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Preface

This volume contains the papers that were presented at the 3nd Symposium on Algorithmic
Foundations of Dynamic Networks (SAND), held in Patras, Greece, June 5-7, 2024. SAND
is a new conference whose objective is to become the primary venue for original research
on fundamental aspects of computing in dynamic networks and computational dynamics,
bringing together researchers from computer science and related areas. SAND is seeking
important contributions from all viewpoints, including theory and practice, characterized by
a marked algorithmic aspect and addressing or being motivated by the role of dynamics in
computing. It welcomes both conceptual and technical contributions, as well as novel ideas
and new problems that will inspire the community and facilitate the growth of the area.

The program committee of SAND 2024 consisted of:

Arnaud Casteigts, University of Geneva, Switzerland (chair)
Fabian Kuhn, University of Freiburg, Germany (chair)
Karine Altisen, Verimag, France

Quentin Bramas, University of Strasbourg, France
Bernadette Charron-Bost, CNRS, ENS Paris PSL, France
Gianlorenzo D’Angelo, Gran Sasso Science Institute, Italy
Swan Dubois, Sorbonne Université & Inria, France

Jessica Enright, University of Glasgow, UK

Thomas Erlebach, Durham University, UK

Matthias Fugger, CNRS & LMF, ENS Paris-Saclay, France
Emmanuel Godard, Université Aix-Marseille, France
Timothy Gomez, Massachusetts Institute of Technology, USA
Nicolas Hanusse, LaBRI. Bordeaux U., CNRS, France
Colette Johnen, University of Bordeaux, France

Spyros Kontogiannis, University of Patras, Greece

Bernard Mans, Macquarie University, Australia

Andrea Marino, Universita degli Studi di Firenze, Italy
Yannic Maus, TU Graz, Austria

Alessia Milani, Aix-Marseille University, France

Kitty Meeks, University of Glasgow, UK

George Mertzios, Durham University, UK

Othon Michail, University of Liverpool, UK

Hendrik Molter, Ben-Gurion University of the Negev, Israel
Rotem Oshman, Tel-Aviv University, Israel

Matthew Patitz, University of Arkansas, USA

Giuseppe Prencipe, Universita di Pisa, Italy

Michael Raskin, University of Bordeaux, France

Jason Schoeters, University of Cambridge, UK

Ana Silva, Universidade Federal do Ceara, Brazil

Paul Spirakis, University of Liverpool, UK

Kostas Tsichlas, University of Patras, Greece

Laurent Viennot, Inria de Paris, France

Petra Wolf, University of Bergen, Norway

Viktor Zamaraev, University of Liverpool, UK
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Preface

We are also very grateful to the non-PC-member reviewers who helped us evaluating
some of the submissions. Namely, Duncan Adamson, Nada Almalki, Emmanuel Arrighi,
Samuel Baguley, Josefran Bastos, Josh Brunner, Daniele Carnevale, Carlos Zapata Carratala,
Argyrios Deligkas, Jenny Diomidova, David Doty, Jérome Féret, Nathan Flaherty, Thomas
Gebhart, Daniel Hader, Thekla Hamm, Allen Ibiapina, David Ilcinkas, Ekhine Irurozki,
Evangelos Kipouridis, Ralf Klasing, Nina Klobas, Manish Kumar, Patrick Lambein-Monette,
Raul Lopes, Nicolas Martins, Kaalkidan Sahele, Frédéric Simard, George Skretas, Frederick
Stock, John Sylvester, Kunihiro Wasa, Cai Wood.

SAND 2024 received 43 submissions. The review process was double-blind and each paper
was assigned to at least three members of the program committee with relevant expertise and
eventually reviewed by them and/or by additional reviewers whenever needed. The program
committee accepted 18 papers as regular papers, and 6 as brief announcements. These papers
cover a wide range of topics, including dynamic networks and distributed algorithms, mobile
computing and robotics, programmable matter, and temporal and dynamic graph algorithms.
Keynote talks were given by distinguished researchers, to whom we are grateful: Thomas
Erlebach (Durham University, UK), Thomas Nowak (ENS Paris-Saclay, France), and Andréa
W. Richa (Arizona State University, USA).

We wish to thank the members of the various committees of SAND as well as its advisory
board, for all the hard work that they have put and which has made it possible to set up
a new conference. All have been supportive throughout. We are grateful to the program
committee members and to the additional reviewers for devoting time and effort in order
to come up with a strong conference program. A special thanks goes to the chairs of the
organizing committee, Spyros Kontogiannis, Sotiris Nikoletseas, and Kostas Tsichlas. We
are also indebted to the chair of the SAND steering committee, Paola Flocchini, for all her
support, and to Sotiris Nikoletseas for handling all the financial aspects.

Above all, we thank the authors for submitting their work to SAND 2024. We can assure
the reader that in this volume they will find well-presented ideas and results that make
substantial contributions to our knowledge on the role of dynamics in computing. We do
believe that this volume will inspire further work and will contribute to the further growth
of this exciting research area.

June, 2024
Arnaud Casteigts and Fabian Kuhn
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Exploration and Rendezvous in Temporal Graphs
Thomas Erlebach =

Department of Computer Science, Durham University, Durham, UK

—— Abstract

Given a temporal graph G and a start vertex v in G, the temporal exploration problem (TEXP)
is the problem of determining a temporal walk that starts at v and visits all vertices of G, with
the objective of minimizing the time when the last unvisited vertex is reached. Studies have
investigated the (parameterized) complexity and approximability of TEXP and the worst-case
number of time steps required to complete an exploration. While many upper and lower bounds
have been obtained for different settings, there are still some large gaps that pose interesting open
problems. In this talk, we will give an overview of known results and techniques as well as open
problems. Furthermore, we will discuss recent results (from joint work with Konstantinos Dogeas,
Frank Kammer, Johannes Meintrup, and William K. Moses Jr) about exploiting symmetries in
temporal graphs to get faster exploration. We view the number of automorphism orbits of the
temporal graph as a new parameter, termed the orbit number, that may also be useful in other
contexts. Finally, we show how a subroutine for quickly exploring a single orbit of the graph can be
exploited to solve a certain rendezvous problem with two agents using a near-linear number of time
steps in every always-connected temporal graph.
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Distributed Computation with Bacteria

Thomas Nowak &4
Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, France
Institut Universitaire de France, France

—— Abstract

Computing via synthetically engineered bacteria is a vibrant and active field with numerous
applications in bio-production, bio-sensing, and medicine. Motivated by the lack of robustness and
by resource limitation inside single cells, distributed approaches with communication among bacteria
have recently gained in interest. In this talk, we describe the most important distributed approaches
to synthetic biology with bacteria and discuss the crucial task of mathematical modeling of these
systems. A particular problem is that of population growth happening concurrently, and possibly
interfering, with the desired bio-computation. Specifically, we present a fast protocol in systems
with continuous population growth for the majority consensus problem and prove that it correctly
identifies the initial majority among two inputs with high probability. We also present a fast protocol
that correctly computes the NAND of two inputs with high probability. By combining NAND gates
with the majority consensus protocol as an amplifier, it is possible to compute arbitrary Boolean
functions. The proposed protocols help set the stage for bio-engineered distributed computation
that directly addresses continuous stochastic population growth.

Own work presented in this talk is mostly based on joint work with Da-Jung Cho, Matthias
Fiigger, Corbin Hopper, Manish Kushwaha, and Quentin Soubeyran.
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Algorithmic Programmable Matter: From Local
Markov Chains to “Dumb” Robots

Andréa Werneck Richa 24
School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

—— Abstract

Many programmable matter systems have been developed, including modular and swarm robotics,

synthetic biology, DNA tiling, and smart materials. We describe programmable matter as an
abstract collection of simple computational elements (particles) with limited memory that each
execute distributed, local algorithms to self-organize and solve system-wide problems, such as
movement, reconfiguration, and coordination. Self-organizing particle systems (SOPS) have many
interesting potential applications like coating objects for monitoring and repair purposes, and forming
nano-scale devices for surgery and molecular-scale electronic structures.

We describe some of our work on the algorithmic foundations of programmable matter, investigat-
ing how macro-scale system behaviors can naturally emerge from local micro-behaviors by individual
particles: We utilize tools from statistical physics and Markov chain analysis to translate Markov
chains defined at a system level into distributed, local algorithms for SOPS that drive the desired
emergent collective behavior for the problems of compression, separation, and foraging, among
others. We further establish the notion of algorithmic matter, where we leverage standard binary
computation, as well as physical characteristics of the robots and interactions with the environment
in order to implement our micro-level algorithms in actual testbeds composed of robots that are not
capable of any standard computation. We conclude by addressing full concurrency and asynchrony
in SOPS.

This is joint work with Dana Randall and Dan Goldman (Georgia Tech), Michael Strano (MIT),
Todd Murphey (Northwestern), Josh Daymude (Arizona State University), Sarah Cannon (Claremont
McKenna), Christian Scheideler (University of Paderborn) and their research labs.
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Harmonious Colourings of Temporal Matchings

Duncan Adamson &
Leverhulme Centre for Functional Material Design,
University of Liverpool, Liverpool, United Kingdom

—— Abstract

Graph colouring is a fundamental problem in computer science, with a large body of research
dedicated to both the general colouring problem and restricted cases. Harmonious colourings are
one such restriction, where each edge must contain a globally unique pair of colours, i.e. if an edge
connects a vertex coloured x with a vertex coloured y, then no other pair of connected vertices
can be coloured z and y. Finding such a colouring in the traditional graph setting is known to be
NP-hard, even in trees. This paper considers the generalisation of harmonious colourings to Temporal
Graphs, specifically (k,t)-Temporal matchings, a class of temporal graphs where the underlying
graph is a matching (a collection of disconnected components containing pairs of vertices), each
edge can appear in at most t timesteps, and each timestep can contain at most k£ other edges. We
provide a complete overview of the complexity landscape of finding temporal harmonious colourings
for (k,t)-matchings. We show that finding a Temporal Harmonious Colouring, a colouring that is
harmonious in each timestep, is NP-hard for (k,¢)-Temporal Matchings when k > 4,t > 2, or when
k > 2 and t > 3. We further show that this problem is inapproximable for ¢ > 2 and an unbounded
value of k, and that the problem of determining the temporal harmonious chromatic number of a
(2, 3)-temporal matching can be determined in linear time. Finally, we strengthen this result by a
set of upper and lower bounds of the temporal harmonious chromatic number both for individual
temporal matchings and for the class of (k, t)-temporal matchings.
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1 Introduction

In real-world settings, networks are changing structures with connections between vertices
changing at each time step. Temporal graphs provide a natural means of modelling such a
network. Formally, a temporal graph G is defined by a static collection of vertices V and
sequence of edge sets F1, Eo, ..., Ep, where T is the lifetime of the graph. The underlying
graph G of a temporal graph G is the static graph formed by taking the vertex set V and the
union of edge sets £1 U Ey U ---U Ep. Temporal graphs have recently become a well-studied
object, with a particular focus on reachability [3, 5, 11] and exploration [6, 7, 13].

Graph colouring, despite being a fundamental problem in computer science, has remained
relatively unstudied within temporal graphs. The main reason for this is that, for the general
problems of vertex and edge colouring, finding such a static colouring on a temporal graph
is equivalent to finding a static colouring on the underlying graph. Recent work on graph
colouring in the temporal setting can be split into two broad directions. First is the work of
Yu, Bar, Basu, and Ramanathan [14] and Ghosal and Ghosh [8], who focused on finding a
sequence of colourings for each node, with the twin goals of minimising the total number
of colours and the number of changes of the colour of each vertex. Second is the work by
Mertzios, Molter, and Zamaraev [12] on sliding window colourings, where the goal is to
provide a colouring such that each (active) edge is coloured properly at least once within

© Duncan Adamson;
37 licensed under Creative Commons License CC-BY 4.0

3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024).
Editors: Arnaud Casteigts and Fabian Kuhn; Article No. 4; pp. 4:1-4:11

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:d.a.admson@liverpool.ac.uk
https://orcid.org/0000-0003-3343-2435
https://doi.org/10.4230/LIPIcs.SAND.2024.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

Harmonious Colourings of Temporal Matchings

Static ime Step 1

‘ ime Step 2
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Figure 1 An example of two harmonious colourings. Left is the harmonious colouring for the static
underlying graph, while the right provides a simple example of a harmonious temporal colouring.
Observe that the static colouring needs three colours in order to avoid having two edges with the
same pair of colours. In the temporal example, note that neither edge is active at the same time-step.
Therefore, both can have the same colours.

each window of a given size. In [12], the authors prove a series of results on the hardness of
this problem, as well as a number of exact and approximation algorithms for several special
cases of the problem. The computational aspects of this problem have been further studied
by Marino and Silva [10] who, in particular, considered the problem on temporal graphs
where each edge is either active for at least ¢ times steps in a row or at least ¢ snapshots over
the lifetime of the graph.

In this paper, we are interested in finding a harmonious colouring of a temporal graph.
Harmonious colourings of static graphs are colourings where the colour pair on each edge is
globally unique. In the static setting, this problem is known to be very challenging, with
hardness results for a wide variety of otherwise simple graph classes such as interval and
permutation graphs [1], bipartite permutation and quasi-threshold graphs [2], and trees [4].
Despite the challenge, the temporal setting offers a slight relaxation of the problem, namely
a requirement that the pair of colours on each edge is unique only within the same snapshot.
This means that any pair of edges that are not active at the same time may share a colouring.
Such a colouring is called a temporal harmonious colouring. Figure 1 illustrates that such a
colouring can be found using fewer colours than in the underlying graph.

Noting that this problem is trivially hard when any snapshot includes a graph that
is known to be hard to harmoniously colour, this paper focuses on the class of temporal
matchings. In a temporal path, the underlying graph is a matching graph. Beyond the general
class, we look at (k,t)-temporal matchings, where at each snapshot the graph contains at
most ¢ active edges, and each edge can be active for at most k time steps within the lifetime
of the graph. Restricting the graphs in this way allows a more precise understanding of the
complexity landscape. Further, showing that this problem remains hard for perhaps the
simplest non-trivial graph class highlights the difference between the complexity of problems
on static graphs and temporal ones.

Our Contribution

This paper provides two main results. In Section 3, we show that the problem of finding
a temporal harmonious colouring is NP-complete for (2, 4)-temporal matchings and (3, 2)-
temporal matchings. This shows the problem to be highly challenging even for a relatively
simple class of temporal graphs. In addition to the hardness result, we show that the
problem of determining the temporal harmonious chromatic number (the minimum number
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of colours needed for a temporal harmonious colouring) can not be approximated within
polynomial time within a factor of n(!=/2 for any positive value € for any (k,2)-temporal
paths when the value of k is unbounded. In Section 4, we show that the temporal chromatic
number (the minimum number of colours needed for a temporal harmonious colouring) of
(2,3)-matchings can be determined in linear time. Finally, in Section 5, we provide a series
of bounds on the temporal harmonious chromatic number of (k,¢)-temporal paths, including

a y/4min(k,t) — 2 lower bound and a ¢(k — 1) + 2 upper bound.

2 Notation and Definitions

We use the notation [n] to denote the set {1,2,...,n}. For a graph G, we denote by V(G)
and E(Q) its vertex set and edge set respectively. A temporal graph G is an ordered sequence
(G1,Ga,...,Gr) of static graphs over the common set V of vertices. The static graphs G,
i € [T] are called snapshots of G, and T is called the lifetime of the temporal graph. We say
that the edges in E(G;) are active at time step i. The underlying graph of the temporal
graph G is the graph formed by taking the union of its snapshots, i.e. (V, Uie[T] E(G))).

» Definition 1. A temporal graph G of lifetime T is a (k,t)-temporal graph if every edge
of its underlying graph is active in at most t time steps, and every snapshot has at most k
edges.

If the underlying graph of G is a path, we say that G is a (k,t)-temporal path; similarly,
if the underlying graph is a matching (i.e. graph of mazimum degree at most 1), we say that
G is a (k,t)-temporal matching.

For a natural number ¢, a c-colouring of a graph G is a mapping ¢ : V(G) — [¢] such
that for any two adjacent vertices u,v we have ¥(u) # ¥(v). If G admits a c-colouring we
say that G is c-colourable. The chromatic number of G is the smallest ¢ such that G is c-
colourable. A c-colouring v of G is harmonious if, for every pair of edges {vy, u; }, {ve,us} € E,
{(v1),¥(u1)} # {¥(v2),%¥(uz2)}. The harmonious chromatic number of G is the smallest
value ¢ such that G admits a harmonious c¢-colouring. Given a graph G and a natural number
¢ the Harmonious Colouring problem asks whether G admits a harmonious c-colouring or

not. The optimisation variant of this problem asks to find the harmonious chromatic number
of G.

» Definition 2. For a temporal graph G = (G1,Ga,...,Gr) over a vertex set V, a c-colouring
¢ : V — [c] of its underlying graph is a c-temporal harmonious colouring if ¢ is a harmonious
colouring of every snapshot G, i € [T]. The smallest ¢ such that G admits a c-temporal
harmonious colouring is the temporal harmonious chromatic number.

TEMPORAL HARMONIOUS COLOURING (THC)

Input: A temporal graph G, and an integer c.
Output: YEs, if there exists a temporal harmonious c-colouring of G; NO otherwise.

As in the static case, the Temporal Harmonious Colouring can be phrased as an optimi-
sation problem, asking for the temporal harmonious chromatic number of the input graph
g.

Since temporal graphs generalise (static) graphs, TEMPORAL HARMONIOUS COLOURING
is at least as hard as the Harmonious Colouring problem. In particular, the NP-hardness of
the latter problem on trees [4] implies NP-hardness of the former on temporal graphs where
snapshots are restricted to trees. On the other hand, the Harmonious Colouring problem is
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rather simple in matchings. Indeed, if G is a matching with m edges, then its harmonious
chromatic number is the smallest ¢ such that (5) = @ > m, i.e. the smallest number of
colours providing at least m unique pairs of different colours.

It turns out that in the temporal setting, the problem becomes much harder, even in
the simplest case of temporal graphs whose underlying graph is a matching. In particular,
we will show that TEMPORAL HARMONIOUS COLOURING is NP-complete on (k,t)-temporal
matchings when £ > 4 and ¢ > 2 or when £ > 2 and ¢ > 3. On the other hand, we
show that the temporal harmonious chromatic number can be determined in linear time for
(2, 3)-temporal matchings. Thus, our results provide computational complexity dichotomy
for TEMPORAL HARMONIOUS COLOURING on (k, t)-temporal matchings. We further provide
a set of bounds on the chromatic number of (k,t)-temporal paths.

3 Hardness of Harmonious Colourings on (k,t)-Temporal Matching

In this section, we show that the problem of finding a temporal harmonious colouring is
NP-hard even for (2,4)-temporal matchings and (3,2)-temporal matching. We start by
providing a tool for constructing temporal matchings from a static graph. Informally, the
goal is to construct a matching with a temporal harmonious chromatic number that can
be used to determine the chromatic number of the static graph for low-degree graphs. We
strengthen this reduction by showing that each snapshot contains at most 2 edges.

» Lemma 3. Let G = (V, E) be a static graph with a chromatic number x and mazimum
degree A > 1, then there exists a (2, A)-temporal matching G' = (V',E’) such that the
temporal harmonious chromatic number of G’ is X' such that ' is the smallest value for
which x < w Further, G’ has a lifetime of |E)|.

Proof. For each vertex v € V, a pair of vertices vi,vo are added to V’. A snapshot is
constructed for each edge (v,u) € E, with the edge set E, ,, is constructed containing the
edges (v1,v2) and (ug,us). Note that as each vertex v has degree at most A, the edge (v1,v2)
appears in at most A timesteps. Under the current construction, the graph is a matching
rather than a path.

Let 9 be a temporal harmonious colouring of G’. Observe that at each snapshot, there
exists exactly 2 edges, with each edge corresponding to a vertex in G and the snapshot
corresponding to an edge in G. Therefore, for any colouring to be harmonious, given any
edge (v,u) € E, the pairs (¢(v1),¥(ve)) and (9(u1),%(uz)) must be distinct. Therefore,
there must be a mapping from the set of distinct pairs of colours from [¢)'] to some set of

%. Let ¢ be a «-colouring of G such that each vertex of G

colours of size at most v =
is coloured using the pair of colours given by the x’ colouring of G'.

Assume, for the sake of contradiction, that ¢ is not a valid colouring of G. Then, there
must exist some edge (v,u) € E such that ¢(v) = ¢(u). In this case, in the colouring of G’,
(Y(v1),9¥(v2)) = (¥(u1),v¥(uz)). However, as there exists some snapshot of G’ containing
the edges (v1,v2) and (u1,usg), this contradicts the assumption that G’ has a valid temporal
harmonious colouring. Therefore, ¢ must be a valid colouring of G. Further, if v < x, then
there must exist a colouring of G using fewer than x colours, contradicting the assumption
that x is the chromatic number of G.

In the other direction, let 1 be a y-colouring of G. A colouring v’ of G’ is constructed via a
bijective mapping A : [x] — {(z,y)|z,y € [X'],z > y}. Assume, for the sake of contradiction,
that ¢’ is not a valid colouring of G’. Then, there must exist some snapshot at time
step 4 such that for the pair of edges (v1,v2), (u1,u2) € Eyy (¢(v1), p(v2)) = (d(u1), p(uz)).
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Following the above construction, such a snapshot must correspond to an edge (v,u) € E.
As 9 is a valid y-colouring of G ¥ (v) # ¥ (u). Therefore, the A(¢(v)) # A((¢(u))), and
hence (¢'(v1), ¢’ (v2)) # (¥ (u1), ¥’ (ug)), contradicting the assumption that ¢’ is not a valid
colouring. Further, x’ must be the smallest value such that xy < w |
» Theorem 4. The problem of determining if a given (k,t)-temporal matching G has a
temporal harmonious chromatic number of ¢ is NP-complete for any k > 2 and t > 4.

Proof. Let G = (V, E) be a 3-regular graph. As established by Leven and Galil [9], determin-
ing if G has an edge colouring of size 3 is an NP-complete problem. In order to reduce the
problem of finding an edge colouring of G to finding a temporal harmonious colouring on a
(2,4)-temporal graph, let H be the edge adjacency graph of G. Note that H has a maximum
degree of 4. Using Lemma 3, H can be transformed into a (2,4)-temporal matching G’.

If H has a chromatic number of 3, then the temporal harmonious chromatic number
of G’ is exactly 3. Otherwise, if the chromatic number of H is either 4 or 5, the temporal
harmonious chromatic number of G’ is 4. Therefore, any algorithm to determine the temporal
harmonious chromatic number of a (2, 4)-temporal matching can also determine if a 3-regular
graph has a 3-edge colouring. Hence finding the temporal harmonious chromatic number of
a (2,4)-temporal matching is NP-hard.

To show that the problem is NP-Complete, note that any colouring can be verified as a
temporal harmonious colouring in polynomial time. <

» Corollary 5. The problem of finding the temporal harmonious chromatic number of a
(k, t)-temporal path is NP-hard for any t > 2,k > 4.

» Corollary 6. The problem of finding the temporal harmonious chromatic number of a
(k, t)-temporal cycle is NP-hard for any t > 2,k > 4.

Building on the above results, we now show that determining the harmonious chromatic
number of a (3, 2)-temporal path is NP-complete.

» Theorem 7. The problem of determining if a given (k,t)-temporal matching G has a
temporal harmonious chromatic number of ¢ is NP-complete for any k > 3 and t > 2.

Proof. This proof follows a similar outline to the proof of Theorem 4. As before, we take a
cubic graph G = (V, F) and construct a (3, 2)-temporal matching G’; such that the edge-
chromatic number of G is equal to the harmonious temporal harmonious chromatic number
of G’. The temporal matching G’ is constructed as follows. For each edge e € F, a pair
of vertices e, ey are constructed and connected in the underlying graph of G’. For each
vertex v € V, a snapshot is constructed containing the pair of vertices (e1, es) for every edge
e incident to v. As in Lemma 3, this matching may be transformed into a path by adding
dummy vertices between the pairs.

To show that this problem is NP-hard, first assume that G has an edge chromatic number
of 3. For the sake of contradiction, assume further that the temporal harmonious chromatic
number of G’ is greater than 3. Let 1 be an edge colouring of G using 3 colours, and let

(1,2) c=1
fle)=141(1,3) c=2 be a function mapping the colours given by 1 to pairs of colours. For
(2,3) ¢=3

each edge e € FE, let the colours of e; and ez be equal to the colours given by f(i(e)). As
the mapping f does not allow any pair of incident vertices to share a colour, this colouring
must be valid. Further, for each snapshot in G’, note that the only active edges are those
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corresponding to edges incident to a given vertex in V. Therefore, any given snapshot is not
harmonious if and only if there is a pair of edges in G sharing a colour, contradicting the
assumption that 1) is a valid colouring of G. Hence, G’ has a temporal harmonious chromatic
number greater than 3 if and only if G does not have an edge colouring of size 3.

In the other direction, assume for the sake of contradiction that the temporal harmonious

chromatic number of G’ is 3, while the edge chromatic number of G is greater than 3. Let ¢
1 (1,2) or (2,1)
be a vertex colouring of G’ and f'(c) =<2 (1,3) or (3,1) be a function mapping pairs of
3 (2,3)or (3,2)
vertex colours to a set of 3 colours. For each edge e € E, let e be coloured f'(¢(e1), p(ez)).
For the edge chromatic number of G to be greater than 3, this colouring must not be feasible.
Observe that at each snapshot of G’, the colouring is harmonious. Therefore, given any pair
of edges e, h € E such that e and h are incident to the vertex v, the pairs (¢(e1), ¥ (e2)) and
(¥(h1),1(h2)) must be distinct. Hence, f(¢(e1),9¥(e2)) # f(¢(h1),¥(hs)) and by extension
the edges coloured using this mapping must be distinct. Therefore using the mapping given
by f, either G has a proper edge colouring with 3 colours, or G’ does not have a temporal
harmonious chromatic number of 3, contradicting the original assumption.

Hence, the temporal harmonious chromatic number of G’ is 3 if and only if the edge
chromatic number of G is 3. By extension the problem of computing the temporal harmonious
chromatic number of a (3,2)-temporal matching is NP-hard. Further, any colouring can
be verified as a temporal harmonious colouring in polynomial time. Therefore the problem
of computing the temporal harmonious chromatic number of a (3, 2)-temporal matching is
NP-complete. <

» Corollary 8. The problem of finding the temporal harmonious chromatic number of a
(k,t)-temporal path is NP-hard for any t > 3,k > 2.

» Corollary 9. The problem of finding the temporal harmonious chromatic number of a
(k,t)-temporal cycle is NP-hard for any t > 3,k > 2.

3.1 Hardness of Approximation

Building on Theorem 4, this section shows that the temporal harmonious colouring problem
is hard to approximate even on (k,¢)-temporal matchings. This bound utilises the tools of
Lemmas 3 as a basis for converting existing results on the inapproximability of colouring
problems to the temporal harmonious setting. In this section, we consider the more general
class of (00, 2)-temporal matchings, where there is no bound on the number of times each
edge appears in the graph. By focusing on the restricted case of (oo, 2)-temporal graphs, we
show that the general case is at least as hard, and indeed likely to be much harder.

» Theorem 10. It is NP-hard to approximate the temporal harmonious number of a (00, 2)-
temporal matching within a factor of n"=9/2 for any € > 0, where n is the number of vertices
in the graph.

Proof. From Zuckerman [15], it is known that it is NP-hard to approximate the harmonious
number of a graph G within a factor of n'~¢, for any € > 0. Following the construction
given in Lemma 3, given any graph G with maximum degree A, and chromatic number yx, a
(2, A)-temporal matching can be constructed with a temporal harmonious number v such
that v is the smallest value satisfying y < w <52,
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Let « be a polynomial time approximation of y, and 8 be a polynomial time approximation
of v. Following [15], & > n. Similarly, note that any approximation of « provides an upper
bound of x using the inequality v? > «. Hence 3 is the smallest value such that 32 > « and by
extension 3 > y/a. Therefore, any vnl—¢ approximation of  provides a n'~¢ approximation
of x. Therefore, v can not be approximated in polynomial time within n(*=¢/2 for any
positive value e for the class (00, 2)-temporal matchings unless P = N P. <

4 Temporal Harmonious Chromatic Number of (2,3)-Temporal
Matchings

In this section, we strengthen the hardness result from Section 3 by showing that the temporal
harmonious chromatic number of (2, 3)-temporal matchings can be determined in linear time.
Note that any (2, 2)-temporal matching is also a (2, 3)-temporal matching, and thus this
linear bound also holds. This shows that the hardness bound from Section 3 is “tight”, in
the sense that the case of (2,4) -temporal matchings and (3, 2)-temporal matchings are the
smallest values of k and ¢ for which the problem is hard. Further, this highlights a large
gulf in the complexity space, moving from a problem that is solvable in linear time to an
NP-complete problem with a relatively small change in the parameters.

We start with the simple case of finding a temporal harmonious colouring of a (1, k)-
temporal matching.

» Lemma 11. A temporal harmonious colouring of any (1, k)-temporal matching with n
vertices and 2 colours can be found in O(n) time.

Proof. Observe that in a (1, k)-temporal matching, each snapshot contains at most 1 edge.
Therefore, any valid colouring is also a temporal harmonious colouring. As the underlying
graph is a matching, a 2-colouring can be found by a greedy algorithm, iterating over the set
of edges and colouring one end node colour 1, and the other node colour 2. |

We now provide the main result of this section, namely a proof that the temporal
harmonious chromatic number of (2,3)-temporal matchings can be determined in linear
time. The high-level idea behind this proof is to provide a construction of the temporal edge
adjacency graph of the temporal matching G. Informally, such a graph represents edges with
vertices and connects them if and only if the corresponding edges are active in the same
snapshot. By finding a colouring of this graph, a mapping can be used to connect the colours
of the edges to the colours of vertex pairs. As the temporal edge adjacency graph has a
maximum degree of 3, the chromatic number of the graph can be determined in linear time
using Brooks’ Theorem.

» Theorem 12. The temporal harmonious chromatic number of a (2,3)-temporal matching
G can be determined in linear time.

Proof. At a high level, this is done by reversing the construction from Lemma 3. We assume,
without loss of generality, that G does not contain any vertices of degree 0. Note that any
such vertices may be coloured arbitrarily without conflicting with the temporal harmonious
colouring condition. Let G’ = {V’, E'} be the temporal edge adjacency graph of G. Formally,
G’ is constructed as follows. For every edge e € G, a vertex is constructed in V' and labelled
with the edge e. Given a pair of edges eq,e2 € G, an edge is constructed between v., and v,
if and only if there exists some snapshot of G in which both e; and es are active. Note that
for a (2, 3)-temporal matching, each edge appears in at most 3 snapshots, and each time step
contains at most 2 edges. Therefore, G’ has a degree of at most 3.
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Let 1 be a colouring of G’ using c-colours. Let ¢’ be the smallest value such that
c < @ A temporal harmonious ¢’-colouring ¢ of G is constructed from 1) by constructing
a mapping f from c to the set {{z,y}|z,y € [¢],x # y}. Using this mapping, each edge e € G
is coloured using f(v.). We first show that ¢ is a valid ¢’-colouring. Observe that each pair
in {{z,y}x,y € [c],x # y} contains two unique colours from [¢'], and further each vertex
belongs to only a single edge. Therefore, by assigning the colours from the pair f(v.) to the
two vertices, ¢ produces a valid ¢’-colouring of G. Further, as each pair of edges e1,es € G
that are active in the same snapshot are assigned different colours by 1, the pair of colours
on the vertices incident to e; and ey are distinct. Therefore, v is a temporal harmonious
c’-colouring. Therefore, given a c-colouring of the edge temporal graph G, a ¢’ colouring of
G can be determined in polynomial time.

As G’ is a cubic graph, G’ has a chromatic number of 4 if and only if G’ contains the
complete graph K. As the clique K4 can be detected in linear time, it is possible to determine
if G’ has a chromatic number of 4 in polynomial time. By extension, if G’ has a chromatic
number of 4, then the smallest value ¢’ such that % > 4 is 4. Hence the temporal
harmonious chromatic number of G is 4 if and only if G’ contains the graph K4 as a subgraph.
On the other hand, G’ has a chromatic number of 2 if and only if it is bipartite, and further,
it is possible to determine this in linear time. If G’ is bipartite, then the temporal harmonious
chromatic number ¢’ of G is 3 as 3 is the smallest value such that # > 2. Further, G’
has a chromatic number of 1 if and only if G’ contains only disconnected vertices. In this
case, no pair of edges in G are active at the time step. Therefore any proper colouring of G
is also a temporal harmonious colouring. Finally, if G’ does not have a chromatic number
of 1,2 or 4, then the chromatic number of G’ must be 3, and by extension, the temporal
harmonious chromatic number of G is 3. Therefore, the temporal harmonious chromatic
number of G can be determined in linear time for any (2, 3)-temporal matching. <

5 Further Bounds

This section strengthens the results of Section 3 by providing stronger bounds on the
temporal harmonious chromatic number of (k,t)-temporal paths. Note that any bounds on
(k, t)-temporal paths also apply to (k,t)-matchings. This is done in two ways. First, we
provide an upper bound by constructing a linear time greedy algorithm for finding a temporal
harmonious colouring using at most ¢(k — 1) + 2 colours. Secondly, we provide a series of
lower bounds to strengthen the upper bound.

» Lemma 13. Algorithm 1 finds a (t(k — 1) + 2)-colouring of any (k,t)-temporal path
G=(V,E1,Es,...,Er) in O(n-k-t) time, where n is the number of vertices in G.

Proof. We assume, without loss of generality, that each node in G is labelled from 1 to n
such that vertex 1 is a terminal vertex on the path G and vertex i is incident to 7 + 1 for
every i € [n — 1]. Note that the first vertex can be arbitrarily coloured in the first step
without violating the colouring constraint. Similarly, the second vertex can be coloured any
colour other than the colour of vertex 1. The remaining vertices are coloured in order from 3
to n. At each step, we treat the vertex as though were the terminal vertex. In doing so, it
becomes only necessary to check that the edge (i — 1,14) satisfies the harmonious condition
and that the colour of 7 is distinct from ¢ — 1 to satisfy the colouring condition. Therefore, by
an exhaustive search of each previous edge, a list of colours that can be allowed at position
can be determined.

As there are at most t time steps in which the edge (i — 1,4) is active, and at most k
edges at each snapshot, (i — 1,4) can conflict with at most ¢(k — 1) edges. Further, for each
edge (7 — 1,7) appearing at the same timestep as (i — 1,4), the colour col(j — 1) is removed
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Algorithm 1 Greedy Algorithm.

1: procedure COLOUR(G = (V, Ey, Es,...,Er),¢)

2 col(1) « 1

3 col(2) « 2.

4 for i e V'\ {1,2} do

5: Colours < {1,2,...c} \ {col(i — 1)}

6 for k € ActiveTimesteps((i — 1,4)) do

7 for (j —1,j) € E, do

8 if ((j,j +1), (i — 1,i)) € Ej, then

9: if col(j) = col(i — 1) then

10: Colours <+ Colours \ {col(j + 1)}
11: end if

12: if col(j + 1) = col(i — 1) then
13: Colours < Colours \ {col(j)}
14: end if

15: end if

16: end for

17: end for

18: col(i) <— min(Colours)

19: end for
20: end procedure

from the set of potential colours of 4 if and only if col(j) = col(i — 1). Similarly, the colour
col(j) is removed from the set of candidate colours of 7 if and only if col(j — 1) = col(i — 1).
As col(j) # col(j — 1), at most 1 colour can be removed for each edge that appears in the
same timestep as (i — 1,4). Hence at most ¢(k — 1) + 1 colours are forbidden for ¢, therefore
as long as 7 has a palette of size at least ¢(k — 1) 4 2, there must always be at least one colour
that ¢ can choose. Therefore, G must have a (¢(k — 1) + 2) colouring.

To get the time complexity, we assume that each edge is labelled with the time step at
which it appears. Note that such a list can be computed by checking the set of active edges
for each snapshot in the graph. As there are at most n — 1 edges, each of which are active
for at most ¢ time steps, this will take at most O(t - n) time. For each snapshot, at most k
edges need to be checked for each vertex. Therefore, as there are at most k time steps at
which each edge is active, the total complexity of this algorithm is O(n - k - t). <

Finally, we provide a lower bound on the temporal harmonious chromatic number of the
class of (k,t)-temporal matchings of /8(min(k,t) — 1). In doing so, we provide a clear gap
between the upper and lower bounds and leave open the question of the optimal bound for
(2,2)-temporal matchings and (2,3) temporal matchings. Further, we provide a lower bound
of v/t on the temporal harmonious chromatic number for any (k,t)-temporal matching.

» Lemma 14. For any k,t € N, there exists a (k,t)-temporal matching that has a temporal

harmonious chromatic number of \/4min(k,t) — 2.

Proof. This lemma is proven by constructing a (min(k,t), min(k,t))-temporal matching

G = (V,E1,Es, ..., Er) with a temporal harmonious chromatic number of /4 min(k,t) — 2.

We assume without loss of generality that k = ¢. Note that any (min(k, t), min(k, t))-temporal
matching is also a (k, t)-temporal matching. The set V is constructed by forming two sets T
and /. The set 7 contains ¢ vertices labelled vy, vs,...,v;. The set K contains k vertices
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labelled wy,us,...,us. For every i € [t — 1], an edge is constructed between v; and v;y.
Similarly, for every j € [k — 1], an edge is constructed between u; and u;41. Finally, an edge
is constructed between v; and uy.

The first k& snapshots are constructed by having every edge of the form (v;,v;11) active, as
well as exactly one edge of the form (u;,u;+1). Formally, for I € [k], the time step ! contains
has the active edges {(vi,v2), (v2,v3),..., (Ve—1,vt), (U, u1+1)}. Note that each such step
contains exactly ¢ members. The final snapshot contains every edge between members of K
and the edge (v, u1).

To determine the chromatic number of G, observe that by construction, every edge in
G requires a different pair of colours. As there are k +t¢t — 1 = 2k — 1 edges in G, the

temporal harmonious chromatic number of GG, x must be satisfy 2k — 1 < w < X;
Hence 4k — 2 < x2 and by extension x > v/4k — 2- In the general case, when k # ¢, this can
be rewritten as \/4min(k,t) — 2 <

» Lemma 15. For any (k,t)-temporal matching G that is not also a (k — 1,t)-temporal
matching, the temporal harmonious chromatic number of G is at least V2 - k.

Proof. Note that if G is not a (k — 1, ¢)-temporal matching, then there must be at least one
snapshot containing k£ edges. Let x be the temporal harmonious chromatic number of G.
Therefore, to colour every edge in this timestep with a unique pair of colours, x must satisfy
% > k. Hence x? > 2k and by extension y > v/2k. <
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—— Abstract

Many fundamental distributed computing problems require coordinated access to a shared resource.
A distributed directory is an overlay data structure on an asynchronous graph G that helps to
access a shared token t. The directory supports three basic operations: publish, to initialize the
directory, lookup, to read the contents of the token, and move, to get exclusive update access to the
token. There are known directory schemes that achieve message complexity within polylog factors
of the optimal cost with respect to the number of nodes n and the diameter D of G. Motivated by
fault-tolerant distributed computing implementations, we consider the impact of edge failures on
distributed directories. We give a distributed directory overlay data structure that can tolerate edge
failures without disrupting the directory operations. The directory can be repaired concurrently
while it processes directory operations. We analyze the impact of the faults on the amortized cost
of the three directory operations compared to the optimal cost. We show that f edges failures
increase the amortized competitive ratio of the operations by at most factor f. We also analyze the
message complexity to repair the overlay structure, in terms of the number of messages that are
sent and the maximum distance a message traverses. For an edge failure, the repair mechanism uses
messages of size O(logn) that traverse distance at most D’, the graph diameter after the fault. To
our knowledge, this is the first asymptotic analysis of a fault-tolerant distributed directory.
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1 Introduction

Many distributed computing applications require finding and accessing a shared token, where
the token represents some shared resource. At all times, only the token owner has exclusive
access to the token which grants the owner the ability to modify the content that the token
represents. Distributed directories enable other nodes to find the token to read its contents or
to get exclusive access. Distributed directories have applications in shared memory and sensor
networks. Distributed transactional memory systems use distributed directories to atomically
access shared memory objects and execute transactions at the network nodes [10,21]. Sensor
networks use distributed directories to track moving objects [1,23].

We study distributed directories that facilitate access to a shared token ¢ on an asyn-
chronous weighted graph G = (V, E,w). The directory supports three operations: (i) publish,
which initializes the directory and announces the initial owner; (ii) lookup, which allows a
node to read the contents of the ¢; (iii) move, which moves ¢ to a new owner for exclusive
access. These operations may be issued and processed concurrently by the nodes in G.
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Several directory schemes based on an overlay data structure on graph G have been
developed, for which the amortized total distance traversed by the messages in a lookup or
move operation is close to optimal, namely within some poly-log factor to the number of
nodes n and the diameter of the graph [10,19,21,22]. However, these directory protocols
are not fault tolerant. If an edge failure occurs, they are not able to maintain a directory
structure that can support publish, lookup, and move operations.

In reality, a directory is implemented on a distributed network, and it is typical to have
unreliable networks with link failures between nodes. As processing nodes need to continue to
operate correctly during or after the occurrence of failures, designing fault-tolerant distributed
algorithms is important. We provide a directory protocol that tolerates edge failures with
provable correctness and performance guarantees.

We consider the impact of f > 1 edge failures. We assume that the edge failures do
not disconnect G, as otherwise, the token becomes unreachable in G making the directory
unusable. Nevertheless, edge failures may happen at arbitrary moments and concurrently.
Given the initial partition hierarchy, our protocol is fully distributed and handles the failures
without disrupting concurrent directory operations. We analyze the message complexity
of repairing the directory and provide performance bounds for the amortized cost of the
operations related to the number of failed edges f.

1.1 Contributions

We present a distributed directory that can handle edge failures without disrupting concurrent
directory operations. Our directory is inspired by the Spiral directory protocol [21]. Spiral
uses a sparse cover decomposition hierarchy of G that allows clusters at the same level to
overlap. Instead, we use a sparse partition hierarchy P of G that does not allow clusters
at the same level to overlap. As we will show, sparse partitions have improved asymptotic
performance in the directory operations, and are affected less by edge failures. We consider
two kinds of sparse partitions: weak, where the diameter of a cluster is with respect to all
nodes in G, and strong, where the diameter of a cluster is calculated within the cluster. Weak
partitions are available for more kinds of graphs than strong partitions [7,11].

To evaluate the performance of the directory and the repair operations, we analyze their
communication cost. For the basic directory operations (publish, move, lookup) that send
messages sequentially, the communication cost is the sum of the distances traversed by the
sequential messages for each operation. For the repair mechanisms, we often send several
messages in parallel, here the communication cost consists of the total number of messages
and the maximum distance that any one of these messages traverses.

Table 1 shows the communication costs of directory operations before/after f edge failures:

Publish: A publish operation costs O(D - logn). After f > 1 failures the publish

operation costs O(D’ -logn), where D is the diameter of G before the edge failures and

D’ is the diameter after the edge failures. Note here that we do not compare with the

optimal, as there is really no specific way that optimizes this step.

Lookup: For lookup, the message cost of our algorithm is an (’)(log3 n) approximation

of the optimal cost (compared to the shortest path to the token). This is a logn

factor improvement over Spiral [21]. With f edge failures, the approximation becomes

O(f -log® n) for weak partitions, and O(f -log? n + log® n) for strong partitions.

Move: For move, the amortized cost of a sequence of move operations is an

O(log D - log? n) approximation of the optimal. With f edge failures, the approximation

factor becomes O(f -log D’ - log® n) for weak and O((f + logn)log D’ - logn) for strong

partitions.
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Table 1 Cost of operations for general/special graphs and weak/strong diameter partitions;
publish cost is absolute; lookup and move costs are approximation factors compared to the optimal
cost; failures are f > 1; D' is the diameter of G after the f failures; special graphs include constant
doubling dimension, constant pathwidth (weak and strong partitions) and also fixed minor-free,
chordal (weak partitions only) for which sparse partition schemes with o, I € O(1) are known [7].

‘ Graph ‘ Partition ‘ Partition Parameters H Failures ‘ Publish ‘ Lookup ‘ Move ‘
general | any (O(logn), O(logn)) none O(D -logn) | O(log®n) O(log D - log” n)
general | weak (O(logn), O(logn)) f O(D’ -logn) | O(f -log>n) O(f -log D" -log® n)
general | strong (O(logn), O(logn)) f O(D’ -logn) | O(f -log”n +log®n) | O((f +logn)log D’ -logn)
special | any (0(1),0(1)) none O(D) o) O(log D)
special | any (0(1),0(1)) f o(D") o(f) O(f -log D)

Table 2 Cost of repair mechanism for general graphs and strong/weak partitions; o is a sparse
partition parameter, generally of order O(logn); p is the locality parameter usually a constant; a
cluster at level 7 has diameter at most op’ independent of the number of failures; the hierarchy
consists of log, D levels; D denotes the diameter of G before the edge failure, D’ denotes the diameter
of G after the edge failure; n denotes the number of nodes, m denotes the number of edges.

Operation Partition Size of Message Number of Messages Maximum Distance Traversed
H ‘ by Individual Message

Initialize Shortest Path Tree Update || any O(logn) O(n) O(D)

Update Shortest Path tree (per tree) || any O(logn) O(m) o(D")

Splitting a cluster (per level 4 strong O(logn) 1 op'

cluster) weak O(logn) 2 op'

Informing nodes within cluster of strong O(logn) O(n) ap'

split (per level i cluster) weak O(logn) O(n) 20p"

Informing neighborhood of leader || any O(logn) O(n?) P

change (per cluster)

Update Directory Path (per level) any O(logn) O(1) oO(D")

Updating the Special Parent strong O(logn) 2 op'

Information of level i cluster weak O(logn) 2 20p"

For special kinds of graphs [7], we get better bounds which are O(1) (for f failures O(f))
approximation for lookup, and O(log D) (resp. O(f -log D’)) approximation for move, while
the cost of the publish operation is simply O(D) (resp. O(D’)).

We also analyze the repair communication costs (see Table 2). To maintain the sparse
partition, we store a spanning tree within each cluster of P. If an edge fails in the spanning
tree of a cluster X, we split X into two. This requires one message in a strong and two
messages in a weak sparse partition of size O(logn), traversing a distance of at most op
(the cluster diameter) in a strong partition and at most 20p® in a weak partition, where o
and p are parameters defining the sparse partition hierarchy (cf. Subsection 1.2). There are
additional steps, such as informing all nodes within X of the split, requiring O(n) messages
of size O(logn) traversing similar distance. More details are given below.

1.2 Techniques

Each level of the hierarchy P is a partition of V(G) into clusters obtained from a (o, I)-sparse
partition scheme. At level i, each cluster has a diameter of at most op’ (where p is a constant),
and the p’-neighborhood of a node intersects with at most I of these. The highest level of P

consists of a single cluster, while on the lowest level, each node of G forms its own cluster.
We pick a leader in each cluster X of P. The leader of the highest level is called the “root”.

