V (G)}.

For i ∈ [k], we will denote Ui = {u′ : u ∈ Vi}.
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Figure 4 Main construction for the W[1]-hardness proof. Left: the temporal graph D. Top-right:
the initial temporal arborescence T1. Bottom-right: the target temporal arborescence T2. Note that
the timestamps 0 of arcs (rk, ci) are not shown.

As for the arc set A(D), add the following arc sets:
R-R arcs: for each i ∈ {0, 1, . . . , k − 1}, add the arc ei = (ri, ri+1, 3k); the arc e′

i =
(ri, ri+1, k − i); and the arc fi = (ri+1, ri, 4k).
r0-U arcs: for each u ∈ V (G), add the arc (r0, u′, 4k).
ri-Ui arcs: for each color class i ∈ [k] and each u ∈ Vi, add the arc (ri, u′, k + i). Note
that i > 0, hence r0 is not concerned here.
Ui-Uj arcs: for each i, j ∈ [k] with j < i and each uv ∈ Ei,j with u ∈ Vi and v ∈ Vj ,
add an arc (u′, v′, k + i). That is, each vertex u′ has an outgoing arc to v′ whenever v is
a neighbor of u in a “lower” color class. In terms of Figure 4, this means that all arcs
between the Ui sets go upwards. The tail of the arc determines its timestamp.
R-C arcs: for each color class i ∈ [k], add the arcs (ri−1, ci, 3k) and (rk, ci, 0).
Ui-ci arcs: for each color class i ∈ [k], and each u ∈ Vi, add the arc (u′, ci, 3k − 1).

The arcs of the initial temporal arborescence T1 consist of: the R-R arcs ei for i ∈
{0, 1, . . . , k − 1}, so that there is a path of arcs at time 3k from r0 to rk; the r0-U arcs
(r0, u′, 4k) for u ∈ V ; the R-C arcs (ri−1, ci, 3k) for i ∈ [k].
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10:12 On the Complexity of Temporal Arborescence Reconfiguration

The arcs of the target temporal arborescence T2 consist of the same arc set as T1, except
that: no ei arc is in T2, and instead each R-R arc fi is in T2; no (ri−1, ci, 3k) arc is present,
and instead each R-C arc (rk, ci, 0) is in T2. It is not difficult to verify that T1 and T2 are
temporal arborescences (hence time-respecting).

The intuition behind this construction is as follows. To transform T1 into T2, one must
first re-root from r0 to r1, then to r2, and so on until rk is the root. If we re-root from r0 to
r1, we need to insert the arc (r1, r0, 4k). This cannot be done in the very first arc flip though,
because the arc (r0, c1, 3k) in the R-C group would violate temporality. So any solution must
first create an alternate path from r0 to c1 before the first re-rooting. One can show that the
only way to achieve this is to choose some u′

1 ∈ U1 and create the path r0 → r1 → u′
1 → c1,

using arcs at times k, k + 1, 3k − 1. Once this is done, we can safely re-root to r1.
Next, we must re-root to r2. As before, we cannot insert (r2, r1, 4k) because of (r1, c2, 3k).

So we must create an alternate path r1 → r2 → u′
2 → c2 for some u′

2 ∈ U2. However this
time, the arc (r1, u′

1, k + 1) from the previous step is also an issue and we must also have an
alternate path from r1 to u′

1. The key idea is that the most efficient way to do this is, after
choosing u′

2, to apply a flip that removes (r1, u′
1, k + 1) and inserts (u′

2, u′
1, k + 2). This arc

exists only if u2u1 ∈ E(G), forcing us to choose u′
2, u′

1 that form a clique of size 2.
The same idea applies for every i ∈ [k]. Before re-rooting from ri−1 to ri, we must find

an alternate path ri−1 → ri → u′
i → ci by choosing some u′

i ∈ Ui. At this point, there are
u′

1, . . . , u′
i−1 that are used as in-neighbors of c1, . . . , ci−1. The most efficient setup is to choose

u′
i that allows inserting the (u′

i, u′
j , k + i) arcs for all those j < i, requiring all corresponding

uj ’s to be neighbors of ui in G. In other words, there are k phases to apply, one for each
re-rooting to each ri, and at each phase i we must choose a ui (and corresponding u′

i) that
is a neighbor of all the previously chosen uj ’s, thereby forming a clique. The specific arc
timestamps in the construction are chosen to enforce this behavior.

We will show that G contains a multicolored clique if and only if T1 can be transformed
into T2 using at most p = 2k +

∑k
i=1(i + 3) arc flips. In essence, each term in the summation

represents the arc flips needed to re-root from ri−1 to ri, and the 2k term is there for a
cleanup phase after having re-rooted to rk. Note that since p is a function of k only, this
shows W [1]-hardness in parameter p being the number of required arc flips. Also note that
in fact, all timestamps assigned to arcs are a function of k, so the problem is W[1]-hard in
parameter p + t, where t = max(u,v,t′)∈A(D) t′.

▶ Theorem 6. The Temporal Arborescence problem is W[1]-hard when parameterized
by the number of arc flips plus the maximum timestamp.

Proof. First note that the construction of D from G can be carried out in polynomial time.
As mentioned above, we show that G contains a multicolored clique if and only if T1 can be
transformed into T2 using at most p = 2k +

∑k
i=1(i + 3) arc flips.

(⇒) Suppose that G has a multicolored clique K = {u1, . . . , uk}, where for each i ∈ [k] the
vertex ui belongs to color class Vi. As shown in Figure 5, starting from T1, one can re-root
from r0 to r1 (each step can easily be checked to maintain a temporal arborescence, hence
time-respecting):

Remove e0 = (r0, r1, 3k) and insert e′
0 = (r0, r1, k), so that r0 reaches r1 with the arc at

time k instead of the arc at time 3k;
Remove (r0, u′

1, 4k) and insert (r1, u′
1, k + 1), which is now possible. Then remove

(r0, c1, 3k) and insert (u′
1, c1, 3k − 1);

Remove e′
0 and insert (r1, r0, 4k), thereby re-rooting to r1.
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Figure 5 A sequence of arc flips to re-root from r0 to r1.

Note that this requires 4 = 1 + 3 flips. Now let i ≥ 2 and let us see how to re-root from
ri−1 to ri (illustrated in Figure 6). Assume that we have reached a temporal arborescence
such that: ri−1 is the root; (ri−1, u′

i−1, k + i − 1) is active; (u′
i−1, u′

j , k + i − 1) is active for
each j < i − 1; (u′

j , cj , 3k − 1) is active for each j ≤ i − 1. Also assume that ri−1 reaches r0
using the fj upwards arcs at time 4k, and that r0 uses 4k arcs to reach all the v′

j other than
u′

1, . . . , u′
i−1. Note that all these conditions hold for i = 2 after applying the re-rooting from

r0 to r1. We show how to re-root from ri−1 to ri, such that the same properties hold but
with ri as the root. To achieve this:
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ci 3k

4k
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Figure 6 A sequence of arc flips to re-root from ri−1 to ri. Here, we assume h < j < i − 1.
The middle state is obtained by two arc flips that insert e′

i−1 and (ri, u′
i). The rightmost state is

obtained by making u′
i the in-neighbor of every u′

j , j < i. The last step is not shown and consists in
flipping e′

i−1 to fi−1 to re-root to ri.

Remove ei−1 = (ri−1, ri, 3k) and add e′
i−1 = (ri−1, ri, k − (i − 1)), so that ri−1 now

reaches ri with an arc at timestamp k − i + 1. This preserves temporality since this is
akin to lowering the timestamp for the arc from ri−1 to ri, which is an outcoming arc
from the root ri−1.
Remove (r0, u′

i, 4k) and add (ri, u′
i, k + i). This preserves temporality since the new path

from ri−1 to u′
i uses arcs at respective times k − i + 1 and k + i.

Remove (ri−1, ci, 3k) and add (u′
i, ci, 3k − 1), which is correct since the latter has time

3k − 1 > k + i.
For each j < i−1, remove the incoming arc (u′

i−1, u′
j , k + i − 1) of u′

j and add (u′
i, u′

j , k + i)
(which exists because uiuj ∈ E(G)).
This is temporarily correct since u′

i is currently reachable with arcs of timestamp at
most k + i, each arc from u′

i to u′
j has timestamp k + i, and each arc from u′

j to cj has
timestamp 3k − 1 > k + i.
Remove (ri−1, u′

i−1, k + i − 1) and add (u′
i, u′

i−1, k + i), which preserves temporality as
in the previous step.
Finally, re-root ro ri by removing e′

i−1 and adding fi−1 = (ri, ri−1, 4k). This preserves
temporality because, at this point we have the situation from Figure 6 on the right. The
only vertices that ri−1 was reaching without going through ri were ri−2, . . . , r0 and u′

vertices using (r0, u′, 4k) arcs, and all the underlying paths consisted of arcs at time 4k.
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Observe that all the assumptions made before handling step i are true for the next step.
Also note that to re-root from ri−1 to ri, the above requires 3 + (i − 2) + 2 = i + 3 flips.

Once we reach a point where rk is the root, we can: replace every (u′
j , cj , 3k − 1) with

(rk, cj , 0) for j ∈ [k] (k arc flips); remove all the (u′
k, u′

j , 2k) arcs and insert (r0, u′
j , 4k) for

j < k (k − 1 arc flips); replace (rk, u′
k, 2k) with (r0, u′

k, 4k) (1 arc flip). This last step adds
2k arc flips.

Overall, we have reached T2 using
∑k

i=1(i + 3) + 2k = p arc flips.

(⇐) Suppose that T1 can be transformed into T2 using at most p flips. It can be shown
that this implies that u1, . . . , uk form a multicolored clique of G. The proof is omitted for
space reasons and can be found in the full version – the main idea is that the steps described
in the forward direction are essentially forced to achieve p flips. Since Multicolored
Clique is W[1]-hard (for parameter k), the parameterized reduction we have described
implies that Temporal Arborescence Reconfiguration is W[1]-hard for parameters
number of arc flips plus maxmum timestamp. ◀

6 Conclusion

We have analyzed the complexity Temporal Arborescence Reconfiguration, proving
that it is NP-hard for two timestamps, it is inapproximable within factor b ln |V (D)|, for any
0 < b < 1, if the two temporal arborescences differ only for two arc pairs, and it is W[1]-hard
when parameterized by the number of arc flips needed to transform one arborescence into
the other plus maximum timestamp.

A natural future direction is to further study the approximation complexity of the problem,
in particular if it is possible to achieve a c ln |V (D)| approximation factor, for some constant
c ≥ 1. A second future direction is to further investigate the problem when the input
temporal digraph has specific properties (for example bounded treewidth or bounded degree),
both in the approximation and parameterized complexity framework.
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Abstract
Different variants of Vertex Cover have recently garnered attention in the context of temporal graphs.
One of these variants is motivated by the need to summarize timeline activities in social networks.
Here, the activities of individual vertices, representing users, are characterized by time intervals.
In this paper, we explore a scenario where the temporal span of each vertex’s activity interval is
bounded by an integer ℓ, and the objective is to maximize the number of (temporal) edges that are
covered. We establish the APX-hardness of this problem and the NP-hardness of the corresponding
decision problem, even under the restricted condition where the temporal domain comprises only
two timestamps and each edge appears at most once. Subsequently, we delve into the parameterized
complexity of the problem, offering two fixed-parameter algorithms parameterized by: (i) the number
k of temporal edges covered by the solution, and (ii) the number h of temporal edges not covered by
the solution. Finally, we present a polynomial-time approximation algorithm achieving a factor of 3
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1 Introduction

The temporal graph model is designed to capture the dynamic evolution of interactions over
time [14, 12, 17, 13]. A temporal graph can be viewed as a labeled graph, where every edge
is endowed with time labels signifying the timestamps where the edge is defined, and thus
where the interaction represented by the edge is observed; see Figure 1 for an illustration.
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11:2 Partial Temporal Vertex Cover with Bounded Activity Intervals

Numerous foundational problems originally formulated for static graphs have recently
been extended to temporal graphs. On static graphs, the Vertex Cover problem asks for a
subset of vertices with minimum cardinality, such that it covers all the edges of the input
graph, that is, such that for each edge at least one of its endpoints belongs to the subset.
Following this line of research, different adaptations of Vertex Cover on temporal graphs have
been explored in the literature [1, 11, 19]. Here we focus on the approach introduced in [19],
motivated by the need to summarize interaction timelines of users in social networks.

Informally, a temporal vertex cover of a temporal graph G is a subset2 C of its vertices
and an assignment of time intervals to every vertex of C, such that for every edge e of G

and for every time label t of e, at least one end-vertex of e is part of C and the endowed
time interval includes t (see Section 2 for a formal definition). In other words, a temporal
vertex cover assigns an activity interval to a subset of users, such that for every observed
interaction at least one involved user is part of the solution and active. Based on this idea,
the objective function of the MinTimelineCover problem is to find a temporal vertex cover of
minimum size (i.e., minimizing the sum of the interval lengths).

Recently, a sequence of works investigated the computational complexity of the Min-
TimelineCover problem, proving that it is NP-hard [19], even in the restricted scenarios
when each label is associated with a single edge [4], and when the temporal graph is defined
over two timestamps only [7]. In terms of parameterized complexity, MinTimelineCover
parameterized by the solution size has first been shown to admit a fixed-parameter algorithm
for temporal graphs defined over two timestamps [7] and, subsequently, this restriction has
been removed [5].

The complexity of approximating MinTimelineCover has been also studied. A result given
in [7] implies that, assuming the Unique Games conjecture, MinTimelineCover cannot be
approximated within a constant factor, even for graphs defined on two timestamps only. On
the positive side, the problem can be approximated within factor O(T log n), on a temporal
graph with n vertices and T timestamps [6].

In this paper, we introduce and explore a new problem, ℓ-TimelineCover(k) and its
optimization version ℓ-MaxTimelineCover, in which we relax the constraint that all the
edges have to be covered, bounding instead the length of the vertex activity intervals by
an integer ℓ ≥ 1. This last constraint is motivated by the observation that a solution
of MinTimelineCover may define long activity intervals for some vertices, while in several
applications we observe short time activities of users [19]. Hence, the ℓ-TimelineCover(k)
problem asks for the definition of one interval of length at most ℓ for each vertex, so that
at least k edges of the temporal graph are covered (or the maximum number of edges are
covered for ℓ-MaxTimelineCover); see Figure 1 for an example. From a graph theory point
of view, ℓ-TimelineCover(k) can be seen as a temporal variant of Partial Vertex Cover [8, 16]:
Given a graph and two positive integers h and p, Partial Vertex Cover asks whether there
exists a set of at most h vertices that cover at least p edges of the graph.

Our main contribution can be summarized as follows.
We prove, in Section 3, that ℓ-TimelineCover(k) is NP-hard and ℓ-MaxTimelineCover is
APX-hard, even in the restricted case where the time domain consists of two timestamps
(and ℓ = 1) and each edge appears at most once. Note that if ℓ is equal to the number of
timestamps, then the problem admits a trivial solution where each vertex has an interval
equal to the number of timestamps and all the edges are covered. Denote by T the

2 We note that an equivalent definition can be made by replacing C with the entire vertex set of G, and
allowing for vertices with an empty assigned time interval.
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v1 v6

v2 v5

v3 v4

{3, 4} {3, 4}

{1, 2} {1, 2}

{1, 2}

{3, 4}

{5} {5}

[1, 2] [3, 4]

Figure 1 (Left) An example of a temporal graph ⟨G, λ⟩, where G is a graph and λ is a time-
labeling function that maps every edge of G onto a set of timestamps; for example, the edge {v1, v2}
is associated to timestamps {1, 2}, while the edge {v2, v3} to timestamps {3, 4}. (Center and Right)
A solution of ℓ-TimelineCover(12) (hence at least 12 temporal edges have to be covered), for ℓ = 2,
defines: interval [1, 2] for v1, v3, v5, thus covering edges at timestamps 1 and 2; interval [3, 4] for
v2, v4, v6, thus covering edges at timestamps 3 and 4. Note that the edges defined at timestamp 5
({v1, v3}, {v4, v6}) are not covered.

number of timestamps over which the temporal graph is defined. These results imply that
ℓ-TimelineCover(k) parameterized by ℓ + T admits no XP (and hence no FPT) algorithm,
unless P=NP.
Next, in Section 4, we focus on the parameterized complexity of the ℓ-TimelineCover(k)
problem and consider two parameters: the number h of temporal edges left uncovered by
the solution, and the number k of temporal edges that are covered by the solution. For
both parameterizations, we prove that the problem is fixed-parameter tractable.
Finally, in Section 5, we focus again on the approximability of the ℓ-MaxTimelineCover
problem, and we present a polynomial-time approximation algorithm of factor 3

4 .

In Section 2 we give some definitions and we introduce the ℓ-TimelineCover(k) and ℓ-
MaxTimelineCover problems. We conclude the paper in Section 6 with open problems that
naturally stem from our research. Some of the proofs are deferred to the journal version.

2 Preliminaries

A temporal graph is a pair ⟨G, λ⟩ such that G = (V, E) is a simple (undirected) graph and
λ : E → 2N is a time-labeling function that maps every edge of G onto a set of integers,
called timestamps in the following (see the example in Figure 1). Up to a relabeling, we can
assume that the minimum timestamp over all edges of G is equal to 1, while T denotes the
maximum timestamp (and hence it upperbounds the number of timestamps).

We say that an edge e ∈ E of a temporal graph ⟨G, λ⟩ is active in t ∈ λ(e) and the pair
(e, t) is called a temporal edge, while Et is the set of temporal edges active in t.

A temporal vertex cover of ⟨G, λ⟩ is a pair (C, σ), such that: (i) C ⊆ V ; (ii) σ maps each
vertex v of C to an interval [lv, rv] such that 1 ≤ lv ≤ rv ≤ T ; and (iii) for every edge e

and for every value t ∈ λ(e), there is a vertex v ∈ C such that t ∈ [lv, rv] and e = {u, v}.
An ℓ-partial temporal vertex cover of ⟨G, λ⟩ is a function σ, called assignment, such that:
(i) σ maps each vertex v of V to an interval [lv, rv] such that 1 ≤ lv ≤ rv ≤ T ; and (ii)
rv − lv + 1 ≤ ℓ. A temporal edge (e, t), where e = {u, v}, is covered by σ if either t ∈ [lu, ru]
or t ∈ [lv, rv]. Note that, in a ℓ-partial temporal vertex cover, we can assume w.l.o.g. each
vertex is assigned to an interval of length exactly ℓ.

We are now ready to formalize the definition of ℓ-TimelineCover(k) and of the corresponding
optimization version ℓ-MaxTimelineCover.

SAND 2024



11:4 Partial Temporal Vertex Cover with Bounded Activity Intervals

▶ Problem 1. ℓ-TimelineCover(k)
Input: a temporal graph ⟨G, λ⟩ and two positive integers ℓ and k.
Output: an ℓ-partial temporal vertex cover of ⟨G, λ⟩ that covers at least k temporal edges.

▶ Problem 2. ℓ-MaxTimelineCover
Input: a temporal graph ⟨G, λ⟩ and a positive integer ℓ.
Output: an ℓ-partial temporal vertex cover of ⟨G, λ⟩ that covers the maximum number of
temporal edges over all ℓ-partial temporal vertex covers of ⟨G, λ⟩.

3 Hardness for Single Labeling

In this section, we prove that ℓ-TimelineCover(k) is NP-hard, even if the input temporal
graph ⟨G, λ⟩ has the following properties: (1) each edge has a single label and (2) T = 2.
As a corollary of this result, we prove that ℓ-MaxTimelineCover is APX-hard for the same
restriction. The result is proven via a reduction from Max 2-3-SAT(h), a variant of Max
2-SAT(h) where each literal appears in at most three clauses. Given a set X of variables
and a set of clauses C on X, where each clause consists of exactly two literals and each
literal appears in at most three clauses, Max 2-3-SAT(h) asks for a truth assignment to the
variables in X that satisfies at least h clauses in C. Note that we assume that each clause in
C consists of exactly two literals. Indeed the APX-hardness proof of Max 2-3-SAT(h) in [3, 2]
constructs only clauses consisting of exactly two literals.

Construction. Consider an instance ⟨X, C, h⟩ of Max 2-3-SAT(h), where X = {x1, . . . , xq} is
a set of variables and C = {C1, . . . , Cz} is a set of clauses, each one defined over two literals.
A clause of C is written as xi,A ∨ xj,B , with A, B ∈ {T, F}, where xi,T (xi,F, respectively)
represents a positive literal (a negative literal, respectively).

In the following, given ⟨X, C, h⟩, we define a corresponding instance ⟨G, λ, k, ℓ⟩ of ℓ-
TimelineCover(k), with k = 24q + h, ℓ = 1 and T = 2; see Figure 2 for an illustration. Note
that, since T = 2, the labels belong to interval [1, 2]. The set V is defined as follows:

V = {vi,T, vi,F, ai,1, ai,2, ai,3, ai,4, bi,1, bi,2, bi,3, bi,4 : xi ∈ X}.

Next, we define the set Et of temporal edges:

Et = {({vi,T, ai,p}, 1), ({vi,F, bi,p}, 1) : 1 ≤ p ≤ 4, 1 ≤ i ≤ q}∪

{({ai,s, bi,t}, 2) : 1 ≤ i ≤ q ∧ 1 ≤ s, t ≤ 4}∪

{({vi,A, vj,B}, 2) : 1 ≤ i, j ≤ q ∧ A, B ∈ {T, F} ∧ (xi,A ∨ xj,B) ∈ C}.

Clearly ⟨G, λ⟩ is defined over two timestamps. We prove below that each pair of vertices
of ⟨G, λ⟩ is connected by at most one temporal edge.

▶ Fact 1. Let ⟨X, C, h⟩ be an instance of Max 2-3-SAT(h), and let ⟨G, λ, k, ℓ⟩ be the corres-
ponding instance of ℓ-TimelineCover(k). For every edge e ∈ E, it holds |λ(e)| = 1.

Proof. The edges connecting vi,T and ai,p, 1 ≤ i ≤ q and 1 ≤ p ≤ 4, are active only at
timestamp 1 and the same property holds for the edges connecting vi,F and bi,p, 1 ≤ i ≤ q

and 1 ≤ p ≤ 4. The edges between ai,p and bi,s, with 1 ≤ p ≤ 4 and 1 ≤ s ≤ 4, for each
1 ≤ i ≤ q, are active only at timestamp 2. Finally, the edges between vi,A and vj,B , 1 ≤ i ≤ q

and 1 ≤ j ≤ q, are active only at timestamp 2. ◀
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v1,T v1,F v2,T v2,F

a1,1 b1,4a1,2 a1,3 a1,4 b1,1 b1,2 b1,3 b2,2 b2,3 b2,4a2,1 a2,2 a2,3 a2,4 b2,1

Figure 2 An example of a temporal graph G built by the reduction for clause (x1,T ∨ x2,F). The
temporal edges defined at timestamp 1 are dashed, while those defined at timestamp 2 are solid .

Correctness. A solution of ℓ-TimelineCover(k) on ⟨G, λ, k, ℓ⟩ is called canonical if every
temporal edge ({vi,T, ai,p}, 1), for 1 ≤ i ≤ q and 1 ≤ p ≤ 4, and every temporal edge
({vi,F, bi,p}, 1), for 1 ≤ i ≤ q and 1 ≤ p ≤ 4, are covered by such a solution. We start by
proving the following property.

▶ Lemma 1. Given an instance ⟨X, C, h⟩ of Max 2-3-SAT(h), consider a correspond-
ing instance ⟨G, λ, k, ℓ⟩ of ℓ-TimelineCover(k). Then, starting from a feasible solution
of ℓ-TimelineCover(k) on ⟨G, λ, k, ℓ⟩, we can compute a feasible canonical solution of ℓ-
TimelineCover(k) on ⟨G, λ, k, ℓ⟩ that covers at least the same number of temporal edges.

Proof. Consider an assignment σ to V and assume that there exist two vertices ai,p, bi,s ∈ V ,
for some i with 1 ≤ i ≤ q, 1 ≤ p, s ≤ 4 that are both assigned to t = 1. Notice that the
temporal edge ({ai,p, bi,s}, 2) is not covered and that each of ai,p, bi,s covers at most one
temporal edge (active in t = 1). Then we can modify the solution σ of ℓ-TimelineCover(k)
by assigning one of the two vertices, w.l.o.g. ai,p, to t = 2 so that the temporal edge
({ai,p, bi,s}, 2), is now covered, while ({vi,T, ai,p}, 1) is now possibly not covered. Notice that
by iteratively applying this modification we can compute a solution of ℓ-TimelineCover(k)
that covers the same number of temporal edges as σ, such that every ai,p or every bi,s is
assigned to t = 2. Indeed assume this is not the case, then there exist two vertices ai,p, bi,s

both assigned to t = 1, thus by applying the modification described before we can compute a
solution with the desired property.

Note that we assume that in σ either every ai,p, 1 ≤ p ≤ 4, or every bi,s, 1 ≤ s ≤ 4, is
assigned to t = 2 and that either every ai,p, 1 ≤ p ≤ 4, or every bi,s, 1 ≤ s ≤ 4, is assigned
to t = 1. Indeed, assume w.l.o.g. that every ai,p is assigned to t = 2, then all the temporal
edges defined in timestamp 2 and incident in some bi,s are covered by vertices ai,p. Hence
we can assume that every bi,s is assigned to 1.

Now, we claim that at most one of vi,T, vi,F, 1 ≤ i ≤ q, is assigned to t = 2. Indeed,
assume that both vi,T, vi,F are assigned to t = 2 (thus not to t = 1). Since either every
vertex ai,p or every vertex bi,s is assigned to timestamp 2, it follows that either all temporal
edges ({vi,T, ai,p}, 1), with 1 ≤ i ≤ q, and 1 ≤ p ≤ 4, or all the temporal edges ({vi,F, bi,p}, 1),
1 ≤ i ≤ q, and 1 ≤ p ≤ 4 are not covered. Assume w.l.o.g. that every ai,p is assigned to time
t = 2. Since both vi,T and vi,F are assigned to time 2 and each literal in X belongs to at most
three clauses, each of vi,T, vi,F is assigned to t = 2 and it covers at most three temporal edges.
Then we can compute a solution of ℓ-TimelineCover(k) on ⟨G, λ, k⟩ by assigning vi,T to t = 1,
while each ai,p is assigned to t = 2 (or vi,F assigned to t = 1 and each bi,p is assigned to
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11:6 Partial Temporal Vertex Cover with Bounded Activity Intervals

t = 2). The number of covered temporal edges with respect to solution σ is increased at least
by one and we have that either vi,T is assigned to time 1 (if every ai,p is assigned to time 2)
or vi,F is assigned to time 1 (if every bi,p is assigned to time 2). Then every temporal edge
({vi,T, ai,p}, 1), 1 ≤ i ≤ q, and 1 ≤ p ≤ 4, and every temporal edge ({vi,F, bi,p}, 1), 1 ≤ i ≤ q,
and 1 ≤ p ≤ 4, is covered by the solution. Thus we have computed a canonical solution of
ℓ-TimelineCover(k) on ⟨G, λ, k, ℓ⟩ that covers at least the same number of temporal edges as
σ, hence concluding the proof. ◀

Now, we can prove the main result of this section.

▶ Theorem 2. ℓ-TimelineCover(k) is NP-hard even on temporal graphs defined on two
timestamps and where each edge is assigned a single time label.

Proof. Note that, by Fact 1, each edge is assigned a single time label and by construction,
the temporal graph is defined on two timestamps.

We start by proving the following fact.

▶ Fact 2. Given a solution of Max 2-3-SAT(h) on instance ⟨X, C, h⟩ we can compute in
polynomial time a canonical solution of ℓ-TimelineCover(k) on the corresponding instance
⟨G, λ, k, ℓ⟩ with k = 24q + h (hence that covers at least k temporal edges).

Proof. Consider a solution of Max 2-3-SAT(h) on instance ⟨X, C, h⟩, we define a solution σ

of ℓ-TimelineCover(k) on ⟨G, λ, k, ℓ⟩ as follows. For each variable xi, 1 ≤ i ≤ q, that is set
to true, then vi,F is assigned to t = 1, each ai,p, with 1 ≤ p ≤ 4, is assigned to t = 1, vi,T

is assigned to t = 2 and each bi,p, with 1 ≤ p ≤ 4, is assigned to t = 2. For each variable
xi, 1 ≤ i ≤ q, that is set to false, then vi,T is assigned to t = 1, each bi,p, with 1 ≤ p ≤ 4,
is assigned to t = 1, vi,F is assigned to t = 2 and each ai,p, with 1 ≤ p ≤ 4, is assigned to
t = 2. By construction the solution σ is canonical, hence the 8q temporal edges defined at
time t = 1 are covered. Each temporal edge ({ai,p, bi,s}, 2), with 1 ≤ p, s ≤ 4, is covered
(we have 16q such temporal edges). Finally, by construction, for each satisfied clause, the
corresponding temporal edge defined in t = 2 is covered (we have h such temporal edges). ◀

For the second direction, we prove the following fact.

▶ Fact 3. Given a solution of ℓ-TimelineCover(k) on the instance ⟨G, λ, k, ℓ⟩ with k = 24q +h

(hence that covers at least k temporal edges), we can compute in polynomial time a solution
Max 2-3-SAT(h) on instance ⟨X, C, h⟩ (hence that satisfies h clauses).

Proof. By Lemma 1 we can consider a canonical solution σ of ℓ-TimelineCover(k) on instance
⟨G, λ, k, ℓ⟩. By construction σ covers the 8q temporal edges defined at time t = 1. Notice that
we can assume that exactly one of vi,T, vi,F is assigned to t = 1. If both vi,T, vi,F are assigned
to t = 1, we can define all the vertices ai,p (all the vertices bj,p, respectively) assigned to
t = 1 and assign vi,T (vi,F, respectively) to t = 2. Hence exactly one of vi,T, vi,F is assigned to
t = 1, and exactly one of vi,T, vi,F is assigned to t = 2. Moreover, we can assume that for
each i with 1 ≤ i ≤ q, the temporal edges incident to ai,p and bi,s, with 1 ≤ p, s ≤ 4, are
covered.

Now, construct a truth assignment as follows. For each 1 ≤ i ≤ q, if vi,T is assigned to
t = 2, then set the corresponding variable xi to true, if vi,F is assigned to t = 2, then set
the corresponding variable xi to false. By construction if a temporal edge ({xi,A, xj,B}, 2) is
covered, then the corresponding clause is satisfied, thus we have defined a truth assignment
that satisfies at least h clauses, hence a solution of Max 2-3-SAT(h), concluding the proof. ◀
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By Fact 2 and by Fact 3 it follows that we have designed a polynomial-time reduction
from Max 2-3-SAT(h) to ℓ-TimelineCover(k). By the NP-hardness of Max 2-3-SAT(h) (the
decision version) [3], it follows that also ℓ-TimelineCover(k) on temporal graphs defined on
two timestamps and where each edge is assigned a single time label is NP-hard. ◀

We note that the reduction described above can be used to prove the APX-hardness of
ℓ-MaxTimelineCover, thus implying that ℓ-MaxTimelineCover does not admit a PTAS. Later,
in Section 5, we will prove that ℓ-MaxTimelineCover admits an approximation algorithm of
factor 3

4 .

▶ Theorem 3. ℓ-MaxTimelineCover is APX-hard.

Proof. The result follows from the fact that essentially the same reduction described
in this section is an L-reduction from the optimization version of Max 2-3-SAT(h) to ℓ-
MaxTimelineCover (for details on L-reduction we refer to [20]).

Denote by I an instance of the optimization version of Max 2-3-SAT(h) and by I ′ the
corresponding instance of ℓ-MaxTimelineCover. Let OPTS(I) be the value of an optimum
solution of the optimization version of Max 2-3-SAT(h) on instance I. Let OPTM (I ′) be the
value of an optimum solution of ℓ-MaxTimelineCover on instance I ′.

By Fact 2, we have that

OPTM (I ′) ≤ 24q + OPTS(I)

and, observing that, since there is a truth assignment that satisfies at least 1
2 q clauses, we

have that OPTS(I) ≥ 1
2 q. It follows that

OPTM (I ′) ≤ 24q + OPTS(I) ≤ 48 OPTS(I) + OPTS(I) = 49 OPTS(I)

Consider the value A′ (number of covered temporal edges) of a feasible solution of ℓ-
MaxTimelineCover on instance I ′ and the value A (number of satisfied clauses) of a feasible
solution of the optimization version of Max 2-3-SAT(h) on instance I.

By Fact 3, we have that, given a feasible solution of ℓ-MaxTimelineCover of value A′ on I ′

we can compute in polynomial time a feasible solution of the optimization version of Max
2-3-SAT(h) on instance I of value A such that

|OPTS(I) − A| ≤ |OPTM (I ′) − A′|

Thus we have designed an L-reduction from the optimization version of Max 2-3-SAT(h)
to ℓ-MaxTimelineCover. Since the optimization version of Max 2-3-SAT(h) is known to be
APX-hard [2, 3], the APX-hardness holds also for ℓ-MaxTimelineCover. ◀

4 Fixed Parameter Tractability

In this section, we show that ℓ-TimelineCover(k) is FPT when parameterized by: the number
h = |E| − k of temporal edges that may not be covered by the solution (Section 4.1);
parameter k and parameter n + ℓ (Section 4.2), where n denotes the number of vertices of
the input graph.

4.1 Parameter h
The result is obtained by a parameterized reduction to Almost 2-SAT(p), which is known to be
FPT when parameterized by p [18, 15], with a similar approach applied for MinTimelineCover
in [7]. We recall that, given a 2-CNF formula and a positive integer p, Almost 2-SAT(p) asks
whether it is possible to remove at most p clauses so that the resulting formula is satisfiable.
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▶ Theorem 4. ℓ-TimelineCover(k) is FPT when parameterized by h.

Proof. Given an instance I = ⟨G, λ⟩ of ℓ-TimelineCover(k) and denoted by h = |E| − k the
number of temporal edges that are not covered, we define a corresponding instance I ′ of
Almost 2-SAT(p), with p = h, as follows. To ease the notation, we shall assume that all
timestamps t ∈ [1, T ] are such that Et ≠ ∅; if this is not the case, the algorithm can be easily
modified to avoid any computation in those timestamps t for which Et = ∅.

For each vertex v ∈ V and for each timestamp i ∈ [1, T ], we create a variable vi.
For each vertex v ∈ V , for each timestamp i ∈ [1, T ], and for each j > i + ℓ, we create
h + 1 copies of clause (vi ∨ vj), which is called a vertex clause.
For each edge {u, v} ∈ E such that λ({u, v}) = i (with i ∈ [1, T ]), we create a clause
(ui ∨ vi), which is called a temporal edge clause.

Intuitively, each copy of the vertex clauses models the fact that a vertex is assigned to an
interval of length exactly ℓ. More formally, denoted by i the first timestamp of the interval
that is assigned to a vertex v, the clause (vi ∨ vj) ensures that, for each j > i + ℓ, time j

does not belong to the interval assigned to v. Also, a temporal edge clause (ui ∨ vi) models
the fact that a temporal edge (e = {u, v}, i) is covered, because u or v is assigned some time
interval that includes i.

Note that p = h, and that I ′ can be computed in polynomial time. We now prove that I ′

is a yes-instance of Almost 2-SAT(p) if and only if I is a yes-instance of ℓ-TimelineCover(k).
Let I be a yes-instance of ℓ-TimelineCover(k). Since I is a yes-instance, we know that

k′ ≥ k temporal edges are covered and hence h′ = |E| − k′ ≤ h temporal edges are not
covered. The corresponding Almost 2-SAT(p) instance I ′ contains h′ clauses that are not
satisfied, and these clauses are temporal edge clauses. Indeed, since we have h + 1 copies
for each vertex clause, having one vertex clause that is not satisfied would imply that h + 1
clauses of the formula are not satisfied, but we observed h′ ≤ h. By removing the h′ ≤ p

temporal edge clauses that are not satisfied, the formula is satisfied. This implies that I ′ is a
yes-instance of Almost 2-SAT(p).

Now, let I ′ be a yes-instance of Almost 2-SAT(p). Since I ′ is a yes-instance, the formula
is satisfied by removing at most p = h clauses. Since the formula contains h + 1 = p + 1
copies of each vertex clause, the clauses that are not satisfied are temporal edge clauses,
while all vertex clauses are satisfied. Each unsatisfied temporal edge clause in I ′ implies
that there is a temporal edge in I that is not covered. It follows that I is a yes-instance of
ℓ-TimelineCover(k). ◀

4.2 Parameter k

We shall assume that every vertex is incident to at least one temporal edge, otherwise, we
can just remove such a vertex and solve the problem for the obtained subgraph of G. We
distinguish two cases.

• Case 1: k ≤ n
2 . We first compute a spanning forest F of the graph G. Assuming

w.l.o.g. that G contains no isolated vertex, we note that F has at least n
2 edges. We then

root each tree of F , and randomly select k edges from F . Next, we associate each temporal
edge ({u, v}, i) of the k selected edges to vertex v, where u is the parent of v in the forest.
This implies that no two temporal edges are associated to the same vertex. Let (e, i) be one
of such temporal edges and let v be the vertex associated to it. We map v to an interval
[i, i + ℓ − 1]. We apply the process mentioned above for each of the k edges. This approach
allows us to cover k temporal edges.
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• Case 2: k > n
2 . In this case, we use dynamic programming as follows. First, to ease

the notation, we shall assume that all timestamps t ∈ [1, T ] are such that Et ̸= ∅; if this
is not the case, the algorithm can be easily modified to avoid any computation in those
timestamps t for which Et = ∅.

Suppose that we already performed our computations on each timestamp smaller than i,
with i ∈ [2, T ], and that we are now analyzing timestamp i. Suppose we have the records
Ri−1

1 , . . . , Ri−1
g associated with timestamp i − 1; the cardinality g of this set of records

depends on the parameter k and will be analyzed later. Each record Ri−1
j , with j ∈ [1, g], is

composed of the following information:
A table Ai−1

j where we store all the vertices v that we previously assigned to an interval
starting in timestamp x, with i − ℓ ≤ x ≤ i − 1. In this table, we also associate to v

the value x of the first timestamp where v is assigned. These vertices are said to be
on-vertices or simply on.
A set of vertices A

i−1
j that were previously assigned to an interval starting in timestamp

x such that x + ℓ < i − 1 by the algorithm. Notice that these vertices are not going to
cover any temporal edge (e, q) where q ≥ i. These vertices are said to be off-vertices or
simply off.
A number si−1

j of temporal edges that are covered by the vertices in Ai−1
j and A

i−1
j . This

is the score of the record.
Observe that the number of possible different sets of off-vertices is a function of n, which is
upperbounded by 2k because k ≥ n

2 by assumption. Also, the score of possible different costs
is upperbounded by k by definition, since we only care about covering k edges. Concerning
the vertices that are on-vertices in some interval [x, x + ℓ − 1], observe that we can assume
that there are no more than k temporal edges active in this interval, since in this case we
can simply assign this interval to every vertex of the graph and the solution is trivial. Also,
we assume that we assign a vertex to an interval [x, x + ℓ − 1] if and only if there exists a
temporal edge (e, x) incident to v. If this is not the case, we could simply associate v to the
interval that starts with the first timestamp where a temporal edge incident to v is covered,
thus covering not fewer temporal edges with v. Since there are less than k temporal edges
(e, q) such that q ∈ [x, x + ℓ − 1] and by the above assumption, we can assume w.l.o.g. that
there are less than k vertices that are on-vertices in each record.

Now, we prove the next lemma:

▶ Lemma 5. For each i − 1 ∈ [2, T ], where Ri−1
1 , . . . , Ri−1

g are the records at timestamp
i − 1, we have g ∈ O(2k log k) and maxg

i=1 |Ri−1
j | ∈ O(k log T ).

Proof. Overall, each table in one record contains O(k) items. Concerning the size of a
single item, each item of Ai−1

j , for each j ∈ [1, g], represents a value in O(T ). Thus,
maxg

i=1 |Ri−1
j | ∈ O(k log T ). Concerning the value of g, we note that the number of possible

values x associated with a vertex in Ai−1
j is at most k, because there are k possible temporal

edges incident to v in an interval of length ℓ starting in x. Consequently, we have O(2k log k)
distinct records, i.e., g ∈ O(2k log k). ◀

Algorithm description. In the base case, consider timestamp 1. Let S1, . . . , S2n be all the
possible subsets of vertices of V and assume that S1, . . . , Sg, with g ≤ 2n, are the possible
subsets of the vertices that have a temporal edge active in timestamp 1. For each j ∈ [1, g],
we create a record R1

j by setting: A1
j = Sj and each of such vertices is associated to the value

(timestamp) 1; A
1
j = ∅; the score s1

j can be computed in O(k) time.
We now consider the inductive case. Let Ri−1

1 , . . . , Ri−1
g be the set of records computed

at timestamp i − 1. For each Ri−1
j , where j ∈ [1, g], we proceed as follows. We consider the

vertex set V \ (Ai−1
j ∪ A

i−1
j ) and every possible subset of this set. For each subset S, we
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construct a new record Ri
p that we will associate with time i. We assume that these and

only these are the vertices that are associated with the interval [i, i + ℓ − 1] for the partial
solution described by Ri

p. Let S′ be the set of vertices in Ai−1
j that are assigned to interval

[i − ℓ, i − 1]; note that the information about which vertices of Ai−1
j are assigned to interval

[i − ℓ, i − 1] is contained in Ai−1
j (these are the vertices of Ai−1

j that are associated with
timestamp i − ℓ − 1).

The vertices of Ri
p that are on-vertices (hence those in Ai

p), are going to be the vertices
in (Ai−1

j \ S′) ∪ S; each vertex in S is associated with value i, each vertex in Ai
p \ S has

the same timestamp it is associated with in Ai−1
j . Note that we assume that each vertex

u in S has a temporal edge defined in i and covered by u.
The off-vertices of Ri

p (hence those in A
i

p) are going to be the vertices in Ai−1
j ∪ S′.

The score of Ri
p is si−1

j + s, where s is the number of temporal edges covered by vertices
of S (that we just associated with an interval [i, i + ℓ − 1]) that are not covered by vertices
in Ai−1

j . Computing the score s of Ri
p requires O(k2) time. Indeed, there exist at most k

temporal edges in the interval [i, i + ℓ − 1]. We identify the temporal edges defined in
[i, i + ℓ − 1] and not covered by on-vertices of Ai−1

j in O(k2) time (for each temporal edge
defined in [i, i + ℓ − 1] we can check if it is covered by some on-vertex of Ai−1

j in O(k)
time, since Ai−1

j contains less than k on-vertices). Then, for each uncovered temporal
edge, we check that it is covered by some vertex in S in O(k2) time (for each temporal
edge we can check if it is covered by some vertex of S in O(k) time, since S contains at
most k vertices).

Following from the discussion above, the time complexity needed to perform the above
operations does not depend on ℓ, but only on k. Since the number of vertices of the graph is
n ≤ 2k, updating a record requires O(f(k)) time, where f(·) is a computable function.

Hence, by Lemma 5 we have the following theorem.

▶ Theorem 6. ℓ-TimelineCover(k) is FPT when parameterized by k.

It is worth noting that, since in each timestamp a vertex can cover at most n − 1 edges,
it follows that k ≤ ℓ · n2. Thus, we observe the following.

▶ Theorem 7. ℓ-TimelineCover(k) is FPT when parameterized by n + ℓ.

5 A 3
4-Approximation Algorithm

In this section, we present an approximation algorithm achieving factor 3
4 based on randomized

rounding and inspired by the approximation algorithm given in [9] for Max Sat.

▶ Theorem 8. There is a polynomial-time approximation algorithm for ℓ-MaxTimelineCover
with factor 3

4 .

To prove Theorem 8, we first define an ILP formulation for the ℓ-MaxTimelineCover
problem (Section 5.1). Next, we describe an algorithm based on randomized rounding an LP
relaxation of this formulation (Section 5.2).

5.1 ILP formulation
We present an Integer Linear Programming (ILP) formulation of ℓ-MaxTimelineCover. We
make use of the following variables:
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For each temporal edge ({vi, vj}, t), the variable ei,j,t is 1 if ({vi, vj}, t) is covered, and it
is 0 otherwise.
For each vertex vi and for each t ∈ [1, T − ℓ + 1], the variable Ai(t) is 1 if vi is assigned
to interval [t, t + ℓ − 1], and it is 0 otherwise.

max
∑
i,j,t

ei,j,t (1)

s. t.

ei,j,t ≤
∑

t1∈[t−ℓ+1,t]

Ai(t1) +
∑

t2∈[t−ℓ+1,t]

Aj(t2) ∀({vi, vj}, t) (2)

∑
t

Ai(t) ≤ 1 ∀vi ∈ V (3)

ei,j,t ∈ {0, 1}, ∀({vi, vj}, t) (4)
Ai(t) ∈ {0, 1} ∀vi ∈ V, (5)

∀t ∈ [1, 2, . . . , T − ℓ]

Inequality (2) guarantees that a variable ei,j,t can be set to 1 only if at least one end-vertex
is mapped to an interval containing t, while inequality (3) guarantees that each vertex is
mapped to at most one interval.

5.2 The Approximation Algorithm
The 3

4 -factor approximation algorithm for the ℓ-MaxTimelineCover problem is presented
in Algorithm 1. The algorithm solves in polynomial time an LP relaxation of the ILP
formulation described in Section 5.1, where variables ei,j,t ∈ [0, 1] and Ai(t) ∈ [0, 1]. We
denote by A∗

i (t) and e∗
i,j,t the values of variables Ai(t) and ei,j,t, respectively, of the optimal

solution of the LP relaxation.
Starting from a solution of the relaxation, the approximation algorithm defines a solution

for ℓ-MaxTimelineCover by assigning each vertex vi ∈ V to interval [t, t+ℓ−1] with probability
A∗

i (t).

Algorithm 1 3
4 -approximation algorithm for the ℓ-MaxTimelineCover problem.

Solve the LP relaxation of the ILP formulation from Section 5.1, with constraints ei,j,t ∈ [0, 1]
and Ai(t) ∈ [0, 1]
Let e∗

i,j,t and A∗
i (t) be the values of a solution to the relaxation of the ILP from Section 5.1

For every vertex vi, define it active in interval [t, t + ℓ − 1] with probability A∗
i (t)

Let E(σ) be the expected value of a solution σ returned by Algorithm 1. Denote by
P [ei,j,t] the probability that the temporal edge ({vi, vj}, t) is covered. It holds that

E(σ) =
∑
i,j,t

P [ei,j,t].

Consider now P [ei,j,t], it holds that

P [ei,j,t] = 1 − P [ei,j,t],

where ei,j,t is the event that the temporal edge ({vi, vj}, t) is not covered by solution σ. We
have that

1 − P [ei,j,t] = 1 − P [({vi, vj}, t) not cov. by vi ∧ ({vi, vj}, t) not cov. by vj ]. (6)
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Now, we have that

P [({vi, vj}, t) not cov. by vi ∧ ({vi, vj}, t) not cov. by vj ] =1 −
∑

t1∈[t−ℓ+1,t]

A∗
i (t1)

1 −
∑

t2∈[t−ℓ+1,t]

A∗
j (t2)

 (7)

By combining the previous equations we have that

1 − P [ei,j,t] = 1 −

1 −
∑

t1∈[t−ℓ+1,t]

A∗
i (t1)

1 −
∑

t2∈[t−ℓ+1,t]

A∗
j (t2)

 . (8)

From the arithmetic mean inequality, we have that

1 −

1 −
∑

t1∈[t−ℓ+1,t]

A∗
i (t1)

1 −
∑

t2∈[t−ℓ+1,t]

A∗
j (t2)

 ≥

1 −

(
1 −

∑
t1∈[t−ℓ+1,t] A∗

i (t1) + 1 −
∑

t2∈[t−ℓ+1,t] A∗
j (t2)

2

)2

=

1 −

(
1 −

(
∑

t1∈[t−ℓ+1,t] A∗
i (t1) +

∑
t2∈[t−ℓ+1,t] A∗

j (t2)
2

)2

.

Recall that e∗
i,j,t is the value of variable ei,j,t returned by the relaxation of the ILP

formulation of Section 5.1. By Inequality (2) of this formulation, we have that:∑
t1∈[t−ℓ+1,t]

A∗
i (t1) +

∑
t2∈[t−ℓ+1,t]

A∗
j (t2) ≥ e∗

i,j,t. (9)

Thus

1 − P [ei,j,t] ≥

1 −

(
1 −

(
∑

t1∈[t−ℓ+1,t] A∗
i (t1) +

∑
t2∈[t−ℓ+1,t] A∗

j (t2)
2

)2

≥ 1 −
(

1 −
e∗

i,j,t

2

)2

.

Hence, P [ei,j,t] can be bounded as follows:

P [ei,j,t] = 1 − P [ei,j,t] ≥ 1 −
(

1 −
e∗

i,j,t

2

)2

.

The function

1 −
(

1 −
e∗

i,j,t

2

)2

is a concave function and it has value 0 for e∗
i,j,t = 0 and value 3

4 for e∗
i,j,t = 1. It follows

that

P [ei,j,t] ≥ 1 −
(

1 −
e∗

i,j,t

2

)2

≥ 3
4e∗

i,j,t,

thus concluding the proof.
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6 Conclusion

In this paper, we introduced and studied the ℓ-TimelineCover(k) problem (and its optimization
version ℓ-MaxTimelineCover), a variant of the classical Vertex Cover problem inspired by
a recent stream of work on temporal graphs. We have established the NP-hardness of ℓ-
TimelineCover(k) and the APX-hardness of ℓ-MaxTimelineCover, under the restricted condition
where the temporal domain consists of only two timestamps and each edge appears at most
once. We have presented two fixed-parameter algorithms for the following parameters: (i) the
number k of temporal edges covered by the solution, and (ii) the number h of temporal edges
not covered by the solution. Furthermore, we have contributed a 3

4 -approximation algorithm
for ℓ-MaxTimelineCover based on randomized rounding.

There are some interesting research directions to explore. First, the parameterized
complexity of the problem can be further investigated, similarly to what has been done
for MinTimelineCover in [7]. Second, it would be interesting to improve the approximation
factor for ℓ-MaxTimelineCover, possibly considering the semidefinite programming technique
applied for Max Sat [10]. A third possible direction involves expanding the definition of
vertex activity by permitting a finite number of intervals during which a vertex can be active,
as done for MinTimelineCover in [7, 19].
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In the periodic temporal graph realization problem introduced by Klobas et al. [SAND ’24] one
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simple temporal graphs to temporal graphs where each edge can appear up to ℓ times in each
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1 Introduction

Graph realization problems are problems where one is given information about a certain
property of a graph, such as the matrix of shortest-path distances or the degree sequence,
and wants to decide whether there exists a graph for which that property matches the given
information (and to find such a graph, if it exists). A wide range of graph realization problems
have been studied for static graphs for many years, with the work by Erdős and Gallai [9]
on realizing a given degree sequence and the work by Hakimi and Yau [10] on realizing a
given distance matrix by an edge-weighted graph being two particularly early examples. In
recent years, temporal graphs, i.e., graphs whose edge set may change in each time step,
have received substantial attention. In temporal graphs, one usually considers paths that
traverse at most one edge in each time step (and we also do so in this paper), although
non-strict paths where several edges can be traversed in the same time step have also been
studied. Many classical graph problem have been adapted and studied in the temporal graph
setting (see [14] for an introduction to temporal graphs and [4] for a broader overview of
different classes of time-varying graphs). Therefore, considering graph realization problems
in the temporal graph setting is a natural and timely direction. Very recently, Klobas et
al. [12] have started this line of research and introduced the following periodic temporal
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graph realization problem (Periodic TGR): Given a period ∆ and an n × n integer matrix
D that specifies the desired fastest travel times for each pair of vertices, find a simple periodic
temporal graph G with period ∆ such that the fastest travel times in G match those given
by D (or decide that no such temporal graph exists). Here, a periodic temporal graph is
simple if each edge of the underlying graph appears exactly once in each period.

Klobas et al. [12] noted that the consideration of periodic temporal graphs can be motivated
by, for example, railway networks, satellite networks, or social networks. They showed that
Periodic TGR is NP-hard for any ∆ ≥ 3 and also W[1]-hard when parameterized by
the feedback vertex number of the underlying graph. (The latter result also applies to the
non-periodic version of the problem if the distance matrix can have entries equal to ∞.)
Here, the underlying graph is the graph containing edges between all vertex pairs that have
distance 1 according to D. They showed that the problem can be solved in polynomial time
if the underlying graph is a tree or a cycle, and that it is fixed-parameter tractable (FPT)
when parameterized by the feedback edge number of the underlying graph. Finally, they
raised a number of interesting questions for future research, including the investigation of
Periodic TGR with the vertex cover number of the underlying graph as parameter and
with parameter combinations that include a structural parameter and the period ∆.

Our contribution. In this paper, we follow up on the work by Klobas et al. [12]. Furthermore,
we generalize Periodic TGR from simple periodic temporal graphs to ℓ-label periodic
temporal graphs, i.e., to periodic temporal graphs where each edge of the underlying graph
is allowed to appear up to ℓ times in each period. This problem (Multi-Label Periodic
TGR) is defined as follows: Given a period ∆ and an n × n integer matrix D that specifies
the desired fastest travel times for each pair of vertices and a positive integer ℓ, find an
ℓ-label periodic temporal graph G with period ∆ such that the fastest travel times in G
match those given by D (or decide that no such temporal graph exists). Clearly, Periodic
TGR is the special case of Multi-Label Periodic TGR where ℓ = 1. We also consider
the non-periodic version (Multi-Label TGR). While Klobas et al. mainly considered
parameters that relate to how close the underlying graph is to being a tree, we explore also
the opposite end of the spectrum and consider a parameter that measures how close the
underlying graph is to being a clique, namely the number of non-universal vertices. As the
problem is trivial if the underlying graph is a clique, parameters that measure closeness to a
clique are interesting candidates for obtaining FPT algorithms.

We obtain the following main results:
The known NP-hardness proof for Periodic TGR [12] only applies to Multi-Label
Periodic TGR with ℓ = 1 and leaves open the complexity for ℓ ≥ 2. We show that
Multi-Label Periodic TGR is NP-hard for every ℓ ≥ 1 even if the largest entry in D

is 3. For ℓ ≥ 3, we show NP-hardness even if the underlying graph has a size-1 feedback
vertex set.
In contrast to the known result that Periodic TGR can be solved in polynomial time
for trees [12], we show that Multi-Label Periodic TGR is NP-hard for any ℓ ≥ 5
even if the underlying graph is a star.
Both Multi-Label Periodic TGR and Multi-Label TGR are FPT for parameter n.
Here, n is the number of vertices. (For Periodic TGR, this result is implied by the FPT
algorithm for parameter feedback edge number by Klobas et al. [12], but our algorithm is
conceptually simpler and can handle the multi-label problem variants.)
Multi-Label Periodic TGR is FPT for parameter vc + ∆, where vc is the vertex
cover number of the underlying graph.
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Multi-Label TGR can be solved in O(pn4) time if D has no entries equal to ∞, ℓ ≥ n2,
and the underlying graph is such that for each pair (u, v) of vertices the number of u-v
paths is at most p. For trees and cycles, we have p ≤ 2, and hence the algorithm runs in
polynomial time.
Multi-Label Periodic TGR admits a polynomial kernel for parameter nu + dmax and
is hence FPT for that parameter, where nu is the number of non-universal vertices of the
underlying graph and dmax is the largest entry of D.

The remainder of the paper is structured as follows. After discussing further related work
below, we give formal definitions and present preliminary results in Section 2. Our hardness
results are presented in Section 3, and our algorithmic results in Section 4. Section 5 gives
conclusions and open problems.

Proofs of statements marked with (⋆) are deferred to the full version.

Related work. For a general introduction to temporal graphs, we refer to the article by
Michail and Spirakis [14]. The only previous work dealing with the problems we consider
(but only for the case of simple temporal graphs) is the recent work by Klobas et al. [12],
which has already been discussed above. Other settings where the task is to assign time
labels to the edges of a graph in order to create a temporal graph have also been studied,
but mainly with the goal of ensuring certain temporal connectivity properties rather than
realizing pre-specified journey durations. For example, Akrida et al. [1] studied the problem
of assigning (multiple) labels to the edges of a given graph in such a way that the resulting
temporal graph is temporally connected (i.e., there exist u-v journeys for all pairs (u, v) of
vertices), with the objective of minimizing the total number of labels used. They showed
that O(n) labels suffice. Klobas et al. [11] showed that the problem can be solved optimally
in polynomial time but becomes NP-hard if restrictions are placed on the lifetime of the
temporal graph or if connectivity needs to be established only for a subset of the vertices.
Mertzios et al. [13] studied variations of the problem where the goal is to minimize the
maximum number of labels assigned to any single edge, termed the temporality of the
temporal graph. Note that the parameter ℓ that we consider in this paper corresponds to
the temporality. Enright et al. [8] considered the problem of reordering the snapshots of a
given temporal graph in order to minimize reachability.

2 Preliminaries

For details about parameterized complexity we refer to the standard monographs [5, 7].
For any integers i, j with i ≤ j we write [i, j] for the set {i, i + 1, i + 2, . . . , j}. We use

standard notation for (static) graphs (see, e.g., [6]). For a graph G = (V, E) and a vertex v

of G, we denote by NG(v) the neighbors of v in G and define NG[v] := NG(v) ∪ {v}. If the
graph is clear from the context, we may omit the subscript. We write uv to denote an edge
{u, v} in an undirected graph.

A temporal graph is a graph that evolves over discrete time steps and whose vertex set
remains the same while the edge set may be different in each time step. Two standard ways
to represent a temporal graph G with lifetime L are as follows: The first representation uses
a pair (G = (V, E), λ), where G = (V, E) is an undirected graph and λ : E → (2[1,L] \ {∅})
is a function that assigns to each e ∈ E the non-empty set of time steps during which e is
present. The graph G is called the underlying graph of G. We also call λ a multi-labeling to
emphasize that an edge can receive more than one label. The second representation uses a
sequence (G1, G2, . . . , GL) of snapshots or layers, where Gi = (V, Ei), for 1 ≤ i ≤ L, is the
graph on vertex set V that contains all edges that are present in time step i. The underlying
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graph is then the graph G = (V, E) with E =
⋃

i∈[1,L] Ei. The two representations are
mathematically equivalent, and each can be transformed into the other in a straightforward
way. For implementation purposes, we assume in this paper that temporal graphs are
represented in the form (G, λ), but for ease of exposition we will also often use terminology
that refers to the representation using explicit snapshots. We use the convention that n = |V |
and m = |E| throughout.

If a temporal graph G with lifetime L is considered as a non-periodic graph, one assumes
that the graph ceases to exist once time step L has passed. If G is considered as a periodic
graph (with period L), then it is assumed that the snapshots repeat after L time steps, i.e.,
Gi+zL = Gi for all i ∈ [1, L] and all positive integers z. A temporal graph with lifetime or
period L is called simple if every edge of the underlying graph appears in only one snapshot
among the first L time steps, i.e., if |λ(e)| = 1 for all e ∈ E. For simple temporal graphs, we
also write λ(e) = t instead of λ(e) = {t} if t ∈ [1, L] is the time step in which edge e appears.
For periodic temporal graphs, we usually denote the period by ∆ instead of L.

If an edge e is present in time step t of a temporal graph G, we say that (e, t) is a time-edge
of G. A u-v journey (or u-v temporal path) in G is a sequence ((e1, t1), (e2, t2), . . . , (er, tr))
of time-edges such that ti < ti+1 for 1 ≤ i < r and (e1, e2, . . . , er) is a u-v path in the
underlying graph of G. The journey starts or begins at u in time step t1, reaches or arrives
at v in time step tr, and has duration or travel time tr − t1 + 1. For vertices u, v and any
time step t, an earliest-arrival u-v journey at time t is a u-v journey that begins at u at
some time ≥ t and minimizes the time when it arrives at v. A fastest u-v journey is a u-v
journey of minimum duration, and the duration of that journey is referred to as the fastest
travel time from u to v.

A distance matrix D is an n × n matrix whose values are non-negative integers or ∞. If
all values are non-negative integers, we say that D is finite-valued. The rows (and columns)
of D correspond to n vertices, and we use V to denote the set of these n vertices. For two
vertices u, v ∈ V , we use Duv to denote the entry in row u and column v of D, and that
entry specifies the desired fastest travel time from u to v. We say that a temporal graph G
with vertex set V realizes D if, for any two vertices u, v ∈ V , the duration of a fastest u-v
journey in G is equal to Duv. (If Duv = ∞, this means that G does not contain any u-v
journey.) We can assume that Duv = 0 if and only if u = v, as otherwise there cannot exist
a temporal graph that realizes D. Furthermore, we can also assume for any pair (u, v) with
u ̸= v that Duv = 1 if and only if Dvu = 1, as a journey with duration one uses a single
time-edge and thus is also a journey in the opposite direction. We only consider distance
matrices that satisfy these assumptions throughout this paper. The graph G = (V, E) that
contains precisely those edges uv for which Duv = Dvu = 1 is called the underlying graph
induced by D as any temporal graph that realizes D must have underlying graph G.

As mentioned in the introduction, Klobas et al. [12] introduced the problem of constructing,
for a given n × n distance matrix D and period ∆, a periodic simple temporal graph with n

vertices and period ∆ that realizes D. We generalize this problem by allowing multiple labels
per edge, with an input parameter ℓ specifying how many labels an edge can receive at most:

Multi-Label Periodic TGR
Input: An integer ℓ, an n × n distance matrix D, and a period ∆.
Question: Is there a periodic temporal graph G with period ∆ that realizes D and
in which no edge receives more than ℓ labels?

For this problem we assume that D is finite-valued, as otherwise the problem could
be split into independent subproblems on temporally connected components. Note that,
contrary to the case of non-periodic temporal graphs, the temporal reachability relation in
periodic temporal graphs is symmetric and transitive.
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Furthermore, we also consider the non-periodic variant of the problem:

Multi-Label TGR
Input: An integer ℓ and an n × n distance matrix D.
Question: Is there a non-periodic temporal graph G (with arbitrary lifetime) that
realizes D and in which no edge receives more than ℓ labels?

For the non-periodic variant, we may allow the distance matrix to contain entries equal
to ∞. We use dmax = max{Duv | u, v ∈ V, Duv ̸= ∞} to refer to the largest finite entry of D.

Basic observations. In the following, we present some basic observations about the problems
under consideration. First, we observe that each yes-instance of Multi-Label Periodic
TGR can be realized with at most n2 labels per edge.

▶ Lemma 1 (⋆). Let I be an instance of Multi-Label Periodic TGR or Multi-Label
TGR with ℓ ≥ n2. Then reducing ℓ to n2 yields an equivalent instance.

The argument to show Lemma 1 is that a solution only needs to realize one fastest u-v
journey for each of the n(n − 1) < n2 vertex pairs (u, v), and for each such u-v journey it
suffices to assign at most one additional label to every edge. Thus, it can never be necessary
to assign more than n2 labels to an edge.

Hence, in the following we assume that for each instance of Multi-Label Periodic
TGR under consideration, ℓ ≤ n2. Moreover, we can further assume that ℓ ≤ ∆, since no
edge can receive more than ∆ labels.

Next, we observe that a yes-instance can be realized by using time labels of value at
most ℓ · dmax · n2.

▶ Lemma 2 (⋆). Let I := (ℓ, D) (I := (ℓ, D, ∆)) be a yes-instance of Multi-Label TGR
(Multi-Label Periodic TGR). There is a solution for I with largest time label at most
ℓ · dmax · m ≤ ℓ · dmax · n2.

The proof of Lemma 2 considers gaps (sequences of edgeless snapshots) between non-empty
snapshots. For Multi-Label TGR it is clear that gaps of length greater than dmax − 1 are
never necessary and can be reduced by removing empty snapshots in the gap. As there are at
most mℓ snapshots with at least one edge, the result follows. For Multi-Label Periodic
TGR, if there is a gap that is longer than dmax − 1, we can perform a cyclic shift of the time
labels so that the longest gap appears in the final steps of the period. All gaps before that
final gap can then be reduced to size at most dmax − 1 in the same way as in the non-periodic
case, showing the lemma.

Note that for Multi-Label Periodic TGR, we can thus reduce ∆ to at most ℓ·n2·dmax ≥
ℓ · m · dmax + dmax if the period ∆ is larger than ℓ · m · dmax + dmax.

▶ Corollary 3. For an instance (ℓ, D, ∆) of Multi-Label Periodic TGR with ∆ >

ℓ · n2 · dmax, the instance (ℓ, D, ℓ · n2 · dmax) is an equivalent instance of Multi-Label
Periodic TGR.

Note that this also implies the existence of polynomial kernels for Multi-Label Periodic
TGR of size O(ℓ · n2 · dmax) ⊆ O(n4 · dmax), since ℓ can be reduced to n2 and ∆ can be
reduced to ℓ · n2 · dmax.
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3 NP-Hardness for Multi-Label Periodic TGR on restricted instances

In this section, we present three hardness results for Multi-Label Periodic TGR on
very restricted instances. Recall that Multi-Label Periodic TGR for ℓ = 1 is known to
be NP-hard for each ∆ ≥ 3 and that for ℓ = 1, Multi-Label Periodic TGR and Multi-
Label TGR are known to be NP-hard and W[1]-hard when parameterized by the feedback
vertex set number [12]. All three of our hardness results are obtained by reductions from a
restricted version of Vertex Cover. First, we show that for each ℓ ≥ 1, Multi-Label
Periodic TGR is NP-hard even if dmax = 3. Afterwards, we show that for each ℓ ≥ 5,
Multi-Label Periodic TGR is NP-hard even on stars, which stands in stark contrast to
the fact that for ℓ = 1 the problem can be solved in polynomial time on trees [12]. Finally,
we show hardness for ℓ ∈ {3, 4} on graphs that are very close to trees, that is, on graphs
with a feedback vertex set of size 1.

We start by showing that for each ℓ ≥ 1, Multi-Label Periodic TGR is NP-hard
even if dmax = 3 and the underlying graph is a dense split graph, i.e., a graph where the
non-universal vertices form an independent set.

▶ Theorem 4. For each ℓ ≥ 1, Multi-Label Periodic TGR is NP-hard even if the
underlying graph is a dense split graph, ∆ = 6, and dmax = 3.

Proof. We reduce from Vertex Cover which is known to be NP-hard even if the input
graph has maximum degree 3, contains no cycle of length three or four, and no two vertices
of degree 3 are adjacent [15].

Vertex Cover
Input: A graph G = (V, E) and an integer k.
Question: Is there a vertex cover of size at most k for G, that is, a set of vertices S

of size at most k, such that each edge of E is incident with at least one vertex of S?

Let ℓ ≥ 1. (Our reduction does not actually depend on ℓ; it thus shows NP-hardness for
all values of ℓ simultaneously.)

Let I := (G = (V, E), k) be an instance of Vertex Cover with the above restrictions
and let n := |V | with n ≥ 13. Clearly, we can assume k < n as I is trivially a yes-instance
otherwise. Without loss of generality, we assume that G contains four isolated edges x1x2,
y1y2, z1z2, and w1w2. (We can ensure this property for any graph by adding four isolated
edges and increasing k by four.) These four edges will be helpful to prove that D can be
realized with only one label per edge, if I is a yes-instance of Vertex Cover.

We construct an instance I ′ := (ℓ, D, ∆) of Multi-Label Periodic TGR as follows:
We set ∆ = 6. The underlying graph G′ := (V ′, E′) of I ′ is set to be a dense split graph with
V ′ = V ∪ S, where V is an independent set and S = {s1, s2, . . . , sk} is the vertex set of a
clique of size k. The edge set of G′ is therefore E′ = E′

1 ∪ E′
2, where E′

1 = {vs | v ∈ V, s ∈ S}
and E′

2 = {sisj | 1 ≤ i < j ≤ k}. Next, we describe the distance matrix D. As always, we
have Duu = 0 for all u ∈ V ′ and Duv = Dvu = 1 for all uv ∈ E′. Orient G by picking for
each edge uv ∈ E a direction (u, v) arbitrarily, and denote the resulting set of arcs by A. We
assume that the arcs corresponding to the four isolated edges mentioned above are (x2, x1),
(y2, y1), (z2, z1), and (w2, w1). For every (u, v) ∈ A, set Duv = 2 and Dvu = 3. For every
pair (u, v) of vertices that do not form an edge in E, set Duv = Dvu = 3. This completes
the construction of I ′. We show that I admits a vertex cover of size at most k if and only if
I ′ is a yes-instance of Multi-Label Periodic TGR.

(⇒) Let C = {c1, c2, . . . , ck} be a vertex cover of size k for I. (If I has a vertex cover
smaller than k, we can add arbitrary vertices to it until |C| = k.) In the following, we
describe a labeling of the edges of G′ that realizes D. This labeling is visualized in Figure 1.
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Without loss of generality, assume ck−3 = x1, ck−2 = y1, ck−1 = z1, and ck = w1. For
i = 1, 2, . . . , k − 2, assign one time label to each edge in E′

1 that is incident with si in G′ as
follows:

For each incoming arc (u, ci) of ci in A, set λ(usi) := 1.
Set λ(cisi) := 2.
For each outgoing arc (ci, v) of ci in A, set λ(vsi) := 3.
For each other vertex r ∈ V \ NG[ci], set λ(rsi) := 5.

Note that these labels generate journeys of duration 2 exactly for the incoming and outgoing
arcs of ci in A.

For i = k − 1 and i = k, we do essentially the same, but all assigned time labels are
shifted by two time steps. Recall that ck−1 = z1 (ck = w1) and that z1 (w1) has no outgoing
neighbor and only one incoming neighbor, namely z2 (w2). The time labels are assigned as
follows:

Set λ(z2sk−1) := λ(w2sk) := 5 and λ(sk−1z1) := λ(skw1) := 6.
For each vertex r ∈ V \ {z1, z2}, set λ(rsk−1) = 3, and
For each vertex r ∈ V \ {w1, w2}, set λ(rsk) = 3.

Note that these labels again generate journeys of duration 2 exactly for the arcs incident
with z1 and w1, that is, arcs (z2, z1) and (w2, w1). As C is a vertex cover of G, every edge in
E is an incoming or outgoing arc in A of at least one vertex in C. Hence, it is clear that a
u-v journey of duration 2 is created for all pairs (u, v) with Duv = 2.

Finally, set λ(e) := 4 for all e ∈ E′
2.

We claim that λ is a solution to I ′. First, note that each edge e ∈ E′ receives only a
single label. We have already shown above that the journeys of duration 2 that are created
are exactly those for all vertex pairs (u, v) with Duv = 2. Furthermore, we can show that a
journey of duration 3 is generated for each vertex pair (u, v) ∈ V × V as follows: Choose
i = k − 1 if u /∈ {z1, z2} and i = k otherwise. Since {z1, z2} and {w1, w2} are disjoint, this
implies that at time step 3 the edge usi exists. Similarly, choose j = k − 3 if v /∈ {x1, x2}
and j = k − 2 otherwise. Since {x1, x2} and {y1, y2} are disjoint, this implies that at time
step 5 the edge sjv exists. The u-v journey of duration 3 is then as follows: Take edge usi

at time 3, edge sisj at time 4, and edge sjv at time 5. Thus, λ solves I ′, and hence I ′ is a
yes-instance of Multi-Label Periodic TGR.

(⇐) Assume that λ is a solution that realizes D and maps each e ∈ E′ to a subset of [1, 6].
For each si ∈ S, let Ni denote the set of edges in E′

1 that are incident with si. Note that
for every distance Duv = 2, there is an i ∈ [1, k], such that a u-v journey with duration 2 is
realized by edges of Ni, since such a journey must pass from u to si and then from that si

to v.

▷ Claim 5. Let Pi be the set of vertex pairs (u, v) ∈ V ×V for which λ realizes a u-v journey
of duration 2 using edges of Ni. Then there exists a vertex ui that all vertex pairs in Pi have
in common.

Proof. We show that it is impossible that λ realizes journeys of duration two for two disjoint
vertex pairs (u, v) and (a, b) in V × V using the edges of Ni. This implies that any two vertex
pairs in Pi share a common vertex. As E does not contain cycles of length 3, this implies
further that there exists one vertex that is common to all vertex pairs in Pi.

Assume for a contradiction that λ realizes journeys of duration 2 for two disjoint vertex
pairs (u, v) and (a, b) in V × V using edges of Ni. Assume without loss of generality that
usi is present at time 1 and vsi at time 2. Let j be such that asi is present at time j and
bsi at time j + 1, where we use the convention that 6 + 1 = 1. Also, let z be a vertex in V
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Figure 1 An example how the distances between different vertices are realized in the constructed
instance of Multi-Label Periodic TGR in the proof of Theorem 4. Top left shows an input instance
of Vertex Cover excluding the additional isolated arcs (w2, w1), (x2, x1), (y2, y1), and (z2, z1).
Bottom left shows how the distances representing the arcs incident with vertex v2 can be realized if
vertex v2 is selected to be the ith vertex of the vertex cover. Top right represents any two distinct
vertices a and b of G and bottom right shows how an a-b journey of duration 3 can be realized by
using two of the four vertices of {sk−3, sk−2, sk−1, sk} ⊆ S. Here, i = k − 1 if a /∈ {z1, z2} and i = k

otherwise, and j = k − 3 if b /∈ {x1, x2} and j = k − 2 otherwise. The labels of the dashed edges are
not depicted, since they depend on a, b, i, and j.

that is adjacent to no vertex in {u, v, a, b} in G (such a vertex must exists as we assume that
n ≥ 13, G has maximum degree 3, and G contains the edges uv and ab). Let k be a time
step in which the edge siz is active. Note that k /∈ {6, 1, 2, 3} as otherwise z has a journey of
duration 2 from or to u or v, a contradiction to λ being a solution while z is adjacent to
neither u nor v. Hence, k ∈ {4, 5}. By symmetry, we can assume k = 4.

Now we show that we obtain a contradiction no matter what the value of j is:
j = 1: We have journeys of duration 2 from u to v, u to b, a to v and a to b, implying
that G must contain the 4-cycle uvab, a contradiction.
j = 2: We have journeys of duration 2 from u to v, u to a, a to b, and v to b, implying a
4-cycle uvba, a contradiction.
j = 6: We have journeys of duration 2 from a to b, a to u, b to v, and u to v, implying a
4-cycle abvu, a contradiction.
j = 3: We have an a-z journey of duration 2, a contradiction to z not being adjacent to a.
j = 4: We have a z-b journey of duration 2, a contradiction to z not being adjacent to b.
j = 5: We have a z-a journey of duration 2, a contradiction to z not being adjacent to a.