The distributed directory maintains a directory path ¢ from the root to the current
owner of the token ¢ (see Figure 2). On each level of P, exactly one leader node belongs
to ¢ and has pointers to the directory path nodes at the level above and below, forming
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a double linked list. All operations are executed through message passing. The directory
path is initialized by the first owner of ¢ through a publish operation. A lookup or move
operation, issued by a node v, searches for ¢ by checking the level i leaders of the nodes
in the p*-neighborhood of v, for all increasing levels i. When the operation discovers the
directory path, it follows ¢ toward the token ¢. A move operation changes the directory path
toward the new owner while it searches for ¢.

To search for the directory path, node v needs to know the leaders of the nodes in its
pi-neighborhood for 0 < i < h. To avoid double computation, every node pre-computes this
information. Edge failures can increase the distance between some nodes, thereby affecting
the precomputed p’-neighborhoods. To update the preprocessed information, every node v
maintains a shortest path tree T'(v). When an edge on T'(v) fails we use King’s fully dynamic
algorithm for maintaining shortest path trees [13] to update it. To initialize the update of
the shortest path trees the endpoints of the failed edge inform the nodes whose shortest
path tree are affected. This requires at most O(n) messages of size O(logn) that traverse a
distance at most O(D), where D is the diameter of G before the edge failure.

To improve the performance of lookup operations, a leader node I(X) added to ¢ at
level 7 informs its level i’ leader l;/ (I(X)) for i’ =i +log,(c'o) for an appropriately chosen
constant ¢/. We call [;;(I(X)) the special parent of I[(X). When a lookup operation finds the
special parent of a node on the directory path, it traverses the directory path from there.

Upon an edge failure, both endpoints detect the failure immediately. In response to the
failure, we update P to maintain the directory’s performance. For each cluster X, we store a
spanning tree T'(X). When an edge e on T(X) fails, we split X into X; and X5. X; has
the same leader as X, and X5 has a node incident to e as its leader. (If in a weak diameter
partition e is outside X, {(X32) is selected appropriately in X5.) This mechanism ensures that
the diameter of any level i cluster of P is at most 20p’ regardless of the number of failures.
The sparse partition scheme ensures that in a strong partition, at most one cluster splits per
level of P, and in a weak sparse partition, at most I clusters split. All these processes are
initialized by the two endpoints of the failed edge.

When a cluster X with a leader on the directory path splits, we update the directory path
to include the leader of the node that added I(X) to ¢. This ensures that lookup and move
operations find ¢ at a level proportional to the distance between the token owner and the
node that issued the operation. To update the directory path, the leader nodes of I(X;) and
[(X2) need to communicate with each other and with the leader nodes on the directory path
at the level below and above X. The whole process requires O(1) messages of size O(logn),
traversing a distance of at most O(D’), where D’ is the diameter of G after the edge failure.

We update the special parent information and notify nodes in the p’-neighborhood of
nodes in X5 about the leader change as we update P and ¢. To update special parents for a
level i cluster X, two messages of size O(logn) are required, traversing a distance of at most
op’ in a strong partition and 20p" in a weak partition, where ¢’ is the level of the special
parents. To notify the p’-neighborhood of nodes in X5, O(n) messages of size O(logn) are
required, traversing a distance of p°.

In unweighted graphs, a failure can at most double the diameter of G [3]. However, as
illustrated in Figure 1, the diameter increase in a weighted graph may not be bounded. To
accommodate such changes, we ensure that the number of layers in P equals log, D', where
D' represents the current graph diameter. When adding layers to the partition hierarchy, we
extend the directory path accordingly.
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Figure 1 An example of a graph showing that we cannot bound the stretch in the diameter of the
graph. Assuming X > 1 the initial graph has diameter 3. If edge {u, v} fails, the diameter becomes
2 + X. Without further assumptions on X this cannot be bounded as a constant multiple of 3.

1.3 Related Work

An alternative way to implement a distributed directory is to use a spanning tree T on G.

The edges of T are directed toward the owner node of the token. If node u requests the
token, then the move request redirects the edges of the tree toward u (edge reversal). The
benefit of the tree is that it can easily handle distributed requests since concurrent move
operations are ordered when they intersect on the tree. Several protocols have been proposed
based on trees: Arrow [4,9,14,20], Relay [24], Ivy [15], Arvy [12]. The approximation factor
of the operations is O(log D), with respect to the diameter Dy of T. However, by using a
tree the performance of the lookup and move operations may be sub-optimal with respect to
G, as T may not accurately represent the distances in G. Considering the distance stretch s
of the tree the approximation becomes O(slog Dr), and s can be as large as the graph G
diameter D. Nevertheless, considering an appropriate overlay tree that preserves on average
the pairwise node distances of G [6], it is possible to get close to optimal performance on
the average case for a set of random source operation requests [8,18]. Our approach, on the

other hand, has guaranteed performance for arbitrary sources of requests (not just random).

Another work [5] considers fault-tolerant routing and labeling schemes. These rely on
knowing the destinations of messages. In our case, the destinations are leaders which may
not be immediately known after the failures. Hence, we cannot rely on such routing schemes
directly to implement the fault-tolerant directory. Another line of research related to edge
failures maintains fault-tolerant sparse spanners of G that preserve the stretch (usually
poly-log) of the distances in G even after edge or node failures [2,17].

Outline of the Paper

In Section 2, we give some necessary definitions and define our model. Section 3 presents
the basic directory scheme without failures and Section 4 describes our failure response
mechanisms and analyzes their costs. A performance analysis of the directory after f failures
is given in Section 5. In Section 6, we describe the integration of these mechanisms into
the protocol. We conclude in Section 7. Omitted proofs and the pseudocode appear in the
appendix. (The cases of concurrent edge failures and handling transient failures are discussed
in the full version of the paper.)

2 Definitions and Preliminaries

Let dg(u,v) denote the length of a shortest path between v and v in G. The r-neighborhood
of a node u, denoted Ng ,(r), is the set of nodes that are within distance r to u. The
diameter of a graph is diam(G) = max, yev(g) da(u,v). For a set X CV, let G[X] denote
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the subgraph of G induced by X. There are two ways to measure the diameter of X: (i)
weak diameter, diamg(X), which considers all possible shortest paths in G that may also
use nodes outside X; (ii) strong diameter, diamgx1(X), which considers only paths in X.
A partition of G is a collection of disjoint sets of nodes whose union is V. A sparse
partition is a partition that restricts both the diameter of each cluster and the number of
clusters within a specific distance. There are weak and strong sparse partitions that differ in
whether the weak or strong diameter of a cluster is restricted.
A (r,0,I)-weak (strong) sparse partition of G satisfies two properties:
(i) each cluster has weak (strong) diameter at most ro, and
(ii) the r-neighborhood of each node u € V intersects at most I clusters.
A (o, I)-weak (strong) sparse partition scheme is a procedure that gives a (r, o, I)-weak (strong)
partition for any r > 0. Jia et al. [11] give a (O(log n), O(log n))-weak sparse partition scheme
for an arbitrary metric space and general graphs. Filtser [7] gives a (O(logn), O(logn))-
strong partition scheme for general graphs based on the clustering technique by Miller et
al. [16]. There are (O(1),O(1))-partition schemes for special network topologies such as for
low doubling-dimension and fixed minor-free graphs [7,11].

2.1 Model

We model the distributed network as a weighted graph G = (V, E,w) with positive edge
weights of at least one. The weight of an edge e = {u, v} represents the cost of sending a
message over edge e. The cost of an operation is the sum of the edge weights the request
traverses. The goal of a distributed directory is to minimize the total communication cost for
a request in the worst case. The edge weight represents solely the cost of sending a message
but does not indicate the delay or latency of an edge. In particular, for the correctness of
our protocol, no message synchronization is needed.

Each node u stores a shortest path tree T(u) with root(T(u)) = u. The shortest path
trees are built such that the shortest paths are consistent, meaning the path from u to v
stored in T'(u) is identical (reversed) to the path from v to u stored in T'(v).

The communication in our network is asynchronous, and messages sent along the same
edge are delivered in the order they are sent. All messages have the same size O(logn) and
are transmitted along shortest paths.

Our directory is built on a sparse partition hierarchy P of G = (V, E,w). Our directory
works for strong and weak sparse partitions, but we show that they have different performances.
We construct P using any of the aforementioned partition schemes. We use diam(X) to
denote the strong or weak diameter of cluster X, depending on the partition type. The
partition hierarchy P comprises h = [log o D17 levels with an exponentially increasing locality
parameter p at each level. At level i (0 < i < h), we define P; as a (r;, 0, I)-sparse partition
of G, where r; = min{D, p'}. We define level -1 where each node of V is a cluster by itself
(r—1 =0). At top level h, Pj, comprises of a single cluster that covers the entirety of V.

We select a leader I(X) in each cluster X of P. At P_;, each node is the leader of its own
cluster, while the leader of the single cluster in P}, is called the root. Each node u € V' belongs
to exactly one cluster in each level of P, denoted by C;(u), and its leader is I;(u) = I(C;(u)).
Each node knows the leader of all the clusters to which it belongs.

To maintain the sparse partition in the presence of edge failures, we store a spanning tree
T(X) for each cluster X. In a weak sparse partition, 7'(X) is the shortest path tree of I(X),
while in a strong sparse partition, 7'(X) is a shortest path tree of G[X] with root [(X). The
choice of spanning tree ensures that for any node u in X, the path on T'(X) connecting u
and [(X) is at most diam(X). We denote the subtree of 7'(X) rooted in u by T\, (X). Every
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Figure 2 An example of a move operation. Left: a node issues a move request, which starts
the bottom-up formation of a new directory path. Middle: the new directory path intersects the
existing directory path ¢; the part of ¢ from the intersection until the old owner will be deleted.
Right: the token has moved to the new owner and the directory path ¢ has been revised accordingly.

node u on T(X) knows T(X). In a weak sparse partition, u also knows which nodes belong
to X. To store this information, a node in a weak sparse partition requires O(Ihn) memory,
and a node in a strong sparse partition requires O(hn) memory.

3 Directory Scheme

The directory supports three operations: publish to build the initial directory path, lookup to
read the current value of the token, and mowve to request ownership of the token and update
the directory path. All three operations are executed through message passing. Nodes can
issue lookup and move operations at any moment and simultaneously. Lookup operations
simply get a copy of the token from the latest token owner. Concurrent move operations from
different nodes are ordered through the directory because there can only be one token owner
node at a time. Hence, the directory acts as a distributed queue for the move requests. The
queue ordering is implicit by the way the concurrent move operations intersect each other
in the directory data structure. The directory ensures that the previous token owner will
know which node is the next token owner. In this way, the token is passed from its previous
owner to the next in the queue. There is no requirement that the requests are served in a
particular order, but every move request has to be served eventually. (The pseudocode of
the directory is displayed in Algorithm 1 in Appendix C.)

The token resides at an owner node at the lowest level. There is a virtual directory path
¢ that points to the owner (see Figure 2). The path ¢ consists of h + 2 leader nodes, one
node at every level of P. Let ¢; denote the leader node of ¢ at level ¢, for —1 < i < h, where
¢_1 is the token owner and ¢, is the root. For each level i, 0 < i < h — 1, leader ¢; has
pointers to ¢;—1 and ¢; 1 which form a virtual doubly linked list.

The directory path is created via the publish operation. The initial owner u sends a
publish-message to its leader nodes at every level of P, namely ¢; = l;(u). This operation
creates the pointers from ¢; to ¢;—1 (both ways) for 0 < ¢ < h. Theorem 1 measures the
cost of a publish operation and the length of the initial directory path. In the next result,
cost(publish) is the total distance that the publish-message traverses.

» Theorem 1. The cost of the publish operation and the length of the initial directory is
O(D).

Proof. To build the dlrectory path node u contacts each of its leader nodes. Therefore,
cost(publish) < ZZ 0opt = "pp 17— Since the nodes on the directory path u’s leaders, the
distance between consecutive nodes is at most d(¢;, pi+1) = d(l;(w), lip1(uw)) < d(l;(uw),u) +
d(u,li11(u)) < o(pt + p**1). Summing over the entire directory path gives length(¢) <

o ht1
S olpi + pisr) < % = O(pa™). <
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To locate the token, the issuer of a lookup or move operation first searches for the
directory path (Figure 2). Once a leader node of the directory path is found, the token owner
is reached by following ¢. To search for the directory path, a node sends messages to leader
nodes near itself at increasing levels of P: Let P;(v) be the set of clusters in P; that intersect
Ng . (p'), where |P;(v)| < I. Node v checks whether any of the leaders in P;(v) equals ¢; for
0 < i < h. The search stops at the lowest level where a directory path leader is found (at
the root in the worst case). The next Lemma bounds the cost of searching level 4 for ¢.

» Lemma 2. The sum of all distances that messages travel during the search of the directory
path at level i in a lookup or move operation issued by node u is O(piol).

Proof. Node u contacts every leader in P;(u). By definition, |P;(u)| < I. Further, if X
is in P;(u), then there exists a node x in X with d(u,z) < p’. Therefore, d(u,l(X)) <
d(u,x) + d(x, (X)) < p* + op’. Summing over all clusters in P;(u) gives the result. <

A move operation by node v modifies the directory path to denote the new ownership at
v. The new directory path is formed in a bottom-up way while v searches for the existing
directory path (Figure 2). Node v first adds {_1(v) to the directory path. Let ¢;, j > 0, be
the first node of ¢ that v discovers. For levels 0 < ¢ < j, node v searches P;(v) and adds
l;(v) to the directory path when it does not find ¢;. At level j node v finds ¢;, which will
remain then in the directory path but its pointer changes to ;71. The move operation then
follows the old directory path toward ¢_;. While going down the move operation deletes the
leaders from the old directory path, that is, ¢;_1 ---¢_1 are removed from ¢. Hence, the
new directory path is ¢y, -+~ ;@ _; -+ 8. ;.

Concurrent move operations create multiple partial directory paths. However, only the
latest directory path includes the root node. To ensure a unique complete directory path
(without splits or gaps) from the root to the owner, the upward phase of a move is atomic.
Contacting ¢; about the directory path triggers an immediate update of its downward pointer
to ¢;_,, directing subsequent operations to the new path. As sub-paths merge, the distance
between consecutive nodes on the directory path can increase, as shown by the next lemma.

» Lemma 3. The distance between two consecutive nodes ¢; and ¢;11 on the directory path
for =1 <i < h is at most d(¢;, piv1) < o(p' + piTh) + pith.

Proof. Consider two consecutive directory path nodes ¢; and ¢; 1. There were either added
by the same node v, in which case d(¢;, ¢i11) < d(¢i,v) +d(v, ¢iv1) < o(p’ + pi*h), or some
node v added ¢; to ¢ and then found ¢;41 during its search of level i + 1. In this case,
there must be a node w in v’s piTl-neighborhood that belongs to ¢;y1’s cluster. Hence,
d(bis pir1) < d(diyv) + d(v, w) + d(w, dis1) < o(p’ + p ™) + p . <

The continuous modifications of the directory path imply that not all leaders on the
directory path contain the current token owner w in their cluster. To ensure that a lookup
operation issued by node u discovers the directory path at a level proportional to its distance
to w, we use the concept of a special parent (as in Spiral [21]). Every leader node I;(x) that is
added to ¢ informs leader node l;s (), where i’ = i +log,(c’c), for an appropriately constant
c. We call I;(z) the special parent of I;(x) with respect to level i. When node u searches for
the directory path, it asks the leader nodes if they are part of the directory path, or if they
are the special parent of a node on the directory path. If it finds a special parent, it takes
the link to the node on the directory path and continues the search from there. Like the
directory path itself, special parent information is updated during a move operation. If a
move removes a node from the directory path while a lookup follows a link from a special
parent to that node, the lookup goes back to level ¢’ and continues the search from there.
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Using Lemmas 2 and 3, we obtain the following results for the lookup and move costs
when there are no failures. (The proofs of these two results appear in the full version of the
paper; here we focus on the fault analysis aspects.)

» Lemma 4. A lookup operation finds the token with a cost that is a O(o?pl) factor from
optimal.

Consider a sequence of move requests S = sy, ..., 54, that execute in a sequential manner,
so that s; starts only after s;_; completes, where i > 0.

» Lemma 5. The total cost of the move operations in S is a O(hpo(o + I)) factor from
optimal.

4 Responding to Edge Failures

In case of edge failures, our clustering may no longer satisfy the properties of a sparse
partition, and some of the shortest path trees that nodes store may become disconnected. To
guarantee the correctness and performance of our algorithm, we update our data structures
accordingly. To accomplish this, we modify the operations described in Section 3 as follows:
1. Each node on ¢ remembers the node that added it to ¢.

2. When w contacts [(X) in a lookup or move operation to find the directory path, it

includes a list of the nodes from w’s p’-neighborhood that it believes are part of X.

3. Node w contacts a level i leader node [(X) only if d(w,l(X)) < p* + 20p".

Whenever an edge e fails, our update mechanisms recompute all shortest path trees that
contained edge e, split every cluster whose spanning tree contained edge e, and update the
directory path accordingly. We discuss each of them below.

4.1 Updating Shortest Path Trees

Each node in our protocol stores a shortest path tree, which we update when an edge
e = {u,v} on the tree fails. We use King’s fully dynamic algorithm to maintain the shortest
path trees in the presence of edge failure [13]. Updating a single tree takes O(md) time,
where m is the number of edges in G \ {e}, and d is the maximum distance of a node to the
root of the tree. To use King’s centralized algorithm in a distributed system, we let the root
node compute the updated shortest path tree. This causes an additional cost because we
need to inform the root node of the available edges. Namely, we need to inform the root of
at most O(m) edges with a maximum distance of D’ from the root.

The updating of the shortest path trees is initialized by the endpoints of the failed edge
e = {u, v}, which can detect the failure immediately. The consistency assumption we placed
on the shortest path trees implies that u and v know if any tree needs to be updated.

» Observation 6. If edge e = {u, v} is part of the shortest path tree of a node w, then edge
e is also part of the shortest path tree of u and v.

To initialize the updates, nodes u and v send a broadcast along the remaining parts 7T'(u)
and T'(v). The next lemma bounds the cost of this operation.

» Lemma 7. To initialize the update of the shortest path tree, O(n) messages of size O(logn)
are required, that travel a mazimum message distance of D, where D is the diameter of G
before the failure of e.
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4.2 Reclustering

When an edge e fails, we split every cluster X whose spanning tree contains e into two. For
the reclustering, we distinguish between the root level and clusters below the root level.
For clusters below level h, we define the two new clusters as X; = X \ (X NT{,(X)) and
Xy = X NT\,(X). The leader node of X; is the same as that of X, and for Xs, either
v becomes the new leader (if using strong sparse partition) or the closest node to v in X
(if using weak sparse partition). The spanning tree for X; is T'(X) \ T\, (X) and for X is
T\, (X) rerooted at [(X3). The following lemma bounds the diameter and the number of the
generated clusters.

» Lemma 8. Let X be a cluster at level i, —1 < i < h, and suppose at most f edges fail.
Then X splits into at most f + 1 clusters. Fach new cluster X;, generated from X, has
diameter at most diam(X;) < 20p7.

Similar to the update of the shortest path tree, the splitting of the clusters is initiated
when the endpoints of the failed edge detect the failure. Recall that v and v both know
which clusters have e in their spanning tree. For every cluster X that needs to split the
path on T(X) from {(X) to one of the endpoints of e, say u, the part between u and [(X)
remains unaffected by the failure of e. Therefore, u can inform I(X) of the failure by sending
a message along T(X). If node v is not in X (i.e. weak diameter sparse partition), it chooses
a node w closest to it on T'(X) from X N\, (X) to become the new leader node and sends a
message to w to inform it of the reclustering and its new leadership role.

» Lemma 9. Splitting a level i cluster requires one message in a strong and up to two messages
in a weak sparse partition. These have size logn and traverse a distance of at most op'.

When [(X;) is informed about the failure and I(X3) knows whether it is part of the
directory tree (see Section 4.3), both broadcast the update to all nodes in their respective
cluster so that these can update their knowledge of T'(X) and the leader for the nodes in Xo.

» Lemma 10. To inform all nodes in X1 and X5 of the cluster change we need to send O(n)
messages, each of which has size O(logn). In a strong partition, the maximum distance a
message traverses is op' and in a weak sparse partition, the mazimum distance is 20p".

When the nodes in Xy are informed of the cluster change, they forward this information
to their p*-neighborhood, so they can update their preprocessing information.

» Lemma 11. To inform the p'-neighborhood of the nodes in Xo about the new leader requires
O(n?) messages of size O(logn). The maximum distance traversed by any message is p'.

Initially, P consists of log, D layers, where D = diam(G). To maintain this relationship
between the number of layers and the diameter, we add layers to P as the diameter increases.

Consider the single cluster X at level h. Before the edge failure, we have d(r,u) < gp"
on T(X) for all nodes u € V. Hence, if the failed edge e does not lie on T(X), then the
diameter of G is at most 20p". In this case, we do not modify the root level.

If edge e lies on T(X), then r’s updated shortest path tree tells us if we need to increase
the number of layers. Let V7 and V5 be the partition of the vertices of G defined by the
connected components of T(X) \ {e}, and assume w.l.o.g. that r € V4. By Lemma 8,
diam(G[V1]) < 20p" and diam(G[Vz]) < 20p". Let v be the node in X, closest to 7 before

h+1

the edge failure. If after the edge failure, the distance from 7 to v is d(z,r) > op*! — 20p",

then we increase the number of layers to i/, where h' = min,ez{op® > d(z,r)} for all z € V.
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We split the level h the same way that we split lower level clusters whose spanning tree
contains edge e. Levels h+1,...,h' — 1 are simply copies of level h, and the directory path
goes through the copy of the cluster that is part of the directory path at level h.

When the single cluster at level h splits, both leader nodes of the two generated clusters
inform the nodes in their clusters about the additional layers. This information can be
included in the usual message [(X7) and [(X3) sent to the nodes in their clusters when a
failure occurs. This message will cause the directory path nodes at levels h — (i +log,(c'o)) +
L,...,h —i+log,(c'o) to send a message to their special parent, so that this information is
also extended to the additional layers. Level b’ is a single cluster that contains the entire
graph. The leader node is r and the spanning tree is T'(r).

4.3 Updating the Directory Path and Special Parents

We need to ensure that the directory path and special parent information are maintained
during cluster splitting. When a cluster X splits, we check if [(X) is on the directory path.
If it is not, then neither {(X7) nor [(X2) will be. If it is, then [(X) can determine whether
[(X7) or [(X3) becomes part of the directory path by checking if the node that added I(X) to
¢ remains in X;. Once I(X) knows about I(X2)’s role, it informs v (using T'(/(X))). If v is
not [(Xs), then it forwards this message to I(X3). If {(X3) is to become part of the directory
path, then the message contains the ids of ¢;_1, ¢;4+1, and the id of the node that added
[(X) to the directory path. With this, [(X52) sets its pointers to ¢;+1 and ¢;_; and informs
them to update their pointers too. When they receive {(X5)’s message ¢;—1 and ¢;41 send
a message to {(X) to remove its outdated directory path pointers. If I(X3) is not on the
directory path, then {(X)’s messages simply informs [(X3) that it is not part of ¢.

o Qi-1

Figure 3 The steps of updating the directory path at level i: 1) Node ¢; sends a message to ¢;—1
and ¢;+1 to inform them about the update. 2) Node ¢; informs ¢} to join the directory path. If we
are using a weak sparse partition, node v acts as an intermediate in the message transfer. 3) ¢; sets
pointers to ¢;—1 and ¢;4+1 and sends them a message so they update their pointers too. 4) ¢;—1 and
¢i+1 change their pointer to ¢; and send a message to ¢; to remove its pointers. 5) ¢; removes its
pointers to ¢i+1 and ¢;_;.

For simplicity, we prevent consecutive nodes on the directory path to update concurrently
(when the modification is due to an edge failure). Therefore, if ¢; = [(X) needs to be replaced
by {(X3), then ¢; will first contact ¢;—; and ¢;+1 to inform them of the update, before
messaging [(X3). Neither of them will be able to initialize an update on their level until the
update at level ¢ is complete. In case two subsequent nodes attempt to initialize an update of
the directory path simultaneously, then the node with the lower id will be allowed to update
first. The process of updating the directory path is displayed in Figure 3. In the next lemma,
we bound the cost of updating the directory path.

» Lemma 12. To update the directory path we send O(1) messages of size O(logn) which
travel a distance at most O(D’) where D' = diam(G \ {e}).
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At the same time that we modify the directory path, we also update the special parent
information of I(X;) and {(X3). When [(X;) and [(X3) update ¢, they also send a message
to their special parent instructing them to update their pointers accordingly.

» Lemma 13. To update the special parent information we send two messages of constant
size that traverse a distance of at most Upi in a strong sparse partition and at most 2c7pil mn
a weak sparse partition, where i' =i+ log,(c'c).

5 Analysis of Algorithm

We examine our protocol’s performance with up to f faults. Edge failures may stretch the
directory path, leading to delayed updates of special parent information. Consequently,
operations that occur during or immediately after a failure may experience additional costs,
referred to as transient operations. Once the directory path is rebuilt by a publish or move
operation and the special parent information is updated, operations are considered normal
operations. Here we analyze the cost of normal operations. (We discuss transient operations
in the full version of the paper.)
We first bound the length of the directory path after failures.

» Lemma 14. Suppose that since the last edge failure, the directory path has been rebuilt up
to level i. Then the length of the directory path up to level i is at most O(ap?).

Before we analyze the cost of lookup and move operations, we bound the number of
clusters affected by an edge failure.

» Lemma 15. A failure of edge e = {u,v} splits at most h clusters in a strong, and Ih
clusters in a weak sparse partition.

In addition, if an edge failure occurs, we may add extra layers to the directory to
accommodate the increased diameter. As explained in Section 4.2, the number of added
layers is proportional to the diameter increase.

We now analyze the cost of lookup and move operations when up to f failures occur.

» Theorem 16. Suppose we are using a strong sparse partition and that f edge failures have
occurred. After updating our data structures, a lookup operation finds the token with cost
that is O(c(I + f)p) factor from optimal.

Proof. Suppose node u issues a lookup request while the current owner is node v, where
u # v, and p~! < dg(u,v) < p’. This implies the optimal cost is at least dg(u,v) > p*~L.

Let w be the directory path node at level i. By Lemma 14, the segment of ¢ from v to
w is at most cjop’ for some constant ¢;. Hence, dg(v,w) < cyop’. Therefore, dg(u,w) <
dg(u,v) + dg(v,w) < caop?, for some constant ¢y > 1 + c1.

Let s, be the special parent of w, which is the leader of the cluster that includes w at level
i" = i+log,(c'c), for a constant ¢’ > cy. Since pi" = cop’, node s, is in the p' -neighborhood
of u. Therefore, the lookup operation is guaranteed to discover s,, at level 7.

We sum the cost of the search up to level ¢/. On each level, node u contacts at most I + f
leaders by Lemma 15. When node u contacts a cluster leader node [(X) at level 4, then there
must be a node z in X such that d(u,z) < p’. Hence, the distance between u and [(X) is at
most d(u,l(X)) < p* + 20p' < cop® for some ¢ > 1+ 20. Therefore,

i
cost upward phase < Z(I + fleap’ = O(*(I + f)p?).
§=0
The cost of the downward phase is given by Lemma 14. Thus, for strong sparse partitions,
the total cost of a lookup is O(c?(I + f)p?) which is O(a?(I + f)p) factor from optimal. <«
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» Theorem 17. Suppose we are using a weak sparse partition and that f edge failures have
occurred. After updating our data structures, a lookup operation finds the token with cost
that is O(a®fIp) factor from optimal.

Proof. The proof is identical to Theorem 16, except that after f edge failures P;(u) < fI,
according to Lemma 15. Thus, the lookup operation visits up to fI clusters on each level. <«

» Theorem 18. Consider a sequence S of move requests S = s1,...,sq that are all issued
after the f™ edge failure and which are executed sequentially. The total cost of the move
operations in S is a O(W op((I + f) + o) factor from optimal in a strong sparse partition
(for sufficiently large S).

Proof. Let S; = s;,,8iy,.-.,5i., 0 < i < k', be the sub-sequence of S that reach level i in
their upward phase, where A’ is the highest level of P after the f failures. And let u;; be the
issuer of s;,. Define s;, to be the last move operation prior to S that reached level 4. If no
such operation exists, s;, is the initial publish operation.

Operation s;; forms a new directory path p;; that links the leaders of u;; up to level i — 1.

At level 4, p;; links to ¢;, which is the level i leader of a node in u;,’s p'-neighborhood.

We show that d(us,_,,us;) > p~1, for j > 0. Between si;_, and s;; no operation modified
¢;i—1. Since si, reaches level 1, it does not discover ¢;_1 = p;,_, at level 7+ — 1. This implies
that u;,_, is not in the pit

Let C*(S;) denote the optimal cost of the operations in S; and C* be the optimal cost
of all operations. Since the distance between any two consecutive nodes in S; is more than
p~1, we have that C*(S;) > |S;|p'~!, which implies that

. . YOS SIS
> ) > &= = .
CH(8) Z max C7(S) =2 =57 > T

—neighborhood of u; ;.

(1)

The cost of searching for the directory path up to level i is, the same for a move and a
lookup operation. Hence, cost(S; upward phase) < |S;|ca?(I + f)p’ for some constant c.
For the downward phase, we need to be more careful because s;, could be a transient

operation for 0 < ¢ < A/, that encounters two consecutive nodes ¢ and ¢p_1 with distance
up to d(¢g, pr—1) = D’, where D’ is the diameter of G after the f edge failures. However, for
each sub-sequence S;, where 0 < i < A/, only s;, can be a transient operation as subsequent
operations will traverse the updated directory path. For normal move operations, we can
bound the downward phase by the length of the upward phase. Hence, we have
W
C(S) SW'D'+2) |Silea®(I+ f)p'. (2)
i=0
From Equations 1 and 2, we get the competitive ratio for the move operations in S. For a
strong sparse partition we have

C(S) _ (W + )WD' + 250 |Silea T+ o) _ i -
(9 = SOTE = O(Wop((I + 1) +0)),

where we assume the second term to be the dominating one, which holds for a sufficiently

large set of move operations S (namely, |S| = Q(h/2D")). )

» Theorem 19. The total cost of the move operations in S is a O(Wop(fI+ o)) factor from
optimal in a weak sparse partition (for sufficiently large S).

Proof. The proof is identical to Theorem 18, except that to search a single layer for the
directory path, node u needs to contact |Py(u;;)| < fI clusters in a weak sparse partition. <
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6 Adding Fault Tolerance to the Directory

In this Section, we explain how to integrate the fault-tolerance mechanisms into our directory.
Here, we consider failures of one edge at a time. (Concurrent edge failures are discussed in
the full version of the paper.) We first explain why we modified the directory operations as
described at the beginning of Section 4: The first modification lets us determine if we need
to update the directory path due to an edge failure. The second and third modifications
ensure correctness and performance during the upward phase of a lookup or move operation.

When node w searches for the directory path its preprocessing information determines
which nodes it contacts. If the leader of a node in w’s p’-neighborhood changes due to a
cluster split, then w might contact the wrong leader if it does not get informed of the update
in time. By including a list of all nodes that w believes to be part of the cluster when
contacting a leader about ¢, the leader can inform w if a node is no longer part of the cluster.
In this case, w knows that it needs to wait for a cluster update to contact all leaders.

The distance to a leader [(X) of a node z in w’s p’-neighborhood is at most d(w, (X)) <
d(w,z) + d(z,1(X)) < p* + 20p* (by Lemma 8). If the distance between w and the node
whom it believes to be z’s level ¢ leader is larger, then a cluster split must have occurred.
Therefore, instead of paying a too high cost, w waits for a cluster update info by node z.

We discuss the cases of edge failures on the shortest path tree and during move operations.
(The case of publish and lookup operations are covered in Appendix B.)

6.1 Edge Failure on the Shortest Path Tree

When an edge on T'(w) fails, w updates T'(w) immediately upon being informed of the failure,
regardless of whether w was in the middle of a directory operation. All directory operations
rely on T'(w): publish uses it to contact the leaders of w at the lowest cost possible, move
and lookup further use on it to determine whose leaders to contact at each level.

If w is notified of the failure while performing an operation, it stops the operation, updates
T(w), and then resumes the operation. For a publish operation, w simply continues. For
lookup and move operations, node w takes into account the updated shortest path tree:
Suppose the edge failure increases the distance from x to w from d to d’, where p?~! < d < p/
and p*~! < d’ < pF, while w searches level i for the directory path. If j > i and k > j, then
the first time w contacts x’s leader node is at level k& (unless w contacts z’s leader due to a
different node in the cluster). If j <i and k > ¢, then w does not contact C;(x), unless it
already did so before being informed about the edge failure, or because there is a different
node in w’s p’-neighborhood that belongs to cluster C;(z). The first time it contacts z’s
leader node is at level k. If j < ¢ and k < ¢, then w will contact cluster C;(z) during its level
1 search and at each subsequent level until it finds the directory path. The downward phase
of a lookup or move operation is not affected by the edge failure on T'(w).

6.2 Edge Failure during Move Operation
While Searching for the Directory Path

The search phase of a move issued by w can only be affected by the edge failure if w needs
to contact the leader of a cluster that splits due to the edge failure. Suppose that the level ¢
leader of a node z in w’s p‘-neighborhood changes due to a split of a cluster X.

There are two cases to consider depending on whether w is informed about the change
before or after contacting [(X). If w is informed before, then there is no issue. Otherwise,
two sub-cases arise. If [(X) is already aware of the failure, it informs w that it is not z’s
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leader, causing w to wait for the cluster update message from z. If not, [(X) responds to

w’s message as though = was still part of the cluster, and w does not need to contact x’s

new level ¢ cluster since the information received from [(X) is valid for w’s new cluster.
The new directory path built during the search is unaffected by the failure of edge e.

While Following the Directory Path Downward

Assume the edge failure occurs while w’s move follows the directory path down. If the
downward phase of the move operation does not encounter any clusters that split, an update
at level ¢ completes before the move reaches level 4, or if the directory path remains unchanged,
then the failure does not affect this phase.

Suppose that the split of cluster X results in a modification to the directory path at level

i, and [(X) realizes the need for the modification before the move operation reaches ¢;1.

Two cases arise: If (X)) has already initialized the modification at level i, ¢; sends a message
to ¢;41 to inform it of the update. In this case, ¢;+1 does not forward the move message
until the modification is complete. If cluster X is waiting for a modification of the directory
path at a level above or below 4, the move operation either halts before reaching level 7 if
the modification occurs above . Or, if the modification occurs below ¢, the move operation
traverses the old pointers up to the modified level and removes them, preventing I(X) from
initializing a directory path modification.

7 Conclusions

We presented a fault-tolerant directory scheme based on sparse partitions that tolerates
edge failures. We showed that the performance of the directory is linearly affected by the
number of failures f. We showed how to adjust the clusters due to failures to transform the
o and T parameters, such that o simply doubles while I is affected by either a f factor (weak
diameter clusters), or f additive term (strong diameter clusters).

There are a few open questions that remain to be studied. One is to handle partitions of
G due to failures. The connected component that contains the token can still function and
respond to operation requests. A related problem is examining the impact of node failures.
If G has bounded-degree d a node failure corresponds to at most d edge failures, then the
techniques we developed could be adapted to analyze node failures.

Another line of research related to preserving distances is building fault-tolerant sparse
spanners. A sparse spanner of G is a subgraph H such that the pairwise distances on G are
stretched by a small factor on H. There exist fault-tolerant sparse spanners that maintain
the stretch of the distances even after edge or node failures [2,17]. Inspired by this, a future
research direction is to design failure-oblivious sparse partitions with appropriate multiple
pre-selected leaders in each cluster. Such leaders would be able to handle the failures without
the need for cluster restructuring.
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A  Omitted Proofs

» Observation 6. If edge e = {u, v} is part of the shortest path tree of a node w, then edge
e is also part of the shortest path tree of u and v.

Proof. If this was not the case, then the shortest paths from w to u and v stored in T'(w)
cannot be consistent with the shortest paths from v and u to w stored in T'(v) and T'(u). <

» Lemma 7. To initialize the update of the shortest path tree, O(n) messages of size O(logn)
are required, that travel a mazimum message distance of D, where D is the diameter of G
before the failure of e.

Proof. Broadcasting the id of the failed edge allows any node to detect if it needs to update
its shortest path tree. The remainders of T'(u) and T'(v) contain at most n nodes and the
maximum distance from any node to the root is at most D. |

» Lemma 8. Let X be a cluster at level i, —1 < i < h, and suppose at most f edges fail.
Then X splits into at most f + 1 clusters. Fach new cluster X;, generated from X, has
diameter at most diam(X;) < 20p7.

Proof. The connected components of T'(X) \ F', where F is the set of failed edges, form the
final clusters. Since T'(X) N F C F, we remove at most f edges from 7'(X), which means
T(X)\ F has at most f + 1 connected components.

Let X; be a cluster generated through the splitting of the initial cluster X. By construction,
the maximal distance of any node on T'(X) to I(X) is at most op’ (with respect to T(X)).
Let u; be the node in X; that was closest to {(X) on T(X) and a and b be any two nodes in
X;. Then d(a,b) < d(a,u;) + d(u;,b) < 20p7, because u; must have been on the path from
a, respectively b to [(X) on T(X). <
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» Lemma 9. Splitting a level i cluster requires one message in a strong and up to two messages
in a weak sparse partition. These have size logn and traverse a distance of at most op.

Proof. In any partition, node u sends a message to [(X) to inform it about the failure. As
I(X) knows T'(X) it suffices to send w’s id. If in a weak sparse partition node v is not in X,
it selects a node w closest to it in Xo to become [(X3). To inform w of its new leadership role,
v sends a message with e’s id along T'(X) to w, so w can update its knowledge on T'(X). <=

» Lemma 10. To inform all nodes in X1 and X5 of the cluster change we need to send O(n)
messages, each of which has size O(logn). In a strong partition, the mazimum distance a
message traverses is op' and in a weak sparse partition, the mazimum distance is 20p".

Proof. Node {(X;) broadcasts the id of u and [(X2) broadcasts its own id and the id of v.
This suffices to inform each node of its leader and to update T'(X). As |X; U X3| = O(n),
we send at most O(n) messages. Our mechanisms ensure that in a strong sparse partition, a
node’s distance to its leader is at most the distance it had to I(X) before the failure, which is
op'. In a weak sparse partition, the new diameter is at most 20p?, according to Lemma 8. <

» Lemma 11. To inform the p'-neighborhood of the nodes in Xy about the new leader requires
O(n?) messages of size O(logn). The maximum distance traversed by any message is p'.

Proof. In our algorithm, each node in Xs sends the id of the new leader to every node in
its p’-neighborhood using its shortest path tree. In the worst case, |X2| = O(n), and the
pi-neighborhood of every node in X5 has size O(n). <

» Lemma 12. To update the directory path we send O(1) messages of size O(logn) which
travel a distance at most O(D’) where D' = diam(G \ {e}).

Proof. One message is sent from {(X;) to v and forwarded to {(X32) to inform I(X3) whether
it is part of the directory path. The distance from I(X) to v is at most D’ and the distance
between v and [(X3) can be bounded by the diameter of Xs, that is d(I(X2),v) < 20p.
When [(X5) is part of the directory path, then I(X) contacts ¢;11 and ¢;_1 about the
upcoming update. When [(X5) receives [(X1)’s message, it also sends a message to ¢;41 and
¢i—1. When they receive this message, they again a message to (X ). None of these messages
need to travel further than D', because all messages are sent along shortest path trees. <«

» Lemma 13. To update the special parent information we send two messages of constant
size that traverse a distance of at most Upi in a strong sparse partition and at most 20pil mn
a weak sparse partition, where i' =i+ log,(c'c).

Proof. Nodes I(X7) and I(X3) both send a message to their respective special parent. Both
I(X) and 1 (I(X)) are in Cy(I(X)) and both [(Xs) and I (I(X2)) are in Cy (I(X2)), thus
these messages can be sent along the spanning trees of Cy (1(X)) and Cy (I(X2)). In a strong
sparse partition, the initial spanning tress of the clusters guarantee that the distance from
any node to the leader along the spanning tree is at most Upi/. This property is maintained
even if clusters split. In a weak sparse partition, Lemma 8 tells us that the diameter of the
spanning tree of any cluster is at most 2. <

» Lemma 14. Suppose that since the last edge failure, the directory path has been rebuilt up
to level i. Then the length of the directory path up to level i is at most O(op?).
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Proof. Suppose the last time ¢ was modified at level ¢ was by node u and the last time ¢
was modified at level i + 1 was by node w. Then the modification at level ¢ must have been
due to a move operation issued by u which found the directory path level i + 1. We thus
know that d(¢;, pit1) < d(¢q, u) + d(u, w) + d(w, p;+1). Because u found ¢ at level i + 1, we
have d(u,w) < p'*1. After the repair of the data structure, the diameter of a cluster X at
level i is at most diam(X) < 20p’. Thus, we obtain

i—1 i—1
length(¢1,...,¢:) = Z d(¢j, Pj+1) < Z 20(p" + ph) + p = O(0p"). <«

j=—1 j=—1

» Lemma 15. A failure of edge e = {u,v} splits at most h clusters in a strong, and Ih
clusters in a weak sparse partition.

Proof. A cluster X splits if T(X) contains e. In a strong sparse partition T'(X) contains
only nodes from X. As a node belongs to only one cluster, this implies that in a strong
sparse partition at most cluster per level splits. In weak sparse partition, 7'(X) may contain
nodes not in X, but a node’s p*-neighborhood intersects at most I clusters of P;. Since a
cluster whose spanning tree contains e also contains v and v, at most I clusters on a level
need to be reclustering due to e failing. |

B Adding Fault Tolerance to the Directory (Cont.)

B.1 Edge Failure during Publish Operation

Suppose w issues a publish operation and an edge failure occurs before the publish operation
reaches level h. The publish operation is only affected if at some level i the leader of w
changes. If w is informed of the change before adding [(X) to the directory path, then w
will add its new level i leader to the directory path. If the directory path has already been
built to level 7, then our failure mechanisms will update the directory path.

B.2 Edge Failure during Lookup Operation
While Searching for the Directory Path

The search for the directory path of the lookup operation is similar to that of the move
operation, but the lookup operation also uses the information provided by special parents
and it does not modify the directory path. We thus only discuss the impact of an edge failure
on the special parent information: When w’s lookup finds a special parent {(X) of a node
I(X') on the directory path the lookup follows the link from [(X) to {(X’). If cluster X’
splits and the directory path updates before the lookup reaches I[(X’), then w’s lookup will
go back to X and continue its search for the directory path there.

While Following the Directory Path Downward

The downward phase of a lookup is not affected by modifications to the directory path.
Suppose that the directory path gets modified at level ¢ due to the edge failure. If the
directory path is updated before the lookup operation reaches level i, then the lookup follows
the updated path. Otherwise, the lookup operation follows the pointers from ¢;11 to ¢;,
from ¢; to ¢;—1 as these are still intact.
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C Pseudocode of Basic Directory Algorithm

Algorithm 1 Directory Operations Issued by Node v.

Graph G has partition hierarchy P with topmost level h = [log, D], for constant p > 1;
Directory path ¢ = ¢_1, ¢o, ..., ¢n points toward the current owner of token ¢;

// Publish Operation
for level i from 0 to h do

¢i < 1;(v); // ¢; is set to be the leader of v at level 4
L Add bidirectional links between ¢; and ¢;—_1;

// Lookup Operation

14 0; // start level of upward phase

while none of the leaders of clusters in P;(v) know about ¢ do
L i++; // upward phase to discover ¢

If a special parent pointer toward ¢;s (i’ < i) was discovered at level 4, then adjust i < 4';
// downward phase toward token
for level k < i down to 0 do

L Follow the downward pointer of ¢x;

Return value of token t from owner node ¢_1;

// Move Operation
¢_1 < v; // start forming new ¢ toward v
14— 0; // upward phase discovers previous ¢
while none of the leaders of clusters in P;(v) are ¢; do
¢i < 1i(v); // form new path ¢
Add bidirectional links between ¢; and ¢;_1;
Inform special parent l;s at level i’ =i + log,(c'o) about ¢;;
4+
old < level 7 — 1 node pointed downwards by ¢;;
Add bidirectional links between ¢; and ;1 (v); // adjust topmost node
Delete upward link of old and information at special parent of old;
// downward phase deletes old ¢
while level of old is not —1 do
w < node pointed by downward link of old;
Delete links between w and old and information at special parent of w;
old < w;

Transfer token t from old to v; // v is new owner
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We investigate the black hole search problem using a set of mobile agents in a dynamic torus. A
black hole is defined as a dangerous stationary node that has the capability to destroy any number
of incoming agents without leaving any trace of its existence. A torus of size n x m (3 <n < m)
is a collection of n row rings and m column rings, and the dynamicity is such that each ring is
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1 Introduction

Given a network and a set of mobile agents, the black hole search problem (also termed
as BHS problem) consists of locating a malicious stationary node that has the power to
eliminate any number of incoming agents without leaving any trace of its existence. This
problem is not new, and it readily has many real-life implications. For example, the black
hole may be a node infected with a virus in a computer network, and in order to make the
network safe, the infected node should be located for further action. The first task for any
set of mobile agents ought to be to locate the black hole. To accomplish this task, at least
one agent needs to visit the node; we aim at an efficient BHS algorithm, where the minimum
number of agents gets consumed by the black hole so that at least one agent must remain
alive in order to locate the black hole within finite time. This problem has been extensively
studied in networks which are static, see, e.g., [1, 6, 8,9, 14, 15, 17, 18, 20]. Recently, research
on black hole search problem has been mainly focused on dynamic networks; in particular,
the most relevant dynamic networks studied are time-varying graphs. These networks work
on temporal domains, which are mainly considered to be discrete time steps. More precisely,
the network is a collection of static graphs, in which some edges may disappear or reappear
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at each discrete time step, while the vertex set is fixed, with the additional constraint that at
each time step the underlying graph remains connected (also termed as I-interval connected).
Presently, apart from the black hole search on a dynamic ring [11] and on a dynamic cactus
[2], nothing much is known about the black hole search problem on dynamic networks.

In this paper, we investigate this problem on a dynamic torus of size n x m (where
each ring is 1-interval connected and without loss of generality 3 < n < m), where a set of
agents synchronously perform the same execution, with the goal of locating the black hole.
Moreover, we consider that each node in the underlying torus has a whiteboard, used by the
agents to write\read some information used by the agents while executing a certain black
hole search algorithm.

We study two types of initial configurations of agents, under the assumption that each
agent executing the black hole search algorithm, can communicate among themselves when
they are at the same node, and they can also use the whiteboard present at each node of
the underlying graph in order to communicate with other agents. In the first configuration,
all agents are initially located at the same node; in the second configuration, the agents are
scattered along the nodes of the underlying network. In both configurations, all the nodes
where agents are initially located are not dangerous, i.e., they do not contain the black hole
(they are safe). Our primary objective is to design an efficient BHS algorithm such that: (a)
within a finite time, at least one agent survives, and (b) it gains knowledge of the black hole
location.

2 Related Works and Our Contribution

2.1 Related work

Network exploration by mobile agents is one of the fundamental problems in this domain,
and it was first introduced by Shannon [24]. After his pioneering work, this problem has
been extensively studied in various topologies such as rings [23], trees [10], general graphs [7]
under different models of communication (particularly, pebbles [12] and whiteboard [26]),
synchrony (synchronous [7], semi-synchronous [4] and asynchronous [19]) and both in static
[7] as well as dynamic networks (tori [22] and general graphs [21]).

The black hole search (BHS) problem is a special version of the exploration problem,
where, in the worst case the underlying network needs to be explored in order to locate
the black hole position. This problem was first introduced by Dobrev et al. [15], and after
that has received a lot of attention: indeed, it has been studied for directed [8] as well as
undirected graphs [6], and for different underlying networks, such as rings [6], tori [5], trees [9]
and general graphs [15]. In addition, different communication models have been considered
for this problem, including ‘Enhanced Token’ [13], “Pure Token” [20] and whiteboard [16].
Moreover, this problem has also been explored for different initial agent configurations. In
particular, Shi et al. [25] showed that, when the agents are co-located, a minimum of 2
co-located agents communicating via tokens can solve the BHS problem in hypercube, torus
and complete network with ©(n) moves, whereas in the case where k agents (k > 3) are
scattered, then with only 1 token per agent it is shown that BHS can be solved in O(k?n?)
moves. All these above papers discuss black hole search in a static network, and very little
is known about the problem in dynamic networks. Di Luna et al. [11] first investigated
this problem in a dynamic ring, and they showed that when the agents are co-located, then
in face-to-face communication with 3 agents there is an optimal algorithm that works in
©(n?) moves and ©(n?) rounds (where n is the size of the ring). Next, with whiteboard
communication, they reduced the complexity to ©(n!-®) rounds and ©(n'->) moves. Lastly,
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when the agents are initially scattered and each node has a whiteboard, then again with
3 agents they showed that at least ©(n?) moves and ©(n?) rounds are required for any

BHS algorithm. In each case, they gave an optimal algorithm. Next, Bhattacharya et al.

[2] studied the BHS problem in a dynamic cactus graph, and proposed an agent optimal
algorithm when at most one edge can be dynamic; in the case when at most k (> 1) edges

can be dynamic, they proposed a lower bound of k£ + 2 and an upper bound of 2k + 3 agents.

In this paper, we further investigate the BHS problem in a dynamic torus, with the aim
of providing an efficient BHS algorithm. To the best of our knowledge, this is the first work
where the BHS problem is explored in the case of a dynamic torus. Previously, Gotoh et
al. [22] studied the exploration problem under link presence detection and no link presence
detection in dynamic tori, whereas Chalopin et al. [5] studied the BHS problem in a static
torus and gave tight bounds on the number of agents and tokens when the agents are initially
scattered.

2.2  Qur Contribution

We investigate the BHS problem in a dynamic torus for two initial configurations: first, when
the set of agents are initially co-located, and next, when the agents can be initially scattered
in different nodes. When the agents are initially co-located, we provide the following results.
We establish the impossibility of correctly locating the black hole with n 4 1 agents.
We show that with n + ¢ (where ¢ > 2 and ¢ € Z™1) co-located agents, any BHS algorithm
requires at least (mlogn) rounds.
With n + 3 agents we present a BHS algorithm that works in O(nm!-®) rounds.

With n + 4 agents we present an improved BHS algorithm that works in O(mn) rounds.

The following results are obtained when the agents are initially scattered.
We establish the impossibility of correctly locating the black hole with n 4 2 agents.
We show that with k = n + ¢ (where ¢ > 3 and ¢ € Z%) scattered agents, any BHS
algorithm requires (mn) rounds.
With n + 6 agents we present a BHS algorithm that works in O(nm!-®) rounds.
With n + 7 agents we present a O(mn) round optimal BHS algorithm.

The list of results are summarised in the following Table 1.

Table 1 Summary of Results where LB, UB and IC represent lower bound, upper bound and
initial configuration of the agents, respectively.

1C Bound | # Agents Rounds Results
Colocated LB n+2 Q(mlogn) | Cor 1 & Thm 3
UB n+3 O(nm*9) Thm 7
UB n+4 O(nm) Thm 8
Scattered LB n+3 Q(nm) Cor 3 & Thm 5
UB n+6 O(nm!'?) Thm 9
UB n+7 O(nm) Thm 10

Organisation.
explain the model and prove the lower bound results. Next, in Section 5, we discuss some

The remainder of the paper is organised as follows. In Sections 3 and 4, we

preliminary notation and basic subroutines which will be used by our algorithms. Further,
in Sections 6 and 7, we present and analyse our algorithms for the co-located and scattered
case. Finally, we list some concluding remarks in Section 8.
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Due to the restrictions in the page limit, the pseudocodes of the algorithms, proofs of the
theorems and lemmas are omitted and can be found in the full version of this paper [3], which
also includes a detailed explanation of the states and predicates used in our algorithms.

3 Model and Problem Definition

Graph Model. The dynamic graph is modelled as an undirected time-varying graph (or
formally known as temporal graph) G = (G,V, E, T, p), where V is the set of vertices (or
nodes), E is the set of edges in G, T is defined to be the temporal domain, which is defined
to be Z* as in this model we consider discrete time steps, also p : E x T — {0,1} is
defined as the presence function, which indicates the presence of an edge at a given time.
The graph G = (V, E) is the underlying static graph of the dynamic graph G, also termed
as footprint of G. More specifically, the footprint G = (V, E) is a torus of size n x m,
where n represents the number of rows and m represents the number of columns, we define
V={v;; ]0<i<n—-1,0<j<m-—1} and E is the set of edges, where the horizontal and
vertical edges are {(v; j, Vi j+1 mod m)} and {(vi j,Vi+1 mod n,j)}, respectively. By the node
v; ; we invariably mean v; mod n,j mod m and these modulus functions are ignored further in
this paper. In order to restrict self-loop or multiple edges without loss of generality, we
assume 3 < n < m. A row ring R; (resp, a column ring C;) is the subgraph of G induced by
the set of vertices {v; ; | 0 < j <m —1} (resp, {vi; | 0 <i <n—1}). The adversary has
the ability to make an edge reappear or disappear at any particular time step with the added
constraint that, irrespective of how many edges disappear or reappear, each row and column
ring at any time step must be connected; in other words, each row and column ring in G is
1-interval connected (so at any time, the adversary can make at most one edge disappear
from each row and column ring, in order to maintain the 1-interval connectivity property).
A disappeared edge is termed as a missing edge in this paper.

Every node v; ; € G is labelled by a unique Id (i,j), whereas each node in G has 4
ports adjacent to it, where the ports corresponding to the edges (v; ;,vi j—1), (vij, vij41),
(vij,viz1,5)s (Vij,Vit1), are denoted by west, east, south, north, respectively. In addition,
corresponding to each port of a node v; ; of G a whiteboard of storage of O(1)-bits is placed.
The purpose of the whiteboard is to store and maintain certain information, such as the
node Id or agent Id or the agent’s course of traversal (depending on the amount of storage
the whiteboard can store). Any incoming agent can read the existing information or write
any new information corresponding to a port along which it travels to the next node. Fair
mutual exclusion to all incoming agents restricts concurrent access to the whiteboard. In this
paper, we consider our temporal graph G to be an oriented dynamic torus, i.e., each row and
column ring in G has an orientation. In other words, the nodes of a row (or a column) ring
are marked in an increasing order along a counter-clockwise direction. The network G has
a malicious node or unsafe node also termed as a black hole, which vanishes any incoming
agent without leaving any of its trace. The remaining nodes in G are not malicious, hence
they are termed as safe nodes.

Agent Model. A set of k agents A = {a1,as,...,ar} are assigned the task to locate the
black hole in G. We consider two initial configurations in this paper: first, the set of A
agents are initially co-located at a safe node (the node in G at which they are co-located
is termed as home), second, the agents are initially scattered along safe nodes in G. Each
agent in A has a distinct Id of size |log k| bits taken from the set [1, k], and every agent has
computational capabilities so that it can communicate with other agents when they are at
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the same node at the same time. Each agent has knowledge of the torus size, i.e., both n
and m are known to the agents, and also, each agent has an internal memory of O(logm)
bits. An agent moves from one node to another using the edges at each round; furthermore,
any number of agents can concurrently move along an edge at any round. These actions are
atomic in nature, so an agent cannot recognise the other agents concurrently passing through
the same edge at the same round, but it can see and communicate with all the other agents
present at the current node at the same round. These agents operate in synchronous rounds,
so in each round, every agent becomes active and takes a local snapshot of its current node.
The snapshot includes the presence of the ports of its current node at the current round,
the agent’s local memory (which contains the amount of information gathered by the agent
while communicating with other agents), the set of agents present at the current node, and
the contents of the whiteboard. Now, based on this information, the agent performs the
following actions:
Look: In this step, the agent takes the snapshot of the current node. This snapshot helps
the agent gather the information about the Ids of other agents residing at the same node,
the edges that currently exist at the current round and also the whiteboard information
at the current node.
Compute: On the basis of its earlier snapshot and local memory, the agent decides to
stay at the current node or move to another node. The direction of its movement is also
calculated in this step.
Mowe: In this step, if the agent decides to move along a specific direction and if the
corresponding edge is present, then it moves along this edge while updating the whiteboard
(if required, based on the algorithm) to the next node in the subsequent round.

Since, the agents operate in synchronous rounds, so each agent gets activated at each
round and performs the LCM cycle. So, the time taken by any algorithm is calculated in
terms of the rounds.

Configuration. A configuration C, at a round r is defined to be the amalgamation of the
presence of the number of agents at a node, the local memory of each agent and contents
of the whiteboard at the start of round r. The transformation from C,_; to C, depends
on multiple factors: first, the execution of the algorithm; second, the adversarial choices of
edges disappeared and reappeared in round r — 1. Cj is the initial configuration, where, in
the co-located case, the initial safe node is chosen by the adversary, whereas in the scattered
case, the adversary arbitrarily places the agents along the safe nodes.

» Definition 1 (Black Hole Search). Given a dynamic torus G of size n. x m, an algorithm A
for a set of k agents solves the BHS problem if at least one agent survives and terminates.
The terminating agent must know the exact position of the black hole in the footprint of G.

The measures of the complexity for the BHS problem are as follows: the number of agents or
size, required to successfully execute A, the time or the number of rounds required to execute
A. Note that in this paper, we have assumed the fact that whenever an agent correctly
locates the black hole, the algorithm terminates, so all the other agents executing any action
get terminated immediately.

4 Lower Bound Results

In this section, we present the lower bound results on the number of agents and number of
rounds in both scenarios when the agents are either initially co-located or scattered.

6:5
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4.1 Co-located Agents
The next theorem gives impossibility result on the number of agents when they are co-located.

» Theorem 1. Given a dynamic torus G of size n X m, there does not exist a BHS algorithm
which correctly locates the black hole with k = n + 1 co-located agents and each node in G
contains a whiteboard of O(1) bits.

» Corollary 1. Any BHS algorithm on a dynamic torus G of size n X m requires at least
k = n+ 2 co-located agents to correctly locate the black hole when each node in G has a
whiteboard of O(1) bits.

Next lemma gives a lower bound on the round complexity for any exploration algorithm
on a dynamic ring, where at least 2 agents are initially co-located.

» Lemma 1. In a dynamic ring of size n > 3 in presence of whiteboard, any exploration
algorithm with 1 (1 > 2) co-located agents require at least Q(n) rounds to explore such a ring.

» Theorem 2 ([11]). In a dynamic ring of size n > 3, any BHS algorithm with 3 co-located
agents in presence of whiteboard requires Q(n'>) rounds, even if the agents have distinct Ids.

The following corollary follows from Lemma 1 and Theorem 2.

» Corollary 2. In a dynamic ring of size n > 3, any BHS algorithm with at least 4 co-located
agents in presence of whiteboard requires Q(n) rounds, even if the agents have distinct Ids.

The next theorem gives a lower bound on the round complexity for any BHS algorithm
operating on a dynamic torus with k£ co-located agents.

» Theorem 3. Any BHS algorithm with k = n + ¢ co-located agents, where ¢ € Z* and
¢>2, on anxm dynamic torus requires at least Q(mlogn) rounds.

Proof. Given a dynamic torus of size n x m (with 3 <n < m) and k = n + ¢ agents are
initially co-located at a safe node, observe by Corollary 2, [ (where [ > 4) agents can perform
BHS in presence of whiteboard along a row ring of size m in at least (m) rounds. Now, let
us consider there exists an algorithm H which is tasked to perform BHS along the dynamic
torus G, so concurrently exploring a set of rings by a set of [ agents is always a better strategy
rather than exploring a ring one at a time by a set of agents. Hence, we consider H instructs
a set of [ agents to explore a set of rings concurrently. So, if ¢ (where t < %) rings are
concurrently explored by the set of k agents, then as each ring in G is 1-interval connected,
so the adversary has the ability to block an agent each in every t such rings. This means the
remaining agents left to explore for the next concurrent exploration is at least k — %, where

each of these concurrent exploration requires (m) rounds and the number of rings till now
bt
7

explored is % In the next concurrent exploration, at least row rings can be explored

in Q(m) rounds, which further blocks this many agents, and the remaining agents left to
_k
explore remaining graph is k — % — kT’, whereas the total number of row rings explored

yet is % + — L. Continuing this way, we can define a recursion relation on the remaining

number of agents, T(o) = T(ow — 1)(1 — }) and T(1) = k — ¥, where T(«) resembles that
at the a-th iteration this many agents are left to explore the remaining part of G and each

_k
I

such concurrent exploration for black hole requires £2(m) rounds. So, for & many iterations
H requires af2(m) = Q(am) rounds. Now, we try to approximate the value of a. Observe,
when T'(«) < 7, then either the whole torus is explored in the worst case for the black hole or
there is no further concurrency possible because in order to concurrently explore at least two



A. Bhattacharya, G.F. Italiano, and P.S. Mandal 6:7

rings in 2(m) rounds, a minimum of 8 agents (as 4 agents are at least required to explore a
ring in Q(m) rounds) are required to be left available, so if at most 7 agents are remaining
that means no concurrency is possible for any BHS algorithm. Hence, for T(a) < 7, we
approximate the value of «.

T@)S?—éfﬂa—n(l—;)§7—éfma—ngl?z

~ rano-)s sl = ooy
1

1 o ¢ log k — 1
:k(l—)g?(l) :>k§7(l) :Mga
I -1 -1 tog ()

This implies a = logn, as k =n + ¢ and [ > 4. Hence, this means that for any algorithm
‘H, in order to either explore the whole dynamic torus for a black hole or to stop concurrent
exploration, at least o ~ logn many concurrent exploration needs to be performed, where
each iteration takes 2(m) rounds. This concludes that the total number of rounds at least
required by any algorithm with k£ = n + ¢, co-located agents is Q(mlogn). |

4.2 Scattered Agents

Next theorem shows the impossibility of BHS with & = n 4 2 scattered agents.

» Theorem 4. Given a dynamic torus G of size n X m, there does not exist any BHS
algorithm which can correctly locate the black hole with k = n + 2 scattered agents, the result
holds as well even if the nodes in G has a whiteboard.

» Corollary 3. Any BHS algorithm on a dynamic torus G of size n X m requires at least
k = n + 3 scattered agents to correctly locate the black hole when each node in G has a
whiteboard of O(1) bits.

Following theorem is inspired from Theorem 4.2 in [22], which gives the lower bound on
the round complexity for any BHS algorithm with k scattered agents along G.

» Theorem 5. Any BHS algorithm with k = n + ¢ scattered agents, where ¢ € Z+ and ¢ > 3,
on an X m dynamic torus G requires at least Q(mn) rounds.
5 Preliminaries

In this section, we explain all the subroutines, definitions and ideas used in our BHS algorithm,
but first, we explain the contents maintained by the agents on the whiteboard.

Whiteboard. The following data is stored and maintained in the whiteboard by the agents.
For each dir € {east, west, north, south} with respect to each v; ; € G we define the function
f: {east,west, north, south} — {L,0,1},

1, if an agent is yet to visit the port dir
f(dir) =<0, if no agent has marked the port dir as safe
L

if the port dir is marked safe, i.e., the node along dir is not black hole

SAND 2024
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Cautious Walk. This is a fundamental movement strategy used in a network with a black
hole, and it is used as a building block of all our algorithms. In this strategy, if two agents
are together, then this strategy ensures that only one among them enters the black hole
while the other survives. On the contrary, if only a single agent is present, then whenever it
visits a new node, it leaves some mark behind on the whiteboard so that whenever another
agent tries to visit this node along the same edge, it finds the mark and does not enter the
black hole.

This walk is performed in three rounds, where if an agent a; (say) is alone (resp, with
another agent as, say) then in the first round a; decides to move one step along e = (u,v)
from u to v by marking f(e) = 0 (while as waits) and if it is safe, i.e., does not contain the
black hole, then in the next round a; returns to u and marks the edge e safe by writing
f(e) =1, then in the third step a; (resp, as) moves to v. This strategy ensures that no two
agents enter the black hole along the edge e.

Stuck. An agent a; is defined to be stuck while exploring a 1-interval connected ring for

two reasons.
First, if while performing cautious walk along an edge e = (u,v), a; at round r marks
f(e) =0 at u and moves to v, while v is safe and a; tries to return to u at round r + 1 to
mark f(e) =1, finds e to be missing, in this situation a; is stuck at v until e reappears.
Second, if while moving along dir, a; finds e to be missing. In this situation, if more
than one agent is simultaneously trying to move along dir at the same round and if a; is
the lowest Id among them, then a; is stuck until e reappears, or, if a; is alone, then in
that case also a; is stuck until e reappears.

5.1 Subroutines

In this section, we will discuss the sub-routines used as a building block in our BHS algorithms
for both the co-located and scattered initial configurations. We have followed some of the
pseudocode convention from the papers [11] and [22]. In this paper, we use three kinds of
MOVE procedure in our algorithms, first, MOVE(dir | p1 : s1;p2 : S2;...;Dk © Sk), second,
MovVE(dir — f(dir) | p1 : s1;p2 : S2;...; Dk : Sk), and lastly, MOVE(dir — f(dir) — s; | p1 :
S1;D2 : S25...;Pk : Sk), where p; is the predicate corresponding to the state s; and f(dir)
represents the value with respect to dir (where dir € {east,west,north,south}) in the
whiteboard, so depending on the algorithm we use either of these MOVE procedures. The
agent at each round, first takes a snapshot at its current location, and thereafter checks the
predicates p1,...,pr one after another. If no predicate is satisfied, then in the first MOVE
procedure, the agent moves along the direction dir, in the second MOVE procedure the agent
moves along dir while updating the whiteboard of the current node along dir to f(dir),
and lastly, in the third MOVE procedure, in addition to moving along dir and updating the
whiteboard, it also moves directly in to the state s;. On the other hand, if some predicates
are satisfied, then the agent chooses the first satisfied predicate (say) p;, and the procedure
stops, and the agent moves into state s; corresponding to p;. The predicate and state of the
form p; : time + 1 — s; indicates that if p; is satisfied then the agent enters the state s; after
time + i rounds, whereas the predicate and the state of the form p; : f(dir) — s;, indicates
that if p; is satisfied then the agent performs the action f(dir) and then moves to the state
s;. Further, these procedures are again executed in the subsequent rounds. In the following
part, we define the algorithm CAUTIOUS-WAITMOVEWEST().
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CaAuTIOUS-WAITMOVEWEST(j,1): This algorithm works on 1-interval connected ring R;
(say), where the main purpose is to make a certain number of agents reach the node v; ; along
the Cj-th column from any initial configuration. Further, whenever an agent reaches the
desired node, and it is not stuck, it waits at that node until further instruction is provided.

The algorithm works as follows: for the first 4(I — 1)m rounds, if an agent a; is instructed
to perform CAUTIOUS-WAITMOVEWEST(4,!) along R;, then it starts the following procedure,
if the agent a; (say) is initially with another agent ay (say) and since a; is the lowest Id
among them, ay starts cautious walk along west until it either gets stuck or has reached the
desired node. On the other hand the task of as is to follow a; until ay is stuck. While a4 is
stuck, as performs the following action. If a; is stuck due to a missing edge along west, then
as instead of waiting reverses its direction to east and continues to perform cautious walk.
Otherwise, if a; is stuck while returning back to mark a port safe along west which it has
in the last round marked unsafe while exploring and, then as waits for at most 3m rounds
since the round it encountered this situation, and then reverses its direction and continues to
perform cautious walk. On the other hand, if a; is alone, then it performs cautious walk
until it either reaches the desired node or it is stuck. If a; catches another agent stuck, and if
it is not the lowest Id among them, then it performs a similar action, as explained earlier in
case of as. After 4(I — 1)m rounds have passed, the agents enter the state Return, in which
each agent not stuck due to a missing edge tries to reach the node v, ;.

» Observation 1 ([11]). Given a dynamic ring R and a cut U, where |U| > 1, if its footprint
is connected by edges e. and e.. (where e. and eq. are the clockwise and counter-clockwise
edges, respectively) to nodes in VAU (where V is the set of vertices not in U). If all the
agents at a round r are at U, and do not try to cross along e., whereas there exists an agent
which tries to cross along e.., then the adversary has the ability to prevent any agent from
crossing U.

CAUTIOUS-WAITMOVEWEST() ensures that this situation does not arise, as when an agent
is stuck on e, (or e.), another agent after finding this situation waits for at most 3m rounds
(depending on the fact that whether the earlier agent is stuck while backtracking or it is
stuck because it has encountered a missing edge along west), and then reverses its movement
towards e.. (or e.), while the other agent remains stuck. Hence, there exists a round r where
an agent each is trying to cross e, and another agent is trying to cross e...

The following lemma ensures the correctness of our algorithm in detecting the black hole
when the algorithm terminates.

» Lemma 2. If an agent executing CAUTIOUS- WAITMOVEWEST() terminates while moving
along a specific direction, then it correctly locates the black hole.

Next corollary states that in the worst case at most two agents can enter the black hole while
executing CAUTIOUS-WAITMOVEWEST().

» Corollary 4. CauTIOUS-WAITMOVEWEST() ensures that at most two agents enters the
black hole.

The following lemma shows the complexity and correctness of reaching the desired node
while executing CAUTIOUS-WAITMOVEWEST().

» Lemma 3. If two agents along a safe row ring R; of size m (m > 3) execute our algorithm,
then at least one agent reaches the desired node within Tm rounds.
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» Lemma 4. If three agents are executing CAUTIOUS-WAITMOVEWEST(j,3) along R; and
v;; s the black hole, then at most 2 agents enter the black hole whereas the adversary has
the ability to stop the third agent from detecting the black hole location.

The next corollary states that if the black hole is located at the current ring, then within
15m (or 15n) rounds, the black hole is detected by a set of 4 agents.

» Corollary 5. A set of 4 agents, executing CAUTIOUS-WAITMOVEWEST(j,1) (where l > 4)
along R; can correctly locate the black hole in at most 15m rounds, where v; ; is the black
hole node.

The following corollary states that while executing CAUTIOUS-WAITMOVEWEST(j, 1) the
worst situation happens with exactly 2 agents entering the black hole, which is when the
desired node to reach is v; ; and it is also the black hole node.

» Corollary 6. CauTious-WAITMoOVEWEST(j,1) ensures that exactly 2 agents can be
consumed by the black hole when the desired node v; ; is also the black hole node.

The next lemma states that if at any round after the first 4m rounds since the start
CauTtious-WAITMOVEWEST(j, ) along R;, if there still exists at least 3 agents yet to reach
the desired node v; ;, then our algorithm ensures that in a period of 4m rounds since the
last agent has reached the desired node, at least one among these set of agents yet to reach
the desired node, reaches v; ;.

» Lemma 5. After the first 4m rounds have elapsed executing CAUTIOUS-
WAITMOVEWEST(j,1) (where l > 2), if at least 3 agents are still present along R; then it
takes at most 4m rounds for an agent among them to reach the desired node, since the last
agent has reached the desired node.

The following corollary follows from Lemmas 3 and 5.

» Corollary 7. Our algorithm ensures that among l agents operating along R; at least | — 2
agents reach the desired node within 4(1 — 1)m rounds.

» Lemma 6. Among the remaining two agents which enter state Return after 4(1 — 1)m
rounds has elapsed, at least one among them reaches the desired node.

The following theorem follows from Corollary 7 and Lemma 6.

» Theorem 6. If [ agents (I > 2) agents are in a safe ring R; and they perform CAUTIOUS-
WAITMOVEWEST(j,1), then at least I —1 agents reach and stay on v; ; within 4(I—1)m+3m
rounds, since the start of execution of our algorithm.

CAUTIOUS-MOVE(west, j): This algorithm is a special version of our earlier algorithm, it

has two stages, and requires at least 2 agents. The first stage is exploration and works for
3m rounds, and the second stage is Exit. The algorithm works as follows: the lowest Id agent
becomes the Leader, whereas the other agents become the Follower. The Leader explores
new nodes in first stage and Follower follows the Leader until it either finds the Leader
to be stuck or Leader stops reporting either due to a missing edge or it has entered the
black hole. Whenever, the Follower finds the edge is missing and Leader is not reporting
and time < 3m it waits until the missing edge reappears or till time = 3m, whereas if it
finds that the edge exists and Leader is not reporting then it terminates the algorithm, by
declaring the node in which Leader has explored is the black hole node. On the other hand,
whenever the Leader is also stuck due to a missing edge along its moving direction, then
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both Leader and Follower wait until time = 3m. Whenever time > 3m, both Leader and
Follower enter the second stage, i.e., state Exit, in which, irrespective of the fact that they
are stuck or not, they try to return to their desired node, i.e., the node along C;-th column,
while returning each agent irrespective of Leader or Follower is instructed to mark the port
of each node along their movement to 1 if not already marked so. Whenever the agents,
while returning back, encounter a missing edge, the lowest Id agent waits, and other agents
change direction.

The following two lemmas ensures that if [ agents start executing CAUTIOUS-MOVE(),
then among them eventually [ — 1 agents reach the desired node within at most 3lm rounds,
since the start of its execution.

» Lemma 7. Ifl (I > 2) agents execute CAUTIOUS-MOVE(west, j) along a safe ring R;,
then at least | — 1 agents reach v; ; within 3lm rounds.

» Corollary 8. Ifl agents enter the state Exit, then at least | — 1 agents reach v; ; by at most
3(l — 1)m rounds.

CAuTIOUSDOUBLEOSCILLATION[11] We have used this BHS ring exploration algorithm as
a sub-routine in our BHS Torus exploration algorithm. This algorithm uses 3 agents to
explore the ring and successfully detect the black hole, if the black hole node is along that
ring, otherwise, it explores the ring. Among these three agents, one agent is recognised
as the Leader, whereas the remaining two agents are known to be as AVANGUARD and
RETROGUARD, respectively. The only difference is that both AVANGUARD and RETROGUARD
while exploring a new node marks the corresponding ports safe or unsafe in whiteboard
(where a port is safe implies that the adjacent node along a that port does not contain
the black hole), so this means if RETROGUARD enters the black hole while exploring a
sector of \/m nodes along R; (or y/n nodes along C;) then using the whiteboard instead
of a pebble, LEADER can detect its location. As stated in [11], three agents executing
CAUTIOUSDOUBLEOSCILLATION requires O(m!®) rounds to detect the black hole along a
1-interval connected ring of size m.

6 Co-located Agents

In this section, we propose two BHS algorithms on n x m dynamic torus. First algorithm
requires n + 3 agents and works in O(nm*-®)
n + 4 agents and works in O(nm) rounds.

rounds, whereas the second algorithm requires

6.1 BHS with n + 3 agents

The set of n + 3 agents, A = {a1,as,...,a,43} are initially located at a safe node v, j,
also termed as home. Initially from home, a; and as executes the algorithm CAUTIOUS-
MovVE(north,i), whereas az and a4 executes CAUTIOUS-MOVE(south, ). Once 12n rounds
have passed, at least 3 out of these 4 agents return to v; ; (refer corollary 8). Whenever
3 among 4 agents return back to home, the first three lowest Id agents become LEADER,
AVANGUARD and RETROGUARD and and they are instructed to perform CAuTiousDoU-
BLEOSCILLATION along R;. Now, as per Lemmas 14 and 15 in [11] it takes at most
T = 25m!5 + 7(m + y/m) rounds to locate the black hole along R;. So, after T' rounds
since the start of CAUTIOUSDOUBLEOSCILLATION, if the algorithm hasn’t terminated (or
the black hole is not detected) then these agents are instructed to return to v; ; which is
the desired node, irrespective of the fact, whether they are stuck or not. While returning,
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if an agent encounters a missing edge, then the lowest Id agent waits, whereas the other
agent changes direction. Using this strategy, in at most 6m rounds, at least 2 among 3
agents return to v; ; (as this is similar to state Ezit in algorithm CAuTIOUS-MOVE(), hence
by corollary 8 this bound holds). After which they all together start executing CAUTIOUS-
WAITMOVESOUTH(? — 1,4), which enables at least 3 among n + 3 agents reach the node
v;—1,; and continue the same process. This process iterates for each R;, where 0 <7 <n — 1.

» Lemma 8. Our BHS algorithm ensures that there always exist 3 agents to perform
CAUTIOUSDOUBLEOSCILLATION along R;, where 0 <i <mn —1.

An iteration of our BHS algorithm is defined to be the collection of steps the set of
agents perform from the node v, ; (where suppose v;; be the initial starting node) to
reach the node veyq; (where t > 0 ¢ € NT). More precisely, the agents at v ;, first
perform CAUTIOUSDOUBLEOSCILLATION along R;, then they try to return back to v j,
after which each agent along C; try to reach the node vy ; while executing CAUTIOUS-
WAITMOVESOUTH(t — 1, 4), this whole process is defined to be one iteration. Now, the next
lemma gives the number of rounds required by the set of n 4+ 3 while executing our BHS
algorithm to perform one iteration.

» Lemma 9. [t takes at most T 4+ 6m + 15n rounds to perform one iteration of the BHS
algorithm with n + 3 agents.

The following lemma and theorem gives the correctness and complexity of our BHS
algorithm.

» Lemma 10. Our algorithm correctly locates the black hole.

» Theorem 7. A group of n + 3 agents executing the BHS algorithm along a dynamic torus
of size n x m correctly locates the black hole in O(nm!->) rounds.

6.2 BHS with n + 4 agents

In this case the set of n + 4 agents, A = {a1,4as,...,a,+4} agents are initially co-located
at home = v; 5, say. The algorithm in this case is similar to the earlier BHS algorithm
with n + 3 agents; the only difference is that here in order to explore R;, instead of 3, 4
agents are used, where the lowest and second lowest Id agents at v; ; perform CAUTIOUS-
MoVE(west, j) and the third lowest and fourth lowest Id agents are instructed to perform
CAuTIOUS-MOVE(east, j), instead of CAUTIOUSDOUBLEOSCILLATION. The pseudocode is
explained in Algorithm 1.

Algorithm 1 BHS with n + 4 agents.

Instruct a; and a2 to perform CAUTIOUS-MOVE(north, ).
Instruct a3 and a4 to perform CAUTIOUS-MOVE(south, ).
if time > 12n then
fort=14 t<i—1; t—— do
Instruct the lowest and second lowest Id agents at v¢,; to perform
CauTIOUS-MOVE(west, j).
6 Instruct the third lowest and fourth lowest Id agents at vy, ; to perform
CauTIiOUS-MOVE(east, 7).
7 > timel is defined as the time since the last call of CAUTIOUS-MOVE.
if timel > 12m then
9 | Perform CAUTIOUS-WAITMOVESOUTH(t — 1,5).

aoh WN =

[+
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» Lemma 11. At least 3 among 4 agents executing CAUTIOUS-MOVE(west, j) and CAUTIOUS-
MovE(east, j) along Ry at some i-th iteration of the for loop of Algorithm 1, reach vy ; within
12m rounds since the start of CAUTIOUS-MOVE() in the current iteration, where 0 <t < n—1.

» Lemma 12. Our BHS algorithm, with n + 4 agents, ensures that in every iteration of the
for loop of our algorithm, there always exists 4 agents to perform CAUTIOUS-MOVE(west, j)
and CAUTIOUS-MOVE(east, j).

The following lemma and theorem gives the correctness and complexity of our algorithm.
» Lemma 13. A set of n + 4 agents executing Algorithm 1, correctly locates the black hole.

» Theorem 8. A group of n + 4 agents executing Algorithm 1 along a dynamic torus of size
n x m correctly locates the black hole in O(nm) rounds.

7  Scattered Agents

This section proposes two BHS algorithms on an n x m dynamic torus. Our first algorithm
works with n + 6 agents and requires O(nm!-®) rounds, whereas our second algorithm works
with n + 7 agents and requires O(nm) rounds.

7.1 BHS with n + 6 agents

A set of n + 6 agents, A = {aj,as,...,a,+6} are initially scattered along different nodes of
the torus G, i.e., the agents are arbitrarily placed, where there may be more than one agent
at a node or there can be single agent at each n + 6 nodes in G.

At the first step, each agent performs CAUTIOUS-WAITMOVEWEST(0, 6) from any initial
configuration, so after timel = 23m (g(6)+3m = 20m+3m) rounds has elapsed since the start
of CauTIOUS-WAITMOVEWEST(0, 6), each agent currently along Cj is further instructed to
perform CAUTIOUS-WAITMOVESOUTH(0, 6), so after time2 = 23n (g(6) 4+ 3n = 20n + 3n)
rounds has elapsed since CAUTIOUS-WAITMOVESOUTH(0, 6), if at least 3 agents have reached
the node vy o, then 3 lowest Id agents at vy o become LEADER, AVANGUARD and RETROGUARD,
respectively and are then instructed to perform CAUTIOUSDOUBLEOSCILLATION along Ry.
Hence, within T" rounds from the start of CAUTIOUSDOUBLEOSCILLATION either the black
hole is detected and the algorithm terminates or the ring Ry is explored. After T' rounds since
the start of CAUTIOUSDOUBLEOSCILLATION, these 3 agents are instructed to return to vg o
by marking each node along their movement till vg o to 1 (as the ring is explored and there
is no black hole in this ring, so an agent can mark each port as safe, if not already marked
s0). So, by corollary 8 in at most 6m rounds, at least 2 among these 3 agents return to v o,
after which, each agent in G are instructed to perform CAUTIOUS-WAITMOVEWEST(0, 6).

On the other hand, if two agents have reached vy ¢ after 23n rounds have elapsed since
CAUTIOUS-WAITMOVESOUTH(0, 6), then the lowest Id agent cautiously walks along west
whereas the other agent cautiously walks along east. If along their movement they catches
another agent trying to move along the same direction, then they together perform CAUTIOUS-
MoOVE() in the same direction. After 3m rounds has passed since they have started cautious
walk, these agents along Ry are instructed to return to vpo by marking each port along their
movement to 1. So, within 6m rounds, if 3 agents are along Ry, then at least 2 among them
returns, or if 2 agents are along Ry, then at least 1 among them returns, further each agent
along G is again instructed to perform CAUTIOUS-WAITMOVEWEST(0,6). This process
iterates for each R; ring (where 0 < i < n — 1), depending on whether 2 or 3 agents have
reached the node v; o.

6:13

SAND 2024



6:14

Black Hole Search in Dynamic Tori

The following lemma states that if 2 agents eventually reach the node v; o at some i-th
iteration, then this implies that among the n + 6 agents, already 3 agents have entered the
black hole from three different directions without the black hole getting detected.

» Lemma 14. If 2 agents reach v, o at the i-th iteration after the execution of CAUTIOUS-
WAITMOVESOUTH(i, 6) when time2 > 23n, and the algorithm has not terminated yet, then
this implies exactly 3 agents has entered black hole from three different directions.

This corollary gives the possible directions along which 3 agents might have entered the
black hole without still detecting it, while executing our algorithm.

» Corollary 9. If 3 agents enter black hole from 8 directions without detecting it, then 2
among these 3 directions are east and west, whereas the 3rd is either north or south.

The following lemma states that if eventually 2 agents reach the node v; g at some -th
iteration while executing our BHS algorithm, then this implies that there must be another
agent stuck somewhere at a node along R; other than the fact that 3 agents have already
entered the black hole and an agent each is already stuck along the remaining n — 1 row
rings. Otherwise only 2 agents must not have reached the node v; g.

» Lemma 15. Our BHS algorithm with n + 6 agents, ensures that if at the i-th iteration
after time2 > 23n only 2 agents are present at v; o, then there exists another agent stuck
somewhere along R;.

The following lemma and theorem gives the correctness and complexity of our algorithm.
» Lemma 16. Our BHS algorithm with n + 6 agents correctly locates the black hole.

» Theorem 9. A group of n + 6 agents executing the BHS algorithm along a dynamic torus

of size n x m correctly locates the black hole in O(nm!-5) rounds.
7.2 BHS with n + 7 agents
In this case the set of n+ 7 agents, A = {a1,as,...,a,47} are scattered along the nodes of G.

The BHS algorithm with n+7 agents is almost similar to the earlier BHS algorithm with n+6
agents. The differences are as follows: at each iteration the agents are instructed to perform
CAUTIOUS-WAITMOVEWEST(0, 7) instead of CAUTIOUS-WAITMOVEWEST(0,6). Next,
while exploring a ring R; at the i-th iteration at least 3 agents reach v; o within time2 > 27m
(9(7) +3m = 24m+3m), whereas in earlier BHS algorithm with n + 6 agents at least 2 agents
reach v; o, within time2 > 23m. Next, if 3 agents reach v; o, then our earlier algorithm, 2
agent scenario is similar to 3 agent scenario in this case. In our BHS algorithm with n + 6
agents, both agents are instructed to walk cautiously along west and east, respectively, but
now as we have one more agent, the two lowest Id agents among them perform CAUTIOUS-
MovVE(west, i), while the other walks cautiously along east. Otherwise, if 4 agents reach
v;,0, then this case is again similar to our 3 agent scenario in our earlier BHS algorithm
with n + 6 agents, in which these 3 agents perform CAUTIOUSDOUBLEOSCILLATION whereas
in this algorithm as we have one more agent, so two lowest Id agents perform CAUTIOUS-
MovE(west,0) and the other two agents (i.e., 3rd lowest and 4th lowest Id agents) perform
CAuTIOUs-MOVE(east, 0), and all these process iterates for each row ring.

» Lemma 17. If 3 agents reach v; o when time2 > 27n, and the algorithm has not terminated,
then 8 agents have entered the black hole from three different directions.

» Lemma 18. Our BHS algorithm with n + 7 agents ensures that if at the i-th iteration
after time2 > 27n only 3 agents are present at v; o, then there exists another agent stuck
somewhere along R;.
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Lemmas 17 and 18 are just a consequence of Lemmas 14 and 15. Also, Corollary 9 holds
for this algorithm as well.

» Lemma 19. Our BHS algorithm with n + 7 agents correctly locates the black hole.

» Theorem 10. A group of n + 7 agents executing our algorithm along a dynamic torus of
size n X m correctly locates the black hole in O(nm) rounds.

8 Conclusion

In this paper, we have considered the black hole search problem on a dynamic torus, in
which each row and column are 1-interval connected. We have considered two types of initial
configuration of the agents, and in each case, gave the bounds (both upper and lower bound)
on number of agents and complexity in order to locate the black hole. To be specific, when the
agents are initially co-located, first, we give lower bounds of n + 2 and Q(mlogn) on number
of agents and rounds, respectively. Next, with n + 3 agents, we design a BHS algorithm that

1-5) rounds, whereas with n + 4 agents, we propose an improved algorithm

works in O(nm
that works in O(nm) rounds.

When the agents are scattered, we give a lower bound of n 4+ 3 and £2(mn) on a number
of agents and rounds, respectively. Next, we propose two BHS algorithms, first, works with
n + 6 agents in O(nm!®) rounds and second, works with n + 7 agents in O(nm) rounds
(round optimal algorithm).

Moreover, in this paper we have considered that each node in the dynamic torus is labeled.
A possible future work in this direction can be first to remove this assumption and give a
BHS algorithm and check if the bounds get changed. Secondly, for both these cases, finding

an agent optimal algorithm is another possible direction which can be pondered in to.
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—— Abstract
We study the problem of traveling in an unknown dynamic graph, to reach a destination with
minimum latency. At each step of the execution, an agent can decide to move to a neighboring
node if an edge exists at this time instant, wait at the current node in the hope that other links
will appear in the future, or move backward in time using an expensive time travel device. A travel
that makes use of backward time travel is called a space-time travel. Our aim is to arrive at the
destination with zero delay, which always requires the use of backward time travel if no path exists
to the destination during the first time instant.

Finding an optimal space-time travel is polynomial when the agent knows the entire dynamic
graph (including the future edges), even with additional constraints. However, we consider in this
paper that the agent discovers the dynamic graph while it is exploring it, in an online manner.

In this paper, we propose two models that define how an agent learns new knowledge about the
dynamic graph during the execution of its protocol: the T-online model, where the agent reaching
time ¢ learns about the entire past of the network until ¢ (even nodes not yet visited), and the
S-online model, where the agent learns about the past and future about the current node he is
located at. We present an algorithm with an optimal competitive ratio of 2 for the T-online model.
In the S-online model, we prove a lower bound of 2/3n — 7/4 and an upper bound of 2n — 3 on the
optimal competitive ratio when the cost function is linear.
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1 Introduction

We consider the problem of an agent moving in both space and time in a dynamic graph
representing a transportation network. The goal of the agent is to reach a destination node
in the aforementioned graph with a delay of zero, thanks to backward time-travels. As the
dynamic graph evolves, its edges may appear and disappear over time. The agent can wait
at a given node for an adjacent edge to appear (thus moving forward in time). However,
conversely to most known models, we consider that the agent can also go back in time, to
cross an adjacent edge that previously appeared in the past. However, moving backward in
time involves a cost that the agent seeks to minimize.

It has been shown by Bramas et al. [4] that finding optimal-delay optimal-costs travels can
be computed with a polynomial offline algorithm, even when assuming an upper constraint
on the cost. However, the offline setting considered by Bramas et al. [4] implies that the
agent knows the entire dynamic graph. For example, an agent at time ¢ may only be aware
of the evolution of the dynamic graph up to time ¢ (e.g., if this dynamic graph represents a
transportation network, unforeseen problems may arise in the future, while past availability
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periods have been tracked). Also, the dynamic graph itself may be infinite, which may cause
storage issues before running the offline algorithm. Thus, it is important to consider settings
where the agent that plans its space-time travel only has limited knowledge.

In this paper, we focus on online settings, where agents possess limited initial knowledge of
the underlying dynamic graph. We define two settings, referred to as T-Online and S-Online.
In the T-online setting, the agent does not know the future of the dynamic graph, but learns
everything about the temporal graph up to its current time instant (even the existence of
time-edges between nodes that were not yet visited). Thus, the agent has complete spatial
knowledge up to its current time instant, but still navigates Time in an online fashion.
Conversely, in the S-online settings, the agent knows the entire past and future of the nodes
it has visited, but has no knowledge about yet unvisited nodes, and thus navigates Space in
an online fashion. The knowledge acquired by the agent in both settings is illustrated in
Fig. 3 and 4.

Related Work. Space-Time routing has been studied, mostly assuming forward time travel,
i.e., waiting, is available. Many studies (see e.g. Casteigts et al.[7] and references herein)
recently revisited popular problems previously studied in static graphs [6, 9, 19] in a dynamic
context.

Casteigts et al [8] studied the possibility of discovering a restless temporal path between
two nodes in a dynamic network with a waiting time constraint: at each step, the traveling
agent cannot wait more than ¢ time instants, where c is a given constant. It turns out that
computing such paths is NP-Hard. Perhaps surprisingly, Villacis-Llobet et al [20] showed
that if one allows going several times through the same node, the obtained restless temporal
walk can arrive earlier, and finding it can be done in linear time. As previously mentioned,
this line of work only considers forward time travel (a temporal path cannot go back in time),
and focuses on offline settings.

Multi-criteria path computation problems have been extensively studied within computer
networks [10, 16, 17]. In this context, each edge is characterized by a weight vector, comprising
both cost and delay. Path computation algorithms thus have to maintain and explore all
non-comparable paths, whose number may grow exponentially with respect to the size of the
network, leading to the use of approximation schemes or heuristics. However, these works
always focus on static graphs and offline settings.

As aforementioned, Bramas et al. [4] have proposed path computation algorithms on
dynamic graphs with both forward and backward time-travel (assuming costly backward
time-travel). They demonstrated the polynomial solvability of finding the path with minimum
delay, even when constraining (or optimizing) the cost. Note that, conversely to us, such
travels may not always allow for a delay of 0, if the constraint on the cost is too stringent.
However, their study exclusively focuses on offline settings.

Related online problems in graphs include graph exploration and treasure hunting. Online
graph exploration has been extensively studied in the literature in models that are similar
to our S-online model, i.e., when visiting a node, the agent learns about the identifiers of
the neighboring nodes. Algorithms with optimal competitive ratios were found in various
classes of graphs such as cycles, tadpole graphs [5], trees [15], and arbitrary graphs [2], in
undirected and directed [14] graphs. The case where more than one agent explores the graph
has also been investigated [11, 12].

The treasure-hunting problem is equivalent to the problem of reaching a destination
node with minimum latency, if considering the destination as the node where the treasure
is located. Previous work on treasure hunting only considers static graph [1, 3], usually
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considering a different model where the agent sees outgoing edges, but lacks visibility of the
neighboring nodes identifiers. In [18], the authors considered a model similar to ours, where
the agent sees the neighboring nodes, and show that the optimal competitive ratio is ©(n).
This result implies the same asymptotic bounds in our model when assuming a linear cost
function, but the exact bound remains unknown. Moreover, an exact bound in their setting
cannot be generalized to our setting as an edge with a given cost requires several nodes to
be emulated in our model.

To the best of our knowledge, our paper is the first to consider a problem similar to the
online graph exploration and treasure-hunting problem in dynamic graphs.

Contributions. In this paper, we provide the following contributions:
We introduce the problem of online space-time travel in dynamic networks and formally
define several settings. In particular (a) in the T-online setting, an agent learns the past
of the entire network when reaching a particular moment in time, and (b) in the S-online
setting, an agent learns the past and future interactions involving the node where it is
currently located.
We present a T-online algorithm with an optimal competitive ratio able to compute a
space-time travel with lowest delay and having a cost of at most two times the optimal
cost.
We present a lower bound of 2n/3 — 7/3 for the competitive ratio of S-online algorithms,
even if the cost function is the identity. In contrast, we provide a 2n — 3 competitive S-
online algorithm assuming a linear cost function. This algorithm is at most n? competitive
for arbitrary (but feasible) cost functions.

Our work opens several problems, for instance, how to close the gap between our lower
and upper bound regarding the competitive ratio of S-online algorithms.

2 Model

In this section, we define the models and notations used throughout this paper, before
formalizing the aforementioned problems.

We represent the dynamic graph as an evolving graph, as introduced by Ferreira [13]: a
graph-centric view of the network that maps a dynamic graph as a sequence of static graphs.
The footprint of the dynamic graph (that includes all nodes and edges that appear at least
once during the lifetime of the dynamic graph), is fixed. Furthermore, we assume that the
set of nodes is fixed over time, while the set of edges evolves.

More precisely, an evolving graph G is a pair (V, (E;)ten), where V' denotes the set of
vertices, N is the set of time instants, and for each ¢ € N, E; denotes the set of edges that
appears at time ¢. The snapshot of G at time ¢ is the static graph G(t) = (V, E;), which
corresponds to the state, supposedly fixed, of the network in the time interval ¢,¢ + 1).
The footprint F(G) of G is the static graph corresponding the union of all its snapshots,
F(G) = (V,U,en Er). We say ({u,v},t) is a temporal edge of graph G if {u,v} € E,. We
say that an evolving graph is connected if its footprint is connected.