As all cases lead to a contradiction, the assumption that λ realizes journeys of duration 2 for
two disjoint vertex pairs (u, v) and (a, b) cannot hold. ◁

By Claim 5, all vertex pairs for which λ realizes a journey of duration 2 using the edges
of Ni have a common vertex ui. As a journey of duration 2 must be realized for every edge
uv of G (either from u to v or from v to u, depending on how the edge has been oriented),
the set U = {u1, u2, . . . , uk} is a vertex cover of G. Furthermore, |U | ≤ k, and hence I is a
yes-instance of Vertex Cover. ◀

Note that in contrast to hardness for dmax = 3 that we have just shown, for each ℓ ≥ 2,
it is not difficult to see that Multi-Label Periodic TGR can be solved in polynomial
time if dmax ≤ 2: If ∆ = 1, the problem is polynomial time solvable, since there is only a
single temporal multi-labeling. If dmax = 1, the underlying graph is a clique and the distance
matrix is realizable by any periodic multi-labeling. If dmax = 2, then the instance is a trivial
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no-instance, if the underlying graph has diameter larger than 2. Otherwise, if the underlying
graph has diameter at most two, we can label each edge with label 1 and 2 (since ℓ ≥ 2) and
so ensure a path between any two vertices of duration 2 that starts at time step 1.

▶ Observation 6. For each ℓ ≥ 2 Multi-Label Periodic TGR can be solved in polynomial
time if dmax ≤ 2.

We now shift to considering the structure of the realized graph. Next, we show that
for ℓ ≥ 5, Multi-Label Periodic TGR is NP-hard even on stars. This implies that
Multi-Label Periodic TGR is NP-hard even if ℓ + vc ∈ O(1), and so FPT algorithms for
parameter ℓ + vc are impossible, unless P = NP.

▶ Theorem 7 (⋆). For each ℓ ≥ 5, Multi-Label Periodic TGR is NP-hard even if the
underlying graph is a star.

Proof sketch. Let ℓ ≥ 5. We again reduce from Vertex Cover where the input graph
contains no cycle of length three or four, the input graph has a maximum degree of 3, and
no two vertices of degree 3 are adjacent.

Let I := (G = (V, E), k) be an instance of Vertex Cover with the above restrictions
and let n := |V | be larger than 10. We construct an instance I ′ := (ℓ, D, ∆) of Multi-Label
Periodic TGR as follows: The underlying graph G′ := (V ′, E′) of I ′ is a star with center c

and leaf set V ∪ {v∗, w∗}. We set Dw∗v∗ := Dv∗w∗ := n2 and for each vertex v ∈ V , we
set Dvv∗ := Dv∗v := Dvw∗ := Dw∗v := n2. For each two distinct vertices u and v of V , we
set Duv := Dvu := 2 if uv is an edge of E, and Duv := Dvu := n2, otherwise. Finally, we
set ∆ := (k + 2) · (n2 + 1) = k · n2 + 2n2 + k + 2. This completes the construction of I ′.

Note that each temporal path between any two vertices u and v of G′ distinct from the
center vertex c is of the form ucv. Since each vertex of V ′ \ {c} has only one incident edge
in G′, we may say in the following that for a temporal multi-labeling, a vertex v ∈ V ′ \ {c}
is active in time step i, if the edge cv exists in time step i.

Observe that for each vertex u ∈ V , journeys of travel time 2 from u to all its neighbors
in G and vice versa can be realized in three consecutive time steps: u is active in the first
and the third of these time steps and all vertices of NG(u) are active in the second time step.
Hence, the journeys of duration 2 from u to all its neighbors in G start in the first time step
and end in the second time step, and the journeys of duration 2 from all neighbors of u in
G to u start in the second time step and end in the third time step. If G admits a vertex
cover of size k, all required journeys of travel time 2 can thus be realized in k such groups of
three consecutive time steps, with a separation of n2 − 2 edgeless time steps between them
(to avoid creating journeys of travel time shorter than n2 between pairs of vertices that are
independent in G). In addition to these k(n2 + 1) time steps, a further 2(n2 + 1) time steps
can be used to realize all the required journeys of travel time n2. For the other direction, we
can show that any feasible realization must have a similar structure, implying the existence
of a vertex cover of size at most k. The detailed proof of correctness is deferred to the full
version. ◀

Since the hardness result above only holds for ℓ ≥ 5, we note that we can also show that
for ℓ ≥ 3, the problem is still NP-hard even on graphs with a size-1 feedback vertex set.

▶ Theorem 8 (⋆). For each ℓ ≥ 3, Multi-Label Periodic TGR is NP-hard even if the
underlying graph has diameter two and a feedback vertex set of size one.
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4 Parameterized algorithms

In this section, we present FPT algorithms for Multi-Label Periodic TGR and Multi-
Label TGR for several parameter combinations. First, we give FPT algorithms for both
problems parameterized by n in Section 4.1. Section 4.2 presents our FPT algorithm for
Multi-Label Periodic TGR parameterized by vc + ∆. Section 4.3 discusses our O(pn4)-
time algorithm for instances of Multi-Label TGR with finite-valued D, ℓ ≥ n2, and
underlying graphs that have at most p different u-v paths for each vertex pair (u, v). Finally,
the polynomial kernel for parameter dmax + nu is shown in Section 4.4, where nu denotes the
number of non-universal vertices in the underlying graph.

4.1 Parameterization by the number of vertices
In this section, we present an FPT algorithm for parameter n for Multi-Label Periodic
TGR. The key idea is to enumerate all possibilities for the sequence of snapshots that contain
at least one edge (and some extra information that specifies for each pair (u, v) a snapshot
in which a u-v journey of shortest duration begins). For each possibility, we use an integer
linear program (ILP) to decide whether it is possible to assign these snapshots to time steps
in such a way that the resulting periodic temporal graph realizes D. The approach extends
to Multi-Label TGR as well.

▶ Theorem 9. Multi-Label Periodic TGR can be solved in nO(ℓ·n2) · |I|O(1) time and
nO(n4) · |I|O(1) time, where |I| denotes the encoding length of the instance.

Proof. Let an instance I = (ℓ, D, ∆) of Multi-Label Periodic TGR be given. Recall
that we can assume that ℓ ≤ n2 due to Lemma 1. Let K = ℓm and T = min{K, ∆}. Note
that T ≤ ℓm ∈ O(n2 ·n2) ⊆ nO(1). We observe that there are at most K non-empty snapshots
in any realization, as each of the m edges can occur in at most ℓ snapshots. Furthermore, it is
clear that there are at most ∆ non-empty snapshots, so the number of non-empty snapshots
is at most T . The number of sequences of at most T non-empty snapshots in which each of
the m edges occurs in at most ℓ snapshots (and in at least one snapshot) can be bounded by
T ℓm = T K , as each such sequence can be encoded by assigning to each of ℓm edge copies
(with ℓ copies of each edge) a number in [1, T ] that identifies the snapshot in which it occurs.
(If an edge occurs fewer than ℓ times, this can be captured by assigning some of its copies
the same number.) Thus, we can enumerate all such sequences in T O(K) ⊆ nO(ℓ·n2) time.

For each such sequence S of non-empty snapshots, we enumerate all possibilities of
assigning to each vertex pair (u, v) with Duv > 1 a number suv in [1, |S|] that identifies the
snapshot in which the journey from u to v that realizes the duration Duv starts. (Note that
if suv = i, this means that the journey starts in the i-th non-empty snapshot. That snapshot
will be present in some time step ti in [1, ∆] that has not yet been determined.) The number
of possibilities to be enumerated is bounded by T n2 ⊆ nO(n2).

Intuitively, we want to proceed along the following lines: For each combination of a
sequence S of snapshots and an assignment of values suv to vertex pairs (u, v) with Duv > 1,
we want to use an ILP to check whether we can assign the i-th snapshot of S to a time step ti,
for all i, in such a way that the resulting periodic temporal graph realizes D. To be able
to formulate the constraints of the ILP, we use an auxiliary temporal graph, without gaps
between the snapshots of S, to determine for each pair (u, v) of vertices and each starting
snapshot i the snapshot at which v can first be reached if starting at u in snapshot i. The
constraints of the ILP can then express that the gaps inserted between the snapshots must
be such that (1) the duration of the u-v journey starting in snapshot suv is equal to Duv,
and (2) the duration of the u-v journey starting in any other snapshot is at least Duv. The
variables of the ILP represent the time steps to which the snapshots get assigned.
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Formally, we process each combination of a sequence S of snapshots and assignment of
values suv to vertex pairs (u, v) with Duv > 1 as follows. Let L = |S| and S = (S1, S2, . . . , SL).
Build a periodic temporal graph GS with period L such that the edges present in time steps
i + zL for all integers z ≥ 0 are those of Si, for 1 ≤ i ≤ L. For every (u, v) ∈ V × V with
Duv > 1 and every i ∈ [1, L], we denote by q(u, v, i) the tuple (j, z), such that each fastest
u-v journey in GS starting at time i ends in time step j + zL, where 1 ≤ j ≤ L. Note that
computing q(u, v, i) can be done in polynomial time, since finding a path of shortest duration
from u to v starting at time step i can be done in polynomial time on non-periodic temporal
graphs [3, 17], and we can simply unroll GS n times to obtain a non-periodic temporal graph
on which the shortest duration of any journey between u and v remains the same. This is
discussed in detail for a more general class of periodic temporal graphs in [2, Remark 1].
Note that in a periodic temporal graph, for any pair (u, v) of vertices for which a u-v journey
exists, there exists a u-v journey of shortest duration that starts in a snapshot of the first
period. Therefore, it suffices to consider only start times i ∈ [1, L] for u-v journeys in GS .

We want to determine whether there exist values ti for 1 ≤ i ≤ L with 1 ≤ t1 < t2 <

· · · < tL ≤ ∆ such that the periodic temporal graph G defined as follows realizes D:
for each i ∈ [1, L], Si is the set of edges of G that are present in time step ti, and
no edge is present in any of the time steps in [1, ∆] \ {ti | 1 ≤ i ≤ L}.

Observe that q(u, v, i) = (j, z) if and only if the earliest-arrival journey from u to v in G starting
at time ti reaches v in time step tj + z∆ (and thus has duration δ(u, v, ti) = tj + z∆ − ti + 1).
This is because GS can be obtained from G by removing all empty snapshots.

The temporal graph G realizes D if, for all (u, v) with D(u, v) > 1, δ(u, v, ti) = Duv for
at least one ti and δ(u, v, ti) ≥ Duv for all ti. The purpose of the value suv that we have
enumerated is to give a value of i with the property that δ(u, v, ti) = Duv. We can then
formulate the following ILP with variables t1, t2, . . . , tL to check whether there exist values
of these variables such that G realizes D:

tj + z∆ − ti + 1 = Duv ∀(u, v) with Duv > 1, i = suv, q(u, v, i) = (j, z)
tj + z∆ − ti + 1 ≥ Duv ∀(u, v) with Duv > 1, ∀i ̸= suv, q(u, v, i) = (j, z)
t1 ≥ 1
ti − ti−1 ≥ 1 ∀i with 2 ≤ i ≤ L

tL ≤ ∆

(ILP)

Note that there is no objective function as we only want to check feasibility, i.e., check
whether there exist values t1, . . . , tL that satisfy the constraints. The first two constraints
express that the earliest-arrival path from u to v starting in time step tsuv

has duration
Duv and the earliest-arrival paths from u to v starting in any other time step have duration
at least Duv. The last three constraints ensure that 1 ≤ t1 < t2 < · · · < tL ≤ ∆. Thus, a
feasible solution of the ILP gives a periodic temporal graph that is a solution to the given
instance I of Multi-Label Periodic TGR.

As the ILP has L ≤ T variables, we can solve each such ILP instance in (log L)O(L) ·
|I|O(1) ⊆ (log n)O(ℓ·n2) · |I|O(1) time [16]. We solve the ILP once for each combination of a
sequence S of non-empty snapshots and an assignment of values suv to all pairs (u, v) with
Duv > 1. Thus, we solve nO(ℓ·n2) different ILPs. The resulting overall running-time is then
nO(ℓ·n2) · |I|O(1). The claimed running-time follows because we can assume ℓ ≤ n2. The
algorithm is correct because, if I is a yes-instance, one of the enumerated combinations of a
sequence of snapshots and an assignment of values suv corresponds to a realization of D, and
for that combination a realization of D will be obtained from the solution of the ILP. ◀
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For the special case ℓ = 1 of Multi-Label Periodic TGR, our FPT algorithm of
Theorem 9 has a running time of nO(n2) · |I|O(1) and is a conceptually simpler FPT algorithm
for Periodic TGR than the FPT algorithm for n that is implied by the algorithm for
Periodic TGR parameterized by the feedback edge number of the underlying graph from [12].
The main advantage of our approach is that it extends to arbitrary ℓ. Furthermore, our
approach also works for the non-periodic version.

▶ Corollary 10 (⋆). Multi-Label TGR can be solved in nO(ℓ·n2) · |I|O(1) time and nO(n4) ·
|I|O(1) time, where |I| denotes the encoding length of the instance.

4.2 Parameterization by the vertex cover number plus the period
In this section we give an FPT algorithm for Multi-Label Periodic TGR parameterized
by vc + ∆. The key idea of our approach is to show that any given instance can be reduced
to one where the number of vertices in the independent set that have the same neighbors
can be bounded by a function of the parameter. It then suffices to apply the FPT algorithm
for parameter n to this reduced instance.

▶ Theorem 11. There is an FPT algorithm for Multi-Label Periodic TGR parameterized
by vc + ∆.

Recall that ℓ is upper bounded by ∆. Hence, to show Theorem 11, it is sufficient to
present an FPT algorithm for parameter vc + ∆ + ℓ. Let (ℓ, D, ∆) be the given instance of
Multi-Label Periodic TGR. Recall that vc denotes the size of a minimum vertex cover
of the underlying graph G = (V, E). Observe that the number of possible label sets assigned
to any particular edge e ∈ E can be bounded by ∆ℓ: Each of the up to ℓ labels assigned to
the edge is a value in [1, ∆], and combinations where fewer than ℓ labels are assigned to the
edge can be modeled as assigning the same label several times.

We call two vertices u, v ∈ V distance twins if they have the same distance to every
vertex in V \ {u, v} and to each other. This means that their rows in the distance matrix
D are identical, and their columns in D are identical, up to the obvious difference in the
intersection of their rows with their columns: Duu = 0, Duv = Dvu, and Dvv = 0. Note that
the distance twin relation is an equivalence relation on V .

Let C be a vertex cover of G of size vc, and let I = V \ C be the independent set that
is the complement of C. Partition I into neighborhood classes I = {I1, I2, . . . , It} based on
adjacency to C, i.e., two vertices u, v ∈ I are in the same class Ij if and only if N(u) = N(v).
Note that, t ≤ 2vc.

Consider one part Ij of the partition I. For each vertex u ∈ Ij , there are at most ∆vc·ℓ

different ways of assigning label sets to the (at most vc) edges incident with u. For any
fixed labeling λ of E, call two vertices u, v ∈ Ij label twins if for every vertex w ∈ N(u),
λ(uw) = λ(vw). The label twin relation partitions the set Ij into equivalence classes that we
call label classes. Note that there can be at most ∆vc·ℓ label classes for Ij .

Observe that all vertices u, v in a label class have the same distance to every vertex in
V \ {u, v} and to each other. This means that, if λ realizes D, then u and v must be distance
twins. The distance twin relation partitions Ij into distance classes. If Ij contains more than
∆vc·ℓ distance classes, the given instance is a no-instance, because at most ∆vc·ℓ different
distance classes can be realized by the at most ∆vc·ℓ different label classes.

▶ Observation 12. If a neighborhood class contains more than ∆vc·ℓ distance classes, then
the considered instance is a trivial no-instance of Multi-Label Periodic TGR.
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If Ij contains at most ∆vc·ℓ different distance classes, it suffices to keep 2∆vc·ℓ of the
vertices in each such class, while any additional vertices of the class can be deleted (i.e., the
corresponding rows and columns of there vertices can be removed from D).

▶ Lemma 13 (⋆). Let Ij be a neighborhood class and let F denote a distance class of Ij of
size more than 2∆vc·ℓ. Then removing one vertex of F from G yields an equivalent instance.

With this statement at hand, we are now able to present the algorithm for Multi-Label
Periodic TGR.

Proof of Theorem 11. For each neighborhood class Ij of I and each distance class F of Ij

with |F | > 2∆vc·ℓ, remove |F | − 2∆vc·ℓ arbitrary vertices from F . Due to Lemma 13, this
yields an equivalent instance, where each distance class contains at most 2∆vc·ℓ vertices.
If the resulting instance contains at most vc + 2vc · 2∆2vc·ℓ vertices, the FPT algorithm is
obtained by applying the algorithm behind Theorem 9. Otherwise, if the resulting instance
contains more than vc+2vc ·2∆2vc·ℓ vertices, there is a neighborhood class Ij such that Ij has
more than ∆vc·ℓ distance classes. This is correct, since the new instance contains exactly vc
vertex cover vertices, at most 2vc neighborhood classes, and at most 2∆vc·ℓ vertices in each
distance class. Due to Observation 12, we can thus correctly output that the instance under
consideration is a trivial no-instance of Multi-Label Periodic TGR. ◀

Recall that Multi-Label Periodic TGR is NP-hard even if ℓ = 1 and ∆ = 3 [12]
and that Theorem 7 shows that Multi-Label Periodic TGR is NP-hard even if ℓ = 5
and vc = 1. Hence, neither of the considered parameters can be omitted to still obtain an FPT
algorithm for Multi-Label Periodic TGR. Still, the question remains whether there is an
FPT algorithm parameterized by vc alone for the case ℓ = 1 (Periodic TGR), or if one can
replace ∆ in the combined parameter by some potentially smaller parameter. In particular,
the parameterized complexity of Multi-Label Periodic TGR when parameterized by vc +
dmax + ℓ is open.

4.3 Efficient algorithm for Multi-Label TGR on graphs with few paths
While we have shown Multi-Label Periodic TGR to be NP-hard for any ℓ ≥ 5 even if the
underlying graph is a star, we show in this section that Multi-Label TGR can be solved
in polynomial time if the underlying graph is a tree and ℓ ≥ n(n − 1) and D is finite-valued.
In fact, our result is more general and solves the problem in polynomial time whenever the
number of different u-v paths in the underlying graph can be bounded by a polynomial, for
each vertex pair (u, v).

As a subproblem we consider the problem Path Realization that is defined as follows:
Given a distance matrix D, a pair (u, v) with u ̸= v, and a u-v path P = (u0 = u, u1, . . . , ur =
v) in the underlying graph, decide if one can assign one time label to each edge on P in such
a way that, in the temporal graph on P with those time labels, the u-v journey has duration
Duv, while any ui-uj journey with 0 ≤ i < j ≤ r has duration at least Duiuj

. Here, we use
the convention that the duration of a ui-uj journey is ∞ if there is no ui-uj journey in the
temporal graph on P with the time labels assigned.

Intuitively, the purpose of solving Path Realization is to decide whether it is possible
to assign time labels to the edges of P in such a way that a u-v journey of duration Duv is
realized while no u′-v′ journey that is too short (i.e., has duration strictly less than Du′v′)
is created. The key ingredient of the proof is the following lemma that shows that Path
Realization can be solved in polynomial time. For the main result of this section we only
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need to be able to solve Path Realization for finite-valued distance matrices, but since
our approach can also handle entries equal to ∞, we present the lemma for this more general
case.

▶ Lemma 14 (⋆). Path Realization can be solved in O(r2) time.

We say that the underlying graph G = (V, E) is p-path-diverse if the number of u-v paths in
G is bounded by p for each pair (u, v) of vertices in V .

▶ Theorem 15 (⋆). Multi-Label TGR can be be solved in O(pn4) time if the underlying
graph is p-path-diverse and ℓ ≥ n(n − 1) and D is finite-valued.

The maximum number of u-v paths for any vertex pair (u, v) can be bounded by n!,
so the running-time of the algorithm of Theorem 15 is bounded by O(n! · n4). Thus, the
algorithm is an FPT algorithm for Multi-Label TGR parameterized by n that is simpler
and more efficient than that of Theorem 9 in Section 4.1, but only works for instances with
a finite-valued distance matrix and ℓ ≥ n(n − 1).

As trees are 1-path-diverse and cycles are 2-path-diverse, we obtain the following corollary.

▶ Corollary 16. Multi-Label TGR can be be solved in O(n4) time if the underlying graph
is a tree or a cycle, ℓ ≥ n(n − 1), and D is finite-valued.

4.4 A polynomial kernel

In this section, we present a kernel for Multi-Label Periodic TGR for the combined
parameter dmax + nu, where nu := |{v ∈ V | N [v] ̸= V }| denotes the number of non-universal
vertices of the underlying graph. Note that nu is never larger than the number of entries
of D of value larger than 1, since for each non-edge {u, v} of G, Duv > 1 and Dvu > 1.
Hence, the kernel we present also implies a kernel for Multi-Label Periodic TGR for the
parameter combination dmax + |{Duv | u, v ∈ V, Duv > 1}|. We also show that this kernel
transfers to Multi-Label TGR for finite-valued distance matrices.

▶ Theorem 17 (⋆). Multi-Label Periodic TGR admits a kernel of size O(min{ℓ ·
nu4 · dmax, nu8 · dmax}). More precisely, this kernel has O(nu2 · dmax) vertices and a period
of O(min{ℓ · nu4 · dmax, nu8 · dmax}) and does not increase the value of ℓ.

Proof. Let I := (ℓ, D, ∆) be an instance of Multi-Label Periodic TGR where dmax
denotes the largest non-infinite entry of D and where G = (V, E) is the underlying graph
implied by the distance matrix D. Moreover, let X denote the set of all vertices of G that
are not universal and let nu := |X|.

If n ∈ O(nu2), then D contains O(nu4) entries of size at most dmax each. Moreover,
due to Lemma 2, we can reduce ∆ to O(ℓ · nu4 · dmax) ⊆ O(nu8 · dmax). This then implies
a polynomial kernel of the desired size. Hence, in the following, we assume that n > nu2.
Note that this implies that there is at least one universal vertex v∗ in G. Hence, for any
two vertices u and w of G distinct from v∗, there is the path uv∗w of length two in G.
Consequently if I is a yes-instance of Periodic TGR, the largest possible time that can be
realized between any two vertices of G is ∆ + 1, since traversing the path uv∗w takes time at
most ∆ + 1. In other words, I is a trivial no-instance of Periodic TGR if D contains an
entry larger than ∆ + 1. In the following, we thus assume that dmax ≤ ∆ + 1. We distinguish
two cases.
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Case 1: ∆ ≥ 3dmax. We show in this case that I is a trivial yes-instance of Multi-Label
Periodic TGR even when assigning only a single label to each edge. This proof is deferred
to the full version.

Case 2: ∆ < 3dmax. Let RX denote the set of directed pairs of vertices of X for which
the distance is not trivially realized, that is, RX := {(u, v) ∈ X × X | u ≠ v, Duv > 1}.
If G contains no more than nu2 · dmax universal vertices, then n ∈ O(nu2 · dmax) and the
polynomial kernel follows directly, since ℓ ≤ ∆ ∈ O(dmax) and D contains O(nu2) entries of
value larger than 1. Otherwise, if G contains at least nu2 · dmax universal vertices, we remove
an arbitrary set Z of universal vertices from G such that nu2 · dmax universal vertices remain.
This then gives the kernel of desired size due to the above argumentation. In the full version,
we show that the so obtained instance I ′ := (ℓ, D′, ∆) of Multi-Label Periodic TGR is a
yes-instance if and only if I is a yes-instance of Multi-Label Periodic TGR. ◀

Note that this implies the following polynomial kernel for Periodic TGR.

▶ Corollary 18. Periodic TGR admits a polynomial kernel of size O(nu4 · d2
max). More

precisely, this kernel has O(nu2 · dmax) vertices and a period of O(nu4 · dmax).

Moreover, we can derive the following result for Multi-Label TGR on finite-valued
distance matrices.

▶ Corollary 19 (⋆). On finite-valued distance matrices, Multi-Label TGR is FPT when
parameterized by nu and admits a kernel of size O(nu4 + nu2 · dmax). More precisely, this
kernel has O(nu2) vertices and does not increase the value of ℓ.

5 Conclusion and open questions

In this paper, we have studied multi-label versions of the temporal realization problem
introduced by Klobas et al. [12] and presented various hardness results and FPT algorithms
for different parameters or parameter combinations. There are a number of interesting
directions for future work. While our hardness results exclude FPT algorithms for Multi-
Label Periodic TGR parameterized by the vertex cover number alone (unless P = NP),
the question whether such an FPT algorithm exists for Periodic TGR remains open. With
respect to the polynomial kernel of size O(nu4 · d2

max) that we have obtained, an interesting
question is whether a kernel whose size is a polynomial of nu alone exists. To answer
this question, one first has to analyze whether the problem admits a polynomial kernel for
parameter n alone. A question in relation to our FPT algorithms for parameter n is whether
the subproblem that we solve using ILP can be solved more efficiently using a combinatorial
algorithm.

Furthermore, it would be interesting to analyze the computational complexity of Multi-
Label Periodic TGR on stars and trees for ℓ ∈ {2, 3, 4}. Klobas et al. [12] have shown
that the problem on trees is polynomial for ℓ = 1, while we have shown that it is NP-hard
on stars for ℓ ≥ 5, so the status for ℓ ∈ {2, 3, 4} is open for stars and trees.

For Multi-Label TGR, NP-hardness has so far only been shown in the case that the
distance matrix can have entries equal to ∞ and ℓ = 1 [12]. It would be interesting to
analyze the complexity for finite-valued distance matrices and for ℓ > 1. For the problem
variant where a maximum allowed label L is specified as part of the input (i.e., a bound on
the lifetime of the temporal graph that can be built to realize D), our NP-hardness proofs
of Section 3 should translate. We expect that our FPT algorithms for parameter n and for
parameter vc + ∆ (which then becomes vc + L) can also be adapted to that case even if the
distance matrix contains entries of value ∞.

SAND 2024
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Given that we have shown that Multi-Label Periodic TGR is NP-hard even if
dmax = 3 for every ℓ ≥ 1, and that it can be solved in polynomial time if dmax ≤ 2 for all
ℓ ≥ 2, it would be interesting to settle the complexity of the problem for ℓ = 1 and dmax = 2.
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Abstract
In the field of distributed computing by robot swarms, the research comprehends manifold models
where robots operate in the Euclidean plane through a sequence of look-compute-move cycles. Models
under study differ for (i) the possibility of storing constant-size information, (ii) the possibility
of communicating constant-size information, and (iii) the synchronization mode. By varying
features (i,ii), we obtain the noted four base models: OBLOT (silent and oblivious robots), FST A
(silent and finite-state robots), FCOM (oblivious and finite-communication robots), and LUMI
(finite-state and finite-communication robots). Combining each base model with the three main
synchronization modes (fully synchronous, semi-synchronous, and asynchronous), we obtain the well-
known 12 models. Extensive research has studied their computational power, proving the hierarchical
relations between different models. However, only transparent robots have been considered.

In this work, we study the taxonomy of the 12 models considering collision-intolerant opaque
robots. We present six witness problems that prove the majority of the computational relations
between the 12 models. In particular, the last witness problem depicts a peculiar issue occurring in
the case of obstructed visibility and asynchrony.
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1 Introduction

In the far-ranging field of distributed computing, a significant area concerns computing by
mobile entities [16, 17], where tasks are required to be solved by multiple simple and limited
entities (also called robots) that can move in the environment. In this realm, manifold
theoretical models have been introduced to formalize realistic scenarios (e.g. sensor or drone
swarms, dynamic networks, software agents). One of the most studied is the look-compute-
move (LCM) model [16, 17], where robots, once activated, execute a cycle of three steps: they
look at the environment, they compute the next position executing a distributed algorithm,
and they move to the computed position.

Under the umbrella of the LCM macro-model, a vast combination of models has been
proposed to formalize different robot capabilities and to study how model settings affect
its computational power. In this respect, robots are assumed to possess very limited and
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restricted features, in order to find the minimal sets of capabilities which are required to
achieve a given task. Accordingly, robots are assumed to be autonomous, indistinguishable,
anonymous, and homogeneous: namely, they act without any central control, they cannot
distinguish themselves by external appearance or by ids, they possess the same features,
they execute the same algorithm in a decentralized way. Moreover, most of the literature
considers punctiform robots that cannot communicate with other robots (silent), without
any persistent memory (oblivious), without any agreement on a global coordinate system,
or chirality, or a unit measure (disoriented). Besides robot capabilities, different model
environments have been proposed to study diverse scenarios. The existing models can
be mainly divided into two groups: the models where robots act on the Euclidean plane
[1, 14, 18, 23], and the models where robots act on discrete spaces (generally graphs, rings,
or lattices) [7, 9, 12, 24]. According to the synchronization, robots may adhere to different
modes (fair/unfair, synchronous/asynchronous, sequential...) [8]. In general, robots may
be synchronized (time is globally divided into rounds) or not. Specifically, three modes are
mainly studied in literature: the fully synchronous mode (FULLY), where all robots execute
each step of the LCM cycle synchronously in one round, the semi-synchronous mode (SEMI),
where at each round an arbitrary but nonempty subset of robots act synchronously, and the
asynchronous mode (ASYNCH), where robots act without any synchronization assumption.

The traditional problems studied for swarms of mobile entities include Pattern
Formation [1, 13, 14, 18, 26, 29, 30, 31], Gathering [5, 7, 12, 15, 22], Scattering [21, 25],
Flocking [4]. A common goal of the algorithmic investigation is to reduce the model capa-
bilities required to solve a given problem or to prove the impossibility of solving it under a
certain set of capabilities. This approach has led to describing the computational power of a
given model (i.e. the set of problems it can solve) and outlining the hierarchical relations
(dominance, equivalence, or orthogonality) among different models. In the last decade,
multiple works [2, 6, 9, 10, 11, 19] have inspected and compared the computational power of
different models which differ in robot features and synchronization mode. According to the
robot features, they have investigated how the communication and storage capabilities affect
the computational power of the robots. Starting from the classical model where robots are
both oblivious and silent (i.e. without any means of storage or communication), researchers
have investigated how the possession of a persistent memory or communication means changes
the power of such models. To characterize these extra properties, they proposed to add a
constant-size light to each robot which can assume a color chosen among a constant and fixed
set of colors. Such light is persistent (so the color is maintained until the next update), it
can be updated at the beginning of a move step, and it can be internally or externally visible.
Specifically, the literature focuses on four classes of robots: the OBLOT class, where robots
are assumed to be oblivious and silent, the FST A class, where each robot is embedded with
an internal light (visible just to the robot, thus providing a persistent memory), the FCOM
class, where each robot is embedded with an external light (visible just to the other robots,
thus providing communication means), and the LUMI class, where each robot is embedded
with an external and internal light. According to the synchronization mode, each class has
been studied under the three settings: FULLY, SEMI, and ASYNCH.

Besides some trivial relations between a pair of models that only differ because the
first one enjoys a capability that the second one lacks, other model relations may not be
obvious to identify. This is especially true for models characterized by completely different
capabilities, so it may be difficult to understand which combination of capabilities is more
powerful. In these cases, the literature has attempted to illustrate some simulators to prove
the equivalence between models, or some witness problems to prove their strict dominance
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or orthogonality. Specifically, in [2, 6, 19, 20], the authors study the computational power
of transparent robots that can move on the Euclidean plane, assuming multiple robots can
occupy the same positions (multiplicity). In [9, 10, 11], the authors make the same effort but
for robots acting on graphs. In [3], the authors consider energy-constraint robots, i.e. robots
that necessitate an idle round to restore the needed energy to perform a new cycle.

Related works and our contributions. Our work is inspired by the papers [2, 6, 19, 20]
where the authors exhibit the complete taxonomy of the 12 models of robots that can freely
move on the Euclidean plane. Such models vary for the synchronization mode and for the
possibility to memorize and communicate. However they are assumed to be transparent, thus
always guaranteeing complete visibility for the swarm, and collision-tolerant, thus allowing
robots to occupy the same position at the same time.

In this paper, we investigate the computational power of opaque robots, i.e. robots that
cannot see beyond a collinear robot. Opaqueness introduces a remarkable difficulty in the
design of correct algorithms to solve some classical problems [1, 13, 14]. In fact, the obstructed
visibility leads to critical issues to be addressed in the algorithmic strategies: robots may
not be aware of the cardinality of the swarm, robots may not be aware if there are some
moving robots in the ASYNCH mode, robots may not know the complete topology of the
current configuration, robots may compute the next action based on partial information. As
a matter of fact, ad hoc techniques are needed to cope with this visibility limitation [27, 28].

Besides the opaqueness feature, our model differs from [2, 6, 19, 20] since robots do not
tolerate collisions (so we drop the multiplicity assumption). The reason behind this choice is
twofold, and it is coherent with the related literature [1, 13, 14, 27, 28]. Firstly, assuming
collision intolerance leads to the formalization and analysis of more realistic models, as does
assuming robot opaqueness. Secondly, dropping the multiplicity assumption is coherent
with the hypothesis of obstructed visibility in the case of collinearity. As a matter of fact,
a multiplicity of two robots forms a “degenerate” collinearity with any other robot of the
swarm, for which it would be unnatural to state the visibility relation in this special case. In
this respect, some witness problems introduced in [2, 20] cannot be applied under our model,
which needs a new study with specific witness problems.

In the first part of this work, we expose a preliminary study of the relations between
transparent and opaque models. Intuitively, a transparent model seems to computationally
dominate the same model but with opaque robots. In Section 3 we formally prove this strict
dominance: endowing a model with transparency increases its computational power, allowing
it to solve more problems. As a consequence, this result highlights that constant-size (internal
or external) lights are not always sufficient to compensate for robot obstructed visibility.

In the second part of this work (Section 4), we present six witness problems showing the
majority of the hierarchical relations among models of collision-intolerant opaque robots, thus
providing a first overview of their computational taxonomy. For the sake of space, all relations
proved in this work will be compactly shown in the theorems in Section 4 (i.e. without
splitting them in multiple corollaries). See Appendix A for the proofs of such theorems.

2 Preliminaries

2.1 Models

This work compares 12 robot models that differ in some features. We here introduce in detail
all the core features that such models share, and the variable features under study.
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Core features. We investigate swarms of autonomous computational mobile robots, which
act in the Euclidean plane R2. Robots are indistinguishable (they cannot be distinguished by
external appearance), anonymous (they are not provided with any id), homogeneous (they
execute the same algorithm), and punctiform entities. We consider opaque robots so that in
the case of three collinear robots p, q, r, the endpoint robots p, r cannot see each other. We
assume robots are in the worst condition about orientation: they are completely disoriented
so that they do not share a global common coordinate system (i.e. no agreement on origin,
axis direction, chirality, or unit distance). Moreover, we assume that the local coordinate
system of any robot may change from one activation to another (variable disorientation).

All the robots in the swarm are provided with the same deterministic algorithm, which
is executed every time the robot is activated. At each time, a robot can be either idle or
active, according to the scheduler. When activated, a robot r executes a Look-Compute-Move
cycle: it takes the snapshot of its visible area (look), it executes the algorithm using the sole
snapshot as input (compute), and it travels along a straight trajectory towards the computed
destination (move). The snapshot of r contains all the positions (according to the coordinate
system of r) and, possibly, the external colors of the robots visible to r: no other information
about the swarm can be perceived (e.g. whether robots are idle/active, still/moving, . . . ). If
the computed destination position is equal to the current one, r is said to perform a null
movement. After the move step, r becomes idle again. We consider rigid models, i.e. no
adversary can stop the motion of a robot1.

We deal with a collision-intolerant model meaning that it does not tolerate either
multiplicity (i.e. no robot can occupy the same location as another robot at the same time)
or overlapping trajectories (robots r and s have overlapping trajectories if (i) r is moving
from a to a′, (ii) s is moving from b to b′, and (iii) the segments āa′ and b̄b′ have points in
common). We refer to both multiplicity and overlapping trajectories as collisions.

Variable features. Regarding the memory and communication features of robots, we consider
the four models mainly proposed in the literature. In the OBLOT model, robots are assumed
to be oblivious (i.e. they do not have any persistent memory to store data about past cycles)
and silent (i.e. they do not have any means to communicate with other robots). In the
FST A model, robots are provided with a persistent internal light which can assume a color
chosen from a constant-size set. Such internal light plays the role of a constant-size persistent
memory. In the FCOM model, robots are equipped with a persistent external light visible
only to other robots, which can assume a color chosen in a constant-size set of colors. Indeed,
external lights can be exploited by the swarm to communicate some messages to the visible
robots. Lastly, the LUMI model gather the features of both FST A and FCOM. This
model assumes luminous robots, which are equipped with a light that can be colored using a
constant-size set of colors. Such light is both visible to the robot itself (working as an internal
state) and visible to the other robots (working as an external communication means).

Regarding the activation and synchronization of robots, we consider the three modes
mainly studied in the literature. In the fully synchronous mode (FULLY), time is split into
atomic rounds, within which all robots are activated together and execute their LCM steps
completely synchronously. The semi-synchronous mode (SEMI) differs from FULLY just for
the fact that at each round an arbitrary but nonempty subset of robots is activated. In the
asynchronous mode (ASYNCH), every robot is activated independently from the others, and

1 In [2, 6, 19, 20], the authors consider both rigid and non-rigid models. In the next model comparisons
(transparent vs opaque), we consider only rigid models.
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every cycle step lasts a finite but unpredictable amount of time. For the SEMI and ASYNCH
modes, robots do not know which are the activated robots at each instant. Moreover, we
always assume the fairness condition: for each time t and for each robot r, there exists a
time t′ > t such that r is activated. This condition allows us to compute time complexity
considering the number of epochs, where an epoch is a minimal time frame within which
each robot is activated at least once. The selection of the subset of robots activated at every
time is made by an adversarial scheduler. Formally, let R = {r1, . . . , rn} be a swarm of
n robots, and let T be a time domain which can be discrete N≥0 (in FULLY and SEMI) or
continuous R≥0 (in ASYNCH). An activation scheduling is a function S : T → 2R defining the
subset of the swarm that is activated at a specific time.

Notation. We use the notation X
Y to indicate a model for opaque robots that possess

all the above core features and that has X as communication-storage setting and Y as
synchronization mode, where X ∈ {OBLOT , FST A, FCOM, LUMI} and Y ∈ {F, S, A}
(FULLY, SEMI, ASYNCH, resp.). Consistently with the notation used in [2, 6, 19, 20], we indicate
with XY the same model as X

Y but considering transparent robots which tolerate collisions.
We refer to these two classes of models as the opaque and transparent framework.

2.2 Problems
Robot swarms are distributed systems aimed at solving problems. Since in these models
robots can just move in the plane, the literature studies problems requiring a swarm to form
(a sequence of) geometric patterns, and/or to travel along specific trajectories. Formally, let
us assume a swarm of n robots R = {r1, . . . , rn} on the Euclidean plane. When no ambiguity
arises, we indicate with ri both the robot and the point on the plane where ri is located.
Given an absolute coordinate system Z on R2, we define the configuration of the swarm at
time t as the set C = {(x1, l1), . . . , (xn, ln)} where xi ∈ R2 is the position of ri according to
Z, and li is the light color of ri, at time t. In the OBLOT model, we always assume li = off
for every ri ∈ R. A configuration is valid if xi ̸= xj , for each i ̸= j. We define C as the set
of all the valid configurations for R. We say that a configuration C guarantees complete
visibility if there are no collinearities among robots.

A problem P for a swarm of robots is defined2 by a sequence (ϕ0, τ0, ϕ1, τ1, . . . , ϕm, τm . . . )
where each ϕi is a condition on the configuration of the swarm, and where τi is a condition
on the intermediate configurations that the swarm is requested to fulfill while reaching a new
configuration where ϕi+1 holds true. We call such sequence the request of the problem P .
The initial condition ϕ0 must include the clause stating that li = off for every ri ∈ R. Except
for this clause, since P might be solved without lights and under any synchronization mode,
ϕi, τi must not impose any conditions on light colors or the number of cycles, for each i.

Starting from an initial configuration C0 for which ϕ0 is true, P is said to be solved
under a scheduling mode if, for each scheduling Σ under the given mode, there exists an
algorithm A through which the swarm forms a sequence of configurations (C1, . . . , Cm, . . . )
such that ϕi holds in Ci for each i ≥ 1, and such that τi−1 holds during the formation of Ci

starting from Ci−1. If the request of the problem is finite, the last condition τm requires the
swarm to stay still after having satisfied the last condition ϕm of the request. If Σ works
on a time domain T ∈ {N≥0,R≥0}, we define the evolution of A w.r.t. Σ and C0 as the
function E : T → C such that E(0) = C0 and E(t) is the configuration reached at time t > 0

2 For our purposes.
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executing A according to the scheduling. Indeed, there must exist a sequence of time instants
0 < t1 < t2 < · · · < tm . . . upon which the evolution of A both satisfies E(ti) = Ci and
guarantees the validity of the conditions τi in the corresponding time intervals.

2.3 Computational relations
Given a model M , we indicate with P (M) the set of problems solved under M , i.e. the
computational power of M . Given two models M1, M2, we define the following relations:

M1 is computationally not less powerful than M2, formally M1 ≥ M2, if P (M1) ⊇ P (M2),
i.e any problem solvable in M2 is solvable in M1;
M1 is computationally more powerful than M2, formally M1 > M2, if P (M1) ⊃ P (M2),
i.e any problem solvable in M2 is solvable in M1 and there exists a problem solvable in
M1 that is not solvable in M2;
M1 is computationally orthogonal to M2, formally M1 ⊥ M2, if P (M1) \ P (M2) ̸= ∅ and
P (M2) \ P (M1) ̸= ∅, i.e there exists a problem solvable in M1 (M2, resp.) that is not
solvable in M2 (M1, resp.);
M1 is computationally equivalent to M2, formally M1 ≡ M2, if P (M1) = P (M2), i.e M1
and M2 solve the same set of problems.

The following relations trivially follow from the definitions of the models:

LUMIY ≥ FST AY ≥ OBLOT Y and LUMIY ≥ FCOMY ≥ OBLOT Y

XF ≥ XS ≥ XA

where Y ∈ {F, S, A} and X ∈ {OBLOT , FST A, FCOM, LUMI}. Indeed, the same rela-
tions hold in the opaque framework.

3 Transparent vs opaque robots

▶ Theorem 1. Let P be a problem solved in X
Y . Then P is solved under XY .

Proof. Let A be an algorithm solving P under X
Y . We can easily construct an algorithm A

solving P under XY . Given a robot r and given its snapshot as input σ of all the robots,
A computes A(σ) := A(σ) where σ is the snapshot obtained by σ removing all the robots
which would be hidden from r in case of opaqueness. A perfectly simulates A, thus correctly
solving P for transparent robots. ◀

▶ Corollary 2. For each Y ∈ {F, S, A} and X ∈ {OBLOT , FST A, FCOM, LUMI},

X
Y ≤ XY .

▶ Problem 1 (Line-Stretch). Let us consider an initial configuration where n > 3 robots
are equally spaced along the same line, say γ. Let d be the distance between two adjacent
robots. The problem asks the endpoint robots to move away from their adjacent robot and
stop in order to form a new distance d + d

n with them. They are allowed to travel only along
γ. The other robots must stay still. See Figure 1.

γ

Figure 1 Line-Stretch.
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▶ Lemma 3. Line-Stretch is solved under OBLOT A.

Proof. The problem is solved under the weakest model of the transparent framework. In
fact, the endpoint robots can compute and head to their destination since they can count all
the robots and at least two internal robots fix d. The final configuration is stable. ◀

▶ Lemma 4. Line-Stretch cannot be solved under LUMIF.

Proof. The problem cannot be solved under the strongest model of the opaque framework.
Since the n robots are always collinear by request and are provided with constant-size lights,
they cannot compute n either by sight or by using their lights to communicate/store the
cardinality of the swarm, and so the endpoint robots will never accomplish the task. In fact,
lights are inefficient for keeping a counter of the robots, due to their constant size. ◀

▶ Theorem 5. For each Y ∈ {F, S, A} and X ∈ {OBLOT , FST A, FCOM, LUMI},

X
Y

< XY .

Proof. The result derives by combining Corollary 2 with Lemma 3 and Lemma 4. In fact, it
holds that Line-Stretch ∈ P

(
XY

)
whereas Line-Stretch /∈ P

(
X

Y
)

for any X, Y . ◀

▶ Theorem 6. Let P be a problem solved by an algorithm A under XY always avoiding
collisions, such that P is defined for a swarm with fixed cardinality, say k. If, given any
evolution of A, every robot can see k robots, then the problem can be solved even in X

Y .

Proof. Since at any activation, each robot is aware it sees the whole swarm, it can compute
its next action by executing A. This computation results in the solution of the problem
considering opaque robots. ◀

4 Taxonomy of opaque models

We present our witness problems to prove some strict dominance (>) and orthogonality (⊥)
relations among opaque models. Thanks to Theorem 1 and Theorem 6, one of the witness
problems presented in [2] can be used to prove some hierarchical relations to hold in our
opaque framework too. However, other witness problems in [2, 20] are not compliant with
our collision-intolerant models; thus, we present specific problems that fit our assumptions.

4.1 Weakness of OBLOT
▶ Problem 2 (Triangle Round-Trip). Let C be a configuration where 3 robots are placed
so that two of them lay on the vertices of an equilateral triangle (let a be the empty vertex),
while the third robot lays on the triangle center. From C, the robot in the center has to
move to a, forming the new configuration C ′. Then, robots have to form C again, where a is
again the empty vertex. See Table 1.

Triangle Round-Trip is a sub-case of the problem N-gon Round-Trip defined in [2] (see
Definition 1).

▶ Lemma 7. Triangle Round-Trip /∈ P
(

OBLOT F
)

.

Proof. The problem has been shown to not belong to OBLOT F (see Lemma 3 in [2]). In
fact, using oblivious and silent robots, there is no way to identify the former empty vertex a

due to the full symmetry of C ′. By the contrapositive of Theorem 1, the result holds. ◀
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Table 1 Configurations in Triangle Round-Trip.

a a a

C C ′ C

▶ Lemma 8. Triangle Round-Trip ∈
(

P
(

FST AA
)

∩ P
(

FCOMA
))

.

Proof. The problem has been shown to be solved in FST AA and FCOMA (see Lemma
4-5 in [2]). Since in this version of the problem the cardinality of the swarm is fixed and
the robots never create collinearities or collisions, we can apply Theorem 6 to state that
Triangle Round-Trip can be solved both in FST AA and FCOMA. ◀

▶ Theorem 9. Given the schedulers Y1 = F, Y2 = S, Y3 = A, it holds

FST AYi
> OBLOT {Yj}j≥i

FCOMYi
> OBLOT {Yj}j≥i

LUMIYi
> OBLOT {Yj}j≥i

.

4.2 Orthogonality between FST A and FCOM
▶ Problem 3 (Flip-Flop-Flip). Let p, q and r be three robots forming a strictly isosceles
triangle so that dist(p, r) = dist(q, r). Let γ be the perpendicular bisector to the line segment
p̄q passing through the point b ∈ p̄q. Let γ′ (γ′′, resp.) be the semi-line of γ starting from
b and which contains (does not contain, resp.) r. The problem requires r to perpetually
perform three subsequent actions (see Table 2), in an infinite loop: (i) r must reach a point
on γ′′ \ {b}; (ii) r must reach a different point on γ′′ in order to move away from p, q; (iii) r

must reach a point on γ′ \ {b}. The problem requires r to never leave γ and to never stop so
that p, q, r form an equilateral triangle. Robots p, q must stay still.

Table 2 Configurations in Flip-Flop-Flip.

γ′γ′′
r

p

q

γ′γ′′
r

p

q

γ′γ′′
r

p

q

First Flip Flop Second Flip

▶ Lemma 10. Flip-Flop-Flip ∈
(

P
(

FST AA
)

∩ P
(

FCOMF
))

.

Proof. We solve the problem in these two models using three colors (flip1, flop and flip2),
assuming w.l.o.g. all robots start with the color flip1. The problem request guarantees that
each robot can recognize its role by geometric conditions. In FST AA, r moves along γ

changing its internal color following the perpetual scheme (flip1 − flop − flip2)∞, so that at
each activation, r knows which is the current action to be performed. The robots p, q do
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not need to change their colors. In the FCOMF model, all the robots synchronously update
their external colors following the above scheme, so that at each round each robot knows
what actions (color setting and move step) have to be accomplished. ◀

▶ Lemma 11. Flip-Flop-Flip /∈
(

P
(

OBLOT F
)

∪ P
(

FCOMS
))

.

Proof. Flip-Flop-Flip cannot be solved under an OBLOT model since r would not have
any means to understand which movement it has to perform. Suppose by contradiction that
there exists an OBLOT algorithm A solving Flip-Flop-Flip. Let σ be the snapshot taken
by r which makes A compute its first Flop action. Being in OBLOT , σ contains only the
positions of the three robots in the current local coordinate system of r. Let us now assume
that Flip-Flop-Flip starts from an initial configuration where the snapshot taken by r is
identical to σ. Since A has no further information as input, its output is still a Flop, which
causes r to perform an erroneous action. Contradiction.

Flip-Flop-Flip cannot be solved under the FCOMS model too. By contradiction,
suppose that the problem is solved by an algorithm A. Let S be a SEMI activation scheduling
under which A solves the problem. We show that there exists a SEMI activation scheduling S′

such that Flip-Flop-Flip is not solved by A. Let t be the first round in S where r executes
the first Flip. Let S′ be a scheduling such that S′(t′) = S(t′), ∀t′ ≤ t. Clearly, r executes its
first Flip at the t-th round under S′. Suppose that, in the (t + 1)-th activation round under
S′, r is the only one that gets activated, namely S′(t + 1) = {r}. Yet, r has no memory of
the previous activation rounds. As a consequence, r makes again a Flip. Contradiction. ◀

▶ Theorem 12. LUMIA
> FCOMA

, LUMIS
> FCOMS,A

,

LUMIF
> FCOMS,A

, FCOMF
> FCOMS,A

.

▶ Problem 4 (Newcomer Introducing). Consider n + 2 robots, with n ≥ 7. Let n robots
be placed on the same circle whose ray length is ρ. Let c be a robot lying in the center of
the circle. Let s be a robot external to the circle so that s can see c. The problem requires
sequentially forming two configurations. First, s must travel along the line s̄c and stop on
the boundary of the circle. Second, c must travel along the radius defined by s and stop in a
position c′ so that dist(s, c′) = 1

2 ρ. All the other robots must stay still. See Table 3.

Table 3 Configurations in Newcomer Introducing.

c
s

c
s

c
s

First Configuration (a) Second Configuration (b) Third Configuration (c)

▶ Lemma 13. Newcomer Introducing /∈ P
(

FST AF
)

.

Proof. The impossibility of solving the problem with just internal lights derives from the
fact that starting from the second configuration (see Table 3.b) c has no way to recognize
which robot is s. Since s can be anywhere in the disposition of the n + 1 robots on the circle,
a constant set of colors would not be sufficient to store robot indices. ◀
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▶ Lemma 14. Newcomer Introducing ∈ P
(

FCOMA
)

.

Proof. We show a possible FCOMA algorithm solving Newcomer Introducing with two
colors: off and s. All the robots are initially set to color off. Each robot can determine its
role by the geometry of the configurations (c sees n ≥ 7 robots equidistant from itself and an
external robot, s sees at least four robots forming a circle with a robot on its center, while
the other robots can see they lay on a circle with at least other n − 2 ≥ 5 robots). When
s is activated, it sets its light to s and starts to move. This color is maintained also in its
next activations. When c is activated, if it sees a robot s on the circle, it can compute its
destination correctly. The last configuration is stable: no other robot will move. ◀

▶ Theorem 15. Given the schedulers Y1 = F, Y2 = S, Y3 = A,

LUMIYi
> FST A{Yj}j≥i

.

▶ Theorem 16. FST AF,S,A ⊥ FCOMS,A.

4.3 Power of FULLY

▶ Problem 5 (Spinning). The problem is defined recursively, without any stop conditions.
Consider a configuration C where n ≥ 5 robots {r0, . . . , rn−1} are located on a circle centered
in O. Let a0, . . . , an−1 be the related positions of the robots such that it is possible to
establish a global clockwise direction (e.g. the one going from a0 to a2, passing through a1).
Let α be the angle a0Ôa1, which is the minimum angle in {aiÔai+1}0≤i≤n−1. The problem
requires the given configuration to form a new configuration C ′ by rotating each ri from ai

to a′
i of an angle α

2 , following the agreed clockwise direction. Robots are required only stop
on the target points lying on the circumference. Recursively, the problem demands the same
request starting from C ′. See Table 4.

Table 4 Configurations in Spinning.

α a0

a1

a2
a3

a4

a5

α a′
0

a′
1

a′
2a′

3

a′
4

a′
5

▶ Lemma 17. Spinning ∈
(

P
(

OBLOT F
)

∩ P
(

LUMIA
))

.

Proof. The problem is solvable in OBLOT F: each robot always has complete visibility of
the swarm, so it is able to determine the rotation center and the rotation angle. The FULLY
mode guarantees that all the robots agree on the same rotation-angle, at each round.

The problem is solvable under LUMIA, by using these colors: off, a0, a1, moving0,
moving1, m0, m1, moving, moved, end. The algorithm solving the problem executes the
same sub-routine perpetually. This sub-routine implements a complete circle rotation of the
swarm. At the beginning of each circle rotation, all robots are off. In the first epoch, the
robots r0 and r1 set their lights as a0 and a1, respectively. After this setting, robot a0 (a1,
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resp.) computes its destination position, sets its light to moving0 (moving1, resp.) and starts
moving. If a robot r, which is not moving0 or moving1 colored, sees a moving0 or moving1
robot, r does nothing. When a moving0 (moving1, resp.) robot is activated, it just updates
its light to m0 (m1, resp.). Once the rotation angle through m0 and m1 has been fixed, the
other robots can start their rotation. If an off robot r sees both m0 and m1 on the circle,
it sets its light as moving and starts its rotation. When a moving robot is activated, it sets
its light to moved. When a robot sees only m0, m1, moved, or end robots, then it updates
its color to end. In the last phase of the sub-routine, if an end robot can see only end or
off robots, it resets its color to off. Once all robots are off, the circle rotation is ready to
restart. ◀

▶ Lemma 18. Spinning /∈
(

P
(

FST AS
)

∪ P
(

FCOMS
))

.

Proof. Spinning is not solvable under FST AS since an activated robot r cannot know what
movements other robots have already made, thus it cannot determine the rotation-angle.

Spinning is not solvable under FCOMS. Suppose that, by contradiction, there exists
an algorithm A solving Spinning. In particular, the problem is solved under an activation
scheduler S. Let r0 be the robot in position a0. Let t1 be the activation time, under S, of
the first round during which r0 performs a non-null movement. Let S′ be another scheduling
such that S′(t) := S(t) ∀t < t1 and S′(t1) = S′(t1 + 1) := {r0}. If A is executed under S′,
then the execution is the same as S until time t1 − 1. At time t1, r0 behaves in the same way
as it did under scheduling S but, as no other robot has been activated, then there is no way
to keep track of the fact that r0 has already moved. At time t1 + 1, r0 is activated again but
it cannot understand from geometric conditions that it must stay still. Contradiction. ◀

▶ Theorem 19.
OBLOT F

> OBLOT S,A
, FST AF

> FST AS,A
, FCOMF

> FCOMS,A
,

OBLOT F ⊥ FCOMS,A
, OBLOT F ⊥ FST AS,A

.

▶ Problem 6 (Angle-Shift). Consider an initial configuration with three robots forming an
acute and scalene triangle. Let a, b, c be the three robots, where a is placed on the greatest
angle, say α, whereas c is placed on the smallest angle. Fixing a as the rotation center and
following the direction given by a, b, c, the problem requires b to rotate of α and c to rotate
of π − α. The robots are not allowed to stop anywhere else on the plane. Afterwards, the
robots must stay still. See Table 5.

Table 5 Angle-Shift.

α

a b

c

a b

c

a

b

c

Initial configuration. Required movements. Final configuration.

▶ Lemma 20. Angle-Shift ∈
(

P
(

OBLOT F
)

\ P
(

LUMIS
))

.

Proof. Angle-Shift is solvable under any FULLY model: if b and c perform their cycles at
the same time, then they correctly compute their target position. The final configuration is
stable since it always forms an obtuse triangle (terminal condition).
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Instead, the swarm can suffer from information loss in SEMI, making Angle-Shift
unsolvable even under LUMIS. In fact, suppose that in the initial configuration only b

is activated. After b’s movement, the three robots turn out to be collinear in the reached
configuration. As a result, c has no means to recompute α, whether c uses the geometry of the
configuration or uses constant-size lights. The same happens even if only c is activated. ◀

▶ Theorem 21. LUMIF
> LUMIS,A

, OBLOT F ⊥ LUMIS,A
, FST AF ⊥ LUMIS,A

.

4.4 Opaqueness and asynchrony
We now introduce the Pseudo-Polygon problem which shows a peculiar issue occurring in
case of obstructed visibility and asynchrony.

▶ Definition 22. Given a regular n-gon N , for any n ≥ 4, a pseudo-polygon Q is a subset
of vertices of N , such that |Q| ≥ n

2 + 1. We call N the associated polygon with respect to Q.

Given a pseudo-polygon Q, it is always possible to determine the associated polygon,
which is unique. In fact, as Q contains at least three vertices, the circumscribed circle is
univocally defined. Moreover, since Q contains more than half of the vertices of the associated
n-gon, there always exist at least two vertices that are adjacent in N . So, it is always possible
to univocally establish the associated polygon from a pseudo-polygon.

▶ Definition 23. A safe zone of a regular polygon is the locus of all points x in the plane
such that:

x is external to the regular polygon;
x is not aligned with any of the two vertices of the associated polygon;
x does not lie on the bisector of any edge of the associated polygon (equivalently, x is not
equally distanced from any two adjacent vertices);
if ℓ is the length of the edge of the polygon, then the distance between x and any vertex of
the polygon is at least ℓ.

Figure 2 depicts the (complement of the) safe zone of a square.

Figure 2 The safe zone of the square comprehends all the points not belonging to the blue-colored
(infinite) lines and zones.

▶ Problem 7 (Pseudo-Polygon). Let N be a regular n-gon with n ≥ 6 vertices. Let Q be a
pseudo-polygon of m ≥ n

2 + 2 vertices, associated with N . Consider a swarm of m + 1 robots,
where m robots lay on Q and let the last robot, w, lay in the safe zone of N . Let a be the
farthest robot from w. Let b, c be the first two found robots, starting from a and following
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both directions on the perimeter of the associated polygon, one per each direction taken.
Assume dist(b, w) > dist(c, w). The problem requires a to move away from b towards a point
x such that (i) x belongs to the safe zone of N , (ii) x belongs to the halfplane delimited
by the line b̄c that does not contain a, and (iii) x must not be on any line passing by the
position of w and any other robot on Q. Note that requests (i,iii) are imposed in order to
have x visible by every robot. See Figure 3.

c

ab

w

x

Figure 3 The Pseudo-Polygon problem associated with an octagon.

▶ Lemma 24. Pseudo-Polygon /∈ P
(

FST AA
)

.

Proof. Pseudo-Polygon cannot be solved in the ASYNCH mode, only using internal lights. Let
us consider the problem instance given by Figure 3 where the pseudo-polygon of the initial
configuration is composed of n

2 + 3 vertices, with n = 8. Let us assume b is activated for the
first time during the movement of a, when a is hidden by c (i.e. b, c, a are collinear). When b

looks at its snapshot, it recognizes a feasible initial configuration (it sees a pseudo-polygon
with n

2 + 2 robots, and the robot w). According to this configuration, b erroneously elects
itself as the robot that has to move away from the pseudo-polygon. It has no means to
understand if a exists or not. On the other hand, a has no means to know if b has updated
its internal light to memorize it is not the elected robot to move. ◀

False election. The impossibility of solving Pseudo-Polygon in the asynchronous modes
with just internal lights derives from a critical issue that is typical of swarms with obstructed
visibility. This critical issue can be described as the false election phenomenon. Such
phenomenon can be informally described as follows: from a stable configuration, the given
problem requires the use of a leader election routine to elect the unique robot (the true
leader) which has to execute a non-null movement to reach the next configuration. All the
other robots have to stay still. In ASYNCH, a robot r executes its look step while the true
leader is moving and is hidden from r. However, r cannot deduce the presence of the true
leader from its snapshot. So, applying the same leader election routine, r elects itself as the
(false) leader, thus starting an unrequested movement.

The false election phenomenon must be examined when trying to transpose a SEMI
algorithm in ASYNCH. In particular, the use of lights must be considered as a possible method
to avoid false elections. As we have shown in Lemma 24 for Pseudo-Polygon, internal lights
are not sufficient to cope with them. Instead, the next lemma proves that external lights are
required (and sufficient) to correctly solve the Pseudo-Polygon problem in ASYNCH.

▶ Lemma 25. Pseudo-Polygon ∈
(

P
(

OBLOT S
)

∩ P
(

FCOMA
))

.
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Proof. Pseudo-Polygon is solvable in OBLOT S (i.e. in any synchronous model), since
complete visibility is guaranteed at any activation time and all the movements (null and non-
null) are univocally determined by geometric conditions. In fact, each robot can determine
Q, the watcher w, and the robot a (the farthest from w). The robot a can compute its final
destination and move there. If a robot is not the farthest from the watcher, or if it sees two
robots that are not part of the pseudo-polygon, then it stands still.

Pseudo-Polygon needs at least external lights to be solvable in the ASYNCH mode. We
show here an algorithm that needs 4 colors: off (default), on, a, b. In the first epoch, every
robot updates its color according to its role: robot a turns into a, robot b turns into b,
whereas the remainder turns into on. Afterward, let r be an activated robot that sees no off
robots and that notes there is only one robot (the watcher) out of the pseudo-polygon. Let
Vr be the set of colors r can see.

if Vr = {a, b, on}, r turns into on and stays still;
if Vr = {a, on}, r turns into b and stays still;
if Vr = {b, on}, and if r is the farthest robot from w, it turns into a and starts moving;
if Vr = {on}, it means r is b and stays still (robot a is hidden).

If a robot r sees two robots not belonging to the pseudo-polygon, then r does not move (the
final configuration is already formed or is about to be formed). ◀

▶ Theorem 26. OBLOT S
> OBLOT A

, FST AS
> FST AA

, FST AA ⊥ OBLOT S
.

5 Relation map

Table 6 summarizes the results proved in this work, showing the relations (>, <, ⊥, and ≡)
that hold between the pairs of models in our opaque framework. The map shows also which of
the six witness problems (TRT for Triangle Round-Trip, FFF for Flip-Flop-Flip, NWC for
Newcomer Introducing, SPIN for Spinning, ASH for Angle-Shift, PSE for Pseudo-Polygon)
have been used to prove such relations. For some pairs of models (gray cells), the knowledge
about what kind of relation holds is still now incomplete. E.g. between FST AF and FCOMF

two possible relations (< or ⊥) can exist: so far we have built Newcomer Introducing as
witness problem proving that Newcomer Introducing ∈

(
P

(
FCOMF

)
\ P

(
FST AF

))
.

To prove the orthogonality relation, we should find a witness problem B such that B ∈(
P

(
FST AF

)
\ P

(
FCOMF

))
. Instead, to prove the strict dominance relation, we should

find that any problem in FST AF can be solved also under FCOMF. For the pairs of models
where the relation is unknown in the opaque framework, we have reported the relation
holding in the transparent framework in red.

6 Conclusions

We have investigated the computational power of the 12 models of collision-intolerant opaque
robots, thus presenting the taxonomy of the problems solved in such framework. We have
taken inspiration from [2, 6, 19, 20] where the authors provide the complete map of the
relations held by the same 12 models but considering collision-tolerant transparent robots.

Thus far, the relations proven here in our opaque framework are the same as in the
corresponding transparent framework. The natural question that arises from this observation
is whether the relation map of the opaque models is completely identical to the relation map
of the transparent models. To answer this question, future works should find the missing
relations among the twelve opaque models in order to obtain the complete hierarchy in the
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Table 6 Relation map.

↱ LUMIF FCOMF FST AF OBLOT F LUMIS FCOMS FST AS OBLOT S LUMIA FCOMA FST AA

OBLOT A <

TRT
<

TRT
<

TRT
<

SPIN
<

TRT
<

TRT
<

TRT
<

PSE
<

TRT
<

TRT
<

TRT

FST AA <

NWC
< or ⊥, <

NWC,
<

SPIN
⊥

TRT, SPIN
<

NWC
⊥

NWC, FFF
<

PSE
⊥

PSE, TRT
<

NWC
⊥

NWC, FFF

FCOMA <

FFF
<

FFF
⊥

FFF, NWC
⊥

NWC, SPIN
<

FFF
< or ≡, < ⊥

FFF, NWC
> or ⊥, ⊥

NWC,
<

FFF

LUMIA <

ASH
< or ⊥, <

ASH,
⊥

ASH, NWC
⊥

ASH, TRT
< or ≡, ≡ > or ⊥, >

FFF,
> or ⊥, >

NWC,
> or ⊥, >

TRT,

OBLOT S <

TRT
<

TRT
<

TRT
<

SPIN
<

TRT
<

TRT
<

TRT

FST AS <

NWC
< or ⊥, <

NWC,
<

SPIN
⊥

TRT, SPIN
<

NWC
⊥

NWC, FFF

FCOMS <

FFF
<

FFF
⊥

FFF, NWC
⊥

SPIN, NWC
<

FFF

LUMIS <

ASH
< or ⊥, <

ASH,
⊥

ASH, NWC
⊥

ASH, TRT

OBLOT F <

TRT
<

TRT
<

TRT

FST AF <

NWC
< or ⊥, <

NWC,

FCOMF < or ≡, ≡

opaque framework. Among the others, it is worth mentioning the yet unknown relation
between LUMIS and LUMIA. In the transparent framework, the two models were proven
to be computationally equivalent [6] through the design of a simulator which, with the help
of extra light colors, simulates any SEMI algorithm in the ASYNCH mode. This simulator
is not adequate to prove the same relation considering opaque robots, precisely because
of their obstructed visibility. With the Pseudo-Polygon problem, we have presented the
false election phenomenon whose formalization and investigation will be preparatory to
answer this interesting open question: is it possible to simulate a LUMIS algorithm in the
ASYNCH mode, thus proving that LUMIS and LUMIA are two equivalent models also in
the opaque framework? Are constant-size lights sufficient to always avoid the phenomenon
of false elections? In addition, it would be necessary to formalize and study all the critical
issues caused by obstructed visibility: such formalizations may be essential for the correct
investigation of the missing relations.

In conclusion, further research directions could broaden the range of robot models to be
compared by considering non-rigid models and/or less popular synchronization modes (e.g.
sequential, round-robin, etc.).

References
1 Kaustav Bose, Manash Kumar Kundu, Ranendu Adhikary, and Buddhadeb Sau. Arbitrary

pattern formation by asynchronous opaque robots with lights. Theor. Comput. Sci., 849:138–
158, 2021. doi:10.1016/J.TCS.2020.10.015.

2 Kevin Buchin, Paola Flocchini, Irina Kostitsyna, Tom Peters, Nicola Santoro, and Koichi Wada.
Autonomous mobile robots: Refining the computational landscape. In 35th International
Parallel and Distributed Processing Symposium Workshops, IPDPS, pages 576–585. IEEE,
2021. doi:10.1109/IPDPSW52791.2021.00091.

3 Kevin Buchin, Paola Flocchini, Irina Kostitsyna, Tom Peters, Nicola Santoro, and Koichi Wada.
On the computational power of energy-constrained mobile robots: Algorithms and cross-model
analysis. In 29th International Colloquium on Structural Information and Communication
Complexity, SIROCCO, volume 13298 of Lecture Notes in Computer Science, pages 42–61.
Springer, 2022. doi:10.1007/978-3-031-09993-9_3.

SAND 2024

https://doi.org/10.1016/J.TCS.2020.10.015
https://doi.org/10.1109/IPDPSW52791.2021.00091
https://doi.org/10.1007/978-3-031-09993-9_3


13:16 Computational Power of Opaque Robots

4 Davide Canepa and Maria Gradinariu Potop-Butucaru. Stabilizing flocking via leader election
in robot networks. In 9th International Symposium on Stabilization, Safety, and Security of
Distributed Systems, SSS, volume 4838 of Lecture Notes in Computer Science, pages 52–66.
Springer, 2007. doi:10.1007/978-3-540-76627-8_7.

5 Gianlorenzo D’Angelo, Gabriele Di Stefano, Ralf Klasing, and Alfredo Navarra. Gathering of
robots on anonymous grids and trees without multiplicity detection. Theor. Comput. Sci.,
610:158–168, 2016. doi:10.1016/J.TCS.2014.06.045.

6 Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Masafumi Yamashita.
Autonomous mobile robots with lights. Theor. Comput. Sci., 609:171–184, 2016. doi:
10.1016/J.TCS.2015.09.018.

7 Shantanu Das, Riccardo Focardi, Flaminia L. Luccio, Euripides Markou, and Marco Squarcina.
Gathering of robots in a ring with mobile faults. Theor. Comput. Sci., 764:42–60, 2019.
doi:10.1016/J.TCS.2018.05.002.

8 Xavier Défago, Maria Potop-Butucaru, and Sébastien Tixeuil. Fault-tolerant mobile robots.
In Distributed Computing by Mobile Entities, Current Research in Moving and Computing,
volume 11340 of Lecture Notes in Computer Science, pages 234–251. Springer, 2019. doi:
10.1007/978-3-030-11072-7_10.

9 Mattia D’Emidio, Daniele Frigioni, and Alfredo Navarra. Synchronous robots vs asynchronous
lights-enhanced robots on graphs. In 16th Italian Conference on Theoretical Computer Science,
ICTCS, pages 169–180. Elsevier, 2015. doi:10.1016/J.ENTCS.2016.03.012.

10 Mattia D’Emidio, Daniele Frigioni, and Alfredo Navarra. Characterizing the computational
power of anonymous mobile robots. In 36th International Conference on Distributed Computing
Systems, ICDCS, pages 293–302. IEEE Computer Society, 2016. doi:10.1109/ICDCS.2016.58.

11 Mattia D’Emidio, Gabriele Di Stefano, Daniele Frigioni, and Alfredo Navarra. Characterizing
the computational power of mobile robots on graphs and implications for the euclidean plane.
Inf. Comput., 263:57–74, 2018. doi:10.1016/J.IC.2018.09.010.

12 Stefan Dobrev, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Multiple agents
rendezvous in a ring in spite of a black hole. In 7th International Conference on Principles
of Distributed Systems, OPODIS, volume 3144 of Lecture Notes in Computer Science, pages
34–46. Springer, 2003. doi:10.1007/978-3-540-27860-3_6.

13 Caterina Feletti, Carlo Mereghetti, and Beatrice Palano. Uniform circle formation for swarms
of opaque robots with lights. In 20th International Symposium on Stabilization, Safety, and
Security of Distributed Systems, SSS, volume 11201 of Lecture Notes in Computer Science,
pages 317–332. Springer, 2018. doi:10.1007/978-3-030-03232-6_21.

14 Caterina Feletti, Carlo Mereghetti, and Beatrice Palano. O(log n)-time uniform circle formation
for asynchronous opaque luminous robots. In 27th International Conference on Principles of
Distributed Systems, OPODIS, volume 286 of LIPIcs, pages 5:1–5:21, 2023. doi:10.4230/
LIPICS.OPODIS.2023.5.

15 Paola Flocchini. Gathering. In Distributed Computing by Mobile Entities, Current Research
in Moving and Computing, volume 11340 of Lecture Notes in Computer Science, pages 63–82.
Springer, 2019. doi:10.1007/978-3-030-11072-7_4.

16 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Computing by Oblivious
Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2012. doi:10.2200/S00440ED1V01Y201208DCT010.

17 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors. Distributed Computing by
Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes
in Computer Science. Springer, 2019. doi:10.1007/978-3-030-11072-7.

18 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Giovanni Viglietta. Distributed
computing by mobile robots: uniform circle formation. Distributed Comput., 30(6):413–457,
2017. doi:10.1007/S00446-016-0291-X.

19 Paola Flocchini, Nicola Santoro, Yuichi Sudo, and Koichi Wada. On asynchrony, memory, and
communication: Separations and landscapes. In 27th International Conference on Principles

https://doi.org/10.1007/978-3-540-76627-8_7
https://doi.org/10.1016/J.TCS.2014.06.045
https://doi.org/10.1016/J.TCS.2015.09.018
https://doi.org/10.1016/J.TCS.2015.09.018
https://doi.org/10.1016/J.TCS.2018.05.002
https://doi.org/10.1007/978-3-030-11072-7_10
https://doi.org/10.1007/978-3-030-11072-7_10
https://doi.org/10.1016/J.ENTCS.2016.03.012
https://doi.org/10.1109/ICDCS.2016.58
https://doi.org/10.1016/J.IC.2018.09.010
https://doi.org/10.1007/978-3-540-27860-3_6
https://doi.org/10.1007/978-3-030-03232-6_21
https://doi.org/10.4230/LIPICS.OPODIS.2023.5
https://doi.org/10.4230/LIPICS.OPODIS.2023.5
https://doi.org/10.1007/978-3-030-11072-7_4
https://doi.org/10.2200/S00440ED1V01Y201208DCT010
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/S00446-016-0291-X


C. Feletti, L. Mambretti, C. Mereghetti, and B. Palano 13:17

of Distributed Systems, OPODIS, volume 286 of LIPIcs, pages 28:1–28:23, 2023. doi:10.4230/
LIPICS.OPODIS.2023.28.

20 Paola Flocchini, Nicola Santoro, and Koichi Wada. On memory, communication, and syn-
chronous schedulers when moving and computing. In 23rd International Conference on
Principles of Distributed Systems, OPODIS, volume 153 of LIPIcs, pages 25:1–25:17, 2019.
doi:10.4230/LIPICS.OPODIS.2019.25.

21 Taisuke Izumi, Daichi Kaino, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil. On
time complexity for connectivity-preserving scattering of mobile robots. Theor. Comput. Sci.,
738:42–52, 2018. doi:10.1016/J.TCS.2018.04.047.

22 Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, Sébastien Tixeuil, and Koichi Wada.
Gathering on rings for myopic asynchronous robots with lights. In 23rd International Conference
on Principles of Distributed Systems, OPODIS, volume 153 of LIPIcs, pages 27:1–27:17, 2019.
doi:10.4230/LIPICS.OPODIS.2019.27.

23 Peter Kling and Friedhelm Meyer auf der Heide. Continuous protocols for swarm robotics.
In Distributed Computing by Mobile Entities, Current Research in Moving and Computing,
volume 11340 of Lecture Notes in Computer Science, pages 317–334. Springer, 2019. doi:
10.1007/978-3-030-11072-7_13.

24 Giuseppe Antonio Di Luna. Mobile agents on dynamic graphs. In Distributed Computing by
Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes
in Computer Science, pages 549–584. Springer, 2019. doi:10.1007/978-3-030-11072-7_20.

25 Moumita Mondal and Sruti Gan Chaudhuri. Uniform scattering of robots on alternate nodes
of a grid. In 23rd International Conference on Distributed Computing and Networking, pages
254–259. ACM, 2022. doi:10.1145/3491003.3493231.

26 Giuseppe Prencipe. Pattern formation. In Distributed Computing by Mobile Entities, Current
Research in Moving and Computing, volume 11340 of Lecture Notes in Computer Science,
pages 37–62. Springer, 2019. doi:10.1007/978-3-030-11072-7_3.