Space-time Travel. We assume that at each time instant, an agent can travel along any
number of adjacent consecutive communication links. However, the graph may not be
connected at each time instant, hence it may be that the only way to reach a particular
destination node is to travel forward (i.e., wait) or backward in time, to reach a time instant
where an adjacent communication link exists. In more detail, an agent travels from a node s
to a node d using a space-time travel (or simply travel when it is clear from the context).
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» Definition 1. A space-time travel of length k is a sequence ((uo,to), (u1,t1), ..., (ug, tx))
such that

Vi €{0,...k}, u; €V is a node and t; € N is a time instant,

Vi € {0,...k — 1}, if u; # w1, then t; = tiy1 and {u;,u;41} € Ey, i.e., there is a

temporal edge between u; and w41 at time t;.
By extension, the footprint of a travel is the static graph containing all edges
(and their adjacent nodes) appearing in the travel. Now, the itinerary of a travel
((uo,to), (w1, t1), ..., (ug, tg)) is its projection (ug,uy,...,ur) on nodes, while its schedule is
its projection (g, t1,...,tx) on time instants. Let Tg((u,t), (v,t')) denote the set of travels
in G starting from node w at time ¢, and arriving at node v at time ¢'.

» Definition 2. A travel ((ug,to), (u1,t1), ..., (uk, tg)) is simple if for alli € {2,...,k} and
j€{0,...,i—2}, we have u; # u;.

Intuitively, a travel is simple if its footprint is a line (i.e., a simple path) and contains at
most one time-travel per node (as a consequence, no node appears three times consecutively
in a simple travel).

» Definition 3. The delay of a travel T = ((uo, o), (u1,t1), ..., (uk, tr)), denoted delay(T)
is defined as t; — tg.

The Backward cost of a travel.

» Definition 4. The backward-cost is the cost of going to the past. The backward-cost
function §f : N* — RT returns, for each § € N, the backward-cost §(6) of traveling § time
instants to the past. As we assume that there is no cost associated to forward time travel
(that is, waiting), we extend f to 7 by setting f(—0) = 0, for all § € N. In particular, the
backward-cost of traveling 0 time instants in the past is zero. When it is clear from context,
the backward-cost function is simply called the cost function.

» Definition 5. The backward-cost (or simply cost) of a travel T = ((uo, to), (u1,t1), - .., (ug,
tr)), denoted cost(T) is defined as follows:
—1

COSt(T) = f(h — ti+1)
» Definition 6. Let T} = ((uo,to), (u1,t1),. .., (ug, tx)) and To = ((ug, ty),(ul, t1), .., (uh,
t).)) be two travels. If (ux,ty) = (uf,t(,), then the concatenated travel Ty & Ty is defined as
follows:

T1 @ T2 = ((Uo,to), (ul,tl), ey (Uk,,tk), (u’l,t’l), ey (u;cl,t;,))

» Remark 7. One can easily prove that cost(Ty @ Ta) = cost(T1) + cost(T3). In the following,
we sometimes decompose a travel highlighting an intermediate node: T = T; & ((u;, t;)) ® To.
Following the definition, this means that T} ends with (u;,¢;), and Ts starts with (u,,t;), so
we also have T'=T1 & T and cost(T') = cost(Ty1) + cost(T3).

Our notion of space-time travel differs from the classical notion of journey found in the
literature related to dynamic graphs [13] as we do not assume time instants monotonically
increase along a travel. As a consequence, some evolving graphs may not allow a journey

E

Il
=)

from A to B yet allow one or several travels from A to B.

We say a travel is cost-optimal, if there does not exist a travel with the same departure
and arrival node and times as T having a smaller cost. One can easily prove the following
Property.
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» Property 1. Let T be a cost-optimal travel from node u to node v arriving at time t, and
T’ a sub-travel of T i.e., a travel such that T =Ty ®T' ® Ty. Then T’ is also cost-optimal.

In the remaining of this paper, we consider a given evolving graph G = (V, (E})en), a
given cost function f, a source nodes s and a destination node d in V.

Problem specification. We consider an agent that travels in the evolving graph, starting
from a node s at time 0. When at a node v at time ¢, the agent can either wait, go back in
time, or traverse an edge to a neighboring node v if the temporal edge ({u,v},t) exists. If it
waits, it stays in the same node, but the time is incremented by one. If it goes back in time,
the new time can be any ¢, 0 < ¢’ < t, and the cost of this operation is f(¢ — t'). Note that
when traveling in space the agent can traverse several edges during a single time instant.
When time-traveling, the agent may travel back or forward in time to any time instant but
will remain on the same node.

The goal of the agent is to reach the destination d with minimal delay, i.e., arriving
at time 0. Notice that a backward time-travel is always necessary if no path exists to the
destination during the first time instant, and that reaching d at time 0 is always possible if
the footprint is connected.

This problem is trivial when the agent knows the entire evolving graph [4] (even when
the cost is constrained, and when the backward time travels are limited in amplitude). In
this paper, we consider that the agent has a limited initial knowledge of the evolving graph,
and it can learn more information by moving in the graph (moving in the topological or
temporal sense).

Online Algorithms. An online algorithm A is a function that takes as input tuple (G',t, u)
where G’ is a sub-graph of G representing the partial information of the agent, ¢ the current
time, and u a node where the agent is located. The algorithm outputs the action performed
by the agent: wait, go back at time t’ < t or traverse an edge. For simplicity, we can consider
without loss of generality that the output is a space-time travel T that exists in G’. By doing
S0, the agent may learn new information about the traversed nodes or they can wait to learn
new information about the future. A single action (wait, go back in time, or traverse an
edge) can be seen as an elementary space-time travel.

We consider only deterministic algorithms so that executing an online algorithm on a
given evolving graph G makes the agent follow a single space-time travel (maybe of infinite
length if the agent loops for infinity). On a given evolving graph G, the cost obtained by an
online algorithm A is denoted Cost(A, G) and is the cost of the space-time travel performed
by the agent on this graph. For comparison, we denote by Cost(opt, G) the optimal cost
given by an optimal offline algorithm.

Our goal is to find an algorithm that minimizes the competitive ratio defined as follows.

» Definition 8. An online algorithm has competitive ratio p if in any evolving graph G, we
have

Cost(A, Q)
————<p
Cost(opt, G)

Acquiring new Knowledge. The way the agent learns about the evolving graph depends on
the model. We consider two cases. First, in the T-online model, when an agent reaches time ¢,
they learns about all the temporal edges ({u,v},t") € E with ¢’ <, for all u,v € V. In other
words, they learns about the entire graph up to this time. Second, in the S-online setting,
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when an agent reaches a node u, it learns about all the temporal edges ({u,v},t) € E, for
all ' > 0 and for all v € V. In other words, it learns all the information, past and future,
concerning the current node.

Observe that the definition of competitive ratio does not depend on the setting, as the
offline optimal algorithm gives the same solution regardless of the setting. The setting just
impacts the knowledge of the agent, so in practice, different knowledge should give different
algorithms, and it might not be possible to obtain the same competitive ratio in two different
settings. Hence, we are also interested in finding lower bounds for the competitive ratio in
each setting.

space
o T1 T2 T3 T4 Ty Tg =.’E7
0 =8 O G0 ©
1 O
2 O
. 3 6
time i 6
5 O
6 O
Y 70 @&.@.@.@.@.@%@
Figure 1 Possible representation of an evolv- Figure 2 Footprint of the evolving graph
ing graph. Possible travels from z to z7 are represented in Figure 1.

shown in red, green, and blue. Note that the
blue and green travels require sending an agent
to the past (to a previous time instant).

space
space Ty X1 T2 X3 T4 Ty Tg 7.1'7
To T1 Ty Ty Ty Ty Tg Ty 0 e
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Figure 3 Example of the state of an agent Figure 4 Example of the state of an agent

during a T-online travel. The agent at position during an S-online travel. The agent at position

u does not know about the dashed edges u does not know about the dashed edges, nor

the unknown nodes outside Vinezpiored-

Visual representation of online space-time travels. To help visualize the problem, consider
a set of n + 1 nodes denoted xg,x1,x2,...,2,. Then, the associated evolving graph can
be seen as a vertical sequence of graphs mentioning for each time instant which edges are
present. A possible visual representation of an evolving graph can be seen in Fig. 1. One can
see the evolution of the topology (consisting of the nodes x to x7) over time through eight
snapshots performed from time instants 0 to 7. Several possible travels are shown in red,
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green, and blue. The red travel only makes use of forward time travel (that is, waiting) but
is the earliest arriving travel in this class (arriving at time 7, while it is possible to arrive
at time 4). The green and blue travels both make use of backward time travel and arrive
at time 0, so they have minimal travel delay. Similarly, the red travel concatenated with

((x7,7),(z7,0)) (i.e., a backward travel to reach x at time 0) also has minimal travel delay.

However, if we assume that the cost function is the identity (f : d — d) then the green travel
has a backward cost of 5, the blue travel has a backward cost of 4, and the concatenated red
travel has a backward cost of 7.

The main challenge arises when an agent explores the graph in an online manner,i.e.,
learns about the graph while it is exploring it. Figure 3 and 4 illustrate the current knowledge
of the agent after it traversed the red travel and is currently at node u. In Figure 3, the agent
is T-online and knows about the entire past of the graph, i.e., it knows about all the edges
that occurred at time 4 or before, regardless of the nodes involved. The agent knows about a
possible travel to reach destination z7, but does not know if it is cost-optimal depending on
the cost function (with a cost function f: z — x, it knows that the blue travel is optimal).

In contrast, in Figure 4, the agent is S-online and knows about the past and the future
of all the visited nodes zq,...x3. In this case, the agent does not know a travel to the
destination yet, but it is challenging to decide what node to explore first to minimize the
cost.

3 Backward-cost Function Classes

The cost function f represents the cost of going back to the past. It has been shown by
Bramas et al. [4] that it is necessary for f to be non-negative and that it attains its minimum
(not just converge to it) on every interval that includes infinity, for an optimal-delay optimal
cost travel to exist. These conditions were also shown to be sufficient for an offline algorithm
to find an optimal solution.

» Definition 9. A cost function f is user optimizable if it is non-negative, and it attains
its minimum when restricted to any interval [C,00), with C > 0. Let UO be the set of user
optimizable cost functions.

For simplicity, in this paper, we only consider user friendly cost functions as defined by
Bramas et al. [4]:

» Definition 10. A cost function § is user friendly if it is user optimizable, non-decreasing,
and sub-additive'. Let UF be the set of user friendly cost functions.

Indeed, following the methodology by Bramas et al. [4], the optimal output of an algorithm
using a user friendly function can be transformed into an optimal solution assuming the cost
function is only user optimizable.

4  T-Online Algorithm with Optimal Competitive Ratio

In this section, we consider the T-online setting. In other words, the future of the evolving
graph is unknown to the algorithm: at a time ¢, only the snapshots at time instants ¢’ < ¢
are known. We first prove that there exists no algorithm with a competitive ratio smaller
than 2, even if the cost function is the identity. Then we present our T-online Algorithm 1
and we show that it has an optimal competitive ratio.

! sub-additive means that for all a,b € N, f(a +b) < f(a) + f(b)
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time

Figure 5 Definition of the evolving graphs G*, with 9 nodes (n = 8). The blue travel Ty has a
backward-cost of 8. The red travel T; has a backward cost of i.

» Theorem 11. Assuming f : x — x, if the future is unknown, there exists no T-online
algorithm with competitive ratio 2 — e, with € > 0.

Proof. Assume for the sake of contradiction that algorithm A is a T-online algorithm and
has a competitive ratio of 2 — e, with € > 0. Let n be an even integer greater than g For any
1> 3, let G* be an evolving graph whose footprint is a line with n 4+ 1 nodes zq, z1,..., T,
defined in the following way:

G(0) is the graph where half of the edges are present:

EY0) = ({og, 2141} | K€[0,n]Ak=1 mod 2}.
G'(2) is the graph where the other half of the edges are present:
E'(2) = {{zg, 2141} | K€[0,n]Ak=0 mod 2}.

G'(i) is a line graph : E'(i) = {{zk,zk41} | k€ [0,n —1]}.
for all j ¢ {0,2,i}, G'(4) is a graph with no edge : E(j) = 0.

It is clear that, in all such graphs G?, there exists a travel from zy to z,, denoted by T},
with backward-cost n, using the edges present at time 0 and 2 (the blue travel in Figure 5).
In addition, there exists a travel, denoted T, of backward-cost i in the evolving graph G*
(the red travel in Figure 5).

If i > n, the optimal travel is T;,, and if ¢ < n the optimal travel is T;.

Let us now run Algorithm A on the evolving graph G2", with source being x, and
destination z,. Clearly, the algorithm cannot wait until time instant 2n otherwise the
backward cost would be at least 2n, which is two times more than the backward cost of the
optimal path T,,. This implies that Algorithm A cannot distinguish between (hence runs
exactly in the same way in) graphs G*, with i > 2n. Let ty.x be the maximum time instant
reached by Algorithm A in G?". Then we can even say that A cannot distinguish between
graphs G* with ¢ > tmax.

Claim 1: In G?, with i > tyax, Algorithm A outputs a travel with a backward-cost of at least
N+ tmax — 2
Proof of the Claim: The travel T = A(G") that A outputs must contain the same temporal
edges as T,, because those are the only edges that exist before time 7 (recall that ¢ty < 7).
Let ¢; be the time instant reached by Algorithm A at node «z;, for all j =0,...,n. Since
at each node the travel either arrives at time 2 or leaves at time 2, then Vj € [0..n],t; > 2.
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To move from node x; to node x4 the travel T" includes a backward trip of cost t;, if
Jj =1 mod 2, and of cost t; — 2, otherwise. Let t; . = tmax = max(t;), we have that

max

210dd(n)| + tmax — 2 if jma is 0dd
cost(T)= >, G+ >, 4 2—{ 2(|0dd(n)] — 1) + b if e i even
j€Odd(n) j€Even(n)

Where Even(n), resp. Odd(n), denotes the set of even, resp. odd, numbers smaller or
equal to n, Since |Odd(n)| = n/2, we obtain in both case cost(J) > n + tmax — 2

Claim 2: tpa <n—4
Proof of the Claim: Since algorithm A has a competitive ratio of 2 — ¢, then, if it runs in
the evolving graph G?", it must return a path of backward-cost at most

(2 — £)Cost(opt, G*") = (2 —e)n < 2n — 5

(recall that ne > 5), so it cannot reach time instant n — 3. Indeed, if the algorithm waits
until time instant ¢,,x > n — 3, then, using the previous claim, the backward-cost of the
travel would be at least n +n — 5.

Now we run Algorithm A on graph G'max*!, Using Claim 1, we know that A returns a
travel of cost at least n + tax — 2. However, in Gfmaxt1 since t. +4 < n (Claim 2), the
optimal travel is T3 __ 41 having a cost of tmax + 1. We obtain the following inequality:

cost(A(GT>T1Y) > n 4 o — 2> tax + 4+ tmax — 2 > 2(tmax + 1)
> 2Co0st(opt, Glmaxt1)

This contradicts the fact that A has a competitive ratio of 2 — ¢. |

Our Algorithm 1 works as follows: the agent remains in the initial node and waits to
learn more about the network until it finds a space-time travel to the destination. Since
it does not know whether this is an optimal travel, it waits until it is sure that this is the
case, and then goes back in time and enjoys its trip. Computing the best space-time travel
given a sub-graph is possible in polynomial time using the existing offline algorithm [4]. Our
algorithm assumes that the cost function tends to infinity when the input goes to infinity. It
is easy to see that this assumption is necessary to achieve a constant competitive ratio. For
instance, with a constant cost function that is equal to 1, one can create two indistinguishable
(up to time n) dynamic graphs where a travel with cost n — 2 exists before time ¢ = n. Then,
the first graph contains no other travel, and the second contains another travel with cost
1 but requires a path available at time ¢ > n arbitrarily large. Not knowing which graph
it is put in (at time n, the agent’s knowledge about the two graphs is identical), the agent
either waits indefinitely to see if the second travel exists, or follows the first travel with a
competitive ratio of n — 2. A similar argument can be constructed when the cost function is
upper bounded by some number C' when its input goes to infinity.

» Theorem 12. For any f € UF that diverges to infinity, Algorithm 1 is a T-online algorithm
with a competitive ratio of 2.

Proof. Let Ty,ax be the final value of the variable in our algorithm, so it is the space-time
travel used by the agent after the agent returns back at time 0. Let

tmax = max{t | f(t + 1) < cost(Timax)}-
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Algorithm 1 T-Online Algorithm.

Input:
G’: the known evolving graph
time: the current time
u: the current node (here u is always the starting node s)
Let Timax be an optimal space-time travel in G, if it exists, starting at time 0, from node s
to node d.
if Tmax does not exist or f(time + 1) < cost(Tmax) then
‘ wait 1 time instant;
else
L go back at time 0, then follow the travel Tiax;

s d
timelOO&O—O/OO—}OW%OO—O—O

1 0 000 O 00 O 00 0 60O O 0—0 o o0

Figure 6 Evolving graph G used to prove that an S-online algorithm has a competitive ratio of
at least 2n/3 — 7/3.

First, we prove that Ti,.x is an optimal offline travel. Indeed, the algorithm reached time
tmax SO all the other travels that are not discovered by our algorithm require temporal edges
appearing after time ty,ax, so their backward-costs are at least f(tmax + 1), which is at least
c08t(Tinax) by definition. Hence cost(Tmax) is the optimal backward-cost.

When the algorithm terminates, the travel T' that is returned is ((s,0),(s, tmax),(s,0))
@ Thax- It has a backward-cost of f(tmax) + cost(Tmax). Since f(tmax) < cost(Timax), the
Lemma is proved. |

5  S-Online Algorithm

In this section, we study the S-online setting, where an agent knows only about the nodes
they have explored. In this case, we show a lower bound of 2n/3 — 7/3 for the competitive
ratio, even when the cost function is the identity. We then present an algorithm that has a
competitive ratio of 2n — 3 when the cost function is linear.

» Theorem 13. Assuming a cost function is f: x — x, an S-online algorithm cannot have a
competitive ratio smaller than 2n/3 —7/3, where n denotes the number of nodes in the graph.

Proof. Assume for the purpose of contradiction that there exists an S-online algorithm A
with a competitive ratio c.

Consider an evolving graph G consisting of k paths of length 3 having one node s in
common and append a node d to one of the paths, as illustrated in Figures 6 and 7. Links
connecting nodes at hop-distance 1 from s and nodes at hop-distance 2 from s appear at
time 1, and all the other links appear at time 0. The number of nodes is n = 3k + 2.

An agent traveling in this graph initially knows about all the neighbors of s does not
know their neighbors. Since all the edges connected to s appear at the same time 0, they are
indistinguishable. We can consider without loss of generality that the branches are explored
from left to right, direction according to Figure 7 (a branch is explored when the node at
hop-distance 3 is visited). Visiting a branch costs f(1), and going back to s also costs §(1), so
when the agent finally visits the last branch that is connected to d, they have paid 2(k—1)+1.



Q. Bramas, J.-R. Luttringer, and S. Tixeuil
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Figure 7 The same evolving graph G shown in Figure 6 as a static graph where the label
represents the time where the edge is present.
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In the end the travel costs

2(n —2)

2k —1)+1=2k—1= —1=2n/3-7/3

while the optimal travel costs 1. So the competitive ratio is 2n/3 — 7/3. |

One important question is whether or not the lower bound is higher when assuming a
cost function f that is not linear. Interestingly, one can observe that, to create a worst-case
using non-linear functions, one must use longer paths because the travel cost of a two-hop
travel is the same in one way and the other, so longer travels are required to create travels
having higher cost. Moreover, following k£ smaller backward travels costs at most k times the
equivalent single but larger backward travel. So we conjecture that the lower bound is the
same for any cost function in 4/O.

We now present our Algorithm 2. At a given step, the agent is located at a node w at time
t and knows a subgraph G’ of G. Among the known nodes, some are not yet explored, called
Vuneaxplored- For a node v in Vinezpiored, the agent does not know its entire neighborhood.
In particular, it does not know if it is connected to the destination d. Indeed, d is either
unknown or unexplored (otherwise the agent has already reached the destination). The goal
of the agent is to find a travel towards the destination that is not too expensive. A possible
travel to d is either in G’ or goes through a node in Vipeppiored- A travel in G to d that
is not in G’ must go through a node v € Vynezpiored, SO its cost is at least the cost of a
travel towards v at time 0. So the main idea of the algorithm is to explore nodes one by one
starting from the one that could potentially be an optimal travel to the destination d i.e.,
the agent visits first a node v € Vyneapioreda Whose travel from s to v at time 0 is minimal.

To illustrate a step of the algorithm, consider Figure 4. The agent at position u does not
know any travel towards d, but it knows that a travel must either go through x4 or z5. In
the best case, if it goes through x4, a travel to d costs at least 3 (it costs 2 to reach x4 using
the edge (x3,x4) at time 1 plus at best a backward travel to 0 if d is directly connected to
x4. If it goes through x5, a travel to d costs at least 4. So in this situation, the agent travels
towards x4. When it reaches x4, the agent realizes that it is not connected to d and that a
travel to d passing through x4 costs at least 5 (the green travel in Figure 1) so the agent
decides to explore next x5. Then it explores xzg and finally d = z7.

» Theorem 14. Assuming the cost function is linear, Algorithm 2 is an S-online algorithm
with a competitive ratio of 2n — 3, where n denotes the number of nodes.
Assuming non-linear §f € UF, the competitive ratio of Algorithm 2 is at most n?.

Proof. Consider first that the cost function is linear. After each iteration of the algorithm,
at least one new node v is explored.
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Algorithm 2 S-Online Algorithm.

Input:
G’: the known evolving graph
time: the current time
u: the current node
Let Viunespiored be the set of nodes known but unexplored;
Let H = {Tv == TG/((S7O)7 (U7 0))‘7) € Vunezplored};
/* Recall that T¢/((s,0),(v,0) is the set of travels from s to v arriving and
departing at time O */
Let T, be a space-time travel in H with minimum cost
Follow an optimal space-time travel towards (v,0) in G’, from the current location u.

The cost of the travel from s to v arriving at time 0 is at most the cost Cost(opt, G) of
the optimal travel from s to d arriving at time 0. Indeed, if d is unknown, all travels goes
through at least one unexplored node, meaning that the cost to reach d is higher or equal
than the cost to reach v. If d is known, the travels towards d are included in the set H.

Note that when traveling back to s at time 0 from v at time 0, backward time jumps
become waiting, and vice-versa. Hence, an outbound trip requiring several, small waits and
a large backward-time jump translate in a return trip with a large wait and several small
backward-time jumps, which, intuitively, mais lead to different costs.

However, because we first assume the cost function to be linear (i.e. f(a+0b) = f(a)+ f(b),
the cost of the outbound trip is the same as the cost of the return trip. Thus, to visit the
next unexplored node v’, the agent has to, in the worst case, go back to s and then travel to
v, incurring a cost of 2Cost(opt, G). In the worst case, the destination d is the last visited
node. The total cost is at most 2(n — 2)Cost(opt, G) for the first n — 2 nodes (all except s
and d) plus the last travel towards d, i.e., at most 2(n — 2)Cost(opt, G) + Cost(opt, G) and
the competitive ratio is 2n — 3.

Now, suppose the cost function f € UF is non-linear. In this case, the costs of the
outbound and return trip may be different.

Let T be a k-hop travel from s to a node v, arriving and departing at time 0. Let T,
be the associated returned trip. Observe that the sum of the amplitude (denoted A in the
following) of all backward-time jumps is the same in both directions (i.e., for T" and T,.).
Also, it is clear that each backward jump performed in 7} has amplitude smaller than A and
since f is non-decreasing, each of these jumps costs at most f(A). Since there are at most
k < n backwards jumps in 7,., we know that, cost(T,) < k x f(A). As § is also sub-additive,
we know that f(A) < cost(T). Thus, we have cost(T,.) < k x cost(T).

Hence, using the same proof as in the previous case, we obtain in the worst case, a cost
of at most n x Cost(opt, G) to explore the next node v, which results in a total cost of at
most n?Cost(opt, G). <

6 Discussion and Open Problems

One may notice that the strategies used in Algorithm 2 are similar to some works related
to online static graph exploration and treasure hunting. These similarities raise interesting
questions regarding possible relations between these problems and possible applications of
existing works to our novel model.
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Studying this question is challenging due to the many different existing models. For
instance, many papers about treasure hunting in static graphs assume that the agent located
at a node does not learn about the identifier of the neighboring nodes, but only about
the outgoing edges [3, 1]. This results in bounds based on the number of edges, while our
algorithm performance only depends on the number of nodes.

One paper by Komm et al. [18] considers that an agent learns about the identifier of its
neighbors (a model dubbed fized graph). Interestingly, our models align with theirs under
the assumption of a linear cost function. We, however, give a more refined bound about the
competitive ratio, implying perhaps a more precise bound for the model given by Komm et
al. [18] (which briefly mentions an asymptotically linear competitive ratio before focusing on
the impact of advice fed to the agent).

When assuming a non-linear cost function, our problem seems to exhibit similarities with
the treasure-hunting problem in directed graphs when agents see the neighboring nodes (a
problem that, to our knowledge, is unexplored in the literature).

Our work in the S-online setting can thus be seen as the first generalization of the
treasure-hunting problem in dynamic graphs. It is interesting to see that such generalizations
bear similarities to their static counterparts. However, these outcomes depend on the agent’s
ability to engage in time travel. In the absence of such capabilities, certain assumptions about
the graph may be needed to make up for the absence of backward time travel. For instance,
one might consider assumptions such as periodicity, or the presence of bounded-recurrent
edges, allowing for the traversal of disappearing edges by waiting for their reappearance,
instead of traveling back in time. The study of relations between the settings studied in this
paper and more general ones, as well as the study of associated complexity results, are open.

7 Conclusion

We presented the first online solutions to the delay-optimal cost-optimal space-time travel
problem in dynamic networks.

We first showed that, when the future is unknown, even assuming an identity cost function,
no online algorithm can exhibit a competitive ratio of less than two, and we present a very
simple online algorithm with a competitive ratio of two, for a larger class of cost functions.

Then, when the graph itself is unknown and has to be explored to gain connectivity
knowledge, we showed that there exists a linear (in the size of the graph) lower bound on the
competitive ratio, even when the cost function is the identity, and we present an algorithm
with a linear (in the size of the graph) competitive ratio assuming any linear cost function.
Refining the constants between our lower and upper bound is left for future work.
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—— Abstract

A temporal graph can be represented by a graph with an edge labelling, such that an edge is present
in the network if and only if the edge is assigned the corresponding time label. A journey is a
labelled path in a temporal graph such that labels on successive edges of the path are increasing,
and if all vertices admit journeys to all other vertices, the temporal graph is temporally connected.
A temporal spanner is a sublabelling of the temporal graph such that temporal connectivity is
maintained. The study of temporal spanners has raised interest since the early 2000’s. Essentially
two types of studies have been conducted: the positive side where families of temporal graphs are
shown to (deterministically or stochastically) admit sparse temporal spanners, and the negative
side where constructions of temporal graphs with no sparse spanners are of importance. Often such
studies considered temporal graphs with happy or simple labellings, which associate exactly one
label per edge. In this paper, we focus on the negative side and consider proper labellings, where
multiple labels per edge are allowed. More precisely, we aim to construct dense temporally connected
graphs such that all labels are necessary for temporal connectivity. Our contributions are multiple:
we present exact or asymptotically tight results for basic graph families, which are then extended to
larger graph families; an extension of an efficient temporal graph labelling generator; and overall
denser labellings than previous work, whether it be global or local density.
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1 Introduction

A temporal graph is a graph which can evolve over time, through the appearing and/or
disappearing of edges. Numerous classical graph problems and parameters have been
extended to temporal graphs, such as colouring, connected components, maximum matchings,
and independent sets [19, 28,30, 33]. In temporal graphs, connectivity may become very
poor when considering the graph at every distinct time step, but the graph may still
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be connected when considering connectivity over time. Indeed, temporal connectivity is
motivated through many contexts in which temporal graphs naturally arise, most notably
the context of swarms of mobile entities with distance-based communication capabilities
(drone networks, insect colonies, and, particularly useful during the COVID-19 pandemic:
people) [12,14,15,21]. This temporal connectivity has since redefined classical connectivity
problems, such as (temporal) dominating sets, and (temporally) connected components, and
particularly interesting concerning this paper: (temporal) spanners [4,6,10,24].

After presenting a wide range of interesting changes and results concerning typical graph
problems with temporal paths instead of paths, Kempe, Kleinberg, and Kumar discuss
further interesting questions [20]. One of these is whether a temporally connected graph can
always be sparsified (that is, if labels can be removed) so as to obtain a “sparse” remaining
structure maintaining temporal connectivity. Such a structure is later called a temporal
spanner. Note that the static graph analogue would be asking whether a connected graph
always admits a spanning tree, which is of course always the case. They follow up with a
preliminary negative result, stating that some temporal graphs do not admit a linear size
spanner (hypercube graphs with each edge labelled with the corresponding dimension). The
real question then became whether dense temporal graphs could always admit a sparse
spanner, the intuition being that there exists many more ways to potentially sparsify a dense
graph. The question remained open for many years, until Axiotis and Fotakis answered in
the negative: they construct a non-trivial dense temporal graph in which some labels may
be removed but prove that a dense part has to remain to ensure temporal connectivity. [2]
A couple of years afterwards, a complementing positive result was presented by Casteigts,
Peters, and Schoeters: any temporal complete graph always admits a sparse spanner [10].
Following these, more papers surfaced related to temporal spanners: sharp thresholds on the
density of random temporal graphs to asymptotically almost surely admit particular sparse
spanners; positive and negative results regarding spanners which have a limited stretch, as
well as on temporal spanners which are blackout-resistant [5,6,11].

Another topic of interest in temporal graph theory is that of temporal network design,
where instead of analysing a given temporal graph, one would like to design a temporal graph
with some desired property or decide such a temporal graph does not exist. In most works
on temporal network design, the graph itself is given and a corresponding labelling needs
to constructed. One of the earliest such design problems was to create a gossip protocol,
that is, a schedule of pairwise communications between n agents, each having some piece of
information which can be transferred over successive communications, such that at the end
of the schedule, all agents are up to date with all the information. It is natural to minimise
the number of communications (e.g. the total cost of phone calls), and thus some tight
results arise with protocols using 2n — 3 communications, with the idea being to gather all
information to some agent and then broadcast the information out again, designing essentially
a temporal in-tree and a temporal out-tree resp. For more information, see survey [18]. More
recently in [29], Mertzios et al. reconsider and extend this work as a temporal graph design
problem. Direct results from gossiping apply, but more importantly, they include other
restrictions on the labelling, such as a maximum lifetime 4.e. the labels cannot be greater
than some value, which was further investigated in [22]. Also, two measures of density, both
of interest for this paper, are defined regarding a temporal graph: the temporal cost, being
the total amount of labels; and the temporality, being the maximum amount of labels on
some edge. The former is a global density measure, and the latter a local one.

In this paper, we combine the study of temporal spanners and of temporal graph design,
by designing dense temporal graphs such that each label is necessary for temporal connectivity.
As opposed to most previous work we will not restrict ourselves to happy or simple labellings
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Figure 1 Main results of our density measures on specific classes of graphs: < indicates an upper
bound, > indicates a lower bound. Results for Trees, and by extension Connected graphs, are tight.

(one label per edge) but instead extend to consider proper labellings (multiple labels per edge
allowed). This is a double-edged sword: on the one hand this intuitively may allow for much
denser labellings, but on the other hand, a combinatorial explosion on the amount of possible
labellings occurs implying algorithmics may be more difficult in this setting. In a sense, we
are interested in designing the most inefficient temporal networks possible. Outside of the
already established applications of temporal spanners in related work, the negative results in
particular can have direct implications concerning adversarial behaviour in temporal network
game theory and the potential waste of temporal and structural resources [27,32]. Lastly, a
slowly temporally connected network may allow for time to detect any anomalies/viruses
before the whole network is infected, while not hindering the supposedly essential connectivity
of the network, and may have applications for fraud detection in financial transactions [31].

In short, throughout the paper, we will steadily answer both of the following questions:

What is the densest temporal graph overall?

Given a graph class, what is the densest labelling all graphs can attain?

1.1 Contributions

First, in Section 2, we give standard graph theory and temporal graph theory notation and
define our setting as well as a global and a local density measure: maximum temporal cost
T+ and maximum temporality 77 respectively. Lower bounds from the literature and upper
bounds through analysis are presented. Then, in Section 3, we focus on tree graphs for
which we obtain tight results through an argument on bridge edges. These results do not
beat aforementioned lower bounds however. In Section 4, we focus on cycles, partly due to
a lower bound being a labelling on cycles, which shows promise for obtaining even denser
labellings. For this, we decide to extend labelling generator STGen from [7] so as to fit to our
setting and specifically to cycles. After executing it on small cycles, we obtain the intuition
for a complex labelling which beats the lower bounds for local density by a factor of 1.5,
and for global density by exactly 1 label. A non-trivial proof is given to show that all labels
of this labelling are indeed necessary and that the resulting temporal graph is temporally
connected, using a representation of temporal graphs called link streams and by reasoning on
journeys which are necessary. A summary of our results is presented in Figure 1, where n is
the number of vertices of a graph. We discuss and extend results in Section 5, and conclude.

Due to the page limit, technical proofs (marked with a *) were moved to the appendix and
other parts were omitted. For these, the reader is referred to the full version on arXiv [13].

2 Preliminaries

In this paper, all graphs are simple and undirected (except for the reachability graph defined
below). A temporal graph is a tuple (G, ) with graph G = (V, E), called the footprint or
underlying graph, and edge labelling A : E — 2. The labels correspond to when the edges
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are present over the lifetime of the temporal graph. A pair (e, ) with e € E and £ € A(e) is
called a time edge. Reachability in temporal graphs is defined through temporal paths, also
called journeys, which are adjacent time edges j = (¢, ¢a, ..., ¢ ) such that for all ¢; = (e;, ¢;)
with ¢ € [2, k] we have that ¢; > ¢;_;. We say u can reach v, or v can be reached by u, if
there exists a journey from u to v. A journey 7 is said to cover a set of vertices V' if for
all vertices v in V', v is part of some time edge of J. A temporal graph G’ = (G',\) is a
temporal subgraph of G = (G, \) if G’ is a subgraph of G and )\ a sublabelling of A. For a
label ¢ of temporal graph G, G—¢ corresponds to the temporal subgraph of G without label £
(if other labels exist in G with the same value, then these remain).

A temporal branching B = (T, A) with root r is a tree T with |A\| = n — 1 such that vertex
r can reach all vertices. A temporal branching B = (T, \') with root v of a temporal graph
G = (G, \) is a temporal subgraph of G which is a temporal branching, and it is spanning if
V(T) = V(G). The reachability graph R(G) is defined on the same vertex set as G and an arc
exists from u to v if and only if u can reach v in G. If all vertices can reach all other vertices
in G, we say G is temporally connected. Note that a temporal graph is temporally connected
if and only if the corresponding reachability graph is complete (with arcs in both directions).
From [8], two temporal graphs G; and G, are reachability-equivalent® if reachability graphs

R(G1) and R(Gs) are isomorphic, denoted G, B Go.

A labelling is proper when no incident edges share a same label. In the rest of the paper,
all labellings are supposed proper, unless specifically stated otherwise. Using terms from
[1], a label ¢ in a temporal graph G is redundant if and only if it can be removed from G

R
without reducing reachability, i.e. G ~ G~¢. Conversely, a label £ of G is necessary if and

only if G % G~¢. If a labelling contains only necessary labels, we call it a minimal labelling.
We call a temporal graph with a proper (resp. minimal) labelling a proper (resp. minimal)
temporal graph.

In [29], the authors defined two measures of density for a temporal graph G: the temporal
cost T'(G), which is the total amount of labels in G; and the temporality 7(G) which is the
maximum amount of labels on an edge, among all edges. The former is intended as a global
density measure, whereas the latter is more of a local one, potentially of interest for example
in distributed or parallel computing. We adapt temporal cost in the following manner. The
three types of maximum temporality are defined analogously.

Let T%(G) be the maximum temporal cost of graph G, i.e. the maximum temporal cost

T(G = (G, \)) of all proper minimal labellings A such that G is temporally connected;

Let T (Class) be the maximum temporal cost of graph class Class, i.e. the maximum

value z such that for all graphs G of Class, T"(G) > z;

Let T be the maximum temporal cost, 4.e. the maximum temporal cost T (G) among

all graphs G on n vertices.

We study three simple graph classes in this work, being Trees (Section 3), Cycles
(Section 4), and Cacti (omitted, see [13]), and in Section 5 superclasses are discussed.
2.1 Upper and lower bounds on T and 7+
The upper bounds are both obtained through the following fact:

» Lemma 1. A minimal temporally connected graph G equals the union of any n spanning
temporal branchings with distinct roots of G.

! Originally closure-equivalent, but changed to reachability-equivalent for journal version (private message).
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Proof. By contradiction, suppose that the union of some n spanning temporal branchings
with distinct roots of G does not equal G. This implies at least some label of G isn’t part of
the branchings, which means it can be removed without reducing reachability. However, G is
minimal so no redundant labels exist which is a contradiction. <

Lemma 1 allows us to reason on minimal temporally connected graphs through the
corresponding spanning temporal branchings: for the largest possible maximum temporal
cost TT, consider the branchings to all be using distinct labels; whereas the branchings all
using some same edge with distinct labels would result in the largest maximum temporality

T,

» Theorem 2 (x). The mazimum temporal cost TT < n?—n—1 and the mazimum temporality
Tt <n-—1.

Observe that the idea of considering n root-distinct temporal branchings is used in
Observation 3 in [22] as well. We believe that their result could be improved slightly from
n(n —1) to n(n — 1) — 1 in a similar fashion as we do for the maximum temporal cost 7.

Also in [22], Klobas et al. construct some minimal labellings which are strict, meaning
journeys are allowed to traverse at most one edge per time step. Among these labellings, the

one given in Lemma 4 happens to be proper, giving lower bounds 7 > inQ and 71 > in.

The idea of the labelling is to label every other edge of an even cycle graph with all even
labels up to n/2, and all other edges with all odd labels up to n/2. Let us refer to this
labelling as the parity labelling (see Figure 2).

During the open question session of a Dagstuhl seminar on temporal graphs (see [9] for
the report), some preliminary results of this work were presented, including a labelling of an
ad-hoc graph giving lower bounds T+ > stn? + O(n) and 7+ > [fn]. The idea is to force
journeys to go through the top edge using distinct labels. Let us refer to this labelling as the
ad-hoc labelling (see Figure 2).

2,4,6 1,3,5

10
19

28

2,4,6 1,3,5
1,35 2,4,6

(a) Parity labelling from [22] for n = 12.  (b) Ad-hoc labelling from [9] for n = 10.

Figure 2 Minimal labellings from the literature giving lower bounds on maximum temporal cost
T and maximum temporality 7.

Note that the parity labelling is denser regarding the temporal cost, but the ad-hoc
labelling is denser regarding temporality. Some natural questions arise from these bounds. It
seems that very sparse graphs (such as Cycles) can admit dense labellings, does that mean
that other sparse graphs, such as Trees, can admit dense labellings as well? Can one do
better than these labellings, and more specifically better in Cycles? These questions are
answered in the following sections.
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3 Tree graphs

In this section we prove the following labelling is densest possible for tree graphs, considering
maximum temporal cost 7T and maximum temporality 7. The labelling originates from
gossiping strategies from e.g. [3,17] and has been used in temporal graph theory papers such
as in Theorem 2 in [1] and the pivot technique in [10]. We refer to it as the pivot labelling,
and define it as follows (see also Figure 3). Select an arbitrary pivot vertex p and construct
journeys from all other vertices towards p, using the reverse breadth-first search order. Then,
using the breadth-first search order, add journeys from p to all other vertices. The earliest
label of the second BFS is removed.

D A N

15 14 15,24 14,25

16 >'< 16,20><
: j 18.15)( 12,26
17 \\ / 17,21 \\

e N NN G N N T

1 4 5 135 433 534
3 1n 13 e \ 3,31 11,22 1323 N2 N
wa >\ \kmﬁsoj B\
9 8 929 828
7 N e S

(a) First (reverse) breadth-first search labelling. (b) Adding the second breadth-first search labelling.

Figure 3 The pivot labelling of an example tree graph. A first labelling converging to pivot
vertex p is shown, which is then complemented by a second broadcasting labelling from p. Label 19
(shown in red) is redundant and removed.

The resulting temporal graph is temporally connected since by design all vertices can
reach pivot vertex p at time n — 1, and starting at time n — 1, vertex p can reach all vertices.
It is also a minimal labelling since removing any label < n — 1 on a path from a leaf vertex
f to p reduces the reachability of f, and removing any label > n — 1 makes it so f cannot be
reached by some other leaf vertex.

As stated by Theorem 2(a) in [1], the pivot labelling thus trivially gives the lower bound
T (Trees) > 2n — 3. Also, it trivially gives the lower bound of 7 (Trees) > 2. To prove
these are tight, 7.e. no denser labellings exist, we first present a lemma focusing on bridge
edges (edges which disconnect the graph if removed), and then apply it on tree graphs.

» Lemma 3. For any bridge edge e of graph G and any minimal labelling A such that
G = (G, \) is temporally connected, A can assign at most two labels to e.

Proof. Consider a temporally connected graph G with bridge edge e = {u, v}, separating G
into two temporal subgraphs G; (with vertex u) and G (with v). Suppose by contradiction
that the labelling A of G assigns more than two labels to edge e, say k > 2 labels 1, o, ..., {g,
and that this labelling is minimal. Define ¢;, to be the earliest time at which all vertices in
Gy are able to reach u. Similarly, define ¢ to be the latest time at which all vertices in Gy
can be reached by v. Since G is temporally connected, there exists some label ¢; of e such
that t;, < ¢; < t}. Keeping ¢; is thus sufficient for maintaining reachability from all vertices
in G; to all vertices in Go. A symmetrical argument can be used to find label ¢; which is
sufficient for maintaining reachability from all vertices in G, to all vertices in G;. Together,
¢; and ¢; are thus sufficient for reachability concerning journeys using edge e, and edge e
can trivially be ignored for reachability between vertices in Gy (resp. Gz). This results in all
other labels on edge e being redundant, which is a contradiction since it is minimal. <
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» Theorem 4. 77 (Trees) = 2.

Proof. Tree graphs contain only bridge edges, so by Lemma 3 no edge of a tree graph
can have more than two labels in a minimal labelling, and this is attained by the pivot
labelling. |

Note that Theorem 4 implies that T (Trees) < 2n — 2, which is only off by 1 from the
lower bound. We finish this section with proving the latter to be tight.

» Theorem 5 (x). T (Trees) = 2n — 3.

As a side note, we remark that the maximum temporal cost (resp. temporality) of tree
graphs corresponds to the minimum temporal cost (resp. temporality) of tree graphs. In
other words, all minimal temporally connected labellings of tree graphs contain exactly 2n —3
labels and exactly 2 labels on all edges except one, independently of whether one tries to
minimise or maximise the density. For proofs of these minimisation costs, we refer the reader
to [18] for the original proofs in the gossiping context, or to Theorem 2 in [22] and Corollary
3 in [29] in the temporal graph context.

For trees, the results are mixed: on one hand we exactly determined both maximum
temporal cost and maximum temporality of tree graphs T (Trees) and 7 (Trees), but on
the other hand both are very sparse and do not improve upon lower bounds of maximum
temporal cost T and maximum temporality 7.

4 Cycle graphs

We focus here on finding dense labellings of cycle graphs, which we know exist thanks to the
parity construction. For this, we decided to adapt temporal graph generator STGen from
[7] (the description and adaptation of which is omitted in this version), which ultimately
leads us to the densest labelling in this paper, the generator labelling. The main idea is to
distribute even labels to an arbitrary edge, odd labels to the incident non-labelled edges, and
so forth for the next non-labelled edges switching between even and odd labels with some
additional complex rules.

Proving this labelling results in a minimal and temporally connected graph for any order
n cycle graph is complex due to the inherent unreadability of the multiple journeys in these
temporal graphs. For this reason, we introduce a different type of representation which
is very similar to the so-called link stream representation used in various temporal graph
theory papers [25,26,34], and thus by slight misuse of terminology, we simply refer to it as
the link stream representation. Link streams intuitively focus more on the time edge aspect
of a temporal graph, and less on the structure of the underlying graph. Since we already
know the underlying structure of the graph (being a cycle graph), link streams are perfect to
represent our generator labelling. As an illustrative example, the link stream representation
of Figure 4 is given in Figure 5, where all edges of the cycle are represented in one dimension,
the horizontal dimension, and time is represented in the other, the vertical dimension. A
“label” is thus represented as a time edge at the intersection of the corresponding edge and
time value.

In this representation, a journey informally corresponds to a (possibly steep) “staircase”
of time edges which, obeying the flow of time, cannot go down. We now remind and define
some concepts concerning journeys in this setting, all of which are illustrated in Figure 5.
A prefix of a journey (vy,¥f1,v2,0s,...,€x_1,vk) is a part of the journey cut back from the
arrival vertex, i.e. (v1,£1,v9,¥a,...,0;_1,v;) for some i < k, and a suffix of a journey is a part
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Algorithm 1 Generator labelling (see also Figure 4).

input :even cycle graph G of order n, edge e of G
output : temporal graph G = (G, \) with generator labelling A

L, L, + oddNumbersBetween(1,n — 1) /* ascending order */
Ly + evenNumbersBetween(1,n — 1) /* ascending order x*/
L' L}, L+ 0

€cyCec €

while e, = e or e. # e.. do
addLabels(L’, e.)
addLabels(L’, e..)
e e,
for ¢ in L do

addLabel (¢, e’)

if ¢ = e, then ¢ « e.. else ¢ « e,
moveSmallestLabelFromTo(L, L’)
removelargestLabelFrom(L)
€. < nextClockwiseEdge(e.)
€cc < nextCounterClockwiseEdge(e,.)
if L=L, then L+« Lyelse L+ L,
if '’ =L then L'+ L else L'+ L}
addLabel(largestLabel(e.) + 2, e.)

a) ec =ece = e, L1 = (1,3,5,...,15) and L} = 0. b) Ly = (2,4,6,...,14) and L} = 0.
1 2

1,5,9,13 1,5,9,13

4,8,12 4,8,12
1,3,5,7,9,11,13,15 1,3,5,7,9,11,13,15

2,6,10,14 2,6,10,14

2,4,6,10 2,4,8,12

1,3,5,9
(c) L1 = (3,5,7,9,13) and L} = (1). (d) L1 =0, L} = (1,3,5,7) and e. = ecc again.

Figure 4 The generator labelling for n = 16, starting on rightmost edge e, and repeating while
loop with lists in captions. After the while loop finishes, label 9 is added on the last (leftmost) edge.
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15 J—

10 P J— —

(a) Without journeys.
15 J—

10 J—

(b) With two clockwise journeys in red and one counter-clockwise journey in
blue. Only the outermost red journey (which goes around) is prefix-foremost.
15

10

(c) With all dominating journeys.

Figure b The generator labelling for n = 16 in the link stream representation, with edge e shown
in the middle. The rightmost edge connects the outermost vertices, allowing journeys to go around.
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of the journey cut back from the starting vertex, i.e. (v;,%;,v41,%4+1, .., {k—1,Vr) again
for some j < k. A foremost journey from vertex u to vertex v is a journey which arrives at
the earliest time among all journeys from u to v. A prefix-foremost journey from u to v is
a journey which prefixes are all foremost, In other words, a prefix-foremost journey always
takes the earliest edges possible on its journey. We define a clockwise journey as a journey
which takes only time edges to the left, and a counter-clockwise journey is composed of only
time-edges going to the right. Finally, we define dominating journeys as clockwise (resp.
counter-clockwise) journeys such that no other clockwise (resp. counter-clockwise) journey
exists which covers all its vertices or more.

We show in a very technical proof by induction that the generator labelling essentially
“grows” domination journeys and creates new ones, as it is applied to larger and larger cycles
graphs, and that these dominating journeys are necessary and ensure temporal connectivity.

» Theorem 6 (x). The generator labelling yields a minimal temporally connected graph.

The temporal cost of the generator labelling is the largest presented in this paper, and
with it also comes the largest temporality, namely on edge e. In the full version of this work,
we show that the generator labelling works on all even cycles, and also give an adaptation
for odd cycles. Analysing both gives us the main results.

1,23
» Theorem 7. Tt (Cycles) > 3n° + 3.

» Theorem 8. 7T (Cycles) > [4n].

5 Conclusion

In conclusion, we provided some general upper bounds and proved tight or lower bound
results for some basic graph classes on how dense a labelling they can admit. Also, our
proposed generator labelling beats the previously densest labellings, in both temporal cost
and temporality.

Since we allow a labelling to assign no labels to any edge, a density result for class C
translates as a lower bound for any class C' if for all graphs G’ € C’, there exists G € C such
that G is an edge-deleted subgraph of G’. Conversely, a density result for class C implies an
upper bound for any superclasses of C. Together, this means that our (tight and lower bound)
results for Trees, Cycles, and Cacti, thus respectively transfer for Connected, the class
of connected graphs, Hamiltonian, the class of Hamiltonian graphs, and Circumference c,
the class of graphs of circumference c.

We omitted in this version (again, see full version on arXiv [13]) the section on cactus
graphs, where essentially the pivot labelling is used to gather information towards a largest
cycle in the graph, instead of towards a pivot vertex, then apply the generator labelling on
that cycle, and finally broadcast information outwards again with the pivot labelling, leading
to the density results presented in Figure 1.

In terms of future work, one clear option is to consider other types of labellings. There
are already some lower bounds known, such as Axiotis and Fotakis’ construction from [2] for
happy labellings, although we beat this construction slightly by adapting the ad-hoc labelling
to become a happy labelling (omitted in this version). A lower bound for strict labellings
comes from [23], in which Klobas et al. label all edges of an odd cycle with all integers up
to [ 5 |; another labelling attaining the same lower bound is the complete graph with label
1 on all edges. Another direction for future work is considering computational complexity
of associated problems. The corresponding minimisation problems are all polynomial-time



E. Christiann, E. Sanlaville, and J. Schoeters

solvable, with the exception of deciding whether the minimum temporality of a graph is 1,
which is NP-complete [16]. Our results only prove polynomial-time solvability for trees, and
containment in APX for cycles and cacti of large circumference.
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Proof(s) of Section 2

» Theorem 2. The mazimum temporal cost Tt < n? —n — 1 and the mazimum temporality
Tt <n-—1.

Proof. By Lemma 1, a minimal temporally connected graph equals the union of any of its n

distinct-root spanning temporal branchings.


https://doi.org/10.1201/b16132-87

E. Christiann, E. Sanlaville, and J. Schoeters

Concerning maximum temporal cost, the worst-case scenario for the total number of
labels in such a graph is when these temporal branchings are all disjoint. This results in a
labelling using n — 1 labels for each branching (as they are spanning), of which there are n,
resulting in a total of n? — n labels.

Consider however the smallest label £~ used in the graph, say on edge e = {u,v}. This
label can only be part of the spanning temporal branching of root u, denoted B, or of the
spanning temporal branching of root v, denoted B,, since it’s unreachable from any other
vertex. Suppose w.l.o.g. £~ is part of B,. We know v must reach u through some journey in
B, arriving at some time ¢. Note that ¢ can be removed from B,, and ¢~ added. Indeed,
for all w, any journey v ~» w in B, is either maintained by the swap, or passes through u
earlier with ¢/~ meaning B, remains a spanning temporal branching. Thus, label £~ can
be considered part of two spanning temporal branchings, decrementing the total amount of
labels to n? —n — 1.

Concerning maximum temporality, the worst-case number of labels on an edge in such a
graph is when the spanning temporal branchings are all label-disjoint and all use one same
edge e = {u, v}, resulting in an edge having 1 label for each branching, of which there are n,
resulting in a total of n labels.

Note however that the label from the branching corresponding to root u, and the label
from branching corresponding to root v, are necessarily the same label, since otherwise the
later of the two would be redundant, as both branchings can use the earlier label. Thus edge
e would have n — 1 labels. <

B Proof(s) of Section 3
We first need the following lemma concerning dense path graphs.
» Lemma 9. T+ (Paths) =2n —3

Proof. The pivot labelling and Lemma 3 apply to path graphs, implying that 2n — 3 <
T (Paths) < 2n — 2.

Suppose w.l.o.g. the vertices of a path graph to be, from one leaf vertex to the other, vy,
vg etc. up to v,. Note that for a path graph to be temporally connected, we only need to
ensure that both extremities, v; and v, can reach each other, via a journey in one direction,
and a journey in the other. Indeed, any other pair of vertices can use these journeys to reach
each other. Thanks to this, we can reason on temporally connected path graphs and only
need to worry about the reachability between these two leaf vertices, instead of between all
vertices.

Suppose by contradiction that a minimal temporally connected path graph G exists with
2n — 2 labels. By our previous argument, we have that any label which is not part of either
the journey from vy to vy, or of the journey from v, to v, is redundant. Each of these two
journeys is composed of n — 1 labels, meaning that to obtain 2n — 2 necessary labels from
only these two journeys, we must have that all labels on the two journeys must be distinct.
There must exist one edge e; such that the corresponding labels have the smallest difference
among all edges of path G. By the temporal nature of journeys, there cannot be more than

one such edge as the difference must necessarily increase on edges further away from e;.

Consider the labels on edge e; and incident edges e;—1 and e;;1, denoted £;7, 65, ;7 4, €i—4,
071, and €57 ;. (If edge e; only has one incident edge, then ignore the following concerning
the non-existent other edge and labels.) Consider labels £;7, < ¢;7 < £;7; to be part of
vy ~ Uy, and £ > €5 > ;7 to be part of v, ~ vi. Suppose w.l.o.g. that £;7 > £;~. Thus
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we have that £;7, > £;7 > £{~ and also /{7, < {;~ < {;7. On edge e;_; however, two cases
are possible:

077 < £;: this means label ;7 is redundant as ;7| < £;~ < {;71;

¢;—1 > £;7: this means label ;" is redundant as ;| < £;7 < /{;_;.
Due to the inequalities presented, and the fact that the difference between ¢;_; and ¢;7,
must be larger than the difference between ¢~ and ¢;7, at least one of the previous cases
must be present, meaning at least one label must be redundant which is a contradiction. <«

» Theorem 5. T (Trees) =2n — 3.

Proof. Since path graphs are tree graphs, Lemma 9 gives an upper bound of 2n — 3, which
is attained by the pivot labelling. |

C Proof(s) of Section 4

The following technical lemmas are needed to then prove minimality of the generator labelling.

» Lemma 10. In a cycle graph G = (V, E) without any journey covering V, a clockwise
journey J = (({vj,vj—1},t1), {vj—1,vj-2},t2), ..., ({vi, vi—1 }, ti)) is dominating if and only
if:
it starts at the earliest date possible, i.e. there exists no time edge ({vj,vj_1},t) nor
({’Uj+1,’t}j},t) with t < tl,'
it ends at the latest date possible, i.e. there exists no time edge ({v;,v;_1},t) nor
({Ul;l,’uifg},t) with t > ty;
no other time edges exist between successive time edges, i.e. for all successive pairs of
time edges ({vq,Va—1},tp) and ({va—1,va—2},te > tp) of J, there exists no time edge
({vasva—1},t) or ({va—1,va—2},t) with t, <t < t..
A symmetric characterisation holds for counter-clockwise journeys.

Proof. Let us focus on clockwise journeys, the proof being symmetric for counter-clockwise
journeys. Suppose by contradiction that a journey J obeys the three criteria, but is not
dominating, meaning there exists some other distinct clockwise journey J’ covering the same
vertex set (or more). A case analysis follows depending on which vertex J’ starts.

If journey J’ starts from any vertex that J covers, except for v;, then to ensure J’
covers the vertices of 7, it needs to go all the way around the cycle graph and thus cover V,
which is explicitly excluded in this lemma.

If J' starts at vertex v;, and it contains some earlier time edge than the corresponding
time edge in J, then J doesn’t respect criterion three (as this earlier time edge exists
between successive time edges of 7). If instead it contains a later time edge, then J’ must
rejoin or cross J at some point (since J uses the latest date of edge {v;,v;_1} by criterion
two), implying J again does not respect criterion three. Of course, if J’ does not contain
any earlier or later time edge than J, then it will end in the same manner as J without any
way of continuing by criterion two, meaning it is identical to J.

Lastly, if J’ starts on any other vertex, then since J respects criterion one, J' must
arrive later than ¢; on edge {vj,vj_1}. By the same argument as before concerning 7' having
a later time edge than 7, the former must rejoin or cross the latter at some point, implying
J does not respect criterion three.

Since all cases end in some contradiction, being either J breaking one of the criteria or
J' being identical to J, we can thus conclude that J is dominating. <
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» Lemma 11. In a cycle graph G = (V, E) without any journey covering V, a pair of
clockwise and counter-clockwise journeys is necessary if:

both start at some same vertexr v;

both are prefiz-foremost;

both are a suffix of a dominating journey;

and they do not cross (except on vertex v).

Proof. We prove that such a pair of clockwise and counter-clockwise journeys, say journey
J’ which clockwise goes up to vertex w, and journey J,' which counter-clockwise goes up
to vertex wu, is necessary for reachability from v to w and from v to u respectively. W.l.0.g.
we give the proof for the former only, the proof for the latter being symmetric. We first
prove that no counter-clockwise journey can reach vertex w, and then that the only clockwise

w

20 from which it follows that this journey is necessary.

journey that can reach w is journey

First note that vertex v cannot reach further than u in a counter-clockwise manner.
Indeed, if by contradiction we suppose there is some counter-clockwise journey jv“' from v
to vertex u’ such that v’ is positioned further than u, then w.l.o.g. we may consider jv“'
to be prefix-foremost (if it is not, then we can make it so by changing its time edges for
the earliest possible). Since J* and jv“' are both prefix-foremost clockwise journeys, we
know that J* must be a prefix of journey jvul, i.e. ]v“' is the concatenation of journeys J,*
and say j;‘l. Journey J" is a suffix of a dominating journey J;, meaning no other counter-
clockwise journey covers the vertices of J; or more, but now we obtain our contradiction:
the concatenation of J; and \7;‘/ covers more vertices (the only case where this wouldn’t
be true is if J; covered V' which is explicitly excluded from the lemma statement). Since
JY and J* don’t cross (except on vertex v), we now know that v cannot reach w through a
counter-clockwise journey.

To finish the proof, we show 7.’ is the only clockwise journey that can reach w, meaning
all its edges are necessary. Suppose by contradiction another clockwise journey J exists from
v to w. It cannot be a prefix-foremost journey, as by definition this would be journey J.°.
Since J is not prefix-foremost, it uses some edge e with label I’ whereas J,* uses edge e with
some label [ < I’. However, we remind the reader that 7" is a suffix of a dominating journey
Ja. Altogether, this means another journey exists covering the same vertices as Jy, being
the concatenation of the prefix of J; up to vertex v, and J. By definition of dominating
journeys, this is a contradiction. |

We note that if the pair of journeys from Lemma 11 collectively covers V', then vertex v
can reach all vertices through these journeys.

» Theorem 6. The generator labelling yields a minimal temporally connected graph.

Proof. The proof is by induction. Consider cycle graph Cg as our base case. Apply the
generator labelling starting on some edge e. Let e be composed of vertices v_o and v_q,
and let vertices v; be the vertices in the clockwise direction of e, with i the (clockwise)
hop distance between e and v;, and similarly, let vertices v_(;42) be the vertices in the
counter-clockwise direction of e, with i the (counter-clockwise) hop distance between e and
v_(i+2)- Compute the dominating journeys, see Figure 6. Let us define some specific sets
of time edges as follows. Let the five earliest time edges on edges {v_2,v_1}, {v_1,v1} and
{v1,v2} be referred to as the seed, and the three latest time edges as the trunk. Let the
latest two time edges on edges {v_4,v_3} and {v_3,v_2} be referred to as a branch, as well
as the ones on edges {vq,v3} and {vs, vs}. More specifically, let the former be branch Ba, as
the dominating clockwise journey starting at vertex v, ends in these edges, and the latter
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B_5 as the dominating counter-clockwise journey starting at vertex v_o ends here. Finally,
let the other time edges be referred to as the base. Note that all time edges are part of some
dominating journey, and that all dominating journeys start on a time edge with time 1 in the
base (except for the two dominating journeys starting in the seed) and that all dominating
journeys end in the latest time edges of branches (except for two dominating journeys ending
in the trunk).

It is possible to claim minimality and temporal connectivity for this small temporal graph,
although we specifically point out that Lemma 11 can be used on all vertices (except for
those of the seed) to prove necessity of all dominating journeys starting on these vertices,
and reachability of all these vertices. Note that now only the time edges of the base remain
to be proven necessary. The time edges of the counter-clockwise dominating journey can be
proven necessary by applying Lemma 11 on vertex v_s, but it cannot be applied to vertex
vo to prove the remaining time edges necessary, as its counter-clockwise prefix-foremost
journey is not dominating. However, they are proven necessary through the ad hoc argument:
without these edges vo cannot reach v_4, as any clockwise journey by definition cannot reach
it except for its clockwise dominating journey which relied on these time edges, and any
counter-clockwise journey reaches at most vertex vy. Concerning reachability of the vertices
of the seed, it is possible for them to use the dominating journeys starting in the seed to
go to any other vertex (note that these journeys do not cross outside of in the seed, but do
cover V).

Now, in the inductive step, this structure of seed, base, trunk and branches remains
or gets extended when growing the generator labelling for some C,, to some C,,;4. More
precisely, the seed remains as is, the base gets extended with so-called roots, the trunk with
a so-called apex, and the branches with leaves. Also, two new branches are created in every
inductive step, which sprout from the top of the trunk. Underlying all this, we prove that in
the inductive step, the dominating journeys get extended slightly, are modified, or created,
in a precise manner which ultimately allows us to again use Lemma 11 to prove minimality
and temporal connectivity, in a very similar manner as how we did for Cg.

Now, suppose we have a cycle graph Cy; with the generator labelling which has been
proven minimal and temporally connected, specifically through applying Lemma 11 on
all vertices except for the seed. Add vertices var41, Vakt2, V—2k—1, and v_g,_o and the
corresponding edges to the link stream representation so as to obtain cycle Cyi4. See Figure 6.
This effectively breaks dominating journeys which previously used edge {v_og, vax }, whose
time edges now belong to edge {v_ok,v_2r—1}. We will patch these halves of dominating
journeys back together in what follows, although not exactly with their original half. Note
that now the generator labelling for Cyx44 is exactly this labelling, with some additional
time edges which are all later, i.e. for all additional time edges (e, t), there exists no already
present time edge (e,t’ > t). Let the three additional time edges extending the trunk be
referred to as the apex, let the leaves be the pairs of additional time edges extending the
branches (as well as creating branches Bgy, and B_gj from the trunk), and let the remaining
additional time edges be the roots, which extend the base.

Let us start by proving these additional edges are all part of some dominating journey.

Leaves extending branches B; extend the corresponding dominating journey starting from
vertex v;. The three conditions from Lemma 10 hold for this extended journey, as it still
starts at time 1, no additional time edges have been added in between the time edges it uses,
and it ends at the latest time possible at the top of its respective leaves. Regarding the leaves
that create a new branch Bsy and B_gg, these extend dominating journeys from vertices
vor, and v_gy which ended at the top of the trunk before (we can observe two of these exist
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(a) Base case cycle graph Cg, with seed, base, trunk and two branches.

10

e—eo—9o—90—0—9—90—0—0—0—0—0
e

(b) Induction step cycle graph Cy, (here n = 12) before extending to Cpy4.
15

10

(c) Apex, leaves, and roots extending Cj, to obtain Cj 44, adding two branches.

Figure 6 Illustration of the proof by induction for Theorem 6, with the seed (light green), trunk
(brown), branches (green) and base (light brown). At the induction step, the apex, leaves, and roots
are shown in the same but less transparent colour as the structures they extend.
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in Cs, and below we prove that in every inductive step two new such journeys are created).
These extended journeys remain dominating by the same argument as for other branches.
All leaves are thus part of a dominating journey. Note that this extends (by exactly two time
edges) basically half of all previously existing dominating journeys.

The other half of previous dominating journeys are broken up through the addition of
the four new vertices and edges. The roots serve to patch these journeys back together.
Note that before, all these dominating journeys started in the base, cycled around, and
climbed through the branches to finish at the top of some branch. More specifically, such a
dominating journey starting from a vertex v; finished at the top of branch B;_; for i > 0
and at the top of branch B;;; otherwise (an exception being the journey starting from v_s
which ends at the second largest time edge of the branch B_5). We show this remains true
after the inductive step. The reconstructed dominating journey, suppose from vertex v; for
i > 0 (the explanation being symmetric for ¢ < 0), starts of with the same time edges it had
before in the base until it reaches the roots. This means this part of the journey respects two
of the conditions of Lemma 10, being it starts at time 1, and no time edges exist in between
its time edges as this journey was dominating before and the additional time edges are all
later. Now the earliest four time edges possible are taken to continue this journey in the
roots, cycling around to the other side of the link stream. This also respects the condition of
having no time edges in between these four time edges, as the roots are densely packed by
definition. The journey is now four time steps too late to reconnect with the other half it had
before, connect it instead with the half of the journey which previously started from vertex
v;_4 for which it arrived through the roots perfectly on time. This latter half also respects
the condition of having no time edges in between its time edges due to part of a dominating
journey before, and no additional time edges have been added in between these time edges.
Since our journey now follows the part of the dominating journey which previously started at
v;_4, it arrives at branch B;_5, but can now continue through the leaves of B;_3 and finally
B;_1 to end at the latest edge. By construction, this continuation through the leaves respects
the conditions of Lemma 10 since there are no time edges in between, and it ends at the
latest time possible. There are two exceptions to this: the reconstruction of the dominating
journey starting from vertex vz only uses three time edges from the roots, before directly
ending in the leaves of branch Bs, and the one starting from vertex vs directly goes up
through the leaves of By and B, after the roots. Both reconstructed journeys are dominating
as well. Note that now all dominating journeys starting at vertices v; with —2k < < 2k
have been extended (the ones cycling around have been broken apart and refitted first but in
terms of length have been extended as well) by exactly two time edges compared to their
previous length in Cyg.

Observe that some of the earliest roots have not been shown to be part of a dominating
journey yet, and also that some halves of previous dominating journeys have not been refitted
together yet. We show another four dominating journeys exist which start from the four
new vertices, use these earliest roots, as well as the remaining parts of previous dominating
journeys, and two of these journeys use the time edges of the apex. Proving these four
journeys are dominating is done through again applying Lemma 10 with the arguments
already explained for the other dominating journeys, and thus we decide to forgo doing this
again four more times. The dominating journey starting at v_o;_1 goes clockwise, starting at
time 1 and the four earliest roots, then it continues with the part of the previous dominating
journey ending in branch B_oj44, and goes up through the leaves of branches B_sj 42 and
B_op, finishing at the latest time edge of the latter. Starting at vertex v_si_o, we have a
counter-clockwise dominating journey, starting at time 1 using only one root, linking up with
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part of a previous dominating journey which finished at branch Bsp_o, which is extended
further through branch Bsi and the apex to end on the second latest time edge. We note

that the last two dominating journeys do not cross, except on the first edge, and cover V.

Continuing, we have a clockwise dominating journey starting at veryo and time 1, using
two roots before using part of a previous dominating journey leading up to branch B_s_o,
continuing through the leaves of B_5; and ending in the apex on the largest time edge.
Finally, there is a counter-clockwise dominating journey from vertex very1 using three roots
cycling around the link stream, pairing up with part of a previous dominating journey leading
up to branch Bsyy_4 which then continues through leaves of Bago and Bsgj to end on the
largest time edge of that branch. Again, these two journeys do not cross, except on the first
edge, and cover V.

Thus, we have that all time edges are part of a dominating journey, and that basically
the same journeys from Cjyj remain in Cyii4 (albeit some of them recombined differently)
and were extended by exactly two time edges. Since for all vertices but those of the seed,
Lemma 11 was used to prove necessity of the corresponding dominating journeys, this lemma
can be used again for these vertices to prove necessity of their corresponding dominating
journeys, as well as reachability of these vertices to all others. For the time edges and vertices
of the seed, the argument used for Cs can be generalized to prove necessity and reachability
as well. Finally, the last four dominating journeys which start on the four new vertices, can
use Lemma 11 as well, since their clockwise and counter-clockwise prefix-foremost journeys
are dominating and can collectively cover V.

In conclusion, we have proven that the base case, being the generator labelling for Cf,
is minimal and temporally connected. Then, for any inductive step from Cy to Cygq,
minimality and temporal connectivity are conserved in this labelling. Thus, the generator
labelling produces a minimal and temporally connected graph for any size 4k. (The generator
labelling works for Cy as well, it is easy to check, but the structure of the labelling was easier
to explain with Cs, as for Cy the labelling is composed of only the seed.) <
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—— Abstract

In this paper, we settle the main open question of [Michail, Skretas, Spirakis, ICALP’17], asking
what is the family of two-dimensional geometric shapes that can be transformed into each other
by a sequence of rotation operations, none of which disconnects the shape. The model represents
programmable matter systems consisting of interconnected modules that perform the minimal
mechanical operation of 90° rotations around each other. The goal is to transform an initial shape
of modules A into a target shape B. Under the necessary assumptions that the given shapes are
connected and have identical colourings on a checkered colouring of the grid, and using a seed of
only constant size, we prove that any pair of such shapes can be transformed into each other within
an optimal O(n?) rotation operations none of which disconnects the shape.

2012 ACM Subject Classification Theory of computation — Computational geometry; Theory of
computation — Design and analysis of algorithms

Keywords and phrases programmable matter, universal transformation, reconfigurable robotics,
shape formation, centralised algorithms
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1 Introduction

Programmable matter refers to matter that can change its physical properties algorithmically.
It is envisioned as a collection of modules connected to each other to form a shape. Due to size
and other constraints of the individual modules, limited actuation and sensing capabilities
are available to them, which a program uses to enable the interaction of the material with its
surroundings and to control its structural dynamics. The relevant theoretical literature has
almost exclusively focused on designing algorithms (either centralised or distributed) for the
task of transforming a given initial shape A into a given target shape B and characterising the
families of shapes that can be transformed into each other within a given programmable matter
model. Transformations should additionally be efficient, which for sequential transformations
is measured by the total number of individual actuation operations.

In [20] (and its journal version [21]), Michail et al. studied a model of programmable matter
in which modules are represented by nodes drawn within the cells of a two-dimensional square
grid. Nodes are connected to any nodes orthogonally adjacent to them (their neighbours) to
form a shape. The collection of nodes can be reconfigured between shapes through minimal
types of movements. One of the considered movements was rotation: a node can rotate
90° around a neighbour provided that the rotating node’s trajectory is free from other
nodes. The authors introduced the problem of characterising which families of connected
shapes can be transformed into each other via rotation movements. If global connectivity
need not be preserved, they proved that the a decision version of the problem (called ROT-
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TRANSFORMABILITY) is in PL. They proved this through a constructive exact characterisation
of the shapes that can be transformed into each other. For the ROTC-TRANSFORMABILITY
version of the problem, in which global connectivity must be preserved after every movement,
they proved inclusion in PSPACE and highlighted that surprisingly small seeds can enable
transformations that are otherwise infeasible. The main problem they left open was asking if
there exists a universal centralised transformation for ROTC-TRANSFORMABILITY under the
assumption of a constant-size seed.

A more general version of the model is one that combines rotation and sliding, where a
node can additionally slide over pairs of consecutive nodes. For this version, Dumitrescu
et al. [14] had studied distributed transformations and had conjectured that universal
connectivity-preserving transformation is possible. This was proven to be correct in [13]
and independently in [20]. Both the rotation and the combined rotation and sliding models
aim to represent minimal and, thus, cost- and energy-efficient mechanical operations and
to show that real implementations of programmable matter using them could hope to have
universal reconfiguration capabilities. The focus on minimal operations is also justified by
the engineering objective to minimise the size of individual modules in order to improve the
granularity of the material without sacrificing its global actuation capabilities.

However, with rotation alone not all pairs of connected shapes of the same number of
nodes can be transformed into each other. For example, there are shapes, like a rhombus,
that are completely blocked and other shapes, like a line, that are blocked within a small
final strongly connected component of the shape-reachability graph if connectivity is to be
preserved. Because of this, universal transformation by rotation cannot be achieved without
additional assumptions. Such an assumption, introduced in [20], is to use a small additional
set of nodes, called a seed (or d-seed, where d is the number of nodes of the seed), that
when placed appropriately on the perimeter of the shape can trigger the otherwise infeasible
transformation. The question posed was: Is there a reasonably small seed (i.e., of constant
size), whose availability enables universal connectivity-preserving transformation when the
only available movement is rotation?

Direct progress on this open question was made by Connor et al. [6] and Connor and
Michail [5]. In [6], a 4-seed was shown to be sufficient for solving the problem on a restricted
family of shapes, called nice shapes. These were first defined in [3] as all shapes S having a
central line L, where, for all nodes u € S, either u € L or u is connected to L by a line of
nodes perpendicular to L. The first breakthrough towards universality was achieved in [5],
where the problem was shown to be solvable for all orthogonally convex shapes by using a
minimal 3-seed 2. The family of nice shapes and that of orthogonally convex shapes are not
directly comparable as each contains at least one shape that does not belong to the other.
Nevertheless, orthogonally convex shapes have appeared to be much richer in structure and
harder to transform. We extend the techniques developed in [5] to obtain an O(1)-seed
universal transformation, that is, one that works for all pairs of connected colour-consistent
shapes. Two shapes are colour-consistent if they have identical colourings on a checkered
colouring of the grid: as a node cannot change colour by rotating, any shapes that can be
transformed into each other must be colour-consistent.

Polynomial time in this context refers to the worst-case time complexity of an algorithm that decides
if two given shapes A and B can be transformed into each other. It should not be confused with the
efficiency of a transformation between the shapes, which is measured in total movements for sequential
transformations and in time-steps of parallel movements for parallel transformations.

A shape S is orthogonally convex if for any two nodes u, v in a horizontal or vertical line of the grid, all
cells between u and v are occupied by S.

2
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There is a lower bound on the number of worst-case movements required by a transform-
ation, which is quadratic in the number of nodes. It is based on a measure of “distance”
between the initial and the target shape, and applies to all models in which every movement
reduces the total distance by at most a constant, also affecting solutions that do not preserve
connectivity. Because of this, optimal sequential transformations perform O(n2) movements.

In another model which bares some similarities to the rotation and the combined rotation
and sliding models, Akitaya et al. [1] studied a different type of movement, called pivoting.
Pivoting allows a square-shaped node to emulate sliding and rotation. Both these operations
happen by fixing an arm on a shared corner between two squares and rotating one of the
squares along that arm. The rotation movement we consider here is not directly comparable
to pivoting. Pivoting requires more empty space around the moving node than rotation. On
the other hand, it can “slide” a node to an orthogonally adjacent cell, thus, in contrast to
what holds for rotation, pivoting nodes have no a priori unreachable locations. Akitaya et
al. accomplished universal transformation in O(n?) pivoting movements using a “bridging’
procedure assisted by at most 5 seed-nodes, which they called musketeers.

)

2 Contribution and Approach

We study ROTC-TRANSFORMABILITY, the problem of characterising the families of connected
shapes that can be transformed into each other via rotation movements without breaking
connectivity. As our focus is on the feasibility and complexity of transformations, our approach
is naturally based on structural characterisations and centralised procedures. Structural
and algorithmic progress is expected to facilitate more applied future developments, such as
distributed implementations.

When rotation is combined with sliding, the algorithmic strategy to establish universality
[13, 20] is quite intuitive. The goal is to show that any two connected shapes of the same
number of nodes can be transformed into each other. Due to reversibility of these movements,
it is sufficient to show that any connected shape S of n nodes can be transformed into
a straight line of length n. The line is the canonical shape of this strategy and all its
transformations will go through it. The strategy is based on the observation that, by
combining rotation and sliding, a node can traverse the perimeter of S. To transform S
into a line, a position on the perimeter of S from which the line can grow to its full length
is fixed. It can then be shown that there is always a node to remove from the perimeter
without disconnecting the shape. The algorithm moves the node along the perimeter until it
reaches the line and places it in the empty cell adjacent to the furthest endpoint of the line.
It then repeats by removing another node from the perimeter.

Rotation alone is also quite powerful if connectivity need not be preserved. As there is
an infinite family of shapes which are completely blocked under rotation (the rhombi), one
cannot hope to achieve universality. Nevertheless, there is a strategy that works for all the
remaining shapes [20]. The canonical shape of this strategy is the line-with-leaves, a family
of shapes with maximal colour capacity. The transformation removes nodes from the shape
in pairs and transports them to the line-with-leaves, which can be constructed anywhere on
the grid, not necessarily being connected to the original shape.

When connectivity must be preserved, transformations by rotation alone can be notoriously
difficult. There are two main sources of this difficulty. We still cannot hope to achieve
universal transformation free from additional assumptions due to blocked shapes, whose class
is now increased by the requirement to preserve connectivity. Moreover, as it cannot change
colour in a checkered colouring of the grid, a node cannot in general traverse the perimeter
of a shape. It was known from [20] that this remains impossible for up to 4 nodes working
together: 4 or less nodes cannot traverse the perimeter of a straight line.
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The transformations of [6] and [5] are based on the approach of using a small set of nodes
(called a robot) that work together to traverse the perimeter of the shape and transport
other nodes, thus simulating the single-node traversal of the combined rotation and sliding
model. The robot of [6] consisted of 4 nodes and the robot of [5] of 6 nodes. The reason
that the 4-robot of [6] does not violate the lower bound of [20] on the number of nodes
needed to traverse the perimeter, is that, due to their special structure, nice shapes can be
transformed through partial traversals of their perimeter. Both papers used seeds of 4 and 3
nodes, respectively, to enable the initial formation of the robot and deal with blocked shapes.

The result of [5] is that, under the assumption of a 3-seed, any pair of colour-consistent
orthogonally convex shapes can be transformed into each other. The 3-seed is optimal: there
are blocked shapes for which non-trivial transformations cannot be enabled by a smaller
seed. The transformation uses the 3-seed to remove a 6-robot. It proceeds in phases to
transform the given shape into a canonical shape, which is an orthogonally convex variant of
the line-with-leaves. In each phase, the 6-robot removes the next node from the perimeter
according to an elimination sequence, transports it around the perimeter until it reaches the
canonical shape, and places the node in the next available cell of the canonical shape.

A key difficulty in generalising the approach of [5] to any shape is that the perimeter
of an arbitrary shape can be a lot harder to traverse. Though, as in [5], there is always a
node on the perimeter that can be removed, a robot of nodes might not have enough space
to reach that node and it is not even clear if it can successfully traverse the perimeter with
or without carrying the node. For example, all removable nodes might be concealed within
pockets formed by the perimeter that are too narrow for the robot to access and there can
be concave parts of the perimeter to which the traversal of [5] does not readily transfer. As
a result, both the elimination sequence and the robot traversal must be carefully redesigned.

We overcome these difficulties and show how to transform any shape S into a variant of
a line-with-leaves by a sequence of O(n?) rotations. Reversibility of rotation then implies
a universal transformation between pairs of shapes going through the line-with-leaves. We
first argue that there is a placement of an O(1)-seed on S from which a “good” initial
configuration for the transformation can be obtained, having a 6-robot and an adequate
initialisation of the line-with-leaves on the reachable part of the perimeter of S. We show how
to compute an elimination sequence of the nodes of S that guarantees a generation sequence
of the line-with-leaves that never exceed its colour capacity. As long as there are reachable
nodes to be removed as required by the elimination sequence, the 6-robot picks a reachable
node, transports (as a 7-robot) the node to the line-with-leaves, and places the node in an
appropriate cell adjacent to the line-with-leaves, as specified by the corresponding generation
sequence. This entails showing that both a 6-robot and a 7-robot can traverse the whole
reachable perimeter of S, by traversing reachable parts and bypassing unreachable parts. If
there are no reachable nodes to be removed, we show how closing a “bottleneck lid” and
compressing the shape (if needed) allows the elimination sequence to keep making progress.

In Section 3, we discuss other related work. In Section 4, we formally define the model
used in this paper. Section 5 presents the universal transformation. In Section 6, we conclude
and state some open problems.

3 Other Related Work

As the development of these systems continues, it becomes increasingly necessary to develop
theoretical models which are capable of describing and explaining the emergent properties,
possibilities and limitations of such systems in an abstract and fundamental manner. To this
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end, models have been developed for programmable matter. For example, algorithmic self-
assembly [11, 23, 24] focuses on programming molecules like DNA to grow in a controllable
way, and the Abstract Tile Assembly Model [25, 30], the Kilobot model [26], the Robot
Pebbles system [17], and the nubot model [31], have all been developed for this area. Network
Constructors [22] is an extension of population protocols [4] that allows for network formation
and reconfiguration. The latter model is formally equivalent to a restricted version of chemical
reaction networks, which “are widely used to describe information processing occurring in
natural cellular regulatory networks” [27, 12]. The CATOMS system [28, 29, 15] is a further
implementation which constructs 3D shapes by first creating a “scaffolding structure” as a
basis for construction. Finally, there is extensive research into the amoebot model [8, 7, 10, 9],
where finite automata on a triangular lattice follow a distributed algorithm to achieve a
desired goal, including a recent extension [16] to a circuit-based model.

Almalki and Michail [2], building on the insertion operations of [31] and the growth
processes on graphs by Mertzios et al. [19], investigated what families of shapes can be grown
in time polylogarithmic in their size by using only growth operations.

4 Model

We consider the case of programmable matter on a two-dimensional square grid, with each
cell of the grid being uniquely referred to by its (x,y) coordinates. Such a system consists of
a set V of n nodes. Each node is viewed as a spherical module fitting inside a cell of the grid.
At any point, each node occupies a cell, with the positioning of the nodes defining a shape,
and two nodes may not occupy the same cell. It also defines an undirected neighbouring
relation E C V x V', where uv € E iff 04(u) = 0,(v) and |o,(u) — 0, (v)| = 1 or o, (u) = 0y(v)
and |o,(u) — 0, (v)| = 1, that is, if u and v occupy horizontally or vertically adjacent cells of
the grid. We use N(u) to denote the set of neighbours of a node u in a given shape. A shape
is connected if the graph induced by its neighbouring relation is a connected graph.

In general, shapes can transform to other shapes via a sequence of one or more mechanical
operations, which we refer to as movements. We consider only one type of movement: rotation.
In this movement, a single node moves relative to one or more neighbouring nodes. A single
rotation movement of a node w is a 90° rotation of u around one of its neighbours. Let (x,y)
be the current position of u and let its neighbour be v occupying the cell (z,y — 1). Then, u
can rotate 90° clockwise (counterclockwise) around v iff the cells (z 4+ 1,y) and (z + 1,y — 1)
((x —1,y) and (z — 1,y — 1), respectively) are both empty. By rotating the whole system 90°,
180°, and 270°, all possible rotation movements can be defined. See Figure 1 for an example.

. 3 oo

rx+1

Y
y—1

Figure 1 An example of rotation movement. A node on the black dot (in the row y — 1) and
empty cells at positions (z + 1,y) and (x + 1,y — 1) are required for this movement.

Let A and B be two connected shapes. We say that A transforms to B via a rotation 7,
denoted A 5 B, if there is a node u in A such that if u applies 7, then the shape resulting
after the rotation is B. We say that A transforms in one step to B (or that B is reachable in
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one step from A), denoted A — B, if A 5 B for some rotation 7. We say that A transforms
to B (or that B is reachable from A) if there is a sequence of shapes A = S1,55,...,5: = B,
such that S; — S;11 for all 1 <4 <t — 1. Rotation is a reversible movement, a fact that we
use in our results. As a condition of the problem we consider, all shapes S1,Ss,...,.S; must
be connected shapes.

At the start of each transformation, we will be assuming the existence of a seed: a small
connected shape M placed on the perimeter of the given shape S to trigger the transformation.
This is essential because under the constraints of a model with rotation-only movement, there
are shapes S that are k-blocked, meaning that at most k movements can be made before a
configuration is repeated.

For the sake of providing clarity to our transformations, we say that every cell in the
two-dimensional grid has a colour from {red,black} in such a way that the cells form a
black and red checkered colouring of the grid, similar to the colouring of a chessboard. This
represents a property of the rotation movement, which is that any given node in a coloured
cell can only enter cells of the same colour. We define c¢(u) € {black, red} as the colour of
the cell occupied by the node u for a given chessboard colouring of the grid. We represent
this in our figures by colouring the nodes red or black.

Any shape S consists of b(S) black and r(S) red nodes. Two shapes A and B are
colour-consistent if b(A) = b(B) and r(A) = r(B). For any shape S of n nodes, the parity of
S is the colour of the majority of nodes in S. If there is no strict majority, we pick any as
the parity colour.

We use o and variants to denote sequences of nodes. A k-subsequence o’ of a sequence o
is any subsequence of o where |¢’'| = k. For a given colouring of the grid, the colour sequence
¢(o) of a sequence of nodes o = (ug,ug,...,u,) is defined as ¢(o) = (c(ur), c(uz), ..., c(uy)).
A sequence ¢’ is colour-order preserving with respect to o if ¢(o’) = ¢(o).

The perimeter of a connected shape S is the minimum-area polygon that completely
encloses S in its interior, existence of an interior and exterior directly following from the
Jordan curve theorem [18]. The cell perimeter of S consists of every cell of the grid not
occupied by S that contributes at least one of its edges to the perimeter of S. The external
surface of S consists of all nodes u € S such that u occupies a cell defining at least one of
the edges of the perimeter of S. The extended external surface of S is defined by adding to
the external surface all nodes of S whose cell shares a corner with the perimeter of S.

The orthogonal convex hull H(S) of a connected shape S is defined as the intersection
of all orthogonally convex shapes of which S is a subshape. Given a connected shape S, a
pocket is a maximal connected set of empty cells exterior to the shape and interior to its
orthogonal convex hull H(S). The boundary of a pocket consists of a line segment which is a
subchain of the perimeter of H(S), called the pocket lid, and a subchain of the perimeter of
the shape, called the pocket subchain.

Place a ¢ x ¢ square K on a subchain of the perimeter of S which is exterior to its convex
hull and shift it around. A ¢ X c-narrow pocket is a maximal subset of a pocket of S which
can never overlap with K. The bottleneck of a ¢ x c-narrow pocket is the subchain which
separates the cells reachable by K from the cells within the pocket which are unreachable.
The ¢ x c-reachable boundary of S is defined as the areas of the perimeter that are reachable
by K, plus the bottlenecks. A shape S has a ¢ X c-wide exterior if it has no ¢ X c-narrow
pockets. Throughout the paper, a bottleneck lid is the lid of a 4 x 4-narrow pocket.

A black parity (similarly for red parity) line-with-leaves [21] is a straight line with one or
more black leaves attached to its red nodes. A double-line-with-leaves L is a shape obtained
by joining together the endpoints of two lines-with-leaves L; and Lo which have opposite
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colour parities and the same orientation. Additionally, both endpoints of the red parity
line-with-leaves must be black and both endpoints of the black parity line-with-leaves must
be red. We call the straight line formed by joining the straight lines of L, and Lo the core
line of L.

5 The Universal Transformation

In this section, we give the technical details of the universal transformation. Given any two
connected colour-consistent shapes S and S’, our goal is to transform S into S’. We assume a
seed M of d = O(1) nodes, meaning that we are free to place any connected shape of d nodes
on the perimeter of the shape. The transformation will establish the following theorem.

» Theorem 26. Let S and S’ be any two connected colour-consistent shapes. Then, there
is a connected shape M of d = O(1) nodes and a placement of M on the perimeter of S, such
that SU M can be transformed into S’ via O(n?) rotation movements.

To prove Theorem 26 it is sufficient to show that, for any shape S and some placement of
a d-seed M on the perimeter of S, S U M can be transformed into a double-line-with-leaves.
By reversibility of rotation and the fact that we can transform any pair of colour-consistent
double-lines-with-leaves into each other, it follows that any S can be transformed into any
S’ via the double-line-with-leaves canonical shape.

The following is an intuitive description of our strategy. We will show that there is a
placement of the d-seed on the perimeter of S from which a “good” starting configuration
for the transformation can be obtained. A 6-robot formed by the d-seed sets up the shape to
be in a configuration having the following structures on the perimeter of the shape: (i) a
“ladder” on which the double-line-with-leaves will be built, (ii) a reservoir of 7 nodes to be
used for the compression subroutine, and (iii) a 6-robot. Then, as long as there are reachable
nodes to be removed, the 6-robot picks a removable node, transports it (as a 7-robot), and
places it on the double-line-with-leaves. This involves proving that the 6-robot (7-robot)
can traverse the 4 x 4-reachable boundary (5 x 5, respectively) of S, by traversing reachable
parts and bypassing unreachable parts, and that there is an order of removing nodes from
the perimeter of S, until S is eliminated. This order, called an elimination sequence, removes
small clusters of nodes such that no removal of a node disconnects the shape and nodes
are only removed from the perimeter of the shape. Whenever there is no cluster of nodes
that the 6-robot can reach, we show how to reconfigure S into another shape that has a
reachable cluster of nodes. In particular, if no cluster of nodes exists on the perimeter that
is also reachable, then there exists a pocket lid that we can close with auxiliary nodes, such
that a cycle C' on the perimeter is created. We can then compress C' in a way that a cluster
of nodes becomes reachable and, after removing the cluster, there exists a cycle C’ on the
perimeter of the shape. The 6-robot transports, one by one, the nodes of the cluster to the
double-line-with-leaves, and removes any auxiliary nodes used to close a lid, before moving
on to the next cluster.

5.1 Perimeter Traversal

We begin by showing that the 6-robot and the 7-robot can both traverse the perimeter of
the shape, by visiting reachable parts and bypassing unreachable parts.

In [5], it was shown that a 6-robot and a 7-robot can both traverse the perimeter of
an orthogonally convex shape. We say that a shape S, which is not orthogonally convex,
is traversable by orthogonally conver movement, if the movements from [5] can be used to
traverse its perimeter.
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» Theorem 1 ([5]). For any orthogonally convex connected shape S, a 6-robot and a 7-robot
are both capable of traversing the perimeter of S.

As in [5], a 6-robot is a 3 x 2 group of connected nodes used to transport nodes around
the shape. By using rotation movements, the 6-robot can slide across and climb lines of the
perimeter. These movements of the robot are the outcome of a sequence of rotations, and
should not be confused with the sliding of individual nodes of [14, 13, 20].

We prove that a 6-robot can traverse the 4 x 4-reachable boundary and a 7-robot can
traverse the 5 x 5-reachable boundary of any connected shape S by orthogonally convex
movement. Beginning with the 6-robot, our strategy is to show that shapes with 4 x 4-wide
exteriors are traversable by orthogonally convex movement. We then show that for shapes
with 4 x 4-narrow pockets, the robot can avoid entering those pockets by crossing them.

We assume that a 6-robot, which we will try to move around the perimeter of S, is
given on the 4 x 4-reachable boundary as a 3 x 2 rectangle. For the 7-robot, we consider
the 5 x 5-reachable boundary as the 7-robot requires more space to move. We first prove
that shapes with a 4 x 4-wide exterior (5 x 5) have sufficient space for the 6-robot (7-robot,
respectively) to perform the climbing and sliding movements of [5], through which the robot
can traverse the perimeter of the shape.

» Lemma 2. The perimeter of a connected shape S with a 4 X 4-wide exterior (5 X 5-wide
exterior) can be traversed by orthogonally convex movement by a 6-robot (7-robot, respectively).

Next, we show that it is possible to traverse small pockets by crossing them. We use the
term gap to refer to the part of the pocket as well as lines of nodes neighbouring it, which
are relevant for crossing operations. We first give our representation of the cases which we
consider for these operations, as well as the variables we will be using to describe them.

Assume without loss of generality that the movement of the robot when crossing the
gap is to the right, and if necessary, upwards. We have five coordinates: z;, x,,yq,y, and
Ym (see Figure 2 in the Appendix). These coordinates in turn are used to calculate the
three variables we use: size is equal to |z, — x|, depth = |ym — ya| and incline = |y, — Ym|.
Intuitively, size represents the horizontal distance between the first and last nodes of the
gap, depth represents the vertical distance between the first node of the gap and the bottom
of the gap, and incline represents the vertical distance between the first and last nodes of
the gap. We say that a gap is level if incline = 0.

We first show that gaps of size < 3 can be crossed by the 6-robot, by considering a set of
cases which cover every possible situation. We assume the robot is above the gap in both
the initial and final locations. This is to ensure that the movements do not need to make
assumptions about the structure of the rest of the shape. We then prove that the robot can
always reach this desired starting location, even in edge cases. It follows from this and from
Theorem 1 that it is possible for the 6-robot to traverse the 4 x 4-reachable boundary of
any shape. See Figure 3 in the Appendix for the main cases we consider in our proof, and
Figures 4 and 5 for two examples of crossing a gap.

» Lemma 3. The 6-robot can cross any gap of size < 3 and the T-robot any gap of size < 4.
» Lemma 4. The 6-robot and the 7-robot can position themselves at the start of any gap.

» Theorem 5. The 4 x 4-reachable boundary (5 x 5-reachable boundary) of any connected
shape S can be traversed by the 6-robot (7-robot, respectively).
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5.2 Elimination Sequence

In this section, we present the sequence in which the 6-robot transports the nodes of the shape
S. The elimination sequence of [5] for orthogonally convex shapes, was designed to preserve
connectivity and respect the colour capacity of the line-with-leaves, which was the canonical
shape. For general connected shapes, we must additionally ensure that removed nodes should
lie in a position that the 6-robot can reach. We first give an elimination sequence for the
relaxed case in which nodes can be removed from anywhere on the extended external surface
of the shape. We will then add the requirement that removed nodes must be reachable by a
6-robot. Apart from simplifying exposition, the relaxed elimination sequence could be useful
to any future transformations that would somehow circumvent the reachability issue.

Let S be a connected shape. An elimination sequence o = (uy,us,...,u,) of a shape S
is a permutation of the nodes of S satisfying the following properties. Let Sy = S;—1 \ {us},
where 1 <t <n and Sy = S. Observe that S,, is always the empty shape. The first property
is that, for all 1 <t <n — 1, S; must be a connected shape. Moreover, for all 1 <t <n, u,
must be a node on the extended external surface of S;_;. Essentially, o defines a sequence
S = Solu1]S1[uz]Sa[us] . .. Sn—1[un]Sn = 0, where, for all 1 <t < n, the connected shape S;
is obtained by removing node wu; from the extended external surface of shape S;_1.