27 Gokarna Sharma, Ramachandran Vaidyanathan, and Jerry L. Trahan. Constant-time complete
visibility for robots with lights: The asynchronous case. Algorithms, 14(2):56, 2021. doi:
10.3390/A14020056.

28 Gokarna Sharma, Ramachandran Vaidyanathan, Jerry L. Trahan, Costas Busch, and Suresh
Rai. Complete visibility for robots with lights in O(1) time. In 18th International Symposium
on Stabilization, Safety, and Security of Distributed Systems, SSS, pages 327–345, 2016.
doi:10.1007/978-3-319-49259-9_26.

29 Kazuo Sugihara and Ichiro Suzuki. Distributed algorithms for formation of geometric patterns
with many mobile robots. J. Field Robotics, 13(3):127–139, 1996.

30 Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Forma-
tion of geometric patterns. SIAM J. Comput., 28(4):1347–1363, 1999. doi:10.1137/
S009753979628292X.

31 Masafumi Yamashita and Ichiro Suzuki. Characterizing geometric patterns formable by
oblivious anonymous mobile robots. Theor. Comput. Sci., 411(26-28):2433–2453, 2010. doi:
10.1016/J.TCS.2010.01.037.

A Proofs of theorems

The proofs of the following theorems hold combining the previously stated lemmas and by
transitivity. We use the compacted notation {X1, . . . , Xm}Y1,...,Yh to indicate all the models
in {X

Yj

i }1≤i≤m
1≤j≤h

where Xi ∈ {OBLOT , FST A, FCOM, LUMI} and Yj ∈ {F, S, A}.

▶ Theorem 9. Given the schedulers Y1 = F, Y2 = S, Y3 = A, it holds

FST AYi
> OBLOT {Yj}j≥i
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FCOMYi
> OBLOT {Yj}j≥i

LUMIYi
> OBLOT {Yj}j≥i

.

Proof. Triangle Round-Trip cannot be solved under OBLOT F,S,A (by Lemma 7) but it can
be solved under {FST A, FCOM, LUMI}A,S,F (by Lemma 8). Combining the results, we
obtain that OBLOT is strictly dominated by FST A and FCOM for a given synchronization
mode Yi ∈ {F, S, A}. The other strict dominances are derived by transitivity. ◀

▶ Theorem 12.

LUMIA
> FCOMA

LUMIS
> FCOMS,A

LUMIF
> FCOMS,A

FCOMF
> FCOMS,A

.

Proof. Flip-Flop-Flip is solved under FCOMF and LUMIA,S,F (by Lemma 10) but it
cannot be solved under FCOMS,A (by Lemma 11). Combining the results, the strict
dominance relations follow. ◀

▶ Theorem 15. Given the schedulers Y1 = F, Y2 = S, Y3 = A, it holds

LUMIYi
> FST A{Yj}j≥i

.

Proof. By Lemma 14, Newcomer Introducing is solved under LUMIA,S,F. By Lemma 13,
Newcomer Introducing cannot be solved under FST AF,S,A. Combining the results, the
strict dominance relations follow. ◀

▶ Theorem 16.

FST AF,S,A ⊥ FCOMS,A
.

Proof. By Lemma 10 and Lemma 11, Flip-Flop-Flip is solved in FST AF,S,A but not in
FCOMS,A. By Lemma 14 and Lemma 13, Newcomer Introducing is solved in FCOMS,A

but not in FST AF,S,A. Combining the results, the orthogonality relations follow. ◀

▶ Theorem 19.

OBLOT F
> OBLOT S,A

FST AF
> FST AS,A

FCOMF
> FCOMS,A

OBLOT F ⊥ FCOMS,A

OBLOT F ⊥ FST AS,A
.

Proof. The above relations hold combining the previous lemmas and by transitivity:
the strict dominance of X

F over X
S,A derives from Lemma 17 and Lemma 18, for each X ∈

{OBLOT , FST A, FCOM}. In fact, Spinning is solved in {OBLOT , FST A, FCOM}F

but it is not solved in {OBLOT , FST A, FCOM}S,A;
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the orthogonality between OBLOT F over FCOMS,A holds since Spinning is solved in
OBLOT F but not in FCOMS,A, and since Newcomer Introducing is solved in FCOMS,A

but not in OBLOT F (by Lemma 14, Lemma 13);
the orthogonality between OBLOT F over FST AS,A holds since Spinning is solved in
OBLOT F but not in FST AS,A, and since Triangle Round-Trip is solved in FST AS,A

but not in OBLOT F (by Lemma 8, Lemma 7). ◀

▶ Theorem 21.

LUMIF
> LUMIS,A

OBLOT F ⊥ LUMIS,A

FST AF ⊥ LUMIS,A
.

Proof. The above relations hold combining the previous lemmas and by transitivity:
the strict dominance of LUMIF over LUMIS,A straightforwardly derives from Lemma 20.
In fact, Angle-Shift is solved in LUMIF but it is not solved in LUMIS,A;
the orthogonality between OBLOT F over LUMIS,A holds since Angle-Shift is solved in
OBLOT F but not in LUMIS,A, and since Triangle Round-Trip is solved in LUMIS,A

but not in OBLOT F (by Lemma 8, Lemma 7);
the orthogonality between FST AF over LUMIS,A holds since Angle-Shift is solved in
FST AF but not in LUMIS,A, and since Newcomer Introducing is solved in LUMIS,A

but not in FST AF (by Lemma 14, Lemma 13). ◀

▶ Theorem 26.

OBLOT S
> OBLOT A

FST AS
> FST AA

FST AA ⊥ OBLOT S
.

Proof. The above relations hold combining the previous lemmas and by transitivity:
for each X ∈ {OBLOT , FST A}, X

S strictly dominates X
A since Pseudo-Polygon can

be solved in X
S but not in X

A (by Lemma 25 and Lemma 24);
the orthogonality between FST AA and OBLOT S holds since Pseudo-Polygon is solved
in OBLOT S but not in FST AA, and since Triangle Round-Trip is solved in FST AA

but not in OBLOT S (by Lemma 8 and Lemma 7). ◀
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Abstract
In the arbitrary pattern formation problem, n autonomous, mobile robots must form an arbitrary
pattern P ⊆ R2. The (deterministic) robots are typically assumed to be indistinguishable, disoriented,
and unable to communicate. An important distinction is whether robots have memory and/or a
limited viewing range. Previous work managed to form P under a natural symmetry condition if
robots have no memory but an unlimited viewing range [23] or if robots have a limited viewing range
but memory [26]. In the latter case, P is only formed in a shrunk version that has constant diameter.

Without memory and with limited viewing range, forming arbitrary patterns remains an open
problem. We provide a partial solution by showing that P can be formed under the same symmetry
condition if the robots’ initial diameter is ≤ 1. Our protocol partitions P into rotation-symmetric
components and exploits the initial mutual visibility to form one cluster per component. Using a
careful placement of the clusters and their robots, we show that a cluster can move in a coordinated
way through its component while “drawing” P by dropping one robot per pattern coordinate.
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1 Introduction

Swarm robotics considers many, simple autonomous robots that must coordinate to reach a
common goal. Applications include exploration and rescue missions in hazardous environments
(like the deep sea or space [15]), medicine (for precise surgery or drug injection [19]), or
biology (to model and understand the behavior of animal populations [21]). While the degree
of necessary cooperation varies between applications, a central aspect is almost always the
deployment of robots to a given set of coordinates.

Model & Problem. The mentioned deployment aspect motivates the arbitrary pattern
formation problem, where a swarm of n ∈ N autonomous, mobile robots must form (in an
arbitrary rotation and translation) a pattern P ⊆ R2 of |P | = n coordinates. We assume the
well-known OBLOT (OBLivious robOT ) model [10] for (deterministic) point robots in R2

with the following characteristics: Robots are oblivious (have no memory), anonymous (have
no IDs), homogeneous (execute the same protocol), and identical (look the same). They are
also disoriented, such that each robot perceives its surroundings in its own, local coordinate
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system that might be arbitrarily rotated and translated compared to other robots (and even
vary over time). A central feature of our work is that robots have a limited viewing range:
they perceive their surroundings up to a constant distance. Without loss of generality, we
normalize this viewing range to 1. We consider the fully-synchronous (Fsync) time model,
where robots synchronously go through an LCM-cycle consisting of three phases: a Look-
(observe surroundings), a Compute- (calculate target), and a Move- (move to target) phase.

A key aspect that determines whether a pattern can be formed is its symmetry. For
example, a swarm that starts as a perfectly regular n-gon cannot form an arrow (which is,
intuitively, less symmetric): The robots may have identical local views and, thus, perform
exactly the same computations and movements; the swarm would be forever trapped in a,
possibly scaled, n-gon formation. One can measure the symmetry of a pattern P by its
symmetricity sym(P ). It counts how often P covers itself when rotated full circle around its
center (see Definition 2.1). A swarm that starts with symmetricity s can only form patterns
whose symmetricity is a multiple of s [20, 13]. This holds even for an unlimited viewing range
and for robots with memory. In fact, for oblivious robots (still with unlimited viewing range),
these are exactly the patterns that can be formed, even in an asynchronous setting [23, 13].

Under limited viewing range, the situation is more elusive. Robots with memory can form
a scaled version of P under the above symmetry condition [26]. Basically, the robots first
form a near-gathering (a formation in which robots have mutual visibility), use their memory
to “maintain” the symmetricity, and then apply the protocol from [13] to form a shrunk P

that fits into the viewing range. In the Fsync setting, this holds even for non-rigid moves
(an adversary can stop robots during their move). On the negative side, oblivious robots
with non-rigid moves cannot always form P , even if the symmetry condition holds [26].

It remains open whether the patterns that can be formed by oblivious robots with limited
viewing range (and rigid movements) are also characterized by the symmetry condition.

Our Contribution. We make a decisive step towards characterizing patterns that oblivious
robots with limited viewing range can form without down-scaling. Our main result is the
following theorem (see Section 2 for formal definitions):

▶ Theorem 1.1. A connected pattern P can be formed by |P | oblivious OBLOT robots
with limited viewing range in the Fsync model from a near-gathering I if and only if
sym(I) | sym(P ). The formation takes O(n) rounds, which is worst-case optimal.

Starting from a near-gathering avoids another challenging open problem: Can we reach
a near gathering from any connected formation without increasing the symmetricity. If
that were the case, together with Theorem 1.1 it would show that (under rigid movements)
obliviousness and limited viewing range do not weaken the robots’ pattern formation abilities.
Note that a recent near-gathering protocol for our model [4] avoids collisions (two robots
moving to the same spot), a major cause of symmetricity increase for most gathering protocols.

Requiring that P is connected (see Section 2) is natural for robots of limited viewing
range. However, our technique can be adapted to form disconnected patterns, as long as
they contain a connected component of size ≥ 3 (see Section 5 for a brief discussion).

In a nutshell, our protocol partitions the input pattern P into sym(P ) rotation-symmetric
components. Using the initial mutual visibility, we let the robots form one cluster, called
drawing formation, per component. Such a drawing formation relies on a careful placement
of its contained robots to store information about the component it is responsible for and to
coordinate its movement. We show how the drawing formation’s robots can compute and
coordinately move along a deliberately constructed path through the component in order to
“draw” the pattern by dropping one robot at each contained coordinate.
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Further Related Work. The arbitrary pattern formation problem has been considered in
numerous settings and variants. To name just a few, there are results for pattern formation

on a grid [1],
with obstructed view [2],
with axis agreement [12],
for robots without a common chirality [5],
for pattern sequences [7], and
in three dimensional space [25].

See [24] for a survey on pattern formation. A more recent and general overview of results
and open problems in swarm robotics and related areas can be found in [9].

There is also work dedicated to forming a specific pattern like
a point [8, 4, 3] (gathering),
an arbitrarily tight near-gathering [6, 16] (convergence), and
a uniform circle [22, 18, 11].

Again, a rather up-to-date and good overview can be found in [9].
Somewhat different in spirit but in our context relevant is [17]. The authors show how

three or more robots with limited viewing range but arbitrarily precise sensors can form a
TuringMobile to simulate a Turing machine that can, e.g., store and process real numbers.
To showcase the model’s power, the authors provide, amongst others, a pattern formation
protocol for any dimension and an initially disconnected swarm, but under the strong
requirement that (some) robots form initially a TuringMobile. Note that while we use robot
placement to encode information, we do this in an inherently discrete way, requiring a sensor
precision of order only min { 1/

√
|P |, mindist(P ), 1/ sym(P ) }. A precision of order 1/

√
|P |

is already required to measure distances in any near-gathering of |P | robots. Similarly, to
form P , robots must naturally be able to measure the minimal distance mindist(P ) that
occurs in P . The final term stems from the fact that our drawing starts from a near-gathering
of symmetricity sym(P ), in which robot distances are of order O

(
1/ sym(P )

)
. In [14], we

add a discussion of the required measuring precision.

Outline. Section 2 introduces preliminaries like further notions and notation. Section 3
contains the major part of our protocol description and its analysis. That section formalizes
notions like drawing formations or drawing paths and details how we coordinate the robots that
form a drawing formation. At the section’s end, we prove Theorem 1.1 under the assumptions
that there is a drawing path that adheres to certain conditions (namely Definition 3.15) and
that sym(P ) < |P |/2. The construction of such a drawing path is subject of Section 4. We
conclude with a small discussion and open problems in Section 5.

2 Preliminaries & Notation

This section extends the model and problem description from Section 1.

Geometric Notation. For two points p, q ∈ R2 we define dist(p, q) = ∥p − q∥2 as their
Euclidean distance. We extend this notation in the natural way to sets S ⊆ R2, such that, e.g.,
dist(p, S) = min { dist(p, q) | q ∈ S }. We use a set-like notation for sequences S = (si)n

i=1,
like p1 ∈ S, S ⊆ R2, or dist(p, S). The minimal distance between two points in a set (or
sequence) S ⊆ R2 is mindist(S) := min { dist(p, q) | p, q ∈ S, p ̸= q }. For p ∈ R2 and r ∈ R
the set B(p, r) = { q ∈ R2 | dist(p, q) < r } denotes the open ball around p with radius r.
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For a set S ⊆ R2 we write
its power set as P(S),
its closure as S, and
its boundary as ∂S = S ∩ R2 \ S.

To highlight the usage of directions (in contrast to points), we use vector notation like
u⃗, v⃗ ∈ R2. Let GS = (S, E) with E = { { p, q } ⊆ S | dist(p, q) ∈ (0, 1] } be the unit disc
graph of S. Then S is connected if GS is connected and p, q ∈ R2 are connected if { p, q } is
connected. We use ∠(u⃗, v⃗) ∈ (−π, π] for the signed angle between u⃗ and v⃗. If not stated
otherwise, explicit coordinates for points p = (r, ϕ) ∈ R2 are given in polar coordinates.

Patterns & Configurations. Remember that we consider the arbitrary pattern formation
problem: a swarm R of n := |R| ∈ N OBLOT robots with a viewing range of 1 must form
a target pattern P ⊆ R2 of |P | = n coordinates. Since robots are oblivious, we use the
standard assumption that, each round, they receive P as their sole input in an arbitrary but
fixed coordinate system (i.e., robots receive the exact same numerical values).

Since robots are deterministic and indistinguishable, the configuration at any time is
uniquely described by the robots’ positions pos(R) = { pos(r) | r ∈ R} ⊆ R2. If the robot
identity is irrelevant for the matter at hand, we identify r ∈ R with the position pos(r) and
R with the configuration pos(R). A near-gathering is a configuration of diameter ≤ 1.

W.l.o.g., we assume that P ’s smallest enclosing circle is centered at the origin (otherwise,
robots translate P accordingly). We measure P ’s symmetry via its symmetricity:

▶ Definition 2.1 (Symmetricity [13]). Consider a set P ⊆ R2 whose smallest enclosing
circle is centered at c ∈ R2. A m-regular partition of P is a partition of P into k = |P |/m

regular m-gons with common center c. The symmetricity of P is defined as sym(P ) :=
max {m ∈ N | there is a m-regular partition of P }.

In Definition 2.1, a single point is considered a 1-gon with an arbitrary center. Thus, any P

has a 1-regular partition. Note that, if the origin is an element of P , then sym(P ) = 1.1 At
some places, we use the shorthand sP for the symmetricity sym(P ) of a set P

Symmetricity allows us to characterize patterns that can be formed by synchronous,
oblivious robots with an unlimited viewing range:

▶ Theorem 2.2 (Symmetry Condition, [13, Theorem 1]). A pattern P can be formed by |P |
oblivious OBLOT robots with unlimited viewing range in the Fsync model from configuration
I if and only if sym(I) | sym(P ).

Further Time Models. Remember that we assume the fully-synchronous time model
(Fsync), where each round robots synchronously execute the Look-, Compute-, and Move-
phases of their LCM-cycle. Two other natural models are the semi-synchronous time model
(Ssync; a subset of robots is active each round and executes its phases synchronously) and
the asynchronous time model (Async; robots execute phases completely asynchronously).

3 Forming Patterns via Drawing

Given a pattern P of symmetricity sP ∈ N, we “draw” P using sP drawing formations. Each
drawing formation consists of a carefully arranged subset of state robots and is responsible to
form one of sP symmetric subpatterns P ′ ⊆ P . The state robots’ careful placement enables

1 One might assume a n-gon together with its center forms a rather symmetric set of size n + 1. But
robots can easily break the perceived symmetry, since the center robot basically functions as a leader.
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them to coordinately move through P ′ along a specific drawing path. While doing so, some
state robots are dropped at nearby pattern coordinates to form P ′.

We start in Section 3.1 by formalizing the idea of drawing formations and related concepts.
Section 3.2 details the legal arrangements of state robots in a drawing formation and shows
how we can use this to coordinate state robots. Equipped with this coordination, Section 3.3
formalizes the drawing path v and what properties a drawing formation F must have in
order to traverse v while suitably dropping robots. Afterward, Section 3.4 shows how we can
create sP different drawing formations and use them to draw suitable, symmetric subpatterns
of P . Finally, Section 3.5 puts everything together to prove Theorem 1.1. We often define
algorithms implicitly during the proofs. To better illustrate the algorithms, we give high-level
pseudocode in [14].

3.1 Drawing Formations & Movement
We first define the notion drawing hull, representing the general shape of a drawing formation.

▶ Definition 3.1 (Drawing Hull). A drawing hull H = (a, d⃗, ϕ, ∆) consists of an anchor
a ∈ R2, a direction d⃗ ∈ R2 with ∥d⃗∥2 = 1, a span ϕ ∈ (0, π/3], and a diameter ∆ ∈ (0, 1].

As illustrated in Figure 1, one should think of a drawing hull H = (a, d⃗, ϕ, ∆) as the point set
{x ∈ R2 | dist(x, a) ≤ ∆ ∧ ∠(d⃗, x− a) ∈ [0, ϕ) }.2 With this in mind, we sometimes abuse
notation and identify H with this set to write, e.g., pos(r) ∈ H for a robot r.

A drawing formation is defined by a drawing hull and all robots contained in it. These
robots form a tight cluster whose exact placement inside the hull (the drawing formation’s
state) allows us to coordinate their movement (see Section 3.2).

▶ Definition 3.2 (Drawing Formation). A drawing formation F = (HF ,RF ) consists of a
drawing hull HF and the robot set RF := { r ∈ R | pos(r) ∈ HF }. We call r ∈ RF a state
robot of F and SF := pos(RF ) the state of F . The size of F is |RF |.

We sometimes identify a drawing formation with its hull, allowing us to, e.g., speak of a
drawing formation’s anchor or diameter.

A drawing formation F forms a given pattern by “moving” F along a specific drawing
path (see Section 3.3) that visits all pattern coordinates, dropping one state robot per pattern
coordinate along the way. The following definition formalizes such moves (see Figure 3 for
an illustration).

▶ Definition 3.3 (Move). Consider a drawing formation F = (HF ,RF ) with drawing hull
HF = (p, d⃗, ϕ) in configuration R. Let R′ denote the configuration after the next LCM cycle.
We say F moves from p (in configuration R) to p′ (in configuration R′) if a state robot subset
RF ′ ⊆ RF of F forms a drawing formation F ′ =

(
(p′, d⃗, ϕ),RF ′

)
in configuration R′. We

call the robots RF \ RF ′ dropped robots.

When moving from one drawing path vertex to the next, the remaining state robots
change state (their placement in the drawing formation) to encode the progress on the
drawing path. To ensure that a drawing formation can adopt any (reasonable) state after a
movement, we restrict its movement distance to 1−∆ (s.t. each state robot can reach any
other location in the resulting drawing formation of diameter ∆).

2 Note that ϕ ≤ π/3 ensures that ∆ is indeed the diameter of the point set H.
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▶ Observation 3.4. Consider a drawing formation F of diameter ∆ that moves from position
p to p′. If dist(p, p′) ≤ 1 − ∆, the robots that are not dropped can form any state in the
resulting drawing formation.

3.2 States of a Drawing Formation
Given a target pattern P , our protocol considers only drawing formations F with fixed span
ϕ = 2π/ sym(P ) (depending only on P ) and fixed diameter ∆ (constant). Moving F between
vertices of the drawing path (see Section 3.3) requires a coordinated movement of F ’s state
robots. To achieve this, any robot must
1. decide whether it is one of F ’s state robots and, if so,
2. know the current progress on the drawing path.
To achieve (1), we use a careful placement of three defining robots that allows any robot
r that sees them to deduce the remaining hull parameters (anchor and direction); once all
four hull parameters are known, r can compute the hull HF and decide whether it lies inside
HF or not. To achieve (2), we require that any additional state robots are placed on an
ϵ-grid (ϵ > 0 fixed, depending only on P ) that is aligned with the defining robots; using
an arbitrary but fixed enumeration scheme for ℓ robots on such a grid, all state robots can
agree on the same ordering of states and use it (in combination with F ’s size ℓ) to encode
the progress on the drawing path.

Legal States. We continue to formalize this idea for a given parameter ϵ > 0. The placement
of the defining robots r1, r2, and r3 of a drawing formation F with anchor a and direction d⃗

is as follows:
1. r1 is at the anchor a,
2. r2 is at distance ϵ in direction d⃗ from anchor a, and
3. r3 is at distance ∈ { 2ϵ, 4ϵ, . . . } in direction d⃗ from r2.
Further state robots (if any) must be placed on the non-negative 2ϵ-grid with origin r2 and
whose x-axis is aligned with d⃗ (see Figure 2).

The robot pair { r1, r2 } can be identified since they are the only state robots with distance
ϵ. And since r3 at distance ≥ 2ϵ is closer to r2 than to r1, robots can distinguish r1 from r2,
from which they can infer both the hull’s anchor and direction.

We get the following set of potential state robot locations:

▶ Definition 3.5 (ϵ-Granular Locations). Consider a drawing formation F = (HF ,RF ) with
anchor a and direction d⃗. Let d⃗⊥ be the unit vector with ∠(d⃗, d⃗⊥) = π/2. The set of ϵ-granular
locations of F is

LF (ϵ) := { a, a + (1 + 2i)ϵ · d⃗ + 2jϵ · d⃗⊥ | i, j ∈ N0 } ∩HF . (1)

States (i.e., state robot placements) considered legal by our protocol consist of all possible
placements on ϵ-granular locations with the mentioned restrictions on the three defining
robots’ positions.

▶ Definition 3.6 (ϵ-Granular States). Consider a drawing formation F with anchor a and
direction d⃗. The set of ϵ-granular states of F is

AF (ϵ) := { S ∪ T | S ∈ P(LF ), T ∈ T (ϵ) }.

with T (ϵ) :=
⋃⌊(∆/ϵ−1)/2⌋

i=1

{
{a, a + ϵ · d⃗, a + (1 + 2i)ϵ · d⃗}

}
being the sets of defining robots.

For ℓ ∈ N we define Aℓ
F (ϵ) := { S ∈ AF (ϵ) | |S| = ℓ } as the set of all ϵ-granular states of F

that can be adopted with ℓ state robots.
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ϕ

d⃗

a
length ∆

Figure 1 Drawing forma-
tion F with drawing hull HF

and state robots r ∈ RF

(black) and other robots r /∈
RF (gray).

2ϵ

2ϵ

ϵ

A B C

Figure 2 ϵ-granular drawing
formation; locations A and B
must each contain a robot, the
locations at C must in sum con-
tain ≥ 1 robots.

r

Figure 3 Movement of a
drawing formation where robot
r is dropped.

Our protocol considers only drawing formations that adhere to the above restrictions,
leading us to the following definition:

▶ Definition 3.7 (ϵ-Granular Drawing Formation). A drawing formation F is ϵ-granular if F

is in an ϵ-granular state and if F ’s state robots know3 the fixed parameters ϵ, ∆, and ϕ.

Note that all subsets of robots in the current configuration that fulfill the definition above
are ϵ-granular drawing formations. We require that r ∈ F knows the parameter ϵ, ∆ and ϕ

of F . Therefore r ∈ F can check all subsets in its viewing range whether they are drawing
formations with these parameters. With a viewing range of 1 ≥ ∆, r observes all robots in
F and can compute the drawing hull of F .

▶ Observation 3.8. Let F be a ϵ-granular drawing formation. All state robots in F can
compute the anchor of F and d⃗.

As a final property, we only want non-overlapping drawing formations. If two drawing
hulls were overlapping, a robot might be state robot in two drawing formations that move in
different directions.

▶ Definition 3.9 (Validity). An ϵ-granular drawing formation F = (HF ,RF ) is valid in
configuration R ⊇ RF if for any other ϵ-granular drawing formation F ′ = (HF ′ ,RF ′) we
have HF ∩HF ′ = ∅.

Counting via States. Given an ϵ-granular drawing formation F of size ℓ (i.e., consisting of
ℓ state robots), we can easily enumerate Aℓ

F (ϵ) in a way that depends solely on the relative
positions of its locations. In particular, all state robots can use this enumeration and thus
agree on the order of states, which basically equips the state robots with a shared counter.
A concrete implementation is depicted in [14].

▶ Definition 3.10 (i-th State). Using an arbitrary, unique state enumeration on Aℓ
F (ϵ) that

depends solely on the relative position of locations, for i ∈ { 1, 2, . . . , |Aℓ
F (ϵ)| } we define the

i-th state of F as the corresponding state in this enumeration.

We conclude with a lower bound on the number of states that an ϵ-granular drawing
formation may have.

3 The parameters are either hard-coded into the protocol or can be computed from the target pattern P .
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▶ Lemma 3.11. Consider a drawing formation F with hull diameter ∆ and span ϕ ∈ (0, π/3].
We have |A3

F (ϵ)| = ⌊(∆/ϵ− 1)/2⌋ and |Aℓ
F (ϵ)| = Ω(∆3 · ϕ/ϵ3) for 4 ≤ ℓ ≤ |LF (ϵ)| − 1.

Proof. For ℓ = 3 robots, only the third defining robot r3 can choose between multiple
locations; the first and second defining robots r1 and r2 have a fixed location inside HF .
Since r3 can be placed on any of the locations of the form a + (1 + 2i)ϵ · d⃗ for i ∈ N that lies
in HF , we get |A3

F | = ⌊(∆/ϵ− 1)/2⌋.
For ℓ = 4, observe that there are k := |LF (ϵ)| = Ω(∆2 · ϕ/ϵ2) ϵ-granular locations in

F , since the 2ϵ-grid allows for Ω(1/ϵ2) many locations per unit area and the total area
covered by F ’s hull is π ·∆2 · ϕ/(2π) = ∆2 · ϕ/2. Again, the first two defining robots have
a fixed location, while the third defining robot may occupy one of Ω(∆/ϵ) many locations.
The remaining ℓ− 3 ≥ 1 robots can be arranged on the remaining k − 3 locations in

(
k−3
ℓ−3

)
ways. By the lemma’s restriction on ℓ we have ℓ − 3 ≥ 4 and ℓ − 3 ≤ k − 4, such that(

k−3
ℓ−3

)
≥

(
k−3
k−4

)
=

(
k−3

1
)

= Ω(∆2 · ϕ/ϵ2). Together, we get the desired bound. ◀

3.3 Drawing a Pattern via a Drawing Path

This section introduces the drawing path of a (sub-) pattern P , which is a path in R2 that
visits all pattern coordinates. This path should allow a drawing formation to move along its
vertices while dropping one state robot per pattern coordinate along the way to form P . An
instructive illustration of the idea can be found in [14].

A drawing path v has a parameter δ that controls the maximal distance between consec-
utive vertices as well as between each pattern coordinate and the path. Moreover, v must
depend only on P , such that oblivious robots can all recalculate v each LCM-cycle.

▶ Definition 3.12 (Drawing Path). Consider any pattern P . A path v = (vj)k
j=1 of k vertices

vj ∈ R2 is a δ-drawing path of P if
1. v can be calculated from P ,
2. ∀p ∈ P : dist(p, v) ≤ 1− δ, and
3. ∀j ∈ { 1, 2, . . . , k − 1 } : dist(vj , vj+1) ≤ 1− δ.
Choosing δ equal to the diameter of a drawing formation F enables F to traverse v while
forming any state (Observation 3.4). We omit δ if it is irrelevant for the matter at hand.

When traversing v, we want a drawing formation to drop a robot at pattern coordinate
p ∈ P when leaving the latest vertex vj that is close enough to p. This ensures that, at any
time after being dropped, the dropped robot has a distance of at least 1− δ to the drawing
formation that dropped it. We say p is covered by vertex vj .

▶ Definition 3.13 (Covered Coordinates). Consider a δ-drawing path v = (vj)k
j=1 of a pattern

P . Coordinate p ∈ P is covered by vertex vj if j ∈ { 1, 2, . . . , k } is the maximal index for
which dist(p, vj) ≤ 1− δ. Let cov(vj) denote the set of all coordinates covered by vj.

We extend cov(•) in the natural way to subsequence v′ of v, such that cov(v′) =
⋃

u∈v′ cov(u).
Care must be taken once a drawing formation dropped so many robots that it reached

size ℓ = 3: It must not drop further robots before the path’s end, since the remaining two
robots would no longer form a drawing formation and could not coordinate (see Section 3.2).
We capture this (possibly non-existent) path region in the following Definition 3.14.

▶ Definition 3.14 (Tail of a Drawing Path). The tail tail(v) of a drawing path v = (vj)k
j=1 is

the longest suffix (vj)k
j=s s.t.

∑k
j=s|cov(vj)| < 4.
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As a final notion, we declare when a drawing formation and a drawing path are compatible
(i.e., can be used to form the path’s pattern). Here, we use hops(vs, vt) to denote the number
of edges between two path vertices vs, vt ∈ v.

▶ Definition 3.15 (Compatibility). An ϵ-granular drawing formation F with diameter ∆ and
span Φ is compatible with a δ-drawing path v = (vj)k

j=1 of a pattern P if
1. ϵ < mindist(P ) and ∆ ≤ δ,
2. ∀s < t s.t.

⋃t−1
j=s cov(vj) = ∅ : hops(vs, vt) ≤ |A4

F (ϵ)|,
3. |tail(v)| ≤ |A3

F (ϵ)|, and
4. |cov(tail(v))| = 3 and cov(tail(v)) ⊆ B(vk, 1) .
Property 1 ensures that the distance ϵ (identifying F ’s defining robots) does not occur in P

and that F can traverse v (by Observation 3.4). Property 2 requires that, after dropping
a robot, the state space Aℓ

F ⊇ A4
F of the remaining ℓ robots is large enough to encode the

progress towards the next vertex where a robot is dropped. These two properties are used
in Lemma 3.16 to prove that F can traverse the non-tail of v while appropriately dropping
robots.

Lemma 3.17 uses Property 3 to traverse the tail and Property 4 to drop the final three
robots at the tail’s end. This final drop is slightly more involved: if the last three coordinates
form, e.g., a straight path of edge length 1, our drawing formation cannot drop all robots at
once. With the help of Property 4, we handle this via an intermediate step.

▶ Lemma 3.16. Consider a compatible drawing path v = (vj)k
j=1 of a pattern P . Let R

be the configuration formed by a drawing formation F of size |P | in state 1 anchored in v1
that is compatible with v. Then F can traverse v by taking one edge per LCM-cycle while
dropping one robot at each coordinate in cov(vj) when leaving vj ̸∈ tail(v).

Proof.
Enumeration of States. We defined in Definition 3.10 an enumeration of Aℓ

F , let the i-th
state of Aℓ

F be state(i, ℓ). We define the following unique states for the path, using an
enumeration that includes different sizes ℓ of drawing formations fitting to the number of not
dropped robots at a node.

f(vi) := | cov((vj)k
j=i)|

g(vi) := max
(
|(vj)i−1

j<i|
)

with cov((vj)i−1
j<i) = ∅

state(vi) := state(g(vi) + 1, f(vi))

From (3) and (4) of Definition 3.15 follows directly, that all such states exist.
Induction Proof. Assumption: F with anchor on vi with |F | = | cov((vj)k

j=i)| in state
i and dropped robots on cov((vj)i−1

j=1). Let HF = (a, d⃗, ϕ, ∆) be the drawing hull of F

(Definition 3.1). We define the coordinate system S as the coordinate system with x direction
d⃗ and origin at v1. Start: At node v1 this is initially given.

Step: No coordinates p ∈ B(vi, 1−δ) contain robots r /∈ F , otherwise p ∈ cov(vj)∩B(vi, 1−
δ), j < i with is a contradiction to Definition 3.13. Therefore F is valid (Definition 3.9).
r ∈ F knows anchor a and direction vector d⃗ of F (see Observation 3.8) and F is unabigous
because it is valid (i.e. r ∈ F is not in another ϵ-granular drawing formation). Because
v is a drawing path (Definition 3.12), r can compute v from P . With the assumption
that a (the anchor of F ) is at vi adn F in state state(vi), it can determine the coordinate
system S. dist(vi, vi+1) ≤ 1− δ (by Definition 3.12) and 1− δ ≤ 1−∆ (by Definition 3.15).
From Observation 3.4 follows that F can move from vi to vi+1. F moves such that its new
anchor is vi+1, | cov(vi)| robots are dropped onto the coordinates cov(vi) and its new state
state(vi+1). ◀
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Figure 4 Pattern P with
symmetricity sP = 7 and cone
C(1).

Figure 5 Symmetric compo-
nent P (1) with an aligned drawing
formation F (1).

2δ F (1)

Figure 6 Initial drawing
pattern I for sP = 7.

▶ Lemma 3.17. Consider a compatible drawing path v = (vj)k
j=1 of a pattern P . Let R be

the configuration that has
1. one robot at each coordinate in P \ cov(tail(v)) and
2. a drawing formation F of size 3 in state |tail(v)| anchored in vk that is compatible with v.

Then F can dissolve within two LCM-cycles while dropping one robot at each coordinate in
cov(tail(v)).

The proof of Lemma 3.17 is given in Appendix B.

3.4 Full Pattern via Many Drawing Formations
As shown in Section 3.3, we can draw any pattern P if we start in a suitable drawing
formation F (and have a compatible drawing path). But we must first form such a drawing
formation from the initial near-gathering, which might have a symmetricity s > 1. In that
case, since any drawing formation has symmetricity 1, we cannot form F (by Theorem 2.2).
Instead, we show how to form sym(P ) symmetric copies of F that are placed such that they
1. have symmetricity sym(P ) (we have s | sym(P ) or we cannot form P , even globally) and
2. do not interfere with each other (if using suitable drawing paths, see Section 4).

We start by partitioning the pattern P of symmetricity sp := sym(P ) into sP symmetric
components, each of which will be drawn by its own drawing formation.

▶ Definition 3.18 (Cone & Symmetric Component). Let e⃗x := (1, 0). For a pattern P of
symmetricity sP , define the i-th cone

C(i) := { p ∈ R2 | ∠(e⃗x, p) ∈ [(i− 1) · 2π/sP , i · 2π/sP ) } (2)

and the i-th symmetric component P (i) := P ∩ C(i).

Note that the symmetric components are pairwise disjoint and that P =
⋃sP

i=1 P (i). See
Figure 4 for an illustration.

To form pattern P , we first form a suitable initial drawing pattern of diameter ≤ 1. This
initial drawing pattern places each robot r ∈ R in one of sP ϵ-granular drawing formations
F (i) of size |P |/sP in state 1. If there exists a drawing path v(1) for P (1) that is compatible
with F (1) and starts at the anchor of F (1), we immediately get a corresponding (rotation-
symmetric) drawing path for each F (i). Assuming that, additionally, those drawing paths lie
“sufficiently inside” their respective cone C(i), we will prove a generalization of Lemmas 3.16
and 3.17, basically showing that the different F (i) can draw their P (i) without interfering
with each other. The existence of suitable drawing paths is shown in Section 4.
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To enable the robots to deduce the symmetric component P (i) they are drawing4, we
require F (i) to be aligned with P (i):

▶ Definition 3.19. Fix i ∈ { 1, 2, . . . , sP } and the i-th symmetric component P (i) of a pattern
P with symmetricity sP . Let F be a drawing formation with direction d⃗ and span ϕ. Then
F is aligned with P (i) if ∠(d⃗, e⃗x) = (i− 1) · 2π/sP and if ϕ = min { 2π/sP , π/3 }.

Figure 5 gives an illustration. With this, we define the initial drawing pattern of a pattern P

and a suitable drawing formation F as follows (illustrated in Figure 6):

▶ Definition 3.20 (Initial Drawing Pattern). Fix a pattern P of symmetricity sP . An initial
drawing pattern I for P is a configuration of |P | robots that consists of sP drawing formations
{F (i) }sP

i=1 of diameter ∆ ≤ 1/6 in state 1 such that:
1. F (1) is aligned with P (1) and anchored in (2∆, π/sP ).
2. F (i) is a rotation of F (1) by (i− 1) · 2π/sP .

We say I is ϵ-granular if the F (i) are ϵ-granular.

Note that, by construction, each F (i) is aligned with P (i). Moreover, I is a near-gathering
configuration (i.e., has diameter ≤ 1) and has symmetricity sP , such that we can form I
from any near-gathering for which the symmetry condition (Theorem 2.2) holds.

It remains to prove that once the initial drawing pattern is formed, each drawing formation
F (i) forms its symmetric component P (i) and does not interfere with the operation of any
other drawing formation F (j) with j ̸= i.

▶ Lemma 3.21. Assume the current configuration is an ϵ-granular initial drawing pattern I
for a pattern P of symmetricity sP . Consider a drawing path v(1) =

(
v

(1)
j

)k

j=1 of symmetric
component P (1) that is compatible with F (1) such that
1. the path v(1) starts in the anchor of F (1),
2. v(1) lies in the first cone (i.e., v(1) ⊆ C(1)) and

dist
(

v(1), ∂C(1)
)

> max{ ϵ, ∆ · sin(2π/sP ) }. (3)

Then P can be formed in O
(
k
)

many LCM-cycles.

Proof. From Lemmas 3.16 and 3.17 we know, P (1) can be formed by F (1) assuming P (1) is
the whole pattern. The traversal of this path takes at most k rounds to reach v

(1)
k plus 2

rounds for dropping the last robots. With the other symmetric components P (i) next to
P (1), F (1) can still form P (1) if F (1) is always valid. We will prove in the following, that F (1)

is always valid.

Validity. F (1) = (RF , HF ) is valid, if there exists no subset RG ⊆ R which fulfills the criteria
of Definition 3.7 such that G = (RG, HG) a ϵ-granular drawing formation RG ̸= RF and
HF ∩HG ̸= ∅. F (1) is aligned with C(1) (Definition 3.19). It follows directly, that F (1) ⊆ C(1)

and naturally for all symmetric drawing formation F (i) that F (i) ⊆ C(i). Therefore, those
drawing formations have disjunct hulls. From the proof of Lemma 3.16 we know that all
dropped robots on p ∈ P (1) have a distance ≥ ∆ to HF , therefore those robots cannot be
part of RG. It is left to show, that r ∈ C(i) with i ̸= 1 cannot build a drawing formation G

that intersects HF .

4 Since robots are disoriented, they cannot deduce which P (i) they are drawing. But they can deduce
P (i)’s coordinates in their own, local coordinate systems.
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Two dropped robots r1, r2 on p1, p2 ∈ P have dist(r1, r2) > ϵ, this follows from the
fact that ε ≤ mindist(P ) (Property 1 of Definition 3.15). Let F be anchored on v

(1)
j . By

prerequisit (1) dist(v(1)
j , ∂C(1)) > ϵ. Because F (1) is aligned to C(1), dist(∂C(1),RF ) > ϵ.

Therefore r1 ∈ F (1) and r2 /∈ F (1) have dist(r1, r2) > ϵ. Therefore, drawing formation G

must have a pair of dist(r1, r2) > ϵ which are part of the same drawing formation F (i). There
must exist a third robot r3 /∈ F (i) collinear to r1, r2 with dist(r3, {r1, r2}) ≤ ∆. W.l.o.g
i = 1. Let HF = (a, d⃗, Φ, ∆) be the drawing hull of F (1). Because F (1) is aligned to C(1)

(Definition 3.19) d⃗ is parallel to one side of its boundary and the line segment line(a,−d⃗, ∆)
can never cut this side. line(a,−d⃗, ∆− ϵ) cuts the other side of C(1) boundary with angle Φ.
The length of line(a,−d⃗, ∆− ϵ) must be ≥ dist(∂C(1))

sin(Φ) . The line segment has a length of ∆.

Φ = 2π
sP

(Definition 3.19) dist(a, ∂C(1)) ≥ ∆ · sin
(

2π
sP

)
(assumption (2) of this lemma). This

resolves to ∆− ϵ ≥ ∆ · sin
(

2π
sP

)
/ sin

(
2π
sP

)
= ∆, which is obviously a contradiction. Therefore,

line(a,−d⃗, ∆− ϵ) is completely in C(1) and cannot contain r3 /∈ F (1). ◀

3.5 Putting Everything Together
Section 3.4 showed how to form a pattern P assuming we start in a suitable initial drawing
pattern I and if a compatible drawing path v(1) for P (1) exists. We continue by showing the
existence of such a path for patterns with symmetricity sP := sym(P ) < |P |/2 (Lemma 3.22,
proven in Section 4 and Appendix A); patterns of larger symmetricity can be handled without
drawing formations (Lemma 3.23). Afterward, in Lemma 3.24, we prove that each robot can
distinguish in which phase of our protocol it is:

(i) forming I,
(ii) being part of a valid ϵ-granular drawing formation F ,
(iii) dropping the last three robots at the tail’s end, or
(iv) having been dropped at a pattern coordinate.
Putting everything together, we conclude this section with the proof of Theorem 1.1.
▶ Lemma 3.22. Consider the ϵ-granular drawing formation F (1) of the initial drawing
pattern for a connected pattern P of symmetricity sP < |P |/2. The parameter ϵ can be
chosen such that F (1) has |LF (1)(ϵ)| ≥ 2 + |P (1)| ϵ-granular locations. Moreover, there exists
a drawing path v(1) of symmetric component P (1) that is compatible with F (1) such that
1. the path v(1) starts in the anchor a = (2∆, π/sP ) of F (1),
2. v(1) lies in the first cone (i.e., v(1) ⊆ C(1)) and

dist
(

v(1), ∂C(1)
)

> max{ ϵ, ∆ · sin(2π/sP ) }. (4)

▶ Lemma 3.23. Consider a pattern P with symmetricity sP ≥ |P |/2. P can be formed.
With a separate algorithm, we can form patterns with symmetricity n or n/2. The robots

form P scaled down to diameter 1. Then, the robots scale the small pattern back to its
original (large) size. Because of the high symmetricity, the scaling can be performed locally.
The proof can be found in Appendix C.
▶ Lemma 3.24. Let r ∈ R be a robot in a configuration described in Lemma 3.22 executing
the protocol from Lemma 3.21. Then r can locally distinguish between the following situations:

(i) r is in an initial configuration before the initial drawing pattern is formed
(ii) r ∈ HF of a valid ϵ-granular drawing formation F

(iii) r ∈ Finter (see Definition B.1)5

(iv) r has been dropped from a drawing formation

5 Finter is a slight alteration of the ϵ-granular drawing formation used in the very last step of the execution.
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Proof.
(i) If a robot r ∈ R sees |P | robots, it is in a near-gathering and observes all robots R. In

that case, r checks whether R equals the initial drawing pattern I (Definition 3.20) or
any of the execution steps resulting from the protocol described in Lemma 3.21 that
are still a near-gathering (Θ(1) many). If not, r can conclude that it is in the initial
configuration.

(ii) Is clear by Observation 3.8.
(iii) Is shown in Lemma B.3.
(iv) When a robot is dropped from a drawing formation it is on p ∈ P . We know, that

mindist(P ) > ϵ, therefore dropped robots can never form an ϵ-granular drawing forma-
tion. Moreover, in Lemma 3.21 we have shown that all ϵ-granular drawing formations
in the configuration are valid. Therefore, no robot r′ ∈ HF can be part of another
ϵ-granular drawing formation F ′. Similar arguments are true for Finter. Hence, a robot
observing that it is not in one of the first three situations knows that it has been
dropped. ◀

▶ Theorem 1.1 (restated). A connected pattern P can be formed by |P | oblivious OBLOT
robots with limited viewing range in the Fsync model from a near-gathering I if and only if
sym(I) | sym(P ). The formation takes O(n) rounds, which is worst-case optimal.

Proof. The first direction follows from Theorem 2.2, since a pattern where sI := sym(I)
does not divide sP := sym(P ) cannot be formed.

For the second direction, assume sI | sP . By Lemma 3.23 the pattern can be formed
if sP ≥ |P |/2, so assume sP < |P |/2. Then we must execute the protocol described in
Lemma 3.21, whose prerequisites (esp. the existence of a suitable drawing path) can be
fulfilled: By Lemma 3.24 we know, that a robot can locally decide between the phases
necessary to start and execute the protocol. If R is in an initial near-gathering before forming
the initial drawing pattern I, the robots collectively form I (which has symmetricity sP and,
thus, can be formed by Theorem 2.2). From Lemma 3.22’s guarantee on |LF (1)(ϵ)| we get
that the drawing formation has enough locations for the number of robots as well as the
existence of a suitable drawing path. Thus, we can apply Lemma 3.21 to get that one robot
is dropped at each p ∈ P after at most O(|P |) rounds. By Lemma 3.24, robots can realize
that they have been dropped and remain idle on their respective pattern coordinate. ◀

4 Existence of Suitable Drawing Paths

In the previous section, we showed that a drawing formation F (i) which is placed in C(i) can
traverse a drawing path v of P (i) if F (i) is compatibiliy to v(i). We omited all details on
how we can create such a drawing path. In this section, we will construct a path and prove
that it fulfills all required properties of Lemma 3.22. The final proof of Lemma 3.22 can be
found in Appendix A.

Outline. For a symmetric component P (1), we define a tree T (1) with O(n) nodes such that
its nodes cover all points of P (1). The tree’s root node will be (2∆, π/sP ), the initial position
of the drawing formation F (1) aligned to P (1). It is clear that a simple traversal of T (1) will
fulfill the requirement (1) and (4) of compatibility. To additionally fulfill (2) and (3), we
construct a tail that fits the requirements and append it to the traversal. To prove that such
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a tail always exists we show, that it is always possible to rotate P s.t. P (1) contains ≥ 3
connected positions.6 We use these three positions to append a tail to T (1) that fulfills the
requirement of compatibility.

4.1 Tree Construction
▶ Definition 4.1 (Drawing-Tree). Let P (1) be a symmetric component of P . We call T (1)

constructed with algorithm Algorithm 1 a drawing-tree of P (1).

Algorithm 1 ConstructDrawingTree(P (1)).

root← (2∆, π/sP )
Baseleft ← linear line (2∆, π/sP ) + i · (4δ, 2π/sP ) for i ∈ {1, · · · ,∞} starting at root

Baseright ← linear line (2∆, π/sP ) + i · (4δ, 0) for i ∈ {1, · · · ,∞} starting at root

T (1) ← root + Baseleft + Baseright ▷ Base Tree
while cov(T (1)) ̸= P (1) do ▷ grow the tree inside the cone

let (p, t), p ∈ P (1) \ cov(T (1)), t ∈ T (1) be the pair with minimal distance
if dist(p, t) < 1− δ then

add p to T (1) and connect it to t

else
t′ ← (p + t)/2 ▷ Intermediate node between p and t

add t′ to T (1) and connect it to t; add p to T (1) and connect it to t′

remove all subtrees of T (1) that do not cover any p ∈ P (1) and return T (1)

It is clear that T (1) is computable from P . The nodes cover all positions in P (1). Distances
between neighboring nodes are 4δ on the linear lines and at most 1− δ everywhere else. So
T (1) fulfills all requirements for a drawing path for δ ≤ 0.2.7

▶ Observation 4.2. A reasonable short and deterministically computable traversal of T (1) as
defined in Definition 4.1 is a drawing path for δ ≤ 0.2. We define trav(T (1)) to represent
the path of this traversal.

Summary of Lemma 3.22 proof. trav(T (1)) is a drawing path, but it is not necessarily
compatible to a drawing formation because the tail does always not fulfill the requirements
of Definition 3.15. The tail is the last part of the path, which covers in total ≤ 3 pattern
positions (Definition 3.14). For the compatibility, it must have a length that is traversable by
a drawing formation of 3 robots, i.e. length ≤ |A3

F (ϵ)|. Additionally, all positions covered by
the tail must be in the distance ≤ 1 to the last node of the tail. This allows the remaining
3 robots of the drawing formation to reach the last three pattern positions from the last
node of the tail. In Lemma A.1 we first show that there exists suitable start point zstart and
end point zend for such a tail. zend is a suitable end point, when it has at least 3 positions
p1, p2, p3 ∈ P (1) in its 1-surrounding. zstart must have a constant distance to zend and cover
at least one additional position p4 ∈ P (1) \ { p1, p2, p3 }. To prove Lemma 3.22 we construct
a compatible drawing path out of zstart, zend and T (1). We connect zstart and zend with
intermediate nodes in a straight line and add possibly up to 3 additional intermediate nodes

6 While the pattern is connected by definition, the cuts in symmetric components can disconnect parts of
the component. E.g. if the pattern is a multi-helix spiral

7 It holds for δ ≤ 0.2 that 4δ ≤ 1 − δ
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around zend to cover the positions p1, p2 and p3. zstart is connected with a straight line
of intermediate nodes to the end of T (1) as well. Because zstart and zend have a constant
distance and cover, together with the intermediate nodes, at least the positions p1, · · · , p4 we
know that the tail fulfills the requirements mentioned above. The full proof of Lemma 3.22
can be found in Appendix A.

5 Discussion and Future Work

This section discusses some additional aspects of our arbitrary pattern formation protocol
for oblivious robots with a limited viewing range and highlights some open questions.

Near-Gathering with Symmetry Preservation. We presented a protocol that starts in a
near-gathering (all robots within a constant diameter). The authors of [4] gave a class of
near-gathering protocols in the same model we consider. They proved that their protocols,
starting from any connected initial configuration, reach a near-gathering in O(|P |2) rounds.
However, their class contains protocols that increase the symmetricity during the execution.
For the application of pattern formation, it is essential that the swarms symmetricity does
not exceed sym(P ). It remains an interesting open question whether there is a suitable
near-gathering protocol that preserves the initial symmetricity.

Synchronicity. We assume the fully-synchronous Fsync scheduler for our protocol. In the
related work, many papers assume Async. The authors of [13] proved that, for an unlimited
viewing range, Fsync has the same pattern formation capabilities as Async. An unlimited
viewing range makes it much easier to maintain common knowledge in the swarm (like a
common coordinate system). For a limited viewing range, our protocol must maintain this
information during execution (using the ϵ-granular drawing formations). In the Async model,
where only a part of the drawing formation might be activated, we would have to ensure that
“partially” moving a drawing formation does not destroy the encoded information (e.g., by
encoding information redundantly). It is a crucial part of ϵ-granular drawing formations that
their robots can identify them, and we would have to maintain this property under partial
movements. While it seems challenging, a careful design might be able to solve this.

Connectedness. In our main theorem, we assume that the unit disc graph of P is connected.
This is a natural assumption for robots with limited visibility because they cannot interact
beyond their viewing range. Whenever such pattern formation is used in a real-world
application, basically only connected patterns are meaningful (e.g., for creating an ad-hoc-
network). However, our protocol is capable of forming patterns with less connectivity. It
applies to any pattern P where a compatible drawing path can be created. When we translate
Definition 3.15 to a pattern, we get the following condition:

Let perm(P ) be a permutation of P . There exist perm(P ) = (pi)k
i=1 such that

1. dist(pi, pi+1) ≤ |Ak−i
F (ϵ)| for 1 ≤ i ≤ k − 2

2. pk−2, pk−1 and pk must have a smallest enclosing circle of radius ≤ 1
Condition (1) follows from (1) and (2) of Definition 3.15, and condition (2) is necessary such
that a drawing path can fulfill (4) of Definition 3.15.

Besides the last three robots, the maximal distance between two pattern positions is
dependent on |Ak−i

F (ϵ)|. In the proof of Lemma 3.11 we have shown that |Ak−i
F (ϵ)| =

O
((

ϵ−1

k−i−3
))

. We can choose ϵ freely to reach any distance necessary.
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A Proof of Lemma 3.22

▶ Lemma A.1. Let P be a pattern with symmetricity sP < |P |/2. There exist for each
symmetric component P (1) with cone C(1) points zstart and zend such that
1. |B(zend, 1)| ≥ 3
2. if |P (i)| > 3

a. |B(zstart, 1− δ) ∪ B(zend, 1)| ≥ 4
b. dist(zstart, zend) = O(1)
c. dist({zstart, zend}, ∂C(1)) = Ω(1/sP + mindist(P ))

Proof.

(1). Consider a finite subset S ⊂ R2 of symmetricity s and size |S| ≥ 3s. Assume the
unit disc graph U(S) is connected. It is a simple geometric fact that there exists a subset
C ⊆ S of size |C| = 3 and with ∠(C) < 2π/s such that U(C) is connected. We stated and
proved this in the appendix (Lemma D.1). Our pattern P is such a set and a symmetric
component P (1) is a subset with ∠(C) < 2π/s, therefore there exists a rotation of P such
that p1, p2, p3 ∈ P (1) with U({p1, p2, p3}) connected. W.l.o.g. we assume this is the rotation
of P . Then, there exists a point zend with B(zend, 1) ⊇ {p1, p2, p3}.
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Trivial cases for (a), (b) and (c). If P (1) contains 4 positions with U({p1, p2, p3, p4})
connected, it is clear that zstart and zend can be placed with B(zstart, 1− δ) ∪ B(zend, 1) ⊇
{p1, p2, p3, p4} (a). If |B(zend, 1 − δ)| ≤ 3 (w.l.o.g. p4 /∈ B(zend, 1 − δ)), we place zstart in
distance ≤ 1− δ to p4 (b). zstart and zend have a constant distance (c). If B(zend, 1) contains
more than three positions that are not all connected, the placement for zstart is analog.

(a) and (b). We assume that B(zend, 1) = {p1, p2, p3}. Because U(P ) is connected, there
exists a path from p1 to p′ ∈ P (1) \ {p1, p2, p3} in U(P ). Let p1, w1 · · · , wk, p′ be a shortest
path form p1 to p′. The path can only contain 3 consecutive nodes in one symmetric
component (otherwise the component would contain 4 connected positions), therefore there
exist wj ∈ P (2) with j ≤ 3 and wl /∈ P (2) with l ≤ j + 3. If wl ∈ P (1), we find p4 = wl with
dist(p1, p3) ≤ 6. If wl ∈ P (3), there exist a rotational symmetric point in P (1), let this be p4.
It is clear that dist(p1, p4) ≤ dist(p1, wl) ≤ 6. We can place zstart in the distance 1− δ of p4
to fulfill (a) and (b).

(c). zstart can be placed relatively freely in a radius of 1− δ around p4, this easily fulfill (c).
There exist cases where zend must be placed directly on one of the three connected positions,
let this be p1. From Lemma D.1 we can follow, that w.l.o.g. pend lies on the bisector of
C(1). Let p′P (2) be the rotational symmetric point to p1. Naturally, dist(zend, ∂C(1)) =
1
2 dist(p1, p′) ≥ mindist(P ). ◀

▶ Lemma 3.22 (restated). Consider the ϵ-granular drawing formation F (1) of the initial
drawing pattern for a connected pattern P of symmetricity sP < |P |/2. The parameter ϵ can
be chosen such that F (1) has |LF (1)(ϵ)| ≥ 2 + |P (1)| ϵ-granular locations. Moreover, there
exists a drawing path v(1) of symmetric component P (1) that is compatible with F (1) such
that
1. the path v(1) starts in the anchor a = (2∆, π/sP ) of F (1),
2. v(1) lies in the first cone (i.e., v(1) ⊆ C(1)) and

dist
(

v(1), ∂C(1)
)

> max{ ϵ, ∆ · sin(2π/sP ) }. (4)

Proof. Let T (1) be the drawing tree of P (1) Definition 4.1. trav(T (1)) has all proper-
ties for a drawing path (Observation 4.2). Let F (1) be a drawing formation with ϵ =
Θ(min(1/sP , mindist(P ), 1/

√
|P |) and ∆ = 0.1 and Φ = 2π/sP To make trav(T (1)) compat-

ible with F (1) we append the points zstart and zend from Lemma A.1. We add b = O(P )
itermediate nodes w1, · · · , wb between the end of trav(T (1)) and zstart. We add b′ = O(1)
intermediate nodes wb+1, · · · , wb+b′ between zstart and zend The resulting path is

v(1) := trav(T (1)) + (wi)b
i=0 + (zstart) + (wi)b+b′

i=b+1 + (zend)

We make sure, that

cov((wi)b+b′

i=b+j + (zend)) ⊆ B(zend, 1) with | cov((wi)b+b′

i=b+j + (zend))| ≥ 3

for 1 ≤ j ≤ b′. This is possible by placing up to 3 intermediate nodes in distance ≤ δ to zend.
This number of nodes is sufficient to reach zstart, respectively zend, with distances ≤ 1− δ

between wi and wi+1, because zstart has a distance O(|P |) from any node of trav(T (1)) and
zend has a constant distance from zstart (see Lemma A.1). There obviously exist deterministic
methods to define the intermediate paths, chose zend, zstart, and determine trav(T (1)) with
hops(trav(T (1))) = O(|P |).
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Compatibiliy. We show that conditions (1) - (4) from Definition 3.15 are fullfiled. (1)
with δ = 0.1 this is fullfiled (2) From Lemma A.1 we know that |B(zend)| = 3. From the
equation in the beginning of this proof follows cov(tail(v(1))) ⊆ B(zend), (3) If |P (1)| ≥ 4
than |B(zstart, 1− δ) ∪ B(zend, 1)| ≥ 4 (by Lemma A.1 (2)) Hence, the tail of v(1) must start
after zstart. |tail(v(1))| = O(1) in this case (3) is fulfilled (see Lemma 3.11). If |P (1)| = 3
we know that ϵ = O(1/|P |). By Lemma 3.11) follows that A3

F (ϵ) = Ω(|P |). tail(v(1)) = v(1)

with length O(|P |) in this case. This fulfills (3). (4): With ϵ = O(1/
√
|P |) we have

|A4
F (ϵ)| = Ω(|P |) (see Lemma 3.11). We have |v(1)| = O(|P |). This fulfills (4)

Requirements (1) and (2) of Lemma 3.22. (1) the root node of T (1) has coordinate
(2∆, π/sP ) and is the start of v(1). (2) By construction of Definition 4.1 is clear that
dist(t, ∂c(1)) ≥ dist((2∆, π/sP ), ∂c(1)) = ∆ · sin

( 2π
sP

)
for t ∈ T (1). By Lemma 3.17 we know

that dist(zi, ∂C(1)) = Ω(mindist(P )), i ∈ {1, 2}. ϵ < min(1/sP , mindist(P ), 1/
√
|P |) · ∆.

With this choice of ϵ we can create a ϵ-granular drawing formation that has more locations
that |P (1)|+ 2.

Such that F is an ϵ-granular drawing formation, the parameter ∆, ϕ and ϵ must be known.
∆ and Φ are given above and computable from P . ϵ = min(1/sP , mindist(P ), 1/

√
|P |) · c for

a constant c < 1. The constant can be deterministically determined (but we never write it
down). ◀

B Proof of Lemma 3.17

▶ Lemma 3.17 (restated). Consider a compatible drawing path v = (vj)k
j=1 of a pattern P .

Let R be the configuration that has
1. one robot at each coordinate in P \ cov(tail(v)) and
2. a drawing formation F of size 3 in state |tail(v)| anchored in vk that is compatible with v.

Then F can dissolve within two LCM-cycles while dropping one robot at each coordinate in
cov(tail(v)).

We have shown in Lemma 3.16 that on all coordinates outside the tail(v), F can drop
robots while traversing the drawing path v. On the tail it cannot further drop robots before
reaching the end; otherwise |RF | ≤ 2, which is not an ϵ-granular drawing formation anymore.
In fact, it can never be a valid drawing formation because two robots can not encode the
direction d⃗ in a model without a compass. Therefore, F does not drop robots onto cov(tail(v))
during the traversal. Instead, the drawing formation moves onto vk, and the robots will
move from there onto cov(tail(v)). Because dist(cov(tail(v)), vk) ≤ 1 for a compatible path,
the drawing formation is close enough to all remaining positions. However, not all robots
in RF are on vk; they can have a distance up to ∆. If dist(vk, p) > 1−∆, p ∈ cov(tail(v))
than the drawing formation F can be placed inconvinenetly such that dist(r, p) > 1, r ∈ RF .
We will add an intermediate step that reshapes the drawing formation such that all robots
have a distance of ≤ 1 to the coordinate they must obtain in the end. Robots may leave the
drawing hull HF , but most properties of a drawing formation must still be fulfilled. This
intermediate shape Finter must be valid in the sense that robots in Finter must be able to
determine the position of vk and the direction vector d⃗ to compute the global coordinate
system. In the following proof, we will define the intermediate shape and prove that robots
can obtain this information.

▶ Definition B.1 (ϵ-intermediate-shape). Let P be a pattern and v = (v1, · · · , vk) be its
drawing path with
1. | cov(tail(v))| = 3 and
2. B(vk, 1) ⊇ cov(tail(v))
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Let cov(tail(v) = {p1, p2, p3}. The intermediate shape Finter definines the following positions
for a set of three robots r1, r2, r3.

r1 is on vk

r2 is distance ϵ/2 in direction p2 and
r3 is distance ϵ/3 in direction p3

▶ Observation B.2. Let Finter be an intermediate shape as in Definition B.1. It is clear,
that dist(r1, p1) ≤ 1, dist(r2, p2) ≤ 1 and dist(r3, p3) ≤ 1.

▶ Lemma B.3. Let P be a pattern and v = (v1, · · · , vk) be a drawing path which is compatible
with an ϵ-ganular drawing formation. Let Finter be an intermediate shape as defined in
Definition B.1 which is on vk. Let dist(vk,R \ Finter) > ϵ. All robots r ∈ Finter can decide,
that they are in Finter and can compute the positions of tail(vk) in their local coordinate
system.

Proof. To decide, whether a robot r ∈ Finter is in Finter it observes other robots in distance
ϵ. Because the dist(vk,R\Finter) > ϵ it only finds one triple of robots with distances ϵ/2 and
ϵ/3. Let r1, r2, r3, p1, p2, p3 be as in Definition B.1. The triangle r1, r2, r3 is never equiliteral
(one side has length ϵ/2 and another ϵ/3). With chirality, all three robots know, who is r1, r2
and r3. They know the coordinates p1, p2 and p3 as well as the position of vk in the global
coordinate system. The positions of r1, r2 and r3 in the global coordinate system are also
defined. Therefore, they can translate/rotate their local coordinate system and compute
tail(vk). ◀

Lemma 3.17 follows immediately from Observation B.2 and Lemma B.3.

C Proof of Lemma 3.23

Proof. For sp = |P |/2, the pattern P has coordinates ∪sP −1
i=0 {(D1, α1 + i · 2π/sP ), (D2, α2 +

i · 2π/sP )} with α1, α2 ≤ 2π/sP . sp = |P | is just a special case with D1 = D2 and
α1 = α2. Let post(ri) be the positon of the robot ri in round t. In a configuration with
symmetricity |P |/2, the positions are as follows post(ri) = (d1(t), β1(t) + ((i− 1)/2) · 2π/sP )
if i uneven, post(ri) = (d2(t), β2(t) + (i/2) · 2π/sP ) if i even. The robots form in the first
round of the execution the pattern P scaled to a diameter ≤ 1. From there on, they
scale the pattern up. Therefore d1(t)

d2(t) = D1
D2

and β1(t) = α1, β2(t) = α2 for t > 1. It is
clear, that the ”uneven” (i is uneven) robots on post(ri) = (d1(t), α1 + ((i− 1)/2) · 2π/sP )
can distinguish themself from the ”even” robots on post(ri) = (d2(t), α2 + (i/2) · 2π/sP )
when d1(t)

d2(t) = D1
D2

. This is enough to compute the global coordinate system. The robots

move onto positions with the same angle and d1(i + 1) = min
(

d1(i) + 1, d1(i) · d2(i)+1
d2(i) , D1

)
d2(i + 1) = min

(
d2(i) + 1, d2(i) · d1(i)+1

d1(i) , D2

)
This reached d1(t) = D1and d2(t) = D2 after

≤ max(D1, D2) ≤ |P | rounds. ◀

D Auxiliary Results

▶ Lemma D.1. Consider a finite connected subset S ⊂ R2 of symmetricity s := sym(S) ∈ N
and size |S| ≥ 3s. There exists a subset C ⊆ S of size |C| = 3 and with ∠(C) < 2π/s such
that C is connected.

The proof can be found in [14].
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Abstract
This paper considers the shape formation problem within the 3D hybrid model, where a single
agent with a strictly limited viewing range and the computational capacity of a deterministic finite
automaton manipulates passive tiles through pick-up, movement, and placement actions. The goal
is to reconfigure a set of tiles into a specific shape termed an icicle. The icicle, identified as a
dense, hole-free structure, is strategically chosen to function as an intermediate shape for more
intricate shape formation tasks. It is designed for easy exploration by a finite state agent, enabling
the identification of tiles that can be lifted without breaking connectivity. Compared to the line
shape, the icicle presents distinct advantages, including a reduced diameter and the presence of
multiple removable tiles. We propose an algorithm that transforms an arbitrary initially connected
tile structure into an icicle in O(n3) steps, matching the runtime of the line formation algorithm
from prior work. Our theoretical contribution is accompanied by an extensive experimental analysis,
indicating that our algorithm decreases the diameter of tile structures on average.
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1 Introduction

Advancements in molecular engineering have led to the development of a series of computing
DNA robots designed for nano-scale operations. These robots are intended to perform
simple tasks such as transporting cargo, facilitating communication, navigating surfaces
of membranes, and pathfinding [29, 1, 22, 4]. Envisioning the future of nanotechnology,
we anticipate a scenario where a collective of computing particles collaboratively acts as
programmable matter – a homogeneous material capable of altering its shape and physical
properties programmably. There are numerous potential applications: For environmental
remediation, particles may construct nanoscale filtration systems to remove pollutants from
air or water. They may also be deployed within the human body to construct intricate
structures for targeted drug delivery, perform nanoscale surgeries, or repair damaged tissues
at a cellular level. Additionally, they could assemble nanoscale circuits and components,
enabling the development of more efficient and compact electronic devices. Each of those
scenarios is an application of the shape formation problem, which is the subject of this paper.
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15:2 Efficient Shape Formation by 3D Hybrid Programmable Matter

Over the past few decades, various models of programmable matter have emerged,
primarily distinguished by the activity of entities within them. Passive systems consist of
entities (called tiles) that undergo movement and bonding exclusively in response to external
stimuli, such as current or light, or based on their inherent structural properties, such as
specific glues on the surfaces of tiles. Examples of these passive systems include the DNA
tile assembly models aTAM, kTAM, and 2HAM, which are extensively discussed in the
survey [25], as well as population protocols [2], and slime molds [5]. In contrast, active
systems consist of entities (called particles, agents or robots) that independently perform
computation and movement to accomplish tasks. Notable examples encompass the Amoebot
model [7], modular self-reconfigurable robots [27, 30], the nubot model [34], metamorphic
robots [6, 31], and swarm robotics [33].

While fabricating computing DNA robots remains challenging, producing simple passive
tiles from folded DNA strands is efficient and scalable [14]. The hybrid model of programmable
matter [12, 13, 16, 23, 19] offers a compromise between feasibility and utility. This model
involves a small number of active agents with the computational capabilities of deterministic
finite automata together with a large set of passive building blocks, called tiles. Agents can
manipulate the structure of tiles by picking up a tile, moving it, and placing it at some spot.
A key advantage of the hybrid approach lies in the reusability of agents upon completing a
task, where in purely active systems, particles become part of the formed structure.

In this paper, we address the shape formation problem within the 3D hybrid model,
with the ultimate goal of transforming an arbitrary initial arrangement of tiles into a
predefined shape. We consider tiles in the shape of rhombic dodecahedra, i.e., polyhedra
featuring 12 congruent rhombic faces, positioned at nodes within the adjacency graph of
face-centered cubic (FCC) stacked spheres (see Figure 1a). Unlike rectangular tiles, the
rhombic dodecahedron presents a distinct advantage: it allows an agent to orbit around a tile
without risking connectivity. This property is particularly valuable in liquid or low gravity
environments, where it prevents unintended separation between the agents and the tiles.

Achieving universal 3D shape formation faces a key challenge: identifying tiles that can
be lifted without disconnecting the tile structure (referred to as removable tiles). Even if
such tiles exist, locating them requires exploring the tile structure, demanding Ω(D log(∆))
memory bits for graphs with a diameter D and degree ∆ [11]. When limited to constant
memory, navigating plane labyrinths requires two placeable markers (pebbles) [17, 3]. In
the 2D context, finding removable tiles is impossible without prior modification of the tile
structure, as discussed in [13]. In 3D, complexity increases significantly, with instances where
any tile movement can locally disconnect the structure. As discussed above, the agent is
unable to verify whether this disconnection also occurs globally. To address these challenges,
we make the assumption that the agent carries a tile initially, using it to uncover removable
tiles through successive tile movements. It is still entirely unclear whether otherwise a
removable tile can be found in all 3D instances. For that reason, our primary goal is to
construct an intermediate structure that is easily navigable by constant-memory agents and
allows the identification of removable tiles without relying on an initially carried tile.

1.1 Our Contribution
The intermediate structure we propose is termed an icicle, characterized by a platform
representing a parallelogram and downward-extending lines of tiles from the platform (see
Figure 1a). We present a single-agent algorithm that transforms any initially connected
tile structure into an icicle in O(n3) steps, matching the efficiency of the line formation
algorithm from prior work [16]. While both the icicle and the line enable agents without an



K. Hinnenthal, D. Liedtke, and C. Scheideler 15:3

initial tile to find removable tiles, the icicle presents distinct advantages. In the best-case
scenario, the diameter D of an icicle can be as low as O(n 1

3 ), whereas a line consistently
maintains a diameter of n. Furthermore, an icicle encompasses multiple removable tiles, which
removes the necessity to traverse the intermediate shape completely to locate a removable
tile. Our paper includes comprehensive simulation results, indicating that, on average, our
algorithm reduces the diameter of the tile structure. In addition, the runtime observed in the
simulations consistently falls below the bound established in our runtime analysis. Across
all simulations, the runtime remains well within the vicinity of n2. It is noteworthy that we
identified an edge case where the diameter could increase by a factor of O(n 1

3 ), although we
believe this to be the worst-case.

1.2 Related Work
The 3D variant of the hybrid model was introduced in [16], where the authors presented an
algorithm capable of transforming any connected input configuration into a line in O(n3)
steps. In [19], the authors address the coating problem, providing a solution that solves
the problem in worst-case optimal O(n2) steps. They assume a single active agent that has
access to a constant number of distinguishable tile types.

Significant progress has been made in recent years regarding the 2D version of the hybrid
model. For instance, in [13], the authors address the 2D shape formation problem, presenting
algorithms for a single active agent that efficiently constructs line, block, and tree structures
- each being hole-free structures with specific advantages and disadvantages – in worst-case
optimal O(n2) steps. Another publication, [12], explores the recognition of parallelograms
with a specific height-to-length ratio. The most recent publication [23] solves the problem of
maintaining a line of tiles in presence of multiple agents and dynamic failures of the tiles.

Closely tied to the hybrid model is the well-established Amoebot model, where computing
particles traverse an infinite triangular lattice through expansions and contractions. In [8],
the authors showcase the construction of simple shapes like hexagons or triangles within
the Amoebot model. Expanding on this work, [9] introduces a universal shape formation
algorithm capable of constructing an arbitrary input shape using a constant number of
equilateral triangles, with the scale depending on the number of amoebots. Notably, this work
assumes common chirality, a sequential activation schedule, and randomization. Subsequent
improvements are presented in [10], where a deterministic algorithm is introduced, enabling
amoebots to form any Turing-computable shape without the need for common chirality or
randomization. In [20], the authors consider shape formation in the presence of a finite
number of faults, where a fault resets an amoebot’s memory. They solve the hexagon
formation problem, assuming the existence of a fault-free leader. A recent extension of the
Amoebot model, discussed in [24], considers joint movements of Amoebots. The authors
simulate various shape formation algorithms as a proof of concept.

In both [13] and this paper, shape formation algorithms are introduced that construct an
intermediate shape, intended to serve as the foundation for more advanced shape formation
algorithms. A similar strategy is explored in [18], where 2D lattice-based modular robots
initially transform into a canonical shape before achieving the final desired shape. An
approach that does not rely on canonical intermediate structures is considered in [26]. The
authors present primitives for the Amoebot model that establish shortest path trees within
the amoebot structure and subsequently directly route amoebots to their target position.

The concept of shape formation is extensively studied in the field of modular robotics
and metamorphic robots, often referred to as self-reconfiguration. A comprehensive survey
on this topic can be found in [28]. In the field of swarm robotics, shape formation is often
closely related to the problem of computing collision-free paths [32, 21].
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(a) (b) (c) (d)

Figure 1 (a) An example configuration that has the shape of an icicle; the agent (depicted as a
sphere) is positioned at a tiled node within the platform representing a parallelogram. (b–d) The
twelve compass directions divided into upwards (b), plane (c) and downwards directions (d).

1.3 Model Definition

We consider a single active agent r with limited sensing and computational power that
operates on a finite set of passive tiles positioned at nodes of some specific underlying graph
G, which we define in the following. Consider the close packing of equally sized spheres
at each point of the infinite face-centered cubic lattice. Let G = (V, E) be the adjacency
graph of spheres in that packing, and consider an embedding of G in R3 in which all edges
have equal length, e.g., the trivial embedding where the edge length equals the radius of
the spheres. Cells in the dual graph of G w.r.t. that embedding have the shape of rhombic
dodecahedra, i.e., polyhedra with 12 congruent rhombic faces (see Figure 1a). This is also
the shape of every cell in the Voronoi tessellation of G, i.e., that shape completely tessellates
3D space. Consider a finite set of tiles that have the shape of rhombic dodecahedra. Tiles
are passive, in the sense that they cannot perform any computation or movement on their
own. A node v ∈ V is tiled, if there is a passive tile positioned at v; otherwise node v is
empty. Each node can hold at most one tile and each tile is placed at at most one node at a
time. Each node in V has precisely twelve neighbors whose relative positions are described
by the twelve compass directions une, uw, use, n, nw, sw, s, se, ne, dnw, dsw and de (see
Figures 1b–1d). Take note that G contains infinitely many copies of the infinite triangular
lattice, which serves as the underlying graph in the 2D variant. This allows us to visually
depict 3D examples as a stack of 2D hexagonal tiles, as shown in Figure 1.