Our strategy for the elimination sequence is to remove nodes in small clusters that have
some “nice” properties. Each such cluster will contains 2 to 4 nodes, and is either a pair of
neighbouring nodes, or a node together with a subset of its neighbours, which must be leaves.
We want to show that removing any of these clusters does not disconnect the shape, and
that the clusters have specific colour properties. We first give some necessary definitions.

» Definition 6. Let S = (V, E) be a connected shape. Node u € V' is a separator node if
S = (V\{u}, E'), where E' = E\{uv € E | v € N(u)}, is a disconnected shape.

» Definition 7. Let S = (V, E) be a connected shape. Node u is a local separator node, if u
is a separator node and there exists a subset N'(u) of N(u), such that S = (V' E'), where
V=V \N'(u) and E' = E\{uv € E | v € N'(u)}, is a connected shape and u is not a
separator node in S’.

» Definition 8. We define a cluster of nodes C, to be a set of nodes on the extended external

surface of a shape S that satisfies one of the following two properties:

1. C contains two neighbouring nodes u,v such that removing u and then v, or v and then
u does not disconnect the shape.

2. C contains a local separator node u, and every neighbour of u that is a leaf in S.

Intuitively, our algorithm computes an elimination sequence as follows. Operating in
phases until the whole shape is eliminated, it marks the extended external surface of the
shape and repeatedly finds and removes clusters of marked nodes. The order in which the
nodes of a cluster are added to the elimination sequence is the order in which the nodes will
be transported by the 6-robot. When there is no cluster of marked nodes, the algorithm
moves on to the next phase, marking the new extended external surface and searching
for clusters of marked nodes. The pseudocode is given in Algorithm 1 in the Appendix.
Connectivity-preservation is guaranteed by the separator properties of the clusters.

» Lemma 9. Let S be a connected shape on which we execute Algorithm 1 and let o be the
elimination sequence produced by the algorithm. For all1 <t <n —1, St is a connected
shape.
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We also need to show that the algorithm terminates. We do this by making use of the
fact that the extended external surface of a connected shape defines a cactus graph.

» Definition 10. Given a connected shape S = (V, E), we define a graph S’ = (V', E") on its
external extended surface as follows. V' contains every node of the extended external surface
and uwv € E' iff u and v are consecutively visited in a clockwise walk on the perimeter of S.

» Lemma 11. The graph of Definition 10 is a cactus graph.

» Lemma 12. Let S be a connected shape on which we execute Algorithm 1. Algorithm 1
terminates and outputs a sequence o = (uy,us, ..., Uy,) that is a permutation of the nodes of
S, where for all 1 <t < n, us is a node on the extended external surface of Sy_1.

» Theorem 13. When executed on any connected shape S, Algorithm 1 terminates giving as
output an elimination sequence of S.

Proof. Follows from Lemmas 9 and 12. |

The following lemma will be later used to show that the order of colours of the elimination
sequence produced by Algorithm 1 respects the colour capacity of a double-line-with-leaves.

» Lemma 14. Consider a connected shape S on which we execute Algorithm 1 and let o
be the elimination sequence produced by the algorithm. There exists a way to split o into
consecutive subsequences o109 - - - o) such that every subsequence contains consecutive nodes
from o and has one of the following colour sequences: bbbr,bbr,br,rrrb,rrb,rb.

5.3 Adding Reachability

In the previous section, we showed that, in principle, there exists an elimination sequence.
However, in the actual transformation the 6-robot must be able to reach the nodes to be
removed. In this section, we show how to restructure a shape that has no cluster of nodes on
the reachable part of the extended external surface, so that such a cluster becomes available.

» Observation 15. There exist shapes such that no cluster of nodes on their extended external
surface is reachable by the 6-robot. For erxample, trees concealing their endpoints within
narrow spirals.

In contrast to what holds for orthogonally convex shapes [5], we cannot hope to eliminate
a general shape only by directly removing nodes from its extended external surface. As a
consequence, further reconfiguration is needed and the elimination sequence of Algorithm
1 must be modified accordingly. First, we extend the definition of the extended external
surface to account for nodes that are reachable by the 6-robot.

We say a node u in shape S is reachable if node u resides on the ¢ x c-reachable boundary
of S. The reachable external surface of a connected shape A is a shape B, not necessarily
connected, consisting of all nodes u € A such that u occupies a cell defining at least one of
the line segments of A’s ¢ X c-reachable boundary. The reachable extended external surface
of a connected shape A, is defined by adding to A’s reachable external surface all nodes of A
whose cells share a corner with A’s reachable boundary.

Whenever we have a shape S, where every cluster of nodes is not reachable by the 6-robot,
we employ a restructuring strategy, where the 6-robot moves nodes around on shape S, until
a cluster of nodes can be reached by the 6-robot. First, we modify Algorithm 1 so that the
algorithm marks every node of the reachable extended external surface (see Algorithm 2 in
the Appendix). This guarantees that every node of the elimination sequence is reachable.
Additionally, whenever there exists no cluster of nodes on the reachable extended external
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surface, we call a restructuring subroutine. After restructuring is finished, we mark every
node of the reachable extended external surface and continue removing clusters. The above
two steps are repeated until the shape is empty.

Our strategy for restructuring is based on compression (see Algorithm 3 in the Appendix).
This involves the process of creating a cycle on the reachable extended external surface of
the shape by adding some auxiliary nodes. Once this is achieved, we show how we can
move some nodes on the extended reachable external surface of the shape such that (i) we
“compress” the cycle on the extended external surface by removing some nodes from the
cycle and making the cycle smaller and (ii) the removed nodes form a cluster of nodes that
will reside on the reachable extended external surface of the shape. We show that we can
always add auxiliary nodes to the shape, such that we create a cycle C' on the extended
external surface, where one of the concave corner nodes of C' is reachable, and either is not a
separator node or it is a local separator node.

» Definition 16. Let C be a cycle on the extended external surface of a connected shape
S. We say that a node u is a concave corner of cycle C if u € C, u has two neighbouring
nodes v, w, where v,w € C, and the cell adjacent to both v and w is part of the interior of
the shape.

» Definition 17. Consider a connected shape S that contains a pocket P. Closing a lid L of
pocket P is the process of placing nodes in the empty cells of the pocket P that are adjacent
to the pocket lid L.

» Lemma 18. The number of nodes needed to close a bottleneck lid is at most 7.

» Lemma 19. Consider any connected shape S = (V, E), where no cluster of nodes resides
on the reachable extended external surface. Then, there exists one pocket lid that can be
closed such that the new shape S’ has a cycle C on the extended external surface, where one
of the concave corner nodes of C is both reachable and is either a local separator node or it
is not a separator node.

Using Lemma 19, we can show that after closing a lid, a cluster of nodes can be removed.
However, since the number of auxiliary nodes needed to close a lid can be larger than the
size of a cluster, this strategy is not guaranteed to succeed. To circumvent this, we use a
compression technique starting from concave corner of the shape. After compressing the
shape, we still have a cycle C' on the extended external surface, where one of the concave
corner nodes of C' is both reachable and is either a local separator node or it is not a separator
node. Additionally, after the compression, we will have a cluster of nodes on the reachable
extended external surface that is not part of C'. This allows us to compress at least once
using the same auxiliary nodes, and then we can remove the auxiliary nodes that were used
to close the lid.

» Lemma 20. Consider any connected shape S = (V, E) that has no cluster of nodes on its
reachable extended external surface, where we close a lid with the auxiliary node set V4 that
creates a cycle C on the extended external surface, where one of the corner nodes uy of C
is reachable and is a local separator node. There exists a way to compress the shape such
that the extended external surface contains a cycle C', where every auziliary node is in C'.
Additionally, the reachable extended external surface contains a cluster of nodes that is not
part of C"'.

» Theorem 21. Let S be a connected shape where no cluster of nodes on the extended
external surface is reachable by the 6-robot. Executing Algorithm 8 on S reconfigures S into
a connected shape S’ that has a reachable cluster of nodes on the extended external surface.
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Proof. Algorithm 3 adds auxiliary nodes to a pocket lid in order to create a cycle C' on
the extended external surface of S. Lemma 19 guarantees that we can find pocket lid to
close with auxiliary nodes, that also creates a reachable concave corner node of C. Then,
Lemma 20 guarantees that we can use this node in order to compress the cycle C into a
cycle C’, such that a cluster of nodes is reachable by the 6-robot, and that cluster of nodes
does not contain any node in C’. Since C’ is a cycle, we can remove the auxiliary nodes
without disconnecting the shape. <

5.4 Generation Sequence

Given a connected shape S of n nodes, a generation sequence o = (u1, us, ..., uy) of shape S
is a permutation of the nodes of S satisfying the following properties. Let S; = S;—1 U {u:},
where 1 <t < n and Sy = . Observe that S,, = S. Any shape generation sequence also
satisfies the following properties, which it shares with the shape elimination sequence. The
first property is that, for all 1 <t <n — 1, S; must be a connected shape. Moreover, for all
1 <t < n, uy must be placed in the cell perimeter of S;_;. Essentially, o defines a sequence
0 = Solu1]S1[ua]Saus] ... Sn_1[us)Sn =S , where, for all 1 <t < n, a connected shape S; is
obtained by adding the node u; to the cell perimeter of S;_;. The generation sequence that
we are going to compute, constructs a double-line-with-leaves.

Given as input an elimination sequence by Algorithm 2, Algorithm 4 will return a
generation sequence that constructs a double-line-with-leaves. The algorithm, first constructs
the unique bi-coloured pair of the core line and then extends it by placing nodes on both
sides of the line.

The algorithm constructs a straight double-line-with-leaves, expects the first two nodes
to be a bi-coloured pair and every subsequence to arrive afterwards to have one of the
colour sequences as described in Lemma 14. The algorithm positions the first bi-coloured
pair horizontally with the red coloured node on the left and the black coloured node on
the right. Let (z;,y0) be the position of the leftmost node on the core line of the double-
line-with-leaves and (z,, ) be the position of the rightmost node on the core line of the
double-line-with-leaves.

Every subsequence has size 2, 3 or 4 and has colours br, bbr, bbbr or rb, rrb,rrrb. If a
subsequence arrives starting with a black node (possible subsequences are br, bbr, bbbr), the
first black node is placed at position (x;_1, o), the last node (which must be red), is placed
at (x;-2,Y0), and any possible other black nodes are placed at positions (z;,y1), (z,y—1). If
a subsequence arrives starting with a red node (possible subsequences are rb, rrb, rrrb), the
first red node is placed at position (x,11,¥o), the last node (which must be black), is placed
at (x,42,Y0), and any possible other red nodes are placed at positions (z,,y1), (€, y—1). The
algorithm preserves the invariant that after the placement of the first bi-coloured pair and
after the placement of every subsequent subsequence that arrives, the leftmost and rightmost
positions of the line, called (z;,yo) and (z,,yo), have red and black nodes, respectively, and
positions (z,,y1), (zr,y—1), (Xr,y1), (x,, y—1) are empty. See Algorithm 4 in the Appendix
for the pseudocode.

» Lemma 22. Let o be a bicoloured sequence of nodes that fulfils all the following conditions:
The set of the first two nodes in o is bi-coloured.
o can be split into consecutive subsequences o109 - - -0 such that every subsequence
contains consecutive nodes from o and also has one of the following colour sequences:
bbbr, bbr, br, rrrb, rrb, rb.

Then there is a double-line-with-leaves generation sequence o’ = (uj,uh,...,u,) which is

colour-order preserving with respect to o.
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» Theorem 23. Given a shape elimination sequence o computed by Algorithm 2, Algorithm 4
returns a generation sequence which is colour-order-preserving with respect to o and which
constructs a double-line-with-leaves.

Proof. Follows from Lemmas 14 and 22. <

5.5 Wrapping up

To complete the result, we show how the transformation is initialised, including where the
double-line-with-leaves will be constructed, and argue that picking the next node in the
elimination sequence and placing it on the double-line-with-leaves is always possible.

At the beginning of the transformation, the 6-robot transports 5 nodes from the original
seed, and places them as a straight vertical path of length 5, called a ladder atop one of
the topmost nodes of the initial shape. Then, the first bi-coloured pair that arrives to the
elimination sequence is placed perpendicular to the ladder and the double-line-with-leaves
extends perpendicular to the ladder. This ladder of 5 nodes guarantees that the construction
of the double-line-with-leaves will never create any narrow pockets and this implies that the
6-robot and 7-robot can reach any part of the double-line-with-leaves.

We now show that it is possible to remove nodes from a shape .S in the order of a shape
elimination sequence generated by Algorithm 2, and place them on the double-line-with-
leaves L in the order of a double-line-with-leaves generation sequence created by Algorithm
4, crossing the ladder in the process.

» Lemma 24. Given a shape elimination sequence o generated by Algorithm 2 for a shape S
which starts with the node u, and a double-line-with-leaves generation sequence o’ generated by
Algorithm 4 for a double-line-with-leaves L, the 6-robot is able to traverse the 4 x 4 reachable
boundary of SU L, pick u up, and become a T-robot. It can then traverse the 5 x 5 reachable
boundary of (S '\ {u}) UL and place v on L.

» Theorem 25. Let o be the shape elimination sequence generated by Algorithm 2 for a shape
S, and a double-line-with-leaves generation sequence o’ which is colour-order preserving with
respect to o (as generated by Algorithm 4), the 6-robot can remove nodes from S according to
o and construct the double-line-with-leaves according to o'.

Putting everything together, including the fact that a 6-robot can be used to transform
any pair of colour-consistent double-lines-with-leaves into each other, we get:

» Theorem 26. Let S and S’ be any connected colour-consistent shapes. Then, there is a
connected shape M of d = O(1) nodes and a placement of M on the perimeter of S, such
that SU M can be transformed into S’ via O(n?) rotation movements.

6 Conclusions

We have shown that by using a seed of constant size, it is possible to transform any pair
of connected shapes A and B on a two-dimensional square grid into each other in an
optimal O(n?) time. This leaves a few open problems to be addressed. First, the issue of
creating a distributed version of the algorithm. This will not only make the algorithm more
immediately applicable to real-world programmable matter scenarios, which usually assume
that each module acts independently, but also opens up the possibility of a “pipelined” or
parallel version which may be able to perform the transformation in only O(n) parallel time
movements.

9:13
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Another issue is the size of the seed. It may be possible to reduce the seed’s size to
as little as 3 nodes, which would be equivalent to [5]. However, if all removable nodes are
concealed then this might not be enough, unless a new approach, possibly by “drilling” into
boundaries of the shape, is adopted.

Third, a potential comparison could be made to the pivoting model result of [1], to
compare the similarities and differences of each approach to universal transformation. Finally,
it may be possible to extend the results from shapes on a two-dimensional square grid, to
those in a three-dimensional environment. Universal transformation in a three-dimensional
environment which does not disconnect the shape is another challenging goal with interesting
potential applications.
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Figure 2 A visual representation of a gap, with the variables we use in our proof.
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Figure 3 The main cases we consider in our proof. For all cases where the incline > 1, we
only need to show that the robot can reach the other side of the gap, all movement afterwards is
equivalent to climbing movements from [5]. All cases with incline < 1 are mirrored versions of cases
with incline > 1. Our movements generally do not depend on connectivity with the bottom, so
depth is mostly irrelevant, with the exception of a single edge case. All gaps with a size greater than
those considered here are part of the 4 x 4 or 5 x 5-reachable boundary, for the 6-robot and 7-robot
respectively, and per Lemma 2 can be traversed.
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Figure 5 4-node pocket traversal for the 7-robot with the load in the bottom position with
incline = 1.
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Algorithm 1 Algorithm that computes a shape elimination sequence which does not

require the nodes to be reachable by the 6-robot.

Input: Connected shape S = (V| E)
Output: Elimination sequence o

1 while (S is not empty) do

2
3

© o N 6 «»

10
11
12

Mark every node u that belongs to the extended external surface of S;
while (there exists a marked pair of nodes u, v satisfying property 1 of Definition 8)
do
Remove u, v from S and append them to ¢ in the order specified by
Definition 8;
end
while (there exists a marked node u satisfying property 2 of Definition 8) do
Remove the leaf neighbours of u from S and append them to o;
Remove u from S and append it to o;

end
Unmark every marked node of S;

end
return o

Algorithm 2 Algorithm that computes a shape elimination sequence.

W N =

o w

10
11
12
13
14
15
16
17
18

Input: Connected shape S = (V, E), k=0
Output: Elimination sequence o
while (S # 0) do

Mark every node that belongs to the reachable extended external surface of S;
k= 0;
while (there exists a marked pair of nodes u, v satisfying property 1 of Definition 8)
do
k4 +;
Remove u, v from S and append them to ¢ in the order specified by
Definition 8;
end
while (there exists a marked node u € S satisfying property 2 of Definition 8) do
k++;
Remove the leaf neighbours of u from S and append them to o;
Remove u from S and append it to o;
end
Unmark every marked node u € S;
if kK =0 then
Call Algorithm 3 with input S = (V, E);
end

end
return o

9:19
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Algorithm 3 Algorithm that reconfigures a connected shape to have a cluster of nodes
on the reachable extended external surface.

Input: Connected shape S = (V| F) with no cluster of nodes on the reachable

extended external surface

Output: Connected shape S’ = (V, E’) with a cluster of nodes on the reachable

extended external surface

Close a lid using up to 7 auxiliary nodes to create a cycle C' with the properties of

Lemma 19;

2 Compress the cycle C;

3 Remove the auxiliary nodes used to close the lid;
4 return S’

Algorithm 4 Algorithm that constructs a double-line-with-leaves generation sequence.

© 0 N O N W Ny =

N NN NN NN N R R R R e e e e
T 0N R W N RO © g O N W N R O

28
29

Input: Elimination Sequence o split into subsequences

Output: Double-line-with-leaves generation sequence o’ = (u}, uj, ..

colour-order preserving with respect to o
if ¢(u1) == red and c(uz) == black then

uy = (21,90), uy = (T141,Y0);
else

‘ u) = (T141,%0), Uy = (T1,Y0);
end

Remove w1, us from o;
1=3,b=0,r=0;
while o # () do
Remove the next subsequence o; from o;
if c(u;) == black then
u; = (Ti—p—1,Yo);
if |oj| == 2 then
‘ Uipq = (T1-b-2,Y0);
else if |o;| == 3 then
|y = (@b 1), Uy = (@1p—2,%0);
else if |o;| == 4 then

b=b+42,i=1i+|ojl;
Ise if c¢(u;) == red then

@

- U; = ($l+1+r+1,y0)§
if |o;| == 2 then

‘ uz+1 = (Ti4 147425 Y0);
else if |o;| == 3 then

‘ U1 = (Trp14m,Y1)s Wign = (Tir14r42,%0);
else if |o;| == 4 then

r=r+2,i=1i+|0;l;
end

end

‘ Wi = (Ti—p,Y1)s Wig = (Ti—p,Y—1), Wirs = (Ti—p—2,%0);

., ul) which is

‘ UQH = ($1+1+r7y1)’ U§+2 = ($l+1+7-7y—1)7 U§+3 = ($1+1+7-+2,Z/0);




On the Complexity of Temporal Arborescence
Reconfiguration
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—— Abstract

We analyze the complexity of ARBORESCENCE RECONFIGURATION on temporal digraphs (TEMPORAL
ARBORESCENCE RECONFIGURATION). The problem, given two temporal arborescences in a temporal
digraph, asks for the minimum number of arc flips, i.e. arc exchanges, that result in a sequence
of temporal arborescences that transforms one into the other. We analyze the complexity of the
problem, taking into account also its approximation and parameterized complexity, even in restricted
cases. First, we solve an open problem showing that TEMPORAL ARBORESCENCE RECONFIGURATION
is NP-hard for two timestamps. Then we show that even if the two temporal arborescences differ
only by two arcs, then the problem is not approximable within factor bln |V (D), for any constant
0 < b < 1, where V(D) is the set of vertices of the temporal arborescences. Finally, we prove that
TEMPORAL ARBORESCENCE RECONFIGURATION is W[1]-hard when parameterized by the number of
arc flips needed to transform one temporal arborescence into the other.
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1 Introduction

Arborescences, also called branchings, have been deeply studied in theoretical computer
science. Given a digraph (a directed graph) and a special vertex, called the root, an
arborescence is a directed rooted tree in the digraph that connects the root to every vertex of
the digraph. The computation of arborescences of a given digraph finds several applications,
for example in communications networks, where the goal is to compute a shortest way to
reach some devices [18], to analyze information flow in social networks [3], or in computational
biology to analyze mass spectrometry data [7] and reconstruct tumor evolutionary trees [8].

Arborescences have been recently considered also in the temporal graph setting [15, 11,
4, 13], where they can model urban mobility or information dissemination in social networks.
Temporal graphs have been studied to model the dynamic evolution of network relations
(edges or arcs), that are observed only at certain time instants [17, 9, 19, 10, 1]. In our model
of a temporal digraph D = (V, A), the arcs are triples (u,v,t), where u and v are vertices
and t is a positive integer, representing that the arc from u to v is seen at timestamp ¢. A
temporal arborescence T in D is a rooted tree, whose arcs are directed away from the root,
that contains every vertex of D and such that every path in T is time-respecting, that is the
timestamps on the arcs of every path are non-decreasing.
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On the Complexity of Temporal Arborescence Reconfiguration

In this contribution, we consider temporal arborescences through the lens of combinatorial
reconfiguration [12, 21]. Given two feasible solutions of a problem (in our case being temporal
arborescences of a temporal digraph), combinatorial reconfigurations explore the space of
feasible solutions and the distance between the two given solutions. Two feasible solutions are
adjacent if they can be transformed one into the other by means of a local operation (such as
exchanging two arcs). The goal of combinatorial reconfiguration is to study the reachability
of two elements of the space of feasible solutions, that is the possibility of transforming the
first solution into the second one by means of sequences of local operations, and possibly
obtaining a comparative metric by minimizing the number of such operations.

Given two temporal arborescences T} and T» in D, a reconfiguration of T3 into T5 is a
transformation of T into T» with a sequence of modifications, one at a time, called arc flips,
where each modification exchanges two arcs. Note that an arc flip may exchange any two
arcs of D, the only constraint is that, by applying arc flips, a reconfiguration may compute
intermediate subgraphs, that must all be temporal arborescences in D.

We consider a problem related to the reconfiguration of temporal arborescences, called
TEMPORAL ARBORESCENCE RECONFIGURATION, introduced in [13]. Given a digraph D,
and two arborescences 77 and T in D, TEMPORAL ARBORESCENCE RECONFIGURATION
asks to compute a reconfiguration of 7T; into T, consisting of the minimum number of
operations. The problem is known to be NP-hard when the temporal graph is defined
over 3 timestamps or more [13], and polynomial-time solvable when the number number
of timestamps is 1, since in this case the digraph is static and for this case TEMPORAL
ARBORESCENCE RECONFIGURATION can be solved in polynomial time [14]. The case of 2
timestamps remained open [13].

An interesting property shown in [13], is that the complexity of TEMPORAL ARBORES-
CENCE RECONFIGURATION depends on whether the two input temporal arborescences have
the same root or not. In the former case, the problem is solvable in polynomial-time, while
in the latter the problem is NP-hard, as discussed before.

A decision problem related to TEMPORAL ARBORESCENCE RECONFIGURATION studied in
the literature is the reachability of two feasible solutions, that is whether, given two temporal
arborescences, one can be transformed into the other (without the requirement of minimizing
the number of arc flips). This decision problem is solvable in polynomial time [13] and always
admits a positive answer in static directed graphs [14] and when the two arborescences have
the same root [13].

Our Results. In this paper we further analyze the complexity of TEMPORAL ARBORES-
CENCE RECONFIGURATION, considering additional restrictions in the approximation and
parameterized complexity frameworks. Note that we consider the temporal graph model
of [13], which is a restricted model where each timestamp of an arc specifies its activation
time and the arc is present for all times after the activation time. The hardness results we
present hold also in this restricted model.

First, we solve the open problem in [13] for the case of two timestamps, and we show
in Section 3 that this restriction of TEMPORAL ARBORESCENCE RECONFIGURATION is
NP-hard.

Then we consider the case when the two input temporal arborescences are very similar,
that is they differ only for a limited number of arcs. We show in Section 4 that if the two
temporal arborescences differ by two arc pairs, then the problem is not only NP-hard, but
also inapproximable within factor bln |V (D)|, for any constant 0 < b < 1, where V(D) is the
set of vertices of the arborescences. We also observe that if the two temporal arborescences
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differ for one pair of arcs, then the problem is easily solvable in polynomial time. Note that
the result can be easily extended to the case where two temporal arborescences differ by
more than two arc pairs. For example, we can replicate the construction of Fig. 2 and Fig. 3
by adding many copies of the subtree rooted at y and of the subtrees rooted at v; ;. Each
copy has to be reconfigured independently, thus the the inapproximation ratio is the same as
in our result.

Finally, we consider the parameterized complexity of the problem, where the parameter is
the number of arc flips required by a reconfiguration. We prove in Section 5 that the problem
is W[1]-hard for this parameter (it is, in fact, W[1]-hard in the parameter “number of arc
flips plus maximum timestamp”), indicating that a fixed-parameter algorithm is unlikely. We
conclude the paper with Section 6 with some open problems. Note that some of the proofs
are not included due to page limit.

2 Preliminaries

A temporal digraph D = (V, A) is a pair where V is the set of verticesand A CV xV x N
is a set of (temporal) arcs. Note that an arc in a temporal graph is denoted by a triple
(u,v,t), where u € V' is the tail of the arc, v € V is the head of the arc, and ¢ € N is called
a timestamp. In our version of a temporal graph, an arc (u,v,t) remains active from this
timestamp ¢, that is, once it is activated it exists in the temporal digraph from time ¢ and
onwards. We may write V(D) and A(D) for the vertex and arc set of D, respectively. Note
that we allow multiple arcs between two vertices v and v, but they must be at different
timestamps.

For a triple e = (u,v,t), D—e (resp. D+e) is the temporal digraph obtained by removing
the arc e, if present (resp. adding the arc e, if absent).

An arborescence is a digraph in which there is a vertex u, called the root, such that there
is a unique directed path from u to any vertex. In other words, an arborescence is a tree in
which arcs are oriented away from the root. Let D = (V, A) be a digraph. A subgraph T of
D is a spanning arboresence of D if V(T) = V(D) and T is an arborescence. Unless stated
otherwise, all arborescences are spanning, and we may simply call T an arborescence of D.

Given a temporal graph D, a temporal arborescence T of D is an arborescence of D,
such that T is time-respecting, that is for any pair of arcs (u,v,t), (v,w,t’) € A(T) that are
consecutive on some path of T, we have ¢t < t/.

An arc flip on a temporal arborescence T of D is an operation that removes an arc
(u,v,t) € A(T) and inserts an arc (z,y,t') € A(D) \ A(T), such that T — (u,v,t) + (z,y,t)
is a temporal arborescence of D (hence spanning and time-respecting).

A reconfiguration of a temporal arborescence T of D is a sequence of arc flips, each one
producing a temporal arborescence. A reconfiguration from T; to Ts is a reconfiguration that
transforms 77 into To. A reconfiguration sequence R = (Ry, Ra, ..., R;) from T} to Tb is a
sequence of temporal arborescences, where R; = 71 and R; = T5 such that each R;, with
i € [l], is a temporal arborescence of D and each Rj;, j € {2,...,1}, can be obtained from
R;_1 with an arc flip.

Now, we are ready to define the problem we are interested into.

» Problem 1. (TEMPORAL ARBORESCENCE RECONFIGURATION)
Input: a temporal digraph D, two temporal arborescences T1,Ty of D, and an integer p > 1.
Question: Does there exist a reconfiguration from Ty to Ty of at most p arc flips?

In the optimization version of TEMPORAL ARBORESCENCE RECONFIGURATION, we aim
to minimize the number of arc flips.
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3 NP-Hardness for Two Timestamps

We show that the TEMPORAL ARBORESCENCE RECONFIGURATION problem is NP-hard even
on two timestamps (i.e. each arc has timestamp in {1,2}) via a reduction from the SET
COVER problem. Let (S,U, k) be an instance of SET COVER, where U is the universe, S
is a collection of subsets of U, and k is an integer. The question is whether there exists a
subcollection S* C S of at most k£ sets of S such that for each © € U there exists at least
one set of S* that contains u.

We denote U = {uq,...,u,} and S = {S1,...,S,}, and we define a corresponding
instance (D = (V, A),T1,T>,p) of TEMPORAL ARBORESCENCE RECONFIGURATION. First
let 8" ={S!:5; € S} be acopy of S and let U' = {u] : u; € U} be a copy of U. We let

V= {r,r,r}USUS UUUU".

We then add to A the following sets of arcs (we strongly recommend referring to Figure 1):
AT = {(’l"l,’l"g, 1)7 (7“277“1, 2), (7‘177"3, 2), (T37T27 1)};
A v ={(r1,u;,1) :u; € U}

Avur = {(ug,u}, 1) cu; € Ul

Ar27S = {(7“2,5,‘,2) . S; € S},

AT275/ = {(T‘Q,SZ{, 1) 1 S; € S},

A, v ={(re,us,2) 1 u; € S}

AS,S’ = {(SZ,S;,Z) .S € S},

AS’,U/ = {(S{,u;, 1) 1S, € SA u; € Si};

A7-37S’ = {(7‘3,52, 1) 1S € S},

Arg,U’ = {(7’3,’1/1-, 1) U € U}

Note that Ag/ y is the main set of arcs used to model the set cover instance into D.
Finally, we define the input temporal arborescences T; (rooted at r1) and T (rooted at r3)
by specifying their arcs (illustrated in Figure 1, top-right and bottom-right, respectively):

A(Tl) - {(7’1,7’2, 1)7 (7’1,7’3,2)} U A’I“l,U U AU,U’ U ATQ,S U AS,S’
A(TQ) = {(Tg, T2, 1), (’I“g,’l"1, 2)} U Ar27U U Arg,S U A7~37S/ U A.,-37U/.

One can verify that 77 and T, are temporal arborescences using Figure 1.

» Theorem 1. The TEMPORAL ARBORESCENCE problem is NP-hard even when the mazimum
timestamp of an arc is 2.

Proof. Using the construction described above, we show that there exists S* C S of size at
most k that covers U if and only if T} can be transformed into 75 using at most 3n+m+2+k
arc flips.
Suppose that there exists S* C .S of size at most k that covers U. We reconfigure T3 into
T, as follows (we say that an arc flip is correct if, after applying it, the resulting subgraph is
a temporal arborescence, hence time-respecting).
1. For each S; € S* in an arbitrary order, remove (S;, S},2) and add (rq, S}, 1).
Each such arc flip is correct, since 71 can reach S through (rq,r2, 1), (12, S}, 1).
2. For each uj € U’ in an arbitrary order, let S; be a set of S* that contains u;. Remove
(uj,uj, 1) and add (S}, u}, 1), which exists by construction.
Each arc flip is correct since rq can reach u; through the path ry — ro — S, — u; using
arcs of timestamp 1 only. Note that at this stage, ry reaches the vertices in S, S’, and U’
without going through r;.
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Figure 1 Left: the temporal digraph D obtained from a set cover instance, with U = {u1,u2, us}
and S = {51, 52}, S1 = {u1,u2} and S2 = {us}. Arcs pointing on ellipses indicate that all possible
arcs are present (e.g. r1 has every element of U in its out-neighborhood). The arborescences T and
T5 are shown in thick arcs, top-right and bottom-right, respectively.

3. For each u; € U in an arbitrary order, remove (r,u;,1) and add (re, uj,2).

Each arc flip is correct since 71 can reach u; using the time-respecting path r1 — ro — u;.

At this stage, o also reaches the vertices of U without going through ;.

4. Reroot to ro by removing (r1,7r2,1) and adding (rg,r1,2).

This arc flip is correct since before the arc flip, 7o was already able to reach each element
of U,U’,S’, S without r1, and can now reach r; and r3 through the time-respecting path
To — T1 — T3.

5. Reroot to r3 by removing (r1,rs,2) and adding (r3,r2,1).

This arc flip is correct since r3 reaches ro at time 1, and thus r3 can reach r,U,U’, S’, S
through ro with a time-respecting path.

6. For u; € U’ in an arbitrary order, remove the incoming arc incident to u; and add
(r3,u}, 1). This is easily seen to be correct since U’ vertices are leaves before (and after)
the arc flips.

7. For S} € S’ in an arbitrary order, remove the incoming arc incident to S and add
(r3,Si,1). This is easily seen to be correct since, because of the previous step, the S’
vertices are leaves before (and after) the arc flips.

One can check that this sequence of flips yields T5. As for the number of arc flips, by
summing the number of arc flips required for each of the above steps, we see that we require
at most |S*| + |U'|+|U|+ 14+ 1+ |U'|+1|5| < k+ 3n+m+ 2, as desired.
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In the converse direction, suppose that there exists a reconfiguration sequence R =
(R1,Ray ..., Ry) from Ty to Tp with [ —1 < 3n+m+2+k, where 71 = Ry and T» = R;, and
each R; can be obtained from R;_; with an arc flip, for ¢ € {2,...,1}. We gather a set of
facts to prove that U can be covered by at most k sets of S.

» Fact 1. For each i € [l], the root of R; is one of 11,72, or rs.
Fact 1 holds because only 71,72, and r3 can reach ry in D.

» Fact 2. If ry is the root of R; for some i € [l], then (r1,73,2) € A(R;) and (r1,7r2,1) €
A(R;).

Fact 2 is true because (r1,73,2) is the only incoming arc of r3 and must thus be in
R;. This prevents using (rs3,r2,1) because of the time-respecting condition. The only other
incoming arc of r9 is (r1,72,1) and it must thus be in R; as well.

» Fact 3. If ry is the root of R; for some i € [l — 1], then rg is not the root of Riy1.

To see that Fact 3 holds, we know by Fact 2 that (ry,rs3,2), (r1,r2,1) € A(R;). To make
r3 the root in R;11 we have to remove (r1,73,2), and add some outcoming arc of r3. But
adding (r3,r2,1) makes ro of in-degree 2, and adding an arc from r3 to some element of
S"UU’ makes it impossible to reach rq from r3. Therefore, the root of R;1 is either 1 or ro.

We now proceed with the construction of a set cover. Let a € [I] be the minimum index
such that 79 is the root of R, (note that there must exist such a R, since the root of T is r3
and by Fact 3 the re-rooting from r; to r3 cannot be done with an arc flip). By Fact 1 and
Fact 3, we know that r; is the root of R,_1, so that R, is the first time the root is switched.
By Fact 2, (r1,72,1) € A(R4—1) and, because (rq,r1,2) is the only incoming arc of r1, the
only way to switch the root from 71 to 74 is by removing (r1, 72, 1) and adding (r2,71,2). This
means that in R,_1, there cannot be an arc from r; to U, as otherwise (rq,71,2) followed
by such an arc would not be time-respecting. This implies that in R,_1, all arcs from ro to
U are present, since these are the only other incoming arcs of the U vertices. This in turn
implies that in R,_1, there cannot be an arc from U to U’ because of the time-respecting
condition. Also, by Fact 2, (r1,73,2) € A(Rs—1) and the arcs from r3 to U’ cannot be used
because of the time-respecting condition. Therefore, all in-neighbors of U’ vertices are in S’.
In fact by construction, for each u} € U’, the in-neighbor of u’; in R, is some 5] € S’ such
that u; € S;. Since every e € Ags v is active at timestamp 1, every path from r to a U’
vertex in R,_1 only uses arcs of timestamps 1. Such a path cannot use an arc in which r3 is
the tail, again because of the (r1,73,2) arc. Thus such a path must use an arc of A,, g/. Let

S* = {S;: (r2,5/,1) € A(Ra_1)}.

Note that because each u; € U’ has an S’ in-neighbor such that the corresponding S set
contains u;, S* is a set cover. It remains to argue that |S*| < k.

Observe that A(R,—1) \ A(T1) contains at least |U|+ |U’| + |S*| = 2n + |S*| arcs, since it
has all arcs of A,, 7, the arcs from S’ to U’, and the arcs from 75 to {S} : S; € S*}. Thus at
least 2n + |S*| 4+ 1 arc flips are needed to get to R,. Then, A(T>) \ A(R,) contains at least
1+ 8|+ |U|] =14 n+m arcs, namely (rs, r2,1) and the arcs from A,, v and A, y+ (which
are not in R,_1, and thus not in R,, because (r1,73,2) € A(Ry,—1) by Fact 2). Therefore,
the number of arc flips required from T3 to T5 is at least 3n + m + 2 + |S*|, from which it
follows that |S*| < k.

Since SET COVER is known to be NP-hard [16], the reduction we have described implies
that also TEMPORAL ARBORESCENCE RECONFIGURATION for two timestamps is NP-hard.

<
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4 Inapproximability for Distance Two

In this section we show that, unless P = NP, TEMPORAL ARBORESCENCE RECONFIGUR-
ATION is not approximable within factor bln|V(D)|, for any constant 0 < b < 1, even if
the two input temporal arborescences have distance two, that is that is the number of arcs
in A(Ty) \ A(Tz) and the number of arcs in in A(T3) \ A(T}) is equal to two. We prove
the result via an approximation preserving reduction from the SET COVER problem. Let
(S,U) be an instance of SET CoVER!, where U = {uy,...,u,} and S = {S1,..., S }. Con-
struct (D = (V, A),T1,T»), an instance of TEMPORAL ARBORESCENCE RECONFIGURATION
associated with (U, S), as follows (refer to Fig. 2 for the structure of D).

V ={ri,ro,y} U{v;,:S; € S,i€[m],z€n*}U{w; :i€[n],u; €U}
A is defined as
A=A UAU A3

where:

A1 :{(7’1,7’2,2)} U {(rl,y, 1)} U {(T’l,l}i71,4) 1 € [m]} U
{(Wig,vigjer,4) vi € [ml,j € [n® = 1]} U{(y,wi,2) i € [n]}

A2 :{(TQ,T1,2)} U {(T%yv 1)} U {(7’1,’01"1,4) S [m}} U
{(vig,vige1,4) i € [ml,j € [n® = 1]} U{(y,wi,2) : i € [n]}

Az ={(r1,4,3)} U{(r1,vi.1,3) 17 € [m]} U{(vij,vij11,3) i€ [m],j€n®—1]} U
{(Vin2,wj,3) u; € S;,i € [m],j € [n]}

Now, T; is the temporal arborescence induced by Aj, that is Th = (V, A1), and T is the
temporal arborescence induced by As, that is To = (V, Az) (see Fig. 3). Note that |A; \ A2| =
|As \ A1| = 2, since Ay \ Ag = {(r1,72,2),(r1,y,1)}, while A\ A1 = {(r2,71,2), (r2,9,1)}.

We define a reconfiguration from Tj to T as canonical if it has the following properties.
First, in some order, each w;, i € [n], is disconnected from y as follows (we call this the
disconnection step of the reconfiguration):

1. For some j € [m], each arc on the path from 71 to v; ,2, associated with timestamp 4, is
flipped with the arc having the same endpoints and timestamp 3 (starting from (r1, v, 1, 4)
and ending with (vj,2_1,v;,2,4)).

2. Each arc (y,w;,2), i € [n], is flipped with an arc (v; ,2,w;,3), j € [m], so that there is a
path from r; to v;,2 with all the arcs having timestamps 3.

Once the disconnection step is applied and each w;, i € [n], is disconnected from y, a
canonical reconfiguration flips arc (r1,y,1) and (r1,y,3). Then the root of the temporal
arborescence is changed by flipping arcs (ri,72,2) and (rq,71,2). After these arc flips,
(r1,y,3) is flipped with arc (r2,y,1). In order to compute T, each arc (v; 2, w;,3), j € [m]
and ¢ € [n], flipped in the disconnection step, is flipped with (y,w;, 2). Finally, for each path
from 71 to v; 2, j € [m], having arcs with timestamp 3, each arc on the path is flipped with
the arc having the same endpoints and timestamp 4 (starting from (v;,2_1,v;,2,3) and
ending with (r1,v;1,3)).

We start by proving that a canonical reconfiguration is correct, that is it computes only
temporal arborescences.

1 Since in this section we consider optimization versions of problems, we do not include in the problem
instances the value of a solution
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Figure 2 The input digraph D associated with an instance of SET COVER. Each dashed arrow
outgoing from v; 2, ¢ € [m], represent a path containing vertices v; ;, j € {3, ..., n? — 1}, and not
shown in the figure. The dashed arrows outgoing from v ,2, v; ,2, ¥, 2 T€present arcs connecting
these vertices with some vertices w., z € [n] (the precise arcs depends on the instance of SET
COVER).

Figure 3 Arborescence T1 (left) and T» (right). The four arcs in bold belong to exactly one the
two temporal arborescence, the other arcs belong to both 771 and T5.



R. Dondi and M. Lafond

» Lemma 2. Fach arborescence computed by a canonical reconfiguration from Ty to Ty is a
temporal arborescence of D.

We prove now the first direction of the reduction.

» Lemma 3. Let (S,U) be an instance of SET COVER and let (D, Ty, Tz) be the corresponding
instance of TEMPORAL ARBORESCENCE RECONFIGURATION. Given a a set cover of size k
we can compute in polynomial time a reconfiguration from Ty to Ty consisting of 2kn?+2n+3

flips.

Now, we consider the second part of the reduction, where we prove that a reconfiguration
from T to T must apply the disconnection step of a canonical reconfiguration.

» Lemma 4. Let (S,U) be an instance of SET COVER and let (D, Ty, Ts) be the corresponding
instance of TEMPORAL ARBORESCENCE RECONFIGURATION. Given a reconfiguration from
Ty to Ty consisting of 2kn? + 2n + 3 arc flips we can compute in polynomial time a solution
of SET COVER on instance (S,U) of size k.

Proof. We start by proving that a reconfiguration from 77 to 75 must apply the disconnection
step of a canonical reconfiguration.

First, consider arc (11,72, 2) of Ty and arc (ra, 71, 2) of To. Note that (r1,r2,2) ((re,r1,2),
respectively) is the only arc of D incoming into 7o (into r1, respectively). Hence whenever
(r1,72,2) is flipped, and hence removed, by a reconfiguration, it must be flipped with (rq, 71, 2),
and 79 must become the root of the computed temporal arborescence, otherwise either both
r1 and 79 have not incoming arcs or ry is not connected with other vertices of the temporal
arborescence. Note that this arc flip defines 75 as the root of the computed arborescence
and creates a temporal path (re,r1,2), (r1,y,1), if this latter arc (of 71) belongs to the
arborescence, which is not time-respecting. It follows that before (r1,72,2) and (72,71, 2)
are flipped, (r1,y,1) must be flipped with another arc that must be incoming to y (since 7
remains the root of the arborescence), that is with (rs,y,1) or (r1,y,3).

Consider (r2,y, 1) and notice that arcs (r1,y,1) and (re,y, 1) cannot be flipped, since this
flip creates a temporal path (r1,72,2), (r2,y, 1), which is not time-respecting, and we have
observed that (r1,72,2) is not flipped before (r1,y,1). Arcs (r1,y,1) and (r1,y,3) cannot be
flipped unless y is a leaf, that is all the arcs (y,w;, 2), with ¢ € [n], have been flipped. Indeed,
if an arc (y,w;,2), i € [n], belongs to a temporal arborescence, then by flipping (r1,y,1)
and (r1,y,3) we have a temporal path (r1,y,3), (v, w;,2), which is not time-respecting. It
follows that, before (r1,y,1) is flipped each vertex w;, ¢ € [n], must first be disconnected
from y. By construction the only incoming arcs to a vertex wj, i € [n], other than (y, w;,2),
are (vjn2,w;, 3), for some j € [m], hence each vertex w; must first be disconnected from y
by flipping an arc (y,w;,2) with an arc (v, »2,w;,3), for some j € [m]. This implies that the
disconnection step of the canonical reconfiguration is applied. This requires that each arc on
the path from 7 to v;,2, which have timestamp 4 in 71, is flipped with the arc having the
same endpoints and timestamp 3.

Consider the temporal arborescence T” constructed by the disconnection step. For each
w;, © € [n], the disconnection step flips all the arcs of one path from 71 to some v;,,,, j € [m/],
such that u; € S;; then we can define a set cover as follows:

S* = {5, : the path from 71 to w; 2 is modified in the disconnection step}.

We claim that S* contains at most k sets. Note that a reconfiguration from T to T5 requires,
as in a canonical reconfiguration, to delete arcs in A(T") \ (A(T2) N A(T1)) and insert arcs in
(A(Tz) N A(T1)) \ A(T").
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Recall that the reconfiguration of T} in Th consists of 2kn? + 2n + 3 flips. If S* consists
of at least k + 1 sets, then by the definition of S* the disconnection step includes at least
k + 1 paths, thus requiring at least 2(k + 1)n? arc flips for these paths, plus 2n arc flips for
the arcs incident in w;, i € [n]. We have that 2(k + 1)n? 4+ 2n > 2kn? + 2n + 3, since n > 2.
Hence S* contains at most k sets, thus completing the proof. |

Based on Lemma 3 on Lemma 4, on the fact that the digraph D contains O(n?m) vertices
and on the hardness of approximation of SET COVER [2, 5, 20], we can prove the following
result.

» Theorem 5. TEMPORAL ARBORESCENCE RECONFIGURATION is not approximable within
factor bln |V (D)|, for any constant 0 < b < 1, unless P = NP, even when the two input
temporal arborescences differ for two pairs of arcs.

Distance One

We have shown that TEMPORAL ARBORESCENCE RECONFIGURATION is hard (also to
approximate) when 77 = (V, A(T1)) and T = (V, A(T»)) have distance two. On the other
hand when T} and T, have distance one, thus A(T}) \ A(T2) contains a single arc a; and
A(T,) \ A(Ty) contains a single arc as, the problem is easy to solve in polynomial time.
Indeed, since by flipping a1 with ao in 77, hence by removing a; and inserting as, we obtain
T, it follows that the arc flip produces a spanning time-respecting arborescence and thus
can always be applied.

5 W/[1]-Hardness

In all the above reductions (Section 3 and Section 4) and also the reduction in [13], the
number of required arc flips is always a function of n. Therefore, an algorithm with complexity
of the form f(p)n¢, with constant ¢ and f only depending on p (number of arc flips of a
reconfiguration from T to T3), is not excluded. We show that this is unlikely by proving
that the TEMPORAL ARBORESCENCE RECONFIGURATION problem is W[1]-hard under this
parameter p, and that in fact it is W[1]-hard in parameter p + MAX (y,y,t)c A(D) b

We reduce MULTICOLORED CLIQUE to TEMPORAL ARBORESCENCE RECONFIGURATION.
MuLTICOLORED CLIQUE, given an undirected graph G = (V, E), whose vertices are colored
with k colors, asks whether there exists a clique, called multicolored clique, containing one
vertex from each color. The problem is W[1]-hard when the parameter is the number of
colors [6].

Let G = (V, E) be an instance a MULTICOLORED CLIQUE, with vertices partitioned into
color classes Vi,...,Vi. For i,j € [k], we will denote E; ; = {uv € E : u € V;,v € V;}.
Construct an instance (D, Ty, Ty, p) of TEMPORAL ARBORESCENCE RECONFIGURATION as
follows.