A configuration C = (T , p) is the set T that contains all tiled nodes together with the
agent’s position p. We call C connected, if G|T is connected or if G|T ∪{p} is connected and
the agent carries a tile, where G|W denotes the subgraph of G induced by some nodeset W .
That is, we allow the subgraph induced by all tiled nodes to disconnect, as long as a tile
carried by the agent maintains connectivity. This constraint prevents the agent and tiles to
drift apart, e.g., in liquid or low gravity environments.

The agent r is the only active entity in this model. It has strictly limited sensing and
computing power and can act on passive tiles by picking up a tile, moving and placing it
at some spot. We assume that tiles can be moved through other tiles, e.g., by Particularly,
we assume an agent with the computational capabilities of a deterministic finite automaton
that performs discrete steps of Look-Compute-Move cycles. In the look-phase, the agent
observes whether its current position p and the twelve neighbors of p are tiled or empty. The
agent is equipped with a compass that allows it to distinguish the relative positioning of
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its neighbors using the twelve above mentioned compass directions. Its initial rotation and
chirality can be arbitrary, but we assume that it remains consistent throughout the execution.
For ease of presentation, our algorithms and their analysis are described according to the
robot’s local view, i.e., we do not distinguish between local and global compass directions.
Based on the information gathered in the look phase, the agent determines its next state
transition according to the finite automaton in the compute-phase. In the move phase, the
agent performs an action that corresponds to the prior state transition. It either (i) moves
to an empty or tiled node adjacent to p, (ii) places a tile at p, if p /∈ T and r carries a tile,
(iii) picks up a tile from p, if p ∈ T and r carries no tile, or (iv) terminates. The agent can
carry at most one tile at a time and during actions (ii) and (iii) the agent loses and gains
a tile, respectively. It’s worth noting that we allow the agent to move through tiles while
carrying one simultaneously. From a practical standpoint, this capability can be facilitated
by conceptualizing tiles as hollow and foldable. It is assumed that the agent is initially
positioned at a tiled node, as otherwise, there might be no valid action available. Additionally,
we assume that the agent initially carries a tile, a justification for which was provided in
Section 1. While the agent is technically a finite automaton, we describe algorithms from
a higher level of abstraction textually and through pseudocode. It is easy to see that a
constant number of variables of constant-size domain each can be incorporated into the
agent’s constantly many states.

1.4 Problem Statement
Consider an arbitrary initially connected configuration C0 = (T 0, p0) with p0 ∈ T . Super-
scripts in our notation generally refer to step numbers and may be omitted if they are clear
from the context. An algorithm solves the icicle formation problem, if its execution results in
a sequence of connected configurations C0 = (T 0, p0), . . . , CT = (T T , pT ) such that nodes in
T T are in the shape of an icicle (which we define below), Ct results from Ct−1 for 1 ≤ t ≤ T

by applying some action (i)–(iii) to pt−1, and the agent terminates (iv) in step T .
For some node v ∈ V , we denote v + x the node that is neighboring v in some compass

direction x and −x the opposite compass direction of x, e.g., −une = dsw. We call a
maximal consecutive array of tiles in direction n and s a column, in direction nw and se a
row, and in direction une and dsw a tower. A parallelogram is a maximal consecutive array
of equally sized columns c0, ..., cm (ordered from west to east) whose southernmost tiles at
nodes v0, ..., vm are contained in the same row, i.e., vi + se = vi+1 for all 0 ≤ i < m. In a
partially filled parallelogram, column c0 can have smaller size than columns c1, ..., cm.

An icicle is defined as a connected set of towers whose uppermost tiles are contained
within the same (partially filled) parallelogram, as illustrated in Figure 1a. In other words,
tiles “grow” from a single uppermost parallelogram in the dsw direction, hence the chosen
name “icicle”. Notably, in an icicle, any tile with a neighboring tile at une but not at dsw
(some locally dsw-most tile below the parallelogram) can be picked up without violating
connectivity (it is removable). If there is no such tile, i.e., all towers have size one, the
northernmost tile of the westernmost column is removable.

1.5 Structure of the Paper
In Section 2, we introduce all essential terminology. Following that, we present a non-halting
icicle-formation algorithm in Section 3, prove that it converges any initially connected
configuration into an icicle in Section 4, and provide its termination criteria and runtime
analysis in Section 5. Finally, we discuss the results obtained from simulation in Section 6.
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(a) (b) (c)

Figure 2 Illustrating the x-, y-, and z-coordinate axes (a), the bounding cylinder (b), which
infinitely extends in directions une and dsw as indicated by the arrows, and the bounding box (c)
of an example configuration. For ease of distinction, tiles are shaded according to their z-coordinate,
with brighter shades representing lower z-coordinates. In the example, there is one layer that
contains two fragments (darkest shade of gray), and four layers that each contain a single fragment.

2 Preliminaries

We assign x, y and z coordinates to each node v ∈ V , denoted by c(v) = (x(v), y(v), z(v)),
where the x-coordinates grow from se to nw, y-coordinates from s to n, and z-coordinates
from dsw to une (see Figure 2a). The coordinates transition between neighbors as follows:

▶ Observation 1. Let w be some reference node with c(w) = (0, 0, 0). The following holds:
c(w + une ) = ( 0, 0, 1) c(w + uw) = ( 1,−1, 1) c(w + use ) = ( 0,−1, 1)
c(w + n ) = ( 0, 1, 0) c(w + nw) = ( 1, 0, 0) c(w + sw ) = ( 1,−1, 0)
c(w + s ) = ( 0,−1, 0) c(w + se ) = (−1, 0, 0) c(w + ne ) = (−1, 1, 0)
c(w + dsw) = ( 0, 0,−1) c(w + de ) = (−1, 1,−1) c(w + dnw) = ( 0, 1,−1)

Given some nodeset S, let xS
min, xS

max be the minimum and maximum x-coordinate of
any node in S, and define yS

min, yS
max, zS

min and zS
max accordingly. We normalize coordinates

according to the minimum coordinates in the initial set of tiled nodes T 0, i.e., we set we
set xT 0

min = yT 0

min = zT 0

min = 0. The bounding cylinder C(S) is the set of all nodes (both
empty and tiled) whose coordinates are bounded by the minimum and maximum x- and
y-coordinates in S, i.e., C(S) = {v ∈ V | xS

min ≤ x(v) ≤ xS
max, yS

min ≤ y(v) ≤ yS
max} (see

Figure 2b). Similarly, in the bounding box B(S) we further bound by the z-coordinate, i.e.,
B(S) = {v ∈ C(S) | zS

min ≤ z(v) ≤ zS
max}. We refer to the extent of a bounding box along

the x-, y- and z-axes as its width, height, and depth. Note that by the choice of our coordinate
axes, the bounding box is always a filled (potentially degenerated) parallelepiped (a 3D
rhomboid; see Figure 2c). A node v is inside the bounding cylinder (box) of S, if v ∈ C(S)
(v ∈ B(S)); otherwise, v is outside of the bounding cylinder (box) of S.

A layer Li is the set of all nodes with z-coordinate i that are contained in the bounding
cylinder of all tiled nodes, i.e., Li = {v ∈ C(T ) | z(v) = i}. We refer to nodes with
z-coordinate greater than and less than i as the nodes above and below layer Li, respectively.
The nodeset of a connected component of G|Li∩T is called a fragment (of Li) (see Figure 2).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3 The parallelogram formation algorithm on a 2D configuration. The agent performs
multiple steps between each depicted configuration. In (a) and (b) the agent finds a westernmost
column, and in (j) the agent terminates. In all other cases, a tile is shifted from the cross to the
circle, where the dashed lines indicate the path traversed before placing the tile. The path back to
where the tile is picked up as well as the movement to the next column (e.g., (e)–(f)) is not shown.

3 The Algorithm

From a high-level perspective, the agent iteratively transforms locally uppermost fragments
into partially filled parallelograms. This involves rearranging tiles within the same layer
and, at times, positioning tiles below the current layer to ensure connectivity. Whenever the
agent encounters tiles of some layer above, it moves further upwards. Once a parallelogram
is successfully formed, the subsequent step entails its projection. Essentially, during this
projection, each tile in the fragment is shifted to the first empty node in the dsw direction.

In the following, we provide detailed textual descriptions of the parallelogram formation
and projection procedures BuildPar and Project, as well as the full icicle formation
algorithm BuildIcicle. For completeness, their pseudocodes can be found in Appendix A.

3.1 A 2D Parallelogram Formation Algorithm

Refer to Figure 3 for an illustrative example of the algorithm in action. The algorithm
initiates with the agent searching for a locally westernmost column. In configurations
where multiple columns share the same x-coordinate and are locally westernmost, the agent
prioritizes finding the northernmost among them. This is achieved by moving in the nw, sw,
and n directions, prioritized in that order, until no more tile is encountered in any of these
directions. Eventually the agent stops upon reaching the northernmost tiled node v of some
column c. We refer to the steps involved in finding column c as the search phase.
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(a) (b) (c) (d) (e)

(f)

Figure 4 During a projection, the agent (black disk) shifts each tile of a fragment in direction
dsw. Detailed in (a-d) is the projection of a single column; (e) is a snapshot of the configuration
after the projection. The special case of a parallelogram with a height of one is shown in (f). To
maintain connectivity in that case, the agent moves sw + dnw to transition below the next column.

Subsequently, it executes the BuildPar procedure, which we describe in the following:
Starting from node v, the agent traverses each column in the configuration from n to s.
If, during the traversal of the first column c, the agent encounters either a more western
column (as depicted in Figure 3b) or a column with the same x-coordinate as c to the north
while moving n in the next column c′, it discontinues the current traversal and transitions to
the search phase. Notably, in the latter case, it first fully traverses column c′ in direction
n and afterwards moves to the first column west of c′. This technical detail will play an
important role in the runtime analysis. While traversing a column in the s direction, the agent
actively looks for an empty node that violates the shape of a (partially filled) parallelogram
with westernmost column c. Specifically, it checks the two empty nodes immediately above
(excluding column c) and below each column, as well as each empty neighbor to the east of
the column. Upon finding such a violating empty node w, the agent first places its carried
tile at w and then returns to column c to retrieve the tile from v. Subsequently, this exchange
of tiles is termed as a tile shift from v to w or as shifting (the tile) from v to w (recall that
the agent initially carries a tile that was never placed at any node). After picking up the
tile at v, the agent moves to an adjacent tile and transitions to the search phase again. The
agent terminates at the empty node s of the easternmost column once the configuration is
fully traversed without encountering any violating nodes. Any of the following conditions are
sufficient for an empty node w to be considered violating: (1) w has a tile at n, ne and se
(e.g., Figure 3c), (2) w has a tile at s and se (e.g., Figure 3d) and is not n of the westernmost
column (recall that we allow the parallelogram to be partially filled), (3) w has a tile at nw
and n (e.g., Figures 3e–3g and 3i), (4) w has a tile at nw, sw and s (e.g., Figure 3h).

3.2 An Icicle Formation Algorithm
From a high-level perspective, the construction of an icicle involves the iterative transformation
of a locally uppermost fragment into a parallelogram, followed by a projection of the fragment
in the dsw direction. When applying the parallelogram construction algorithm in a 2D
configuration, the agent can always shift the tile at the northernmost node v of a locally
westernmost column without violating connectivity (Figure 5a illustrates that connectivity
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r) (s) (t)

Figure 5 Illustrating all scenarios in which the northernmost node of a locally westernmost
column is not removable. For brevity, (a—r) only illustrate the agent’s movement (indicated by
arrows) to the empty node (with a dashed outline) that is tiled next; (s) and (t) also portray the
subsequent tile shifts. In (r), the agent may alternatively enter BuildPar if the outlined node were
tiled. Note that (s) and (t) only show instances where a tile at dsw (s) and de (t) is encountered.

is preserved in the only critical 2D case). In a 3D configuration, the situation becomes
more intricate. There are multiple cases in which the tile at v must remain in its immediate
neighborhood to avoid violating connectivity. Additionally, there is a case in which the tile
at v cannot be moved at all unless neighboring tiles are also moved. We categorize these
cases based on specific properties of node v, which we define as follows:

▶ Definition 1. Let v ∈ T be an arbitrary tiled node. Denote by N(v) the neighborhood of v

(exluding v), and by NT (v) its subset of only tiled nodes. Node v is removable, if the tiled
neighbors of v are locally connected, i.e., G|NT (v) is connected. Node v is shiftable, if G|NT (v)
is disconnected and there exists a node w ̸= v (termed bridge node of v) for which G|NT (v)∪{w}
is connected. Any node that is neither removable nor shiftable is termed unmovable.

We now state the full icicle algorithm: The agent starts in the search phase where it
repeatedly moves uw, use, une, nw, sw and n until it eventually stops at some node v.

If node v is removable, the parallelogram traversal procedure BuildPar is entered. There
are three possible outcomes: the agent returns from the procedure after finding a more
western column or some tile above, after placing a tile, or at the empty node s of the
fragment’s easternmost column. In the first case, the agent transitions to the search phase.
In the second case, the agent first moves back to pick up the tile at node v, then moves to
the next tile at s or se, and afterwards transitions to the search phase. In the third case, the
current fragment forms a correctly shaped parallelogram and the agent proceeds by executing
the Project procedure. During Project, each tile of the fragment is projected in the dsw
direction. Starting with the easternmost column, tiles are projected columnwise from east to
west and within the columns from n to s (see Figures 4a–4e). Let v0, ..., vk be the nodes of
the currently projected column ordered from n to s. For each i = 0, ..., k, the agent performs
a tile shift from vi to the first empty node wi in direction dsw of vi. After picking up the
last tile of the column at vk, the agent moves nw and continues the projection in the western
neighboring column. In the special case of a degenerated parallelogram with a height of
one, after picking up a tile, the agent moves sw and dnw instead (see Figure 4f). These
additional steps ensure that connectivity is maintained during the projection. Once the last
tile of the fragment is projected, the agent transitions to the search phase in the layer below.
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Otherwise, if the agent stops at a non-removable node v, it acts according to the case
distinction outlined below, prioritized in the given order (refer to Figure 5 for a graphical
overview). Subsequently, the agent transitions to the search phase, concluding our algorithm.

▶ Case A. If v + se is a bridge node of v (thereby v is shiftable and v + se is empty), then
shift the tile from v to v + se (see Figures 5a–5g), and move to v + s afterwards.

▶ Case B. If v + de is a bridge node of v, and at least one neighboring tile is not at dsw
or se, then shift the tile from v to v + de (see Figures 5h–5q), and move to the first tile at
v + s, v + se or v + ne. Additionally, if v + s is empty and both v + se and v + ne are tiled,
then traverse the next column starting at v + se in direction s. If during that traversal a tile
at uw, use or sw is encountered, then immediately transition to the search phase.

▶ Case C. If the only tiled neighbors of v are at dsw and se, then move se and observe node
w = v + se + dsw. If w is empty, then shift the tile from v to w (see Figure 5r), and move
to v + se afterwards. Otherwise, if w is already tiled, move back to v and enter BuildPar.

▶ Case D. If the only tiled neighbors of v are at dnw, s and ne (v is unmovable, see Figure 5s),
then follow these steps: First, move s until some node w is entered that has a neighboring
tile at uw, use, sw, dsw, se or de, or until there is no more tile in direction s. If w has a tile
at uw, use or sw, then immediately transition to the search phase. Otherwise, shift each
tile in the column that is somewhere n of w in direction de (including w if w + de is empty).
To be precise, let vk, vk−1, ..., v1, v be the nodes of the column ordered from s to n starting
at vk = w + n (or vk = w if w + de is empty). Perform a tile shift from vi to vi + de for
each i with k ≥ i > 0. After the tile shift at vi with i > 0, move ne + dnw to be positioned
at vi−1 + de (to preserve connectivity). Once the final tile is picked up, move to v + ne.

▶ Case E. If the only tiled neighbors of v are at dnw and s (see Figure 5t), then proceed
analogously to the previous case, with the exception that tiles at dsw are disregarded. Addi-
tionally, make the following adaptations: If no tile at uw, use, sw, se or de is encountered,
then project the whole column (which is a parallelogram of width one) in direction dsw.
Otherwise, after performing the final tile shift in direction de, repeatedly move s (on empty
nodes) and enter the first tiled node at s or se (which must exist since we did not project).

The following remarks aim to clarify the choices made in the above case distinction:
In case C, the node v + de serves as a bridge node for v; however, the agent takes an
additional step by attempting to shift the tile to v + se + dsw. This decision stems from
the fact that v + de is not within the bounding cylinder of tiles observable from node v.
Similarly, in case D, v + dsw serves as a bridge node for v. Although v + dsw is within
the bounding cylinder of observable tiles, it shares the same x- and y-coordinates as v. It is
essential to our analysis that tiles are never placed outside of the bounding cylinder, and that,
except for projections, tiles consistently advance to the east or south. In case B, the agent
removes the last tile of some column c and instead of immediately transitioning to the search
phase, it first traverses the next column c′ in the s direction. Similarly to the BuildPar
procedure, where the agent first traverses the next column c′ fully in direction n whenever a
more northern column of the same x-coordinate as c is found, this additional traversal is
crucial for the runtime analysis. To elaborate, if column c′ has multiple adjacent columns to
the west, then directly entering the search phase would result in repeatedly traversing the
same tiles within column c′. However, with the additional traversal in direction s in case B
(and in direction n in procedure BuildPar), we can ensure that each tile of c′ is visited only
a constant number of times whenever the agent does not currently perform a tile shift.
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4 Analysis

Due to space constraints, the proofs of our lemmas are only sketched here. Complete proofs
can be found in the full version of the paper [15]. In the following, Ci = (T i, pi) denotes
the configuration that results from the execution of BuildIcicle for i steps. We start by
showing that our algorithm complies with the connectivity constraint of the 3D hybrid model.

▶ Lemma 2. If the agent disconnects G|T i in step i, then G|T i+4 is connected, and for all
i < j < i + 4: G|T j∪{pj} is connected and the agent carries a tile.

One can show that G|T i can only disconnect during the projection of a parallelogram of
height one, and during consecutive tile shifts in cases D and E. These are the cases for which
we explicitly preserve connectivity by moving not on, but instead adjacent to tiled neighbors.

▶ Lemma 3. If during the execution of BuildIcicle a tile is shifted from some node v to
some node w, then there are tiled nodes ux, uy ∈ T with x(w) = x(ux) and y(w) = y(uy).

The lemma is proven through an extensive case distinction that includes the four conditions
under which a node is tiled during the BuildPar procedure, as well as any tile shift that may
result when the agent exits the search phase at a node v that is not removable. There are at
most 26 = 64 such cases, since v can have tiled neighbors in at most six directions. We argue
that the 20 cases depicted in Figure 5 are complete by providing 44 distinct neighborhoods
for which v is removable. Similarly, we can prove the following lemma by considering cases
where a tile is picked up instead of dropped.

▶ Lemma 4. For each i ≥ 0 there is a tiled node v ∈ T i with x(v) = 0.

We want to measure the progress of tiles within the bounding cylinder towards the east
and south by considering their x- and y-coordinates. As part of the BuildPar procedure and
cases B, D, and E, the y-coordinate of tiles can increase when their x-coordinate decreases.
Although the size of the bounding cylinder cannot increase by Lemma 3, it may decrease.
In such instances, by Lemma 4, the resulting bounding cylinder always aligns with the
eastern side of the initial bounding cylinder C(T 0). To address this, we introduce a combined
representation of the x- and y-coordinates w.r.t. the bounding cylinder C(T ) for arbitrary T .

Let yT
max and yT

min be the maximum and minimum y-coordinates within C(T ), and let
h = yT

max − yT
min + 1 be the height of C(T ), i.e., the cylinder’s extent along the y-axis. We

define the xy-coordinate of some node v ∈ C(T ) as xy(v) = x(v) · h + y(v)− yT
min.

Consider the following definitions, which we refer to as P1–P3, that relate to some
fragment F ⊆ T . We show that at some point any configuration contains a fragment that
fulfills P1–P3. Afterwards, we show that this configuration converges to an icicle.

▶ Definition 5. Let F ⊂ T be an arbitrary fragment.
P1: F is a platform, if {v + x | v ∈ F, x ∈ {uw, use, une}} ∩ T is an empty set.
P2: F is covering, if for each node v ∈ T there is a node w ∈ F with xy(w) = xy(v).
P3: F is an aligned parallelogram, if for each node v ∈ F it holds that for all i with
xy(v) ≥ i ≥ 0 there is a node w ∈ F with xy(w) = i.

P1 characterizes a locally uppermost fragment, P2 a fragment covering the xy-coordinates
of all tiled nodes, and P3 a fragment wherein tiles have the shape of a parallelogram aligned
along the southern, eastern, and northern sides of the bounding cylinder. We can now use
P1–P3 to give an alternative definition of the icicle shape.
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▶ Definition 6. A Configuration C = (T , p) is an icicle, if it contains a fragment F that
satisfies P1–P3, and for any node v ∈ T \ F it holds that v + une ∈ T .

Any tiled node that is not contained in the fragment F specified in Definition 6, must be
somewhere dsw = −une of F , as otherwise the number of tiles would be infinite. Hence,
each node v ∈ T \ F is contained in a tower of tiles whose uppermost tile is contained in F ,
and thereby Definition 6 is equivalent to our definition of an icicle from Section 1.4.

Subsequently, we only consider configurations in which the agent leaves the search phase
at some node v. This must eventually occur since moving upwards increases its z-coordinate,
and moving in directions sw, nw, or n increases its xy-coordinate. Both coordinates are
bounded within any finite set of tiled nodes. To simplify notation, we use Ci = (T i, pi) to
represent the configuration where the agent leaves the search phase for the i-th time.

Consider the potential function Φi =
∑

v∈T i xy(v) + |Pi|, where Pi denotes the set of all
platforms, i.e., fragments satisfying P1. We first show its monotonicity and lower bound.

▶ Lemma 7. For each i ≥ 0 it holds that Φi ≥ Φi+1 ≥ 0, and if Φi = Φi+1, then (1) no tile
was shifted between step i and i + 1, or (2) a fragment was projected between step i and i + 1.

The lemma mostly follows from the observation that within procedure BuildPar tiles
are visited in decreasing order of their xy-coordinates, and that each tile shift in cases A–E
decreases the x-coordinate of at least one tile. The number of platforms can only increase by
one as a result of case D, which is compensated by two tiles with decreasing x-coordinate.

▶ Lemma 8. If pi ∈ F i where F i is a fragment in Ci that satisfies P1–P3, then pi+1 ∈ F i+1

where F i+1 is a fragment in Ci+1 that satisfies P1–P3.

The proof of the previous lemma is straight forward. Since F i satisfies P1, the agent
cannot leave F i to a layer above. Since it satisfies P2 and cases A–E necessitate a tile below
that is not covered by F i, the agent must enter BuildPar within F i. Finally, since F i

satisfies P3, the agent must project F i directly after the BuildPar procedure. As a result,
F i+1 is a direct copy of F i in direction dsw which also satisfies P1–P3.

▶ Lemma 9. For each i ≥ 0 there is a step j > i such that (1) Φi > Φj or (2) pj ∈ F j

where F j is a fragment of configuration Cj that satisfies P1–P3.

If (2) holds in step i, the lemma follows from Lemma 8. Otherwise, by Lemma 7, either
no tile was shifted or a projection was performed between step i and i + 1. In the first case,
the agent must have progressed further west or upwards, which can happen only finitely
many times since the configuration is finite. In the second case, we can show that after
finitely many consecutive projections the agent is positioned in a fragment of larger size.
Analogously the size of that fragment is bounded by the number of tiles, such that eventually
either the potential decreases again or the latter statement (2) holds, concluding the lemma.

The initial number of platforms is at most n, and the initial xy-coordinate of any tiled
node is at most n2. Hence, the initial potential is Φ0 = O(n3). Consequently, Lemma 8 and
Lemma 9 imply that eventually the agent is positioned in a fragment satisfying P1–P3.

For the second part of our analysis, dedicated to demonstrating convergence towards an
icicle, we introduce another potential function Ψi. This function is defined as the number
of empty nodes within the bounding box B(T i) that have a tile somewhere in the dsw
direction. Formally, U i = {v ∈ B(T i) \ T i | v + k ·dsw ∈ T i for some k > 0} and Ψi = |U i|.

▶ Lemma 10. Let pi ∈ F i where F i satisfies P1–P3. If Ψi > 0, then Ψi+1 < Ψi.
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The lemma is proven by showing that the projection of F i results in at least one node
in U i to be tiled. Here, we can simply pick the node with maximum z-coordinate from U i.
Additionally, any node in U i+1 must already be contained in U i, since the projection of F i

cannot create an empty node that has a tile somewhere une. Otherwise that tile would
contradict that F i is covering (P2) and a platform (P1).

Once the agent enters a configuration where it is positioned within a fragment satisfying
P1–P3, it consistently remains within such a fragment in subsequent configurations according
to Lemma 8. By Lemma 9, such a configuration must eventually be reached, and by the
previous lemma, our second potential Ψi is strictly monotonically decreasing afterwards. It
follows that the set of empty nodes within B(T i) that have a tile somewhere in the dsw
direction must eventually be empty. Consequently, any tiled node within the bounding box
that is not contained in the singular uppermost fragment satisfying P1–P3 must possess
a neighboring tile at une. Hence, the entire configuration satisfies Definition 6, which is
captured by the following theorem, serving as the conclusion of our analysis:

▶ Theorem 11. The sequence of configurations resulting from the execution of BuildIcicle
on any initially connected configuration C0 = (T 0, p0) with p0 ∈ T 0 converges to an icicle.

5 Termination Criteria and Runtime

Once the agent is positioned within a fragment satisfying P1–P3, it remains within such
a fragment and subsequently exclusively performs projections. In the case where the con-
figuration is already an icicle (see Definition 6), every tiled node in the configuration must
be traversed during these projections. This condition is essential for our termination check.
The agent maintains a flag term, which it flags as true upon initiating a projection. This
flag only reverts to false if the agent detects any violation of Definition 6 during the ongoing
projection, i.e., whenever a tiled node v is observed for which v + une /∈ F and v + une /∈ T ,
where F is the fragment in which the projection was initiated. Once term still holds after
a projection, the agent terminates. Note that the flag is reverted, even if v + une is tiled
immediately afterwards. As an example, if a tile shift from some node w ∈ F to v + une is
performed as part of a projection, then node v is observed before the tile is placed at v + une.
Although it is possible that the configuration is an icicle after tiling node v + une, the agent
cannot verify it during that projection, as it does not traverse node v or any node dsw of v.

In general, by adhering to this termination procedure, the agent consistently performs
one additional projection once the configuration converges to an icicle. Since the algorithm
only terminates following a projection in which it could observe all tiled nodes and only if, in
this case, Definition 6 is satisfied, the correctness of our algorithm is established.

The algorithm’s runtime can be expressed as the sum ttotal = tproj + tshift + tmove, where
tproj accounts for all steps performed during the projection subroutine, tshift for steps that
are performed as part of some tile shift (outside of a projection), and tmove for any remaining
step. We bound each term individually by O(n3), which gives a runtime of O(n3) in total.

▶ Lemma 12. The total number of steps performed during projections is tproj = O(n3).

The proof can be outlined as follows: Each projection takes time O(n). There are O(n)
platforms initially, each of which require O(n) projections until the number |P| of platforms
reduces by one. Additional platforms can only be created as a result of the execution of
case D. For these platforms one can show that a single projection suffices to reduce the
number of platforms. Additionally, the execution of case D decreases the x-coordinate of at
least two tiles, which implies that at most n2

2 platforms can be created.
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▶ Lemma 13. Let i be the first step following an arbitrary projection, and j > i the next step
in which a projection is initiated. Between step i and j at most O(n) steps are performed
outside of tile shifts, and any tile shift from some node v to w takes O(xy(v)− xy(w)) steps.

The latter statement is easy to show. Especially, any tile shift in cases A–E requires only
O(1) steps, but reduces the xy-coordinate of some tile by Ω(h). For the former statement, one
must consider all cases in which the agent moves outside of tile shifts. The most challenging
case is where the agent lifts the last tile of a column and then takes O(h) steps afterward. If
that occurs in case B, then the above outlined difference between O(1) steps and a reduction
of Ω(h) in the xy-coordinate accounts for the O(h) additional steps. If a column is removed
in the BuildPar procedure, one can show that either the previous or the subsequent tile
shift decreases the xy-coordinate of a tile by Ω(h), and the claim follows analogously.

As argued above, O(n2) projections are performed in total, which together with Lemma 13
implies that tother = O(n3). The xy-coordinate of any tile is at most n2, non-increasing, and
cannot be negative (see Lemmas 3 and 7). Together with Lemma 13, each tile contributes
O(n2) steps to tshift, which implies that tshift = O(n3). This concludes our final theorem:

▶ Theorem 14. BuildIcicle has a runtime of O(n3) steps.

6 Experimental Analysis

While our algorithm matches the runtime bound of the 3D line formation algorithm [16],
the icicle offers distinct advantages over the line. The diameter of an icicle can be as low as
O(n 1

3 ), whereas a line consistently maintains a diameter of n. Unfortunately, our algorithm
does not improve the diameter if the initial configuration already closely resembles a line.
On the other hand, we conjecture that if the initial diameter is as low as O(n 1

3 ) (which is
the best case in 3D), then our algorithm can only increase the diameter by a factor of O(n 1

3 ).
We support our conjecture with the following simulation results on configurations where
initially all tiles are contained in a sphere of radius O(n 1

3 ).
We conducted a total of 12,250 simulations using the icicle formation algorithm on

random configurations. For each value of n within the range 10 ≤ n < 500, we sampled 25
random configurations as follows: empty nodes were repeatedly chosen uniformly at random
within a sphere of radius 4n

1
3 , and a tile was placed on each selected node until a connected

component of tiled nodes with a size of at least n was formed. Subsequently, any tile outside
of that component was removed, the agent was placed at a randomly chosen tile within the
component, and the algorithm was simulated until termination. We measured the runtime
as well as the difference in diameter, which are plotted in Figure 6.

Due to the nature of the described random generation process, configurations of size
larger than 500 were also sampled, although less frequently. Specifically, we observed an
average sampling rate of approx. 24.4 configurations for sizes at most 450, contrasting with
approx. 15.4 configurations for sizes exceeding 450. This discrepancy contributes to the
noticeable increase in variance as the configuration size approaches the 500 threshold.

The runtime remains well in the vicinity of n2, which can be attributed to the initial
close packing of tiles in our random configurations. Instances where the diameter increases
(highlighted by red dots) are infrequent, and their occurrence diminishes as the configuration
size increases. This trend implies a general decrease in diameter in the average case.

We identified a configuration with an initial diameter of O(n 1
3 ), where the diameter

subsequently increases by a factor of Θ(n 1
3 ). This particular configuration, which we consider

to be the worst-case scenario, is discussed in Appendix B.
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Figure 6 The results stem from 12,250 simulations involving random configurations ranging in
sizes from 10 to 550. The upper plot shows the number of steps until termination. The lower plot
shows the difference in diameter between the input and output configurations. The simulations in
which the diameter increases are highlighted by red dots.

7 Future Work

In this work, we introduced an algorithm capable of transforming any initially connected
configuration into an icicle within O(n3) steps, complemented by proofs of correctness and
runtime analysis. While our algorithm’s experimental results are promising, future work
should include a formal proof to substantiate the claimed upper bound of O(n 1

3 ) on the
increase in diameter. Additionally, the adaptability of our algorithm to the multi-agent case
poses an intriguing challenge for future investigation. Given that the algorithm comprises
distinct phases potentially executed in an interleaved manner, addressing its integration into
a multi-agent framework presents a non-trivial research direction.
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A Deferred Pseudocode

The pseudocode for the 2D parallelogram formation algorithm, as detailed in Section 3.1, is
given by Algorithm 1. Specifically, lines 12–34 within Algorithm 1 describe the BuildPar
procedure, utilized by both the parallelogram and icicle formation algorithms. Note that the
checks for tiles above (lines 13–14) can be disregarded in the 2D setting, as they only become
relevant in the icicle formation algorithm. The Project procedure is given in Algorithm 3,
and the full icicle formation algorithm in Algorithm 2. Whenever multiple directions of
movement are specified, their precedence is implicit in the provided order.

In Algorithm 1, the agent traverses a column in the s direction in lines 12–21 and the next
column in the n direction in lines 26–31. Following the check for whether the empty node
above the next column should be tiled (line 32), the agent recursively executes BuildPar
starting at the n-most node of the next column (line 33). The procedure may return with
the agent being in various states, such as positioned on a tiled or empty node, with or
without a tile. In the main loop of the algorithm, BuildPar is executed repeatedly, and
distinctions between these states are made to either terminate (line 4), retrieve the tile at
which BuildPar was previously entered (lines 5–11), or enter the search phase (line 2).
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In Algorithm 2, lines 16–22 are dedicated to handling case B, where a tile is shifted in
the de direction to maintain connectivity. Lines 23–29 cover case D, and lines 30–40 cover
case E. These cases involve shifting multiple tiles of a column in the de direction. For concise
pseudocode, the handling of case A is delegated to the BuildPar procedure, and the check
for a tile at v + se + dsw from case C is integrated into lines 4—5.

B Worst-Case Configuration

In the following, we present what we believe to be the worst-case configuration. Consider
the configuration C depicted in Figure 7a that consists of three layers. The middle layer
contains k = Θ(n 1

3 ) fragments F1, ..., Fk ordered from east to west, where each Fi has size

Algorithm 1 2DParallelogramFormation.

1 while true do
2 while {p + nw, p + sw, p + n} ∩ T ̸= ∅ do move to tile at nw, sw or n
3 firstColumn← true; run BuildPar
4 if p /∈ T then return ▷ terminate s of easternmost column
5 else if r carries no tile then
6 if firstColumn then
7 while p + n ∈ T do move n
8 else
9 while {p + sw, p + s} ∩ T ̸= ∅ do move to tile at sw or s

10 while {p + nw, p + sw, p + n} ∩ T ̸= ∅ do move to tile at nw, sw or n
11 pickup tile; move to tile at s, se or ne

procedure BuildPar
12 while p ∈ T do
13 if p + uw ∈ T or p + use ∈ T or p + une ∈ T then ▷ irrelevant in 2D
14 move to tile at uw, use or une ; return
15 else if firstColumn and p + sw ∈ T then
16 move sw; return ▷ found more western column
17 else if p + ne ∈ T and p + se /∈ T then
18 move se; place tile; move nw; return ▷ place tile below eastern column
19 else if p + n, p + se ∈ T and p + ne /∈ T then
20 move ne; place tile; move sw; return ▷ place tile above eastern column
21 move s
22 if p + n, p + ne, p + se ∈ T then
23 place tile; move n ▷ place tile below current column
24 else if p + ne ∈ T then
25 move ne; move n; firstColumn← false ▷ move to top of next column
26 while p ∈ T do
27 if p + sw /∈ T and p + NW ∈ T then
28 while p + n ∈ T do move n
29 while p + nw /∈ T do move s
30 return ▷ found more northern column
31 move n
32 if p + s, p + se ∈ T then place tile ▷ place tile above current column
33 else move s; run BuildPar
34 return
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Algorithm 2 BuildIcicle.

1 while true do
2 while {p + x | x ∈ {uw, use, une, nw, sw, n}} ∩ T ̸= ∅ do
3 move to tile at uw, use, une, nw, sw or n
4 if G|NT (p) or G|NT (p)∪{p+se} is connected or G|NT (p)∪{p+se+dsw} is connected

with p + se + dsw ∈ T then
5 firstColumn← true; run BuildPar
6 if p /∈ T then move n; run Project
7 else if r carries no tile then ... ▷ same as lines 8–15 from Algorithm 1

16 else if G|NT (p)∪{p+de} is connected then
17 if NT (p) = {p + dsw, p + se} then
18 move se + dsw; place tile; move une + nw; pickup tile; move se
19 else move de; place tile; move uw; pickup tile
20 if p + se, p + ne ∈ T and p + s /∈ T then
21 move se; while {p + uw, p + use, p + sw, p + s} ∩ T = {p + s} do move s
22 else move to tile at s, se or ne
23 else if NT (p) = {p + dnw, p + s, p + ne} then
24 while {p + x | x ∈ {uw, use, sw, dsw, se, de, s}} ∩ T = {p + s} do move s
25 if {p + x | x ∈ {uw, use, sw}} ∩ T = ∅ then
26 if p + de ∈ T then move n
27 move de; place tile; move uw; pickup tile
28 while p + n ∈ T do move se + dnw; place tile; move uw; pickup tile
29 move ne
30 else if NT (p) = {p + dnw, p + s} then
31 while {p + x | x ∈ {uw, use, sw, se, de, s}} ∩ T = {p + s} do move s
32 if {p + x | x ∈ {uw, use, sw}} ∩ T = ∅ then
33 if {p + x | x ∈ {se, de}} ∩ T = ∅ then move n; run Project
34 else
35 ... ▷ same as lines 26–28
38 while p /∈ T do
39 move s; if p + se ∈ T then move se

O(i) and the agent’s initial position is p0 ∈ F1. Additionally, the configuration contains a
fragment F0 of size one east of the agent’s initial position. Observe that the bounding box of
Fi contains no node from Fi+1 for any i with 0 < i < k. It follows that the agent builds and
projects parallelograms in the order F1, ..., Fk. Since the bounding box of Fi contains p0 for
all i > 0, it further follows that k tiles are projected from p0 in direction dsw. Only then,
the agent traverses the lower layer and eventually finds fragment F0 where it moves further
upwards. Now consider the configuration that consists of Θ(n 1

3 ) copies of C in direction
une (see Figure 7b). That configuration has diameter O(n 1

3 ) initially. Throughout the icicle
formation algorithm, some tile at node p0 is projected Θ(n 2

3 ) times, which implies that the
resulting icicle has depth and thereby also diameter Θ(n 2

3 ).
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Algorithm 3 Project.

procedure Project
1 if p + n, p + s /∈ T then ▷ parallelogram of height one
2 do
3 while p ∈ T do move dsw
4 place tile; while p + une ∈ T do move une
5 pickup tile
6 if p + nw ∈ T then move sw; move dnw else move dsw; return
7 while p + une ∈ T
8 else
9 do

10 while p + n ∈ T do move n
11 while p ∈ T do move dsw
12 place tile; while p + une ∈ T do move une
13 pickup tile
14 if p + s ∈ T then move s
15 else if p + nw ∈ T then move nw
16 else move dsw; return
17 while p ∈ T

(a) (b)

Figure 7 Illustrating what we believe to be the worst case configuration in terms of increase in
diameter. In (a), the three lowest layers of the configuration are depicted in detail. The second-lowest
layer contains k = Θ(n 1

3 ) fragments Fi, each of size O(i), and the agent’s initial position p0 ∈ F1.
Observe that the bounding box of each Fi contains p0. The whole configuration is depicted in (b)
and consists of Θ(n 1

3 ) copies of the layers depited in (a) in direction une (indicated by the arrows).
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Abstract
In this paper we initiate the study of the temporal graph realization problem with respect to the
fastest path durations among its vertices, while we focus on periodic temporal graphs. Given an
n × n matrix D and a ∆ ∈ N, the goal is to construct a ∆-periodic temporal graph with n vertices
such that the duration of a fastest path from vi to vj is equal to Di,j , or to decide that such a
temporal graph does not exist. The variations of the problem on static graphs has been well studied
and understood since the 1960’s (e.g. [Erdős and Gallai, 1960], [Hakimi and Yau, 1965]).

As it turns out, the periodic temporal graph realization problem has a very different computational
complexity behavior than its static (i. e., non-temporal) counterpart. First we show that the problem
is NP-hard in general, but polynomial-time solvable if the so-called underlying graph is a tree.
Building upon those results, we investigate its parameterized computational complexity with respect
to structural parameters of the underlying static graph which measure the “tree-likeness”. We prove
a tight classification between such parameters that allow fixed-parameter tractability (FPT) and
those which imply W[1]-hardness. We show that our problem is W[1]-hard when parameterized by
the feedback vertex number (and therefore also any smaller parameter such as treewidth, degeneracy,
and cliquewidth) of the underlying graph, while we show that it is in FPT when parameterized by
the feedback edge number (and therefore also any larger parameter such as maximum leaf number)
of the underlying graph.
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1 Introduction

The (static) graph realization problem with respect to a graph property P is to find a graph
that satisfies property P, or to decide that no such graph exists. The motivation for graph
realization problems stems both from “verification” and from network design applications
in engineering. In verification applications, given the outcomes of some experimental
measurements (resp. some computations) on a network, the aim is to (re)construct an
input network which complies with them. If such a reconstruction is not possible, this
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proves that the measurements are incorrect or implausible (resp. that the algorithm which
made the computations is incorrectly implemented). One example of a graph realization
(or reconstruction) problem is the recognition of probe interval graphs, in the context
of the physical mapping of DNA, see [52, 53] and [36, Chapter 4]. In network design
applications, the goal is to design network topologies having a desired property [4, 38].
Analyzing the computational complexity of the graph realization problems for various natural
and fundamental graph properties P requires a deep understanding of these properties.
Among the most studied such parameters for graph realization are constraints on the
distances between vertices [7, 8, 10,16,17,41], on the vertex degrees [6, 22,35,37,40], on the
eccentricities [5, 9, 42,51], and on connectivity [15,29–31,34,37], among others.

In the simplest version of a (static) graph realization problem with respect to vertex
distances, we are given a symmetric n × n matrix D and we are looking for an n-vertex
undirected and unweighted graph G such that Di,j equals the distance between vertices vi

and vj in G. This problem can be trivially solved in polynomial time in two steps [41]: First,
we build the graph G = (V, E) such that vivj ∈ E if and only if Di,j = 1. Second, from this
graph G we compute the matrix DG which captures the shortest distances for all pairs of
vertices. If DG = D then G is the desired graph, otherwise there is no graph having D as its
distance matrix. Non-trivial variations of this problem have been extensively studied, such
as for weighted graphs [41,60], as well as for cases where the realizing graph has to belong to
a specific graph family [7, 41]. Other variations of the problem include the cases where every
entry of the input matrix D may contain a range of consecutive permissible values [7, 61, 63],
or even an arbitrary set of acceptable values [8] for the distance between the corresponding
two vertices.

In this paper we make the first attempt to understand the complexity of the graph
realization problem with respect to vertex distances in the context of temporal graphs, i. e.,
of graphs whose topology changes over time.

▶ Definition 1 (temporal graph [43]). A temporal graph is a pair (G, λ), where G = (V, E)
is an underlying (static) graph and λ : E → 2N is a time-labeling function which assigns to
every edge of G a set of discrete time-labels.

Here, whenever t ∈ λ(e), we say that the edge e is active or available at time t. In the
context of temporal graphs, where the notion of vertex adjacency is time-dependent, the
notions of path and distance also need to be redefined. The most natural temporal analogue
of a path is that of a temporal (or time-dependent) path, which is motivated by the fact that,
due to causality, entities and information in temporal graphs can “flow” only along sequences
of edges whose time-labels are strictly increasing.

▶ Definition 2 (fastest temporal path). Let (G, λ) be a temporal graph. A temporal path
in (G, λ) is a sequence (e1, t1), (e2, t2), . . . , (ek, tk), where P = (e1, . . . , ek) is a path in the
underlying static graph G, ti ∈ λ(ei) for every i = 1, . . . , k, and t1 < t2 < . . . < tk. The
duration of this temporal path is tk − t1 + 1. A fastest temporal path from a vertex u to a
vertex v in (G, λ) is a temporal path from u to v with the smallest duration. The duration of
the fastest temporal path from u to v is denoted by d(u, v).

In this paper we consider periodic temporal graphs, i. e., temporal graphs in which the
temporal availability of each edge of the underlying graph is periodic. Many natural and
technological systems exhibit a periodic temporal behavior. For example, in railway networks
an edge is present at a time step t if and only if a train is scheduled to run on the respective rail
segment at time t [3]. Similarly, a satellite, which makes pre-determined periodic movements,
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v1 v2 v3 v4 v5

10t + 7 10t + 3 10t + 5 10t + 1

Figure 1 An example of a ∆-periodic temporal graph (G, λ, ∆), where ∆ = 10 and the 10-periodic
labeling λ : E → {1, 2, . . . , 10} is as follows: λ(v1v2) = 7, λ(v2v3) = 3, λ(v3v4) = 5, and λ(v4v5) = 1.
Here, the fastest temporal path from v1 to v2 traverses the first edge v1v2 at time 7, second edge
v2v3 a time 13, third edge v3v4 at time 15 and the last edge v4v5 at time 21. This results in the
total duration of 21 − 7 + 1 = 15 for the fastest temporal path from v1 to v5.

can establish a communication link (i. e., a temporal edge) with another satellite whenever
they are sufficiently close to each other; the existence of these communication links is also
periodic. In a railway (resp. satellite) network, a fastest temporal path from u to v represents
the fastest railway connection between two stations (resp. the quickest communication delay
between two moving satellites). Furthermore, periodicity appears also in (the otherwise quite
complex) social networks which describe the dynamics of people meeting [50,62], as every
person individually follows mostly a weekly routine.

Expanding the work on periodic temporal graphs (see [13, Class 8] and [3, 25, 58, 59]),
our study represents the first attempt to understand the complexity of a graph realization
problem in the context of temporal graphs. Therefore, we focus in this paper on the most
fundamental case, where all edges have the same period ∆ (while in the more general case,
each edge e in the underlying graph has a period ∆e). As it turns out, the periodic temporal
graph realization problem with respect to a given n×n matrix D of the fastest duration times
has a very different computational complexity behavior than the classic graph realization
problem with respect to shortest path distances in static graphs.

Formally, let G = (V, E) and ∆ ∈ N, and let λ : E → {1, 2, . . . , ∆} be an edge-labeling
function that assigns to every edge of G exactly one of the labels from {1, . . . , ∆}. Then we
denote by (G, λ, ∆) the ∆-periodic temporal graph (G, L), where for every edge e ∈ E we
have L(e) = {i∆ + x : i ≥ 0, x ∈ λ(e)}. In this case we call λ a ∆-periodic labeling of G; see
Figure 1 for an illustration. When it is clear from the context, we drop ∆ from the notation
and we denote the (∆-periodic) temporal graph by (G, λ). Given a duration matrix D, it is
easy to observe that, similarly to the static case, if Di,j = 1 then vi and vj must be connected
by an edge. We call the graph defined by these edges the underlying graph of D.

Our contribution. We initiate the study of naturally motivated graph realization problems
in the temporal setting. Our target is not to model unreliable communication, but instead to
verify that particular measurements regarding fastest temporal paths in a periodic temporal
graph are plausible (i. e., “realizable”). To this end, we introduce and investigate the following
problem, capturing the setting described above:

Simple periodic Temporal Graph Realization (Simple TGR)
Input: An integer n × n matrix D, a positive integer ∆.
Question: Does there exist a graph G = (V, E) with vertices {v1, . . . , vn} and a ∆-periodic

labeling λ : E → {1, 2, . . . , ∆} such that, for every i, j, the duration of the fastest
temporal path from vi to vj in the ∆-periodic temporal graph (G, λ, ∆) is Di,j?

We focus on exact algorithms. We start by showing NP-hardness of the problem (The-
orem 3), even if ∆ is a small constant. To establish a baseline for tractability, we show that
Simple TGR is polynomial-time solvable if the underlying graph is a tree (Theorem 5).
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Building upon these initial results, we explore the possibilities to generalize our polynomial-
time algorithm using the distance-from-triviality parameterization paradigm [27,39]. That is,
we investigate the parameterized computational complexity of Simple TGR with respect to
structural parameters of the underlying graph that measure its “tree-likeness”.

We obtain the following results. We show that Simple TGR is W[1]-hard when para-
meterized by the feedback vertex number of the underlying graph (Theorem 4). To this
end, we first give a reduction from Multicolored Clique parameterized by the number
of colors [26] to a variant of Simple TGR where the period ∆ is infinite, that is, when
the labeling is non-periodic. Then we use a special gadget (the “infinity” gadget) which
allows us to transfer the result to a finite period ∆. The latter construction is independent
from the particular reduction we use, and can hence be treated as a reduction from the
non-periodic to the periodic setting. Note that our parameterized hardness result with respect
to the feedback vertex number also implies W[1]-hardness for any smaller parameter, such as
treewidth, degeneracy, cliquewidth, distance to chordal graphs, and distance to outerplanar
graphs.

We complement this hardness result by showing that Simple TGR is fixed-parameter
tractable (FPT) with respect to the feedback edge number k of the underlying graph (The-
orem 6). This result also implies an FPT algorithm for any larger parameter, such as the
maximum leaf number. A similar phenomenon of getting W[1]-hardness with respect to the
feedback vertex number, while getting an FPT algorithm with respect to the feedback edge
number, has been observed only in a few other temporal graph problems related to the
connectivity between two vertices [14,21,32].

Our FPT algorithm works as follows on a high level. First we distinguish O(k2) vertices
which we call “important vertices”. Then, we guess the fastest temporal paths for each pair
of these important vertices; as we prove, the number of choices we have for all these guesses
is upper bounded by a function of k. Then we also need to make several further guesses
(again using a bounded number of choices), which altogether leads us to specify a small (i. e.,
bounded by a function of k) number of different configurations for the fastest paths between
all pairs of vertices. For each of these configurations, we must then make sure that the labels
of our solution will not allow any other temporal path from a vertex vi to a vertex vj have
a strictly smaller duration than Di,j . This naturally leads us to build one Integer Linear
Program (ILP) for each of these configurations. We manage to formulate all these ILPs
by having a number of variables that is upper-bounded by a function of k. Finally we use
Lenstra’s Theorem [49] to solve each of these ILPs in FPT time. At the end, our initial
instance is a Yes-instance if and only if at least one of these ILPs is feasible.

The above results provide a fairly complete picture of the parameterized computational
complexity of Simple TGR with respect to structural parameters of the underlying graph
which measure “tree-likeness”. To obtain our results, we prove several properties of fastest
temporal paths, which may be of independent interest. Due to space constraints, proofs of
results marked with ⋆ are (partially) deferred to the full version on arXiv [46].

Related work. Graph realization problems on static graphs have been studied since the 1960s.
We provide an overview of the literature in the introduction. To the best of our knowledge,
we are the first to consider graph realization problems in the temporal setting. Very recently,
Erlebach et al. [24] have built upon our results and, among others, studied the case where
edges might appear more than once in each period. Many other connectivity-related problems
have been studied in the temporal setting [2,12,18,19,23,28,33,44,48,55,57,65], most of which
are much more complex and computationally harder than their non-temporal counterparts,
and some of which do not even have a non-temporal counterpart.
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Several problems have been studied where the goal is to assign labels to (sets of) edges of
a given static graph in order to achieve certain connectivity-related properties [1, 20,45, 54].
The main difference to our problem setting is that in the mentioned works, the input is a
graph and the sought labeling is not periodic. Furthermore, the investigated properties are
temporal connectivity among all vertices [1, 45, 54], temporal connectivity among a subset of
vertices [45], or reducing reachability among the vertices [20]. In all these cases, the duration
of the temporal paths has not been considered.

Finally, there are many models for dynamic networks in the context of distributed
computing [47]. These models have some similarity to temporal graphs, in the sense that in
both cases the edges appear and disappear over time. However, there are notable differences.
For example, one important assumption in the distributed setting can be that the edge
changes are adversarial or random (while obeying some constraints such as connectivity),
and therefore they are not necessarily known in advance [47].

Preliminaries and notation. We already introduced the most central notion and concepts.
There are some additional definitions we need, to present our proofs and results which we
give in the following.

An interval in N from a to b is denoted by [a, b] = {i ∈ N : a ≤ i ≤ b}; similarly, [a] = [1, a].
An undirected graph G = (V, E) consists of a set V of vertices and a set E ⊆ V × V of
edges. For a graph G, we also denote by V (G) and E(G) the vertex and edge set of G,
respectively. We denote an edge e ∈ E between vertices u, v ∈ V as a set e = {u, v}.
For the sake of simplicity of the representation, an edge e is sometimes also denoted by
uv. A path P in G is a subgraph of G with vertex set V (P ) = {v1, . . . , vk} and edge
set E(P ) = {{vi, vi+1} : 1 ≤ i < k} (we often represent path P by the tuple (v1, v2, . . . , vk)).

Let v1, v2, . . . , vn be the n vertices of the graph G. For simplicity of the presentation
(and with a slight abuse of notation) we refer during the paper to the entry Di,j of the
matrix D as Da,b, where a = vi and b = vj . That is, we put as indices of the matrix D the
corresponding vertices of G whenever it is clear from the context.

Let P = (u = v1, v2, . . . , vp = v) be a path from u to v in G. Recall that, in our paper,
every edge has exactly one time label in every period of ∆ consecutive time steps. Therefore,
as we are only interested in the fastest duration of temporal paths, many times we refer
to (P, λ, ∆) as any of the temporal paths from u = v1 to v = vp along the edges of P ,
which starts at the edge v1v2 at time λ(v1v2) + c∆, for some c ∈ N, and then sequentially
visits the rest of the edges of P as early as possible. We denote by d(P, λ, ∆), or simply
by d(P, λ) when ∆ is clear from the context, the duration of any of the temporal paths
(P, λ, ∆); note that they all have the same duration. Many times we also refer to a path
P = (u = v1, v2, . . . , vp = v) from u to v in G, as a temporal path in (G, λ, ∆), where we
actually mean that (P, λ, ∆) is a temporal path with P as its underlying (static) path.

We remark that a fastest path between two vertices in a temporal graph can be computed
in polynomial time [11, 64]. Hence, given a ∆-periodic temporal graph (G, λ, ∆), we can
compute in polynomial-time the matrix D which consists of durations of fastest temporal
paths among all pairs of vertices in (G, λ, ∆).

2 Hardness results for Simple TGR

In this section we present our main computational hardness results. We first show that
Simple TGR is NP-hard even for constant ∆.

▶ Theorem 3 (⋆). Simple TGR is NP-hard for all ∆ ≥ 3.
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Next, we investigate the parameterized hardness of Simple TGR with respect to struc-
tural parameters of the underlying graph. We show that the problem is W[1]-hard when
parameterized by the feedback vertex number of the underlying graph. The feedback vertex
number of a graph G is the cardinality of a minimum vertex set X ⊆ V (G) such that G − X

is a forest. The set X is called a feedback vertex set. Note that, in contrast to the previous
result (Theorem 3), the reduction we use to obtain the following result does not produce
instances with a constant ∆.

▶ Theorem 4 (⋆). Simple TGR is W[1]-hard when parameterized by the feedback vertex
number of the underlying graph.

Proof. We present a parameterized reduction from the W[1]-hard problem Multicolored
Clique parameterized by the number of colors [26]. Here, given a k-partite graph H =
(W1 ⊎ W2 ⊎ . . . ⊎ Wk, F ), we are asked whether H contains a clique of size k. If w ∈ Wi,
then we say that w has color i. W.l.o.g. we assume that |W1| = |W2| = . . . = |Wk| = n.
Furthermore, for all i ∈ [k], we assume the vertices in Wi are ordered in some arbitrary but
fixed way, that is, Wi = {wi

1, wi
2, . . . , wi

n}. Let Fi,j with i < j denote the set of all edges
between vertices from Wi and Wj . We assume w.l.o.g. that |Fi,j | = m for all i < j (if not we
can add k maxi,j |Fi,j | vertices to each Wi and use those to add up to maxi,j |Fi,j | additional
isolated edges to each Fi,j). Furthermore, for all i < j we assume that the edges in Fi,j are
ordered in some arbitrary but fixed way, that is, Fi,j = {ei,j

1 , ei,j
2 , . . . , ei,j

m }.
We give a reduction to a variant of Simple TGR where the period ∆ is infinite (that

is, the sought temporal graph is not periodic and the labeling function λ : E → N maps
to the natural numbers) and we allow D to have infinity entries, meaning that the two
respective vertices are not temporally connected. Note that, given the matrix D, we can
easily compute the underlying graph G, as follows. Two vertices v, v′ are adjacent in G if
and only if Dv,v′ = 1, as having an edge between v and v′ is the only way that there exists
a temporal path from v to v′ with duration 1. For simplicity of the presentation of the
reduction, we describe the underlying graph G (which directly implies the entries of D where
Dv,v′ = 1) and then we provide the remaining entries of D. At the end of the proof, we show
how to obtain the result for a finite ∆ (by introducing a so-called “infinity gadget”) and a
matrix D of durations of fastest paths which only has finite entries.

In the following, we give an informal description of the main ideas of the reduction. The
construction uses several gadgets, where the main ones are an “edge selection gadget” and a
“verification gadget”.

Every edge selection gadget is associated with a color combination i, j in the Multi-
colored Clique instance, and its main purpose is to “select” an edge connecting a vertex
from color i with a vertex from color j. Roughly speaking, the edge selection gadget consists
of m paths, one for every edge in Fi,j (see Figure 2 for reference). The distance matrix
D will enforce that the labels on those paths effectively order them temporally, that is, in
particular, the labels on one of the paths will be smaller than the labels on all other paths.
The edge corresponding to this path is selected.

We have a verification gadget for every color i. They interact with the edge selection
gadgets as follows. The verification gadget for color i is connected to all edge selection
gadgets that involve color i. More specifically, this is connected to every path corresponding
to an edge at a position in the path that encodes the endpoint of color i of that edge (again,
see Figure 2 for reference). Intuitively, the distances in the verification gadget are only
realizable if the selected edges all have the same endpoint of color i. Hence, the distances of
all verification gadgets can be realized if and only if the selected edges form a clique.
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Figure 2 Illustration of part of the underlying graph G and a possible labeling. Edges incident
with vertices v̂1, v̂2 of connector gadgets are omitted. Gray vertices form a feedback vertex set.
The double line connections, between a vertex vj

i−1 in the verification gadget, and u3
1 in the edge

selection gadget, and, between a vertex u3
2 in the edge selection gadget, and vj

i in the verification
gadget, consist of 5n vertices aj,i,3

1 , aj,i,3
2 , . . . , aj,i,3

5n and bj,i,3
1 , bj,i,3

2 , . . . , bj,i,3
5n , respectively.

Furthermore, we use an alignment gadget which, intuitively, ensures that the labelings
of all gadgets use the same range of time labels. Finally, we use connector gadgets which
create shortcuts between all vertex pairs that are irrelevant for the functionality of the other
gadgets. This allows us to easily fill in the distance matrix with the corresponding values.
We ensure that all our gadgets have a constant feedback vertex number, hence the overall
feedback vertex number is quadratic in the number of colors of the Multicolored Clique
instance and we get the parameterized hardness result.

In the following, for every gadget, we give a formal description of the underlying graph
of this gadget (i. e., not the complete distance sub-matrix of the gadget). Due to space
constraints, we defer the description of the distance matrix D and the formal proof of
correctness for the reduction to [46].

SAND 2024



16:8 Temporal Graph Realization from Fastest Paths

Given an instance H of Multicolored Clique, we construct an instance D of Simple
TGR (with infinity entries and no periods) as follows.

Edge selection gadget. We first introduce an edge selection gadget Gi,j for color combina-
tion i, j with i < j. We start with describing the vertex set of the gadget.

A set Xi,j of vertices x1, x2, . . . , xm.
Vertex sets U1, U2, . . . , Um with 4n + 1 vertices each, that is, Uℓ = {uℓ

0, uℓ
1, uℓ

2, . . . , uℓ
4n}

for all ℓ ∈ [m].
Two special vertices v⋆

i,j , v⋆⋆
i,j .

The gadget has the following edges.
For all ℓ ∈ [m] we have edge {xℓ, v⋆

i,j}, {v⋆
i,j , uℓ

0}, and {uℓ
4n, v⋆⋆

i,j}.
For all ℓ ∈ [m] and ℓ′ ∈ [4n], we have edge {uℓ

ℓ′−1, uℓ
ℓ′}.

Verification gadget. For each color i, we introduce the following vertices. What we
describe in the following will be used as a verification gadget for color i.

We have one vertex yi and k + 1 vertices vi
ℓ for 0 ≤ ℓ ≤ k.

For every ℓ ∈ [m] and every j ∈ [k] \ {i} we have 5n vertices ai,j,ℓ
1 , ai,j,ℓ

2 , . . . , ai,j,ℓ
5n and 5n

vertices bi,j,ℓ
1 , bi,j,ℓ

2 , . . . , bi,j,ℓ
5n .

We have a set Ûi of 13n + 1 vertices ûi
1, ûi

2, . . . , ûi
13n+1.

We add the following edges. We add edge {yi, vi
0}. For every ℓ ∈ [m], every j ∈ [k] \ {i}, and

every ℓ′ ∈ [5n − 1] we add edge {ai,j,ℓ
ℓ′ , ai,j,ℓ

ℓ′+1} and we add edge {bi,j,ℓ
ℓ′ , bi,j,ℓ

ℓ′+1}.
Let 1 ≤ j < i (skip if i = 1), let ej,i

ℓ ∈ Fj,i, and let wi
ℓ′ ∈ Wi be incident with ej,i

ℓ . Then
we add edge {vi

j−1, ai,j,ℓ
1 } and we add edge {ai,j,ℓ

5n , uℓ
ℓ′−1} between ai,j,ℓ

5n and the vertex uℓ
ℓ′−1

of the edge selection gadget of color combination j, i. Furthermore, we add edge {vi
j , bi,j,ℓ

1 }
and edge {bi,j,ℓ

5n , uℓ
ℓ′} between bi,j,ℓ

5n and the vertex uℓ
ℓ′ of the edge selection gadget of color

combination j, i.
We add edge {vi

i−1, ûi
1} and for all ℓ′′ ∈ [13n] we add edge {ûi

ℓ′′ , ûi
ℓ′′+1}. Furthermore,

we add edge {ûi
13n+1, vi

i}.
Let i < j ≤ k (skip if i = k), let ei,j

ℓ ∈ Fi,j , and let wi
ℓ′ ∈ Wi be incident with ei,j

ℓ . Then
we add edge {vi

j−1, ai,j,ℓ
1 } and edge {ai,j,ℓ

5n , uℓ
3n+ℓ′−1} between ai,j,ℓ

5n and the vertex uℓ
3n+ℓ′−1

of the edge selection gadget of color combination i, j. Furthermore, we add edge {vi
j , bi,j,ℓ

1 }
and edge {bi,j,ℓ

5n , uℓ
3n+ℓ′} between bi,j,ℓ

5n and the vertex uℓ
3n+ℓ′ of the edge selection gadget of

color combination i, j.
Furthermore, we use connector gadgets, two for each edge selection gadget, and two for

every verification gadget. They consist of six vertices v̂0, v̂′
0, v̂1, v̂2, v̂3, v̂′

3 and, intuitively, are
used to connect many vertex pairs by fast paths, which will make arguing about possible
labelings in Yes-instances much easier. Finally, we have an alignment gadget, which is a star
with a center vertex w⋆ and a leaf for every other gadget. Intuitively, this gadget is used to
relate labels of different gadgets to each other. A formal description of these two gadgets is
given in [46].

This finishes the description of the underlying graph G. For an illustration see Figure 2.
We can observe that the vertex set containing vertices v⋆

i,j and v⋆⋆
i,j of each edge selection

gadget, vertices vi
ℓ with 0 ≤ ℓ ≤ k of each verification gadget, vertices v̂1 and v̂2 of each

connector gadget, and vertex w⋆ of the alignment gadget forms a feedback vertex set in G

with size O(k2).
As mentioned before, due to space constraints, we defer the description of the distance

matrix D and a formal correctness proof of the reduction to [46].
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V
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z2 z3

z4

v v′

t

t+ 2

t+ n10 − 1

t+ 1 t+ n10 t+ 1 t+ n10

Figure 3 Illustration of the infinity gadget. Gray vertices need to be added to the feedback vertex
set.

Infinity gadget. Finally, we show how to get rid of the infinity entries in D and how
to allow a finite ∆. To this end, we introduce the infinity gadget. We add four vertices
z1, z2, z3, z4 to the graph and we set ∆ = n11. Let V denote the set of all remaining vertices.
We set the following durations.

For all v ∈ V we set d(z1, v) = 2, d(z2, v) = d(v, z2) = 1, d(z3, v) = d(v, z3) = 1, and
d(z4, v) = 2. Furthermore, we set d(v, z1) = n11 and d(v, z4) = n10 − 1.
We set d(z1, z2) = d(z2, z1) = 1, d(z2, z3) = d(z3, z2) = 1, and d(z3, z4) = d(z4, z3) = 1.
We set d(z1, z3) = 3, d(z3, z1) = n11 − 1, d(z2, z4) = n10 − 2, and d(z4, z2) = n11 − n10 + 4.
We set d(z1, z4) = n10 and d(z4, z1) = 2n11 − n10 + 2.
For every pair of vertices v, v′ ∈ V where previously the duration of a fastest path from v

to v′ was specified to be infinite, we set d(v, v′) = n10.
Now we analyse which implications we get for the labels on the newly introduced edges.
Assume λ({z1, z2}) = t, then we get the following. For all v ∈ V we have that d(z1, v) = 2 and
hence we get that λ({z2, v}) = t+1. Since d(z1, z4) = n10, we have that λ(z3, z4) = t+n10 −1.
From this follows that for all v ∈ V , since d(z4, v) = 2, that λ({z3, v}) = t + n10. Finally,
since d(z1, z3) = 3, we have that λ({z2, z3}) = t+2. For an illustration see Figure 3. It is easy
to check that all duration requirements between vertex pairs in {z1, z2, z3, z4} are met and
that all duration requirements between each vertex v ∈ V and each vertex in {z1, z2, z3, z4}
are met. Furthermore, it is easy to check that the gadget increases the feedback vertex set
by two (z2 and z3 need to be added).

Lastly, consider two vertices v, v′ ∈ V . Note that before the addition of the infinity
gadget, by construction of G we have that d(v, v′) ≤ n9 + 2 or d(v, v′) = ∞. Furthermore,
if D is a Yes-instance, we have shown in the correctness proof of the reduction that the
difference between the smallest label and the largest label is at most n9 + 1. This implies
that for a vertex pair v, v′ ∈ V with d(v, v′) = ∞ we have in the periodic case with ∆ = n11,
that d(v, v′) ≥ n11 − n9 > n10. Which means, after adding the vertices and edges of the
infinity gadget, we indeed have that d(v, v′) = n10. For all vertex pairs v, v′ where in the
original construction we have d(v, v′) ̸= ∞, we can also see that adding the infinity gadget
and setting ∆ = n11 does not change the duration of a fastest path from v to v′, since all
newly added temporal paths have duration at least n10. We can conclude that the originally
constructed instance D is a Yes-instance if and only if it remains a Yes-instance after adding
the infinity gadget and setting ∆ = n11. ◀
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u w v
Pu,v

Pu,w

1 3 5 7

9

Figure 4 An example of a temporal graph (with ∆ ≥ 9), where the fastest temporal path Pu,v

(in blue) from u to v is of duration 7, while the fastest temporal path Pu,w (in red) from u to a
vertex w, that is on a path Pu,v, is of duration 1 and is not a subpath of Pu,v.

3 Algorithms for Simple TGR

In this section, to complement the discussed hardness aspects of Simple TGR, we present
some algorithmic results. We start by restricting the underlying graph G of the input
matrix D of Simple TGR to be a tree and get the following.

▶ Theorem 5 (⋆). Simple TGR can be solved in polynomial time on trees.

The main reason, for which Simple TGR is straightforward to solve on trees, is twofold:
between any pair of vertices vi and vj in the tree T , there is a unique path P in T from
vi to vj , and
in any periodic temporal graph (T, λ, ∆) and any fastest temporal path P =
((e1, t1), . . . , (ei, ti), . . . , (ej , tj), . . . , (eℓ−1, tℓ−1)) from v1 to vℓ we have that the sub-path
P ′ = ((ei, ti), . . . , (ej−1, tj−1)) is also a fastest temporal path from vi to vj .

However, these two nice properties do not hold when the underlying graph is not a tree. For
example, in Figure 4, the fastest temporal path from u to v is Pu,v (depicted in blue) goes
through w, however the sub-path of Pu,v that stops at w is not the fastest temporal path
from u to w. The fastest temporal path from u to w consists only of the single edge uw

(with label 9 and duration 1, depicted in red).
Nevertheless, we prove that we can still solve Simple TGR efficiently if the underlying

graph is similar to a tree; more specifically we show the following result, which turns out to
be non-trivial.

▶ Theorem 6 (⋆). Simple TGR is in FPT when parameterized by the feedback edge number
of the underlying graph.

From Theorem 4 and Theorem 6 we immediately get the following, which is the main
result of the paper.

▶ Corollary 7. Simple TGR is:
in FPT when parameterized by the feedback edge number or any larger parameter, such
as the maximum leaf number.
W[1]-hard when parameterized by the feedback vertex number or any smaller parameter,
such as: treewidth, degeneracy, cliquewidth, distance to chordal graphs, and distance to
outerplanar graphs.

Before presenting the structure of our algorithm for Theorem 6, observe that, in a static
graph, the number of paths between two vertices can be upper-bounded by a function f(k)
of the feedback edge number k of the graph [14]. Therefore, for any fixed pair of vertices u

and v, we can “guess” the edges of the fastest temporal path from u to v (by guess we mean
enumerate and test all possibilities). However, for an FPT algorithm with respect to k, we
cannot afford to guess the edges of the fastest temporal path for each of the O(n2) pairs of
vertices. To overcome this difficulty, our algorithm follows this high-level strategy:
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Figure 5 An example of a graph with its important vertices: U (in blue), U∗ (in green) and Z∗

(in orange). Corresponding feedback edges are marked with a thick red line, while dashed edges
represent the edges (and vertices) “removed” from G′ at the initial step.

We identify a small number f(k) of “important vertices”.
For each pair u, v of important vertices, we guess the edges of the fastest temporal path
from u to v (and from v to u).
From these guesses we can still not deduce the edges of the fastest temporal paths between
many pairs of non-important vertices. However, as we prove, it suffices to guess only a
small number of specific auxiliary structures (to be defined later).
From these guesses we deduce fixed relationships between the labels of most of the edges
of the graph.
For all the edges, for which we have not deduced a label yet, we introduce a variable. With
all these variables, we build an Integer Linear Program (ILP). Among the constraints
in this ILP we have that, for each of the O(n2) pairs of vertices u, v in the graph, the
duration of one specific temporal path from u to v (according to our guesses) is equal to
the desired duration Du,v, while the duration of each of the other temporal path from u

to v is at least Du,v.
By making each of the above combinations of guesses, we essentially enumerate all possible
ways that our instance of Simple TGR has a solution, and for each of these possible
ways we create an ILP. That is, our instance of Simple TGR has a solution if and only if
at least one of these ILPs has a feasible solution. As each ILP can be solved in FPT time
with respect to k by Lenstra’s Theorem [49] (the number of variables is upper bounded
by a function of k), we obtain our FPT algorithm for Simple TGR with respect to k.

We now present the first part of our FPT algorithm, that is, identifying important
vertices and guessing information about the fastest temporal paths. A full description of the
algorithm is deferred to [46].

Important vertices. Let D be the input matrix of Simple TGR, and let G be its underlying
graph, on n vertices and m edges. From the underlying graph G of D we first create a graph
G′ by iteratively removing vertices of degree one from G, and denote with Z = V (G) \ V (G′),
the set of removed vertices. Then we determine the set U (the “vertices of interest”), and
the set U∗ (the neighbors of the vertices of interest), as follows. Let T be a spanning tree of
G′, with F being the corresponding feedback edge set of G′. Let V1 ⊆ V (G′) be the set of
leaves in the spanning tree T , V2 ⊆ V (G′) be the set of vertices of degree two in T which
are incident to at least one edge in F , and let V3 ⊆ V (G′) be the set of vertices of degree at
least 3 in T . Then |V1| + |V2| ≤ 2k, since every leaf in T and every vertex in V2 is incident
to at least one edge in F , and |V3| ≤ |V1| by the properties of trees. We denote with

U = V1 ∪ V2 ∪ V3

the set of vertices of interest. It follows that |U | ≤ 4k. We set U∗ to be the set of vertices in
V (G′) \ U that are neighbors of vertices in U , i. e.,

U∗ = {v ∈ V (G′) \ U : u ∈ U, v ∈ N(u)}.
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Figure 6 In the above graph vertices v1, v11, w are in U , while v2, v10 are in U∗. Numbers above
all vi represent the values of the fastest temporal paths from w to each of them (i. e., the entries
in the w-th row of matrix D). From the basic guesses we know the fastest temporal path P from
w to v2 (depicted in blue) and the fastest temporal path Q from w to v10. From the values of
durations from w to each vi we cannot determine the fastest paths from w to all vi. More precisely,
we know that w reaches v2, v3, v4, v5 (resp. v10, v9, v9, v7) by first using the path P (resp. Q) and
then proceeding through the vertices, but we do not know how w reaches v6 the fastest. Therefore
we have to introduce some more guesses.

Again, using the tree structure, we get that for any u ∈ U its neighborhood is of size
|N(u)| ∈ O(k), since every neighbor of u is the first vertex of a (unique) path to another
vertex in U . It follows that |U∗| ∈ O(k2). From the construction of Z (i. e., by exhaustively
removing vertices of degree one from G), it follows that G[Z] (the graph induced in G by Z)
is a forest, i. e., consists of disjoint trees. Each of these trees has a unique neighbor v in G′.
Denote by Tv the tree obtained by considering such a vertex v and all the trees from G[Z]
that are incident to v in G. We then refer to v as the clip vertex of the tree Tv. In the case
where v is a vertex of interest we define also the set Z∗

v of representative vertices of Tv, as
follows. We first create an empty set Cw for every vertex w that is a neighbor of v in G′. We
then iterate through every vertex r that is in the first layer of the tree Tv (i. e., vertex that is a
child of the root v in the tree Tv), check the matrix D and find the vertex w ∈ NG′(v) that is
on the smallest duration from r. In other words, for an r ∈ NTv

(v) we find w ∈ NG′(v) such
that Dr,w ≤ Dr,w′ for all w′ ∈ NG′(v). We add vertex r to Cw. In the case when there exists
also another vertex w′ ∈ NG′(v) for which Dr,w′ = Dr,w, we add r also to the set Cw′ . In fact,
in this case Cw′ = Cw. At the end we create |NG′(v)| ∈ O(k) sets Cw, whose union contains
all children of v in Tv. For every two sets Cw and Cw′ , where w, w′ ∈ NG′(v), we have that
either Cw = Cw′ , or Cw ∩ Cw′ = ∅. We interpret each of these sets {Cw : w ∈ NG′(v)} as an
equivalence class of the neighbors of v in the tree Tv. Now, from each equivalence class Cw

we choose an arbitrary vertex rw ∈ Cw and put it into the set Z∗
v . We repeat the above

procedure for all trees Tu with the clip vertex u from U , and define Z∗ as

Z∗ =
⋃

v∈U

Z∗
v . (1)

Since |U | ∈ O(k) and for each u ∈ U it holds |NG′(u)| ∈ O(k), we get that |Z∗| ∈ O(k2).
Finally, the set of important vertices is defined as the set U ∪ U∗ ∪ Z∗. For an illustration
see Figure 5.