Let us first construct D, which is shown in Figure 4 (we provide the main intuitions after
the description of the construction). We define the vertex set of D as V(D) = RUCUU,
where

R ={ro,r1,...,7%},
C :{617627 P ,Ck},
U={u:ueV(G)}.

For i € [k], we will denote U; = {v' : u € V;}.
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Figure 4 Main construction for the W[1]-hardness proof. Left: the temporal graph D. Top-right:
the initial temporal arborescence 7. Bottom-right: the target temporal arborescence T>. Note that
the timestamps 0 of arcs (rx, ¢;) are not shown.

As for the arc set A(D), add the following arc sets:

R-R arcs: for each i € {0,1,...,k — 1}, add the arc e; = (r;, 741, 3k); the arc e} =
(riyrit1,k —1); and the arc f; = (41,7, 4k).

ro-U arcs: for each u € V(G), add the arc (ro,u’, 4k).

r;-U; arcs: for each color class i € [k] and each u € V;, add the arc (r;,u’, k +4). Note
that ¢ > 0, hence rg is not concerned here.

U;-U; arcs:  for each i,j € [k] with j < i and each wv € E; ; with u € V; and v € V},
add an arc (u/,v’, k + ¢). That is, each vertex v’ has an outgoing arc to v' whenever v is
a neighbor of v in a “lower” color class. In terms of Figure 4, this means that all arcs
between the U; sets go upwards. The tail of the arc determines its timestamp.

R-C ares: for each color class i € [k], add the arcs (r;_1,¢;, 3k) and (7, ¢;,0).

Ui-c; arcs: for each color class i € [k], and each u € V;, add the arc (v/, ¢;, 3k — 1).

The arcs of the initial temporal arborescence T; consist of: the R-R arcs e; for i €
{0,1,...,k — 1}, so that there is a path of arcs at time 3k from 7o to rg; the ro-U arcs
(ro, v, 4k) for u € V; the R-C arcs (r;_1,c;, 3k) for i € [Kk].
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The arcs of the target temporal arborescence T5 consist of the same arc set as T, except
that: no e; arc is in T, and instead each R-R arc f; is in Tb; no (r;_1, ¢;, 3k) arc is present,
and instead each R-C arc (ry,c;,0) is in Ty. It is not difficult to verify that 77 and 7> are
temporal arborescences (hence time-respecting).

The intuition behind this construction is as follows. To transform 77 into 75, one must
first re-root from rqg to 71, then to ro, and so on until r; is the root. If we re-root from rq to
r1, we need to insert the arc (r1,79,4k). This cannot be done in the very first arc flip though,
because the arc (rg, ¢1,3k) in the R-C group would violate temporality. So any solution must
first create an alternate path from rg to ¢; before the first re-rooting. One can show that the
only way to achieve this is to choose some u} € U; and create the path ro — r1 — u} — ¢1,
using arcs at times k, k + 1,3k — 1. Once this is done, we can safely re-root to 7.

Next, we must re-root to ra. As before, we cannot insert (r2, 71, 4k) because of (r1, ca, 3k).
So we must create an alternate path r1 — ro — uh — ¢ for some u}, € Uy. However this
time, the arc (r1,u, k + 1) from the previous step is also an issue and we must also have an
alternate path from ry to u}. The key idea is that the most efficient way to do this is, after
choosing u}, to apply a flip that removes (r1,u}, k + 1) and inserts (u), u}, k + 2). This arc
exists only if uguy € E(G), forcing us to choose uj, u) that form a clique of size 2.

The same idea applies for every ¢ € [k]. Before re-rooting from r;_1 to r;, we must find
an alternate path r;_1 — r; = u} — ¢; by choosing some u; € U;. At this point, there are
ul,...,u;_; that are used as in-neighbors of ¢y, ..., ¢;—1. The most efficient setup is to choose
u; that allows inserting the (uj,u}, k + i) arcs for all those j < i, requiring all corresponding
u;’s to be neighbors of u; in G. In other words, there are £ phases to apply, one for each
re-rooting to each r;, and at each phase ¢ we must choose a u; (and corresponding u}) that
is a neighbor of all the previously chosen u;’s, thereby forming a clique. The specific arc
timestamps in the construction are chosen to enforce this behavior.

We will show that G' contains a multicolored clique if and only if 77 can be transformed
into T using at most p = 2k + Zle(i + 3) arc flips. In essence, each term in the summation
represents the arc flips needed to re-root from r;_; to r;, and the 2k term is there for a
cleanup phase after having re-rooted to ;. Note that since p is a function of k only, this
shows Wl]-hardness in parameter p being the number of required arc flips. Also note that
in fact, all timestamps assigned to arcs are a function of k, so the problem is W[1]-hard in
parameter p + ¢, where t = max(y ,,1ea(p)t'

» Theorem 6. The TEMPORAL ARBORESCENCE problem is W[1]-hard when parameterized
by the number of arc flips plus the maximum timestamp.

Proof. First note that the construction of D from G can be carried out in polynomial time.
As mentioned above, we show that G contains a multicolored clique if and only if 77 can be
transformed into 75 using at most p = 2k + Zle(i + 3) arc flips.
(=) Suppose that G has a multicolored clique K = {uq,...,uy}, where for each i € [k] the
vertex u; belongs to color class V;. As shown in Figure 5, starting from 7T}, one can re-root
from rg to r1 (each step can easily be checked to maintain a temporal arborescence, hence
time-respecting):

Remove eg = (ro,71,3k) and insert ej = (rg, 71, k), so that ro reaches r1 with the arc at

time k instead of the arc at time 3k;

Remove (rg,u},4k) and insert (ri,u},k+ 1), which is now possible. Then remove

(ro,c1,3k) and insert (u},c1,3k —1);

Remove e, and insert (rq,ro,4k), thereby re-rooting to 1.
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Figure 5 A sequence of arc flips to re-root from 7o to 71.

Note that this requires 4 = 1 + 3 flips. Now let i > 2 and let us see how to re-root from
ri—1 to r; (illustrated in Figure 6). Assume that we have reached a temporal arborescence
such that: 7, is the root; (ri—1,u;_;,k+i— 1) is active; (uj_,,u}, k +1i — 1) is active for
each j <i —1; (uf,c;j, 3k — 1) is active for each j <i—1. Also assume that r;_; reaches o
using the f; upwards arcs at time 4k, and that 7o uses 4k arcs to reach all the 115- other than
ul,...,u;_;. Note that all these conditions hold for ¢ = 2 after applying the re-rooting from
ro to r1. We show how to re-root from r;_; to r;, such that the same properties hold but
with r; as the root. To achieve this:

Figure 6 A sequence of arc flips to re-root from r;_1 to r;. Here, we assume h < 7 < i — 1.

The middle state is obtained by two arc flips that insert e¢;_; and (r;,u;). The rightmost state is
obtained by making u; the in-neighbor of every uj, j < 4. The last step is not shown and consists in
flipping e;_, to fi—1 to re-root to ;.

Remove e,_1 = (r;-1,7;,3k) and add €},_; = (r;—1,7,k — (i — 1)), so that r;_; now
reaches r; with an arc at timestamp k& — ¢ + 1. This preserves temporality since this is
akin to lowering the timestamp for the arc from r;_; to r;, which is an outcoming arc
from the root r;_1.

Remove (rg,u},4k) and add (r;, u}, k + ¢). This preserves temporality since the new path
from r;_1 to u} uses arcs at respective times k — i+ 1 and k + 1.

Remove (r;_1,¢;,3k) and add (u}, ¢;, 3k — 1), which is correct since the latter has time
3k—1>k+i.

For each j < i—1, remove the incoming arc (u;_y,u}, k + i — 1) of v} and add (ug, u’;, k + 1)
(which exists because u;u; € E(Q)).

This is temporarily correct since w} is currently reachable with arcs of timestamp at
most k + 4, each arc from u} to u} has timestamp k + 4, and each arc from u} to c; has
timestamp 3k — 1 > k + 4.

Remove (r;—1,u;_y,k+4—1) and add (uj,u
in the previous step.

Finally, re-root ro r; by removing e, _; and adding f;—1 = (r;,r;—1,4k). This preserves
temporality because, at this point we have the situation from Figure 6 on the right. The
only vertices that r;_; was reaching without going through r; were r;_s,...,79 and u’
vertices using (ro, u’, 4k) arcs, and all the underlying paths consisted of arcs at time 4k.

/!

1,k +14), which preserves temporality as
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Observe that all the assumptions made before handling step i are true for the next step.
Also note that to re-root from 7;_1 to r;, the above requires 3+ (i — 2) + 2 =i + 3 flips.
Once we reach a point where i is the root, we can: replace every (u;, ¢;, 3k — 1) with
(%, ¢;,0) for j € [k] (k arc flips); remove all the (uj,u’;,2k) arcs and insert (ro, u’;,4k) for
Jj <k (k—1 arc flips); replace (7, u}, 2k) with (rg,u},4k) (1 arc flip). This last step adds
2k arc flips.
Overall, we have reached T5 using Zle(z + 3) 4+ 2k = p arc flips.

(<) Suppose that T7 can be transformed into 75 using at most p flips. It can be shown
that this implies that uy,...,u; form a multicolored clique of G. The proof is omitted for
space reasons and can be found in the full version — the main idea is that the steps described
in the forward direction are essentially forced to achieve p flips. Since MULTICOLORED
CLIQUE is W[l]-hard (for parameter k), the parameterized reduction we have described
implies that TEMPORAL ARBORESCENCE RECONFIGURATION is W[1]-hard for parameters
number of arc flips plus maxmum timestamp. |

6 Conclusion

We have analyzed the complexity TEMPORAL ARBORESCENCE RECONFIGURATION, proving
that it is NP-hard for two timestamps, it is inapproximable within factor bln |V (D), for any
0 < b < 1, if the two temporal arborescences differ only for two arc pairs, and it is W[1]-hard
when parameterized by the number of arc flips needed to transform one arborescence into
the other plus maximum timestamp.

A natural future direction is to further study the approximation complexity of the problem,
in particular if it is possible to achieve a cln |V (D)| approximation factor, for some constant
¢ > 1. A second future direction is to further investigate the problem when the input
temporal digraph has specific properties (for example bounded treewidth or bounded degree),
both in the approximation and parameterized complexity framework.
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—— Abstract

Different variants of Vertex Cover have recently garnered attention in the context of temporal graphs.
One of these variants is motivated by the need to summarize timeline activities in social networks.
Here, the activities of individual vertices, representing users, are characterized by time intervals.
In this paper, we explore a scenario where the temporal span of each vertex’s activity interval is
bounded by an integer ¢, and the objective is to maximize the number of (temporal) edges that are
covered. We establish the APX-hardness of this problem and the NP-hardness of the corresponding
decision problem, even under the restricted condition where the temporal domain comprises only
two timestamps and each edge appears at most once. Subsequently, we delve into the parameterized
complexity of the problem, offering two fixed-parameter algorithms parameterized by: (%) the number
k of temporal edges covered by the solution, and () the number h of temporal edges not covered by
the solution. Finally, we present a polynomial-time approximation algorithm achieving a factor of %
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1 Introduction

The temporal graph model is designed to capture the dynamic evolution of interactions over
time [14, 12, 17, 13]. A temporal graph can be viewed as a labeled graph, where every edge
is endowed with time labels signifying the timestamps where the edge is defined, and thus
where the interaction represented by the edge is observed; see Figure 1 for an illustration.
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Numerous foundational problems originally formulated for static graphs have recently
been extended to temporal graphs. On static graphs, the Vertex Cover problem asks for a
subset of vertices with minimum cardinality, such that it covers all the edges of the input
graph, that is, such that for each edge at least one of its endpoints belongs to the subset.
Following this line of research, different adaptations of Vertex Cover on temporal graphs have
been explored in the literature [1, 11, 19]. Here we focus on the approach introduced in [19],
motivated by the need to summarize interaction timelines of users in social networks.

Informally, a temporal vertex cover of a temporal graph G is a subset? C of its vertices
and an assignment of time intervals to every vertex of C, such that for every edge e of G
and for every time label ¢ of e, at least one end-vertex of e is part of C and the endowed
time interval includes t (see Section 2 for a formal definition). In other words, a temporal
vertex cover assigns an activity interval to a subset of users, such that for every observed
interaction at least one involved user is part of the solution and active. Based on this idea,
the objective function of the MinTimelineCover problem is to find a temporal vertex cover of
minimum size (i.e., minimizing the sum of the interval lengths).

Recently, a sequence of works investigated the computational complexity of the Min-
TimelineCover problem, proving that it is NP-hard [19], even in the restricted scenarios
when each label is associated with a single edge [4], and when the temporal graph is defined
over two timestamps only [7]. In terms of parameterized complexity, MinTimelineCover
parameterized by the solution size has first been shown to admit a fixed-parameter algorithm
for temporal graphs defined over two timestamps [7] and, subsequently, this restriction has
been removed [5].

The complexity of approximating MinTimelineCover has been also studied. A result given
in [7] implies that, assuming the Unique Games conjecture, MinTimelineCover cannot be
approximated within a constant factor, even for graphs defined on two timestamps only. On
the positive side, the problem can be approximated within factor O(T logn), on a temporal
graph with n vertices and T timestamps [6].

In this paper, we introduce and explore a new problem, ¢-TimelineCover(k) and its
optimization version /-MaxTimelineCover, in which we relax the constraint that all the
edges have to be covered, bounding instead the length of the vertex activity intervals by
an integer £ > 1. This last constraint is motivated by the observation that a solution
of MinTimelineCover may define long activity intervals for some vertices, while in several
applications we observe short time activities of users [19]. Hence, the ¢-TimelineCover(k)
problem asks for the definition of one interval of length at most ¢ for each vertex, so that
at least k edges of the temporal graph are covered (or the maximum number of edges are
covered for /~-MaxTimelineCover); see Figure 1 for an example. From a graph theory point
of view, ¢-TimelineCover(k) can be seen as a temporal variant of Partial Vertex Cover [8, 16]:
Given a graph and two positive integers h and p, Partial Vertex Cover asks whether there
exists a set of at most h vertices that cover at least p edges of the graph.

Our main contribution can be summarized as follows.

We prove, in Section 3, that ¢-TimelineCover(k) is NP-hard and ¢-MaxTimelineCover is

APX-hard, even in the restricted case where the time domain consists of two timestamps

(and ¢ = 1) and each edge appears at most once. Note that if ¢ is equal to the number of

timestamps, then the problem admits a trivial solution where each vertex has an interval

equal to the number of timestamps and all the edges are covered. Denote by T the

2 We note that an equivalent definition can be made by replacing C with the entire vertex set of G, and
allowing for vertices with an empty assigned time interval.
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Figure 1 (Left) An example of a temporal graph (G, \), where G is a graph and A is a time-
labeling function that maps every edge of G onto a set of timestamps; for example, the edge {v1, v2}
is associated to timestamps {1, 2}, while the edge {v2,v3} to timestamps {3,4}. (Center and Right)
A solution of ¢-TimelineCover(12) (hence at least 12 temporal edges have to be covered), for £ = 2,
defines: interval [1,2] for v1, vs, vs, thus covering edges at timestamps 1 and 2; interval [3,4] for
va2, V4, Ve, thus covering edges at timestamps 3 and 4. Note that the edges defined at timestamp 5
({v1,vs}, {va,v6}) are not covered.

number of timestamps over which the temporal graph is defined. These results imply that
¢-TimelineCover(k) parameterized by ¢ 4+ T admits no XP (and hence no FPT) algorithm,
unless P=NP.
Next, in Section 4, we focus on the parameterized complexity of the £-TimelineCover(k)
problem and consider two parameters: the number h of temporal edges left uncovered by
the solution, and the number k of temporal edges that are covered by the solution. For
both parameterizations, we prove that the problem is fixed-parameter tractable.
Finally, in Section 5, we focus again on the approximability of the ¢-MaxTimelineCover
3

problem, and we present a polynomial-time approximation algorithm of factor j.

In Section 2 we give some definitions and we introduce the ¢-TimelineCover(k) and ¢-
MaxTimelineCover problems. We conclude the paper in Section 6 with open problems that
naturally stem from our research. Some of the proofs are deferred to the journal version.

2 Preliminaries

A temporal graph is a pair (G, \) such that G = (V, E) is a simple (undirected) graph and
X\ : E — 2V is a time-labeling function that maps every edge of G onto a set of integers,
called timestamps in the following (see the example in Figure 1). Up to a relabeling, we can
assume that the minimum timestamp over all edges of G is equal to 1, while T" denotes the
maximum timestamp (and hence it upperbounds the number of timestamps).

We say that an edge e € E of a temporal graph (G, \) is active in t € \(e) and the pair
(e,t) is called a temporal edge, while E; is the set of temporal edges active in t.

A temporal vertex cover of (G, \) is a pair (C, o), such that: (i) C C V; (ii) o maps each
vertex v of C to an interval [l,,r,] such that 1 <[, < r, < T; and (iii) for every edge e
and for every value ¢ € A(e), there is a vertex v € C such that ¢t € [I,,r,] and e = {u,v}.
An {l-partial temporal vertex cover of (G, \) is a function o, called assignment, such that:
(i) o maps each vertex v of V' to an interval [l,,7,] such that 1 <, < r, < T; and (ii)
ry —ly +1 < £. A temporal edge (e, t), where e = {u, v}, is covered by o if either ¢ € [, 1]
or t € [l,,r,]. Note that, in a ¢-partial temporal vertex cover, we can assume w.l.o.g. each
vertex is assigned to an interval of length exactly /.

We are now ready to formalize the definition of ¢-TimelineCover(k) and of the corresponding
optimization version /~-MaxTimelineCover.
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» Problem 1. ¢-TimelineCover(k)
Input: a temporal graph (G, \) and two positive integers £ and k.
Output: an ¢-partial temporal vertex cover of (G, ) that covers at least k temporal edges.

» Problem 2. ¢-MaxTimelineCover

Input: a temporal graph (G, \) and a positive integer £.

Output: an £-partial temporal vertex cover of (G, \) that covers the maximum number of
temporal edges over all £-partial temporal vertex covers of (G, \).

3 Hardness for Single Labeling

In this section, we prove that ¢-TimelineCover(k) is NP-hard, even if the input temporal
graph (G, ) has the following properties: (1) each edge has a single label and (2) T = 2.
As a corollary of this result, we prove that ¢-MaxTimelineCover is APX-hard for the same
restriction. The result is proven via a reduction from Max 2-3-SAT(h), a variant of Max
2-SAT(h) where each literal appears in at most three clauses. Given a set X of variables
and a set of clauses C' on X, where each clause consists of exactly two literals and each
literal appears in at most three clauses, Max 2-3-SAT (h) asks for a truth assignment to the
variables in X that satisfies at least h clauses in C'. Note that we assume that each clause in
C consists of exactly two literals. Indeed the APX-hardness proof of Max 2-3-SAT(h) in [3, 2]
constructs only clauses consisting of exactly two literals.

Construction. Consider an instance (X, C, h) of Max 2-3-SAT(h), where X = {x1,..., 24} is
a set of variables and C = {C1,...,C.} is a set of clauses, each one defined over two literals.
A clause of C is written as x; 4 V x; g, with A, B € {T,F}, where z; 1 (x;r, respectively)
represents a positive literal (a negative literal, respectively).

In the following, given (X,C,h), we define a corresponding instance (G, A, k, £) of ¢-
TimelineCover(k), with k = 24¢ 4+ h, £ =1 and T = 2; see Figure 2 for an illustration. Note
that, since T' = 2, the labels belong to interval [1,2]. The set V is defined as follows:

V = {v;r, ViF, A1, 04,2, 033, Qi 4,051,052, 053,054 1 ;5 € X}

Next, we define the set E; of temporal edges:

E,={({vir,aip},1), {vir, bip},1): 1 <p<4,1<i<q}U
{{ais,0it},2):1<i<gAl<s,t<4}U

{({vi,a,v,8}1,2) 11 <i,j <gNABe{T,F}A(z;aVa;p)eC}

Clearly (G, \) is defined over two timestamps. We prove below that each pair of vertices

of (G, \) is connected by at most one temporal edge.

» Fact 1. Let (X,C, h) be an instance of Max 2-3-SAT(h), and let (G, X\, k,£) be the corres-
ponding instance of ¢-TimelineCover(k). For every edge e € E, it holds |\(e)| = 1.

Proof. The edges connecting v;r and a;,, 1 <7 < gand 1 < p < 4, are active only at
timestamp 1 and the same property holds for the edges connecting v; 7 and b; ,, 1 <7 < ¢
and 1 < p < 4. The edges between a;, and b; ;, with 1 < p <4 and 1 < s < 4, for each
1 <7 < g, are active only at timestamp 2. Finally, the edges between v; 4 and v; p, 1 <7 < ¢
and 1 < j < ¢, are active only at timestamp 2. <
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Figure 2 An example of a temporal graph G built by the reduction for clause (z1,r V z2¢). The
temporal edges defined at timestamp 1 are dashed, while those defined at timestamp 2 are solid .

Correctness. A solution of ¢-TimelineCover(k) on (G, A\, k, ¢) is called canonical if every
temporal edge ({vir,aip},1), for 1 < i < gand 1 < p < 4, and every temporal edge
({vir, bip},1), for 1 <4 < gand 1 < p < 4, are covered by such a solution. We start by
proving the following property.

» Lemma 1. Given an instance (X,C,h) of Max 2-3-SAT(h), consider a correspond-
ing instance (G, \, k,€) of ¢-TimelineCover(k). Then, starting from a feasible solution
of £-TimelineCover(k) on (G, A, k,£), we can compute a feasible canonical solution of (-
TimelineCover(k) on (G, \, k, £) that covers at least the same number of temporal edges.

Proof. Consider an assignment o to V' and assume that there exist two vertices a; p,b; s € V,
for some ¢ with 1 < i < ¢q, 1 < p,s < 4 that are both assigned to t = 1. Notice that the
temporal edge ({a;p,b;s},2) is not covered and that each of a; ,, b; s covers at most one
temporal edge (active in ¢t = 1). Then we can modify the solution o of ¢-TimelineCover(k)
by assigning one of the two vertices, w.l.o.g. a;,, to t = 2 so that the temporal edge
({aip,bi s}, 2), is now covered, while ({v; 1,a;,},1) is now possibly not covered. Notice that
by iteratively applying this modification we can compute a solution of ¢-TimelineCover(k)
that covers the same number of temporal edges as o, such that every a;, or every b; , is
assigned to ¢ = 2. Indeed assume this is not the case, then there exist two vertices a; p, b; s
both assigned to t = 1, thus by applying the modification described before we can compute a
solution with the desired property.

Note that we assume that in o either every a;,, 1 < p <4, or every b; 5, 1 <5 <4, 1is
assigned to ¢ = 2 and that either every a;,, 1 < p <4, or every b; 5, 1 < s < 4, is assigned
to t = 1. Indeed, assume w.l.o.g. that every a; ) is assigned to ¢ = 2, then all the temporal
edges defined in timestamp 2 and incident in some b; s are covered by vertices a; ,. Hence
we can assume that every b;  is assigned to 1.

Now, we claim that at most one of v; 1, v;r, 1 < i < g, is assigned to ¢t = 2. Indeed,
assume that both v; 1, v;r are assigned to t = 2 (thus not to ¢ = 1). Since either every
vertex a; , or every vertex b; ; is assigned to timestamp 2, it follows that either all temporal
edges ({vit,aip},1), with 1 <i < g, and 1 < p <4, or all the temporal edges ({vir,bip},1),
1<i<gq,and 1 <p <4 are not covered. Assume w.l.o.g. that every a; p is assigned to time
t = 2. Since both v; r and v; ¢ are assigned to time 2 and each literal in X belongs to at most
three clauses, each of v; 1, v; r is assigned to ¢ = 2 and it covers at most three temporal edges.
Then we can compute a solution of ¢-TimelineCover(k) on (G, A, k) by assigning v; 1 to t =1,
while each a;,, is assigned to t = 2 (or v;r assigned to t = 1 and each b, , is assigned to
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t = 2). The number of covered temporal edges with respect to solution o is increased at least
by one and we have that either v; r is assigned to time 1 (if every a; , is assigned to time 2)
or v; ¢ is assigned to time 1 (if every b; , is assigned to time 2). Then every temporal edge
({vir,aip},1),1<i<gq,and 1 <p <4, and every temporal edge ({v;r,b;p},1), 1 <i<g,
and 1 < p < 4, is covered by the solution. Thus we have computed a canonical solution of
¢-TimelineCover(k) on (G, A, k, £) that covers at least the same number of temporal edges as
o, hence concluding the proof. |

Now, we can prove the main result of this section.

» Theorem 2. /(-TimelineCover(k) is NP-hard even on temporal graphs defined on two
timestamps and where each edge is assigned a single time label.

Proof. Note that, by Fact 1, each edge is assigned a single time label and by construction,
the temporal graph is defined on two timestamps.
We start by proving the following fact.

» Fact 2. Given a solution of Max 2-3-SAT(h) on instance (X,C,h) we can compute in
polynomial time a canonical solution of ¢-TimelineCover(k) on the corresponding instance
(G, Nk, L) with k = 24q + h (hence that covers at least k temporal edges).

Proof. Consider a solution of Max 2-3-SAT(h) on instance (X, C, h), we define a solution o
of ¢-TimelineCover(k) on (G, \, k,£) as follows. For each variable x;, 1 < i < ¢, that is set
to true, then v;r is assigned to t = 1, each a;,, with 1 < p < 4, is assigned to ¢t =1, v; 1
is assigned to ¢t = 2 and each b; j,, with 1 < p < 4, is assigned to ¢ = 2. For each variable
x;, 1 <1 < g, that is set to false, then v; 1 is assigned to ¢t = 1, each b; ,, with 1 < p < 4,
is assigned to t = 1, v; 5 is assigned to ¢ = 2 and each a;,, with 1 < p < 4, is assigned to
t = 2. By construction the solution ¢ is canonical, hence the 8¢ temporal edges defined at
time ¢ = 1 are covered. Each temporal edge ({a;p,b; s}, 2), with 1 < p,s < 4, is covered
(we have 16¢ such temporal edges). Finally, by construction, for each satisfied clause, the
corresponding temporal edge defined in ¢ = 2 is covered (we have h such temporal edges). <

For the second direction, we prove the following fact.

» Fact 3. Given a solution of (-TimelineCover(k) on the instance (G, A, k, £) with k = 24q+h
(hence that covers at least k temporal edges), we can compute in polynomial time a solution
Max 2-3-SAT(h) on instance (X,C,h) (hence that satisfies h clauses).

Proof. By Lemma 1 we can consider a canonical solution o of ¢-TimelineCover(k) on instance
(G, A\, k, £). By construction o covers the 8¢ temporal edges defined at time ¢ = 1. Notice that
we can assume that exactly one of v; 1, v; ¢ is assigned to ¢t = 1. If both v; 1, v; r are assigned
to t = 1, we can define all the vertices a;, (all the vertices b; ,, respectively) assigned to
t = 1 and assign v; 1 (v;r, respectively) to ¢ = 2. Hence exactly one of v; 1, v; ¢ is assigned to
t =1, and exactly one of v; 1, v; r is assigned to ¢t = 2. Moreover, we can assume that for
each 7 with 1 < i < g, the temporal edges incident to a;, and b; 5, with 1 < p,s < 4, are
covered.

Now, construct a truth assignment as follows. For each 1 < ¢ < g, if v; 1 is assigned to
t = 2, then set the corresponding variable z; to true, if v;r is assigned to ¢t = 2, then set
the corresponding variable z; to false. By construction if a temporal edge ({z; 4,2z, 5},2) is
covered, then the corresponding clause is satisfied, thus we have defined a truth assignment
that satisfies at least h clauses, hence a solution of Max 2-3-SAT (h), concluding the proof. <«
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By Fact 2 and by Fact 3 it follows that we have designed a polynomial-time reduction
from Max 2-3-SAT(h) to ¢-TimelineCover(k). By the NP-hardness of Max 2-3-SAT(h) (the
decision version) [3], it follows that also ¢-TimelineCover(k) on temporal graphs defined on
two timestamps and where each edge is assigned a single time label is NP-hard. |

We note that the reduction described above can be used to prove the APX-hardness of
£-MaxTimelineCover, thus implying that /-MaxTimelineCover does not admit a PTAS. Later,
in Section 5, we will prove that /-MaxTimelineCover admits an approximation algorithm of
factor 3.

1

» Theorem 3. /-MaxTimelineCover is APX-hard.

Proof. The result follows from the fact that essentially the same reduction described
in this section is an L-reduction from the optimization version of Max 2-3-SAT(h) to ¢-
MaxTimelineCover (for details on L-reduction we refer to [20]).

Denote by I an instance of the optimization version of Max 2-3-SAT(h) and by I’ the
corresponding instance of ¢-MaxTimelineCover. Let OPTs(I) be the value of an optimum
solution of the optimization version of Max 2-3-SAT(h) on instance I. Let OPT)(I") be the
value of an optimum solution of /-MaxTimelineCover on instance I’.

By Fact 2, we have that

OPTy(I') < 24q + OPTs(I)

and, observing that, since there is a truth assignment that satisfies at least %q clauses, we
have that OPTs(I) > 1q. It follows that

OPTy(I') < 24q + OPTs(I) < 48 OPTs(I) + OPTs(I) = 49 OPTs(I)

Consider the value A’ (number of covered temporal edges) of a feasible solution of ¢-
MaxTimelineCover on instance I’ and the value A (number of satisfied clauses) of a feasible
solution of the optimization version of Max 2-3-SAT(h) on instance I.

By Fact 3, we have that, given a feasible solution of /-MaxTimelineCover of value A’ on I’
we can compute in polynomial time a feasible solution of the optimization version of Max
2-3-SAT(h) on instance I of value A such that

(OPTs(I) = A| < |OPTy (I') — A

Thus we have designed an L-reduction from the optimization version of Max 2-3-SAT (h)
to £-MaxTimelineCover. Since the optimization version of Max 2-3-SAT(h) is known to be
APX-hard [2, 3|, the APX-hardness holds also for ¢-MaxTimelineCover. |

4 Fixed Parameter Tractability

In this section, we show that ¢-TimelineCover(k) is FPT when parameterized by: the number
h = |E| — k of temporal edges that may not be covered by the solution (Section 4.1);
parameter k and parameter n + ¢ (Section 4.2), where n denotes the number of vertices of
the input graph.

4.1 Parameter h

The result is obtained by a parameterized reduction to Almost 2-SAT(p), which is known to be
FPT when parameterized by p [18, 15], with a similar approach applied for MinTimelineCover
in [7]. We recall that, given a 2-CNF formula and a positive integer p, Almost 2-SAT(p) asks
whether it is possible to remove at most p clauses so that the resulting formula is satisfiable.
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» Theorem 4. (-TimelineCover(k) is FPT when parameterized by h.

Proof. Given an instance I = (G, \) of ¢-TimelineCover(k) and denoted by h = |E| — k the
number of temporal edges that are not covered, we define a corresponding instance I’ of
Almost 2-SAT(p), with p = h, as follows. To ease the notation, we shall assume that all
timestamps ¢ € [1, 7] are such that E; # 0; if this is not the case, the algorithm can be easily
modified to avoid any computation in those timestamps ¢ for which E; = {).

For each vertex v € V and for each timestamp ¢ € [1,T], we create a variable v;.

For each vertex v € V| for each timestamp i € [1,7T], and for each j > i + ¢, we create

h + 1 copies of clause (7; V T;), which is called a vertex clause.

For each edge {u,v} € E such that A({u,v}) =i (with ¢ € [1,T]), we create a clause

(u; V v;), which is called a temporal edge clause.
Intuitively, each copy of the vertex clauses models the fact that a vertex is assigned to an
interval of length exactly ¢. More formally, denoted by ¢ the first timestamp of the interval
that is assigned to a vertex v, the clause (7; V 7;) ensures that, for each j > ¢ + ¢, time j
does not belong to the interval assigned to v. Also, a temporal edge clause (u; V v;) models
the fact that a temporal edge (e = {u, v}, %) is covered, because u or v is assigned some time
interval that includes i.

Note that p = h, and that I’ can be computed in polynomial time. We now prove that I’
is a yes-instance of Almost 2-SAT(p) if and only if T is a yes-instance of ¢-TimelineCover(k).

Let I be a yes-instance of ¢-TimelineCover(k). Since I is a yes-instance, we know that
k' > k temporal edges are covered and hence b/ = |E| — k' < h temporal edges are not
covered. The corresponding Almost 2-SAT(p) instance I’ contains h’ clauses that are not
satisfied, and these clauses are temporal edge clauses. Indeed, since we have h + 1 copies
for each vertex clause, having one vertex clause that is not satisfied would imply that h + 1
clauses of the formula are not satisfied, but we observed h’ < h. By removing the b/ < p
temporal edge clauses that are not satisfied, the formula is satisfied. This implies that I’ is a
yes-instance of Almost 2-SAT (p).

Now, let I’ be a yes-instance of Almost 2-SAT(p). Since I’ is a yes-instance, the formula
is satisfied by removing at most p = h clauses. Since the formula contains h +1 =p+ 1
copies of each vertex clause, the clauses that are not satisfied are temporal edge clauses,
while all vertex clauses are satisfied. Each unsatisfied temporal edge clause in I’ implies
that there is a temporal edge in I that is not covered. It follows that I is a yes-instance of
£-TimelineCover(k). <

4.2 Parameter k

We shall assume that every vertex is incident to at least one temporal edge, otherwise, we
can just remove such a vertex and solve the problem for the obtained subgraph of G. We
distinguish two cases.

e Case 1: k < 5. We first compute a spanning forest F of the graph G. Assuming
w.l.o.g. that G' contains no isolated vertex, we note that F has at least 5 edges. We then
root each tree of F, and randomly select k edges from F. Next, we associate each temporal
edge ({u,v},4) of the k selected edges to vertex v, where u is the parent of v in the forest.
This implies that no two temporal edges are associated to the same vertex. Let (e,4) be one
of such temporal edges and let v be the vertex associated to it. We map v to an interval
[i,7 4+ ¢ — 1]. We apply the process mentioned above for each of the k edges. This approach
allows us to cover k temporal edges.
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e Case 2: k> 5. In this case, we use dynamic programming as follows. First, to ease
the notation, we shall assume that all timestamps ¢ € [1,T] are such that E; # 0; if this
is not the case, the algorithm can be easily modified to avoid any computation in those
timestamps t for which E; = ().

Suppose that we already performed our computations on each timestamp smaller than 1,
with ¢ € [2,T], and that we are now analyzing timestamp . Suppose we have the records
lel, .. .,Rg_l associated with timestamp ¢ — 1; the cardinality g of this set of records
depends on the parameter k and will be analyzed later. Each record Ré-_l, with j € [1,¢], is
composed of the following information:

A table A;_l where we store all the vertices v that we previously assigned to an interval

starting in timestamp x, with ¢ — ¢ < x < i — 1. In this table, we also associate to v

the value x of the first timestamp where v is assigned. These vertices are said to be

on-vertices or simply on.

A set of vertices Z;-fl that were previously assigned to an interval starting in timestamp

x such that  + ¢ < i — 1 by the algorithm. Notice that these vertices are not going to

cover any temporal edge (e, q) where ¢ > i. These vertices are said to be off-vertices or

simply off. ‘

A number s;_l of temporal edges that are covered by the vertices in Aé_l and Z;_l. This

is the score of the record.

Observe that the number of possible different sets of off-vertices is a function of n, which is
upperbounded by 2k because k > % by assumption. Also, the score of possible different costs
is upperbounded by k by definition, since we only care about covering k edges. Concerning
the vertices that are on-vertices in some interval [z, 4+ ¢ — 1], observe that we can assume
that there are no more than k£ temporal edges active in this interval, since in this case we
can simply assign this interval to every vertex of the graph and the solution is trivial. Also,
we assume that we assign a vertex to an interval [z, 2 4+ £ — 1] if and only if there exists a
temporal edge (e, x) incident to v. If this is not the case, we could simply associate v to the
interval that starts with the first timestamp where a temporal edge incident to v is covered,
thus covering not fewer temporal edges with v. Since there are less than k temporal edges
(e, q) such that ¢ € [x,2 + £ — 1] and by the above assumption, we can assume w.l.o.g. that
there are less than k vertices that are on-vertices in each record.

Now, we prove the next lemma:

» Lemma 5. For each i — 1 € [2,T], where R, .. .,Rz’l are the records at timestamp
i — 1, we have g € O(2%1°8%) and max?_, |R;_1\ € O(klogT).

Proof. Overall, each table in one record contains O(k) items. Concerning the size of a
single item, each item of A;fl, for each j € [1,g], represents a value in O(T). Thus,
max?_, \R§_1| € O(klogT). Concerning the value of g, we note that the number of possible
values x associated with a vertex in A§_1 is at most k, because there are k possible temporal
edges incident to v in an interval of length ¢ starting in z. Consequently, we have O(2F1°8F)

distinct records, i.e., g € O(2k108F), <
Algorithm description. In the base case, consider timestamp 1. Let S1, ..., San be all the
possible subsets of vertices of V and assume that S1,...,5,, with g < 2", are the possible

subsets of the vertices that have a temporal edge active in timestamp 1. For each j € [1, ¢g],
we create a record R]l by setting: A; = S, and each of such vertices is associated to the value
. —1 . .
(timestamp) 1; A; = 0; the score s} can be computed in O(k) time.
We now consider the inductive case. Let Rzl_l, ey R_fl’l be the set of records computed
at timestamp ¢ — 1. For each R;-_l, where j € [1, g], we proceed as follows. We consider the

vertex set V' \ (A;»_1 U A; ) and every possible subset of this set. For each subset S, we
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construct a new record R; that we will associate with time ¢. We assume that these and
only these are the vertices that are associated with the interval [i, i + ¢ — 1] for the partial
solution described by R;,. Let S’ be the set of vertices in A;fl that are assigned to interval
[i — ¢,i — 1]; note that the information about which vertices of A;‘l are assigned to interval
[i — £,i — 1] is contained in A;_l (these are the vertices of Aé._l that are associated with
timestamp ¢ — £ — 1).

The vertices of Rzi, that are on-vertices (hence those in A;,)7 are going to be the vertices
in (Aé-_1 \ §") U S; each vertex in S is associated with value 7, each vertex in A} \ S has
the same timestamp it is associated with in A;fl. Note that we assume that each vertex
u in S has a temporal edge defined in ¢ and covered by wu.

The off-vertices of R}, (hence those in Z;) are going to be the vertices in A;‘l us’.
The score of R; is s;_l + s, where s is the number of temporal edges covered by vertices
of S (that we just associated with an interval [i, 7+ ¢ — 1]) that are not covered by vertices
in Aj-_l. Computing the score s of R}, requires O(k?) time. Indeed, there exist at most k
temporal edges in the interval [i,i + ¢ — 1]. We identify the temporal edges defined in
[¢,%+ ¢ — 1] and not covered by on-vertices of Aj-_l in O(k?) time (for each temporal edge
defined in [i,7 4+ ¢ — 1] we can check if it is covered by some on-vertex of A;_l in O(k)
time, since A;'-*l contains less than k on-vertices). Then, for each uncovered temporal
edge, we check that it is covered by some vertex in S in O(k?) time (for each temporal
edge we can check if it is covered by some vertex of S in O(k) time, since S contains at
most k vertices).

Following from the discussion above, the time complexity needed to perform the above
operations does not depend on ¢, but only on k. Since the number of vertices of the graph is
n < 2k, updating a record requires O(f(k)) time, where f(-) is a computable function.

Hence, by Lemma 5 we have the following theorem.

» Theorem 6. ¢-TimelineCover(k) is FPT when parameterized by k.

It is worth noting that, since in each timestamp a vertex can cover at most n — 1 edges,
it follows that k < ¢-n2. Thus, we observe the following.

» Theorem 7. ¢-TimelineCover(k) is FPT when parameterized by n + L.

5 A 2-Approximation Algorithm

In this section, we present an approximation algorithm achieving factor % based on randomized
rounding and inspired by the approximation algorithm given in [9] for Max Sat.

» Theorem 8. There is a polynomial-time approximation algorithm for {-MaxTimelineCover
with factor %.

To prove Theorem 8, we first define an ILP formulation for the ¢-MaxTimelineCover
problem (Section 5.1). Next, we describe an algorithm based on randomized rounding an LP
relaxation of this formulation (Section 5.2).

5.1 ILP formulation

We present an Integer Linear Programming (ILP) formulation of ¢-MaxTimelineCover. We
make use of the following variables:
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For each temporal edge ({v;,v;},t), the variable e, ; is 1 if ({v;,v;},1) is covered, and it
is 0 otherwise.

For each vertex v; and for each t € [1,T — £ + 1], the variable A;(t) is 1 if v; is assigned
to interval [t,t + ¢ — 1], and it is O otherwise.

max Z €i,jt 1)
1,5t
s. t.

cige< Y, A+ Y Aylt) V({vi, v}, 1) (2)

t1€[t—f+1,1] to€t—l+1,t]
Y At <1 Vv, €V (3)
t
€ijt € {0’ 1}’ V({Ui’ vj}7 t) (4)
A;(t) € {0,1} Yu; €V, (5)

vte[1,2,...,T —{

Inequality (2) guarantees that a variable e; ;, can be set to 1 only if at least one end-vertex
is mapped to an interval containing ¢, while inequality (3) guarantees that each vertex is
mapped to at most one interval.

5.2 The Approximation Algorithm

The %—factor approximation algorithm for the ¢-MaxTimelineCover problem is presented
in Algorithm 1. The algorithm solves in polynomial time an LP relaxation of the ILP
formulation described in Section 5.1, where variables e; ;; € [0,1] and A;(t) € [0,1]. We
denote by Aj(t) and ej ;, the values of variables A;(t) and e; ;, respectively, of the optimal
solution of the LP relaxation.

Starting from a solution of the relaxation, the approximation algorithm defines a solution
for £-MaxTimelineCover by assigning each vertex v; € V to interval [¢t, t+£¢— 1] with probability
A% (t).

Algorithm 1 g—approximation algorithm for the ¢-MaxTimelineCover problem.

Solve the LP relaxation of the ILP formulation from Section 5.1, with constraints e; ; ; € [0, 1]
and A;(t) € [0,1]
Let e ; , and A7 (t) be the values of a solution to the relaxation of the ILP from Section 5.1

For every vertex v;, define it active in interval [¢,t + ¢ — 1] with probability A¥(t)

Let E(o) be the expected value of a solution ¢ returned by Algorithm 1. Denote by
Ple; ;1] the probability that the temporal edge ({v;,v;},t) is covered. It holds that

E(O’) = Z P[ei’j,t}.

55t
Consider now Ple; ;.], it holds that
Pleiji] =1 - Pleijl,

where € is the event that the temporal edge ({v;,v;},t) is not covered by solution o. We
have that

1— Ple; ;] =1 — P[({vi,v;},t) not cov. by v; A ({vi, v}, ) not cov. by v,]. (6)
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Now, we have that

P[({vi,v;},t) not cov. by v; A ({vi,v;},t) not cov. by v;] =
= ) Am) | (1= X 4m)]| (O
tle[tfé#*l}t] tze[tferl,t]

By combining the previous equations we have that

1-Plegd=1-[1- > At | |[1- D At)]. (8)

t1€[t—0+1,1] to€[t—0+1,1]

From the arithmetic mean inequality, we have that

1-{1— > A (1- D At | =

t1€[t—041,¢] to€[t—041,1]

* * 2
1— (1 - Ztle[t7£+l,t] Ai (tl) +1- Ztge[tflJrl,t] Aj (t2>>
2

* * 2
1— (1 _ (Ztle[t—£+1,t] Ai (t1> + Ztge[t—ZJrl,t] Aj (t2)>
5 .

Recall that e} ;, is the value of variable e; ;; returned by the relaxation of the ILP
formulation of Section 5.1. By Inequality (2) of this formulation, we have that:

Yo At Y Ajlt) 2 el (9)

t1€[t—C+1,t] to€[t—L+1,t]
Thus
1-— P[ei7j¢] Z
* * 2 *
(Ztle[t—€+1,t] Ai (tl) + the[t—é—i-l,t] Aj (tZ) €t 2
1—(1- 5 z1-{1-==)

Hence, Ple; ;| can be bounded as follows:

ex . 2
Plei i) =1~ Pleiji] > 1~ <1 - 2ﬂ> |

The function

* 2
1o (1 St
2

is a concave function and it has value 0 for €7 ;;, = 0 and value 3 for e; j+ = 1. It follows
that

* 2
€ijt 3 .
el 21- (1= 5) = §ets

thus concluding the proof.
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6 Conclusion

In this paper, we introduced and studied the ¢-TimelineCover(k) problem (and its optimization
version ¢-MaxTimelineCover), a variant of the classical Vertex Cover problem inspired by
a recent stream of work on temporal graphs. We have established the NP-hardness of ¢-
TimelineCover(k) and the APX-hardness of -MaxTimelineCover, under the restricted condition
where the temporal domain consists of only two timestamps and each edge appears at most
once. We have presented two fixed-parameter algorithms for the following parameters: (%) the
number & of temporal edges covered by the solution, and (%) the number h of temporal edges
not covered by the solution. Furthermore, we have contributed a %-approximation algorithm
for ¢-MaxTimelineCover based on randomized rounding.

There are some interesting research directions to explore. First, the parameterized
complexity of the problem can be further investigated, similarly to what has been done
for MinTimelineCover in [7]. Second, it would be interesting to improve the approximation
factor for ~-MaxTimelineCover, possibly considering the semidefinite programming technique
applied for Max Sat [10]. A third possible direction involves expanding the definition of
vertex activity by permitting a finite number of intervals during which a vertex can be active,
as done for MinTimelineCover in [7, 19].
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—— Abstract
In the periodic temporal graph realization problem introduced by Klobas et al. [SAND ’24] one
is given a period A and an n X n matrix D of desired fastest travel times, and the task is to
decide if there is a simple periodic temporal graph with period A such that the fastest travel time
between any pair of vertices matches the one specified by D. We generalize the problem from
simple temporal graphs to temporal graphs where each edge can appear up to ¢ times in each
period, for some given integer ¢. For the resulting problem MULTI-LABEL PERIODIC TGR, we
show that it is fixed-parameter tractable for parameter n and for parameter ve + A, where vc is
the vertex cover number of the underlying graph. We also show the existence of a polynomial
kernel for parameter nu + dmax, where nu is the number of non-universal vertices of the underlying
graph and dmax is the largest entry of D. Furthermore, we show that the problem is NP-hard for
each ¢ > 5, even if the underlying graph is a tree, a case that was known to be solvable in polynomial
time if the task is to construct a simple periodic temporal graph, that is, if £ = 1.
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1 Introduction

Graph realization problems are problems where one is given information about a certain
property of a graph, such as the matrix of shortest-path distances or the degree sequence,
and wants to decide whether there exists a graph for which that property matches the given
information (and to find such a graph, if it exists). A wide range of graph realization problems
have been studied for static graphs for many years, with the work by Erdds and Gallai [9]
on realizing a given degree sequence and the work by Hakimi and Yau [10] on realizing a
given distance matrix by an edge-weighted graph being two particularly early examples. In
recent years, temporal graphs, i.e., graphs whose edge set may change in each time step,
have received substantial attention. In temporal graphs, one usually considers paths that
traverse at most one edge in each time step (and we also do so in this paper), although
non-strict paths where several edges can be traversed in the same time step have also been
studied. Many classical graph problem have been adapted and studied in the temporal graph
setting (see [14] for an introduction to temporal graphs and [4] for a broader overview of
different classes of time-varying graphs). Therefore, considering graph realization problems
in the temporal graph setting is a natural and timely direction. Very recently, Klobas et
al. [12] have started this line of research and introduced the following periodic temporal
? Thomas Erlebach, .Nils Morawietz,' and Petra Wolf;
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graph realization problem (PErRIODIC TGR): Given a period A and an n X n integer matrix
D that specifies the desired fastest travel times for each pair of vertices, find a simple periodic
temporal graph G with period A such that the fastest travel times in G match those given
by D (or decide that no such temporal graph exists). Here, a periodic temporal graph is
simple if each edge of the underlying graph appears exactly once in each period.