Guesses. For every pair of important vertices u, v ∈ U ∪ U∗ ∪ Z∗, we guess the sequence of
edges in the fastest temporal path from u to v. Since U ∪ U∗ ∪ Z∗ ∈ O(k2) and there are
kO(k) possibilities for a sequence of edges between a fixed vertex pair, we have kO(k5) overall
possible guesses. We defer further details to [46] (see guesses G-1 to G-6).

With the information provided by the described guesses we are still not able to determine
all fastest paths. For example consider the case depicted in Figure 6. Therefore we introduce
additional guesses that provide us with sufficient information to determine all fastest paths.
To do this we have to first define the following.
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▶ Definition 8. Let U ⊆ V (G′) be a set of vertices of interest and let u, v ∈ U . A path
P = (u = v1, v2, . . . , vp = v) of length at least 2 in graph G′, where all inner vertices are not
in U , i. e., vi /∈ U for all i ∈ {2, 3, . . . , p − 1}, is called a segment from u to v. We denote it
as Su,v.

Note by Definition 8 that Su,v ̸= Sv,u. Observe that a temporal path in G′ between
two vertices of interest is either a segment, or it consists of a sequence of some segments.
Furthermore, since we have at most 4k interesting vertices in G′, we can deduce the following
important result.

▶ Corollary 9. There are O(k2) segments in G′.

To describe the next guesses, we introduce the following notation. Let u, v, x be three vertices
in G′. We write u⇝ x → v to denote a temporal path from u to v that passes through x,
and then goes to v (via one edge). We guess the following structures.
G-7. Inner segment guess I. Let Su,v = (u = v1, v2, . . . , vp = v) and Sw,z = (w =

z1, z2, . . . , zr = z) be two segments in G′. We want to guess the fastest temporal path
v2 → u⇝ w → z2. We repeat this procedure for all pairs of segments. Since there are
O(k2) segments in G′, there are kO(k5) possible paths of this form.
Recall that Su,v ̸= Sv,u for every u, v ∈ U . Furthermore note that we did not assume
that {u, v} ∩ {w, z} = ∅. Therefore, by repeatedly making the above guesses, we also
guess the following fastest temporal paths: v2 → u⇝ z → zr−1, v2 → u⇝ v → vp−1,
vp−1 → v ⇝ w → z2, vp−1 → v ⇝ z → zr−1, and vp−1 → v ⇝ u → v2. For an example
see Figure 7a.

G-8. Inner segment guess II. Let Su,v = (u = v1, v2, . . . , vp = v) be a segment in G′, and
let w ∈ U ∪ Z∗. We want to guess the following fastest temporal paths w ⇝ u → v2,
w ⇝ v → vp−1 → · · · → v2, and v2 → u⇝ w, v2 → v3 → · · · v ⇝ w.
For fixed Su,v and w ∈ U ∪ Z∗ we have kO(k) different possible such paths, therefore
we make kO(k5) guesses for these paths. For an example see Figure 7b.

G-9. Split vertex guess I. Let Su,v = (u = v1, v2, . . . , vp = v) be a segment in G′, and
let us fix a vertex vi ∈ Su,v \ {u, v}. In the case when Su,v is of length 4, the fixed
vertex vi is the middle vertex, else we fix an arbitrary vertex vi ∈ Su,v \ {u, v}. Let
Sw,z = (w = z1, z2, . . . , zr = z) be another segment in G′. We want to determine the
fastest paths from vi to all inner vertices of Sw,z. We do this by inspecting the values
in matrix D from vi to inner vertices of Sw,z. We split the analysis into two cases.
a. There is a single vertex zj ∈ Sw,z for which the duration from vi is the biggest.

More specifically, zj ∈ Sw,z \ {w, z} is the vertex with the biggest value Dvi,zj .
We call this vertex a split vertex of vi in the segment Swz. Then it holds that
Dvi,z2 < Dvi,z3 < · · · < Dvi,zj

and Dvi,zr−1 < Dvi,zr−2 < · · · < Dvi,zj
. From this

it follows that the fastest temporal paths from vi to z2, z3, . . . , zj−1 go through w,
and the fastest temporal paths from vi to zr−1, zr−2, . . . , zj+1 go through z. We
now want to guess which vertex w or z is on a fastest temporal path from vi to zj .
Similarly, all fastest temporal paths starting at vi have to go either through u or
through v, which also gives us two extra guesses for the fastest temporal path from
vi to zj . Therefore, all together we have 4 possibilities on how the fastest temporal
path from vi to zj starts and ends. Besides that we want to guess also how the fastest
temporal paths from vi to zj−1, zj+1 start and end. Note that one of these is the
subpath of the fastest temporal path from vi to zj , and the ending part is uniquely
determined for both of them, i. e., to reach zj−1 the fastest temporal path travels
through w, and to reach zj+1 the fastest temporal path travels through z. Therefore
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we have to determine only how the path starts, namely if it travels through u or v.
This introduces two extra guesses. For a fixed Su,v, vi and Sw,z we find the vertex zj

in polynomial time, or determine that zj does not exist. We then make four guesses
where we determine how the fastest temporal path from vi to zj passes through
vertices u, v and w, z and for each of them two extra guesses to determine the fastest
temporal path from vi to zj−1 and from vi to zj+1. We repeat this procedure for all
pairs of segments, which results in producing kO(k5) new guesses. Note, vi ∈ Su,v is
fixed when calculating the split vertex for all other segments Sw,z.

b. There are two vertices zj , zj+1 ∈ Sw,z for which the duration from vi is the biggest.
More specifically, zj , zj+1 ∈ Sw,z \ {w, z} are the vertices with the biggest value
Dvi,zj = Dvi,zj+1 . Then it holds that Dvi,z2 < Dvi,z3 < · · · < Dvi,zj = Dvi,zj+1 >

Dvi,zj+2 > · · · > Dvi,zr−1 . From this it follows that the fastest temporal paths
from vi to z2, z3, . . . , zj go through w, and the fastest temporal paths from vi to
zr−1, zr−2, . . . , zj+1 go through z. In this case we only need to guess the following
two fastest temporal paths vi ⇝ w → z2 and vi ⇝ z → zr−1. Each of these paths we
then uniquely extend along the segment Sw,z up to the vertex zj , resp. zj+1, which
give us fastest temporal paths from vi to zj and from vi to zj+1. In this case we
introduce only two more guesses. We repeat this procedure for all pairs of segments.
which results in creating kO(k5) new guesses.

For an example see Figure 7b.
G-10. Split vertex guess II. Let w ∈ U ∪ Z∗ and let Su,v = (u = v1, v2, . . . , vp = v). We

want to guess a split vertex of w in Su,v, and the fastest temporal path that reaches it.
We again have two cases, first one where vi is a unique vertex in Su,v that is furthest
away from w, and the second one where vi, vi+1 are two incident vertices in Su,v, that
are furthest away from w. All together we make two guesses for each pair w, Su,v. We
repeat this for all vertices in U ∪ Z∗, and all segments, which produces kO(k5) new
guesses. For an example see Figure 7c. Detailed analysis follows arguing from above
(as in G-9) and is deferred to [46].

There are two more guesses G-11 and G-12 that are deferred to [46]. We prove in [46]
that, for all guesses G-1 to G-12, there are in total at most f(k) possible choices, and for
each one of them we create an ILP with at most f(k) variables and at most f(k) · |D|O(1)

constraints. Each of these ILPs can be solved in FPT time by Lenstra’s Theorem [49]. For
detailed explanation and proofs of this part see [46].

4 Conclusion

We believe that our work spawns several interesting future research directions and builds a
base upon which further temporal graph realization problems can be investigated.

There are several structural parameters which can be considered to obtain tractability
which are either larger than or incomparable to the feedback vertex number. We believe that
the vertex cover number or the tree depth are promising candidates. Furthermore, we can
consider combining a structural parameter such as the treewidth with ∆.

There are many natural variants of our problem that are well-motivated and warrant
consideration. We believe that one of the most natural generalizations of our problem is to
allow more than one label per edge in every ∆-period. A well-motivated variant (especially
from the network design perspective) of our problem is to consider the entries of the duration
matrix D as upper-bounds on the duration of fastest paths rather than exact durations. This
problem variant has very recently been studied by Mertzios et al. [56].
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u=v1 v2 vp−1 vp=v

w=z1 z2 zr−1 zr=z

(a) Example of an Inner segment guess I (G-7),
where we guessed the fastest temporal paths of the
form v2 → u ⇝ w → z2 (in blue) and v2 → u ⇝
z → zr−1 (in red).

u=v1 v2 vp−1 vp=v

w

(b) Example of an Inner segment guess II (G-8),
where we guessed the fastest temporal paths of the
form w ⇝ u → v2 (in blue) and w ⇝ v → vp−1 (in
red).

u=v1 v2 vi vp−1 vp=v

w=z1 z2 zj−1 zj zj+1 zr−1 zr=z

(c) Example of a Split vertex guess I (G-9), where,
for a fixed vertex vi ∈ Su,v, we calculated its cor-
responding split vertex zj ∈ Sw,z , and guessed the
fastest paths of the form vi → vi−1 → · · · → u ⇝
z → zr−1 · · · → zj (in blue) and vi → vi+1 →
· · · → v ⇝ w → z2 → · · · → zj−1 (in red).

u=v1 v2 vi vi+1 vp−1 vp=v

w

(d) Example of a Split vertex guess II (G-10), where,
for a vertex of interest w, we calculated its corres-
ponding split vertex vi ∈ Su,v, and guessed the
fastest paths of the form w ⇝ u → v2 → · · · → vi

(in blue) and w ⇝ v → vp−1 → · · · → vi+1 (in
red).

Figure 7 Illustration of the guesses G-7, G-8, G-9, and G-10.
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Abstract
It is a celebrated fact that a simple random walk on an infinite k-ary tree for k ≥ 2 returns to the
initial vertex at most finitely many times during infinitely many transitions; it is called transient.
This work points out the fact that a simple random walk on an infinitely growing k-ary tree can
return to the initial vertex infinitely many times, it is called recurrent, depending on the growing
speed of the tree. Precisely, this paper is concerned with a simple specific model of a random walk
on a growing graph (RWoGG), and shows a phase transition between the recurrence and transience
of the random walk regarding the growing speed of the graph. To prove the phase transition, we
develop a coupling argument, introducing the notion of less homesick as graph growing (LHaGG).
We also show some other examples, including a random walk on {0, 1}n with infinitely growing n, of
the phase transition between the recurrence and transience. We remark that some graphs concerned
in this paper have infinitely growing degrees.
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1 Introduction

The recurrence or transience is a classical and fundamental topic of random walks on infinite
graphs, see e.g., [18]: let X0, X1, X2, . . . be a random walk (or a Markov chain)1 on an infinite
state space V , e.g., V = Z, with X0 = v for v ∈ V . For convenience, let

R(t) = Pr[Xt = v] (= Pr[Xt = v | X0 = v])

denote the probability that a random walk returns to the initial state at time step t

(t = 1, 2, . . .), and then the initial point v is recurrent by the random walk if
∞∑

t=1
R(t) = ∞ (1)

1 This paper is concerned with discrete time and space processes. We will be mainly concerned with
time-inhomogeneous Markov chains, but here you may assume a time-homogeneous chain, i.e., the
transition probability Pr[Xt+1 = v | Xt = u] is independent of the time t, but depends on u, v.
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17:2 Recurrence/Transience of Random Walks on Growing Trees and Hypercubes

holds, otherwise it is transient. Intuitively, (1) means that the random walk is “expected” to
return to the initial state infinitely many times. It is well known that a simple random walk
on Zd is recurrent for d = 1, 2, while it is transient for d ≥ 3, cf. [18]. Another celebrated
fact is that a simple random walk on an infinite k-ary tree is transient [28, 29].

Analysis of random walks on dynamic graphs has been developed in several contexts.
In probability theory, random walks in random environments are a major topic, where
self-interacting random walks including reinforced random walks and excited random walks
have been intensively investigated as a relatively tractable non-Markovian process, see e.g.,
[11, 6, 17, 31, 32, 24]. The recurrence or transience of a random walk in a random environment
is a major topic there, particularly random walks on growing subgraphs of Zd or on infinitely
growing trees are the major targets [13, 14, 21, 1]. In distributed computing, analysis of
algorithms, including random walk, on dynamic graph attracts increasing attention due to
the fact that real networks are often dynamic [8, 25, 3, 30]. Searching or covering networks,
related to hitting or cover times of random walks, are major topics there [9, 4, 16, 5, 26, 7, 23].

This work is concerned with the recurrence/transience of a random walk on a growing
graph. We show the fact that a simple random walk on an infinitely growing complete k-ary
tree can be recurrent depending on the growing speed of the tree, while a simple random
walk on an infinite k-ary tree is transient as we mentioned above. More precisely, this paper
follows the model of the random walk on growing graph (RWoGG) [23], where the network
gradually grows such that the growing network keeps its shape G(n) for d(n) steps, and
then changes the shape to G(n + 1) by adding some vertices to G(n) (see Section 2.1 for
detail). Then, we show a phase transition between the recurrence and transience of a random
walk on a growing k-ary tree, regarding the growing speed of the graph. For a proof, we
develop the notion of less-homesick as graph growing (LHaGG), which is a quite natural
property of RWoGG, and gives a simple proof by a coupling argument, that is an elementary
technique of random walks or Markov chains based on a comparison method. We also show
some other examples of the phase transition, including as a random walk on {0, 1}n with
infinitely growing n.

1.1 Existing works and contribution of the paper
The recurrence/transience of a random walk on a dynamic graph has been mainly developed
in the context of random walks in random environment including reinforced random walks
and excited walks. Here we briefly review some existing works concerning the recurrence of a
random walk on Zd and infinite (or infinitely growing) trees, directly related to this paper.

Random walks on (asymptotically) Zd. It is a celebrated fact that the initial point, say
origin 0, in the infinite integer grid Zd is recurrent when d = 1 and 2 by a simple random
walk, and it is transient for d ≥ 3, see e.g., [18].

Dembo et al. [14] is concerned with a random walk on an infinitely growing subgraph of
Zd, and gave a phase transition, that is roughly speaking a random walk is recurrent if and
only if

∑∞
t=1 πt(0) = ∞ holds under a certain condition, where πt denotes the stationary

distribution of the transition matrix at time t. Huang [21] extended the argument of [14]
and gave a similar or essentially the same phase transition for more general graphs. The
proofs are based on the edge conductance and a central limit theorem, on the assumptions
that every vertex of the dynamic graph has a degree at most constant to time (or the size of
the graph), and the random walk is “lazy” such that it has at least a constant probability
of self-loops at every vertex. Those arguments are sophisticated and enhanced using the
argument of evolving set and the heat kernel by recent works [12, 15].
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Random walks on infinitely growing trees. Lyons [28] studied sufficient conditions for a
random walk being recurrent/transient, see also [29]. Roughly speaking, the initial point,
say the root r, is recurrent if and only if the random walk is enough homesick, meaning that
a random walk probabilistically tends to choose the direction to the root.

Amir et al. [1] introduced a random walk in changing environment model, and investigated
the recurrence and transience of random walks in the model. They gave a conjecture about
the conditions for the recurrence and transience regarding the limit of a graph sequence, and
proved it for trees. Huang’s work [21], which we mentioned above, implies that a simple
random walk starting from a vertex v on growing k-ary tree is recurrent if and only if∑

πt(v) = ∞, that is similar to or essentially the same as a main result of this paper under
a certain condition. We remark that a k-ary tree with height n is not an (edge induced)
subgraph of Zd for a constant d.

There is a lot of work on the recurrence or transience of a random walk on a growing
tree, related to self-interacting random walks including reinforced random walks and excited
random walks, e.g., [22, 19]. They are non-Markovian processes, and in a bit different line
from [14, 1, 21] and this paper.

Contribution of this work. This paper is concerned with a specific model of dynamic graphs
with an increasing number of vertices, which we will describe in Section 2.1, and gives a
phase transition by the growing speed regarding a random walk being recurrent/transient.
The phase transition is very similar to or essentially the same as [14, 21], while this paper
contains mainly three contributions. One is the proof technique: we employ a coupling
argument while the existing works are based on the conductance and a central limit theorem.
The coupling arguments is a classical and elementary comparison technique of random walks,
and we introduce the notion of LHaGG to use the comparison technique. Since the coupling
technique is relatively simple, we can drop two assumptions in the existing works, namely
a random walk being lazy and a growing graph having uniformly bounded degree, which
are naturally required in the conductance argument to make the arguments simple. This
paper is mainly concerned with reversible random walks of period 2, which contains simple
random walks on undirected bipartite graphs; this is the second contribution. We also show
an example of random walk on {0, 1}n with increasing n, where the (maximum) degree of
the dynamic graph, that is n, infinitely grows; this is the third contribution.

While the coupling technique is relatively easy, it often selects the applicable target.
In fact, the results by [14, 21] are widely applied to general setting as far as it satisfies
appropriate assumptions, while our result is limited to specific targets. Such an argument
about conductance and coupling seems known as an implicit knowledge in the literature of
mixing time analysis, cf. [2, 20]. However, we emphasize that the coupling technique often
gives an easy proof of an interesting phenomena, as this paper shows.

1.2 Organization

As a preliminary, we describe the model of random walk on growing graph (RWoGG) in
Section 2. Section 3 introduces the notion of less homesickness as graph growing (LHaGG), and
presents some general theorems for sufficient conditions of a RWoGG being recurrent/transient.
Section 4 shows a phase transition between the recurrence and transience of a random walk
on growing k-ary tree. Section 5 shows a phase transition for a random walk on {0, 1}n with
increasing n.

SAND 2024
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2 Preliminaries

2.1 Model
A growing graph is a sequence of (static) graphs G = G0, G1, G2, . . . where Gt = (Vt, Et)
for t = 0, 1, 2, . . . denotes a graph2 with a finite vertex set Vt and an edge set Et ⊆

(Vt

2
)
.

For simplicity, this paper assumes3 Vt ⊆ Vt+1 and Et ⊆ Et+1. In this paper, we assume
|V∞| = ∞, otherwise the subject (recurrence) is trivial. A random walk on a growing graph
is a Markovian series Xt ∈ Vt (t = 0, 1, 2, . . .).

In particular, this paper is concerned with a specific model, described as follows, cf. [23].
A random walk on a growing graph (RWoGG), in this paper, is formally characterized by a
3-tuple of functions D = (d, G, P ). The function d : Z>0 → Z≥0 denotes the duration. For
convenience, let Tn =

∑n
i=1 d(i) for n = 1, 2, . . .4 and T0 = 0. We call the time interval

[Tn−1, Tn] phase n for n = 1, 2, . . .; thus Tn−1 =
∑n−1

i=1 d(i) is the beginning of the n-th phase,
but we also say that Tn−1 is the end of the (n − 1)-st phase, for convenience. The function
G : Z>0 → G represents the graph G(n) = (V (n), E(n)) for the phase n, where G denotes
the set of all (static) graphs, i.e., our growing graph G satisfies Gt = G(n) for t ∈ [Tn−1, Tn).
Similarly, the function P : Z>0 → M is a function that represents the “transition probability”
of a random walk on graph G(n) where M denotes the set of all stochastic matrices.

A RWoGG Xt (t = 0, 1, 2, . . .) characterized by D = (d, G, P ) is temporally a time-
homogeneous finite Markov chain according to P (n) with the state space V (n) during
the time interval [Tn−1, Tn]; precisely, a transition from Xt to Xt+1 follows P (n) for any
t ∈ [Tn−1, Tn). We specially remark for t = Tn that Xt ∈ V (n) ⊆ V (n + 1), meaning that
Xt is a state of V (n + 1) but actually Xt must be in V (n) by the definition of the transition.
Suppose X0 = v for v ∈ V (1). We define the return probability at v by

R(t) = Pr[Xt = v] (= Pr[Xt = v | X0 = v]) (2)

at each time t = 0, 1, 2, . . .. We say v is recurrent by RWoGG D = (d, G, P ) if

∞∑
t=1

R(t) = ∞ (3)

holds, otherwise, i.e.,
∑∞

t=1 R(t) is finite, v is transient by D.

2.2 Terminology on time-homogeneous Markov chains
We here briefly introduce some terminology for random walks on static graphs, or time-
homogeneous Markov chains, according to [27].

2.2.1 Ergodic random walks
Suppose that X0, X1, X2, . . . is a random walk on a static graph G = (V, E) characterized by
a time-homogeneous transition matrix P = (P (u, v)) ∈ RV ×V

≥0 where P (u, v) = Pr[Xt+1 =
v | Xt = u]. A random walk is reversible if there exists a positive function µ : V → R>0 such
that µ(u)P (u, v) = µ(v)P (v, u) hold for all u, v ∈ V . A transition matrix P is irreducible if

2 Every static graph is simple and undirected in this paper, for simplicity of the arguments.
3 Thus, the current position does not disappear in the next step.
4 We do not exclude Tn−1 = Tn; if d(n) = 0 then Tn−1 = Tn.
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∀u, v ∈ V , ∃t > 0, (P t)(u, v) > 0. The period of P is given by period(P ) = minv∈V gcd{t >

0 : (P t)(v, v) > 0}. It is well known that gcd{t > 0 : (P t)(v, v) > 0} is common for any
v ∈ V if P is irreducible.

If period(P ) = 1 then P is said to be aperiodic. A transition matrix P is ergodic if it is
irreducible and aperiodic. We say a random walk is (γ-)lazy if P (v, v) ≥ γ holds for any
v ∈ V for a constant γ (0 < γ < 1). A lazy random walk is clearly aperiodic. A probability
distribution π over V is a stationary distribution if it satisfies πP = π. It is well known that
an ergodic P has a unique stationary distribution [27]. The mixing time of P is given by

τ(ϵ) def.= min
{

t

∣∣∣∣∣ t ∈ Z>0,
1
2 max

u∈V

∑
v∈V

∣∣P t(u, v) − π(v)
∣∣ ≤ ϵ

}
(4)

for ϵ ∈ (0, 1).

2.2.2 Random walk with period 2

A simple random walk (or “busy” simple random walk) on an undirected graph G = (V, E)
is given by P (u, v) = 1/ deg(u) for {u, v} ∈ E where deg(u) denotes the degree of u ∈ V on
G. This paper is mainly concerned with bipartite graphs, such as trees, integer grids, and
0-1 hypercubes, and then the most targeted random walks are irreducible and reversible, but
not aperiodic.

▶ Observation 1. If P is reversible then its period is at most 2.

Suppose P is irreducible and reversible, and it has period 2. Then, the underlying graph
is a connected bipartite (U, U ; E), where U = {u ∈ V | ∃t′, P 2t′(v, u) ̸= 0} for any v ∈ U ,
U = {u | ∀t, P 2t(v, u) = 0}, i.e., U = V \ U , and E = {{u, v} ∈ V 2 | P (u, v) > 0}. Notice
that E does not contain any self-loop, otherwise, P is aperiodic.

Here, we introduce some unfamiliar terminology for periodic Markov chains. We say
x̊ ∈ RV

≥0 is even-time distribution if it satisfies
∑

v∈V x̊(v) = 1 and x̊(u) = 0 for any u ∈ U .
We say π̊ ∈ RV

≥0 is even-time stationary distribution if it is an even-time distribution and
satisfies π̊P 2 = π̊.

▶ Proposition 2 (limit distribution). Suppose P is irreducible and reversible, and it has period
2. Then, P has a unique even-time stationary distribution π̊, and limt→∞ x̊P 2t = π̊ for any
even-time distribution x̊.

We define the even mixing-time of P by

τ̊(ϵ) = min
{

2t′

∣∣∣∣∣ t′ ∈ Z>0,
1
2 max

u∈U

∑
v∈U

∣∣∣P 2t′
(u, v) − π̊(v)

∣∣∣ ≤ ϵ

}
(5)

for ϵ ∈ (0, 1). We remark that the even mixing-time of P is equal to the twice of the mixing
time of P 2[U ], where P 2[U ] denotes the submatrix of P induced by U . Thus, we can use
some standard arguments, e.g., coupling technique, about the even mixing-time of P . Finally,
we remark on a proposition, that plays a key role in our analysis.

▶ Proposition 3 (Proposition 10.25 in [27]). If P is reversible then π̊(v) ≤ P 2t+2(v, v) ≤
P 2t(v, v) for any t = 0, 1, 2, . . ..

SAND 2024
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3 Analytical Framework: LHaGG

This section introduces the notion of less-homesickness as graph growing (LHaGG), and
presents general theorems (Lemmas 5 and 6) describing some sufficient conditions of a
RWoGG being recurrent or transient. See the following sections for specific RWoGGs, namely,
RW on growing k-ary tree in Section 4, RW on {0, 1}n hypercube skeleton with increasing n

in Section 5, etc.

3.1 Less-homesick as graph growing
Let D = (f, G, P ) and D′ = (f ′, G′, P ′) be RWoGG, and let R(t) and R′(t) respectively
denote their return probabilities to respective initial vertices at time t = 1, 2, . . .. We say D
is less-homesick than D′ = (f ′, G′, P ′) at time t if R(t) ≤ R′(t) holds.

In particular, this paper is mainly concerned with the less-homesick relationship between
D = (f, G, P ) and D′ = (g, G, P ) with the same P , G and the initial vertex v. We say D
is less-homesick as graph growing (LHaGG)5 if D = (f, G, P ) is less-homesick than for any
D′ = (g, G, P ) satisfying that

n∑
i=1

f(i) ≤
n∑

i=1
g(i) (6)

for any n ∈ Z>0. The condition (6) intuitively implies that the graph in D grows faster than
D′. For instance, we will prove that the simple random walk on growing k-regular tree is
LHaGG, in Section 4.

▶ Lemma 4. Suppose RWoGG D = (f, G, P ) is LHaGG. Let Xt (t = 0, 1, 2, . . .) be a RWoGG
according to D with X0 = v ∈ V (1). Let Yt (t = 0, 1, 2, . . .) be a random walk on (a static
graph) G(n) according to P (n) with Y0 = v, where G, P and v are common with D. Then, Yt

is less-homesick than Xt at any time t ∈ [Tn, Tn+1], i.e., R(t) ≥ R′(t) holds for t ∈ [Tn, Tn+1],
where R(t) = Pr[Xt = v] and R′(t) = Pr[Yt = v].

Proof. Let

g(i) =


0 (i < n),∑n

j=1 f(j) (i = n),
f(i) (i > n).

Then, the static random walk Yt on G(n) also follows D′ = (g, G, P ) for t ≤ Tn+1. Clearly,∑n
i=1 f(i) ≥

∑n
i=1 g(i) for any n. Since D is LHaGG by the hypothesis, R(t) ≥ R′(t). ◀

We remark that if all Pn takes period 2 then R(t) = R′(t) = 0 for any odd t.

3.2 Recurrent
We prove the following lemma, presenting a sufficient condition for a RWoGG to be recurrent.

5 Strictly speaking, LHaGG should be a property of the sequence of transition matrices P (1), P (2), P (3), . . ..
For the convenience of the notation, we say D = (f, G, P ) is LHaGG, in this paper.
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▶ Lemma 5. Suppose that RWoGG D = (d, G, P ) is LHaGG, and that every P (n) = Pn

(n = 1, 2, . . .) is irreducible, reversible and period(Pn) = 2. Let p(n) = π̊n(v) where π̊n denote
the even-time stationary distribution of Pn. If d satisfies

∞∑
n=1

(d(n) − 1)p(n) = ∞ (7)

then v is recurrent by D.

Proof. Let f(n) = 2⌊d(n)
2 ⌋, i.e., f(n) = d(n) if d(n) is even, otherwise f(n) = d(n) − 1. For

convenience, let T ′
n =

∑n
k=1 f(k) for n = 1, 2, . . ., and let T ′

0 = 0. Let Xt (resp. X ′
t) for

t = 0, 1, 2, . . . be a RWoGG according to D = (d, G, P ) (resp. D′ = (f, G, P )), and let R(t)
(resp. R′) denote the return probability of Xt (resp. X ′

t). The hypothesis LHaGG implies
R(t) ≥ R′(t). Let Y n

t (t = 0, 1, . . . , T ′
n) be a time-homogeneous random walk according to

P (n), and let R′′
n(t) (t = 1, . . . , T ′

n) denote the return probability of Y n
t . The hypothesis

LHaGG and Lemma 4 implies

R′(t) ≥ R′′
n(t) (8)

for t ∈ (T ′
n−1, T ′

n]. Then, we can see
∞∑

t=1
R(t) ≥

∞∑
t=1

R′(t) (by LHaGG)

=
∞∑

n=1

T ′
n∑

t=T ′
n−1+1

R′(t)

≥
∞∑

n=1

T ′
n∑

t=T ′
n−1+1

R′′
n(t) (by (8))

=
∞∑

n=1

f(n)∑
i=1

R′′
n(T ′

n−1 + i) (recall T ′
n = T ′

n−1 + f(n))

=
∞∑

n=1

f(n)
2∑

i′=1
R′′

n(T ′
n−1 + 2i′) (notice that R′′

n(T ′
n−1 + 2i′ − 1) = 0)

≥
∞∑

n=1

f(n)
2∑

i′=1
p(n) (by Proposition 3)

= 1
2

∞∑
n=1

f(n)p(n)

≥ 1
2

∞∑
n=1

(d(n) − 1)p(n) (9)

hold. If (7) holds then (9) is ∞, meaning that v is recurrent by D. ◀

It is not difficult to see that a similar proposition holds for lazy random walks.

3.3 Transient
This section establishes the following lemma, which suggests Lemma 5 is nearly optimal. In
fact, we will provide an example of a random walk on a growing k-ary tree in Section 4, that
shows a tight example of Lemma 5.

SAND 2024
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▶ Lemma 6. Suppose that a RWoGG D = (d, G, P ) is LHaGG, and that every P (n) = Pn

(n = 1, 2, . . .) is irreducible and reversible with period(Pn) = 2. Let p(n) = π̊n(v) where π̊n

denote the even-time stationary distribution of Pn. Let τ̊n(ϵ) denote the even mixing-time of
P (n), and let

t̊(n) = τ̊n(p(n))

for n = 2, 3, . . .. If

max
{
d(1), t̊(1)

}
+

∞∑
n=2

max
{
d(n), t̊(n)

}
p(n − 1) < ∞ (10)

holds then v is transient by D.

Proof. Let

f(n) = max
{
d(n), t̊(n)

}
for n = 1, 2, 3, . . .. Let R(t) and R′(t) respectively denote the return probabilities of
D = (d, G, P ) and D′ = (f, G, P ). Clearly, f(n) ≥ d(n) for any n, LHaGG implies

R(t) ≤ R′(t) (11)

for any t = 0, 1, 2, . . .. For convenience, let

T ′
n =

n∑
k=1

f(k) (12)

for n = 1, 2, . . ..
We carry a tricky argument in the following: roughly speaking we compare D′ with Pn−1

in the n-th round, i.e., [Tn−1, Tn], for n = 2, 3, . . .. Let

gn−1(k) =
{

f(k) (k ≤ n − 2)
∞ (k = n − 1)

for n = 2, 3, . . .. Let Z
(n−1)
t (t = 0, 1, 2, . . .) denote a RWoGG (gn−1, G, P ), where Z

(n−1)
0 = v.

Let R′′
n−1(t) denote the return probability of Z

(n−1)
t , Clearly,

∑j
i=1 f(i) ≤

∑j
i=1 gn−1(i) holds

for any j, hence the LHaGG assumption implies

R′(t) ≤ R′′
n−1(t) (13)

for any t = 0, 1, 2 . . . for any n = 2, 3, . . ..
Notice that Z

(n−1)
t for t ∈ [Tn−2, Tn] is nothing but a time-homogeneous random walk

according to Pn−1 with the “initial state” ZTn−2 = v for n = 2, 3, . . .. Since

T ′
n−1 = T ′

n−2 + f(n − 1) ≥ T ′
n−2 + t̊(n − 1) = T ′

n−2 + τ̊n−1(p(n − 1))

Z
(n−1)
t mixes well for t > T ′

n−1, meaning that | Pr[Z(n−1)
t = v] − π̊n−1(v)| ≤ p(n − 1) for any

even t ∈ (T ′
n−1, Tn]. This implies

R′′
n−1(t) = Pr[Z(n−1)

t = v] ≤ π̊n−1(v) + p(n − 1) = 2p(n − 1) (14)
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holds6 for t ∈ (T ′
n−1, T ′

n], where we remark that R′′
n−1(t) = 0 for any odd t. Then,

∞∑
t=1

R(t) ≤
∞∑

t=1
R′(t) (by (11))

=
∞∑

n=1

T ′
n∑

t=T ′
n−1+1

R′(t)

≤ f(1) +
∞∑

n=2

T ′
n∑

t=T ′
n−1+1

R′(t)

≤ f(1) +
∞∑

n=2

T ′
n∑

t=T ′
n−1+1

R′′
n−1(t) (by (13))

≤ f(1) +
∞∑

n=2

T ′
n∑

t=T ′
n−1+1

2p(n − 1) (by (14))

= f(1) + 2
∞∑

n=2
f(n)p(n − 1)

holds. Now it is easy to see that (10) implies
∑∞

t=1 R(t) < ∞, meaning that v is transient
by D. ◀

It is not difficult to see that a similar proposition holds for lazy random walks.

4 Random Walk on a Growing Complete k-ary Tree

Lyons gave sufficient conditions that a random walk on an infinite tree gets recurrent or
transient at the root (initial point), cf. [28, 29], as a consequence, it is a celebrated fact that
a simple random walk on an infinite k-ary tree is transient. This section shows that a simple
random walk on a moderately growing complete k-ary tree is recurrent at the root.

4.1 Result summary
Let k be an integer greater than one, and let Gn = (Vn, En) denote a complete k-ary tree
with height n for n = 1, 2, . . ., i.e., |Vn| =

∑n
i=0 ki = kn+1−1

k−1 , every internal node (including
the root) has exactly k children, and every leaf places the same height n. Let r ∈ Vn denote
the root, that is the unique vertex of height 0. For convenience, let h(v) denote the height of
vertex v ∈ Vn, i.e., h(r) = 0, and h(v) = n if and only if v is a leaf of Gn. Let

Un = {v ∈ Vn | h(v) ≡ 0 (mod 2)} (15)

denote the vertices of even heights, and thus Un = Vn \ Un is the vertices of odd heights.
Clearly, Gn = (Un, Un; En) is a bipartite graph. See [10] for a standard terminology about a
complete k-ary tree, e.g., parent, child, root, internal node, leaf, height.

6 We remark this argument requires only point-wise additive error bound, instead of total variation.
Clearly, point-wise additive error is upper bounded by total variation. We here use the mixing time for
total variation just because it has been better analyzed than the other.
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Next, we define a transition probability of a random walk over Gn according to [28, 29].
Let λ be a fixed positive real7, and we define a transition probability on the k-ary tree Gn

with height n by

Pn(u, v) =



1
k if u = r and v is a child of u,

1
λ+k if u ̸= r and v is a child of u,

λ
λ+k if u is an internal node and v is the parent of u,
1 if u is a leaf and v is the parent of u,
0 otherwise,

(16)

for u, v ∈ Vn. Notice that (16) denotes a simple random walk over Tn when λ = 1. We also
remark that λ and k are constants to n. As a consequence of [28], we know the following
fact about a random walk on an infinite k-ary tree T∞.

▶ Proposition 7 ([28, 29]). If λ ≥ k (resp. λ < k) then the root r is recurrent (resp. transient)
by P∞.

Then, we are concerned with a RWaGG DT = (d, G, P ) starting from the root r where
G(n) = Gn and P (n) = Pn. Our goal of the section is to establish the following theorem.

▶ Theorem 8. Let k ≥ 2 and λ > 0 be constants to n. Then, the root r is recurrent by DT if
∞∑

n=1
d(n)

(
λ

k

)n

= ∞ (17)

holds, otherwise, transient.

For instance, Theorem 8 implies the following corollary, about a simple random walk on
an infinitely growing k-ary tree.

▶ Corollary 9. Let λ = 1, i.e., every Pn denotes a simple random walk on the complete
k-ary tree Tn. If d(n) = Ω(kn/(n log n)) then r is recurrent by DT. If d(1) < ∞ and
d(n) = O(kn/(n(log n)1+ϵ)) for n ≥ 2 with a constant ϵ > 0 then r is transient by DT.

Proof. Suppose d(n) ≥ ckn/(n log n) for some constant c > 0. Then,
∑∞

n=1 d(n)( 1
k )n ≥∑∞

n=1 c kn

n log n ( 1
k )n = c

∑∞
n=1

1
n log n ≥ c

∫ ∞
2

1
n log n = c[log log n]∞2 = ∞ , and Theorem 8

implies that r is recurrent.
Suppose d(n) ≤ c′kn/(n(log n)1+ϵ)for some constant c′ > 0. Then,

∑∞
n=1 d(n)( 1

k )n ≤
d(1) +

∑∞
n=2 c′ kn

n(log n)1+ϵ ( 1
k )n ≤ d(1) + c′ 1

2(log 2)1+ϵ + c′ ∫ ∞
2

1
x(log x)1+ϵ dx = d(1) + c′ 1

2(log 2)1+ϵ +

c′k
[
− 1

ϵ(log x)ϵ

]∞

2
< ∞, and Theorem 8 implies that r is transient. ◀

4.2 Proof of Theorem 8
We prove Theorem 8. As a preliminary step, we remark on the following two facts.

▶ Lemma 10. (i) Every Pn (n = 1, 2, . . .) is reversible: precisely, let

ϕ(v) =


k

λ+k if h(v) = 0 (i.e., v = r),
λ−h(v) if 0 < h(v) < n,

λ
λ+k λ−n if h(v) = n (i.e., v is a leaf).

(18)

7 For simplicity of notation, Lyons [28] and Lyons and Peres [29] assume λ > 1, but many arguments are
naturally extended to λ > 0 by modifications with some bothering notations.
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Then, the detailed balance equation

ϕ(u)Pn(u, v) = ϕ(v)Pn(v, u)

holds for any u, v ∈ Vn. (ii) Every Pn is irreducible and period(Pn) = 2. Thus the even-time
stationary distribution of Pn is

π̊n(v) = ϕ(v)∑
u∈Un

ϕ(u) (19)

for any v ∈ Un.

Let p(n) = π̊n(r), then

p(n) =


k

λ+k

k
λ+k +

∑⌊ n
2 ⌋

i=1 ( k
λ )2i if n is odd,
k

λ+k

k
λ+k +

∑ n
2 −1

i=1 ( k
λ )2i+ λ

λ+k ( k
λ )n if n is even

(20)

by (18) and (19) considering the fact |{v ∈ Vn | h(v) = i}| = ki for i = 0, 1, . . . , n.

▶ Lemma 11. If λ < k, then

k−λ
k

(
λ

k

)n+1
≤ p(n) ≤

(
λ

k

)n−1
. (21)

Proof. Firstly, we prove the upper bound of (21). When n is odd,

p(n) =
k

λ+k

k
λ+k +

∑⌊ n
2 ⌋

i=1
(

k
λ

)2i
≤ 1

k
λ+k +

∑⌊ n
2 ⌋

i=1
(

k
λ

)2i
≤ 1(

k
λ

)2⌊ n
2 ⌋ =

(
λ

k

)2⌊ n
2 ⌋

=
(

λ

k

)n−1

and we obtain the upper bound in the case. When n is even, similarly,

p(n) =
k

λ+k

k
λ+k +

∑ n
2 −1
i=1

(
k
λ

)2i + λ
λ+k

(
k
λ

)n
= 1

1 + λ+k
k

∑ n
2 −1
i=1

(
k
λ

)2i +
(

k
λ

)n

≤ 1(
k
λ

)n ≤
(

λ

k

)n−1

and we obtain the upper bound. Then, we prove the lower bound of (21). When n is odd,

p(n) =
k

λ+k

k
λ+k +

∑⌊ n
2 ⌋

i=1
(

k
λ

)2i
≥

k
λ+k

1 +
∑⌊ n

2 ⌋
i=1

(
k
λ

)2i
=

k
λ+k(

( k
λ )2)⌊ n

2 ⌋+1
−1

( k
λ )2−1

=
k

λ+k

( k
λ )n+1−1

( k
λ )2−1

and we obtain the lower bound in the case. When n is even,

p(n) =
k

λ+k

k
λ+k +

∑ n
2 −1
i=1

(
k
λ

)2i + λ
λ+k

(
k
λ

)n
≥

k
λ+k

1 +
∑ n

2 −1
i=1

(
k
λ

)2i +
(

k
λ

)n
=

k
λ+k

( k
λ )n+2−1

( k
λ )2−1

holds. In both cases,

p(n) ≥
k

λ+k

( k
λ )n+2−1

( k
λ )2−1

= k
λ+k

((
k
λ

)2 − 1
) 1(

k
λ

)n+2 − 1

≥ k
λ+k

((
k
λ

)2 − 1
) 1(

k
λ

)n+2 = k−λ
k

(
λ

k

)n+1

holds and we obtain the lower bound. ◀

SAND 2024



17:12 Recurrence/Transience of Random Walks on Growing Trees and Hypercubes

The following lemma is a key of the proof of Theorem, 8.

▶ Lemma 12. If λ < k then DT is LHaGG.

Proof. Let f and g satisfy
∑n

i=1 f(i) ≤
∑n

i=1 g(i) for any n = 1, 2, . . ., and let Xt and Yt

(t = 0, 1, 2, . . .) respectively follow (f, G, P ) and (g, G, P ), i.e., the tree of (f, G, P ) grows
faster than (g, G, P ). Let X0 = Y0 = r, and we prove Pr[Xt = r] ≤ Pr[Yt = r] for any
t = 1, 2, . . . (recall Section 3.1 for LHaGG).

We construct a coupling of X = {Xt}t≥0 and Y = {Yt}t≥0 such that h(Xt) ≥ h(Yt) holds
for any t = 1, 2, . . .. The proof is an induction concerning t. Clearly, h(X0) = h(Y0) = 0.
Inductively assuming h(Xt) ≥ h(Yt), we prove h(Xt+1) ≥ h(Yt+1). If h(Xt) > h(Yt) then
h(Xt) ≥ h(Yt) − 2 since every Pn is period(Pn) = 2 for n = 1, 2, . . .. It is easy to see that
h(Xt+1) ≥ h(Xt) − 1 ≥ h(Yt) + 1 ≥ h(Yt+1), and we obtain h(Xt+1) ≥ h(Yt+1) in the case.

Suppose h(Xt) = h(Yt). We consider four cases: (i) Xt = Yt = r, (ii) both Xt and Yt are
internal nodes, (iii) both Xt and Yt are leaves, i.e., both trees of (f, G, P ) and(g, G, P ) take
the same height at time t, (iv) Xt is not a leaf but Yt is a leaf, i.e., the tree of (f, G, P ) is
higher than that of (g, G, P ) at time t. In the case (i),

Pr[h(Xt+1) = h(Xt) + 1] = Pr[h(Yt+1) = h(Yt) + 1] = 1

hold, and hence we can couple them to satisfy h(Xt+1) = h(Yt+1). In the case (ii), since
both Xt and Yt are internal nodes,

Pr[h(Xt+1) = h(Xt) − 1] = Pr[h(Yt+1) = h(Yt) − 1] = λ

k + λ

and

Pr[h(Xt+1) = h(Xt) + 1] = Pr[h(Yt+1) = h(Yt) + 1] = k

k + λ

hold, and hence we can couple them to satisfy h(Xt+1) = h(Yt+1). In the case (iii), since
both Xt and Yt are leaves,

Pr[h(Xt+1) = h(Xt) − 1] = Pr[h(Yt+1) = h(Yt) − 1] = 1

holds, and hence we can couple them to satisfy h(Xt+1) = h(Yt+1). In the case (iv), since
Xt is not a leaf but Yt is a leaf,

Pr[h(Xt+1) = h(Xt) − 1] = λ

k + λ
≤ Pr[h(Yt+1) = h(Yt) − 1] = 1

holds, and hence we can couple them to satisfy h(Xt+1) ≥ h(Yt+1).
Now we obtain a coupling of X = {Xt}t≥0 and Y = {Yt}t≥0 such that h(Xt) ≥ h(Yt)

hold for any t = 1, 2, . . ., which implies that h(Yt) = 0 as long as h(Xt) = 0. This means
that Pr[Xt = r] ≤ Pr[Yt = r] for any t = 1, 2, . . .. We obtain the claim. ◀

By Lemma 5 with Lemma 12, we get a sufficient condition for recurrence in Theorem 8.
On the other hand, we cannot directly apply Lemma 6 to the sufficient condition for transient
in Theorem 8, because the “mixing time” of Pn is proportional to kn, see e.g., [27]. Then,
we estimate R(t) by another random walk.
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Let Zt = h(Xt), where Xt is a random walk on a growing k-ary tree DT = (d, G, P ). Then
Zt is a RWoGG DL = (d, L, Q) where L(n) = ({0, 1, . . . , n}, {{i, i + 1} | i = 0, 1, 2, . . . , n − 1})
is a path graph of length n, and the transition probability matrix Q(n) = Qn is given by

Qn(0, 1) = 1,

Qn(i, i + 1) = k
λ+k for i = 1, 2, . . . , n − 1,

Qn(i, i − 1) = λ
λ+k for i = 1, 2, . . . , n − 1,

Qn(n, n − 1) = 1.

The following Lemmas 13 and 14 are easy to observe.

▶ Lemma 13. Let Xt (resp. Zt) follow DT = (f, G, P ) (resp. DL = (f, L, Q)). Let
R(t) = Pr[Xt = r] (resp. R′(t) = Pr[Zt = r]), and let π̊n (resp. π̊′

n) denote the even-time
stationary distribution of Pn (resp. Qn). Then, R(t) = R′(t) for any t = 1, 2, . . ., as well as
π̊n(r) = π̊′

n(r).

▶ Lemma 14. If λ < k then DL is LHaGG.

The following lemma about the mixing time of Qn is easily obtained by a standard coupling
argument for the mixing time, and we here omit the proof.

▶ Lemma 15. Let τ̊ ′
n(ϵ) denote the even mixing-time of Qn then τ̊ ′

n(ϵ) ≤ n2 log ϵ−1.

Then, we can prove the condition for DL being transient from Lemma 6.

▶ Lemma 16. If λ < k and
∑∞

n=1 d(n)( λ
k )n < ∞ then 0 is transient by DL.

Proof. Let p(n) = π̊n(r) and p′(n) = π̊′
n(r), then p(n) = p′(n) by Lemma 13. By Lemma 15,

t̊′(n) = τ̊ ′
n(p(n − 1)) ≤ n2 log(p(n − 1)) ≤ n2 log

(
( λ

k )n
)

≤ c′n3, and hence
∑∞

n=1 t̊
′(n)p(n −

1) ≤
∑∞

n=1 n3c′( λ
k )n−1 < ∞. If

∑∞
n=1 d(n)( λ

k )n < ∞, then
∑∞

n=1 max{d(n), t̊′(n)}p(n −
1) ≤

∑∞
n=1(d(n) + t̊′(n))( λ

k )n−1 < ∞, which implies
∑∞

t=1 R′(t) < ∞ by Lemma 6 with
Lemma 14. ◀

Now, we are ready to prove Theorem 8.

Proof of Theorem 8. First, we consider the (interesting) case λ < k.
(Recurrent) Assuming

∑∞
n=1 d(n)( λ

k )n = ∞, we prove
∑∞

n=1(d(n) − 1)p(n) = ∞. Notice
that

∑∞
n=1 p(n) ≤ c

∑∞
n=1( λ

k )n = 1
1− λ

k

< ∞. Let C =
∑∞

n=1 p(n), then
∑∞

n=1(d(n) −
1)p(n) =

∑∞
n=1 d(n)p(n)−C ≥

∑∞
n=1 d(n)c( λ

k )n −C, which is ∞ from the assumption. Thus,
r is recurrent by Lemma 5.

(Transient) By Lemma 13,
∑∞

t=1 R(t) =
∑∞

t=1 R′(t). If
∑∞

n=1 d(n)( λ
k )n < ∞ then∑∞

t=1 R′(t) < ∞ by Lemma 16, meaning that r is transient.
In the case of λ ≥ k, it is always recurrent. The proof follows that of Lemma 5, but here

we omit the proof. ◀

5 Random Walk on {0, 1}n with Increasing n

5.1 Main result
This section shows an interesting example. Let Cn = (Vn, En) where

Vn = {0, 1}n (22)

En =
{

{u, v} ∈
(

Vn

2
)

| ∥u − v∥1 = 1
}

(23)
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for n = 1, 2, . . .. Let 0 ∈ Vn denote the (common) origin vertex (0, . . . , 0) for each n. Let

Pn(u, v) =
{

1
n if ∥u − v∥1 = 1,
0 otherwise,

(24)

for u, v ∈ Vn. Then, we are concerned with DC = (d, G, P ) starting from 0 where G(n) = Cn

and P (n) = Pn.

▶ Theorem 17. If DC satisfies
∞∑

n=1

d(n)
2n

= ∞ (25)

then 0 is recurrent, otherwise 0 is transient.

The following lemma is not very difficult, but nontrivial.

▶ Lemma 18. DC is LHaGG.

Proof. Let f and g satisfy
∑n

i=1 f(i) ≤
∑n

i=1 g(i) for any n = 1, 2, . . ., and let Xt and Yt

(t = 0, 1, 2, . . .) respectively follow (f, G, P ) and (g, G, P ), i.e., the box of (f, G, P ) grows
faster than (g, G, P ). Let nt (resp. n′

t) denote the dimension of (f, G, P ) (resp. (g, G, P ))
at time t, and then notice that nt ≥ n′

t hold for any t = 0, 1, . . . by the assumption that
(f, G, P ) grows faster. Let X0 = Y0 = 0, and we prove Pr[Xt = 0] ≤ Pr[Yt = 0] for any
t = 1, 2, . . ..

Let h(u) = |{i ∈ {1, . . . , n} | ui = 1}| for u = (u1, . . . , un) ∈ Vn. We construct a coupling
of X = {Xt}t≥0 and Y = {Yt}t≥0 such that h(Xt) ≥ h(Yt) holds for any t = 1, 2, . . .. The
proof is an induction concerning t. Clearly, h(X0) = h(Y0) = 0. Inductively assuming
h(Xt) ≥ h(Yt), we prove h(Xt+1) ≥ h(Yt+1). If h(Xt) > h(Yt) then h(Xt) ≥ h(Yt) − 2 since
every Pn is period(Pn) = 2 for n = 1, 2, . . .. It is easy to see that h(Xt+1) ≥ h(Xt) − 1 ≥
h(Yt) + 1 ≥ h(Yt+1), and we obtain h(Xt+1) ≥ h(Yt+1) in the case. Suppose h(Xt) = h(Yt).
Then,

Pr[h(Xt+1) = h(Xt) − 1] = h(Xt)
nt

≤ h(Yt)
n′

t

= Pr[h(Yt+1) = h(Yt) − 1], and

Pr[h(Xt+1) = h(Xt) + 1] = 1 − h(Xt)
nt

≥ 1 − h(Yt)
n′

t

= Pr[h(Yt+1) = h(Yt) + 1]

hold, which implies that a coupling exists such that h(Xt+1) ≥ h(Yt+1).
Now we obtain a coupling of X = {Xt}t≥0 and Y = {Yt}t≥0 satisfying h(Xt) ≥ h(Yt)

for any t = 1, 2, . . ., which implies that h(Yt) = 0 as long as h(Xt) = 0. This means that
Pr[Xt = 0] ≤ Pr[Yt = 0] for any t = 1, 2, . . .. We obtain the claim. ◀

The following two lemmas are well known.

▶ Lemma 19. Let τ̊n(ϵ) denote the mixing time of Pn. Then, τ̊n(ϵ) = O(n log(n/ϵ)).

▶ Lemma 20. p(n) = 1
2n

2
= 2−n+1.

Proof of Theorem 17. (Recurrence) By Lemma 18, DC is LHaGG. Since p(n) = 2−n+1 by
Lemma 20, Lemma 5 implies that if

∑∞
n=1

d(n)
2n = ∞ then 0 is recurrent.

(Transience) By Lemma 19, t̊(n) = τ̊n(p(n − 1)) ≤ n log n
p(n−1) ≤ n log(n2n) ≤ c′n2 log n,

and hence
∑∞

n=1 t̊(n)p(n − 1) ≤
∑∞

n=1 c′n2 log n 1
2n−2 < ∞. If

∑∞
n=1

d(n)
2n < ∞, then∑∞

n=1 max{d(n), t̊(n)}p(n − 1) ≤
∑∞

n=1(d(n) + t̊(n)) 1
2n < ∞, which implies

∑∞
t=1 R(t) < ∞

by Lemma 6 with Lemma 18. ◀
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5.2 An Interesting fact: every finite point becomes recurrent
We can easily observe the following fact from Theorem 17.

▶ Corollary 21. If d(n) = Ω(2n/n) then 0 is recurrent. If d(n) = O(2n/n1+ϵ) then 0 is
transient.

Notice that the maximum degree of G(n) is unbounded asymptotic to n, clearly. Nevertheless,
we can see the following interesting fact.

▶ Proposition 22. If d(n) = Ω(n2n) then DC starting from 0 visits v ∈ Vm infinitely many
times for any m < ∞.

Proof. Notice that τ̊n(2−n−1) = O(n log(n2n+1)) = O(n2 log n) by Lemma 19. Thus, in the
n-th phase, i.e, [Tn−1, Tn], the random walk X visits v ∈ Vn with probability at least 2−n−1 in
every O(n2 log n) steps (even if v ∈ Un, here we omit the proof). Thus the probability that X

never visit v during the n-th phase is at most (1 − 2−n−1)n2n+1/n2 log n ≤ exp(− 1
n log n ). This

implies that the probability that X never visits v ∈ Vm forever is at most
∏∞

m exp(− 1
n log n ) =

exp(−
∑∞

n=m
1

n log n ) ≤ exp(−
∫ ∞

m
1

x log x dx) = exp(−[log log x]∞m ) = exp(−∞) = 0. This
means that the RWoGG X visits v ∈ Vm at least once in finite steps with probability 1.

Once we know that X visits v in a finite steps, the claim is trivial thanks to the vertex
transitivity of the hypercube skeleton. ◀

We think that the hypothesis of Proposition 22 can be relaxed from Ω(n2n) to Ω(2n/n), but
we are not sure.

6 Concluding Remark

In this paper, we have developed a coupling method to prove the recurrence and transience
of a RWoGG, by introducing the notion of LHaGG. Then, we showed the phase transition
between the recurrence and transience of random walks on a growing k-ary tree (Theorem 8)
and on a growing hypercube (Theorem 17). We also have other examples of LHaGG, such as
growing integer grids and growing level trees (see a full paper version). It is a future work to
develop an extended technique to prove the phase transitions for more general growing trees
and integer grids.
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Abstract
We are considering the geometric amoebot model where a set of n amoebots is placed on the triangular
grid. An amoebot is able to send information to its neighbors, and to move via expansions and
contractions. Since amoebots and information can only travel node by node, most problems have
a natural lower bound of Ω(D) where D denotes the diameter of the structure. Inspired by the
nervous and muscular system, Feldmann et al. have proposed the reconfigurable circuit extension
and the joint movement extension of the amoebot model with the goal of breaking this lower bound.

In the joint movement extension, the way amoebots move is altered. Amoebots become able
to push and pull other amoebots. Feldmann et al. demonstrated the power of joint movements by
transforming a line of amoebots into a rhombus within O(log n) rounds. However, they left the
details of the extension open. The goal of this paper is therefore to formalize the joint movement
extension. In order to provide a proof of concept for the extension, we consider two fundamental
problems of modular robot systems: reconfiguration and locomotion.

We approach these problems by defining meta-modules of rhombical and hexagonal shapes,
respectively. The meta-modules are capable of movement primitives like sliding, rotating, and
tunneling. This allows us to simulate reconfiguration algorithms of various modular robot systems.
Finally, we construct three amoebot structures capable of locomotion by rolling, crawling, and
walking, respectively.
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1 Introduction

Programmable matter consists of homogeneous nano-robots that are able to change the
properties of the matter in a programmable fashion, e.g., the shape, the color, or the
density [57]. We are considering the geometric amoebot model [14, 15, 16] where a set of n

nano-robots (called amoebots) is placed on the triangular grid. An amoebot is able to send
information to its neighbors, and to move by first expanding into an unoccupied adjacent
node, and then contracting into that node. Since amoebots and information can only travel
node by node, most problems have a natural lower bound of Ω(D) where D denotes the
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diameter of the structure. Inspired by the nervous and muscular system, Feldmann et al. [23]
proposed the reconfigurable circuit extension and the joint movement extension with the goal
of breaking this lower bound.

In the reconfigurable circuit extension, the amoebot structure is able to interconnect
amoebots by circuits. Each amoebot can send a primitive signal on circuits it is connected
to. The signal is received by all amoebots connected to the same circuit. Among others,
Feldmann et al. [23] solved the leader election problem, compass alignment problem, and
chirality agreement problem within O(log n) rounds w.h.p.1 These problems will be important
to coordinate the joint movements. Afterward, Padalkin et al. [47] explored the structural
power of the circuits by considering the spanning tree problem and symmetry detection
problem. Both problems can be solved within polylogarithmic time w.h.p.

In the joint movement extension, the way amoebots move is altered. In a nutshell, an
expanding amoebot is capable of pushing other amoebots away from it, and a contracting
amoebot is capable of pulling other amoebots towards it. Feldmann et al. [23] demonstrated
the power of joint movements by transforming a line of amoebots into a rhombus within
O(log n) rounds. However, they left the details of the extension open. The goal of this paper
is therefore to formalize the joint movement extension. In order to provide a proof of concept
for the extension, we consider two fundamental problems of modular robot systems (MRS):
reconfiguration and locomotion. We study these problems from a centralized view to explore
the limits of the extension.

In the reconfiguration problem, an MRS has to reconfigure its structure into a given
shape. Examples of reconfiguration algorithms in the original amoebot model can be found in
[17, 18, 35, 40]. However, all of these are subject of the aforementioned natural lower bound.
To our knowledge, polylogarithmic time solutions were found for two types of MRSs: in the
nubot model [62] and crystalline atom model [6]. We will show that in the joint movement
extension, the amoebots are able to simulate the reconfiguration algorithm for the crystalline
atom model, and with that break the lower bound.

In the locomotion problem, an MRS has to move along an even surface as fast as possible.
We might also ask the MRS to transport an object along the way. In the original amoebot
model, one would use the spanning tree primitive to move along the surface [14]. However,
we only obtain a constant velocity with that. Furthermore, the original amoebot model does
not allow us to transport any objects. In terrestrial environments, there are three basic types
of locomotion: rolling, crawling, and walking [26, 33]. For each of these locomotion types,
we will present an amoebot structure.

2 Preliminaries

In this section, we introduce the geometric amoebot model [15, 16] and formalize the joint
movement extension.

2.1 Geometric Amoebot Model
In this section, we introduce the geometric amoebot model [15]. We slightly deviate from the
original model to make it more suitable to our extension. A set of n amoebots is placed on
the infinite regular triangular grid graph G∆ = (V, E) (see Figure 1a). An amoebot is an

1 An event holds with high probability (w.h.p.) if it holds with probability at least 1 − 1/nc, where the
constant c can be made arbitrarily large.
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(a) Triangular grid. (b) Rhombical tesselation. (c) Hexagonal tesselation.

Figure 1 Domains. The figures show the domains we are working with. The tesselations will be
explained in Section 3. Note that there are spaces between the meta-modules since a node cannot
be occupied by more than one amoebot. However, the spaces do not contain any nodes.

anonymous, randomized finite state machine in the form of a line segment. The endpoints
may either occupy the same node or two adjacent nodes. If the endpoints occupy the same
node, the amoebot has length 0 and is called contracted and otherwise, it has length 1 and is
called expanded. Every node of G∆ is occupied by at most one amoebot. Two endpoints of
different amoebots that occupy adjacent nodes in G∆ are connected by bonds (red edges).
Let the amoebot structure S ⊆ V be the set of nodes occupied by the amoebots. We say that
S is connected iff GS is connected, where GS = G∆|S is the graph induced by S. Initially, S

is connected. An amoebot can move through contractions and expansions. We refer to [15]
for more details.

2.2 Joint Movement Extension
In the joint movement extension [23], the way the amoebots move is altered. The idea behind
the extension is to allow amoebots to push and pull other amoebots. In the following, we
formalize the joint movement extension.

We assume the fully synchronous activation model, i.e., the time is divided into synchron-
ous rounds, and every amoebot is active in each round. Furthermore, we make the idealistic
assumption that all movements start at the same time and are performed at the same speed.
W.l.o.g., we assume that all movements happen within the time period [0, 1].

Joint movements are performed in two steps. In the first step, the amoebots remove bonds
from GS as follows. Each amoebot can decide to release an arbitrary subset of its currently
incident bonds in GS . A bond is removed iff either of the amoebots at the endpoints releases
the bond. However, an expanded amoebot cannot release the bond connecting its occupied
nodes. Let EL ⊆ ES be the set of all line segments (amoebots) of length 1, ER ⊆ ES be
the set of the remaining bonds, and GR = (S, EL ∪ ER) be the resulting graph. We require
that GR is connected since otherwise, disconnected parts might float apart. We say that a
connectivity conflict occurs iff GR is not connected. Whenever a connectivity conflict occurs,
the amoebot structure transitions into an undefined state such that we become unable to
make any statements about the structure.

In the second step, each amoebot may perform one of the following movements. A
contracted amoebot may expand on one of the axes as follows (see blue amoebot in Figure 2a).
At t = 0, the amoebot can reorientate itself and reassign each of its incident bonds to one of
its endpoints. Bonds assigned to an endpoint will stay with that endpoint as the amoebot
expands. At t ∈ [0, 1], the amoebots has a length of t. In the process, the incident bonds
do not change their orientations or lengths. As a result, the expanding amoebot pushes
all connected amoebots. An expanded amoebot may contract analogously by reversing the
contraction (see green amoebot in Figure 2b). Thereby, it pulls all connected amoebots.

SAND 2024
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⇒ ⇒

(a) Expansion.

⇒ ⇒

(b) Contraction.

⇒

(c) Handover.

Figure 2 Movements in the extension. Red lines indicate bonds. Blue amoebots are expanding.
Green amoebots are contracting. The first two figures show a movement in 0.5 time steps.

⇒

(a) Structural conflicts and mappings. In the left figure, the expansions cause a structural conflict. Hence,
the amoebot structure transitions into an undefined state. In the right figure, the amoebot structure can
be mapped onto the triangular grid after the movement.

⇒

t = 0.0

⇒

t = 0.4 t = 1.0

(b) Collision. Initially, we have a valid amoebot structure given (t = 0). At t = 1, the amoebot structure
could be mapped on G∆. However, for t ∈ [0.25, 0.75], parts of the structure collide. Hence, the amoebot
structure transitions into an undefined state.

Figure 3 Joint movements. Red lines indicate bonds. Blue amoebots are expanding horizontally.

Furthermore, a contracted amoebot x occupying node u and an expanded amoebot y

occupying nodes v and w may perform a handover if there is a bond b between u and v, as
follows (see Figure 2c where x is marked in blue and y is marked in green). At an arbitrary
t ∈ [0, 1], we switch the association of the endpoint v from y to x such that x becomes
an expanded amoebot with endpoints occupying nodes u and v, y becomes a contracted
amoebot with both endpoints occupying w, and x and y are connected by bond {v, w}.
We have to include the handover to ensure universality of the model since otherwise, it
would not be possible to move through a narrow tunnel. In theory, all movement primitives
presented in Section 3 can be realized without handovers. However, for reasons of clarity
and comprehensibility, we will still make use of the handovers.

The amoebots may not be able to perform their movements. We distinguish between two
cases. First, the amoebots may not be able to perform their movements while maintaining
their relative positions (see Figure 3a). We call that a structural conflict. Second, parts of the
structure may collide into each other. More precisely, a collision occurs if there is a t ∈ [0, 1]
such that two non-adjacent bonds intersect at some point (see Figure 3b). Whenever either a
structural conflict or a collision occurs, the amoebot structure transitions into an undefined
state such that we become unable to make any statements about the structure.

Otherwise, at t = 1, we map the amoebots on the triangular grid G∆ in compliance with
the orientations of all bonds and line segments (see Figure 3a). The mapping is unique except
for translations since GR is connected. We choose any of these mappings as our next amoebot
structure. Let S′ be the set of nodes occupied the amoebots, E′

L be the set of all line segments
(amoebots) of length 1 after all movements were completed, and GM = (S′, E′

L ∪ ER) be
the resulting graph. Afterwards, the amoebots reestablish all possible bonds, i.e., we obtain
the graph GS′ = G∆|S′ induced by S′. Unless stated otherwise, each arrow in the figures
indicates a single round. The left side shows the structure after the removal of bonds (first
step), and the right side the structure after the execution of movements (second step). We
chain multiple rounds if we do not change bonds.
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In this paper, we assume that we have a centralized scheduler. The scheduler knows the
current state of the amoebot structure at all times. At the beginning of each synchronous
round, it decides for each amoebot (i) which bonds to release and (ii) which movements to
perform. We leave the design of distributed solutions for future work.

2.3 Problem Statement and Our Contribution

In this paper, we formalize the joint movement extension proposed by Feldmann et al. [23]. In
the following, we provide a proof of concept. For that, we focus on two fundamental problems
of MRSs: reconfiguration and locomotion. We study these problems from a centralized view
to explore the limits of the extension.

In the reconfiguration problem, an MRS has to reconfigure its structure into a given
configuration. For that, we define meta-modules of rhombical and hexagonal shape. We
show that these meta-modules are able to perform various movement primitives of other
MRSs, e.g., crystalline atoms, and rectangular/hexagonal metamorphic robots. This allows
us to simulate the reconfiguration algorithms of those models.

In the locomotion problem, an MRS has to move along an even surface as fast as possible.
We might also ask the MRS to transport an object along the way. We present three amoebot
structures that are able to move by rolling, crawling, and walking, respectively. We analyze
their velocities and compare them to other structures of similar models.

2.4 Related Work

MRSs can be classified into various types, e.g., lattice-type, chain-type, and mobile-type
[1, 9, 66, 67]. We refer to the cited papers for examples. We will focus on lattice-type MRSs.
These in turn can be characterized by three properties: (i) the lattice, (ii) the connectivity
constraint, and (iii) the allowed movement primitives [2].

Various MRSs have been defined for different lattices, e.g., [12, 62] utilize the triangular
grid, and [3, 22, 51] utilize the Cartesian grid. We will build meta-modules for the Cartesian
and the triangular grid. Note that some MRSs were also physically realized. Examples for
MRSs using the triangular grid are hexagonal metamorphic robots [12], HexBots [52], fractal
machines [42], and catoms [34]. Examples for MRSs using the Cartesian grid are CHOBIE II
[56], EM-Cubes [7], M-Blocks [49], pneumetic cellular robots [28], and XBots [61].

We can identify four types of connectivity constraints: (i) the structure is connected
at all times, (ii) the structure is connected except for moving robots, (iii) the structure is
connected before and after movements, and (iv) there are no connectivity constraints. Our
joint movement extension falls into the first category. Other examples are crystalline atoms
[50], telecubes [55, 59], and prismatic cubes [60]. Examples for the second category are the
sliding cube model [10, 24], rectangular [22] and hexagonal metamorphic robots [12], and for
the third category the nubot model [62] and the line pushing model [3]. An example for the
last category is the variant of the amoebot model considered by Dufoulon et al. [21].

The most common movement primitives for MRSs on the Cartesian grid are the rotation
and slide primitives (see Figures 4b and 4c), and for MRSs on the triangular grid the
rotation primitive (see Figure 4a). Some models may constrain these movement primitives
(see Figure 5). We refer to [2, 27] for a deeper discussion about possible constraints. One
way to bypass such constraints is to construct meta-modules, e.g., see [19, 27, 43]. Our
meta-modules implement all aforementioned movement primitives without any constraints,
i.e., they perform them in place.
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⇒

(a) Rotation primitive.

⇒

(b) Rotation primitive.

⇒

(c) Slide primitive.

⇒

(d) Contraction primitive.

⇒

(e) Tunnel primitive.

Figure 4 Examples of movement primitives. The green modules are moving, respectively. Models
that utilize the Cartesian grid usually assume square modules. In Section 3.1, we utilize rhombical
modules instead.

⇒ ⇒

(a) Sliding model, e.g., [27].

⇒ ⇒

(b) Pivoting model, e.g., [2].

Figure 5 Constrained movement primitives. The green modules are moving. The gray cells must
be empty. Both primitives have the same result while the pivoting model requires more free space
than the sliding model.

From all aforementioned models, crystalline atoms [50], telecubes [55, 59], and prismatic
cubes [60] are the closest to our joint movement extension. In these MRSs, each robot has the
shape of a unit square and is able to expand an arm from each side by half a unit. Adjacent
robots are able to attach and detach their arms. Similar to our joint movement extension,
a robot can move attached robots by expanding or contracting its arms. In contrast to
amoebots, a line of robots cannot reconfigure to any other shape since each pair of robots
can only have a single point of contact [5]. In order to allow arbitrary reconfigurations, the
robots are combined into meta-modules of square shape that are capable of various movement
primitives, e.g., the rotation, slide, contraction, and tunnel primitives (see Figures 4b–4e).
Our rhombical meta-modules can implement all these movement primitives. The rhombical
shape has two advantages compared to the square shape. First, we can implement further
movement primitives that provide us with a simple way to construct a walking structure.
Second, we can utilize rhombical meta-modules as a basis for hexagonal meta-modules.

3 Meta-Modules

In this section, we will combine multiple amoebots to meta-modules. In other models for
programmable matter and modular robots, meta-modules have proven to be very useful.
For example, they allow us to bypass restrictions on the reconfigurability [19, 58] and to
simulate (reconfiguration) algorithms for other models [4, 48]. In the subsections, we will
present meta-modules of rhombical and hexagonal shape, respectively.

3.1 Rhombical Meta-Modules
Let ℓ be a positive even integer. Our rhombical meta-module consists of ℓ2/2 uniformly
oriented expanded amoebots that we arrange into a rhombus of side length ℓ−1 (see Figure 6).
We obtain a parallelogram of side lengths ℓ − 1 and ℓ/2 − 1 if we contract all amoebots (see
Figure 6a). Note that we have to remove some bonds to perform the contraction. We can
expand the parallelogram again by reversing the contractions.



A. Padalkin, M. Kumar, and C. Scheideler 18:7

⇒

(a) Contraction primitive.

⇒ ⇒ ⇒

(b) Reorientation primitive.

⇒ ⇒

(c) Realignment primitive.

⇒ ⇒

(d) Rotation primitive.

⇒

R1

R2
R3

⇒

(e) Slide primitive.

R
⇒ ⇒

⇒ ⇒
R

(f) k-tunnel primitive.

Figure 6 Movement primitives for rhombical meta-modules. Red meta-modules perform a pull
operation, and blue meta-modules a push operation.

▶ Lemma 1. Our implementation of the contraction and expansion primitive requires a
single round, respectively.

There are exactly two possibilities to arrange the uniformly oriented expanded amoebots
in a rhombus. By reorienting the amoebots in pairs with the help of handovers, we can
reorientate all amoebots within a rhombus (see Figure 6b).

▶ Lemma 2. Our implementation of the reorientation primitive requires 3 rounds.

Furthermore, there are three possibilities to align the sides of a rhombus to the axes of
the triangular grid. By sliding each second row along its axis to the other side, we can realign
the other axis a rhombus is aligned to (see Figure 6c). Note that in combination with the
reorientation of the amoebots within a rhombus, we are able to align a rhombus with any
two axes of the triangular grid.

▶ Lemma 3. Our implementation of the realignment primitive requires 2 rounds.

We can arrange the meta-modules on a rhombical tesselation of the plane if they are
all aligned to the same axes (see Figure 1b). Note that due to the triangular grid, the
meta-modules are not connected diagonally everywhere. Hence, we will only consider meta-
modules connected if their sides are connected. In the following, we introduce two movement
primitives: the slide and k-tunnel primitive. Our implementations of these primitives are
similar to the ones for crystalline robots (e.g., [5]) and teletubes (e.g., [59]).

In the slide primitive, we move a meta-module R1 along two adjacent substrate meta-
modules R2 and R3 (see Figure 4c). We realize the primitive as follows (see Figure 6e). We
assume that all amoebots are orientated into the movement direction. Otherwise, we apply
the reorientation primitive. With respect to Figure 6e, let L1 denote the uppermost layer of
R2 and R3, and L2 the second uppermost layer of R2 and R3. Our slide primitive consists
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of two rounds. In the first round, we contract all amoebots in L1 after removing all bonds
between L1 and R1 except the last one in the movement direction, and all bonds between L1
and L2 except the last one in the opposite direction. This moves R1 into its target position.
In the second round, we restore R2 and R3. For that, we expand L1 again after removing all
bonds between L1 and R1, and between L1 and L2 except the last ones in the movement
direction, respectively. This ensures that R1 stays in place.

▶ Lemma 4. Our implementation of the slide primitive requires 2 rounds.

In the k-tunnel primitive, we move a meta-module R through a simple path of meta-
modules with k corners to the other end (see Figure 4e). However, we do not move R directly
through the path. Instead, we make use of the following two basic operations. First, by
contracting two adjacent meta-modules into parallelograms, we pull one meta-module into
the other (see the first round in Figure 6f). Second, by expanding two adjacent contracted
meta-modules, we push one meta-module out again (see the fourth round in Figure 6f).
Note that two adjacent contracted meta-modules form a rhombus consisting of ℓ2 contracted
amoebots. Since the amoebots do not have any orientation, we can perform the push
operation into any direction in parallel to the axes the meta-modules are aligned to.

Now, consider a line of at least 4 meta-modules with two contracted meta-modules at one
end. By expanding those two meta-modules and contracting the two meta-modules at the
other end, we transfer a meta-module from one end to the other end without changing the
length of the line (see the third round in Figure 6f). If we have only a line of 3 meta-modules,
it suffices to contract and expand one meta-module, respectively (see the second round in
Figure 6f). Note that we have to remove most of the bonds along the line to permit the line
to move freely. The pull and push operations allow us to transfer R from one corner to the
next corner in a single round.

▶ Lemma 5. Our implementation of the k-tunnel primitive requires k + 1 rounds.

In particular, note that a 1-tunnel allows us to move a meta-module around another one
(see Figure 6d). In other models for modular robot systems, this simple case is known as the
rotation primitive.

▶ Lemma 6. Our implementation of the rotation primitive requires 2 rounds.

3.2 Hexagonal Meta-Modules
Let ℓ be an even integer as before. Our hexagonal meta-module consists of three rhombical
meta-modules of side length ℓ − 1 (see Figure 7a). We arrange them into a hexagon of
alternating side lengths ℓ and ℓ − 1.

There are two possibilities to arrange the rhombical meta-modules in the hexagon (see
Figure 7a). We can switch between them as follows. Each rhombical meta-module within
the hexagonal meta-module can be split into an equilateral triangle of side length ℓ − 1, and
an equilateral triangle of side length ℓ − 2. The idea is to apply a similar technique as in
the realignment primitive for rhombical meta-modules. In the first round, each rhombical
meta-module contracts each second row without shifting the other rows. In the second
round, the rhombical meta-modules interchange the smaller triangles through handovers. In
the third round, each resulting rhombical meta-module expands each second row into the
opposite direction (of the contracted amoebots of its bigger triangle) – again without shifting
the other rows.

▶ Lemma 7. Our implementation of the switching primitive requires 3 rounds.
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⇒⇒⇒

(a) Switching primitive.

⇒R1

R2

H1

H2

⇒

(b) Rotation primitive.

Figure 7 Movement primitives for hexagonal meta-modules.

We can arrange the meta-modules on a hexagonal tesselation of the plane (see Figure 1c).
In the following, we introduce the rotation primitive for hexagonal meta-modules.

In the rotation primitive, we move a hexagonal meta-module H1 around another hexagonal
meta-module H2 as follows (see Figure 7b). We arrange H2 such that a rhombical meta-
module R2 is adjacent to both the old and new position of H1, and H1 such that the
rhombical meta-module R1 adjacent to R2 is aligned to the same axes as R2. We contract
R1 and R2, and then expand them into the direction of the new position of H1 (compare to
Section 3.1). This movement primitive requires two rounds. Note that additional steps may
be necessary to switch or reorientate the rhombical meta-modules beforehand.

▶ Lemma 8. Our implementation of the rotation primitive requires 2 rounds.

4 Reconfiguration

In this section, we discuss possible reconfiguration algorithms. For that, we look at reconfig-
uration algorithms for other lattice-type MRSs and discuss whether amoebots are capable
of simulating these. In particular, we consider the polylogarithmic time solutions for the
nubot model [62] and the crystalline atom model [6]. The first subsection deals with the
former model while the second subsection deals with reconfiguration algorithms for our
meta-modules including the one for the latter model.

4.1 Nubot Model
Similar to the amoebot model, the nubot model [62] considers robots on the triangular grid
where at most one robot can be positioned on each node. Adjacent robots can be connected
by rigid bonds2. In the joint movement extension, the rigid bonds correspond to ER.

Robots are able to appear, disappear, and rotate around adjacent robots. A rotating
robot may push and pull other robots into its movement direction. Hence, each rotation
results in a translation of a set of connected robots (including the rotating robot) into the
movement direction by the distance of 1. The set depends on the bonds and the movement
direction, and may include robots not connected by rigid bonds to the rotating robot. In

2 Woods et al. [62] distinguish between rigid and flexible bonds. We ignore that since the flexible bonds
are not necessary to achieve the polylogarithmic time reconfiguration algorithm.
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⇒ ⇒

(a) Amoebot u ∈ C is adjacent to the same amoebot v ∈ M before and after the translation.

⇒ ⇒

(b) No amoebot in C is adjacent to the same amoebot in M before and after the translation.

Figure 8 Simulation of the nubot model. Let d denote the northeastern direction, d′ the
southwestern direction, and d′′ the northwestern direction. The blue amoebots indicate set M . The
green amoebots indicate set C. The amoebots marked by a white dot indicate amoebots u and v.

contrast to the joint movement extension, there are no collisions by definition of the set.
However, a movement may not be performed due to structural conflicts. In this case, the
nubot model does not perform the movement.

▶ Lemma 9. An amoebot structure of contracted amoebots is able to translate a set of robots
in a constant number of joint movements if the translation is possible in the nubot model.

Proof. Let d denote the movement direction, d′ the opposite direction, and d′′ any other
cardinal direction. Let M denote the set of amoebots that has to be moved. Instead of
moving M into direction d, we will move the remaining amoebot structure into direction d′.
Note that M divides the remaining amoebot structure into connected components.

▷ Claim 10. Each node x in direction d′ of an amoebot not in M is either occupied by an
amoebot of the same connected component or unoccupied.

Proof. Trivially, x cannot be occupied by an amoebot of another connected component.
Further, x cannot be occupied by an amoebot in M since otherwise, the resulting amoebot
structure would not be free of collisions. ◁

For each connected component C, we perform the following steps in parallel. If there
is an amoebot u ∈ C that is adjacent to the same amoebot v ∈ M before and after the
translation, we proceed as follows (see Figure 8a). Let A denote the row of amoebots in C

through u into direction d′′. Note that A may only contain u. In the first move cycle, we
remove all bonds between C and M except for the bond between u and v, and each amoebot
in A expands into direction d′. In the second move cycle, we remove all bonds between C

and M except for the new bond between u and v, and each amoebot in A contracts. Note
that both movements are possible due to Claim 10.

If there is no amoebot in C that is adjacent to the same amoebot in M before and after
the translation, we proceed as follows (see Figure 8b). Let B denote all amoebots in C that
have an unoccupied node in direction d′. In the first move cycle, each amoebot in B expands
into direction d′. There has to be an amoebot u ∈ B that becomes adjacent to an amoebot
v ∈ M . Otherwise, the resulting amoebot structure would not be connected. In the second
move cycle, we remove all bonds between C and M except for the bond between u and v, and
each amoebot in B contracts. Note that both movements are possible due to Claim 10. ◀

Woods et al. [62] showed that in the nubot model, the robots are able to self-assemble
arbitrary shapes/patterns in an amount of time equal to the worst-case running time for a
Turing machine to compute a pixel in the shape/pattern plus an additional factor which is
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polylogarithmic in its size. While we are able to perform the translations, we do not have
the means to let amoebots appear and disappear in the amoebot model. This prevents us
from simulating the reconfiguration algorithm by Woods et al. [62].

4.2 Reconfiguration Algorithms for Meta-Modules
Naturally, our meta-modules allow us to simulate reconfiguration algorithms for lattice-type
MRSs of similar shape if we can implement the same movement primitives. This leads us to
the following results.

▶ Theorem 11. There is a centralized reconfiguration algorithm for m rhombical meta-
modules that requires O(log m) rounds and performs Θ(m log m) moves overall.

Proof. Aloupis et al. [6] proposed a reconfiguration algorithm for crystalline atoms. It
requires O(log m) rounds and performs Θ(m log m) moves overall. The idea is to transform
the initial shape to a canonical shape using a divide and conquer approach. The target shape
is reached by reversing that procedure. We refer to [6] for the details. The algorithm utilizes
the contraction, slide and tunnel primitives which our rhombical meta-modules are capable
of (see Section 3.1). Hence, they can simulate this reconfiguration algorithm. ◀

▶ Theorem 12. There is a centralized reconfiguration algorithm for m hexagonal meta-
modules that requires O(m) rounds. Each module has to perform at most O(m) moves.

Proof. Hurtado et al. [27] proposed a reconfiguration algorithm for hexagonal robots. It
requires O(m) rounds and each module has to perform at most O(m) moves. The idea is to
compute a spanning tree and to move the robots along the boundary of the tree to a leader
module where the robots form a canonical shape, e.g., a line. The target shape is reached by
reversing that procedure. We refer to [27] for the details. The algorithm utilizes the rotation
primitive which our hexagonal meta-modules are capable of (see Section 3.2). Hence, they
can simulate this reconfiguration algorithm. ◀

5 Locomotion

In this section, we consider amoebot structures capable of locomotion along an even surface.
There are three basic types of terrestrial locomotion: rolling, crawling, and walking [26, 33].
We can find biological and artificial examples for each of those. In the following subsections,
we will present an amoebot structure for each type and analyze their velocity. In the last
subsection, we discuss the transportation of objects.

5.1 Rolling
Animals and robots that move by rolling either rotate their whole body or parts of it. Rolling
is rather rare in nature. Among others, spiders, caterpillars, and shrimps are known to utilize
rolling as a secondary form of locomotion during danger [8]. Bacterial flagella are an example
for a creature that rotates a part of its body around an axle [39].

In contrast, rolling is commonly used in robotic systems mainly in the form of wheels. An
example of a robot system rolling as a whole are chain-type MRSs that can roll by forming a
loop, e.g., Polypod [63], Polybot [64, 65], CKBot [41, 53], M-TRAN [68, 38], and SMORES
[29, 30]. Further, examples for rolling robots can be found in [8, 9].

Our rolling amoebot structure imitates a continuous track that rotates around a set
of wheels. Continuous tracks are deployed in various fields, e.g., construction, agriculture,
and military. We build our continuous track structure from hexagonal meta-modules of
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⇒

⇒

⇒

⇒

Figure 9 Continuous track structure. The blue meta-modules rotate clockwise around the green
meta-modules. We highlight one of the rotating meta-modules in a darker blue.

alternating side lengths ℓ and ℓ − 1 (see Figure 9). The structure consists of two parts: a
connected substrate structure (green meta-modules), and a closed chain of meta-modules
rotating along the outer boundary of the substrate (blue meta-modules).

The continuous track structure moves as follows. The rotating meta-modules that are
in contact with the surface release all such bonds with the surface if they rotate away from
the surface (see the dark blue meta-module in the third round). Otherwise, they keep these
bonds such that the substrate structure is pushed forwards. Note that we have to apply the
switching primitive between the rotations. We obtain the initial structure after two rotations.
In doing so, the structure has moved a distance of 2 · ℓ. By performing the movements
periodically, we obtain the following theorem.

▶ Theorem 13. Our continuous track structure composed of hexagonal meta-modules of
alternating side lengths ℓ and ℓ − 1 moves a distance of 2 · ℓ within each period of constant
length.

Butler et al. [10] have proposed another rolling structure for the sliding-cube model that
we are able to simulate. The structure resembles a swarm of caterpillars where caterpillars
climb over each other from the back to the front [20]. However, due to stalling times, this
structure is slower than our continuous track structure. We refer to [10] for the details.
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⇒

⇒
(a) Simple line of amoebots.

⇒

⇒

(b) Line of rhombical meta-modules.

⇒

(c) Millipede structure. The red rhombi indicate the legs. The blue and green rhombi indicate the body.
The blue rhombi indicate the connectors. Note that the figure only depicts the first half of a period.

Figure 10 Worm and millipede structures.

5.2 Crawling
Crawling locomotion is used by limbless animals. According to [31], crawling can be classified
into three types: worm-like locomotion, caterpillar-like locomotion, and snake-like locomotion.
We will explain the earthworm-like locomotion below and refer to [31] for the other two
types. Due to the advantage of crawling in narrow spaces, various crawling structures have
been developed for MRSs, e.g., crystalline atoms [36, 50, 51], catoms [11, 13], polypod [63],
polybot [65, 69], M-TRAN [38, 68], and origami robots [32].

Our crawling amoebot structure imitates earthworms. An earthworm is divided into a
series of segments. It can individually contract and expand each of its segments. Earthworms
move by peristaltic crawling, i.e., they propagate alternating waves of contractions and
expansions of their segments from the anterior to the posterior part. The friction between
the contracted segments and the surface gives the worm grip. This anchors the worm as
other segments expand or contract. The waves of contractions pull the posterior parts to the
front, and the waves of expansions push the anterior parts to the front. [31, 44]

The simplest amoebot structure that imitates an earthworm is a simple line of n expanded
amoebots along the surface (see Figure 10a). Each amoebot can be seen as a segment of
the worm. Instead of propagating waves of contractions and expansions, we contract and
expand the whole structure at once. During each contraction (expansion), we release all
bonds between the amoebot structure and the surface except for the ones at the head (tail) of
the structure that serve as an anchor. As a result, the contraction (expansion) pulls (pushes)
the structure to the front. The simple line has moved by a distance of n along the surface
after performing a contraction and an expansion. This is the fastest way possible to move
along a surface since we accumulate the movements of all amoebots into the same direction.
By performing the movements periodically, we obtain the following theorem.

▶ Theorem 14. A simple line of n expanded amoebots moves a distance of n every 2 rounds.

However, in practice, the contractions and expansions of the whole structure yield high
forces acting on the connections within the amoebot structure. We can address this problem
by thickening the worm structure. This increases the expansion of the structure and with

SAND 2024



18:14 Reconfiguration and Locomotion with Joint Movements in the Amoebot Model

that its stability. Consider a line of r rhombical meta-modules of side length ℓ − 1 (see
Figure 10b). Each module can be seen as a segment of the worm structure. Recall that
we can contract a rhombical meta-module into a parallelogram (see Figure 6a). The line
of rhombical meta-modules moves in the same manner as the simple line except for the
following two points. First, we utilize the whole meta-module at the front and at the end as
an anchor to increase the grip, respectively. Second, only the middle r − 2 meta-modules
participate in the contractions and expansions. The line of rhombical meta-modules moves a
distance of r−2

2 · ℓ along the surface after performing a contraction and an expansion. By
performing the movements periodically, we obtain the following theorem.

▶ Theorem 15. A line of r rhombical meta-modules of side length ℓ − 1 moves a distance of
r−2

2 · ℓ every 2 rounds.

Another problem in practice is friction between the structure and the surface and with
that the wear of the structure. The worm structure is therefore poorly scalable in its length
such that other types for locomotion are more suitable for large amounts of amoebots.

Most of the cited MRSs at the beginning of this section are very similar to our construction.
The construction for crystalline robots is the closest one. Each of these consists of a line of
(meta-)modules that are able to contract. Katoy et al. [36] also propose a “walking” structure
(see Figure 12). However, the locomotion is still caused by the contraction of the body instead
of motions of the legs. So, it is rather a caterpillar-like crawling than a walking movement.

5.3 Walking

A wide variety of animals are capable of walking locomotion, e.g., mammals, reptiles, birds,
insects, millipedes, and spiders. Just as wide is the variety of differences, e.g., they differ in
the number of legs, in the structure of the legs, and in their gait. Walking structures have
been built for chain-type MRSs, e.g., M-TRAN [68, 38] and polybot [65, 69].

Our walking amoebot structure imitates millipedes. Millipedes have flexible, segmented
bodies with tens to hundreds of legs that provide morphological robustness [54]. They
move by propagating leg-density waves from the posterior to the anterior [25, 37]. We build
our millipede structure from rhombical meta-modules of side length ℓ − 1 (see Figure 10c).
Let p denote the number of legs. The body and each leg consists of a line of rhombical
meta-modules. All legs have the same size. Let q denote the number of rhombical modules
in each leg. We attach each leg to a meta-module of the body and orientate them alternating
to the front and to the back. We call those meta-modules connectors. In order to prevent
the legs from colliding, we place q meta-modules between two connectors. Altogether, the
millipede structure consists of (2p − 1) · q + p meta-modules.

In order to move the legs back and forth, we simply apply the realignment primitive
(see Figure 6c) on all meta-modules within the legs (see Figure 10c). We achieve forward
motion by releasing all bonds between the surface and the legs moving forwards. In one
step, the body moves a distance of q · ℓ. Note that the number of legs has no impact on the
velocity. By continuously repeating these leg movements, we achieve a motion similar to the
leg-density waves of millipedes. Note that we reach the initial amoebot structure after two
leg movements. Hence, we obtain the following theorem.

▶ Theorem 16. Our millipede structure composed of rhombical meta-modules of side length
ℓ − 1 with p legs composed of q rhombical meta-modules moves a distance of 2 · q · ℓ within
each period of constant length.
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In practice, we can reduce the friction by additionally lifting the legs moving forwards
(see Figure 13). For that, it suffices to partially contract all meta-modules of the body except
for the connectors connected to a leg moving backwards. After the movement, we lower the
lifted legs back to the ground. For that, we reverse the contractions within the body.

5.4 Transportation
Another important aspect of locomotion is the transportation of objects. The continuous
track and worm structure are unsuitable for the transportation of objects due to their unstable
top. In the worm structure, we can circumvent that problem by increasing the number of
meta-modules not participating in the contractions and expansions. However, this decreases
the velocity of the worm structure and increases the friction under the object.

In contrast, the millipede structure provides a rigid transport surface for the transportation
of objects (see Figure 11). In practice, a high load introduced by the object on the structure
may lead to problems. However, it was shown that millipedes have a large payload-to-weight
ratio since they have to withstand high loads while burrowing in leaf litter, dead wood, or
soil [25, 54]. The millipede is able to distribute the weight evenly on its legs. Consequently,
the millipede structure is well suited for the transportation of objects.

⇒

Figure 11 Transportation of objects by the millipede structure. The green rhombi indicate the
millipede structure. The gray parallelogram indicates the object.

6 Conclusion and Future Work

In this paper, we have formalized the joint movement extension that were proposed by
Feldmann et al. [23]. We have constructed meta-modules of rhombical and hexagonal
shape that are able to perform various movement primitives. This allows us to simulate
reconfiguration algorithms of various MRSs. However, our meta-modules are more flexible,
e.g., we can move a hexagonal meta-module through two others. Such new movement
primitives may lead to faster reconfiguration algorithms, e.g., sublinear solutions for hexagonal
meta-modules or even arbitrary amoebot structures. Furthermore, we have presented three
amoebot structures capable of moving along an even surface. In future work, movement on
uneven surfaces can be considered.
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A Omitted Figures

This section contains omitted figures.

⇒

⇒

Figure 12 Caterpillar structure. This structure is a replication of the structure by Katoy et
al. [36] in the joint movement extension.
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Figure 13 Movement of a millipede. For the sake of simplicity, we only show two legs.
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Abstract
Boolean automata networks (aka Boolean networks) are space-time discrete dynamical systems,
studied as a model of computation and as a representative model of natural phenomena. A collection
of simple entities (the automata) update their 0-1 states according to local rules. The dynamics of
the network is highly sensitive to update modes, i.e., to the schedule according to which the automata
apply their local rule. A new family of update modes appeared recently, called block-parallel, which
is dual to the well studied block-sequential. Although basic, it embeds the rich feature of update
repetitions among a temporal updating period, allowing for atypical asymptotic behaviors. In
this paper, we prove that it is able to breed complex computations, squashing almost all decision
problems on the dynamics to the traditionally highest (for reachability questions) class PSPACE.
Despite obtaining these complexity bounds for a broad set of local and global properties, we also
highlight a surprising gap: bijectivity is still coNP.
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1 Introduction

Automata networks are distributed models of computation, defined locally by means of
individual entities (called automata) interacting with each other over discrete time, and
collectively performing global computations. The model originates from the seminal work of
McCulloch and Pitts on neural networks [32] (with local threshold Boolean functions). It
raised fundamental complexity and computability questions on their dynamics, with notable
considerations of feedback shift registers [26, 14], and perceptrons [39]. The Boolean case
serves as a framework for biological modelling, as proposed by Kauffman and Thomas on
gene regulation [28, 42], and repeatedly confirmed since the 1990s [33, 1, 19, 43] (where limit
dynamics receive biological interpretations matching experiments).

Our contribution is at the frontier between theoretical computer science, discrete math-
ematics, and systems biology. When working on Boolean automata networks, it is utmost
important to define the way automata update their state over time (namely the update
mode), in order to obtain a discrete dynamical system. Indeed:
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Even if the fixed points obtained under the parallel update mode are fixed points obtained
under any other update mode [20], specific update modes may generate additional fixed
points (e.g., block-parallel).
The limit cycles which are not fixed points, obtained under a given update mode, are not
necessarily conserved under another update mode [11, 23, 5, 22, 6].

In other words, a Boolean automata network may admit a large number of distinct dynamics
(depending on the update mode), which requires a strong attention, in particular when it is
employed as a phenomenological model in systems biology. In the context of gene regulatory
networks, chromatin dynamics has emerged as a full-fledged research track to understand
the temporality of mRNA transcriptional machinery (which has no clear biological answer
at present) [24, 7, 25, 16]. From a theoretical standpoint, advances on chromatin dynamics
tend to show that genetic expression is neither purely asynchronous nor purely synchronous,
hence supporting studies of in-between update modes.

In this line, this paper aims at studying the peculiar role and impact of block-parallel
update modes, shown to have relevant features from both formal and applied standpoints [12,
36], in the sense that (i) they can generate fixed points which are not fixed points of the
dynamical system obtained when the underlying network evolves synchronously, and (ii)
they can implement specific biological timers which are intrinsically governed by phenomena
exogenous to regulatory control. We take the lens of complexity theory, and provide ground
results on classical decision problems related to fixed points and limit cycles, reachability,
etc. These new complexity bounds highlight that most decision problems known to be
NP-complete under block-sequential update modes, such as the image/preimage problems,
and fixed point problems [17, 8, 35], are PSPACE-complete under block-parallel update modes.
It suggests that the “expressivity” of such update modes comes at a high cost in terms of
simulation, which strengthens the need for structural results. However, there are unexpected
exceptions, related to bijectivity and steadyness.

In Section 2, we define formally the model and present known results. Section 3 exposes
our results. Classical problems on computing images, preimages, fixed points and limit cycles
are characterized: they all jump from NP (under block-sequential update modes) to PSPACE
(under block-parallel update modes). Then we prove a general bound on the recognition of
functional subdynamics. Regarding global properties, recognizing bijective dynamics remains
coNP-complete, and recognizing constant dynamics becomes PSPACE-complete. The case of
identity recognition is much subtler, and we provide three incomparable bounds: a trivial
coNP-hardness one, a tough ModP-hardness, and a FPPSPACE-completeness result derived
from the recent literature. In Section 4, we summarize the results and expose perspectives.

2 Definitions and state of the art

We denote the set of integers by JnK = {0, . . . , n − 1}, the Booleans by B = {0, 1}, the
i-th component of a vector x ∈ Bn by xi ∈ B, and the restriction of x to domain I ⊂ JnK
by xI ∈ B|I|. For two graphs G = (V (G), A(G)) and H = (V (H), A(H)), we denote by
G ∼ H when they are isomorphic, i.e., when there is a bijection π : V (G) → V (H) such that
(x, y) ∈ A(G) ⇐⇒ (π(x), π(y)) ∈ A(H). We denote by G ⊏ H when G is a subgraph of H,
i.e., when G′ such that G′ ∼ G can be obtained from H by vertex and arc deletions.

Boolean automata network. A Boolean automata network (BAN) is a discrete dynamical
system on Bn. A configuration x ∈ Bn associates to each of the n automata among JnK a
Boolean state among B. The individual dynamics of a each automaton i ∈ JnK is described
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by a local function fi : Bn → B giving its new state according to the current configuration.
To get a dynamics, one needs to settle the order in which the automata update their state by
application of their local function. That is, an update schedule must be given. The most basic
is the parallel update schedule, where all automata update their state synchronously at each
step, formally as f : Bn → Bn defined by ∀x ∈ Bn : f(x) = (f0(x), f1(x), . . . , fn−1(x)). In
this work, we concentrate on the block-parallel update schedule, motivated by the biological
context of gene regulatory networks, where each automaton is a gene and the dynamics give
clues on cell phenotypes. Not all automata will be update simultaneously as in the parallel
update mode. They will instead be grouped by subsets. For simplicity in defining the local
functions of a BAN, we extend the fi : Bn → B notation to subsets I ⊆ JnK as fI : Bn → B|I|.
We also denote f(I) : Bn → Bn the update of automata from subset I, defined as:

∀i ∈ JnK : f(I)(x)i =
{
fi(x) if i ∈ I

xi otherwise.

Block-sequential update schedule. A block-sequential update schedule is an ordered parti-
tion of JnK, given as a sequence of subsets (Wi)i∈JℓK where Wi ⊆ JnK is a block. The automata
within a block are updated simultaneously, and the blocks are updated sequentially. During
one iteration (step) of the network, the state of each automaton is updated exactly once.
The update of each block is called a substep. This update mode received great attention
on many aspects. The concept of the update digraph is introduced in [4] and characterized
in [3] to capture equivalence classes of block-sequential update schedules (leading to the same
dynamics). Conversions between block-sequential and parallel update schedules are investig-
ated in [37] (how to parallelize a block-sequential update schedule), [22] (the preservation
of cycles throughout the parallelization process), and [9] (the cost of sequentialization of a
parallel update schedule).

Block-parallel update schedule. A block-parallel update schedule is a partitioned order
of JnK, given as a set of subsets µ = {Sk}k∈JsK where Sk = (ik0 , . . . , iknk−1) is a sequence of
nk > 0 elements of JnK for all k ∈ JsK, called an o-block (shortcut for ordered-block). Each
automaton appears in exactly one o-block. It follows an idea dual to the block-sequential
update mode: the automata within an o-block are updated sequentially, and the o-blocks are
updated simultaneously. The o-block sequences are taken circularly at each substep, until
we reach the end of each o-block simultaneously (which happens after the least common
multiple (lcm) of their sizes). The set of block-parallel update modes of size n is denoted
BPn. Formally, the update of f under µ ∈ BPn is given by f{µ} : Bn → Bn defined, with
ℓ = lcm(n1, . . . , ns), as f{µ}(x) = f(Wℓ−1) ◦ · · · ◦ f(W1) ◦ f(W0)(x), where for all i ∈ JℓK we
define Wi = {iki mod nk

| k ∈ [s]}. In order to compute the set of automata updated at each
substep, it is possible to convert a block-parallel update schedule into a sequence of blocks
of length ℓ (which is usually not a block-sequential update schedule, because repetitions of
automaton update may appear [36]). We defined this map as φ:

φ({Sk}k∈JsK) = (Wi)i∈JℓK with Wi = {iki mod nk
| k ∈ [s]}.

An example is given on Figure 1. The parallel update schedule corresponds to the block-
parallel update schedule µpar = {(i) | i ∈ JnK} ∈ BPn, with φ(µpar) = (JnK), i.e., a single
block containing all automata is updated at each step (there is only one substep).
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f(x) :

 f0(x) = x0 ∧ x1

f1(x) = ¬x0 ∨ (x1 ∧ ¬x2)
f2(x) = ¬x1 ∨ x2

µ = {(0), (1, 2)}
φ(µ) = ({0, 1}, {0, 2})

000

001

010

011

100

101

110

111

Figure 1 Example of an automata network of size n = 3 with a block-parallel update mode
µ ∈ BPn. Local functions (upper left), conversion of µ to a sequence of blocks (lower left), and
dynamics of f{µ} on configuration space B3 (right). One step is composed of two substeps: the first
substep updates the block {0, 1}, the second substep updates the block {0, 2}. As an example, in
computing the image of configuration 111, the first substep (update of automata 0 and 1) gives 101,
and the second substep (update of automata 0 and 2) gives 001.

Block-parallel update schedules have been introduced in [12], motivated by applications to
gene regulatory networks, and their ability to generate new stable configurations (compared
to block-sequential update schedules). A first theoretical study has been conducted in [36],
providing counting formulas and enumeration algorithms, subject to equivalence relations on
the produced dynamics.

Fixed point and limit cycle. A BAN f of size n under block-parallel update schedule
µ ∈ BPn defines a deterministic discrete dynamical system f{µ} on configuration space Bn.
Since the space is finite, the orbit of any configuration is ultimately periodic. For p ≥ 1, a
sequence of configurations x0, . . . , xp−1 is a limit cycle of length p when ∀i ∈ JpK : f{µ}(xi) =
xi+1 mod p. For p = 1 we call x ∈ Bn such that f{µ}(x) = x a fixed point.

Complexity. To be given as input to a decision problem, a BAN is encoded as a tuple of n
Boolean circuits, one for each local function fi : BN → B for i ∈ JnK. This encoding can be
seen as Boolean formulas for each automaton, and easily implements high-level descriptions
with if-then-else statements (used intensively in our constructions).

The computational complexity of finite discrete dynamical systems has been explored
on the related models of finite cellular automata [40] and reaction networks [13]. Regarding
automata networks, fixed points received early attention in [2] and [17], with existence
problems complete for NP. Because of the fixed point invariance for block-sequential update
schedules [38], the focus switched to limit cycles [6, 8], with problems reaching the second
level of the polynomial hierarchy. The interplay of different update schedules has been
investigated in [6]. Finaly, let us mention the general complexity lower bounds, established
for any first-order question on the dynamics, under the parallel update schedule [18].

3 Computational complexity under block-parallel updates

Computational complexity is important to anyone willing to use algorithmic tools in order
to study discrete dynamical systems. Lower bounds inform on the best worst case time or
space one can expect with an algorithm solving some problem. The n local functions of a
BAN are encoded as Boolean circuits, which is a convenient formalism corresponding to the
high level descriptions one usually employs. The update mode is given as a list of lists of
integers, each of them being encoded either in unary or binary (this makes no difference,
because the encoding of local functions already has a size greater than n).
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In this section we characterize the computational complexity of typical problems arising
in the framework of automata networks. We will see that almost all problems reach PSPACE-
completeness. The intuition behind this fact is that the description of a block-parallel update
mode may expend (through φ) to an exponential number of substeps, during which a linear
bounded Turing machine may be simulated via iterations of a circuit. We first recall this
folklore building block and present a general outline of our constructions (Subsection 3.1).
Then we start with results on computing images, preimages, fixed points and limit cycles
(Subsection 3.2), before studying reachability and global properties of the function f{µ}
computed by an automata network f under block-parallel update schedule µ (Subsection 3.3).

3.1 Outline of the PSPACE-hardness constructions
We will design polynomial time many-one reductions from the following PSPACE-complete
decision problem, which appears for example in [21].

Iterated Circuit Value Problem (Iter-CVP)
Input: a Boolean circuit C : Bn → Bn, a configuration x ∈ Bn, and i ∈ JnK.
Question: does ∃t ∈ N : Ct(x)i = 1?

▶ Theorem 1 (folklore). Iter-CVP is PSPACE-complete.

Before presenting the general outline of our constructions, we need a technical lemma
related to the generation of primes (proof in Appendix A).

▶ Lemma 2. For all n ≥ 2, a list of distinct prime integers p1, p2, . . . , pkn
such that

2 ≤ pi < n2 and 2n <
∏kn

i=1 pi < 22n2 can be computed in time O(n2), with kn = ⌊ n2

2 ln(n) ⌋.

Our constructions of automata netwoks and block-parallel update schedules for the
computational complexity lower bounds are based on the following.

▶ Definition 3. For any n ≥ 2, let p1, p2, . . . , pkn
be the kn primes given by Lemma 2, and

denote qj =
∑j

i=1 pi their cumulative series for j from 0 to kn. Define the automata network
gn on qkn automata JqknK with constant 0 local functions, where the components are grouped
in o-blocks of length pi, that is with µn =

⋃
i∈JknK{(qi, qi + 1, . . . , qi+1 − 1)}.

▶ Lemma 4. For any n ≥ 2, one can compute gn and µn in time O(n4), and |φ(µn)| > 2n.

Proof. The time bound comes from Lemma 2 and the fact that qkn
is in O(n4). The number

of blocks in φ(µn) is the least common multiple of its o-block sizes, which is the product∏kn

i=1 pi, hence from Lemma 2 we conclude that it is greater than 2n. ◀

The general idea is now to add some automata to gn and place them within singletons in
µn, i.e., each of them in a new o-block of length 1. We propose an example implementing a
binary counter on n bits.

▶ Example 5. Given n ≥ 2, consider gn and µn given by Lemma 4. Construct f from gn by
adding n Boolean components {qkn

, . . . , qkn+n}, whose local functions increment a binary
counter on those n bits, until it freezes to 2n − 1 (all bits in state 1). Construct µ′ from
µn as µ′ = µn ∪

⋃
i∈JnK{(qkn

+ i)}, so that the counter components are updated at each
substep. Observe that the pair f, µ′ can be still be computed from n in time O(n4). Figure 2
illustrates an example of orbit for n = 3, and one can notice that f{µ′} is a constant function
sending any x ∈ Bn to 0qkn 1n.
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Substep 1: {0, 2, 5, 10, 17, 18, 19}

Substep 2: {1, 3, 6, 11, 17, 18, 19}

...

Figure 2 Substeps leading to the image of configuration 0qkn 010 in f{µ′} from Example 5 for
n = 3 (kn = 4 and qkn = 2 + 3 + 5 + 7 = 17). The last 3 bits implement a binary counter, freezing
at 7 (111). Above each substep the block of updated automata is given.

Remark that we will prove complexity lower bounds by reduction from Iter-CVP, where
n will be the number of inputs and outputs of the circuit to be iterated, hence the integer n
itself will be encoded in unary. As a consequence, the construction of Example 5 is computed
in polynomial time.

3.2 Images, preimages, fixed points and limit cycles
We start the study of the computational complexity of automata networks under block-
parallel update schedules with the most basic problem of computing the image f{µ}(x) of some
configuration x through f{µ} (i.e., one step of the evolution), which is already PSPACE-hard.
We conduct this study as decision problems. It is actually hard to compute even a single
bit of f{µ}(x). The fixed point verification problem is a particular case of computing an
image, which is still PSPACE-hard (unlike block-sequential update schedules for which this
problem is in P). Recall that the encoding of µ (with integers in unary or binary) has no
decisive influence on the input size, this latter being characterized by the circuits sizes and
in particular their number of inputs, denoted n, which is encoded in unary.

Block-parallel step bit (BP-Step-Bit)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn, x ∈ Bn, j ∈ JnK.
Question: does f{µ}(x)j = 1?

Block-parallel step (BP-Step)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn, x, y ∈ Bn.
Question: does f{µ}(x) = y?

Block-parallel fixed point verification (BP-Fixed-Point-Verif)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn, x ∈ Bn.
Question: does f{µ}(x) = x?

This first set of problems is related to the image of a given configuration x, which allows
the reasonings to concentrate on the dynamics of substeps for that single configuration x,
regardless of what happens for other configurations. Note that n will be the size of the
Iter-CVP instance, while the size of the automata network will be qkn

+ ℓ′ + n+ 1.

▶ Theorem 6. BP-Step-Bit, BP-Step and BP-Fixed-Point-Verif are PSPACE-complete.



K. Perrot, S. Sené, and L. Tapin 19:7

Proof. The problems BP-Step-Bit, BP-Step and BP-Fixed-Point-Verif are in PSPACE,
with a simple algorithm obtaining f{µ}(x) by computing the least common multiple of o-block
sizes and then using a pointer for each block throughout the computation of that number of
substeps (each substep evaluates local functions in polynomial time).

We give a single reduction for the hardness of BP-Step-Bit, BP-Step and BP-Fixed-
Point-Verif, where we only need to consider the dynamics of the substeps starting from
one configuration x. Given an instance of Iter-CVP with a circuit C : Bn → Bn, a
configuration x̃ ∈ Bn and i ∈ JnK, we apply Lemma 4 to construct gn, µn on automata set
P = Jqkn

K. Automata from P have constant 0 local functions, and the number of substeps is
ℓ = |φ(µn)| > 2n thanks to the prime’s lcm. We define a BAN f by adding:

ℓ′ = ⌈log2(ℓ)⌉ automata numbered B = {qkn
, . . . , qkn

+ ℓ′ − 1}, implementing a counter
that increments modulo ℓ at each substep, and remains fixed when xB encodes an integer
greater or equal to ℓ (case not considered in this proof);
n automata numbered D = {qkn + ℓ′, . . . , qkn + ℓ′ + n− 1}, whose local functions iterate
C : Bn → Bn while the counter is smaller than ℓ− 1, and go to state x̃ when the counter
reaches ℓ− 1, i.e., with

fD(x) =
{
C(xD) if xB < ℓ− 1,
x̃ otherwise; and

1 automaton numbered R = {qkn
+ ℓ′ + n}, whose local function fR(x) = xR ∨ xqkn +ℓ′+i

records whether a state 1 appeared at automaton in relative position i within D.
We also add singletons to µn for each of these additional automata, by setting

µ′ = µn ∪
⋃

j∈B∪D∪R

{(j)}.

Now, consider the dynamics of substeps in computing the image of configuration x = 0qkn 0ℓ′
x̃0.

During the first ℓ− 1 substeps:
automata P have constant 0 local function;
automata B increment a counter from 0 to ℓ− 1;
automata D iterate circuit C from x̃; and
automaton R records whether the i-th bit of D has been in state 1 during some iteration.

During the last substep, automata B go back to 0n because of the modulo, and automata
D go back to state x̃. Since the number of substeps ℓ is greater than 2n (Lemma 4), the
iterations of C search the whole orbit of x̃, and at the end of the step automaton R has
recorded whether the Iter-CVP instance is positive (went to state 1) or negative (still in
state 0). The images are respectively y− = 0qkn 0ℓ′

x̃0 or y+ = 0qkn 0ℓ′
x̃1. This concludes the

reductions, to BP-Step-Bit by asking whether automaton R (numbered qkn
+ 2n) is in

state 1, to BP-Step by asking whether the image of x is y+, and to BP-Fixed-Point-Verif
because y− = x (coPSPACE-hardness). ◀

As a corollary, the associated functional problem of computing f{µ} is computable in
polynomial space and is PSPACE-hard for polynomial time Turing reductions (not for many-
one reductions, as there is no concept of negative instance for total functional problems).
Deciding whether a given configuration y has a preimage through f{µ} is also PSPACE-
complete (see Appendix A for details).

Now, we study the computational complexity of problems related to the existence of fixed
points and limit cycles in an automata network under block-parallel update schedule. Again,
we need to consider the image of all configurations, and have no control on neither the start
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configuration x nor the end configuration y during the dynamics of substeps. In particular,
the counter may be initialized to any value, and the bit R may already be set to 1. We adapt
the previous reductions accordingly.

Block-parallel fixed point (BP-Fixed-Point)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn.
Question: does ∃x ∈ Bn : f{µ}(x) = x?

Block-parallel limit cycle of length k (BP-Limit-Cycle-k)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn.
Question: does ∃x ∈ Bn : fk

{µ}(x) = x?

Block-parallel limit cycle (BP-Limit-Cycle)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn, k ∈ N+.
Question: does ∃x ∈ Bn : fk

{µ}(x) = x?

On limit cycles we have a family of problems (one for each integer k), and a version where k
is part of the input (encoded in binary). It makes no difference on the complexity.

▶ Theorem 7. BP-Fixed-Point, BP-Limit-Cycle-k for any k ∈ N+ and BP-Limit-
Cycle are PSPACE-complete.

Proof. These problems still belong to PSPACE, because they amount to enumerating config-
urations and computing images by f{µ}, which can be performed from BP-Step (Theorem 6).

We start with the hardness proof for the fixed point existence problem, and we will then
adapt it to limit cycle existence problems. Given an instance C : Bn → Bn, x̃ ∈ Bn, i ∈ JnK
of Iter-CVP, we construct the same block-parallel update schedule µ′ as in the proof of
Theorem 6, and modify the local functions of automata B and R as follows:

automata B increment a counter modulo ℓ at each substep, and go to 0 when the counter
is greater than (or equal to) ℓ− 1; and
automaton R records whether a state 1 appears at the i-th bit of xD, and flips when the
counter is equal to ℓ− 1, i.e.,

fR(x) =
{
xR ∨ xqkn +ℓ′+i if xB < ℓ− 1,
¬xR otherwise.

Recall that automata D iterate the circuit when xB < ℓ− 1 and go to x̃ otherwise, and that
the number ℓ of substeps is larger than 2n.

If the Iter-CVP instance is positive, then configuration x = 0qkn 0ℓ′
x̃0 is a fixed point

of f{µ′}. Indeed, during the ℓ-th and last substep, the primes P are still in state 0qkn , the
counter B goes back to 0 (state 0ℓ′), the circuit D goes back to x̃, and automaton R has
recorded the 1 which is flipped into state 0.

Conversely, if there is a fixed point configuration x, then the counter must be at most
ℓ − 1 because of the modulo ℓ increment. Furthermore, automata D will encounter one
substep during which it goes to x̃, hence the resulting configuration on D will be in the
orbit of x̃, i.e., xD is in the orbit of x̃. Finally, automaton R will also encounter exactly one
substep during which it is flipped (when xB ≥ ℓ− 1). As a consequence, in order to go back
to its initial value xR, the state of R must be flipped during another substep, which can only
happen when it is in state 0 and automaton qkn

+ ℓ′ + i is in state 1. We conclude that the
i-th bit of a configuration in the orbit of x̃ is in state 1 during some iteration of the circuit
C, meaning that the Iter-CVP instance is positive. Remark that in this case, configuration
0qkn 0ℓx̃0 is one of the fixed points.
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For the limit cycle existence problems, we modify the construction to let the counter go
up to kℓ− 1. Precisely:

ℓ′ = ⌈log2(kℓ)⌉ automata B implement a binary counter which is incremented at each
substep, and goes to 0 when xB ≥ kℓ− 1;
n automata D iterate the circuit C if xB < ℓ− 1, else go to state x̃ (no change); and
1 automaton R records whether a state 1 appears in the i-th bit of xD, and flips when
the counter is equal to ℓ− 1.

The reasoning is identical to the case k = 1, except that the counter needs k times ℓ substeps,
i.e., k steps, in order to go back to its initial value. As a consequence, there is no x and
k′ < k such that fk′

{µ}(x) = x, and the dynamics has no limit cycle of length smaller than
k. Remark that when the Iter-CVP instance is positive, configurations (0qknBix̃0)i∈JkK

with Bi the ℓ′-bits encoding of iℓ form one of the limit cycles of length k. Also remark that
the encoding of k in binary within the input has no consequence, neither on the PSPACE
algorithm, nor on the polynomial time many-one reduction. ◀

Remark that our construction also applies to the notion of limit cycle x0, . . . , xp−1 where
it is furthermore required that all configurations are different (this corresponds to having the
minimum length p): the problem is still PSPACE-complete.

3.3 Reachability and general complexity bounds

In this part, we settle the computational complexity of the classical reachability problem,
which is unsurprisingly still PSPACE-hard by reduction from another model of computation
(see Appendix A for details). In light of what precedes, one may be inclined to think that any
problem related to the dynamics of automata networks under block-parallel update schedules
is PSPACE-hard. We prove that this is partly true with a general complexity bound theorem
on subdynamics existing within f{µ}, based on our previous results on fixed points and limit
cycles. However, we will also prove that a Rice-like complexity lower bound analogous to the
main results of [18], i.e., which would state that any non-trivial question on the dynamics
(on the functional graph of f{µ}) expressible in first order logics is PSPACE-hard, does not
hold (unless a collapse of PSPACE to the first level of the polynomial hierarchy). Indeed, we
will see that deciding the bijectivity (∀x, y ∈ Bn : f{µ}(x) = f{µ}(y) =⇒ x = y) is complete
for coNP. We conclude the section with a discussion on reversible dynamics.

From the fixed point and limit cycle theorems in Section 3.2, we now derive that any
particular subdynamics is hard to identify within f{µ} under block-parallel update schedule.
A functional graph is a directed graph of out-degree exactly one, and we assimilate f{µ}
to its functional graph. We define a family of problems, one for each functional graph G

to find as a subgraph of f{µ}, and prove that the problem is always PSPACE-hard. Since
PSPACE = coPSPACE, checking the existence of a subdynamics is as hard as checking the
absence of a subdynamics, even though the former is a local property whereas the latter is
a global property at the dynamics scale. This is understandable in regard of the fact that
PSPACE scales everything to the global level (one can search the whole dynamics in PSPACE),
because verifying that a given set of configurations (a certificate) gives the subgraph G is
difficult (Theorem 6).

Block-parallel G as subdynamics (BP-Subdynamics-G)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn.
Question: does G ⊏ f{µ}?

SAND 2024



19:10 Complexity of Boolean Automata Networks Under Block-Parallel Update Modes

G Subspace xn = 0 Subspace xn = 1

Figure 3 Construction of g in the proof of Theorem 8. Subspace xn = 0 contains a copy of f

with a potential limit cycle dashed. Subspace xn = 1 implements G′, and wires configurations of U

(grey area) to the potential limit cycle in the copy of f (remaining configurations are fixed points).

Remark that asking whether G appears as a subgraph or as an induced subgraph makes no
difference when G is functional (has out-degree exactly one), because f{µ} is also a functional
graph: it is necessarily induced since there is no arc to delete.

▶ Theorem 8. BP-Subdynamics-G is PSPACE-complete for any functional graph G.

Proof. A polynomial space algorithm for BP-G-Subdynamics consists in enumerating all
subsets S ⊆ Bn of size |S| = |V (G)|, and test for each whether the restriction of f{µ} to
S is isomorphic to G (functional graphs are planar hence isomorphism can be decided in
logarithmic space [10]).

For the PSPACE-hardness, the idea is to choose a fixed point or limit cycle in G, and
make it the decisive element whose existence or not lets G be a subgraph of the dynamics
or not. Since G is a functional graph, it is composed of fixed points and limit cycles, with
hanging trees rooted into them (the trees are pointing towards their root). Let G(v) denote
the unique out-neighbor of v ∈ V (G).

Let us first assume that G has a limit cycle of length k ≥ 2, or a fixed point with a tree of
height greater or equal to 1 hanging (the case where G has only isolated limit cycles is treated
thereafter). A fixed point is assimilated to a limit cycle of length k = 1. Let G′ be the graph
G without this limit cycle of size k, and let U be the vertices of G′ without out-neighbor (if
k = 1 then U ̸= ∅). We reduce from Iter-CVP, and first compute the f, µ of size n obtained
by the reduction from Theorem 7 for the problem BP-Limit-Cycle-k. We have that f{µ}
has a limit cycle of length k on configurations (0qknBix̃0)i∈JkK (or configuration 0qkn 0ℓx̃0 for
k = 1) if and only if the Iter-CVP instance is positive.

We construct g on n+1 automata, and the update schedule µ′ being the union of µ with a
singleton o-block for the new automaton. We assume that n ≥ |V (G)| − k, otherwise we pad
f, µ to that size (with identity local functions for the new automata). The idea is that g will
consist in a copy of f on the subspace xn = 0, and a copy of G′ on the subspace xn = 1 where
the images of the configurations corresponding to the vertices of U will be configurations of
the potential limit cycle of f{µ} (in the other subspace xn = 0). Other configurations in the
subspace xn = 1 will be fixed points. Figure 3 illustrates the construction. Recall that G is
fixed, and consider a mapping α : V (G) → {0, 1}n such that vertices of the limit cycle of
length k are sent to the configurations (0qknBix̃0)i∈JkK respectively (or 0qkn 0ℓx̃0 for k = 1).
We define:

g(x) =


f(xJnK)0 if xn = 0,
α(G(v))0 if xn = 1 and ∃v ∈ U : α(v) = xJnK,
α(G(v))1 if xn = 1 and ∃v ∈ G′ \ U : α(v) = xJnK,
x otherwise.

The obtained dynamics g{µ′} has one copy of f{µ} (in subspace xn = 0), with a copy of
G′ (in subspace xn = 1) which becomes a copy of G if configurations (0qknBix̃0)i∈JkK (or
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0qkn 0ℓx̃0 in the case k = 1) form a limit cycle of length k. Moreover, it becomes a copy of G
only if so by our assumption on the limit cycle or fixed point of G, because the remaining
configurations in subspace xn = 1 are all isolated fixed points. This concludes the reduction.

For the case where G is made of k isolated fixed points, we reduce from BP-Fixed-Point
and construct an automata network with k copies of the dynamics of f , by adding ⌈log2(k)⌉
automata with identity local functions. ◀

When the property of being a functional graph is dropped, that is when the out-degree of
G is at most one (otherwise any instance is trivially negative), problem BP-Subdynamics-G
is subtler. Indeed, one can still ask for the existence of fixed points, limit cycles and any
functional subdynamics PSPACE-complete by Theorem 8, but new problems arise, some of
which are provably complete only for coNP. The symmetry of existence versus non existence
is broken. In what follows, we settle that deciding the bijectivity of f{µ} is coNP-complete,
and then discuss the complexity of decision problems which are subsets of bijective networks,
such as the problem of deciding whether f{µ} is the identity. We conclude the section by
proving that it is nevertheless PSPACE-complete to decide whether f{µ} is a constant map.
These results hint at the subtleties behind a full characterization of the computational
complexity of BP-Subdynamics-G for all graphs of out-degree at most one.

Block-parallel bijectivity (BP-Bijectivity)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn.
Question: is f{µ} bijective?

Remark that, because the space of configurations is finite, injectivity, surjectivity and
bijectivity are equivalent properties of f{µ}.

▶ Lemma 9. Let f : Bn → Bn a BAN and µ ∈ BPn a block-parallel update mode. Then f{µ}
is bijective if and only if f(W ) is bijective for every block W of φ(µ).

Proof. The right to left implication is obvious since f{µ} is a composition of bijections
f(W ). We prove the contrapositive of the left to right implication, assuming the existence
of a block W in φ(µ) such that f(W ) is not bijective. Let Wℓ be the first such block in
the sequence φ(µ), so there exist x, y ∈ Bn such that x ̸= y but f(Wℓ)(x) = f(Wℓ)(y) = z.
By minimality of ℓ, the composition g = f(Wℓ−1) ◦ · · · ◦ f(W0) is bijective, hence there also
exist x′, y′ ∈ Bn with x′ ̸= y′ such that g(x′) = x and g(y′) = y. That is, after the ℓ-th
substep the two configurations x′ and y′ have the same image z, and we conclude that
f{µ}(x′) = f{µ}(y′) = f(Wp−1) ◦ · · · ◦ f(Wℓ+1)(z) therefore f{µ} is not bijective. ◀

Lemma 9 shows that bijectivity can be decided at the local level of circuits (not iterated),
which can be checked in coNP and gives Theorem 10.

▶ Theorem 10. BP-Bijectivity is coNP-complete.

Proof. A coNP algorithm can be established from Lemma 9, because it is equivalent to
check the bijectivity at all substeps. A non-deterministic algorithm can guess a temporality
t ∈ J|φ(µ)|K (in binary) within the substeps, two configurations x, y, and then check in
polynomial time that they certify the non-bijectivity of that substep as follows. First,
construct W the t-th block of φ(µ), by computing t modulo each o-block size to get the
automata from that o-block. Second, check that f(W )(x) = f(W )(y).

The coNP-hardness is a direct consequence of that complexity lower bound for the
particular case of the parallel update schedule [35, Theorem 5.17]. ◀
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We now turn our attention to the recognition of identity dynamics.

Block-parallel identity (BP-Identity)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn.
Question: does f{µ}(x) = x for all x ∈ Bn?

This problem is in PSPACE, and is coNP-hard by reduction from the same problem in the
parallel case [35, Theorem 5.18]. However, it is neither obvious to design a coNP-algorithm
to solve it, nor to prove PSPACE-hardness by reduction from Iter-CVP.

▶ Open problem 11. BP-Identity is coNP-hard and in PSPACE. For which complexity
class is it complete?

A major obstacle to the design of an algorithm, or of a reduction from Iter-CVP to
BP-Identity, lies in the fact that, by Theorem 10, “hard” instances of the latter are bijective
networks (because non-bijective instances can be recognized in our immediate lower bound
coNP, and they are all negative instances of BP-Identity). A reduction would therefore be
related to the lengths of cycles in the dynamics of substeps, and whether they divide the
least common multiple of o-block sizes (for x ∈ Bn such that f(x) = x) or not (f(x) ̸= x).

Nonetheless, we are able to prove another lower bound, related to the hardness of
computing the number of models of a given propositional formula. The canonical ModP-
complete problem takes as input a formula ψ and two integers k, i encoded in unary, and
consists in deciding whether the number of models of ψ is congruent to k modulo the i-th
prime number (which can be computed in polytime). It generalizes classes ModkP (such as
the parity case Mod2P = ⊕P), and it is notable that #P polytime truth-table reduces to
ModP [29].

▶ Theorem 12. BP-Identity is ModP-hard (for polytime many-one reduction).

Proof. Given a formula ψ on n variables, m and i in unary, we apply Lemma 4 to construct
gn, µn on automata set P = JqknK. Automata from P have identity local functions, and the
number of substeps is ℓ = |φ(µn)| > 2n. Let pi be the i-th prime number. We add:

ℓ′ = ⌈log2(ℓ)⌉ automata numbered B = {qkn
, . . . , qkn

+ ℓ′ − 1}, implementing a ℓ′ bits
binary counter that increments modulo ℓ at each substep, except for configurations with
a counter greater of equal to ℓ which are left unchanged.
ℓ′′ = ⌈log2(pi)⌉ automata numbered R = {qkn + ℓ′, . . . , qkn + ℓ′ + ℓ′′ − 1}, whose local
functions are:

fR(x) =


xR −m+ 1 mod pi if xB = 0 and xB satisfies ψ
xR −m mod pi if xB = 0 and xB does not satisfy ψ
xR + 1 mod pi if 0 < xB < 2n and xB satisfies ψ
xR otherwise.

We also add singletons to µn for each of these additional automata, with µ′ = µn ∪⋃
j∈B∪R{(j)}. The resulting dynamics of f{µ′} proceeds as follows.

Configurations x such that xB ≥ ℓ verify f{µ′}(x) = x, because all local functions are
identities in this case. For configurations x such that xB < ℓ, during the dynamics of
substeps from x to f{µ′}(x), the counter xB takes exactly once the values from 0 to ℓ− 1,
with f{µ′}(x)B = xB (it goes back to its initial value). Meanwhile, at each substep with
xB < 2n, the record of automata R is incremented if and only if xB satisfies ψ, with a
substraction of m when xB = 0. Since ℓ > 2n each valuation of ψ is checked exactly once,
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and xR gets added the number of models of ψ minus m, modulo pi (when 2n ≤ xB < ℓ

automata R are left unchanged). Consequently, we have f{µ′}(x)R = xR if and only if it has
been incremented m times modulo pi, i.e., f, µ′ is a positive instance of BP-Identity if and
only if ψ, m, i is a positive instance of Mod-SAT (the number of models of ψ is congruent
to k modulo pi). ◀

Our attemps to prove PSPACE-hardness failed, for the following reasons. To get bijective
circuits one could reduce from reversible Turing machines (RTM) and problem Reversible
Linear Space Acceptance [31]. A natural strategy would be to simulate a RTM for an
exponential number of subteps, and then simulate it backwards for that same number of
substeps, while ending in the exact same configuration (identity map) if and only if the
simulation did not halt or was not in the orbit of the given input w. The difficulty with this
approach is that the dynamics of substeps must not be the identity map when a conjunction
of two temporally separated events happens: first that the simulation has halted, and second
that the starting configuration was w. It therefore requires to remember at least one bit
of information, which is subtle in the reversible setting. Indeed, the constructions of [31]
and [34] consider only starting configurations of the Turing machine in the initial state and
with blank tapes. However, in the context of Boolean automata networks, any configuration
must be considered (hence any configuration of the simulated Turing machine).

Regarding iterated circuits simulating reversible cellular automata (for which the whole
configuration space is usualy considered), the literature focuses on decidability issues [27, 41],
but a recent contribution fits our setting and we derive the following. FPPSPACE is the class
of functions computable in polynomial time with an oracle in PSPACE.

▶ Theorem 13 ([15, Theorem 5.7]). There is a one-dimensional reversible cellular automaton
for which simulating any given number of iterations, with periodic boundary conditions, is
complete for FPPSPACE

▶ Corollary 14. Given (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn such that f{µ} is bijective,
x ∈ Bn and t ∈ J|φ(µ)|K in binary, computing the configuration at the t-th substep is complete
for FPPSPACE.

Proof. For a fixed reversible cellular automaton (of any dimension), given a configuration of
size n and a time t, one can compute in polynomial time a block-parallel update schedule µ
and circuits for the local functions of a Boolean automata network of large enough size (to
encode the CA’s state space in binary), such that:

|φ(µ)| > t (by Lemma 4; these automata are left aside with identity local functions),
one substep of f{µ} simulates one step of the CA; and
f{µ} is bijective (because the CA is reversible, padding with identity).

This gives a functional Turing many-one reduction from Theorem 13. ◀

Intuitively, the dynamics of substeps embeds complexity. The relationship to the com-
plexity of computing the configuration after the whole step composed of |φ(µ)| substeps
(image through f{µ}), in order to reach BP-Identity, is not obvious.

Being a constant map is another global property of the dynamics, which turns out to be
PSPACE-complete to recognize for BANs under block-parallel update schedules.

Block-parallel constant (BP-Constant)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn.
Question: does there exist y ∈ Bn such that f{µ}(x) = y for all x ∈ Bn?
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0qkn1ℓ
′
0n1

Positive instance

0qkn1ℓ
′
0n1 0qkn1ℓ

′
0n0

xB = 0
Negative instance

Figure 4 Illustration of the dynamics obtained for the reduction to BP-Constant in the proof
of Theorem 15. Configurations x with the counter automata B initialized to xB = 0 either go to
0qkn 1ℓ′

0n1 (left, positive instance), or to 0qkn 1ℓ′
0n0 (right, negative instance). Only the bit of

automata R changes.

▶ Theorem 15. BP-Constant is PSPACE-complete.

Proof. To decide BP-Constant, one can simply enumerate all configurations and compute
their image (Theorem 6) while checking that it always gives the same result.

For the PSPACE-hardness proof, we reduce from Iter-CVP. Given a circuit C : Bn → Bn,
a configuration x̃ and i ∈ JnK, we apply Lemma 4 to construct gn, µn on automata set
P = Jqkn

K. Automata from P have constant 0 local functions, and the number of substeps is
ℓ = |φ(µn)| > 2n. We add (Figure 4 illustrates the obtained dynamics):

ℓ′ = ⌈log2(ℓ)⌉ automata numbered B = {qkn
, . . . , qkn

+ ℓ′ − 1}, implementing a ℓ′-bits
binary counter that increments at each substep, and sets all automata from B in state 1
when the counter is greater or equal to ℓ− 1;
n automata numbered D = {qkn

+ ℓ′, . . . , qkn
+ ℓ′ + n − 1}, whose local functions are

given below; and
1 automaton numbered R = {qkn

+ ℓ′ + n}, whose local function is given below.

fD(x) =


C(x̃) if xB = 0
C(xD) if 0 < xB < ℓ− 1
0n otherwise

fR(x) =


x̃i if xB = 0
xR ∨ xqkn +ℓ′+i if 0 < xB < ℓ

1 otherwise

We also add singletons to µn for these additional automata, via µ′ = µn ∪
⋃

j∈B∪D∪R{(j)}.
For any configuration x with a counter not initialized to 0, i.e., with xB ̸= 0, the

counter will reach and remain in the all 1 state before the last substep, therefore automata
from D will be updated to 0n and automaton R will be updated to 1. We conclude that
f{µ′}(x) = 0qkn 1ℓ′

0n1. For configurations x with xB = 0, substeps proceed as follows:
automata B count until ℓ−1 at the penultimate substep (recall that ℓ = |φ(µn)| = |φ(µ′

n)|),
which finally brings them all in state 1 during the last substep;
automata D iterate the circuit C, starting from C(x̃) during the first substep; and
automaton R records whether a 1 appears or not in the whole orbit of x̃ (recall that
ℓ = |φ(µ′

n)| > 2n), starting from x̃ itself during the first substep (even though xD ̸= x̃)
and without encountering the “1 otherwise” case.

We conclude that the image of x on automata P is 0qkn , on B is 1ℓ′ , on D is 0n, and on R it
depends whether the Iter-CVP instance is positive (automaton R in state 1) or negative
(automaton R in state 0). This completes the reduction: the image is always 0qkn 1ℓ′

0n1 if
and only if the Iter-CVP instance is positive. ◀
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4 Conclusion and perspectives

Block-sequential update schedules have a number of substeps limited by the fact that every
automaton is updated only once. Block-parallel update schedules overcome this restriction,
thus significantly raising the n (number of automata) upper bound for the number of substeps
(Lemma 4 gives a backbone construction with more than 2n substeps). This greatly increases
the expressiveness of block-parallel dynamics, and we have demonstrated that this gain in
computational power comes along with higher complexity costs. A fundamental point is that
computing a single transition becomes PSPACE-hard in this context (Theorem 6), whereas
it is feasible in polynomial time for all block-sequential update schedules [37]. We derive
multiple consequences on the PSPACE-completeness of classical decision problems related
to the existence of preimages, fixed points, limit cycles, and the recognition of constant
dynamics. These problems are NP-complete (existence problems), or coNP-complete (global
dynamical properties) for block-sequential modes (see [35]), hence one might be tempted to
extrapolate to the following conjecture, which is false (unless a drastic complexity collapse).

▶ Conjecture 16 (false). If a problem is NP-hard or coNP-hard and in PSPACE for block-
sequential update schedules then it is PSPACE-complete for block-parallel update schedules.

The recognition of bijective dynamics disproves Conjecture 16: according to Lemma 9, a
single substep is necessary and sufficient to break the bijectivity of the automata network’s
dynamics, hence bringing the question to the circuit level (of substeps), in coNP. It also
prevents to level the Rice-like complexity lower bound theorem presented in [18], to PSPACE-
hardness. Recognition problems are nonetheless still NP-hard or coNP-hard for non-trivial
first order questions, because parallel is a particular case of block-parallel.

The reachability problem, which is PSPACE-complete for block-sequential modes, remains
PSPACE-complete for block-parallel modes (Theorem 18). Intuitively, on the one hand the
idea of reachability can be embedded in a single transition step of block-parallel update,
because it may have an exponential number of substeps. On the other hand, the sequence of
reachability problems at the level of substeps combines into a reachability problem at the
level of steps which is still in PSPACE.

The recognition of identity dynamics is not fully characterized (Open problem 11 and
Theorem 12). A fine interplay between computing in a reversible setting (since non-bijective
dynamics can be identified in NP) and the length of limit cycles in the dynamics of substeps
(to loop back to the starting configuration and be the identity map) is still to be discovered.
Computing the interaction graph (feasible in DP, just above NP and coNP) may give some
insights but, contrary to block-sequential modes having identity dynamics if and only if the
interaction graph is made of n positive loops, it is possible to design more complex identity
dynamics under block-parallel update schedules.

After determining the complexity of recognizing preimages, image points or fixed points
in Subsection 3.2, the next logical step would be the complexity of counting them. This is
not an easy step to make from the constructions presented in the present work, which are
not parcimonious (for the definition of #PSPACE, see [30]).

An important remark for the community is that, while all the proofs in this paper were
written with Boolean automata networks in mind, the results also hold for non-Boolean
automata networks.

Another avenue of research could be questions about the existence of a block-parallel
update schedules verifying a certain property, as in [8, 6] for block-sequential update schedules.
Given that the fixed point invariance is broken under block-parallel update schedules, it
opens the way for more questions. The ability to create new fixed points (how and when
does it happen?) is in itself a meaningful track of research.

SAND 2024
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A Omitted proofs

Proof of Lemma 2. By the prime number theorem, there are approximately N
ln(N) primes

lower than N . As a consequence, distinct prime integers p1, p2, . . . , pkn
with kn = ⌊ n2

ln(n2) ⌋
can be computed in time O(n2) using Atkin sieve algorithm. Since 2 ≤ pi < n2, we have
2kn ≤

∏kn

i=1 pi < n2kn . It holds that 2kn = 2⌊ n2
2 ln(n) ⌋ > 2n, and n2kn ≤ n

n2
ln(n) with

log2

(
n

n2
ln(n)

)
=

n2

ln(n)

logn(2) = n2

ln(2)

meaning that n2kn ≤ 2
n2

ln(2) < 22n2 . ◀

Block-parallel preimage (BP-Preimage)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn, y ∈ Bn.
Question: does ∃x ∈ Bn : f{µ}(x) = y?

▶ Theorem 17. BP-Preimage is PSPACE-complete.

The difficulty in this reduction is that we need to take into account the image of every
configuration x. We modify the preceding construction by setting automata D to x̃ when
the counter B encodes 0.

Proof. The algorithm for BP-Preimage computes the image of each configuration (enu-
merated in polynomial space with a simple counter) using the same procedure as BP-Step
(Theorem 6), and decides whether there is some x such that f{µ}(x) = y.

Given an instance C : Bn → Bn, x̃ ∈ Bn, i ∈ JnK of Iter-CVP, we construct the same
block-parallel update schedule µ′ as in the proof of Theorem 6, and modify the local functions
of automata D and R as follows:

fD(x) =


C(x̃) if xB = 0
C(xD) if 0 < xB < ℓ− 1
0n otherwise

fR(x) =
{
x̃i if xB = 0
xR ∨ xqkn +ℓ′+i otherwise

The purpose is that D iterates the circuit from x̃ when the counter is initialized to 0, and
that R records whether the i-th bit of D has been in state 1 (including the initial substep).
We set y = 0qkn 0ℓ0n1.

If the Iter-CVP instance is positive, then we have f{µ′}(0qkn 0ℓ0n0) = y (automata B
go back to 0qkn , automata D iterate circuit C from x̃ and end in state 0n, and automaton R
has recorded that the i-th bit of D has been to state 1).

Conversely, if there is a configuration x such that f{µ′}(x) = y, then the automata from
the counter B must have started in state xB = 0qkn , because of the increment modulo ℓ

which is the number of substeps. We deduce that D iterate circuit C for the whole orbit of x̃
and end in state 0n, and that automaton R records the answer to the Iter-CVP instance.
Since it it ends in state yR = 1 by our assumption that f{µ′}(x) = y, we conclude that it is
positive. ◀

Block-parallel reachability (BP-Reachability)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn, x, y ∈ Bn.
Question: does ∃t ∈ N : f t

{µ}(x) = y?
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▶ Theorem 18. BP-Reachability is PSPACE-complete.

Proof. The problem belongs to PSPACE, because is can naively be solved by simulating the
dynamics of f{µ} starting from configuration x, for 2n time steps.

Reachability problems in cellular automata and related models are known to be PSPACE-
complete on finite configurations [40]. We reduce from the reachability problem for reaction
systems, which can be seen as a particular case of Boolean automata networks, and is also
known to be PSPACE-complete [13]. Given a reaction system (S,A) where S is a finite set of
entities, and A is a set of reactions of the form (R, I, P ) where R are the reactants, I the
inhibitors and P the products, we construct the BAN of size n = |S| with local functions:

∀i ∈ JnK : fi(x) =
∨

(R,I,P )∈A
such that i∈P

 ∧
j∈R

xj ∧
∧
k∈I

¬xk

 .

A configuration x ∈ Bn of the BAN corresponds to a state of the reaction system with
each automaton indicating the presence or absence of its corresponding entity. The parallel
evolution of f (under µpar) is in direct correspondance with the evolution of the reaction
system. ◀
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Abstract
Arbitrary Pattern Formation (APF) is a fundamental coordination problem in swarm robotics. It
requires a set of autonomous robots (mobile computing units) to form an arbitrary pattern (given as
input) starting from any initial pattern. This problem has been extensively investigated in continuous
and discrete scenarios, with this study focusing on the discrete variant. A set of robots is placed on
the nodes of an infinite rectangular grid graph embedded in the euclidean plane. The movements of
each robot is restricted to one of the four neighboring grid nodes from its current position. The robots
are autonomous, anonymous, identical, and homogeneous, and operate Look-Compute-Move cycles.
In this work, we adopt the classical OBLOT robot model, meaning the robots have no persistent
memory or explicit communication methods, yet they possess full and unobstructed visibility. This
work proposes an algorithm that solves the APF problem in a fully asynchronous scheduler assuming
the initial configuration is asymmetric. The considered performance measures of the algorithm are
space and number of moves required for the robots. The algorithm is asymptotically move-optimal.
Here, we provide a definition of space complexity that takes the visibility issue into consideration.
We observe an obvious lower bound D of the space complexity and show that the proposed algorithm
has the space complexity D + 4. On comparing with previous related works, we show that this is
the first proposed algorithm considering OBLOT robot model that is asymptotically move-optimal
and has the least space complexity which is almost optimal.
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1 Introduction

Swarm robotics involves a group of simple computing units referred to as robots that operate
autonomously without having any centralized control. Moreover, the robots are generally
anonymous (no unique identifier), homogeneous (all robots execute the same algorithm), and
identical (physically indistinguishable). Generally on activation, a robot first takes a snapshot
of its surroundings. This phase is called the Look phase. Then based on the snapshot an
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inbuilt algorithm determines a destination point. This phase is called the Compute phase.
Finally, in the Move phase it moves towards the computed destination. These three phases
together are called a Look-Compute-Move (LCM) cycle of a robot.

Through collaborative efforts, these robot swarms can accomplish different tasks such as
gathering at a specific point, configuring into predetermined patterns, navigating networks,
etc. Presently, the field of robotics research is witnessing significant enthusiasm for swarm
robots. The inherent decentralized characteristics of these algorithms provide swarm robots
with a notable advantage, as distributed algorithms are both easily scalable and more resilient
in the face of errors. Furthermore, swarm robots boast a multitude of real-world applications,
including but not limited to tasks like area coverage, patrolling, network maintenance, etc.

In order to accomplish specific tasks, robots require some computational capabilities,
which can be determined by various factors such as memory, communication, etc. With
respect to memory and communication, the literature identifies two primary robot models.
The first one is called the classical OBLOT model. In this model, the robots are devoid of
persistent memory and communication abilities. Another robot model is the LUMI model
where the robots are equipped with a finite number of lights that can take a finite number
of different colors. These colors serve as persistent memory (as a robot can see its own
color) and communication architecture (as the colors of lights are visible to all other robots).
The responsibility for activating robots rests with an entity referred to as the Scheduler.
Within the existing literature, three primary types of schedulers emerge: Fully-Synchronous
(FSYN C), Semi-Synchronous (SSYN C), and Asynchronous (ASYN C). In the case of fully
synchronous and semi-synchronous schedulers, time is partitioned into rounds of uniform
length. The duration of the Look, Compute, and Move phases for all activated robots are
identical. Under a fully-synchronous scheduler, all robots become active at the onset of each
round, but in a semi-synchronous setup, not all robots may activate simultaneously in a given
round. In an asynchronous scheduler, round divisions are absent. At any given moment, a
robot can be either idle or engaged in any of the Look, Compute, or Move phases. The
duration of these phases and the spans of robot idleness are finite but unbounded.

The primary focus of this study is to solve the Arbitrary Pattern Formation (APF)
problem on an infinite rectangular grid while minimizing spatial utilization. The APF
problem involves a group of robots situated within an environment, aiming to create a
designated pattern. This pattern is conveyed to each robot as a set of points within a
coordinate system as an input. This problem has been extensively studied in the euclidean
plane ([2, 3, 4, 6, 7, 8, 16, 17]) and also on a continuous circle [13]. Bose et al. [1] first
proposed this problem on a rectangular grid. The rectangular grid is a natural discretization
of the plane. To the best of our knowledge, on the discrete domain, this problem has been
studied in [1, 5, 9, 10, 11, 12, 15]. In this paper, the focus is placed on an environment
characterized by an infinite rectangular grid. In the upcoming subsection, we delve into the
reasons behind the introduction of spatial constraint in the context of this problem.

1.1 Motivation
In the majority of previous studies, the implementation of this problem on a grid necessitates
a substantial allocation of space (space of a configuration formed by a set of robots is the
dimension of the smallest enclosing square of the configuration), even when both the initial
and target configurations have minimal spatial requirements. This promptly gives rise to a
lot of problems. To begin with, in the scenario where the grid is of bounded dimensions, it is
possible that certain patterns cannot be formed, even if robots are initially located within
the bounded grid and the target pattern could potentially fit within the grid. This limitation
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arises due to the existence of intermediate configurations that demand a spatial extent that
cannot be accommodated within the confined grid. Moreover, when the spatial demand
for an APF algorithm on a grid increases, the count of patterns that can be formed within
a bounded grid becomes noticeably fewer compared to the count of patterns formable on
the same grid with a lower space requirement. To be more specific, patterns that are “big
enough” can not be formed if the space requirement is “big” on a bounded grid. So, the
requirement of large space compromises better utilization of the space.

Moreover, even if complete visibility is entertained for theoretical considerations, this
assumption does not hold practical validity within an unbounded environment. In the context
of a bounded region, it can be applied with the premise that the environment is finite, and
the entire environment falls within the visibility range of each robot. However, introducing
the concept of an infinite grid disrupts this assumption. In situations where the grid lacks
bounds, it is possible that due to substantial spatial requirements, certain robots might stray
beyond the visibility range of others. To the best of our knowledge, there remains an absence
of work that addresses the APF challenge within the constraints of limited visibility, an
asynchronous scheduler, and the absence of any global coordinate agreement. Thus in this
paper, the problem of APF on a grid with minimal spatial requirement has been considered.

1.2 Related Work

In the discrete setting, the problem is first studied in [1]. Here, the authors solved the problem
deterministically on an infinite rectangular grid with OBLOT robots in an asynchronous
scheduler. Later in [5], the authors studied the problem on a regular tessellation graph. In
[1], authors count the total required moves asymptotically and also give an asymptotic lower
bound for the move complexity, i.e., total number of moves required to solve the problem. In
[5], authors did not count the total number of moves required for their proposed algorithm.
In [9], the authors provided two deterministic algorithms for solving the problem in an
asynchronous scheduler. The first algorithm of [9] solves the APF problem for the OBLOT
model. The move complexity of this algorithm matches the asymptotic lower bound given
in [1]. Thus, this algorithm is asymptotically move-optimal. The second algorithm of [9]
solves the problem for the LUMI model, and this algorithm is asymptotically move-optimal.
Further authors showed that the algorithm is time-optimal, i.e., the number of epochs (a
time interval in which each robot activates at least once) to complete the algorithm is
asymptotically optimal. In [11], the authors provided a deterministic algorithm for solving
the problem with opaque (non-transparent) point robots in the LUMI model with an
asynchronous scheduler assuming one-axis agreement. In [10], the authors proposed two
randomized algorithms for solving the APF problem in an asynchronous scheduler. The
second algorithm works for the OBLOT model. This algorithm is asymptotically move-
optimal and time-optimal. The randomization in this algorithm is only used to break any
present symmetry in the initial configuration. If the initial configuration is asymmetric then
the algorithm is deterministic. The first algorithm works for opaque point robots with the
LUMI model. This algorithm is also asymptotically move-optimal and time-optimal. In [12],
the authors solve the problem with opaque fat robots (robots having nontrivial dimension)
with the LUMI model in an asynchronous scheduler assuming one-axis agreement. In [15],
the authors provide an asymptotically move-optimal algorithm solving this problem with
robots in the LUMI model. The work also considered a special requirement and showed that
the algorithm is space-optimal. In the next section, we formally state the space complexity
of an algorithm and discuss the space complexity of the mentioned works.
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1.3 Space Complexity of APF Algorithms in Rectangular Grid
In [15], the authors considered the total space required to execute an algorithm. In Definition 1,
we define the space complexity of an algorithm executed by a set of robots on a rectangular
grid. Before that let’s define the dimension of a rectangle, vertices of which are on some grid
nodes, as m × n if the rectangle has m horizontal grid lines and n vertical grid lines.

▶ Definition 1. The space complexity of an algorithm executed by a set of robots on a
rectangular grid is the minimum dimension of the squares (whose sides are parallel with
the grid lines) such that no robot steps out of the square throughout the execution of the
algorithm.

Let the smallest enclosing rectangle (SER), the sides of which are parallel to grid lines, of
the initial configuration and pattern configuration formed by the robots, respectively, have
dimensions m × n (m ≥ n) and m′ × n′ (m′ ≥ n′). Let D = max{m, n, m′, n′}. Then the
minimum space complexity for an algorithm to solve the APF problem is D. Definition 1
assigns a real number to the space complexity that makes it easy to compare different APF
algorithms. But consider an APF algorithm that takes a space enclosed by an axis aligned
rectangle of dimension p × q. if M = max{m, m′} and N = max{n, n′}, then the APF
algorithm is better (as far as space is concerned) if p is closer to M and q is closer to N .

Space Complexity of the Previous APF Algorithms

(OBLOT model APF algorithms) The algorithm proposed in [1] has space-complexity at
least 2D in the worst case as one of the leaders, named tail moves far away from the rest of
the configuration. The first algorithm proposed in [9] is for the OBLOT model. It requires
the robots to form a compact line. The space complexity of these algorithms is D2 in the
worst case. The second randomized algorithm in [10] is for the OBLOT model. In this
algorithm, the leader robot moves upwards far away from the rest of the configuration. Thus,
it has a space complexity of at least 30D in the worst case.

(LUMI model APF algorithms) The second algorithm proposed in [9] is for the LUMI
model. This algorithm requires a step-looking configuration where each robot occupies a
unique vertical line. Therefore, the space complexity of the algorithm can be D2 in the
worst case. This algorithm needs each robot to have a light with three distinct colors. The
first randomized algorithm in [10] for LUMI model has space-complexity at least D + 2.
The authors also did not count the number of lights and colors required for the robots.
With a closer look, we observe that this algorithm uses at least 31 distinct colors. Further,
deterministic APF algorithms proposed in [11, 12] solved it for obstructed visibility. These
works also need the robots to form a compact line, hence the space complexity of these
algorithms is D2 in the worst case. The proposed algorithm in [15] has space-complexity
D + 1 and it requires three distinct colors.

We say that the first algorithm proposed in [10] and algorithm proposed in [15] are
almost space-optimal, as the space-complexity is of the form D + c, D is a lower bound of
the space-complexity and c is a constant independent of D. If we consider the rectangle to
measure the space, then a rectangle of dimension M × N is minimally required to solve the
APF problem. The first algorithm in [10] and the algorithm in [15] takes space enclosed by
rectangle of dimension (M + 2) × (N + 2) and (M + 1) × N respectively. We can consider
these algorithms as so far the best APF algorithms as far as space complexity is concerned.
For the rest of the algorithms one dimension of the rectangle that encloses the required space
shoots up twice (algorithm in [1]) or 30 times (2nd algorithm in [10]) or squares (algorithm
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in [9, 11, 12]). For the rectangle version, if an APF algorithm takes a space of enclosing
rectangle of dimension (M + c1) × (N + c2), where c1 and c2 are constants independent of
M and N , then the algorithm is said to be almost optimal. The challenge of this work is to
reconfigure the (oblivious and silent) robots in an optimal space avoiding the occurrence of
symmetric configurations and collision among robots while keeping the number of movements
asymptotically optimal.

Our Contribution

First a deterministic algorithm for solving APF in an infinite discrete line is presented. Then
exploiting that algorithm this manuscript presents a deterministic algorithm for solving
APF in an infinite rectangular grid which is almost space-optimal as well as asymptotically
move-optimal. Precisely, the space complexity for the algorithm is D + 4 and this algorithm
takes a space enclosing the rectangle of dimension (M + 4) × (N + 1). The move-complexity
of the algorithm is O(kD)1, where k is the number of robots. The robot model is the classical
OBLOT model and the scheduler is fully asynchronous. To the best of our knowledge so
far, this is the first deterministic algorithm solving APF problem in the OBLOT robot
model that has the least space-complexity and optimal move-complexity (See Table 1 for
comparison with the previous works). The architecture of the description of the algorithm
and correctness proof are motivated from [1].

Table 1 Comparison table.

Work Model Visibility Deterministic/
Randomised

Space
complexity

[1] OBLOT Unobstructed Deterministic ≥ 2D
1st algorithm in [9] OBLOT Unobstructed Deterministic D2

2nd algorithm in [10] OBLOT Unobstructed Randomised2 ≥ 30D
2nd algorithm in [9] LUMI Unobstructed Deterministic D2

1st algorithm in [10] LUMI Obstructed Randomised ≥ D+2
[11] LUMI Obstructed Deterministic D2

[12] LUMI Obstructed
(fat robot)

Deterministic D2

[15] LUMI Unobstructed Deterministic D + 1
Algorithm in this
work

OBLOT Unobstructed Deterministic D + 4

2 Model and Problem Statement

Robot

The robots are assumed to be identical, anonymous, autonomous, and homogeneous. Robots
are oblivious, i.e., they do not have any persistent memory to remember previous configura-
tions or past actions. Robots do not have any explicit means of communication with other
robots. The robots are modeled as points on an infinite rectangular grid graph embedded on

1 In [10], the authors provides this tight lower bound
2 The randomisation is only used to break any symmetry present in the initial configuration
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a plane. Initially, robots are positioned on distinct grid nodes. A robot chooses the local
coordinate system such that the axes are parallel to the grid lines and the origin is its current
position. Robots do not agree on a global coordinate system. The robots do not have a
global sense of clockwise direction. A robot can only rest on a grid node. Movements of the
robots are restricted to the grid lines, and through a movement, a robot can choose to move
to one of its four adjacent grid nodes.

Look-Compute-Move Cycle

A robot has two states: sleep/idle state and active state. On activation, a robot operates
in Look-Compute-Move (LCM) cycles, which consist of three phases. In the Look phase, a
robot takes a snapshot of its surroundings and gets the position of all the robots. We assume
that the robots have full, unobstructed visibility. In the Compute phase, the robots run
an inbuilt algorithm that takes the information obtained in the Look phase and obtains a
position. The position can be its own or any of its adjacent grid nodes. In the Move phase,
the robot either stays still or moves to the adjacent grid node as determined in the Compute
phase.

Scheduler

The robots work asynchronously. There is no common notion of time for robots. Each robot
independently gets activated and executes its LCM cycle. The time length of LCM cycles,
Compute phases, and Move phases of robots may be different. Even the length of two LCM
cycles for one robot may be different. The gap between two consecutive LCM cycles, or the
time length of an LCM cycle for a robot, is finite but can be unpredictably long. We consider
the activation time and the time taken to complete an LCM cycle to be determined by an
adversary. In a fair adversarial scheduler, a robot gets activated infinitely often.

Grid Terrain and Configurations

Let G be an infinite rectangular grid graph embedded on R2. The G can be formally defined
as a geometric graph embedded on a plane as P × P , which is the cartesian product of two
infinite (from both ends) path graphs P. Suppose a set of k > 2 robots is placed on G. Let
f be a function from the set of vertices of G to N ∪ {0}, where f(v) is the number of robots
on the vertex v of G. Then the pair (G, f) is said to be a configuration of robots on G. For
the initial configuration (G, f), we assume f(v) ≤ 1 for all v.

Symmetries

Let (G, f) be a configuration. A symmetry of (G, f) is an automorphism ϕ of the graph G
such that f(v) = f(ϕ(v)) for each node v of G. A symmetry ϕ of (G, f) is called trivial if ϕ is
an identity map. If there is no non-trivial symmetry of (G, f), then the configuration (G, f)
is called an asymmetric configuration and otherwise a symmetric configuration. Note that
any automorphism of G = P × P can be generated by three types of automorphisms, which
are translations, rotations, and reflections. Since there are only a finite number of robots, it
can be shown that (G, f) cannot have any translation symmetry. Reflections can be defined
by an axis of reflection that can be horizontal, vertical, or diagonal. The angle of rotation
can be of 90◦ or 180◦, and the center of rotation can be a grid node, the midpoint of an edge,
or the center of a unit square. We assume the initial configuration to be asymmetric. The
necessity of this assumption is discussed after the problem statement.
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Problem Statement

Suppose a swarm of robots is placed in an infinite rectangle grid such that no two robots
are on the same grid node and the configuration formed by the robots is asymmetric. The
Arbitrary Pattern Formation (APF) problem asks to design a distributed deterministic
algorithm following which the robots autonomously can form any arbitrary but specific
(target) pattern, which is provided to the robots as an input, without scaling it. The target
pattern is given to the robots as a set of vertices in the grid with respect to a cartesian
coordinate system. We assume that the number of vertices in the target pattern is the same
as the number of robots present in the configuration. The pattern is considered to be formed
if a configuration is formed and that is the same with target pattern up to translations,
rotations, and reflections. The algorithm should be collision-free, i.e., no two robots should
occupy the same node at any time, and two robots must not cross each other through the
same edge.

Admissible Initial Configurations

We assume that in the initial configuration there is no multiplicity point, i.e., no grid node
that is occupied by multiple robots. This assumption is necessary because all robots run
the same deterministic algorithm, and two robots located at the same point have the same
view. Thus, it is deterministically impossible to separate them afterward. Next, suppose the
initial configuration has a reflectional symmetry with no robot on the axis of symmetry or
a rotational symmetry with no robot on the point of rotation. Then it can be shown that
no deterministic algorithm can form an asymmetric target configuration from this initial
configuration. However, if the initial configuration has reflectional symmetry with some
robots on the axis of symmetry or rotational symmetry with a robot at the point of rotation,
then symmetry may be broken by a specific move of such robots. But making such a move
may not be very easy as the robots’ moves are restricted to their adjacent grid nodes only.
In this work, we assume the initial configuration to be asymmetric.

3 Space-optimal Arbitrary Pattern Formation on a Grid Line

In this section, we solve this problem on a discrete straight line. Suppose we have an infinite
path graph P = {(i, i + 1) | i ∈ Z} embedded on a straight line. Suppose k robots are placed
on P at distinct nodes. A configuration is defined similarly as done in the previous section
by considering G = P. The target pattern is given as a set of k distinct positive integers.

Leader Election and Global Coordinate Setup

We assume the initial configuration of robots does not have reflectional symmetry. First, we
set up a global coordinate system that can be agreed upon by all the robots. Suppose C is a
configuration having no reflectional symmetry. For a configuration, we define the smallest
enclosing line segment (SEL) to be the smallest line segment in length that contains all the
robots in the configuration. Let L = AB be the SEL of the configuration C. Consider two
binary strings of length |AB| (the length of a line segment is the number of grid points on
the line segment) called λA and λB with respect to the endpoints of L. Let λA = {ai}|AB|

i=1
such that ai = 1 if and only if the node on the AB line segment having distance i − 1 from
A is occupied by a robot. Similarly, we define λB. Since C has no reflectional symmetry,
λA and λB are different. Therefore one of them is lexicographically smaller than the other.
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Suppose λA is lexicographically smaller than λB. Then A is considered as the origin and−−→
AB is considered as the positive (right) direction. Also, the robot located at A is said to be
head and the robot located at B is said to be tail. We denote C \ {tail} as C′.

Target Embedding

Next we embed the pattern in the following way. Considering the integers given in the target
pattern on the number line proceed similarly as done above for C. Let Ctarget be the target
configuration and A′B′ be the SEL of Ctarget. Consider two binary strings λA′ and λB′ . If
both the strings are equal then the target pattern has a reflectional symmetry. In this case,
embed the pattern such that all the target positions are on the right side of the origin except
the left most one which is on the origin. If the strings are different then we suppose λA′ is
the lexicographically smaller one. In this case, embed the pattern such that A = A′ and
all the target positions are on the right side of the origin. After embedding, the farthest
target position from the origin is said to be the tail-target and denoted as ttarget. We define,
C′

target = Ctarget \ {ttarget}.

Proposed APF algorithm a Line

Next, we describe our proposed algorithm ApfLine. If in a snapshot of a robot, another
robot is seen on an edge then the robot discards the snapshot and goes to sleep. Therefore,
for simplicity, we assume that any snapshot taken by a robot contains a still configuration
C. The head never moves in the algorithm. Firstly, if C′ = C′

target then the tail moves to
ttarget. Otherwise, if ttarget is at the right of the tail, then the tail moves right and the other
robots remain static. If C′ ̸= C′

target, and the tail is at the ttarget or to the right of the ttarget,
then inner robots move to make C′ = C′

target. Let ri be the ith robot from the left and ti be
the ith target position from the left. We try to design the algorithm such that ri moves to
ti. The r1 robot is the head and it is already on t1. If ti is towards the left of ri and the
left adjacent grid node is empty, then an inner robot ri moves towards the left. If for each
inner robot rj which is not currently on tj , tj is at the right of the rj , then an inner robot
ri moves right if ti is at the right of the ri and the right adjacent grid node is empty (The
pseudo-code of the algorithm is given in Algorithm 1).

Algorithm 1 ApfLine (for a generic robot r).

1 if C′ = C′
target then

2 tail moves towards ttarget;
3 else
4 if ttarget is at the right of the tail then
5 tail moves towards right;
6 else
7 if r = ri is an inner robot then
8 if ti is at the left of ri then
9 if left adjacent grid node is empty then

10 r moves towards left;
11 else if for each inner robot rj which is not currently on tj , tj is at the right of the rj

then
12 if ti is at the right of ri then
13 if right adjacent grid node is empty then
14 r moves towards right;
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▶ Theorem 2. From any asymmetric initial configuration, the algorithm ApfLine can form
any target pattern on an infinite grid line within finite time under an asynchronous scheduler.

Proof. See the full version [14]. ◀

4 The Proposed Apf Algorithm on a Rectangular Grid

4.1 Agreement of a Global Coordinate System and Target Embedding

Let C be an asymmetric configuration. Consider the smallest enclosing rectangle (SER)
containing all the robots where the sides of the rectangle are parallel to the grid lines. Let
R = ABCD be the SER of the configuration, a m × n rectangle with |AD| = m ≥ n = |AB|.
The length of the sides of R is considered to be the number of grid points on that side. If all
the robots are on a grid line, then R is just a line segment. In this case, R is considered a
m × 1 “rectangle” with A = B, D = C, and AB = CD = 1.

For a side, say AB, of R we define a binary string, denoted as λAB, as follows. Let
(A = A1, A2, . . . , Am = D) be the sequence of grid points on the AD line segment and
(B = B1, B2, . . . , Bm = C) be the sequence of grid points on the BC line segment. Scan
the line segment AB from A to B. Then scan the line segments AiBi one by one in the
increasing order of i. The direction of scanning the line segment AiBi is set as follows: Scan
it from Bi to Ai if i is even and scan it from Ai to Bi if i is odd. While scanning, for each
grid point put 0 or 1 according to whether it is empty or occupied, respectively (See λAB in
Fig. 1).

Figure 1 ABCD is the SER of the configuration. λAB = 01101101010011010100 is the largest
lexicographic string, and rh and rt are respectively the head and tail robots of the configuration.

If m > n > 1, then for each corner point A, B, C, and D, consider the binary strings
λAB, λBA, λCD and λDC , respectively. If m = n > 1, then for each corner point, we have
to associate two binary strings with respect to the two sides adjacent to the corner point.
Then we have eight binary strings λAB , λBA, λAD, λDA, λBC , λCB , λDC and λCD. If any
two strings of them are equal then it can be shown that C has a (reflectional or rotational)
symmetry. Since C is asymmetric, we can find a unique lexicographically largest string (See
Fig. 1). Let λAB be the lexicographically largest string, and then A is considered the leading
corner of the configuration. The leading corner is taken as the origin, and −−→

AB is as the
x-axis, and −−→

AD is as the y-axis.
If R is an m × 1 rectangle, then λAB and λBA are the same string. Then we have two

strings to compare. Since the configuration is asymmetric, these two strings must be distinct.
Then we shall have a leading corner, say A = B. For this case, A is considered as the origin,
and −−→

AD as the y-axis. There will be no agreement of the x-axis in this case but since all the
robots are on the y-axis, so x-coordinate of the positions of the robots are 0 at this time.
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If C is asymmetric then a unique string can be elected and hence, all robots can agree
on a global coordinate system. By “up” (“down”) and “right” (“left”), we shall refer to the
positive (“negative”) directions of the x-axis and y-axis of the coordinate system, respectively.
The robot responsible for the first 1 in this string is considered the head robot of C and the
robot responsible for the last 1 is considered the tail of C. The robot other than the head
and tail is termed the inner robot. We define, C′ = C \ {tail} and C′′ = C \ {head, tail}.

Target Pattern Embedding

Here we discuss how robots are supposed to embed the target pattern when they agree on
a global coordinate system. The target configuration Ctarget is given with respect to some
arbitrary coordinate system. Let the R′ = A′B′C ′D′ be the SER of the target pattern, an
m′ × n′ rectangle with |A′D′| ≥ |A′B′| > 1. We associate binary strings similarly for R′ as
done for R. Let λA′B′ be the lexicographically largest (but may not be unique because the
Ctarget can be symmetric) among all other strings for R′. The first target position on this
string λA′B′ is said to be head-target and denoted as htarget and the last target position is
said to be tail-target and denoted as ttarget. The rest of the target positions are called inner
target positions. Then the target pattern is to be embedded such that A′ is the origin,

−−−→
A′B′

direction is along the positive x-axis, and
−−−→
A′D′ direction is along the positive y-axis. Next,

let us consider the case when |A′B′| = 1, that is when the SER of the target pattern is a line
A′D′. Let λA′D′ be the lexicographically largest string between λA′D′ and λD′A′ . Then the
target is embedded in such a way that A′ is at the origin and

−−−→
A′D′ direction is along the

positive y-axis. The positive x-axis direction can be decided randomly by the robot which
first moves out of that line making the SER a rectangle. We define, C′

target = Ctarget \{ttarget}
and C′′

target = Ctarget \ {htarget, ttarget}.

4.2 Outline of the Proposed Algorithm
The algorithm is logically divided into seven phases3. A robot infers which phase it is in from
the configuration visible at that time. It does so by checking which conditions in Table 2
are fulfilled. We assume that in a visible configuration, no robot is seen on an edge. We
maintain such assumption by an additional condition that, if a robot sees a configuration
where a robot is on an edge then discard the snapshot and go to sleep.

A Preview of the Algorithm

Firstly the tail robot moves upwards to reach a horizontal line such that neither the
horizontal line nor other horizontal lines above it contain any robot or target position
(Phase I).
Next the head robot moves left to reach the origin (Phase II).
Then the tail robot moves a few steps upwards to remove the chance of occurrence of
symmetry during the later inner robot movements (phase I).
Then the tail robot moves rightwards to reach a vertical line such that neither the
vertical line nor any vertical line to the right of it contains any robot or target positions
(Phase III).

3 The phases are assigned numerical names, yet the sequence of these numerals doesn’t precisely correspond
to the sequence of their execution during algorithm execution.
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After that a spanning line is considered (Figure 2) and inner robots carefully move along
this line (Function Rearrange) to take their respective target position avoiding collision
or forming any symmetric configuration (Phase IV).
After that the tail moves horizontally to reach the vertical line that contains ttarget

(Phase V).
Then the head robot moves horizontally to reach htarget (Phase VI).
After that the tail moves vertically to reach ttarget (Phase VII).

Table 2 Set of conditions on an asymmetric configuration C having SER ABCD such that the
origin is at A.

C0 C = Ctarget

C1 C′ = C′
target

C2 C′′ = C′′
target

C3 x-coordinate of the tail = x-coordinate of ttarget

C4 There is neither any robot except the tail nor any target positions
on or above Ht, where Ht is the horizontal line containing the tail

C5 y-coordinate of the tail is odd
C6 SER of C is not a square
C7 There is neither any robot except the tail nor any target positions

on or at the right of Vt, where Vt is the vertical line containing the
tail

C8 The head is at origin
C9 If the tail and the head are relocated respectively at C and A, then

the new configuration remains asymmetric
C10 C′ has a symmetry with respect to a vertical line

4.3 Detail Discussion of the Phases

Phase I

A robot infers itself in Phase I if ¬(C4 ∧ C5 ∧ C6) ∧ ¬(C1 ∧ C3) is true. In this phase, the
tail moves upward and all other robots remain static. The aim of this phase is to make
C4 ∧ C5 ∧ C6 true.

Phase II

A robot infers itself in Phase II if (C4 ∧ C5 ∧ C6 ∧ ¬C8) ∧ ((C2 ∧ ¬C3) ∨ ¬C2) is true. In this
phase, the head moves towards the left, and other robots remain static. This phase aims to
make C8 true.

Phase III

A robot infers itself in Phase III if C4 ∧ C5 ∧ C6 ∧ C8 ∧ ¬C2 ∧ ¬C7 is true. The aim of this
phase is to make C7 true. In this phase, there are two cases to consider. The robots will
check whether C10 is true or not. If C10 is false, then robots check whether C9 is true or not.
If C9 is not true then the tail moves upward. Otherwise, the tail moves right or upwards
in accordance with m > n + 1 or m = n + 1 (dimension of the current SER is m × n with
m ≥ n). If C10 is true, then the tail moves left or upwards in accordance with m > n + 1 or
m = n + 1. Other robots remain static in both cases.
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Phase IV

A robot infers itself in Phase IV if C4 ∧ C5 ∧ C6 ∧ C7 ∧ C8 ∧ ¬C2 is true. In this phase, the
inner robots execute function Rearrange to make C2 true.

Function Rearrange

In this function inner robots move to take their respective target positions. Let C be the
current configuration. Let ABCD be the SER of C. According to the assumption exactly
two nonadjacent vertices are occupied by robots in rectangle ABCD. Specifically, these two
robots are the head and the tail of the configuration. Let the head and tail be located at A

and C respectively. Consider the path P starting from A to C as illustrated in bold edges in
Fig. 2. Inner robots adopt algorithm ApfLine considering this path as the line. Here, we
define a robot r′ at the left (right) side of r if r′ is closer to the head (tail) than r in P.
Let us order the target positions. Denote htarget as t1, then the next closest target position
from the head in P as t2. Similarly, denote the ith closest target positions in P from the
head as ti. Note that, tk is the ttarget. Similarly order all the robots, {ri}k

i=1, where r1 is
the head and ri (i > 1) is the ith closest robot from the head on P.

Figure 2 Path joining the nodes A and C mentioned in bold edges.

If ti is at the left of ri and there are no other robots in the sub-path of P starting from
the position of ri to ti, then ri moves to ti. The movement strategy is described as follows.
If ri and ti are at the same vertical (or, horizontal) line then ri moves through the vertical
(or, horizontal) line joining ri and ti. Suppose, ri and ti are not at the same vertical line or
horizontal line. If the downward adjacent vertex of ri is at the right of ti then ri moves
downwards. If the downward adjacent vertex is at the left of ti, then ri moves to its left
adjacent node on P.

If there is no robot rj such that tj is at the left of rj , then movements of an inner robot
towards right start. If ti is at the right of ri, and there are no other robots in the sub-path
of P starting from the position of ri to ti, then ri moves to ti. The movement strategy is
described as follows. If ri and ti are at the same vertical (or, horizontal) line then ri moves
through the vertical (or, horizontal) line joining ri and ti. Suppose, ri and ti are not at the
same vertical line or horizontal line. If the upward adjacent vertex of ri is at the left of ti

then ri moves upwards. If the upward adjacent vertex is at the right of ti, then ri moves to
its right adjacent on node P (pseudo code of the function Rearrange is given Algorithm 2).



A. Sharma, S. Ghosh, P. Goswami, and B. Sau 20:13

Algorithm 2 Function Rearrange for a robot r = ri.
1 if ti is at the left of ri then
2 if there are no other robot in the sub-path of P starting from position of ri to ti then
3 if ri and ti are at the same vertical (or, horizontal) line then
4 ri moves towards ti through the vertical (or, horizontal) line joining ri and ti;
5 else
6 if the downward adjacent vertex of ri is at the right of ti then
7 ri moves downwards;
8 else
9 ri moves to its left adjacent node on P;

10 else if ti is at the right of ri then
11 if there is no inner robot rj such that tj is at the left of rj then
12 if there are no other robot in the sub-path of P starting from position of ri to ti then
13 if ri and ti are at the same vertical (or, horizontal) line then
14 ri moves towards ti through the vertical (or, horizontal) line joining ri and ti;
15 else
16 if the upwards adjacent vertex of ri is at the left of ti then
17 ri moves upwards;
18 else
19 ri moves to its right adjacent node on P;

Phase V

A robot infers itself in Phase V if C2 ∧ C4 ∧ C5 ∧ C6 ∧ C8 ∧ ¬C3 is true. In this phase, the
tail moves horizontally to make C3 true. Let Ht be the horizontal line containing the tail
and T ′ be the point on the Ht that has the same x-coordinate with ttarget. If C10 is not true
then the tail moves horizontally towards T ′. Next let C10 be true. Let ABCD be the SER
of the current configuration C and AB′C ′D′ be the SER of C′. Let C ′′ be the point where
line B′C ′ intersects with Ht. Let E be the point on the Ht (See Figure 3). Let the tail robot
be at T . If both T and T ′ are at the right side of C ′′ or in on the line segment DE, then the
tail moves towards T ′. Otherwise, the tail moves leftward.

Figure 3 An image related to Phase V.
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Phase VI

A robot infers itself in Phase VI if ¬C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 is true. In this phase, the
head moves horizontally to reach htarget. After the completion of this phase, ¬C0 ∧ C1 ∧ C3
becomes true.

Phase VII

A robot infers itself in Phase VII if ¬C0 ∧ C1 ∧ C3 is true. In this phase, the tail moves
vertically to reach ttarget.

4.4 Correctness and Performance of the Proposed Algorithm
In this section, we prove the correctness of the proposed algorithm. First, we show that any
initial asymmetric configuration for which C0 is not true falls in one of the seven phases (See
Figure 4). Then we show that from any asymmetric initial configuration, the algorithm allows
the configuration to satisfy C0 = true after passing through several phases (See Figure 5).
The correctness proof details are omitted from this paper due to space constraint. See the
full version of the paper in [14].

(Phase VII)

(Phase I)

(Phase II)

(Phase III)(Phase IV)

(Phase VI)

(Phase V)(Phase II)

Figure 4 For any configuration with C0 = false belongs to one of the seven phases.

▶ Theorem 3. The proposed algorithm can form any pattern consisting of k points by a
set of k oblivious asynchronous robots if the initial configuration formed by the robots is an
asymmetric configuration and has no multiplicity point.

Recall the Definition 1 of the space complexity of an algorithm executed by a set of
robots on an infinite rectangular grid. In Theorem 4, we calculate the space complexity of
the proposed algorithm. The move complexity is recorded in the Theorem 5. Proofs of these
theorems are available in full version of the paper [14].
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Phase II

Phase III

Phase IV

Phase I

Phase V

Phase VI

Phase VII

Figure 5 Phase transition digraph.

▶ Theorem 4. Let D = max{m, n, m′, n′} where m × n (m ≥ n) is the dimension of the
SER of the initial configuration and m′ × n′ (m′ ≥ n′) is the dimension of the SER of the
target configuration. Then the space complexity of the proposed algorithm is at most D + 4.
More precisely, if M = max{m, m′} and N = max{n, n′}, then the proposed algorithm takes
the space enclosed by a rectangle of dimension (M + 4) × (N + 1).

▶ Theorem 5. The proposed algorithm requires each robot to make O(D) movements, hence
the move-complexity of the proposed algorithm is O(kD).

5 Conclusion

This work first provides an algorithm that solves the APF problem in an infinite line by a
robot swarm. Then adopting the method, it provides another algorithm that solves the APF
in an infinite rectangular grid by a robot swarm. The robots are autonomous, anonymous,
identical, and homogeneous. The robot model used here is the classical OBLOT model.
The robots work under a fully asynchronous scheduler. The proposed algorithm is almost
space-optimal (Theorem 4) and asymptotically move-optimal (Theorem 5).

A few limitations of this work are the following. Here we assume that the initial
configuration is asymmetric. Finding complete characterization of the initial configurations
from which APF can be solved deterministically is an interesting future direction. Next,
the version of the APF problem under consideration does not permit multiple points in the
target configuration. More precisely, the number of target positions in the target pattern
is equal to the number of robots within the system. Solving a more generalized version of
the problem that allows target patterns with target positions less than the total number of
robots, is a possible future direction. Next, the proposed algorithm is almost space optimal,
so finding out the exact lower bound when starting from an asymmetric initial configuration
is an interesting direction. Also, this does not consider time-optimality, so considering all the
three parameters space, move and time at the same time can be an interesting future work.
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Abstract
The gathering problem requires multiple mobile agents in a network to meet at a single location.
This paper investigates the gathering problem in carrier graphs, a subclass of recurrence of edge class
of time-varying graphs. By focusing on three subclasses of single carrier graphs – circular, simple,
and arbitrary – we clarify the conditions under which the problem can be solved, considering prior
knowledge endowed to agents and obtainable online information, such as the count and identifiers
of agents or sites. We propose algorithms for solvable cases and analyze the complexities and we
give proofs for the impossibility for unsolvable cases. We also consider general carrier graphs with
multiple carriers and propose an algorithm for arbitrary carrier graphs. To the best of our knowledge,
this is the first work that investigates the gathering problem in carrier graphs.
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1 Introduction

Imagine a group of friends attending a music festival in a large park. They have agreed to
meet somewhere to enjoy the festival together. However, they become separated in the crowd
and have no means of wireless communication. They decide to use the festival shuttle bus,
a public transportation carrier that travels around the park on a fixed schedule, to meet
at an undetermined location. The challenge of determining when to get on and off the bus
and how to ensure that everyone is at the same place is formalized as a gathering problem,
particularly, gathering problem in a carrier graph.

The gathering problem requires multiple mobile agents in a network to meet at a single
location. The gathering facilitates information sharing among agents working on collaborative
tasks. Distributed algorithms for this problem including the rendezvous problem (gathering
for two agents) have been well studied, especially for static graphs [1, 4, 10, 17].

Recently, distributed algorithms for highly dynamic graphs have been intensively studied.
These are dynamic graphs whose dynamics are not restricted locally in time or space, that is,
graphs are continuously changing over time. Casteigts et al. integrated several concepts of
dynamic graphs investigated separately as time-varying graphs and sorted them into 15 classes
[3]. One meaning class is connectivity over time COT (or temporally connected [8]) that is a
class of graphs where any pair of two nodes are connected over time in both directions (an
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agent can reach from one side to another side when it adequately waits and moves in some
intermediate nodes). Not surprisingly, due to its weak connectivity assumption, most results
for COT are negative and gathering algorithms achieve only weak properties [2, 16].

As subclasses of COT , more constrained (or more easily handled) classes are defined.
Classes Constant connectivity CC and T -interval connectivity INT T are graphs that guarantee
connectivity for any moment. A graph in INT T keeps the same spanning tree for any period
of T consecutive time steps, and CC is the same as 1-interval connectivity INT 1. These
classes have inclusion relation COT ⊃ CC = INT 1 ⊃ INT 2 ⊃ · · · . For 1-interval connected
graphs, especially 1-interval connected rings, gathering, and related problems have been well
studied [14, 9, 15, 18].

Another interesting subclasses of COT are recurrence of edges RE , time-bounded recurrence
of edges BRE and periodicity of edges PE . These are graphs where any edge recurrently
appears if it appears at least once. The recurrence of edges is bounded in time in BRE and
it is periodic in PE . The inclusion relation among these classes is COT ⊃ RE ⊃ BRE ⊃ PE .
The gathering problem has not been well studied in these classes. There is one work on
gathering problem considering COT , CC, RE , BRE and static graphs [2].

For a class of carrier graphs, that is a subclass of PE , the exploration problem has been
studied [6, 11]. The carrier graph (C-graph) models a system where one or more carriers
periodically visit sites in the system by following their routes. Agents can move sites with a
carrier when some carrier comes to their current site. Practical examples of this model include
public transportation systems like buses [20], planes [12] and satellites [19]. Furthermore,
this model also finds relevance in the context of ad-hoc data-routing schemes [13, 21]. The
exploration requires an agent to visit all the nodes in a network. This is closely related to
the gathering since agents need to explore a network to achieve gathering.

This paper considers the gathering problem in carrier graphs. This can be seen as
a problem where people try to meet at some station (unknown in advance) in a public
transportation system. We consider several assumptions on prior knowledge of agents such
as the counts of agents or sites, and, on acquirable information at sites such as identifiers or
the number of agents at the site or the site identifier, and for each assumption, clarify the
solvability of the problem and propose algorithms for solvable cases.

1.1 Related Works
The gathering problems targeting time-varying graphs are well studied for a family of
constantly connected graphs, especially 1-interval connected graphs [2, 14, 15, 18]. Di Luna
et al. first investigated the gathering problem in 1-interval connected rings [14]. They first
showed gathering at a single node is impossible in 1-interval connected rings and considered
the weak gathering that allows gathering at the same node, or the two end nodes of the same
edge. The feasible initial configurations (initial configurations from which the problem is
solvable) were clarified and gathering algorithms were proposed under several assumptions
on chirality and cross-detection. Michail et al. expanded targeting graphs beyond rings and
examined the solvability of the weak gathering problem for the class of 1-interval connected
graphs and initial configurations [15]. Shibata et al. considered the partial gathering problem
where each agent is required to gather with a group of at least g agents for a given g for
1-interval connected graphs [18]. They clarified the solvability and proposed algorithms for
solvable cases under several assumptions on g.

Ooshita and Datta considered weak gathering on rings in COT [16]. They proved that
in COT , weak gathering is impossible when agents cannot leave information at nodes or
when all agents should terminate. They also proposed a weak gathering algorithm without
termination when agents can leave information at nodes.
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Bournat et al. had a unique work on the gathering in time-varying graphs [2]. They
considered not only the constant connectivity class CC but also the family of recurrence of
edges classes RE (recurrence of edges) and BRE (time-bounded recurrence of edges). They
clarified the solvability for four variants of the gathering problem, gathering (all agents gather
in bounded time), eventual gathering (all agents gather in finite time), weak gathering (all
agents but at most one gather in bounded time, a different definition from [14]) and eventual
weak gathering (all agents but at most one gather in finite time), and proposed a single
algorithm that solves the strongest feasible variant for COT , CC, RE , BRE and static graphs.
This is the only work that considers the gathering problem for the family of recurrence of
edge classes, and there is no work on the gathering problem targeting carrier graphs.

The carrier graph model was introduced as a subclass of time-varying graphs by Flocchini
et al. [6]. This work considers anonymous systems (sites possess no IDs) and non-anonymous
systems (sites possess unique IDs), and for both systems established the necessary and
sufficient conditions for exploration. To showcase the time complexity differences across
various settings, they introduced three carrier graph classes – circular, simple, and arbitrary.
The agents in this research are constrained to move exclusively with the carrier and lack the
capability to wait on sites, analogous to the context of low-earth orbiting satellite systems.

In contrast, many real-world public transportation systems allow agents to stay at a
station, enabling them to await a potentially distinct carrier. Ilcinkas and Wade extended this
perspective by allowing agents to leave the carrier and wait on sites [11]. They demonstrated
that this added capability enables agents to reduce the number of moves in the worst case.
Additionally, this ability allows the agent agents not only to achieve exploration but also to
map the whole carrier graph.

Flocchini et al. studied the mapping of carrier graphs with “black holes” which are sites
that destroy agents [5, 7]. Their investigations delved into collectively mapping the graph by
multiple agents with the ability to leave messages at sites. The goal was to collaboratively
construct a map of the carrier graph while minimizing agent loss.

1.2 Our Contributions
This paper considers the gathering problem for carrier graphs. We examine the solvability
and propose algorithms (if solvable) for three classes of circular, simple, and arbitrary carrier
graphs with a single carrier. The solvability and the time complexity of the gathering problem
under several conditions are summarized in Table 1, where p, P , k, and n denote the period,
an upper bound of the period, the number of agents, and the number of sites, respectively.
Note that some of the results, e.g. for circular or simple graphs with knowledge of P , are
automatically derived from the results for the superclass, e.g. for arbitrary graphs with
knowledge of P . We also proof the impossibility for unsolvable cases.

Furthermore, we prove the impossibility of gathering in C-graphs with multiple carriers.
We also propose a gathering algorithm that terminates in at most 2M + (2p− 2)(m− 1) + 2p

rounds using existing exploration algorithms, where m and M denote the number of carriers
and the termination time of the exploration algorithm, respectively.

2 Preliminaries

2.1 Carrier graphs
We consider a system composed of a set S of n sites and a set C of m carriers. The sites
have unique identifiers (IDs) or no ID depending on assumptions, and carriers move among
the sites. Each carrier c has a unique identifier id(c) and an ordered sequence of sites

SAND 2024



21:4 Gathering in Carrier Graphs: Meeting via Public Transportation System

Table 1 Time complexity of gathering algorithms on single carrier graphs.

Assumptions Graph Class
prior

knowledge
observation

ability Circular Simple Arbitrary

P - p + P ∗ p + P ∗ p + P ∗

k - p∗ p∗ p∗

n - 2p∗ p + n(n− 1)∗ Impossible
n agent ID 2p∗ p + n(n− 1)∗ Impossible
n site ID 2p∗ 2p 2p

- agent ID 3p 4p− 1 Impossible
- site ID 2p∗ 2p + 1∗ Impossible
- agent ID & site ID 2p∗ 2p + 1∗ Impossible

∗) algorithms with simultaneous termination

Table 2 Possibilities of gathering algorithms on general carrier graphs.

Assumptions Possibility

prior knowledge observation ability
P - Possible
k site ID Impossible
n - Impossible
n site ID Possible

π(c) = ⟨s0, s1, . . . , sp(c)−1⟩, si ∈ S, called a route, where the positive integer p(c) is called a
period of the route. The carrier c starts at site s0 at time 0 and then moves to the next site
along the route at each time unit in a cyclic manner (moving from sp(c)−1 to s0). We use
sp(c) as sp(c) = s0 for convenience. Letting π(c)[j] denote a site where c is located at time j,
π(c)[j] = si holds where i ≡p(c) j. A set of all the sites appear in π(c) is called a domain
of c, denoted as S(c) =

⋃
0≤i≤p(c)−1{si} where

⋃
c∈C S(c) = S holds. We have |S(c)| ≤ p(c)

since the same site can be visited several times along the route.
Each route π(c) defines an arc-labelled multi-graph G⃗(c) = (S(c), E⃗(c)), where E⃗(c) =

{(si, si+1, i) : 0 ≤ i < p(c)}. The set of all routes of carriers is denoted by R = {π(c) : c ∈ C},
and a period of R is defined as p(R) = max {p(c) : c ∈ C}. When no ambiguity arises, we will
simply denote p(R) as p. The arc-labelled multi-graph G⃗(C) = (S, E⃗), where E⃗ =

⋃
c∈C E⃗(c),

is called carrier graph, or shortly, C-graph. Especially, a carrier graph with only one carrier
is called a single carrier graph, or shortly, SC-graph.

For any C-graph G⃗(C), we define a static and undirected meeting graph H(C) that has
C as a set of nodes. In the meeting graph H(C), there is an edge between two nodes c and
c′ if and only if there exists a site s such that both s ∈ S(c) and s ∈ S(c′) hold. A C-graph
G⃗(C) is said to be connected if and only if H(C) is connected. In this paper, we will always
consider connected C-graphs.

We classify routes by their property into circular, simple, and arbitrary as follows.

▶ Definition 1. A route π(c) = ⟨s0, s1, . . . , sp(c)−1⟩ is simple if G⃗(c) contains no self-loop
or multiple arcs, that is si ̸= si+1, for 0 ≤ i < p(c), and (x, y, i), (x, y, j) ∈ E⃗(c) only if i = j.

▶ Definition 2. A simple route π(c) = ⟨s0, s1, . . . , sp(c)−1⟩ is circular if it contains no
repeated sites, that is |S(c)| = p(c).
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A carrier graph G⃗(C) = (S, E⃗) is said to be circular and simple if every route π(c) ∈ R

is circular and simple, respectively. Let CC , CS , and CA denote classes of circular, simple,
and arbitrary C-graphs, respectively. Obviously, we have CC ⊂ CS ⊂ CA.

We have the following lemma as |S(c)| ≤ p.

▶ Lemma 3. Every site is visited by some carrier at least once for any time interval [t, t′]
(t′ − t ≥ p− 1).

2.2 Mobile Agents

There are k mobile computational entities a0, a1, . . . , ak−1 ∈ A, called agents, in the system,
with unique identifiers as id(ai) ∈ N, 0 ≤ i ≤ k − 1. The prior knowledge of the system for
agents depends on the assumption considered.

Agents operate in a LOOK-COMPUTE-MOVE manner in each synchronous round j,
which is the interval between time j − 1 and time j where j ∈ N+. At the beginning of each
round, an agent gets information on the current site (LOOK operation). The number of
agents at the same site can be observed by default, while the ability to observe agents’ IDs
and the site’s ID is endowed by certain assumptions. The agent then determines whether it
will move or stay at the current site (COMPUTE operation). Then the agent performs the
move depending on the decision (MOVE operation). Agents’ memory is persistent across
rounds (non-oblivious). We assume that agents cannot observe other agents’ memory.

An agent can stay at the current site or move with one of the carriers. An agent ai can
move with or switch to a carrier c only when it is placed at the same site as c at the same
time. Agent ai at site s at time t will be at site s′ at time t + 1 if it moves with or switches
to carrier c, where (s, s′, i) ∈ E⃗ and t ≡p(c) i hold. Otherwise, agent ai stays at site s.

2.3 The Gathering Problem

The goal of the gathering problem is to gather all the agents within finite time, that is to let
every agent a ∈ A move to the same site s ∈ S and terminate, within finite time, regardless
of the starting position. Moreover, the gathering problem with simultaneous termination
requires all the agents to terminate an algorithm simultaneously at the same site.

We assume that an agent starts its execution either spontaneously upon encountering
a carrier or upon encountering another moving agent. To evaluate the time complexity
of an algorithm, we measure the number of rounds from time 0 (representing the initial
configuration) to the point at which all agents have terminated their operations. We designate
the initiation of execution by the first agent as round 1, and subsequently, time 1 shows the
configuration after the execution of round 1.

3 Gathering with One Carrier

This section explores the gathering problem on SC-graphs. The process of congregating all
agents in an SC-graph is straightforward: agents are instructed to move with the carrier
whenever they encounter it. Consequently, all agents are assured to be located at the same
site at any round t ≥ p. However, the challenge is how each agent decides when to terminate
its execution. We will showcase the impossibility of gathering under certain assumptions.
Next, we will show several feasible assumptions under which we propose algorithms to solve
the gathering problem. We will prove their correctness and assess their time complexity.
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3.1 Impossibilities
At first, we show the impossibility of gathering for arbitrary SC-graphs.

▶ Theorem 4. There does not exist any algorithm that solves the gathering problem in
arbitrary SC-graphs when the agents have no prior knowledge even when they can observe
IDs of agents and the current site ID.

Proof. For contradiction, suppose that there exists an algorithm A that solves the gathering
problem in the settings of the statement of the theorem.

Consider a SC-graph G with n sites s0, . . . , sn−1. Assume that a single carrier c has a
route π(c) = ⟨s0, . . . , sn−1⟩ and n agents a0, . . . , an−1 exist at sites s0, . . . , sn−1 initially. By
algorithm A, there exists T such that all agents gather and terminate at some site s ∈ S(c)
in T rounds.

We consider another SC-graph G′ with n′ +1 sites s′
0, . . . , s′

n′ . Assume that a single carrier
c′ has a route π(c′) = ⟨s′

0, . . . , s′
0, s′

1, . . . , s′
n′⟩ where c′ visits s′

0 repeatedly T times and then
visits s′

1, . . . , s′
n′ . Also assume that n′ agents a′

0, . . . , a′
n′−1 exist at sites s′

1, . . . , s′
n′ initially.

Note that the agents do not observe a carrier during the first T rounds. By algorithm A,
there exists T ′ such that all agents gather and terminate at some site s′ ∈ π(c′) in T ′ rounds.

Lastly, we construct another SC-graph G′′ from the above two graphs G and G′. The
sites of G′′ include s0, . . . , sn−1, s′

0, . . . , s′
n′ . Assume that n agents a0, . . . , an−1 are initially

placed at the same positions as G and n′ agents a′
0, . . . , a′

n′−1 are initially placed at the same
positions as G′. In this graph, we consider a single carrier c′′ such that c′′ moves similarly to
G during the first T rounds and moves similarly to G′ after that. That is, π(c′′)[j] = π(c)[j]
for 0 ≤ t < T and π(c′′)[j] = π(c′)[j] for T ≤ t < T ′. Let us consider the behavior of
agents a0, . . . , an−1 in graph G′′. During the first T rounds, carrier c′′ moves similarly to
G and consequently agents a0, . . . , an−1 behave similarly to G. Hence, agents a0, . . . , an−1
terminate at site s in T rounds. Next consider the behavior of agents a′

0, . . . , a′
n′−1. During

the first T rounds, none of them observes a carrier, which is the same as G′. During time T

to T ′, carrier c′′ moves similarly to G′. Hence, agents a′
0, . . . , a′

n′−1 behave similarly to G′

and terminate at site s′ in T ′ rounds. This implies that agents terminate at different two
nodes s and s′. This is a contradiction. ◀

▶ Theorem 5. There does not exist any algorithm that solves the gathering problem in
arbitrary SC-graphs when the agents only have knowledge of n, even when they can observe
IDs of agents.

Proof. For contradiction, suppose that there exists an algorithm A that solves the gathering
problem in the settings of the statement of the theorem. In the proof, we assume n = 2k + 2.

Consider a SC-graph G0 with n sites s0, . . . , sn−1. Assume that a single carrier c0 has
a route π(c0) = ⟨s0, . . . , sn−1⟩ and k agents a0, . . . , ak−1 exist at sites s0, . . . , sk−1 initially.
By algorithm A, there exists T such that all agents gather and terminate in T rounds. Let
Shalf = {s0, . . . , sk}. The following claim shows that we can change the movement of the
carrier so that agents gather and terminate in T rounds without going out from Shalf .

▷ Claim 6. There exists a SC-graph G1 with n sites s0, . . . , sn−1 such that (1) the single
carrier c1 visits only sites in Shalf during the first T rounds, and (2) when k agents a0, . . . , ak−1
are initially placed at the same positions as G0, they gather and terminate in T rounds.

Proof. First, we introduce some terms. The state of an agent is a tuple of its ID and the
values of all variables. A state of a site is a tuple of states of agents if agents exist, or empty
otherwise. We say a site is occupied if some agents exist on the site. For Gi (i ∈ {0, 1}), we
define ϕt

i(s) as the state of site s at time t in Gi. Let S = {s0, . . . , sn−1}.
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In the following, we inductively prove that, by defining π(c1) carefully, for 0 ≤ t ≤ T , (a)
π(c1)[t] ∈ Shalf holds, (b) every agent exists on a node in Shalf at time t, and (c) there exists
a bijection f t : S → S that maps site s of G0 to site f t(s) of G1 so that ϕt

1(f t(s)) = ϕt
0(s)

holds for any s ∈ S and π(c1)[t] = f t(π(c0)[t]) holds. Clearly, this implies the claim.
For the base case, consider time 0. We define π(c1)[0] = π(c0)[0] = s0 ∈ Shalf . This

implies condition (a) for t = 0. Since all agents in G1 are initially placed at the same positions
as G0, conditions (b) and (c) hold for t = 0 by defining f0(s) = s for any s ∈ S.

To prove inductive cases, for t = ℓ < T , assume that conditions (a) to (c) hold. That is,
ϕℓ

1(f ℓ(s)) = ϕℓ
0(s) holds for any s ∈ S and π(c1)[ℓ] = f ℓ(π(c0)[ℓ]) holds. Let v0 = π(c0)[ℓ],

w0 = π(c0)[ℓ+1], and v1 = π(c1)[ℓ] = f ℓ(v0). We define π(c1)[ℓ+1] as follows: π(c1)[ℓ+1] =
f ℓ(w0) if f ℓ(w0) ∈ Shalf holds, and otherwise π(c1)[ℓ + 1] = w ∈ Shalf such that w is not
occupied in G1 at time ℓ. In the latter case, from condition (b), w0 is not occupied in G0
at time ℓ, and hence we use some non-occupied site w ∈ Shalf instead of f ℓ(w0) /∈ Shalf .
From k < |Shalf |, such w definitely exists. This definition implies conditions (a) and (b) for
r = ℓ + 1.

In the following, we prove condition (c) for t = ℓ + 1. Let w1 = π(c1)[ℓ + 1] and define u0
as a site satisfying w1 = f ℓ(u0). We define bijection f ℓ+1 as follows:

If w1 = f ℓ(w0) holds, we define f ℓ+1(s) = f ℓ(s) for any s ∈ S.
If w1 ̸= f ℓ(w0) holds, we define f ℓ+1 by exchanging sites mapped from w0 and u0,
that is, f ℓ+1(w0) = f ℓ(u0) = w1, f ℓ+1(u0) = f ℓ(w0), and f ℓ+1(s) = f ℓ(s) for any
s ∈ S \ {w0, u0}.

In both cases, w1 = f ℓ+1(w0) and hence π(c1)[ℓ + 1] = f ℓ+1(π(c0)[ℓ + 1]) hold.
In the rest, we prove ϕℓ+1

1 (f ℓ+1(s)) = ϕℓ+1
0 (s) for any s ∈ S. We first consider an arbitrary

site x0 ∈ S \ {w0, u0}. Let x1 = f ℓ+1(x0) = f ℓ(x0). In this case, x0 (resp., x1) is not the
destination of a carrier in G0 (resp., G1) during the round between time ℓ to ℓ + 1. If x0 is
not occupied in G0 at time ℓ, x1 is also not occupied in G1 from ϕℓ

1(x1) = ϕℓ
0(x0). If x0 is

occupied, from ϕℓ
1(x1) = ϕℓ

0(x0) and π(c1)[ℓ] = f ℓ(π(c0)[ℓ]), agents on x1 in G1 and agents
on x0 in G0 observe the same site state and existence of a carrier, agents on x1 in G1 behave
as the same as those on x0 in G0. This implies ϕℓ+1

1 (f ℓ+1(x0)) = ϕℓ+1
1 (x1) = ϕℓ+1

0 (x0).
Next consider the case of x0 = w0 (including the case of u0 = w0). In this case, during

the round between time ℓ to ℓ + 1, carrier c0 moves from v0 to w0 in G0, and carrier c1
moves from v1 = f ℓ(v0) to w1 = f ℓ+1(w0) in G1. We can observe ϕℓ

1(w1) = ϕℓ
0(w0). Indeed

this is trivial if w1 = f ℓ(w0), and otherwise w0 and w1 are not occupied at time ℓ and
hence ϕℓ

1(w1) = ϕℓ
0(w0) holds. Similarly to the previous discussion, agents on v1 (resp.,

w1) in G1 and those on v0 (resp., w0) in G0 behave similarly. Consequently, carrier c1
carries agents (if any) to w1 such that the agents have the same states as G0. Hence,
ϕℓ+1

1 (f ℓ+1(w0)) = ϕℓ+1
1 (w1) = ϕℓ+1

0 (w0) holds.
Lastly, consider the case of x0 = u0 ̸= w0. In this case, u0 in G0 and f ℓ+1(u0) in G1 are

not occupied at time ℓ + 1. This implies ϕℓ+1
1 (f ℓ+1(u0)) = ϕℓ+1

0 (u0). ◁

Next we consider another SC-graph G′
0 with n sites s′

0, . . . , s′
n−1. Assume that a single

carrier c′
0 has a route π(c′

0) = ⟨s′
0, . . . , s′

0, s′
1, s′

2, . . . , s′
n−1⟩ where c′

0 visits s′
0 repeatedly T

times and then visits s′
1, . . . , s′

n−1. Also assume that k agents a′
0, . . . , a′

k−1 exist at sites
s′

1, . . . , s′
k initially. Note that the agents do not observe a carrier during the first T rounds.

By algorithm A, there exists T ′ such that all agents gather and terminate in T ′ rounds. Let
S′

half = {s′
0, . . . , s′

k}. Similarly to Claim 6, we can prove the following claim.

▷ Claim 7. There exists a SC-graph G′
1 with n sites s′

0, . . . , s′
n−1 such that (1) the single

carrier c′
1 visits only sites in S′

half during the first T ′ rounds, and (2) when k agents
a′

0, . . . , a′
k−1 are initially placed at the same positions as G′

0, they do not observe a carrier
during the first T rounds, and gather and terminate in T ′ rounds.
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Algorithm 1 Gather-With-Number-Of-Agents.

1: k ← total number of agents
2: for each round do
3: agents← the number of agents at the same site, carrier ← carrier at the same site
4: if agents = k then
5: Terminate
6: end if
7: if carrier ̸= ∅ then
8: Move with carrier

9: end if
10: end for

Lastly, we construct a SC-graph G2 from the above two graphs G1 and G′
1. The set of

sites of G2 is Shalf ∪ S′
half . Assume that initially k agents a0, . . . , ak−1 are located at sites

s0, . . . , sk−1 like G1 and other k agents a′
0, . . . , a′

k−1 are located at sites s′
1, . . . , s′

k like G′
1.

We consider a single carrier c2 such that c2 moves similarly to G1 during the first T rounds
and moves similarly to G′

1 after that up to round T ′ (and it can move arbitrarily). That
is, π(c2)[j] = π(c1)[j] for 0 ≤ j < T and π(c2)[j] = π(c′

1)[j] for T ≤ j < T ′. Let us consider
the behavior of agents a0, . . . , ak−1 in graph G2. During the first T rounds, carrier c2 moves
similarly to G1 and consequently agents a0, . . . , ak−1 behave similarly to G1. Hence, agents
a0, . . . , ak−1 terminate at a node in Shalf in T rounds. Next consider the behavior of agents
a′

0, . . . , a′
k′−1. During the first T rounds, none of them observes a carrier, which is the same

as G′
1. During time T to T ′, carrier c2 moves similarly to G′

1. Hence, agents a′
0, . . . , a′

k′−1
behave similarly to G′

1 and terminate at a node in S′
half in T ′ rounds. This implies that

agents terminate at different two sites s and s′. This is a contradiction. ◀

3.2 Possibilities
In this subsection, we present algorithms for SC-graphs for several scenarios on the initial
knowledge of agents and/or the information acquired in the LOOK operations.

3.2.1 With Prior Knowledge of agents amount k

We start with a simple case where each agent knows the number k of agents. This allows the
agents to determine when to terminate as they can observe the count of agents at the same
site. Each agent moves with a carrier whenever it encounters the carrier, and terminates
once it can see k agents.

▶ Theorem 8. Algorithm 1 solves the gathering problem with simultaneous termination
within p rounds for arbitrary SC-graphs if agents know the total number k of agents.

Proof. In this algorithm, any agent moves with the carrier whenever the carrier arrives at its
current site. Through this process, all k agents inevitably gather in p rounds and terminate
simultaneously, as a consequence of lines 5, 6, 8, 9, and Lemma 3. ◀

3.2.2 With Prior Knowledge of Period p

We present the algorithm when the agents initially know an upper bound of the period of
a given SC-graph in Algorithm 2. Let P denote an upper bound on the period p of the
single carrier. The idea of the algorithm is simple: The agents maintain a variable steps

initially set to 0, and increment the variable in each round. When the carrier appears in the



H. Zheng, R. Eguchi, F. Ooshita, and M. Inoue 21:9

Algorithm 2 Gather-With-Period.

1: P ← an upper bound on the carrier’s period, steps← 0, pre-agents ← 1
2: for each round do
3: agents← the number of agents at the same site, carrier ← carrier at the same site
4: if steps = P then
5: Terminate
6: else if agents = pre-agents then
7: steps← steps + 1
8: else
9: steps← 0

10: end if
11: pre-agents ← agents

12: if carrier ̸= ∅ then
13: Move with carrier

14: end if
15: end for

current site, the agent moves sites along the carrier. The value of steps is reset to 0 when
the number of agents in the carrier increases, which is detected by comparing the number of
agents at the current round and the number of agents in the previous round. The number
of agents in the previous round is maintained by another variable pre-agents. Finally, the
agents terminate when the value of steps is equal to the value of the upper bound of the
period. The algorithm finishes gathering within p + P rounds.

▶ Lemma 9. All the agents operating Algoritm 2 are located at the same site and have
identical steps values at the end of any round t ≥ p.

Proof. As illustrated in lines 15 and 16, an agent moves with the carrier upon encounter
and remains on the carrier until termination. From this observation, we can see that all
agents are present at the same site after round p, by Lemma 3. Let t0(≤ p) be the round
when the carrier encounters the last agent. Each agent operates steps← 0 at round t0, and
increments it by one in each round after round t0. That is all the agents have identical step

values at the end of each round t ≥ p > t0. ◀

▶ Theorem 10. Algorithm 2 solves the gathering problem for arbitrary SC-graphs within
p + P rounds if agents know an upper bound P of the period p of the carrier.

Proof. In the case of k = 1, the variable steps of the only agent increases every round until
steps = P . Then the agent terminates at the P -th round. In the case of k > 1, all k agents
congregate at the same location on the carrier with identical steps values by the end of any
round t ≤ p from Lemma 9. Hence, at a certain round r ≤ p + P , all k agents terminate
their execution at the same site simultaneously. ◀

Algoritm 2 can solve the problem when the initial knowledge of the agents is n (the
number of sites) in circular SC-graphs. This is because we have n = p by the definition of
the circular route (in Definition 2). Therefore, by substituting n for p, the agents can gather
within 2p rounds.

▶ Corollary 11. The gathering problem can be solved for circular SC-graphs within 2p rounds
if agents know the number n of sites.

In simple SC-graphs, the agent can obtain an upper bound n(n− 1) of the period, since
p ≤ n(n− 1) holds from the definition of the simple route (in Definition 1). Therefore, the
agents can gather within p + n(n− 1) rounds.
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Algorithm 3 Gather-With-Site-ID-and-n.

1: n← total number of sites, sites← ∅, explore-mode ← true

2: for each round do
3: current← current site ID, sites← {current} ∪ sites, carrier ← carrier at the same site
4: if |sites| = n then
5: explore-mode ← false

6: end if
7: if carrier ̸= ∅ then
8: if explore-mode = false ∧ current = min (sites) then
9: Terminate

10: else
11: Move with carrier

12: end if
13: end if
14: end for

▶ Corollary 12. The gathering problem can be solved for simple SC-graphs within p+n(n−1)
rounds if agents know the number n of sites.

The same strategy also can be applied to the situation where agents can observe the ID
of the current site in each LOOK operation in circular and simple SC-graphs. In this case,
agents find the period p while executing Algorithm 2. Each agent checks site IDs and the
number of moves when it moves with the carrier. When it encounters the same site (arc in
the case of simple SC-graphs) twice, it detects the end of the first cycle and gets the period
p. Let t0(≤ p) be the round when the carrier encounters the last agent. The value of steps

reaches to p at round t0 + p ≤ 2p, while the last agent gets the value p at round t0 + p in
circular SC-graphs and at t0 + p + 1 in simple SC-graphs. The strategy can work well if
agents decide termination when steps value becomes p + 1 in circular and simple SC-graphs.
The modified algorithm solves the gathering problem within 2p and 2p + 1 rounds in circular
and simple SC-graphs.

▶ Corollary 13. The gathering problem can be solved for circular and simple SC-graphs
within 2p and 2p + 1 rounds if agents can observe the current site’s ID.

Algorithms derived from Algorithm 2 also solve the problem with simultaneous termination
since Lemma 9 guarantees that the steps value is identical for all the agents before terminating.

3.2.3 With Prior Knowledge of n and Ability to Observe Site ID
Another straightforward approach directs the agents to gather at the site with the smallest
ID. Agents determine the minimum site ID while exploring the entire graph with knowledge
of the total number n of sites and the ability to observe the current site’s ID.

▶ Theorem 14. Algorithm 3 solves the gathering problem for arbitrary SC-graphs within 2p

rounds if agents can obtain the current site’s ID and know the total number n of sites.

Proof. In this algorithm, the operation is organized into two distinct phases denoted by the
parameter explore-mode. Initially, each agent operates in explore-mode, where the agent
explores the entire graph with the carrier. The agent exits explore-mode by round p when all
sites in the graph have been visited, as indicated by the condition |sites| = n. Subsequently,
the agent moves with the carrier up to p rounds toward the site with the smallest ID, where
it finally terminates. Since all the agents terminate the same site with the smallest ID, the
gathering is achieved within 2p rounds. ◀
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Algorithm 4 Gather-With-Agent-ID-Circular.

1: leader ← ⊥, landmark ← ⊥, leader-acknowledged← false

2: for each round do
3: agents← {IDs at the same site}, carrier ← carrier at the same site
4: if carrier ̸= ∅ then
5: if leader = ⊥ ∨min(agents) < leader then
6: leader ← min(agents), leader-acknowledged← false

7: end if
8: if leader = id then
9: if landmark ̸= ⊥ ∧ landmark ∈ agents then ▷ found the landmark

10: Terminate
11: else if landmark = ⊥ ∧ |agent| ≥ 2 then
12: landmark ← min (agents \ {id})
13: end if
14: Move with carrier

15: else if leader-acknowledged = false ∧ leader ∈ agents then
16: leader-acknowledged← true

17: Stay at the site ▷ start to wait for a leaderless carrier
18: else if leader /∈ agents then
19: Move with carrier ▷ head to the leader
20: else
21: Terminate ▷ found the leader
22: end if
23: end if
24: end for

Algoritm 3 does not attain gathering with simultaneous termination due to the lack of
information about other agents’ exploration progress.

3.2.4 With Ability to Observe Other Agents’ ID
An alternative approach involves designating a special agent as a leader, who terminates first.
Then, the remaining agents move to and terminate at the leader’s position. To determine
the leader agent, agents observe each other’s unique ID. The leader’s termination serves as a
signal for the other agents to gather at the designated position.

The algorithm for gathering in circular SC-graphs relies on the election of two special
agents, namely the leader and the landmark. All agents will learn the leader’s ID when the
election is over since the leader will meet every other agent during the leader election process.
The leader then moves to the location of the landmark and terminates with the landmark.
Subsequently, other agents observing a carrier without a leader will recognize that it is time
to head toward the leader. They will terminate upon encountering the leader again. The
following theorem holds for Algorithm 4. The proof is in the Appendix.

▶ Theorem 15. Algorithm 4 solves the gathering problem within 3p rounds for circular
SC-graphs when k > 1, if agents can obtain the IDs of other agents at the same site.

Proof. We show that Algorithm 4 makes all agents gather within 3p rounds. The proof
proceeds with showing some claims.

▷ Claim 16. There are no terminated agents at round t < p.
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Proof. If an agent terminates as a leader (line 10), it first sets some ID to landmark variable
and meets again its landmark to terminate. If an agent terminates as non-leader (line 21),
it first meets with the leader and meets the leader again to terminate. Both cases require
agents to encounter the carrier at least twice. To encounter the carrier twice, any agent
needs p + 1 rounds. ◁

▷ Claim 17. By round p, the agents riding the carrier include the agent with the smallest
agent ID, and it moves with the carrier until termination.

Proof. In the first cycle of the carrier’s move, every agent first encounters the carrier and
moves with the carrier as a leader if it has the smallest ID among agents at the site (line 14).
This implies the agent amin with the smallest ID becomes a leader (sets its own id to leader

variable) when it first encounters the carrier at round t0 (≤ p) and solely moves with the
carrier until termination at round p + 1 or later by Claim 16. ◁

We then show that amin again meets its landmark by round 2p.

▷ Claim 18. The agent amin arrives at the landmark’s site by round t = 2p.

Proof. When amin first meets other agents, it sets one agent ID aland to its landmark. We
first show that amin first meets aland by round p. When amin first encounters the carrier, if
there are other agents at the same site, amin selects aland among these agents, that is, amin

first meets aland by p. Otherwise, since one agent moves with the carrier after the carrier
encounters some agents, this means that amin is the first agent that the carrier encounters
and will meet aland at its initial location by round p. Let t (≤ p) be the round when amin

meets aland first time. Since aland does not become a leader, it remains to stay at the site.
Since amin moves with the carrier until termination by Claim 17, it again meets aland at
time t + p (≤ 2p). ◁

After reaching the landmark’s location, the leader terminates its execution. Subsequently,
any agents situated at distinct sites observe the leaderless carrier and move along it. Following
an additional p rounds from the leader’s termination, the carrier returns to the leader’s site,
bringing all agents to this site.

In summary, the algorithm guarantees the gathering of all agents to a solitary site. This
gathering is accomplished within 3p rounds for circular SC-graphs. ◀

The leader election process on circular SC-graphs does not work for simple SC-graphs
as it is, since a site may appear multiple times along a simple route. Fortunately, a simple
route includes no repeated arcs. We can use an arc as a landmark. Algorithm 5 for simple
SC-graphs has a similar approach to that for circular SC-graphs. It elects the smallest
agent as the leader, and the leader sets landmark by placing two agents pre-landmark and
post-landmark at both endpoints of the landmark when it first meets two other agents. The
leader’s termination is triggered upon observing pre-landmark and post-landmark in this
order in consecutive two rounds.

In Algorithm 5, two variables pre-landmark and post-landmark are used to indicate a
landmark. An agent sets a landmark when first meets two other agents. To do so, agents
move with the carrier while there are two or fewer agents together before setting a landmark
(while leader-acknowledged is false). The leader terminates if it again meets pre-landmark

and post-landmark in this order in consecutive rounds. Other agents behave similarly to
Algorithm 4. They stay at the site to wait for a leaderless carrier, but if it is selected as a
post-landmark (leader-acknowledged is false and it has the second smallest ID among agents
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Algorithm 5 Gather-With-Agent-ID-Simple.

1: leader ←⊥, pre-landmark ← ⊥, post-landmark ← ⊥
2: leader-acknowledged← false, visit-pre-landmark ← false, post-landmark-move← false

3: for each round do
4: agents← {IDs at the same site}, carrier ← carrier at the same site
5: if carrier ̸= ∅ then
6: if leader = ⊥ ∨min (agents) < leader then
7: leader ← min (agents), leader-acknowledged← false

8: end if
9: if leader = id then

10: if pre-landmark ̸= ⊥ ∧ pre-landmark ∈ agents then
11: visit-pre-landmark ← true

12: else if visit-pre-landmark then
13: if post-landmark ∈ agents then ▷ found the landmark
14: Terminate
15: else
16: visit-pre-landmark ← false

17: end if
18: else if pre-landmark = ⊥ ∧ |agents| ≥ 3 then
19: pre-landmark ← 3rd-min(agents), post-landmark ← 2nd-min(agents)
20: end if
21: Move with carrier

22: else if leader-acknowledged = false ∧ |agents| ≥ 3 ∧ leader ∈ agents then
23: leader-acknowledged← true

24: if 2nd-min(agents) = id then
25: post-landmark-move← true

26: Move with carrier

27: else
28: Stay at the site ▷ start to wait for a leaderless carrier
29: end if
30: else if post-landmark-move = true then
31: post-landmark-move← false

32: Stay at the site ▷ start to wait for a leaderless carrier
33: else if leader-acknowledged = false ∨ leader ̸∈ carrier then
34: Move with carrier ▷ elect or head to the leader
35: else
36: Terminate ▷ found the leader
37: end if
38: end if
39: end for

in the current site) it has one more move. After the leader terminates, the other agents see a
leaderless carrier and head to the leader with the carrier. The following theorem holds for
Algorithm 5.

▶ Theorem 19. Algorithm 5 solves the gathering problem within 4p− 1 rounds for simple
SC-graphs when k > 2 if agents can obtain the IDs of other agents at the same site.

Proof. We will see a difference from Algorithm 4. Let amin denote the agent with the
smallest ID.

▷ Claim 20. The agent amin arrives at the landmark’s arc by round 3p− 1.

Proof. When amin first meets two other agents, it sets two agent IDs apre_land and apost_land

to its pre-landmark and post-landmark, respectively. We first show that amin first meets
apre_land and apost_land by round 2p−2. The agent amin meets at least one agent by round p
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as in Algorithm 4. However, if amin meets only one agent a′ at that time, it has to move more
with the carrier to meet more agents (a′ accompanies amin since its leader-acknowledged is
false). The worst case is that amin is initially located at π(c)[p−1], and one agent is located
at π(c)[0] and the other agents are located at π(c)[p− 3]. In this case, The second-smallest
agent a′ once set its landmark at (π(c)[p − 3], π(c)[p − 2]) at rounds p − 2 and p − 3 and
all the agents except amin and a′ stay one of the endpoints. Thus, amin takes another
p − 2 moves to meet the pre-landmark of a′ at π(c)[p − 3] and sets amin’s landmark at
(π(c)[p− 3], π(c)[p− 2]) at round 2p− 2 and 2p− 3. Then amin takes another p moves to
again meet its pre-landmark and post-landmark in this order. That is, amin again arrives
at the landmark’s arc at time 3p− 1. ◁

After reaching the landmark’s location, the leader terminates its execution. Subsequently,
any agents situated at distinct sites observe the leaderless carrier and move along it. Following
an additional p rounds from the leader’s termination, the carrier returns to the leader’s site,
bringing all agents to this site.

In summary, the algorithm guarantees the gathering of all agents to a solitary site. This
gathering is accomplished within 4p− 1 rounds for circular SC-graphs. ◀

Given the inherently asynchronous nature of the termination process, achieving the goal
of gather with simultaneous termination remains unattainable.

4 Gathering on Multi-Carrier C-Graphs

4.1 Impossibility

According to Flocchini et al. [6], exploration on anonymous C-graphs (sites’ IDs not
observable) is impossible without knowledge of P , even if n and k are given, and is impossible
without knowledge of either P or n when the site ID is visible, even if k is given. Thus,
gathering on anonymous C-graphs is impossible without prior knowledge of P as shown by
Theorem 21.

▶ Theorem 21. There is no algorithm that solves the problem of gathering on C-graphs that
agents terminate before every site is visited.

Proof. Assume algorithm A solves the gathering problem without making all agents visit
every site. Let G1 be a C-graph that a site s1 ∈ S(G1) will not be visited by an agent A1
operating A starting from a certain initial configuration. Similarly, let G2 be a copy of G1
so that an agent A2 will not visit a site s2 ∈ S(G2) in an execution starting from the same
initial configuration as before. Then, let G3 be a C-graph that is a combination of G1 and G2.
That is, S(G3) has all the carriers and sites of G1 and G2, and all the carriers and agents are
located at the same sites as before at the round 0. Let a carrier c move periodically between
s1 and s2, so that the C-graph G3 becomes connected. Because A1 will terminate without
visiting s1 and so for A2 and s2, the two agents will never meet.This is a contradiction. ◀

In non-anonymous C-graphs, solving the gathering problem is trivial because agents must
explore, as indicated by Theorem 21. This exploration leads agents to move to the site with
the smallest ID.
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Algorithm 6 Gather-With-Multiple-Carriers.

1: For each agent i, explores and maps the graph G⃗(Ci) by AE

2: p← p(Ci), m← |Ci|, n← |S(Ci)|
3: destination← min(Ci)
4: Compute the foremost path to destination then move to it
5: Wait until round M + (2p− 2)(m− 1)
6: Wait until an agent comes for at most M rounds
7: Operate Algorithm 2 with period p

4.2 Gathering on Anonymous C-graphs
When gathering on an anonymous C-graph with multiple carriers, we adopt a two-tiered
approach. Initially, agents gather in the meeting graph H(C), which means arriving at the
same carrier’s route. Then, agents use algorithms designed for SC-graphs to gather on that
carrier. If agents have learned about the identities (IDs), routes, and timetables of all carriers,
as well as the topology of the C-graph, agents can directly gather at the carrier with the
smallest ID with at most (2p− 2)(m− 1) rounds as Lemma 22 shows. Another 2p round
is then required for operating Algorithm 2 to gather all the agents on the same site since
agents know the period of the carrier of the smallest ID.

▶ Lemma 22. The foremost path (the path that an agent arrives at its destination at the
earliest time) from any site to any carrier costs at most (2p− 2)(m− 1) rounds.

Proof. The basic scenario involves two connected carriers c1 and c2. Since there are at most
p sites in each carrier, the longest path from c1 to c2 is p− 1. In the worst case, the agent
at a shared site needs to wait for the carrier’s coming for p − 1 rounds. Therefore, the
accumulative time for the foremost path is at most 2p− 2.

Since the longest foremost path involves at most m carriers with m − 1 times carrier
switching, the foremost path costs at most (2p− 2)(m− 1) rounds. ◀

For an unknown C-graph, agents can learn the required knowledge by assigning names to
the visited sites so that each agent will make a private map of the C-graph after visiting
every site. Suppose we have an algorithm AE that maps the C-graph in M rounds, the
gathering problem can be solved in at most M + (2p− 2)(m− 1) + 2p rounds.

▶ Theorem 23. The Algorithm 6 solves the gathering problem for C-graphs in 2M + (2p−
2)(m− 1) + 2p rounds with a mapping algorithm AE, which maps the C-graph in M rounds.

Proof. The topology and the dynamics are known to the agent by round M as the exploration
ends. Therefore, every agent will be at a site belonging to the route of the carrier with the
smallest ID by the M + (2p − 2)(m − 1)-th round. That allows Algorithm 2 to solve the
gathering problem in another 2p rounds.

In a scenario where each agent starts up at the beginning of round 0, agents agree on
the global time so that every agent begins Algorithm 2 at round 2M + (2p− 2)(m− 1) that
ensures the gathering at round 2M + (2p− 2)(m− 1) + 2p.

Otherwise, when each agent starts up separately, there is a delay d between the first and
last started agents. As we suppose an agent will start its gathering process after encountering
another moving agent, the delay d can be at most M rounds. The Line 6 eliminates the
effects of the delay and leads to a gathering time of 2M + (2p− 2)(m− 1) + 2p rounds. ◀

Ilcinkas and Wade [11] propose an exploration algorithm Explore-With-Wait that
maps a C-graph. Given the a priori knowledge of an upper bound B = O(p) on the maximum
period p, the worst-case time complexity is Θ(np). Subsequently, the time complexity of a
Explore-With-Wait version of Algorithm 6 is Θ(np) as m = O(n).
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5 Conclusion

In this study, we started an exploration of a variant of the gathering problem: gathering in
carrier graphs, a particular class of time-varying graphs.

Throughout our investigation, we analyzed several factors that affect the feasibility and
the time complexity of gathering in single carrier graphs. Then, we extended our algorithms
to solve the gathering problem in general carrier graphs.

Open questions remaining include exploring the impact of communication abilities on
the gathering problem in C-graphs, identifying additional factors that may influence the
feasibility of gathering, and extending our findings to encompass a wider array of dynamic
graph classes, such as bounded-recurrent-edge graphs.
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Abstract
Robots are becoming an increasingly common part of scientific work within laboratory environments.
In this paper, we investigate the problem of designing schedules for completing a set of tasks at
fixed locations with multiple robots in a laboratory. We represent the laboratory as a graph with
tasks placed on fixed vertices and robots represented as agents, with the constraint that no two
robots may occupy the same vertex, or traverse the same edge, at the same time. Each schedule
is partitioned into a set of timesteps, corresponding to a walk through the graph (allowing for a
robot to wait at a vertex to complete a task), with each timestep taking time equal to the time for a
robot to move from one vertex to another and each task taking some given number of timesteps
during the completion of which a robot must stay at the vertex containing the task. The goal is to
determine a set of schedules, with one schedule for each robot, minimising the number of timesteps
taken by the schedule taking the greatest number of timesteps within the set of schedules.

We show that the problem of finding a task-fulfilling schedule in at most L timesteps is NP-
complete for many simple classes of graphs. Explicitly, we provide this result for complete graphs,
bipartite graphs, star graphs, and planar graphs. Finally, we provide positive results for line graphs,
showing that we can find an optimal set of schedules for k robots completing m tasks of equal
length of a path of length n in O(kmn) time, and a k-approximation when the length of the tasks is
unbounded.
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1 Introduction

In this paper, we are interested in the scheduling of robots within chemistry labs, motivated
by a significant and expanding body of work concerning robotic chemists. Initial work on
these systems focused on building robots performing reactions within fixed environments
[4, 3], however recently Burger et al. [2] have presented a robot capable of moving within
a laboratory and completing tasks throughout the space. The works of Burger et al. [2]
and Liu et al. [5] provide the main motivation for this work, namely the problem of moving
robots within a laboratory environment (as presented by Burger et al. [2]) while avoiding
collisions (as investigated in the manufacturing context by Liu et al. [5]).
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2 Preliminaries

In this problem, we consider a set of agents, which we call robots, moving on a given
graph G = (V, E) and completing a set of tasks T = {t1, t2, . . . , tm}. As mentioned in our
introduction, this problem originates in the setting of lab spaces, particularly in the chemistry
setting. As such, our definitions of robots and tasks are designed to mimic those found in
real-world problems. We associate each task with a vertex on which it is located and the
duration required to complete the task. We do not allow tasks to be moved by a robot, a task
can only be completed by a single robot remaining at the station for the entire task duration,
and any robot may complete any number of tasks, with no restrictions on which task a robot
can complete. This requirement reflects the motivation from chemistry, where tasks reflect
reactions that must be done within an exact time frame and at a fixed workstation.

Formally, we define a task ti as a tuple (di, vi) where di is the duration of the task, and
vi is the vertex at which the task is located. We use |ti| to denote the duration of the task
ti. In general, the reader may assume that for a graph G = (V, E) containing the vertex set
V = {v1, v2, . . . , vn}, the notation it is used to denote the index of the vertex at which task
t = (d, vit

) is located. This will be specified throughout the paper where relevant.
To complete tasks, we assign each robot a schedule, composed of an alternating sequence

of walks and tasks. We note that each schedule can begin and end with either a walk and a
walk, a walk and a task, a task and a walk, or a task and a task. We treat each schedule
as a set of commands to the robot, directing it within a given time frame. In this way,
we partition the schedule into a set of time steps, with each time step allowing a robot to
move along one edge or complete some fraction of a task, with a task t requiring exactly |t|
time steps to complete. We call the time span of a schedule the total number of timesteps
required to complete it. We denote the time span of the schedule C containing the walks
w1, w2, . . . , wℓ and tasks t1, t2, . . . , tm by |C| =

(∑
i∈[1,ℓ] |wi|

)
+

(∑
j∈[1,m] |tj |

)
. Given a

walk w directly following the task t in the schedule C, we require that the first edge traversed
in w begins at the vertex vit on which t is located. Similarly, we require that the task t′

following the walk w′ in the schedule C is located on the last vertex in the last edge in w′.
The walk representation W(C) of a schedule C is an ordered sequence of edges formed

by replacing the task ti = (d, vi) in C with a walk of length |ti| = d consisting only of the
edge (vi, vi), then concatenate the walks together in order. Note that |W(C)| = |C|. For a
given robot R assigned schedule C, in timestep j R is located on the vertex v ∈ V that is
the end vertex of the ith edge in W(C), i.e. the vertex v such that W(C)[i] = (u, v). We
require the first vertex in the walk representation of any schedule C assigned to robot R to
be the starting vertex of R, i.e. some predetermined vertex representing where R starts on
the graph. If the schedule C containing the task t is assigned to robot R, we say that t is
assigned to R.

Given a set of schedules C = (C1, C2, . . . , Ck) for a set of k robots R1, R2, . . . , Rk, and set
of tasks T = (t1, t2, . . . , tm). we say that C is task completing if for every task t ∈ T there
exists exactly one schedule Ci such that t ∈ Ci. We call C collision-free if there is no timestep
where any pair of robots occupy the same vertex or traverse the same edge. Formally, C is
collision-free if, for every Ci, Cj where i ≠ j and time-step s ∈ [1, |Ci|], W(Ci)[s] = (v, u)
and W(Cj)[s] = (v′, u′) satisfies u ̸= u′ and (v, u) ̸= (u′, v′).

For the remainder of this paper, we assume every robot in the graph is assigned exactly 1
schedule. Given 2 sets of schedules C and C′, we say C is faster than C′ if maxCi∈C |Ci| <

maxC′
j
∈C′ |C ′

j |.Given a graph G = (V, E), a set of k robots R1, R2, . . . , Rk starting on vertices
sv1, sv2, . . . , svk, and a set of tasks T , a fastest task-completing, collision-free set of k

schedules is the set of schedules C such that any other set of task-completing, collision-free
schedules is no faster than C. Note that there may be multiple such sets of schedules.
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▶ Problem 1 (k-Robot Scheduling). Given a graph G = (V, E), set of k robots
R1, R2, . . . , Rk starting on vertices sv1, sv2, . . . , svk, and set of tasks T , what is the fastest
task-completing, collision-free set of k-schedules C = (C1, C2, . . . , Ck) such that Ci can be
assigned to Ri, ∀i ∈ [1, k]?

3 Results

Hardness Results

We have found that the Robot Scheduling problem is NP-Hard, and that hardness remains
even when we restrict the class of graphs we consider, the known results are shown in Table 1.

Table 1 Our results for different graph classes and numbers, k, of robots.

Setting Result
General graphs, k ∈ N NP-complete

Complete graphs, k ≥ 2 NP-complete
Bipartite graphs, k ≥ 2 NP-complete

Star graphs (and trees), k ≥ 2 NP-complete
Planar graphs, k ∈ N NP-complete

Path graphs, with m tasks of equal duration, k ∈ N Optimal O(kmn) time Algorithm
(Theorem 7)

Path graphs, k ∈ N k-approximation Algorithm
(Theorem 8)

Algorithmic Results for Path Graphs

1-Robot Scheduling on Path Graphs. In this section, we provide an algorithm for finding
the optimal schedule for a single robot on a path. Corollary 3 shows that the time needed to
complete the fastest schedule can be computed via a closed-form expression.

1-Robot Scheduling Algorithm. Let P be a path graph of length n, let T = (t1, t2, . . . , tm)
be a set of tasks, and let R be the single robot starting on vertex sv = vis . We assume, without
loss of generality, that tj is located on vij

such that vij
is left of vij+1 , i.e. ∀j ∈ [1, m−1], ij <

ij+1. Note that there may exist some task ti located on sv without contradiction. Using this
notation, the optimal schedule C = {C} is:

C = { (vs, vs+1), (vs+1, vs+2), . . . , (vim−1, vim
), tm, (vim

, vim−1), (vim−1, vim−2), . . . ,
(vim+1+1, v + im+1), tm−1, . . . , (vi1+1, vi1), t1 } if |is − im| ≤ |is − i1|.
C = { (vs, vs−1), (vs−1, vs−2), . . . , (vi1+1, vi1), t1, (vi1 , vi1+1), (vi1+1, vi2+2), . . . ,
(vi2−1, vi2), t2, . . . , (vim−1, vim), tm } if |is − im| > |is − i1|.

▶ Lemma 2. The fastest task-completing schedule for 1-Robot Scheduling on a path
graph P of length n with m tasks T = (t1, t2, . . . , tm) located on vertices vi1 , vi2 , . . . , vim , and
a robot R starting on vertex vs can be constructed in O(n) time.
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▶ Corollary 3. The fastest task-completing schedule for 1-Robot Scheduling on a path
graph P of length n with m tasks T = (t1, t2, . . . , tm) located on vertices vi1 , vi2 , . . . , vim

and
a robot R starting on vertex vs requires

min(|s − i1|, |s − im|) + im − i1 +
∑
t∈T

t

timesteps.

2-Robot Scheduling on Path Graphs. We now move to 2-Robot Scheduling on a
path. First, we provide a new algorithm generalising the above algorithm for 1-Robot
Scheduling . Later, we further generalise this to k-Robot Scheduling on a path; however,
it is valuable to consider 2-Robot Scheduling first, both to illuminate the main algorithmic
ideas and to provide a base case for later inductive arguments. We start by providing an
overview of our algorithm, which we call the partition algorithm.

The 2-Partition Algorithm. Let P be a path graph of length n, let T = (t1, t2, . . . , tm) be
the set of tasks, and let RL and RR be the pair of robots starting on vertices svL = viL

and svR = viR
respectively. We call RL the left robot and RR the right robot, with the

assumption that svL is left of svR. We denote by ij the index of the vertex containing the
task tj , and assume that ij < ij+1, for every j ∈ [1, n − 1]. For notation, let C1(P, T, sv)
return the optimal schedule for a single robot starting at sv on the path P for completing
the task set T .

We construct the schedule by partitioning the tasks into 2 sets, TL = (t1, t2, . . . , tq) and
TR = (tq+1, tq+2, . . . , tm). We determine the value of q by finding the value which minimises
max(|C1(P1,max(ℓ,iq

, (t1, t2, . . . , tℓ), svL)|, |C1(Pmin(iq+1,vr),m, (tq+1, tq+2, . . . , tm), svR)|. We
will use C2(P, T, (svL, svR)) to denote the schedule returned by this process.

▶ Lemma 4. Given an instance of 2-Robot Scheduling on an n-length path P with a set
of equal-length tasks T = (t1, t2, . . . , tm), and starting vertices svL = viL

, svR = viR
, for any

schedule C = (Cℓ, Cr) where the rightmost task tR assigned to the left robot is right of the
leftmost TL assigned to the right robot, there exists some schedule C′ = (C ′

ℓ, C ′
r) that takes no

more time than C and does not contain any such tasks.

▶ Lemma 5. Given an instance of 2-Robot Scheduling on an n-length path P with a
set of tasks T = (t1, t2, . . . , tm) where the duration of ti is equal to the duration of tj for
every i, j ∈ [1, m]. Further, let svL and svR be the starting vertices of the robots. Then
C2(P, T, (svL, svR)) is a fastest set of schedules for this instance and can be found in O(m)
time.

▶ Theorem 6. Given an instance of 2-Robot Scheduling on an n-length path P , with a
set of tasks T = (t1, t2, . . . , tm) and starting vertices svL and svR. Then C2(P, T, (svL, svR))
is within a factor of 2 of the fastest set of schedules solving this instance.

k-robots on the path. Now, we generalise the 2 robots on a path instance to an arbitrary
number. To do so, we build a dynamic programming algorithm based on the same principles
as the previous partition algorithm.

The k-Partition Algorithm. Let P be a path of length n, T = {t1, t2, . . . , tm} be a
set of tasks, and let sv1, sv2, . . . , svk be the starting vertices of the robots R1, R2, . . . , Rk

respectively, with the assumption that Ri starts left of Ri+1, for every i ∈ [1, k − 1]. Further,
we denote by it the index such that vit contains task t, and assume that itj < itj+1 (i.e.



D. Adamson, N. Flaherty, I. Potapov, and P. G. Spirakis 22:5

task tj is left of tj+1) for every j ∈ [1, m − 1]. We construct a k × m table S, with S[c, ℓ]
containing the time required to complete the fastest collision-free schedule completing tasks
t1, t2, . . . , tℓ with robots R1, R2, . . . , Rc.

First, observe that S[1, ℓ] can be computed, for every ℓ ∈ [1, m], in O(m) time. Now,
assuming the value of S[c − 1, ℓ] has been computed for every ℓ ∈ [1, m], the value of
S[c, r] is computed by finding the value r′ such that max(|C1(P, (tr′+1, tr′+2, . . . , tr))|, S[c −
1, r′]) is minimised, formally S[c, r] = minr′∈[1,r] max(|C1(P, (tr′+1, tr′+2, . . . , tr))|, S[c −
1, r′]). Letting S be an auxiliary table such that S[c, ℓ] contains the schedule corresponding
to the time given in S[c, ℓ], a task-completing collision-free schedule for the k-Robot
Scheduling instance is given in S[k, m].

Let Sk(P, T, (sv1, sv2, . . . , svk)) return the schedule determined by this table. Note that
for S2(P, T, (sv1, sv2)), this becomes equivalent to the 2-partition algorithm.

▶ Theorem 7. Given an instance of k-Robot Scheduling on a path P = (V, E) with equal
duration tasks T = (t1, t2, . . . , tm) on vertices vi1 , vi2 , . . . , vim

and k robots R1, R2, . . . , Rk

starting at sv1, sv2, . . . , svk = vj1 , vj2 , . . . , vjk
, there are no schedules taking less time than

the schedule returned by Sk(P, T, (sv1, sv2, . . . , svk)). Further, this schedule can be found in
O(kmn) time.

▶ Theorem 8. Given an instance of k-Robot Scheduling on a path P = (V, E) with
tasks T = (t1, t2, . . . , tm) on vertices vi1 , vi2 , . . . , vim

and k robots R1, R2, . . . , Rk starting at
sv1, sv2, . . . , svk = vj1 , vj2 , . . . , vjk

, the schedule returned by Sk(P, T, (sv1, sv2, . . . , svk)) is
no more than a factor of k slower than the optimal. Further, this schedule can be found in
O(km2) time.

4 Conclusion

We have shown that our definition of k-Robot Scheduling is hard, even on highly
constrained classes of graphs while being solvable for path graphs with equal-length tasks
and approximable for tasks of any length. While these results paint a strong picture of the
complexity of this problem, we are left with several open questions. The most direct is as
to whether our approximation algorithm for path graphs can be improved or if an optimal
algorithm can be found. We conjecture that a polynomial time algorithm exists for this
setting; however, at present, no such algorithm has been found. The second natural direction
is to look at the remaining classes of graphs that have not been covered by our existing
results. The most obvious of these are cycles, which, while closely related to paths, can
not be solved by naive application of our current tools. While it seems likely that similar
optimality and approximation results can be found, these are currently open problems.
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Abstract
We explore how geometric structures (or shapes) can be grown exponentially fast from a single
node, through a sequence of centralized growth operations, and if collisions during growth are to be
avoided. We identify a parameter k, representing the number of turning points within specific parts
of a shape. We prove that, if edges can only be formed when generating new nodes and cannot
be deleted, trees having O(k) turning points on every root-to-leaf path can be grown in O(k log n)
time steps and spirals with O(log n) turning points can be grown in O(log n) time steps, n being
the size of the final shape. For this case, we also show that the maximum number of turning points
in a root-to-leaf path of a tree is a lower bound on the number of time steps to grow the tree and
that there exists a class of paths such that any path in the class with Ω(k) turning points requires
Ω(k log k) time steps to be grown. In the stronger model, where edges can be deleted and neighbors
can be handed over to newly generated nodes, we obtain a universal algorithm: for any shape S it
gives a process that grows S from a single node exponentially fast.
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1 Introduction

A growth operation (also called doubling [3] or expansion [8]) applied on a node u of a
geometric shape S, generates a new node in one of the points adjacent to u and possibly
translates some part of the shape. In this work, we explore the following two interrelated
questions: “What are the structural properties associated with exponential growth of geometric
shapes?” and “How can some of these properties be exploited and others avoided in order to
design algorithms that can grow desired shapes exponentially fast?”

Though our model takes inspiration from natural growth processes, it also shares features
with existing theoretical models of computation and robotics. Growth is a defining property
of both our model and self-assembly models. In the majority of self-assembly models, growth
is through passive attachment [7, 10] on the external layer of the formed structure, and, thus,
is relatively slow. Our algorithms can actively control the structure’s growth without any a
priori limitation on where to apply the growth operations, resulting in sub-linear and often
(poly)logarithmic growth in the size of the final structure. An example of a self-assembly
model incorporating active molecular dynamics is the Nubot model [11]. A difference between
our model and [11] is that our processes are only allowed to update instances through growth.
As is also the case in [11], most of our algorithms use the fast process of growing a line
as a sub-routine. Recently, there has been growing interest in studying the algorithmic
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foundations of programmable matter systems, focusing on their ability to alter their shape
through local reconfiguration [1, 4, 6, 9]. The growth processes that we study could serve
as a way to deploy programmable matter fast, either in its exact initial configuration or
in a rough version of it that can be then refined through other types of operations. An
assumption of our model is that individual operations have linear strength, meaning that
they have enough power to move any part of the structure. This is a common simplifying
assumption in the relevant literature [5, 11, 4] and can sometimes be dropped, e.g., when
more than one operation can be applied in parallel. Our model also has some relevance to
von Neumann’s concept of self-replicating machines.

2 Models and Problem

We consider a two-dimensional square grid, each point of which is identified by its x ≥ 0 and
y ≥ 0 integer coordinates, x indicating the column and y the row. A shape is defined as a
graph S = (V, E) drawn on the grid. V is a set of n nodes, where each node u occupies a
distinct point (ux, uy) of the grid. E ⊆ {uv | u, v ∈ V and u, v are adjacent} is a set of edges
between pairs of adjacent nodes, where two nodes u and v are adjacent if their orthogonal
distance on the grid is one. Our results hold for any geometry of individual nodes that does
not trivially make nearby nodes intersect. A shape is connected if the graph that defines it is
a connected graph. We restrict attention to connected shapes.

One or more growth operations applied in parallel to nodes of a shape S either cause
a collision or yield a new shape S′. There are two types of collisions: node collisions and
cycle collisions. We assume that the constructed shapes are equivalent up to translations.
Let T = (V, E) be a tree and u0 ∈ V its root. A single growth operation applied on a node
u ∈ V toward an adjacent point (x, y), results in either generating a new node u′ at point
(x, y) and connecting it to u, or, if (x, y) is already occupied by a node v connected to u,
generating u′ between u and v, connecting it to both u and v, and translating the subtree
T (v) by one unit away from u along the axis parallel to uv.

Let Q be a set of operations to be applied in parallel to a connected shape S, each
operation on a distinct pair of nodes or a node and an unoccupied point. We assume that all
operations in such a set are applied concurrently, have the same constant execution speed,
and their duration is equal to one time step. A node collision occurs if the trajectories of
any two nodes meet. If S is a connected shape with at least one cycle, then a set of parallel
operations Q on S either causes a cycle collision or its effect is essentially equivalent to the
application of Q on any spanning tree of S. In particular, a cycle collision occurs when two
parts of a cycle grow unequally. A set of operations is said to be collision free if it does not
cause any node or cycle collisions.

A growth process σ starts from an initial shape S0 – often a single node – and, in each
time step t ≥ 1, applies a set of parallel growth operations – possibly a single operation – on
the current shape St−1 to give the next shape St, until a final shape S is reached at a time
step tf . In this case, we say that σ grows S from S0 in tf time steps.

The different models and processes we consider are defined as follows.

▶ Definition 1. Let Sb
t and Se

t denote the shapes formed by the beginning and by the end
of time step t, respectively, and assume that Sb

1 = S0. A cycle-preserving growth process
applies a collision free set of parallel growth operations Qt to Sb

t , for all time steps t ≥ 1. A
cycle-breaking growth process additionally removes a – possibly empty – subset of the edges
of Sb

t , whose removal does not disconnect the shape, before applying Qt to it. If neighbor
handover is allowed, growth of a node u generating a new node u′ in direction d can hand
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any neighbor w of u perpendicular to d over to u′. In the connectivity graph model, for all
t ≥ 1, Sb

t+1 = Se
t holds. In the adjacency graph model, for all t ≥ 1, Sb

t+1 = AC(Se
t ) holds,

where AC(S) is the adjacency closure of a shape S.

Intuitively, the additional assumption in the adjacency graph model is that, at the end of
every time step, the graph model updates the shape by connecting all adjacent nodes that
are not connected. Combining the adjacency graph model with cycle-breaking processes
captures the less extreme case, in which the process can choose any spanning connected
sub-shape of the adjacency closure.

We study a reachability problem between classes of shapes through growth. The definition
of the problem is the same for all growth models of Definition 1.

▶ Problem 1. Let I be a class of initial shapes and F a class of final shapes. We want to
determine a bound τ such that for all S0 ∈ I and all S ∈ F there is a growth process σ that
grows S from S0 in τ time steps.

Given that our focus is on exponential growth, upper bounds must be of the form
τ = O(log n) or τ = (poly) log n. As there is a straightforward Ω(log n) lower bound, non-
trivial lower bounds should be at least ω(log n). In all instances of the problem that we study,
at least one of I and F is a singleton, the initial shape typically being a single node. Our
upper bounds are constructive: for each instance of the problem an algorithm is presented,
which for every (S0, S) from the respective classes gives a process that grows S from S0 in τ

time steps.

3 Technical Overview

In this section, we present the main results of our work, starting with the results of the
connectivity graph model and then moving on to the adjacency graph model.

Connectivity Graph Model. Starting growth from a single node, the class of shapes that can
be grown in this model is limited to tree structures only. We start by focusing on efficiently
growing trees. We identify a parameter k, representing the number of turning points within
specific parts of a shape. A node u of a shape S is called a turning point if either u is a leaf
or there are at least two neighbors v1 and v2 of u such that v1u is perpendicular to uv2. The
nodes between any two consecutive turning points of a path form a line segment.

Upper Bounds Trees with O(k) turning points on every root-to-leaf path can be grown in
O(k log n) time steps through a breadth-first search (BFS) on their line segments. Starting
from the root u0, the algorithm proceeds in phases, growing all maximal line segments at
distance i in parallel. Each line segment can be grown exponentially fast by doubling the
number of nodes in every time step.

▶ Theorem 2. Let T be any tree having O(k) turns on every root-to-leaf path. BFS on line
segments can grow T from a single node within O(k log n) time steps in the connectivity
graph model.

Similarly, spirals with O(log n) turning points can be grown within O(log n) time steps
through a pipelined version of BFS. For further details, see [2].
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Lower Bounds. We establish two lower bounds for trees and paths. For trees, we show
that the maximum number of turning points in a root-to-leaf path of the tree is a lower
bound on the number of time steps to grow the tree from a single node. Initially, we define a
growth process σ for S = (V, E) that induces a relation →σ on V , where u

t→σ v iff node
u generates node v at time step t. We also write u →σ v to mean u

t→σ v for some t ≥ 1
and u ⇝σ v iff u = u1 →σ u2 →σ · · · →σ ul = v, for some l ≥ 2. We omit σ, writing just
u

t→ v, u → v, or u⇝ v when the growth process is clear from context or when referring to
any growth process. The relation →σ defines a graph G→σ

= (V, E→σ
). Further, we define

a relation 7→σ induced by →σ on the turning points of tree shapes. Given a tree T and a
growth process σ for T , for any two turning points u, v of T we write u

t7→σ v iff (i) u
t→σ v

or (ii) u⇝ u′ t→σ v and u, u′, v are on the same line segment at the end of time step t.

▶ Lemma 3. In the connectivity model, let T = (V, E) be a tree and σ a growth process for
T starting from u0 ∈ V . For any root-to-leaf path (u0, u1, . . . , ul) of T , where the uis are
restricted to the turning points of the path, u0 7→ u1 7→ · · · 7→ ul holds.

The theorem below formalizes the lower bound for growing trees.

▶ Theorem 4. Let T = (V, E) be a tree and k any positive integer satisfying that for every
root u0 ∈ V there is a root-to-leaf path in T containing at least k turning points. Then any
growth process σ for T in the connectivity model requires at least k − 1 time steps. This lower
bound is maximized for the maximum such k.

For paths, we show that there exists a class of paths such that any path in the class with
Ω(k) turning points requires Ω(k log k) time steps to be grown from a single node. Let P be
a path with k turning points and (tp1, tp2, . . . , tpk) be their order in P . Let σ be a process
that grows P from a single node. Without loss of generality, we can assume that σ starts
from a turning point tpi of the path P . We prove that the sets {tpi+1, tpi+2, . . . , tpk} and
{tp1, tp2, . . . , tpi−1} of turning points are generated in the order (tpi+1, tpi+2, . . . , tpk) and
(tpi−1, tpi−2, . . . , tp1), respectively by σ. Moreover, σ respects the direction of P at every
node while generating the next node from it.

Let P be an incompressible (meaning that it has no columns or rows without any turning
points) spiral path between u and v with k turning points. Moreover, let u be the internal
endpoint of P . The following lemma gives a lower bound on the number of time steps taken
by any process that grows P from a single node starting from u.

▶ Lemma 5. Let P be an incompressible spiral path between u and v with k turning points.
Moreover, let u be the internal endpoint of P . Let σ be any process that grows P from a
single node starting from u. Then, σ requires Ω(k log k) time steps.

Let (tp1 = u, tp2, . . . , tpk = v) be the order of turning points of P from u to v. We know
that σ generates the turning points in the order (tp1 = u, tp2, . . . , tpk = v). Let GTj be the
time step when the turning point tpj was generated by σ, for any j ≥ 2. Let P̂ (t) be the
path constructed by σ after time step t. Further, let a and b be two vertices of P . We denote
by P [a, b] the path between a and b (including both a and b) of P . Moreover, we denote by
|a − b|P the number of edges in P [a, b]. Also, we denote by X(a, P ) the x-coordinate of the
vertex a in P . To prove the above lemma, we first prove the following lemma about the path
constructed by σ.

▶ Lemma 6. For any j ≥ 5, the path P̂ (GTj − 1) grown by σ till time step GTj − 1 should
be the same as the subpath P [tp1, tpj−1] of P between tp1 = u and tpj−1.
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The lower bound follows by applying Lemma 5 on a path consisting of two interleaved spirals
of equal size and observing that at least one of the two must be grown from its internal
endpoint. See [2] for the full proof.

▶ Theorem 7. Let σ be a process that grows a path from a single node. Then, there exists a
path for which σ takes Ω(k log k) time steps.

Adjacency Graph Model. In this model, every pair of adjacent nodes is also connected
in the shape. We study both cycle-preserving and cycle-breaking types of processes. For
cycle-preserving processes, we cannot directly perform BFS on line segments through cycle-
preserving growth due to the dependence between adjacent line segments. We give a modified
BFS that overcomes this by growing adjacent line segments in different phases, and we prove
that if a shape S has a spanning tree with O(k) turning points on every root-to-leaf path,
then the adjacency closure of S can be grown from a single node within O(k log n) time steps.
For a complete description of this approach, see [2]. For cycle-breaking processes with the
additional assumption that neighbors can be handed over to newly generated nodes (neighbor
handover), our main result is an efficient universal algorithm that gives an O(log n) time
steps growth process for any connected shape S. The algorithm achieves this by specifying
an elimination order of the nodes within the shape and then inverting this order to produce
the growth process.

▶ Theorem 8. Given any connected shape, S with dimensions l×w, the elimination algorithm
grows S from a single node in O(log l + log w) time steps.
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This note introduces an extension of the Steiner tree problem applied to dynamic graphs. It discusses
its interest, studies its complexity and proposes an algorithm tested on generated and real data.
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1 Introduction and contributions of this work

The goal of the classical Steiner tree problem in graphs is to maintain connectivity among
selected vertices, called terminals, while minimizing the cost associated with the chosen edges
or vertices in the process. The problem has practical applications in many domains, such as
communication networks, social networks, and logistics networks. Although it is simple to
formulate, it was proven to be NP-hard very early on. It remains NP-hard in most of its
simple versions, even with unit costs on the edges, where the objective is to minimize the
number of vertices needed to connect the terminal vertices. However, there exist cases for
which the Steiner problem is easy, as it can be solved using polynomial algorithms. The first
case is when the number of terminals is two, as it then reduces to a shortest path problem.
The second case is when every vertex of the graph is a terminal, as it then reduces to a
spanning tree problem.

In the application domains cited above, the underlying graph could change over time.
For some years now, a growing literature has been considering the well-known classical
combinatorial problems in this new setting. Recalling all papers dealing with dynamic graphs
(the name may vary) is out of the scope of this short paper, but one may cite, as the most
relevant for this work, [8] for paths and their extensions, [2, 6] for some considerations
about connectivity issues, . . . When time is considered as a discrete variable, such a graph is
basically constituted of an ordered sequence of graphs indexed by time: G = (Gi), i ∈ T .
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This is the way it will be considered throughout the paper. The term of dynamic graph
is preferred because, as we shall see, it is not mandatory to know the graph evolution in
advance to find a Steiner set (the set of vertices used to connect the terminals).

Connectivity in a temporal setting may have different meanings. A static Steiner tree
is the less costly way to ensure connectivity between a subset of terminal nodes. We are
looking for a structure that maintains connectivity whereas the graph is changing. Basically,
connectivity here may be defined in two ways. In the first way, one may wish to maintain
some “instantaneous” or path-based connectivity: at each time step, a path exists between
each pair of terminals. Conversely, in the second way one looks for the existence of a journey,
also called temporal path, from each terminal to any other terminal. This journey-based
connectivity ensures that some information, or some good, will eventually be transferred.
This is a one shot property: typically, after a given time, no journey may exist for a couple
of terminals and the transfer is no more possible. We claim that instantaneous connectivity,
is better adapted to some situations, like a set of mobile robots that cooperate for a given
common goal, thus needing frequent communications between some distinguished nodes of
the network. Note that to the best of our knowledge, no previous work considers direct
extensions of Steiner trees. However, many works exist that study the existence of journeys
[8]. Many works also study some journey-based extensions of spanning trees, namely spanners,
see [1, 3]. The path-based extensions of spanning tree are of less interest, as it may consist
either in computing the minimum spanning tree at each snapshot (without building any
persistent structure), or in computing the spanning tree of the intersection of all snapshots
(using only edges constantly present).

The main contributions of this paper are:
We discuss how to extend the Steiner tree problem to dynamic graphs. Among the
possible extensions, we identify the more relevant one for practical applications.
We show that unlike its static counterpart, the dynamic Steiner problem is NP-hard even
with two terminals.
We propose an exact algorithm that computes all Steiner sets of a given size, study its
complexity and test it experimentally on generated and real-word instances.

2 The Dynamic Steiner Set problem

Let us first recall the static problem definition. Let G = (V, E) be a (static) graph. A
non-negative weight we is associated to each edge e ∈ E. For a given subset of vertices S ⊂ V ,
called terminals, the objective is to find a tree of minimum weight covering all vertices of S.
Note that the simpler version with unit cost is already NP-Hard. It reduces to find a Steiner
set of minimal cardinality.

Let us see now how the Steiner Tree Problem can be extended to dynamic graphs. We
consider here only the unit cost version, or minimal cardinality version. Let G be a undirected
dynamic graph such that G = (V, E, T ) = (G1, . . . , GT ) with Gi = (V, Ei) and E =

⋃
i Ei.

The successive Gis are called snapshots of G at each time step. As in the static case, one
may introduce a subset S of special vertices, called terminals. The goal is still to ensure
connectivity between the terminals. Note that we limit our study to the case where no travel
time is associated to the edges. Hence there is no travel time associated to paths either: the
(instantaneous) connectivity requirement applies to each time step.

The most straightforward way to extend the Steiner Tree problem to dynamic graphs is
of course to compute, at each time step, the Steiner tree associated to S. This extension has
one major drawback: at each time step, the Steiner set is different. It is not really convenient,
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for instance in a communication network, to change the intermediate nodes at each time
step. More importantly, we do not make any use of the knowledge of the dynamic graph as a
whole, considering each Gi separately. Note also that this approach is very time consuming,
as a complete Steiner tree is recomputed at each time step. Hence in the remaining of the
section, we focus on computing a Steiner set that is fixed during all the lifetime of the graph.

▶ Definition 1 (Fully Connected Steiner Set). For a given vertex set S ⊂ V of terminals, find
V ′ with S ⊂ V ′ ⊂ V and E′

i ⊂ Ei ∀i ≤ T such that:
G′

i = (V ′, E′
i) is a connected graph ∀i ≤ T

|V ′| is minimum

We look for a subset V ′ of vertices containing S, such that the subgraph of Gi generated
by V ′ is always connected, and V ′ has minimal cardinality (which is equivalent to minimize
the total number of edges used to connect V ′). But in fact the condition verified by each
G′

i is stronger than we need to keep the terminals connected: the definition imposes the
connectivity of all vertices in the Steiner set. The following definition relaxes this condition.

▶ Definition 2 (Partially Connected Steiner Set). For a given vertex set S ⊂ V of terminals,
find V ′ with S ⊂ V ′ ⊂ V and E′

i ⊂ Ei ∀i ≤ T such that:
All vertices of S are part of the same connected component in the static graph G′

i = (V ′, E′
i)

|V ′| is minimum

The (partially connected) Steiner set V ′ is the subset of nodes that keep the terminals
connected for the whole lifetime of the graph, at a minimum cost while V ′ itself is not
necessarily connected. Note that when T = 1, this problem is the Steiner Tree problem.
However, we cannot deduce an optimal solution from the solution of static Steiner Problem
at each time step.

To illustrate the difference between the two definitions, consider the simple dynamic
graph with two time steps, where vertices v1 − v2 − · · · − vn form a path on both snapshots,
and two terminals a and b. At the first time step a and b are connected to v1 and at the
second step they are both connected to vn. If we want to keep the Steiner set fully connected,
we have to take all the vertices (k = n + 2), but to keep the terminals connected, we only
need v1 and vn (k = 4). Consider now the same setting but without the edges (vi, vi+1).
There is no fully connected Steiner set but a, b, v1 and vn still form a partially connected
Steiner set.

We now retain definition 2 and study the complexity of the Dynamic Minimum Steiner
Set (DMSS) problem which consists of finding a (partially connected) Steiner Set of minimum
cardinality. Let us recall that the minimum cardinality version is NP-hard in the static case,
even for bipartite or for chordal graphs [7]. On the other hand, one might consider the case
of a small number of terminals. Even with arbitrary costs, the problem with two terminals is
easy in the static case as the Steiner tree reduces to a single path.

▶ Theorem 3. The DMSS problem is NP-hard even with two terminals.

The idea of the proof is to transform Vertex Cover (VC) a well known NP-complete
problem to DMSS with two terminals. Let G = (V, E) be the graph of the VC instance. The
dynamic graph GDY N has the same vertices plus two terminals a and b. For each (u, v) ∈ E

there is a time step where the terminals are connected to u and v. A vertex cover in G

corresponds to a Steiner set in GDY N . An example is given in Fig. 1.

SAND 2024
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Figure 1 Transforming a VC instance G with 5 edges to a DMSS instance with 5 time steps.

3 Algorithmic issues and experiments

This section focuses on efficiently solving the DMSS problem. We only consider the problem
of finding a Steiner set of a given cardinality. Throughout this section, s is the number of
terminals, k is the cardinality of the Steiner sets, and k′ = k − s is the number of vertices to
add to the terminal vertices.

3.1 Basic ideas
For a given time step i, there might be a very large number of vertex sets of cardinality k′

that allow the terminals to be connected. These sets will be called candidates for time step i.
An obvious upper bound of this number is the number of vertex subsets of cardinality k′

among V − S, that is
(

n−s
k′

)
. The dynamic Steiner sets we are looking for belong to this set

but, hopefully, are much less numerous.
A Steiner set of cardinality k must by definition connect the terminals for each time step.

Therefore, the algorithmic possibilities are straightforward. Let us discard the naive idea
that consists in computing independently all candidate subsets for all time steps, and then
computing their intersection. It is much more efficient to use an iterative process: suppose
we have a set of candidates PSS for time steps 1, . . . , i. At iteration i + 1, only the solutions
in PSS which are also candidates for time step i + 1 are kept. So the core procedure of the
algorithm is a search on small subgraphs generated by the candidate sets. Its complexity is
O(m′) where m′ the number of edges of the subgraph is bounded by k2. The process starts
with all candidates for i = 1. It ends when i = T with all Steiner sets of cardinality k or
when no more candidates exist. Of course, this algorithm is still a brute force algorithm as
some enumerations have to be done.

▶ Theorem 4. There exists an algorithm that enumerates all solutions of DMSS, of complexity
Θ(T × (n − s)k′ × k2

(k′)! ). It follows that DMSS is in XP class relatively to parameter k′.
When k and s are fixed parameters, the complexity is Θ(nk−s).

The algorithm sketched above might be used on-line: at each time step θ, all vertex sets that
are Steiner sets for time interval [0, θ], are computed.

3.2 Experimental study
We performed an experimental study of our algorithm, both on randomly generated graphs
and on real-world networks. The virtual machines used for this experiment have 64 GB of
RAM.

We generated dynamic graphs using a method previously presented in [6] to test connected
component computation. First we generate the underlying graph, then we add dynamicity
to the edges using a Markovian process, see [4].
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Figure 2 Median number of Steiner sets with regard to the number of time steps, with s = 3.

The underlying graph is generated using generators from the GraphStream library2. We
tested three different types of graphs that present specific features. They differentiate mostly
according to their clustering coefficient.

Experiments were run on randomly generated graphs up to 100 vertices, 50 time steps
and up to 6 terminals. Results show the algorithm can solve these instances usually in less
than an hour. The evolution of the number of solutions, hence of the computation time,
heavily depends on the type of underlying graph, as shown in figure 2.

As a real-word instance, we used the CRAWDAD VT/MANIAC dataset [5], accessible
through the IEEE Dataport comes from the CRAWDAD collection. This dataset encompasses
routing and topology traces gathered during the Mobile Ad hoc Networks Interoperability
And Cooperation (MANIAC) Challenges that took place in 2007 and 2009 in conjunction
with the IEEE Globecom IEEE and PerCom conferences. These traces provide insights into
the communication patterns, node mobility, and network structure characteristic of MANETs
(Mobile Adhoc Networks) in real-world scenarios.

The resulting dynamic graph has 14 nodes, 74 edges (for the footprint), and a high
number 1244 of timesteps. An edge remains present during less than 10% of the time horizon
on average. The algorithm runs very fast on this instance (a few seconds) to provide all
possible Steiner sets for all possible values of k.

References

1 Kyriakos Axiotis and Dimitris Fotakis. On the size and the approximability of minimum
temporally connected subgraphs. In 43rd International Colloquium on Automata, Languages,
and Programming (ICALP 2016), 2016. arXiv preprint arXiv:1602.06411.

2 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed
Systems, 27(5):387–408, 2012.

3 Arnaud Casteigts, Joseph G Peters, and Jason Schoeters. Temporal cliques admit sparse
spanners. Journal of Computer and System Sciences, 121:1–17, 2021.

2 http://graphstream-project.org

SAND 2024

http://graphstream-project.org


24:6 Brief Announcement: The Dynamic Steiner Tree Problem

4 Andrea EF Clementi, Claudio Macci, Angelo Monti, Francesco Pasquale, and Riccardo Silvestri.
Flooding time in edge-markovian dynamic graphs. In Proceedings of the twenty-seventh ACM
symposium on Principles of distributed computing, pages 213–222, 2008.

5 Amr Hilal, Jawwad N Chattha, Vivek Srivastava, Michael S Thompson, Allen B MacKenzie,
Luiz A DaSilva, and Pallavi Saraswati. Crawdad vt/maniac, 2022. doi:10.15783/C7WG6T.

6 Mathilde Vernet, Yoann Pigne, and Eric Sanlaville. A study of connectivity on dynamic
graphs: computing persistent connected components. 4OR, 21(2):205–233, 2023.

7 Kevin White, Martin Farber, and William Pulleyblank. Steiner trees, connected domination
and strongly chordal graphs. Networks, 15(1):109–124, 1985.

8 B Bui Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and foremost
journeys in dynamic networks. International Journal of Foundations of Computer Science,
14(02):267–285, 2003.

https://doi.org/10.15783/C7WG6T


Brief Announcement: Crash-Tolerant Exploration
of Trees by Energy Sharing Mobile Agents
Quentin Bramas #

University of Strasbourg, ICUBE, CNRS, Strasbourg, France

Toshimitsu Masuzawa #

Graduate School of Information Science and Technology, Osaka University, Japan

Sébastien Tixeuil #

Sorbonne University, CNRS, LIP6, Institut Universitaire de France, Paris, France

Abstract
We consider the problem of graph exploration by energy sharing mobile agents that are subject to
crash faults. More precisely, we consider a team of two agents where at most one of them may fail
unpredictably, and the considered topology is that of acyclic graphs (i.e. trees). We consider both
the asynchronous and the synchronous settings, and we provide necessary and sufficient conditions
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1 Context

This paper investigates the collective exploration of a known edge-weighted graph by mobile
agents originating from arbitrary nodes. The objective is to traverse every edge at least once.
Each agent possesses a battery with an initial energy level (that may differ among agents).
An agent’s battery is depleted by x when it travels a distance of x. Also, when two agents
meet, they may freely exchange remaining energy. Finally, the possibility for one of the two
agents to crash, or cease functioning indefinitely and unpredictably, exists.

Energy transfer by mobile agents was previously considered by Czyzowicz et al. [3].
Agents travel and spend energy proportional to distance traversed. Some nodes have
information acquired by visiting agents. Meeting agents may exchange information and
energy. They consider communication problems where information held by some nodes must
be communicated to other nodes or agents. They deal with data delivery and convergecast
problems for a centralized scheduler with full knowledge of the instance. With energy
exchange, both problems have linear-time solutions on trees. For general undirected and
directed graphs, these problems are NP-complete. Then, Czyzowicz et al. [2] consider the
gossiping problem in tree networks. In an edge-weighted tree network, agents spend energy
while traveling and collect copies of data packets from visited nodes. They deposit copies of
possessed data packets and collect copies of data packets present at the node. Czyzowicz et
al. [2] prove that gossiping can be solved in O(k2n2) time for an n-node tree with k agents.

Most related to our paper are the works by Czyzowicz et al. [4], Sun et al. [5], and Bramas
et al. [1]. On the one hand, Czyzowicz et al. [4] study the collective exploration of a known
n-node edge-weighted graph by k mobile agents with limited energy and energy transfer
capability. The goal is for every edge to be traversed by at least one agent. For an n-node
path, they give an O(n + k) time algorithm to find an exploration strategy or report that
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none exists. For an n-node tree with ℓ leaves, they provide an O(n + ℓk2) algorithm to find
an exploration strategy if one exists. For general graphs, deciding if exploration is possible
by energy-sharing agents is NP-hard, even for 3-regular graphs. However, it’s always possible
to find an exploration strategy if the total energy of agents is at least twice the total weight
of edges; this is asymptotically optimal. Next, Sun et al. [5] examines circulating graph
exploration by energy-sharing agents on an arbitrary graph. They present the necessary and
sufficient energy condition for exploration and an algorithm to find an exploration strategy if
one exists. The exploration requires each node to have the same number of agents before
and after. Finally, Bramas et al. [1] considered the problem of exploring every weighted
edge of a given ring-shaped graph using a team of two mobile energy-sharing agents. They
introduce the possibility for one of the two agents to fail unpredictably and cease functioning
permanently (i.e., crashing). In this context, Bramas et al. [1] considered two scenarios:
asynchronous (where no limit on the relative speed of the agents is known, so one agent
cannot wait at a meeting point for another agent for a bounded amount of time and infer
that the other agent has crashed, as it may simply be arbitrarily slow), and synchronous
(where the two agents have synchronized clocks and move at precisely the same speed).

2 Model

Our model is similar to that proposed by Bramas et al. [1].
We are given a weighted graph G = (V, E) where V is a set of n nodes, E is a set of m

edges, and each edge ei ∈ E is assigned a positive integer wi ∈ N+, denoting its weight (or
length). We have k mobile agents (or agents for short) r0, r1, . . . , rk−1 respectively placed at
some of the nodes s0, s1, . . . sk−1 of the graph. We allow more than one agent to be located
in the same place. Each agent ri initially possesses a specific amount eni of energy for its
moves. An agent has the ability to travel along the edges of graph G in any direction. It
can pause its movement if necessary and can change its direction either at a node or while
traveling along an edge. The energy consumed by a moving agent is equal to the distance
x it moved. An agent can move only if its energy is greater than zero. Now, the distance
between two agents (that is, the minimum sum of the weights for all the paths connecting
them) is the smallest amount of energy needed for them to meet at some point.

In our setting, agents can share energy with each other. When two agents, ri and rj ,
meet at a vertex or edge, ri can take some energy from rj . If their energy levels at meeting
time meeting are en′

i and en′
j , then ri can take an amount of energy 0 < en ≤ en′

j from rj .
After the transfer, their energy levels are en′

i + en and en′
j − en, respectively.

Each agent adheres to a pre-established trajectory until encountering another agent. At
this point, the agent determines if it acquires energy, and calculates its ensuing trajectory.
The definition of a trajectory depends on the synchrony model:

In the synchronous model, a trajectory is a sequence of pairs ((u0, t0), (u1, t1), . . .),
where ui is a node, and ti denotes the time at which the agent should reach ui. For each
i ≥ 0, ti < ti+1, and ui+1 is either equal to ui (i.e., the agent waits at ui between ti and
ti+1), or is adjacent to ui (i.e., the agent leaves ui at time ti and arrives at ui+1 at time
ti+1). For simplicity, we assume in our algorithm that the moving speed is always one (it
takes time d to travel distance d, so if ui ̸= ui+1 and the weight of edge (ui, ui+1) is w,
then ti+1 − ti = w).
In the asynchronous model, a trajectory is just a sequence of nodes (u0, u1, u2, . . .),
ui+1 being adjacent to ui for each i ≥ 0, and the times at which it reaches the nodes are
determined by an adversary.

In other words, in the synchronous model, the agent controls its speed and its waiting time
at nodes, while an adversary decides them in the asynchronous model.
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The computation of the trajectory and the decision to exchange energy is based on a
localized algorithm (that is, an algorithm executed by the agent). In a given execution, the
configuration at time t is denoted by Ct.

Localized algorithm. A localized algorithm fi executed by an agent ri at time t takes as
input the pasts of ri and its collocated agents, and returns (i) its ensuing trajectory traji

and (ii) the amount of energy takei,j taken from each collocated agent rj . The past Pasti(t)
of ri at time t corresponds to the path already traversed by ri union the past of all the
previously met agents. More formally:

Pasti(t) = {pathi(t)} ∪ {Pastj(t′) | ri met rj at time t′ ≤ t}

A set of localized algorithms is valid for a given initial configuration c if, for any execution
starting from c, agents that are ordered to move have enough energy to do so and when an
agent ri takes energy from an agent rj at time t, then rj does not take energy from ri at t.

In this paper, we consider the possibility of agent crashes. At any point in the execution,
an agent ri may crash and stop operating forever. However, if ri has remaining energy
en′

i > 0, then other agents meeting ri may take energy from ri. Now, a set of localized
algorithms is t-crash-tolerant if it is valid even in executions where at most t agents crash.

We are interested in solving the problem of t-crash-tolerant collaborative exploration:

t-crash-tolerant collaborative exploration. Given a weighted graph G = (V, E) and k mobile
agents r0, r1, . . . , rk−1 together with their respective initial energies en0, en1, . . . , enk−1 and
positions s0, s1, . . . , sk−1 in the graph, find a valid set of localized algorithms that explore
(or cover) all edges of the graph despite the unexpected crashes of at most t < k agents.

This paper focuses on the 1-crash-tolerant collaborative exploration of trees by two agents.

3 Our Results

We consider the problem of graph exploration by energy-sharing mobile agents that are
subject to crash faults. More precisely, we consider a team of two agents where at most
one of them may fail unpredictably, and the considered topology is that of acyclic graphs
(i.e. trees). Similarly to Bramas et al. [1] who studied the case of ring-shaped networks, we
consider both the asynchronous and the synchronous settings, and we provide necessary and
sufficient conditions for the initial amounts of energy in two settings: lines and trees. In the
following, en0 and en1 denote the initial energy of the first and second agents, respectively.

Lines. In the case of the line, x (resp. y) denotes the distance of the first (resp. second)
agent to the left border of the line, assuming x ≤ y and x ≤ ℓ − y, while ℓ denotes the weight
of the line. In the asynchronous case, a necessary and sufficient condition is:

(en0 ≥ x + y) ∧ (en1 ≥ y) ∧ (en0 + en1 ≥ 2ℓ + x + y)
∨ (en0 ≥ ℓ − x) ∧ (en1 ≥ 2ℓ − (x + y)) ∧ (en0 + en1 ≥ 4ℓ − (x + y))
∨ (en0 ≥ ℓ + x) ∧ (en1 ≥ 2ℓ − y)
∨ (en0 ≥ y − x) ∧ (en1 ≥ y − x) ∧ (en0 + en1 ≥ min(3ℓ + y − x, 2ℓ − x + 3y))

In the synchronous case, a necessary and sufficient condition is:

(en0 ≥ x + y) ∧ (en1 ≥ y) ∧ (en0 + en1 ≥ max(ℓ + x + y, 2ℓ + x − y))
∨ (en0 ≥ ℓ − x) ∧ (en1 ≥ 2ℓ − (x + y)) ∧ (en0 + en1 ≥ 3ℓ − x − y)
∨ (en0 ≥ ℓ + x) ∧ (en1 ≥ 2ℓ − y)
∨ (en0 ≥ y − x) ∧ (en1 ≥ y − x) ∧ (en0 + en1 ≥ 2ℓ − x + y)

SAND 2024



25:4 Brief Announcement: Crash-Tolerant Exploration of Trees

Trees. In the case of a weighted tree T , d denotes the diameter of the tree, x the initial
distance between the two agents, and W its total weight. In the asynchronous case, a
sufficient condition is:

(en0 ≥ x) ∧ (en1 ≥ x) ∧ (en0 + en1 ≥ 2W + 2d⌈log3/2 W ⌉ + x + 2) (1)

We provide a lower bound on the total energy for unweighted star graphs: en0 + en1 cannot
be in 2W + 2 log(o(W )) (notice W = |E|).

The main ingredients for our positive result are as follows.
First, we construct a family of k connected non-empty subtrees of T named T1, T2, . . . , Tk,

where Ti = (Vi, Ei) and (Ei)1≤i≤k forms a partition of E. At the beginning, the agents meet
to share energy. Then the agents repeat a procedure explore(Ti) for all i ∈ {1, . . . , k} from 1
to k. The procedure assumes that the agents are initially at the same location (possibly on an
edge), and ensure that after the execution the agents are at the same location (not necessarily
the same as the initial one) if i < k (when i = k the agents can terminate anywhere on
completion of the exploration).

Agent r0 (resp. r1) executing explore(Ti) first moves to the closest node vi of Ti, executes
EulerianExplore(Ti) (resp. ReverseEulerianExplore(Ti)), and moves back to its initial loca-
tion, until it meets the other agent, and Ti is explored. If the agents meet before ending this
sequence of moves and Ei is explored, then the procedure terminates. This occurs during
the exploration of the Eulerian tour from vi, or when one of the agents r comes back from vi

to its initial location after completing its Eulerian tour while the other has not started it (it
is still moving towards vi from the location where it started executing explore(Ti)).

Since the length of the Eulerian tour is 2w(Ti) (where w(Ti) denotes the weight of Ti) and
the distance to vi from their initial location is d in the worst case, each agent must have, at
the beginning of the procedure, the energy of at least 2d + 2w(Ti) if i < k (to terminate even
when the other agent remains at the initial location), at least d + 2w(Ti) if i = k. When the
procedure terminates, the total energy consumed during the procedure is at most 2d + 2w(Ti)
(because every edge traversed in the procedure is traversed exactly twice if i < k, and at
most twice if i = k).

Consequently, to complete all explore(Ti), for every i, sequentially, our algorithm requires
that the total remaining energy ENi at the beginning of the procedure explore(Ti) is as
follows, where x is the initial distance between the agents:

ENk ≥ 2d + 4w(Tk)
ENi ≥ max (2d + 2w(Ei) + ENi+1, 4d + 4w(Ti)) (2 ≤ i ≤ k − 1)
EN1 ≥ x+max (2d + 2w(T1) + EN2, 4d + 4w(T1)) where x is the initial weighted distance
between the agents.

Moreover, the total energy consumption for exploring T is at most x+
∑

i=1..k(2d+2w(Ti)) =
2W + 2kd + x.

We now have to construct the partition T1, T2, . . . , Tk of T so that k should be small to
reduce the number of calls to explore(), but each w(Ti) should not be too large to avoid
increasing the energy required at the beginning of explore(Ti). A good partition could be
to have w(Tk) = 1 and w(Ti) = 2w(Ti+1), which results in k = ⌈log W ⌉. In general trees,
such a partition does not exist, but we can obtain a similar result using the centroid-based
partition recursively, which guarantees Wi/3 ≤ w(Ti) ≤ Wi/2 (Wi is the total weight of the
remaining part of the tree).

Let T = (V, E) be a weighted tree with total weight W . The centroid of T is defined as
follows. In the following, for a tree T and a node u of T , T can be regarded as a rooted tree,
denoted by T u, rooted at u. For the root u and its neighbor v, let T u

v be the subtree of T u

rooted at v.
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1. When there exists an edge (u, v) ∈ E satisfying w(T u
v ) < W/2 and w(T v

u ) < W/2, the
centroid of T is the point p on edge (u, v) such that w(T u

v ) + w(v, p) = w(T v
u ) + w(u, p) =

W/2. We call p the edge centroid.
2. When there exists a node u ∈ V satisfying w(T u

v ) + w(u, v) ≤ W/2 for each neighbor v of
u, the centroid of T is node u. We call u the node centroid.

By spliting the tree recursively at the centroid point, we can construct a partition
T1, . . . , Tk with k = ⌈log3/2 W ⌉ to obtain the sufficient condition (1).

In the synchronous case, a sufficient condition is:

(en0 ≥ x) ∧ (en1 ≥ x) ∧ (en0 + en1 ≥ 2W + d + x)

On the other hand we show that there exists an infinite family of trees such that the required
total energy is at least 2W + d

2 − 3.

4 Conclusion

We characterized the solvability of exploration with two crash-prone energy-sharing mobile
agents in the case of tree topologies, both in the synchronous and in the asynchronous settings.
Obvious open questions include further closing the gap between necessary and sufficient
conditions for the initial amounts of energies in the case of trees, solving the problem with
more than two agents, and considering general graphs.

Also, our model for energy transfer is very simple (all energy can be transferred instanta-
neously between two agents, at no cost). It would be interesting to study non-linear battery
models (where the capacity decreases faster if more instantaneous current is drawn, and the
capacity increases less if faster charge is executed) in this context.
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Abstract
We consider geometric collision-detection problems for modular reconfigurable robots. Assuming the
nodes (modules) are connected squares on a grid, we investigate the complexity of deciding whether
collisions may occur, or can be avoided, if a set of expansion and contraction operations is executed.
We study both discrete- and continuous-time models, and allow operations to be coupled into a
single parallel group. Our algorithms to decide if a collision may occur run in O(n2 log2 n) time,
O(n2) time, or O(n log2 n) time, depending on the presence and type of coupled operations, in a
continuous-time model for a modular robot with n nodes. To decide if collisions can be avoided, we
show that a very restricted version is already NP-complete in the discrete-time model, while the
same problem is polynomial in the continuous-time model. A less restricted version is NP-hard in
the continuous-time model.
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1 Introduction

Modular reconfigurable robotics and the related concept of programmable matter concern
systems composed of interconnected elementary entities, called modules. The collection of
modules can coordinate its limited communication, computation, sensing, and local actuation
to accomplish nontrivial global tasks. Local actuation of modules is enabled through a set of
one or more mechanical operations that they can perform. An operation typically involves
the module that applies it as well as modules in its local neighborhood. Examples of such
operations are pushing, pulling, expanding, contracting, doubling, and rotating. Apart from
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their induced local changes, these operations are often capable of causing a more global effect
on the robotic structure within a limited period of time. An example is when a large part of
the structure moves due to the simultaneous application of one or more local operations.

The ability of local operations to globally affect the robotic structure is a double-edged
sword. On one hand, it is a convenient form of parallelism, where global structural changes
can happen faster. On the other hand, if not properly orchestrated, it could cause small
violations of the structure or even complete structural failure, such as uneven cycle growth,
global connectivity breaking, and self-intersection of the structure. We, hereafter, shall call
all structural violations and failures collisions. Operations that – when applied on individual
modules – can globally affect the structure, are sometimes called linear-strength operations.

The positive effect of such operations has been studied from a theoretical point of view
in a number of papers, for different underlying models and types of operations. In the
crystalline model, square modules can expand and contract by extending and retracting their
faces. In [2], Aloupis et al. gave a universal centralized reconfiguration algorithm that, for
any pair of connected shapes SI , SF of the same number of modules n, can transform SI

into SF within O(log n) parallel time steps by performing Θ(n log n) individual operations.
In [8], Woods et al. proposed the nubot model, motivated by the programmable self-

assembly of molecules, such as DNA strands. The model allows insertion, deletion, and
rotation of modules. Their main result is a distributed, asynchronous algorithm which,
starting from a singleton, can grow any connected 2D shape and pattern of size n, within a
polylogarithmic (in n) number of parallel time steps in expectation.

Almalki and Michail [1], building on the insertion operations of [8] and the growth
processes on graphs by Mertzios et al. [7], investigated what families of shapes can be grown
in time polylogarithmic in their size by using only growth operations. They gave centralized
algorithms for growing a shape SF from a shape SI (possibly a singleton), which yield
polylogarithmic parallel time-step schedules for large classes of shapes.

The amoebot model of Derakhshandeh et al. [4] –and its recent canonical extension [3]–
is another model in which the main operations considered are expansions and contractions
of modules. Shape formation algorithms in this model are usually designed in a way that
operations are parallel but each is affecting only a local region around it and not larger parts
of the shape. Recently, Feldmann et al. [5] have proposed to add linear-strength operations
to the model, but they have left the details of such an extension for future work.

It is evident that most studies have restricted attention to those operations that are safe
to perform in parallel. These are either linear-strength operations that cannot collide or
operations that affect only the local region around them. In this paper, we explicitly pose
the algorithmic question of determining when a set of operations may cause a collision and
when a collision can be avoided. In particular, given a shape and a set of linear-strength
operations on that shape we aim to give centralized algorithms that can compute a schedule
of these (sets of) operations that would (i) cause a collision or (ii) avoid collisions. The
former subquestion is motivated by asynchronous distributed algorithms, in which any of the
possible interleavings of operations might be the one that the modules will actually realize;
the latter by the need to design efficient reconfiguration algorithms that avoid collisions,
instead of having collision-avoidance built into the model. To the best of our knowledge, the
present is the first study to explicitly consider these types of questions.

2 Model

We assume a 2-dimensional square grid where each cell has integer coordinates (x, y). Nodes
(modules) occupy cells, defining a set of occupied integer points such that no two nodes
occupy the same cell. We represent every node u = (ux, uy) as a square of size equal to and
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perfectly aligned with cell (ux, uy) of the grid. A shape S = (V, E) is a configuration of nodes
V together with their connectivity, represented by E. Only orthogonally adjacent nodes can
be connected, but adjacent nodes are not necessarily connected. We use n to denote |V | and
restrict our attention to connected shapes, throughout.

Operations and collisions. In general, applying one or more operations to a shape S either
causes a collision or yields a new shape S′. Collisions come in two types: node collisions and
cycle collisions. Given that all collisions here will be “self-collisions” of a connected shape,
we can assume without loss of generality (abbreviated “w.l.o.g.” throughout) that there is an
anchor node u0 ∈ V that is stationary and other nodes move relative to it. We begin with
the simpler case where the shape is a tree T = (V, E), where cycle collisions do not exist,
and then generalize to any connected shape S.

We start by defining single expansion and contraction operations1. An expansion operation
is applied to a pair of adjacent integer points uv, where either (i) u ∈ V and v /∈ V , or (ii)
u, v ∈ V and uv ∈ E holds. The remaining case where u, v ∈ V but uv /∈ E immediately
gives a collision. In case (i), the expansion generates a node at the empty cell v connected
to u. In case (ii), assume w.l.o.g. that u is closer to u0 in T than v. Let T (v) denote the
subtree of T rooted at v. Then, the expansion generates a node between u and v, connected
to both, which translates T (v) by one unit away from u along the axis parallel to uv. In
both cases, the new node starts as a unit-length segment that widens into a unit square. A
contraction operation is applied to a pair of nodes uv ∈ E, v being the furthest from the
anchor. It merges v with u by translating T (v) by one unit toward u while v narrows to a
unit-length segment. In both types of operations, if after T (v)’s translation two nodes occupy
the same cell then a collision has occurred. We call this type of collision a node collision and
more generally define it as the non-empty intersection of the areas of any two nodes at any
point in time. Otherwise, a new tree T ′ has been obtained.

We assume that no node is ever adjacent to more than one operation.

Coupling. Let Q be a set of operations to be applied in parallel to a connected shape S,
each operation on a distinct pair of nodes or a node and an unoccupied cell. We call such a
set a coupling, and the operations it contains are coupled or parallel. We assume that all
operations in Q are applied concurrently, have the same constant execution speed, and their
duration is equal to one unit of time.

Let T = (V, E) be a tree and u0 ∈ V its anchor. We set u0 to be the root of T . We
want to determine the displacement of every v ∈ V \ {u0} due to the parallel application of
the operations in Q. As u0 is stationary and each operation translates a subtree, only the
operations on the unique u0v path contribute to v’s displacement. In particular, any such
operation contributes one of the unit vectors ⟨−1, 0⟩, ⟨0, −1⟩, ⟨+1, 0⟩, ⟨0, +1⟩ to the motion
vector v⃗ of v. Moreover, for any node u ∈ V that expands toward an empty cell, we add a
new node v with a corresponding unit motion vector v⃗. We can use the set of motion vectors
to determine whether the trajectories of any two nodes will collide at any point.

Now, let S be any connected shape with at least one cycle and any node u0 be its anchor.
Then, a set of operations Q on S either causes a cycle collision or its effect is essentially
equivalent to the application of Q on any spanning tree of S rooted at u0. Let u, v be any

1 We believe that our definitions and techniques can be extended to alternative versions of expansion and
contraction – including the case where the operations can be reversed – and to different geometries such
as a triangular grid.
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two nodes on a cycle. If p1 and p2 are the two uv paths of the cycle, then v⃗p1 = v⃗p2 must
hold: the displacement vectors of v along the paths p1 and p2 are equal. Otherwise, we
cannot maintain all nodes or edges of the cycle. Such a violation is called a cycle collision.
We call a set of operations that does not cause any node or cycle collisions collision free.

Discrete and continuous time. We consider two different models for the scheduling of
the operations. In the discrete-time model, each operation or coupling starts at a different
integer time and takes one unique unit of time. In other words, no two operations are active
at the same time unless they are coupled. In the continuous-time model, we do not make the
integer starting-time assumption. Operations can start at any time and their active times
can overlap. Coupled operations start and finish at the same time. Our assumption that
each operation takes one unit of time to complete and has constant execution speed holds for
both timing models. In the discrete-time model, only the order of the operations (individual
or coupled) matters for having collisions or not. In the continuous-time model, the precise
starting times of the operations matter.

Problem definitions. We now define the problems considered. Given a shape S and an
assignment of operations on S that involve any node at most once, a coupling partition of
operations on S is a collection of sets {Q1, Q2, . . . , Qk}, where each Qi (possibly a singleton)
denotes a subset of the operations that should be performed in parallel.
Colliding Schedule. Given a shape S = (V, E) from a given family of shapes and a
coupling partition of operations {Q1, Q2, . . . , Qk} on S, decide if a starting time t0(Qi) ∈ R
for each coupled set Qi exists such that the application of the operations according to these
starting times causes a collision.
Collision-free Schedule. Given a shape S = (V, E) from a given family of shapes and a
coupling partition of operations {Q1, Q2, . . . , Qk} on S, decide if a starting time t0(Qi) ∈ R
for each coupled set Qi exists such that the application of the operations according to these
starting times is collision free.

The discrete special cases of these problems, Discrete Colliding Schedule and
Discrete Collision-free Schedule, respectively, are obtained by requiring all t0(Qi)’s
to be unique integers.

3 Algorithms for Colliding Schedule

In this section, we present algorithms to decide whether a connected shape can have collisions
for some schedule of operations. We first consider the continuous model followed by the
discrete model. We distinguish the cases based on the type of coupling.

We assume that the topology of S is that of a tree. We refer the readers to [6] for details
regarding general graphs. In the case of continuous model, we get the following results.

▶ Theorem 1. Let S be a shape consisting of n unit square nodes with operations defined on
the edges between adjacent nodes, and let the adjacency structure of S be a single tree. Then
we can solve Colliding Schedule

in O(n2 log2 n) time if couplings exist;
in O(n2) time if each coupling has constant size, or is horizontal-only or vertical-only;
in O(n log2 n) time if the operations are not coupled.
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We can also solve Discrete Colliding Schedule in polynomial time. The algorithm
without coupling is still correct, but with coupling we need a different approach. Thus, we
get the following results.

▶ Theorem 2. Let S be a shape consisting of n unit square nodes with operations defined on
the edges between adjacent nodes, and let the adjacency structure of S be a single tree. Then
we can solve Discrete Colliding Schedule

in O(n17/3) time if couplings exist;
in O(n5) time if each coupling has constant size, or is horizontal-only or vertical-only;
in O(n log2 n) time if the operations are not coupled.

4 Continuous and Discrete Collision-free Schedule

So far we considered detecting whether collisions might occur for an input instance. In this
section, we consider the problem of deciding if all operations can be performed without any
collisions, for a suitable choice of operation order or starting times. We show that, even if
there are only expansions that are w.l.o.g. horizontal and couplings have size O(1), in the
discrete-time model the problem is NP-complete. Interestingly, the same problem is solvable
in polynomial time in the continuous-time model. When we add vertical expansions, the
problem is NP-hard in the continuous-time model.

▶ Theorem 3. Discrete Collision-free Schedule is NP-complete even if all operations
are horizontal expansions and all couplings have size O(1).

▶ Theorem 4. Collision-free Schedule is solvable in linear time if all operations are
horizontal.

▶ Theorem 5. Collision-free Schedule is NP-hard.
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Abstract
We consider random simple temporal graphs in which every edge of the complete graph Kn appears
once within the time interval [0, 1] independently and uniformly at random. Our main result is
a sharp threshold on the size of any maximum δ-clique (namely a clique with edges appearing at
most δ apart within [0, 1]) in random instances of this model, for any constant δ. In particular,
using the probabilistic method, we prove that the size of a maximum δ-clique is approximately
2 log n

log 1
δ

with high probability (whp). What seems surprising is that, even though the random simple
temporal graph contains Θ(n2) overlapping δ-windows, which (when viewed separately) correspond
to different random instances of the Erdős-Rényi random graphs model, the size of the maximum
δ-clique in the former model and the maximum clique size of the latter are approximately the same.
Furthermore, we show that the minimum interval containing a δ-clique is δ − o(δ) whp. We use this
result to show that any polynomial time algorithm for δ-Temporal Clique is unlikely to have very
large probability of success.
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1 Introduction

Dynamic network analysis, i.e. analysis of networks that change over time, is currently one
of the most active topics of research in network science and theory. Many modern real-life
networks are dynamic in nature, in the sense that the network structure undergoes discrete
changes over time [15,19,21]. Here we deal with the discrete-time dynamicity of the network
links (edges) over a fixed set of nodes (vertices), according to which edges appear in discrete
times and are absent otherwise. This concept of dynamic network evolution is given by
temporal graphs [12, 16], which are also known by other names such as evolving graphs [3, 8],
or time-varying graphs.
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▶ Definition 1 (Temporal Graph). A temporal graph is a pair G = (G, λ), where G = (V, E)
is an underlying (static) graph and λ : E → 2N is a time-labeling function which assigns to
every edge of G a discrete-time label. Whenever |λ(e)| ≤ 1 for every e ∈ E, G is called a
simple temporal graph.

Our focus is on simple temporal graphs (in which edges appear only once), as, due to their
conceptual simplicity, they offer a fundamental model for temporal graphs and they prove to
be good prototypes for studying temporal computational problems. More specifically, we
consider simple temporal graphs whose edge labels are chosen uniformly at random from a
very large set of possible labels (e.g. the label of each edge is chosen uniformly at random
within [1, N ] where N → ∞). This can be equivalently modeled by choosing the time labels
uniformly at random as real numbers in the interval [0, 1], which leads to the following
definition.

▶ Definition 2 (Random Simple Temporal Graph). A random simple temporal graph is a pair
G = (G, λ), where G = (V, E) is an underlying (static) graph and {λ(e) : e ∈ E} is a set of
independent random variables uniformly distributed within [0, 1].

Note that, in Definition 2, the probability that two edges lave equal labels is zero. For
every v ∈ V and every time slot t, we denote the appearance of vertex v at time t by
the pair (v, t). For Q ⊆ V , the restricted temporal graph (G, λ)|Q is the temporal graph
(G[Q], {λ(e) : e ∈ E(G[Q])}.

In the seminal paper of Casteigts, Raskin, Renken, and Zamaraev [5], the authors consider
a related (essentially equivalent to ours) model of random simple temporal graphs based on
random permutation of edges. They provide a thorough study of the temporal connectivity
of such graphs and they provide sharp thresholds for temporal reachability. Their work
motivated our research in this paper.

In many applications of temporal graphs, information can naturally only move along edges
in a way that respects the ordering of their timestamps (i.e. time labels). That is, information
can only flow along sequences of edges whose time labels are increasing (or non-decreasing).
Motivated by this fact, most studies on temporal graphs have focused on “path-related”
problems, such as e.g. temporal analogues of distance, diameter, reachability, exploration,
and centrality [1, 4–7,10,13,14,16,20,24]. In these problems, the most fundamental notion
is that of a temporal path from a vertex u to a vertex v, which is a path from u to v

such that the time labels of the time labels of the edges are increasing (or at least non-
decreasing) in the direction from u to v. To complement this direction, several attempts
have been recently made to define meaningful “non-path” temporal graph problems which
appropriately model specific applications. Some examples include temporal cliques, cluster
editing, temporal vertex cover, temporal graph coloring, temporally transitive orientations of
temporal graphs [2, 9, 11,17,18,22,23].

What is common to most of the path-related problems is that their extension from static
to temporal graphs often follows easily and quite naturally from their static counterparts. For
example, requiring a graph to be (temporally) connected results in requiring the existence of
a (temporal) path among each pair of vertices. In the case of non-path related problems, the
exact definition and its application is not so straightforward. For example, defining cliques
in a temporal graph as the set of vertices that interact at least once in the lifetime of the
graph would be a bit counter intuitive, as two vertices may just interact at the first time
step and never again. To help with this problem, Viard et al. [22] introduced the idea of the
sliding time window of some size δ, where they define a temporal clique as a set of vertices
where in all δ consecutive time steps each pair of vertices interacts at least once. There
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is a natural motivation for this problem, namely to be able to find the contact patterns
among high-school students. Following the idea of Viard et al. [22], many other problems on
temporal graph were defined wiusing sliding time windows. For an overview of recent works
on sliding windows in temporal graphs, see [15].

In the next definition we introduce the notion of a δ-temporal clique in a random simple
temporal graph, and the corresponding maximization problem.
▶ Definition 3 (δ-Temporal Clique). Let (G, λ) be a random simple temporal graph with
n vertices, let δ ∈ [0, 1], and let Q ⊆ V be a subset of vertices such that G[Q] is a clique.
The restricted temporal graph (G, λ)|Q is a δ-temporal clique, if |λ(e) − λ(e′)| ≤ δ, for every
two edges e, e′ which have both their endpoints in Q.

δ-Temporal Clique

Input: A simple temporal graph (G, λ).
Output: A δ-temporal clique Q of (G, λ) with maximum cardinality |Q|.

Our contribution. In this work, we consider simple random temporal graphs where the
underlying (static) graph is the complete graph on n vertices, and we provide a sharp threshold
on the size of maximum δ-cliques in random instances of this model, for any constant δ. In
particular, using the probabilistic method, we prove that the size of a maximum δ-clique
is approximately 2 log n

log 1
δ

whp (Theorem 4). What seems surprising is that, even though the
random simple temporal graph contains Θ(n2) overlapping δ-windows, which (when viewed
separately) correspond to different random instances of the Erdős-Rényi model Gn,δ (in which
edges appear independently with probability δ), the size of the maximum δ-clique and the
maximum clique size of the latter are approximately the same. Furthermore, we show that
the minimum interval containing a δ-clique is δ − o(δ) whp (Theorem 5). We use this result
to show that any polynomial time algorithm for δ-Temporal Clique is unlikely to have
very large probability of success (Theorem 7). Finally, we discuss some open problems related
to the average case hardness of δ-Temporal Clique in the general case.

2 Existence of δ-Temporal Clique

We employ the first and second moment probabilistic methods to show the following threshold
property.
▶ Theorem 4. Let (Kn, λ) be a random simple temporal graph where the underlying graph is
the complete graph with n vertices, and let δ ∈ (0, 1) be a constant. Define k0

def= 2 log n
log 1

δ

. As
n → ∞ we have the following:
(i) With high probability, (Kn, λ) has no δ-temporal clique of size (1 + o(1))k0.
(ii) With high probability, (Kn, λ) contains a δ-temporal clique of size (1 − o(1))k0.

For the proof of the above theorem, we first give an exact formula for the probability that
a graph H appears as a subgraph within a δ-window, and then we show that the expected
number E

[
X(k)] of δ-cliques of size at most k0 goes to ∞ (while the expected number of

δ-cliques of larger size goes to 0), and also that
E
[
(X(k))2]

E2[X(k)] goes to 1 for k ≤ (1 − ϵ)k0, as
n → ∞. Furthermore, our main theorem implies the following:
▶ Theorem 5. Let (Kn, λ) be a random simple temporal graph where the underlying graph
is the complete graph with n vertices, and let δ ∈ (0, 1) be a constant. Let also k0 = 2 log n

log 1
δ

and let Q be any δ-temporal clique of size at least (1 − o(1))k0. Define the interval ∆(Q) def=
[min(λ(e) : e ∈ Q), max(λ(e) : e ∈ Q)]. Then |∆(Q)| = δ − o(δ) whp.

SAND 2024



27:4 Brief Announcement: δ-Temporal Cliques in Random Simple Temporal Graphs

3 Average case hardness implications and open problems

The threshold given in Theorem 4 on the size of the maximum δ-clique reveals an interesting
connection between simple random temporal graphs (Kn, λ) and Erdős-Rényi random graphs
Gn,δ. On one hand, notice that, if we only consider edges with labels within a given δ-
window, then the corresponding graph is an instance of Gn,δ, which has maximum clique size
asymptotically equal to k0

def= 2 log n
log 1

δ

whp. On the other hand, the random simple temporal
graph contains Θ(n2) different instances of Gn,δ, but the size of a maximum δ-clique size is
asymptotically the same. One explanation why this happens is that the different instance
of Gn,δ contained in the random simple temporal graph are highly dependent, even if these
correspond to disjoint δ-windows (indeed, edges with labels appearing in one window do not
appear in the other and vice versa).

It is therefore interesting to ask whether we can use the above connection algorithmically.
One direction is clearly easier than the other: If there is a polynomial time algorithm AER(δ)
that can find a clique of size q = Θ(k0) in a random instance of Gn,δ whp, then we can use
this algorithm to find an asymptotically equally large δ-clique in a random instance of (Kn, λ)
with the same probability of success. We note that, finding a clique of size asymptotically
close to k0 in Gn,δ is believed to be hard in the average case and there is no known algorithm
for this problem that runs in polynomial time in n.

For the other direction, we conjecture that the following reduction may be possible:

▶ Conjecture 6. Suppose that, for any δ ∈ [0, 1] there is a polynomial time algorithm
ASRT (δ) that finds an (1 − o(1))-approximation of a maximum δ-clique in a random instance
of (Kn, λ) whp. Then ASRT (δ) can be used to design a polynomial time algorithm that finds
an (1 − o(1))-approximation of a maximum in Gn,δ whp.

It is clear that the probability of success of ASRT (δ) in the above Conjecture cannot be
equal to 1 unless P = NP . In the following Theorem we also prove that the probability of
success is unlikely to be too large.

▶ Theorem 7. Suppose that, for any constant δ ∈ (0, 1), the probability of success of algorithm
ASRT (δ) is 1−exp(−ω(n2)). Then ASRT (δ/2) can be used to find a clique of size (1−o(1))k0
in Gn,δ whp.
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