Klobas et al. [12] noted that the consideration of periodic temporal graphs can be motivated
by, for example, railway networks, satellite networks, or social networks. They showed that
Periopic TGR is NP-hard for any A > 3 and also W[l]-hard when parameterized by
the feedback vertex number of the underlying graph. (The latter result also applies to the
non-periodic version of the problem if the distance matrix can have entries equal to cc.)
Here, the underlying graph is the graph containing edges between all vertex pairs that have
distance 1 according to D. They showed that the problem can be solved in polynomial time
if the underlying graph is a tree or a cycle, and that it is fixed-parameter tractable (FPT)
when parameterized by the feedback edge number of the underlying graph. Finally, they
raised a number of interesting questions for future research, including the investigation of
PERrRIODIC TGR with the vertex cover number of the underlying graph as parameter and
with parameter combinations that include a structural parameter and the period A.

Our contribution. In this paper, we follow up on the work by Klobas et al. [12]. Furthermore,
we generalize PERIODIC TGR from simple periodic temporal graphs to ¢-label periodic
temporal graphs, i.e., to periodic temporal graphs where each edge of the underlying graph
is allowed to appear up to ¢ times in each period. This problem (MULTI-LABEL PERIODIC
TGR) is defined as follows: Given a period A and an n x n integer matrix D that specifies
the desired fastest travel times for each pair of vertices and a positive integer ¢, find an
{-label periodic temporal graph G with period A such that the fastest travel times in G
match those given by D (or decide that no such temporal graph exists). Clearly, PERIODIC
TGR is the special case of MULTI-LABEL PERIODIC TGR where £ = 1. We also consider
the non-periodic version (MULTI-LABEL TGR). While Klobas et al. mainly considered
parameters that relate to how close the underlying graph is to being a tree, we explore also
the opposite end of the spectrum and consider a parameter that measures how close the
underlying graph is to being a clique, namely the number of non-universal vertices. As the
problem is trivial if the underlying graph is a clique, parameters that measure closeness to a
clique are interesting candidates for obtaining FPT algorithms.

We obtain the following main results:

The known NP-hardness proof for PERIODIC TGR [12] only applies to MULTI-LABEL

PerIODIC TGR with ¢ = 1 and leaves open the complexity for £ > 2. We show that

MurTi-LABEL PERIODIC TGR is NP-hard for every £ > 1 even if the largest entry in D

is 3. For ¢ > 3, we show NP-hardness even if the underlying graph has a size-1 feedback

vertex set.

In contrast to the known result that PERIODIC TGR can be solved in polynomial time

for trees [12], we show that MULTI-LABEL PERIODIC TGR is NP-hard for any ¢ > 5

even if the underlying graph is a star.

Both MurTI-LABEL PERIODIC TGR and MULTI-LABEL TGR are FPT for parameter n.

Here, n is the number of vertices. (For PERIODIC TGR, this result is implied by the FPT

algorithm for parameter feedback edge number by Klobas et al. [12], but our algorithm is

conceptually simpler and can handle the multi-label problem variants.)

MurTI-LABEL PERIODIC TGR is FPT for parameter vc + A, where vc is the vertex

cover number of the underlying graph.
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MULTI-LABEL TGR can be solved in O(pn*) time if D has no entries equal to oo, £ > n?,
and the underlying graph is such that for each pair (u,v) of vertices the number of u-v
paths is at most p. For trees and cycles, we have p < 2, and hence the algorithm runs in
polynomial time.

Murri-LABEL PERIODIC TGR admits a polynomial kernel for parameter nu + dp,,x and
is hence FPT for that parameter, where nu is the number of non-universal vertices of the
underlying graph and dyax is the largest entry of D.

The remainder of the paper is structured as follows. After discussing further related work
below, we give formal definitions and present preliminary results in Section 2. Our hardness
results are presented in Section 3, and our algorithmic results in Section 4. Section 5 gives
conclusions and open problems.

Proofs of statements marked with (x) are deferred to the full version.

Related work. For a general introduction to temporal graphs, we refer to the article by
Michail and Spirakis [14]. The only previous work dealing with the problems we consider
(but only for the case of simple temporal graphs) is the recent work by Klobas et al. [12],
which has already been discussed above. Other settings where the task is to assign time
labels to the edges of a graph in order to create a temporal graph have also been studied,
but mainly with the goal of ensuring certain temporal connectivity properties rather than
realizing pre-specified journey durations. For example, Akrida et al. [1] studied the problem
of assigning (multiple) labels to the edges of a given graph in such a way that the resulting
temporal graph is temporally connected (i.e., there exist u-v journeys for all pairs (u,v) of
vertices), with the objective of minimizing the total number of labels used. They showed
that O(n) labels suffice. Klobas et al. [11] showed that the problem can be solved optimally
in polynomial time but becomes NP-hard if restrictions are placed on the lifetime of the
temporal graph or if connectivity needs to be established only for a subset of the vertices.
Mertzios et al. [13] studied variations of the problem where the goal is to minimize the
maximum number of labels assigned to any single edge, termed the temporality of the
temporal graph. Note that the parameter £ that we consider in this paper corresponds to
the temporality. Enright et al. [8] considered the problem of reordering the snapshots of a
given temporal graph in order to minimize reachability.

2 Preliminaries

For details about parameterized complexity we refer to the standard monographs [5, 7].

For any integers ¢,j with ¢ < j we write [¢, j] for the set {i,i + 1,4+ 2,...,7}. We use
standard notation for (static) graphs (see, e.g., [6]). For a graph G = (V, E) and a vertex v
of G, we denote by N¢(v) the neighbors of v in G and define Ng[v] := Ng(v) U {v}. If the
graph is clear from the context, we may omit the subscript. We write uv to denote an edge
{u,v} in an undirected graph.

A temporal graph is a graph that evolves over discrete time steps and whose vertex set
remains the same while the edge set may be different in each time step. Two standard ways
to represent a temporal graph G with lifetime L are as follows: The first representation uses
a pair (G = (V, E), \), where G = (V, E) is an undirected graph and X : E — (2[-21\ {(})
is a function that assigns to each e € E the non-empty set of time steps during which e is
present. The graph G is called the underlying graph of G. We also call \ a multi-labeling to
emphasize that an edge can receive more than one label. The second representation uses a
sequence (G1,Ga,...,GL) of snapshots or layers, where G; = (V, E;), for 1 < i < L, is the
graph on vertex set V' that contains all edges that are present in time step ¢. The underlying
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graph is then the graph G = (V, E) with E = Uie[l,L] FE;. The two representations are
mathematically equivalent, and each can be transformed into the other in a straightforward
way. For implementation purposes, we assume in this paper that temporal graphs are
represented in the form (G, \), but for ease of exposition we will also often use terminology
that refers to the representation using explicit snapshots. We use the convention that n = |V/|
and m = |E| throughout.

If a temporal graph G with lifetime L is considered as a non-periodic graph, one assumes
that the graph ceases to exist once time step L has passed. If G is considered as a periodic
graph (with period L), then it is assumed that the snapshots repeat after L time steps, i.e.,
Git., = G, for all i € [1, L] and all positive integers z. A temporal graph with lifetime or
period L is called simple if every edge of the underlying graph appears in only one snapshot
among the first L time steps, i.e., if [A(e)| =1 for all e € E. For simple temporal graphs, we
also write A(e) = ¢ instead of A(e) = {t} if ¢ € [1, L] is the time step in which edge e appears.
For periodic temporal graphs, we usually denote the period by A instead of L.

If an edge e is present in time step ¢ of a temporal graph G, we say that (e, t) is a time-edge
of G. A u-v journey (or u-v temporal path) in G is a sequence ((ey,t1), (€2,t2),..., (er,tr))
of time-edges such that ¢; < t;41 for 1 < i < r and (ej,es,...,e;) is a u-v path in the
underlying graph of G. The journey starts or begins at u in time step t1, reaches or arrives
at v in time step t,, and has duration or travel time t, — t; + 1. For vertices u,v and any
time step t, an earliest-arrival u-v journey at time t is a u-v journey that begins at u at
some time > ¢t and minimizes the time when it arrives at v. A fastest u-v journey is a u-v
journey of minimum duration, and the duration of that journey is referred to as the fastest
travel time from u to v.

A distance matriz D is an n X n matrix whose values are non-negative integers or oco. If
all values are non-negative integers, we say that D is finite-valued. The rows (and columuns)
of D correspond to n vertices, and we use V to denote the set of these n vertices. For two
vertices u,v € V, we use D,, to denote the entry in row u and column v of D, and that
entry specifies the desired fastest travel time from u to v. We say that a temporal graph G
with vertex set V realizes D if, for any two vertices u,v € V, the duration of a fastest u-v
journey in G is equal to Dy,. (If D,, = oo, this means that G does not contain any u-v
journey.) We can assume that D,, = 0 if and only if © = v, as otherwise there cannot exist
a temporal graph that realizes D. Furthermore, we can also assume for any pair (u,v) with
u # v that Dy, = 1 if and only if D,, = 1, as a journey with duration one uses a single
time-edge and thus is also a journey in the opposite direction. We only consider distance
matrices that satisfy these assumptions throughout this paper. The graph G = (V, E) that
contains precisely those edges uv for which D, = D,, = 1 is called the underlying graph
induced by D as any temporal graph that realizes D must have underlying graph G.

As mentioned in the introduction, Klobas et al. [12] introduced the problem of constructing,
for a given n x n distance matrix D and period A, a periodic simple temporal graph with n
vertices and period A that realizes D. We generalize this problem by allowing multiple labels
per edge, with an input parameter ¢ specifying how many labels an edge can receive at most:

Murti-LABEL PERIODIC TGR

Input: An integer ¢, an n X n distance matrix D, and a period A.

Question: Is there a periodic temporal graph G with period A that realizes D and
in which no edge receives more than ¢ labels?

For this problem we assume that D is finite-valued, as otherwise the problem could
be split into independent subproblems on temporally connected components. Note that,
contrary to the case of non-periodic temporal graphs, the temporal reachability relation in
periodic temporal graphs is symmetric and transitive.
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Furthermore, we also consider the non-periodic variant of the problem:

Murti-LABEL TGR

Input: An integer ¢ and an n x n distance matrix D.

Question: Is there a non-periodic temporal graph G (with arbitrary lifetime) that
realizes D and in which no edge receives more than ¢ labels?

For the non-periodic variant, we may allow the distance matrix to contain entries equal

to 00. We use dimax = max{Dy, | u,v € V, Dy, # 0o} to refer to the largest finite entry of D.

Basic observations. In the following, we present some basic observations about the problems
under consideration. First, we observe that each yes-instance of MULTI-LABEL PERIODIC
TGR can be realized with at most n? labels per edge.

» Lemma 1 (%). Let I be an instance of MULTI-LABEL PERIODIC TGR or MULTI-LABEL
TGR with £ > n?. Then reducing ¢ to n? yields an equivalent instance.

The argument to show Lemma 1 is that a solution only needs to realize one fastest u-v
journey for each of the n(n — 1) < n? vertex pairs (u,v), and for each such u-v journey it
suffices to assign at most one additional label to every edge. Thus, it can never be necessary
to assign more than n? labels to an edge.

Hence, in the following we assume that for each instance of MULTI-LABEL PERIODIC
TGR under consideration, ¢ < n?. Moreover, we can further assume that ¢ < A, since no
edge can receive more than A labels.

Next, we observe that a yes-instance can be realized by using time labels of value at
most £ - dpax - 2.

» Lemma 2 (x). Let I := (¢,D) (I := (¢, D,A)) be a yes-instance of MULTI-LABEL TGR
(MuLTI-LABEL PERIODIC TGR). There is a solution for I with largest time label at most
Cdipax - < L dipax - N2

The proof of Lemma 2 considers gaps (sequences of edgeless snapshots) between non-empty
snapshots. For MULTI-LABEL TGR it is clear that gaps of length greater than dp.x — 1 are
never necessary and can be reduced by removing empty snapshots in the gap. As there are at
most m{ snapshots with at least one edge, the result follows. For MULTI-LABEL PERIODIC
TGR, if there is a gap that is longer than dy.x — 1, we can perform a cyclic shift of the time
labels so that the longest gap appears in the final steps of the period. All gaps before that
final gap can then be reduced to size at most dp,.x — 1 in the same way as in the non-periodic
case, showing the lemma.

Note that for MULTI-LABEL PERIODIC TGR, we can thus reduce A to at most £-n?-dpax >
£-m - dyax + dmax if the period A is larger than £ - m - dypax + dmax.

» Corollary 3. For an instance (¢,D,A) of MULTI-LABEL PERIODIC TGR with A >
0-n? - dpax, the instance (0, D, 0 -n? - dmax) is an equivalent instance of MULTI-LABEL
PEeriobic TGR.

Note that this also implies the existence of polynomial kernels for MULTI-LABEL PERIODIC
TGR of size O(f - n? - dmax) € O(n?* - dmax), since £ can be reduced to n? and A can be
reduced to ¢ - n? - dpax.
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3 NP-Hardness for Multi-Label Periodic TGR on restricted instances

In this section, we present three hardness results for MULTI-LABEL PERIODIC TGR on
very restricted instances. Recall that MULTI-LABEL PERIODIC TGR for £ =1 is known to
be NP-hard for each A > 3 and that for £ = 1, MuLTI-LABEL PERIODIC TGR and MULTI-
LaBEL TGR are known to be NP-hard and W[1]-hard when parameterized by the feedback
vertex set number [12]. All three of our hardness results are obtained by reductions from a
restricted version of VERTEX COVER. First, we show that for each ¢ > 1, MULTI-LABEL
PEeRIODIC TGR is NP-hard even if dy.x = 3. Afterwards, we show that for each ¢ > 5,
Murti-LABEL PERIODIC TGR is NP-hard even on stars, which stands in stark contrast to
the fact that for £ = 1 the problem can be solved in polynomial time on trees [12]. Finally,
we show hardness for ¢ € {3,4} on graphs that are very close to trees, that is, on graphs
with a feedback vertex set of size 1.

We start by showing that for each ¢ > 1, MuLTI-LABEL PERIODIC TGR is NP-hard
even if dya.x = 3 and the underlying graph is a dense split graph, i.e., a graph where the
non-universal vertices form an independent set.

» Theorem 4. For each { > 1, MULTI-LABEL PERIODIC TGR is NP-hard even if the
underlying graph is a dense split graph, A =6, and dyax = 3.

Proof. We reduce from VERTEX COVER which is known to be NP-hard even if the input
graph has maximum degree 3, contains no cycle of length three or four, and no two vertices
of degree 3 are adjacent [15].

VERTEX COVER

Input: A graph G = (V, E) and an integer k.

Question: Is there a vertexr cover of size at most k for G, that is, a set of vertices S
of size at most k, such that each edge of E is incident with at least one vertex of S7

Let £ > 1. (Our reduction does not actually depend on ¢; it thus shows NP-hardness for
all values of ¢ simultaneously.)

Let I := (G = (V, E), k) be an instance of VERTEX COVER with the above restrictions
and let n := |V| with n > 13. Clearly, we can assume k < n as [ is trivially a yes-instance
otherwise. Without loss of generality, we assume that G contains four isolated edges 12,
Y1Y2, 2122, and wiws. (We can ensure this property for any graph by adding four isolated
edges and increasing k by four.) These four edges will be helpful to prove that D can be
realized with only one label per edge, if I is a yes-instance of VERTEX COVER.

We construct an instance I’ := (¢, D, A) of MULTI-LABEL PERIODIC TGR as follows:
We set A = 6. The underlying graph G’ := (V' E’) of I’ is set to be a dense split graph with
V=V US, where V is an independent set and S = {s1,52,...,8;} is the vertex set of a
clique of size k. The edge set of G’ is therefore E' = E{ U F), where E] = {vs | v e V,s € S}
and Fj = {s;s; | 1 <i < j < k}. Next, we describe the distance matrix D. As always, we
have D, = 0 for all w € V' and D, = D,, = 1 for all uv € E’. Orient G by picking for
each edge uv € E a direction (u,v) arbitrarily, and denote the resulting set of arcs by A. We
assume that the arcs corresponding to the four isolated edges mentioned above are (z2, 1),
(y2,y1), (22,21), and (wa,w;). For every (u,v) € A, set Dy, = 2 and D,,,, = 3. For every
pair (u,v) of vertices that do not form an edge in E, set D, = D,, = 3. This completes
the construction of I'. We show that I admits a vertex cover of size at most & if and only if
I’ is a yes-instance of MULTI-LABEL PERIODIC TGR.

(=) Let C = {c1,c2,...,cr} be a vertex cover of size k for I. (If I has a vertex cover
smaller than k, we can add arbitrary vertices to it until |C| = k.) In the following, we
describe a labeling of the edges of G’ that realizes D. This labeling is visualized in Figure 1.
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Without loss of generality, assume c¢;y_3 = x1, ¢g_2 = ¥1, ck—1 = 21, and ¢, = w;. For
i=1,2,...,k — 2, assign one time label to each edge in E] that is incident with s; in G’ as
follows:

For each incoming arc (u,¢;) of ¢; in A, set A\(us;) := 1.

Set /\(CiS,‘) = 2.

For each outgoing arc (¢;,v) of ¢; in A, set A(vs;) := 3.

For each other vertex r € V '\ Ngci], set A(rs;) := 5.

Note that these labels generate journeys of duration 2 exactly for the incoming and outgoing
arcs of ¢; in A.

For i = k — 1 and ¢« = k, we do essentially the same, but all assigned time labels are
shifted by two time steps. Recall that cx_1 = 21 (¢ = wy) and that z; (w;) has no outgoing
neighbor and only one incoming neighbor, namely 2z (w3). The time labels are assigned as
follows:

Set A(z28k—1) := AMwasy) := 5 and A(sg—121) := A(spwy) := 6.

For each vertex r € V' \ {z1, 22}, set A(rsip—1) = 3, and

For each vertex r € V' \ {wy,wa}, set A(rsx) = 3.

Note that these labels again generate journeys of duration 2 exactly for the arcs incident
with z; and wy, that is, arcs (22, 21) and (ws,w;1). As C is a vertex cover of G, every edge in
E is an incoming or outgoing arc in A of at least one vertex in C. Hence, it is clear that a
u~v journey of duration 2 is created for all pairs (u,v) with Dy, = 2.

Finally, set A(e) := 4 for all e € F}.

We claim that A is a solution to I’. First, note that each edge e € E’ receives only a
single label. We have already shown above that the journeys of duration 2 that are created
are exactly those for all vertex pairs (u,v) with D,, = 2. Furthermore, we can show that a
journey of duration 3 is generated for each vertex pair (u,v) € V x V as follows: Choose
i=k—1if u & {1, 22} and ¢ = k otherwise. Since {z1, 22} and {wy, w2} are disjoint, this
implies that at time step 3 the edge us; exists. Similarly, choose j =k — 3 if v ¢ {x1, 22}
and j = k — 2 otherwise. Since {x1,22} and {y1,y2} are disjoint, this implies that at time
step 5 the edge s;v exists. The u-v journey of duration 3 is then as follows: Take edge us;
at time 3, edge s;s; at time 4, and edge s;jv at time 5. Thus, A solves I’, and hence I’ is a
yes-instance of MULTI-LABEL PERIODIC TGR.

(<) Assume that A is a solution that realizes D and maps each e € E’ to a subset of [1, 6].

For each s; € S, let N; denote the set of edges in F/ that are incident with s;. Note that
for every distance D, = 2, there is an ¢ € [1, k], such that a u-v journey with duration 2 is
realized by edges of IV;, since such a journey must pass from v to s; and then from that s;
to v.

> Claim 5. Let P; be the set of vertex pairs (u,v) € V x V for which X realizes a u-v journey
of duration 2 using edges of N;. Then there exists a vertex wu; that all vertex pairs in P; have
in common.

Proof. We show that it is impossible that A realizes journeys of duration two for two disjoint
vertex pairs (u,v) and (a,b) in V' x V using the edges of N;. This implies that any two vertex
pairs in P; share a common vertex. As E does not contain cycles of length 3, this implies
further that there exists one vertex that is common to all vertex pairs in P;.

Assume for a contradiction that A realizes journeys of duration 2 for two disjoint vertex
pairs (u,v) and (a,b) in V x V using edges of N;. Assume without loss of generality that
us; is present at time 1 and wvs; at time 2. Let j be such that as; is present at time j and
bs; at time j + 1, where we use the convention that 6 + 1 = 1. Also, let z be a vertex in V'
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Figure 1 An example how the distances between different vertices are realized in the constructed
instance of MULTI-LABEL PERIODIC T'GR in the proof of Theorem 4. Top left shows an input instance
of VERTEX COVER excluding the additional isolated arcs (w2, w1), (z2,21), (y2,91), and (22, 21).
Bottom left shows how the distances representing the arcs incident with vertex v2 can be realized if
vertex vs is selected to be the ith vertex of the vertex cover. Top right represents any two distinct
vertices a and b of G and bottom right shows how an a-b journey of duration 3 can be realized by
using two of the four vertices of {sk—3,Sk—2,8k—1,5k} CS. Here, i =k —1ifa ¢ {z1,z2} and i = k
otherwise, and j =k — 3 if b ¢ {x1, 22} and j = k — 2 otherwise. The labels of the dashed edges are
not depicted, since they depend on a, b, i, and j.

that is adjacent to no vertex in {u,v,a,b} in G (such a vertex must exists as we assume that
n > 13, G has maximum degree 3, and G contains the edges uv and ab). Let k be a time
step in which the edge s;z is active. Note that k ¢ {6,1,2,3} as otherwise z has a journey of
duration 2 from or to u or v, a contradiction to A being a solution while z is adjacent to
neither u nor v. Hence, k € {4,5}. By symmetry, we can assume k = 4.

Now we show that we obtain a contradiction no matter what the value of j is:

j = 1: We have journeys of duration 2 from u to v, u to b, a to v and a to b, implying

that G must contain the 4-cycle uvab, a contradiction.

j = 2: We have journeys of duration 2 from u to v, u to a, a to b, and v to b, implying a

4-cycle uvba, a contradiction.

j = 6: We have journeys of duration 2 from a to b, a to u, b to v, and u to v, implying a

4-cycle abvu, a contradiction.

j = 3: We have an a-z journey of duration 2, a contradiction to z not being adjacent to a.

j =4: We have a z-b journey of duration 2, a contradiction to z not being adjacent to b.

j = 5: We have a z-a journey of duration 2, a contradiction to z not being adjacent to a.
As all cases lead to a contradiction, the assumption that A realizes journeys of duration 2 for
two disjoint vertex pairs (u,v) and (a,b) cannot hold. <

By Claim 5, all vertex pairs for which A realizes a journey of duration 2 using the edges
of N; have a common vertex u;. As a journey of duration 2 must be realized for every edge
uv of G (either from w to v or from v to u, depending on how the edge has been oriented),
the set U = {uq,ug,...,ux} is a vertex cover of G. Furthermore, |U| < k, and hence [ is a
yes-instance of VERTEX COVER. <

Note that in contrast to hardness for dya.x = 3 that we have just shown, for each ¢ > 2,
it is not difficult to see that MULTI-LABEL PERIODIC TGR can be solved in polynomial
time if dpa < 2: If A = 1, the problem is polynomial time solvable, since there is only a
single temporal multi-labeling. If dy.x = 1, the underlying graph is a clique and the distance
matrix is realizable by any periodic multi-labeling. If dy,.x = 2, then the instance is a trivial
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no-instance, if the underlying graph has diameter larger than 2. Otherwise, if the underlying
graph has diameter at most two, we can label each edge with label 1 and 2 (since ¢ > 2) and
so ensure a path between any two vertices of duration 2 that starts at time step 1.

» Observation 6. For each ¢ > 2 MULTI-LABEL PERIODIC TGR can be solved in polynomial
time if dpax < 2.

We now shift to considering the structure of the realized graph. Next, we show that
for ¢ > 5, MULTI-LABEL PERIODIC TGR is NP-hard even on stars. This implies that
MuLTI-LABEL PERIODIC TGR is NP-hard even if £+ vc € O(1), and so FPT algorithms for
parameter £ + vc are impossible, unless P = NP.

» Theorem 7 (x). For each ¢ > 5, MULTI-LABEL PERIODIC TGR is NP-hard even if the
underlying graph is a star.

Proof sketch. Let £ > 5. We again reduce from VERTEX COVER where the input graph
contains no cycle of length three or four, the input graph has a maximum degree of 3, and
no two vertices of degree 3 are adjacent.

Let I := (G = (V, E), k) be an instance of VERTEX COVER with the above restrictions
and let n := |V| be larger than 10. We construct an instance I’ := (¢, D, A) of MULTI-LABEL
PERIODIC TGR as follows: The underlying graph G’ := (V', E’) of I is a star with center ¢
and leaf set V U {v*,w*}. We set Dyy+ := Dyryr := n? and for each vertex v € V, we
set Dyyx := Dywy 1= Dy := Dyyrp := n?. For each two distinct vertices u and v of V, we
set Dy, := Dy, := 2 if uv is an edge of E, and D,, := D,, := n?, otherwise. Finally, we
set A= (k+2)-(n?+1)=k-n?+2n% + k + 2. This completes the construction of I’.

Note that each temporal path between any two vertices u and v of G’ distinct from the
center vertex c is of the form ucv. Since each vertex of V' \ {c} has only one incident edge
in G', we may say in the following that for a temporal multi-labeling, a vertex v € V' \ {c}
is active in time step 4, if the edge cv exists in time step .

Observe that for each vertex u € V, journeys of travel time 2 from u to all its neighbors
in G and vice versa can be realized in three consecutive time steps: u is active in the first

and the third of these time steps and all vertices of N¢(u) are active in the second time step.

Hence, the journeys of duration 2 from wu to all its neighbors in G start in the first time step
and end in the second time step, and the journeys of duration 2 from all neighbors of u in
G to u start in the second time step and end in the third time step. If G admits a vertex
cover of size k, all required journeys of travel time 2 can thus be realized in k£ such groups of
three consecutive time steps, with a separation of n? — 2 edgeless time steps between them
(to avoid creating journeys of travel time shorter than n? between pairs of vertices that are
independent in G). In addition to these k(n? + 1) time steps, a further 2(n? + 1) time steps
can be used to realize all the required journeys of travel time n?. For the other direction, we
can show that any feasible realization must have a similar structure, implying the existence
of a vertex cover of size at most k. The detailed proof of correctness is deferred to the full
version. <

Since the hardness result above only holds for £ > 5, we note that we can also show that
for ¢ > 3, the problem is still NP-hard even on graphs with a size-1 feedback vertex set.

» Theorem 8 (x). For each ¢ > 3, MULTI-LABEL PERIODIC TGR is NP-hard even if the
underlying graph has diameter two and a feedback vertex set of size one.
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4 Parameterized algorithms

In this section, we present FPT algorithms for MuLTI-LABEL PERIODIC TGR and MULTI-
LABEL TGR for several parameter combinations. First, we give FPT algorithms for both
problems parameterized by n in Section 4.1. Section 4.2 presents our FPT algorithm for
MuLTI-LABEL PERIODIC TGR parameterized by ve + A. Section 4.3 discusses our O(pn?)-
time algorithm for instances of MULTI-LABEL TGR. with finite-valued D, ¢ > n?, and
underlying graphs that have at most p different u-v paths for each vertex pair (u,v). Finally,
the polynomial kernel for parameter dy,,x + nu is shown in Section 4.4, where nu denotes the
number of non-universal vertices in the underlying graph.

4.1 Parameterization by the number of vertices

In this section, we present an FPT algorithm for parameter n for MULTI-LABEL PERIODIC
TGR. The key idea is to enumerate all possibilities for the sequence of snapshots that contain
at least one edge (and some extra information that specifies for each pair (u,v) a snapshot
in which a w-v journey of shortest duration begins). For each possibility, we use an integer
linear program (ILP) to decide whether it is possible to assign these snapshots to time steps
in such a way that the resulting periodic temporal graph realizes D. The approach extends
to MULTI-LABEL TGR as well.

» Theorem 9. MULTI-LABEL PERIODIC TGR can be solved in n®“"") . |1|1°0) time and
nO®") . 11|90 time, where |I| denotes the encoding length of the instance.

Proof. Let an instance I = (¢, D, A) of MULTI-LABEL PERIODIC TGR be given. Recall
that we can assume that £ < n? due to Lemma 1. Let K = fm and T = min{K, A}. Note
that T < ¢m € O(n?-n?) C n®M). We observe that there are at most K non-empty snapshots
in any realization, as each of the m edges can occur in at most ¢ snapshots. Furthermore, it is
clear that there are at most A non-empty snapshots, so the number of non-empty snapshots
is at most T'. The number of sequences of at most T" non-empty snapshots in which each of
the m edges occurs in at most £ snapshots (and in at least one snapshot) can be bounded by
T = TK  as each such sequence can be encoded by assigning to each of /m edge copies
(with £ copies of each edge) a number in 1,7 that identifies the snapshot in which it occurs.
(If an edge occurs fewer than ¢ times, this can be captured by assigning some of its copies
the same number.) Thus, we can enumerate all such sequences in TOK) C nOEn?) time.

For each such sequence S of non-empty snapshots, we enumerate all possibilities of
assigning to each vertex pair (u,v) with D,, > 1 a number s, in [1,|S|] that identifies the
snapshot in which the journey from u to v that realizes the duration D, starts. (Note that
if syp = 4, this means that the journey starts in the i-th non-empty snapshot. That snapshot
will be present in some time step ¢; in [1, A] that has not yet been determined.) The number
of possibilities to be enumerated is bounded by ™ C pO®*),

Intuitively, we want to proceed along the following lines: For each combination of a
sequence S of snapshots and an assignment of values s, to vertex pairs (u,v) with Dy, > 1,
we want to use an ILP to check whether we can assign the i-th snapshot of S to a time step ¢;,
for all 7, in such a way that the resulting periodic temporal graph realizes D. To be able
to formulate the constraints of the ILP, we use an auxiliary temporal graph, without gaps
between the snapshots of S, to determine for each pair (u,v) of vertices and each starting
snapshot 7 the snapshot at which v can first be reached if starting at u in snapshot ¢. The
constraints of the ILP can then express that the gaps inserted between the snapshots must
be such that (1) the duration of the u-v journey starting in snapshot s,, is equal to D,
and (2) the duration of the u-v journey starting in any other snapshot is at least D,,. The
variables of the ILP represent the time steps to which the snapshots get assigned.
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Formally, we process each combination of a sequence S of snapshots and assignment of

values sy, to vertex pairs (u,v) with Dy, > 1 as follows. Let L = |S| and S = (S, S2,...,5L).

Build a periodic temporal graph Gs with period L such that the edges present in time steps
i+ zL for all integers z > 0 are those of S;, for 1 < ¢ < L. For every (u,v) € V x V with
Dy, > 1 and every i € [1, L], we denote by ¢g(u,v,7) the tuple (j, z), such that each fastest
u-v journey in Gg starting at time i ends in time step j + zL, where 1 < j < L. Note that
computing ¢(u,v,7) can be done in polynomial time, since finding a path of shortest duration
from u to v starting at time step ¢ can be done in polynomial time on non-periodic temporal
graphs [3, 17], and we can simply unroll Gs n times to obtain a non-periodic temporal graph
on which the shortest duration of any journey between u and v remains the same. This is

discussed in detail for a more general class of periodic temporal graphs in [2, Remark 1].

Note that in a periodic temporal graph, for any pair (u,v) of vertices for which a u-v journey
exists, there exists a u-v journey of shortest duration that starts in a snapshot of the first
period. Therefore, it suffices to consider only start times ¢ € [1, L] for u-v journeys in Gs.

We want to determine whether there exist values ¢; for 1 < ¢ < L with 1 <t; <ty <
-+ < tr, < A such that the periodic temporal graph G defined as follows realizes D:

for each i € [1, L], S; is the set of edges of G that are present in time step ¢;, and

no edge is present in any of the time steps in [1, A]\ {¢; |1 <4 < L}.

Observe that ¢(u, v, i) = (j, z) if and only if the earliest-arrival journey from w to v in G starting

at time ¢; reaches v in time step t; + zA (and thus has duration 6(u,v,t;) = t; +2A —t; +1).

This is because Gs can be obtained from G by removing all empty snapshots.

The temporal graph G realizes D if, for all (u,v) with D(u,v) > 1, 6(u,v,t;) = Dy, for
at least one ¢; and 0(u,v,t;) > Dy, for all ¢;. The purpose of the value s,, that we have
enumerated is to give a value of ¢ with the property that §(u,v,t;) = D,,. We can then
formulate the following ILP with variables ¢1,%o,...,tr to check whether there exist values
of these variables such that G realizes D:

ti+2A—t;+1=Dy, Y(u,v) with Dy, > 1, 1= 8y, ¢(u,v,1) = (J,2)
ti+2zA—t;+1> Dy, Y(u,v) with Dy, > 1, Vi # sy, q(u, v,1) = (4, 2)

ty>1 (ILP)
tr <A

Note that there is no objective function as we only want to check feasibility, i.e., check
whether there exist values t1,...,tr that satisfy the constraints. The first two constraints

express that the earliest-arrival path from u to v starting in time step t;,  has duration

Suv
Dy, and the earliest-arrival paths from u to v starting in any other time step have duration
at least D,,. The last three constraints ensure that 1 < t¢; <ty < --- <ty < A. Thus, a
feasible solution of the ILP gives a periodic temporal graph that is a solution to the given
instance I of MULTI-LABEL PERIODIC TGR.

As the ILP has L < T variables, we can solve each such ILP instance in (log L)©(*) .
11190 C (log n)©¢m*) . |1|°M) time [16]. We solve the ILP once for each combination of a
sequence S of non-empty snapshots and an assignment of values s,, to all pairs (u,v) with

O(€n*) different ILPs. The resulting overall running-time is then

D, > 1. Thus, we solve n
nOEn®) |1 |, The claimed running-time follows because we can assume £ < n?. The
algorithm is correct because, if I is a yes-instance, one of the enumerated combinations of a
sequence of snapshots and an assignment of values s,, corresponds to a realization of D, and

for that combination a realization of D will be obtained from the solution of the ILP. <
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For the special case £ = 1 of MULTI-LABEL PERIODIC TGR, our FPT algorithm of
Theorem 9 has a running time of nO®?). |7 |O(1) and is a conceptually simpler FPT algorithm
for PERIODIC TGR than the FPT algorithm for n that is implied by the algorithm for
PERIODIC TGR parameterized by the feedback edge number of the underlying graph from [12].
The main advantage of our approach is that it extends to arbitrary ¢. Furthermore, our
approach also works for the non-periodic version.

» Corollary 10 (x). MULTI-LABEL TGR can be solved in n®“"") . |I11°M) time and n®™") .
|| time, where |I| denotes the encoding length of the instance.

4.2 Parameterization by the vertex cover number plus the period

In this section we give an FPT algorithm for MULTI-LABEL PERIODIC TGR parameterized
by ve + A. The key idea of our approach is to show that any given instance can be reduced
to one where the number of vertices in the independent set that have the same neighbors
can be bounded by a function of the parameter. It then suffices to apply the FPT algorithm
for parameter n to this reduced instance.

» Theorem 11. There is an FPT algorithm for MULTI-LABEL PERIODIC T'GR parameterized
by ve + A.

Recall that ¢ is upper bounded by A. Hence, to show Theorem 11, it is sufficient to
present an FPT algorithm for parameter vec + A + ¢. Let (¢, D, A) be the given instance of
MuLTi-LABEL PERIODIC TGR. Recall that vc denotes the size of a minimum vertex cover
of the underlying graph G = (V, E). Observe that the number of possible label sets assigned
to any particular edge e € E can be bounded by A’: Each of the up to ¢ labels assigned to
the edge is a value in [1, A], and combinations where fewer than ¢ labels are assigned to the
edge can be modeled as assigning the same label several times.

We call two vertices u,v € V distance twins if they have the same distance to every
vertex in V' \ {w,v} and to each other. This means that their rows in the distance matrix
D are identical, and their columns in D are identical, up to the obvious difference in the
intersection of their rows with their columns: D,, = 0, Dy, = Dy, and D,, = 0. Note that
the distance twin relation is an equivalence relation on V.

Let C be a vertex cover of G of size ve¢, and let I =V '\ C be the independent set that
is the complement of C. Partition I into neighborhood classes T = {I1, I, ..., I;} based on
adjacency to C, i.e., two vertices u,v € I are in the same class I; if and only if N(u) = N(v).
Note that, t < 2V°.

Consider one part I; of the partition Z. For each vertex u € I;, there are at most Avet
different ways of assigning label sets to the (at most vc) edges incident with u. For any
fixed labeling A of E, call two vertices u,v € I; label twins if for every vertex w € N(u),
A(uw) = A(vw). The label twin relation partitions the set I; into equivalence classes that we
call label classes. Note that there can be at most AV®* label classes for I e

Observe that all vertices u, v in a label class have the same distance to every vertex in
V' \ {u, v} and to each other. This means that, if A realizes D, then v and v must be distance
twins. The distance twin relation partitions I; into distance classes. If I; contains more than
Avet distance classes, the given instance is a no-instance, because at most Ave? different
distance classes can be realized by the at most Ave different label classes.

» Observation 12. If a neighborhood class contains more than AV’ distance classes, then
the considered instance is a trivial no-instance of MULTI-LABEL PERIODIC TGR.
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If I; contains at most AVt different distance classes, it suffices to keep 2AYe¢ of the
vertices in each such class, while any additional vertices of the class can be deleted (i.e., the
corresponding rows and columns of there vertices can be removed from D).

» Lemma 13 (). Let I; be a neighborhood class and let F' denote a distance class of I; of
size more than 2AV*. Then removing one vertex of F from G wyields an equivalent instance.

With this statement at hand, we are now able to present the algorithm for MULTI-LABEL
PerIODIC TGR.

Proof of Theorem 11. For each neighborhood class I; of Z and each distance class F' of I;
with |F| > 2AV¢?, remove |F| — 2AY¢* arbitrary vertices from F. Due to Lemma 13, this
yields an equivalent instance, where each distance class contains at most 2AVe¢ vertices.
If the resulting instance contains at most ve + 2¥¢ - 2A2V¢* vertices, the FPT algorithm is
obtained by applying the algorithm behind Theorem 9. Otherwise, if the resulting instance
contains more than ve +2¢-2A2V¢" vertices, there is a neighborhood class I ; such that I; has
more than AV®? distance classes. This is correct, since the new instance contains exactly vc
vertex cover vertices, at most 2V¢ neighborhood classes, and at most 2AY¢? vertices in each
distance class. Due to Observation 12, we can thus correctly output that the instance under
consideration is a trivial no-instance of MULTI-LABEL PERIODIC TGR. |

Recall that MULTI-LABEL PERIODIC TGR is NP-hard even if / = 1 and A = 3 [12]
and that Theorem 7 shows that MULTI-LABEL PERIODIC TGR is NP-hard even if £ =5
and vc = 1. Hence, neither of the considered parameters can be omitted to still obtain an FPT
algorithm for MULTI-LABEL PERIODIC TGR. Still, the question remains whether there is an
FPT algorithm parameterized by vc alone for the case £ = 1 (PERIODIC TGR), or if one can
replace A in the combined parameter by some potentially smaller parameter. In particular,
the parameterized complexity of MULTI-LABEL PERIODIC TGR when parameterized by vc +
dmax + £ is open.

4.3 Efficient algorithm for Multi-Label TGR on graphs with few paths

While we have shown MULTI-LABEL PERIODIC TGR to be NP-hard for any ¢ > 5 even if the
underlying graph is a star, we show in this section that MULTI-LABEL TGR can be solved
in polynomial time if the underlying graph is a tree and £ > n(n — 1) and D is finite-valued.
In fact, our result is more general and solves the problem in polynomial time whenever the
number of different u-v paths in the underlying graph can be bounded by a polynomial, for
each vertex pair (u,v).

As a subproblem we consider the problem PATH REALIZATION that is defined as follows:
Given a distance matrix D, a pair (u,v) with u # v, and a u-v path P = (ug = w, u1, ..., U, =
v) in the underlying graph, decide if one can assign one time label to each edge on P in such
a way that, in the temporal graph on P with those time labels, the u-v journey has duration
Dy, while any u;-u; journey with 0 <7 < j <r has duration at least D,,.,,. Here, we use
the convention that the duration of a u;-u; journey is oo if there is no u;-u; journey in the
temporal graph on P with the time labels assigned.

Intuitively, the purpose of solving PATH REALIZATION is to decide whether it is possible
to assign time labels to the edges of P in such a way that a u-v journey of duration D, is
realized while no «/-v’ journey that is too short (i.e., has duration strictly less than D)
is created. The key ingredient of the proof is the following lemma that shows that PATH
REALIZATION can be solved in polynomial time. For the main result of this section we only
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need to be able to solve PATH REALIZATION for finite-valued distance matrices, but since
our approach can also handle entries equal to co, we present the lemma for this more general
case.

» Lemma 14 (x). PATH REALIZATION can be solved in O(r?) time.

We say that the underlying graph G = (V, E) is p-path-diverse if the number of u-v paths in
G is bounded by p for each pair (u,v) of vertices in V.

» Theorem 15 (x). MULTI-LABEL TGR can be be solved in O(pn*) time if the underlying
graph is p-path-diverse and ¢ > n(n — 1) and D is finite-valued.

The maximum number of u-v paths for any vertex pair (u,v) can be bounded by n!,
so the running-time of the algorithm of Theorem 15 is bounded by O(n!-n*). Thus, the
algorithm is an FPT algorithm for MULTI-LABEL TGR parameterized by n that is simpler
and more efficient than that of Theorem 9 in Section 4.1, but only works for instances with
a finite-valued distance matrix and ¢ > n(n — 1).

As trees are 1-path-diverse and cycles are 2-path-diverse, we obtain the following corollary.

» Corollary 16. MULTI-LABEL TGR can be be solved in O(n*) time if the underlying graph
is a tree or a cycle, £ > n(n — 1), and D is finite-valued.

4.4 A polynomial kernel

In this section, we present a kernel for MULTI-LABEL PERIODIC TGR for the combined
parameter dpyax +nu, where nu := |[{v € V| N[v] # V'}| denotes the number of non-universal
vertices of the underlying graph. Note that nu is never larger than the number of entries
of D of value larger than 1, since for each non-edge {u,v} of G, Dy, > 1 and D,, > 1.
Hence, the kernel we present also implies a kernel for MULTI-LABEL PERIODIC TGR for the
parameter combination dpax + [{Duv | 4, v € V, Dy, > 1}. We also show that this kernel
transfers to MULTI-LABEL TGR for finite-valued distance matrices.

» Theorem 17 (x). MULTI-LABEL PERIODIC TGR admits a kernel of size O(min{¢ -
nu? - dipax, 108 - dinax }). More precisely, this kernel has O(nu? - dyax) vertices and a period
of O(min{l - nu? - dppax, nu® - diax }) and does not increase the value of .

Proof. Let I := (¢,D,A) be an instance of MULTI-LABEL PERIODIC TGR where dpax
denotes the largest non-infinite entry of D and where G = (V| E) is the underlying graph
implied by the distance matrix D. Moreover, let X denote the set of all vertices of G that
are not universal and let nu := |X]|.

If n € O(nu?), then D contains O(nu?) entries of size at most dpa.x each. Moreover,
due to Lemma 2, we can reduce A to O(¢ - nu? - diay) € O(nu® - diax ). This then implies
a polynomial kernel of the desired size. Hence, in the following, we assume that n > nu?.
Note that this implies that there is at least one universal vertex v* in G. Hence, for any
two vertices u and w of G distinct from v*, there is the path uv*w of length two in G.
Consequently if I is a yes-instance of PERIODIC TGR, the largest possible time that can be
realized between any two vertices of G is A + 1, since traversing the path uv*w takes time at
most A + 1. In other words, [ is a trivial no-instance of PERIODIC TGR if D contains an
entry larger than A + 1. In the following, we thus assume that dp.x < A+ 1. We distinguish
two cases.
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Case 1: A > 3dmax. We show in this case that I is a trivial yes-instance of MULTI-LABEL
PErIODIC TGR even when assigning only a single label to each edge. This proof is deferred
to the full version.

Case 2: A < 3dpax. Let Rx denote the set of directed pairs of vertices of X for which
the distance is not trivially realized, that is, Rx = {(u,v) € X x X | u # v, Dy, > 1}.
If G contains no more than nu? - dp,.x universal vertices, then n € O(nu? - dax) and the
polynomial kernel follows directly, since £ < A € O(dmax) and D contains O(nu?) entries of
value larger than 1. Otherwise, if G contains at least nu? - dy,.x universal vertices, we remove
an arbitrary set Z of universal vertices from G such that nu? - dyax universal vertices remain.
This then gives the kernel of desired size due to the above argumentation. In the full version,
we show that the so obtained instance I’ := (¢, D’, A) of MULTI-LABEL PERIODIC TGR is a
yes-instance if and only if I is a yes-instance of MULTI-LABEL PERIODIC TGR. <

Note that this implies the following polynomial kernel for PErIODIC TGR.

» Corollary 18. Prriopic TGR admits a polynomial kernel of size O(nu* - d2

max

). More
precisely, this kernel has O(nu? - dyay) vertices and a period of O(nu? - dpay ).

Moreover, we can derive the following result for MULTI-LABEL TGR on finite-valued
distance matrices.

» Corollary 19 (x). On finite-valued distance matrices, MULTI-LABEL TGR is FPT when
parameterized by nu and admits a kernel of size O(nu* + nu? - dyay). More precisely, this
kernel has O(nu?) vertices and does not increase the value of (.

5 Conclusion and open questions

In this paper, we have studied multi-label versions of the temporal realization problem
introduced by Klobas et al. [12] and presented various hardness results and FPT algorithms
for different parameters or parameter combinations. There are a number of interesting
directions for future work. While our hardness results exclude FPT algorithms for MULTI-
LaBEL PErIODIC TGR parameterized by the vertex cover number alone (unless P = NP),
the question whether such an FPT algorithm exists for PERIODIC TGR remains open. With

respect to the polynomial kernel of size O(nu* - d?

2 ax) that we have obtained, an interesting

question is whether a kernel whose size is a polynomial of nu alone exists. To answer
this question, one first has to analyze whether the problem admits a polynomial kernel for
parameter n alone. A question in relation to our FPT algorithms for parameter n is whether
the subproblem that we solve using ILP can be solved more efficiently using a combinatorial
algorithm.

Furthermore, it would be interesting to analyze the computational complexity of MULTI-
LABEL PERIODIC TGR on stars and trees for £ € {2,3,4}. Klobas et al. [12] have shown
that the problem on trees is polynomial for ¢ = 1, while we have shown that it is NP-hard
on stars for £ > 5, so the status for ¢ € {2, 3,4} is open for stars and trees.

For MuLTI-LABEL TGR, NP-hardness has so far only been shown in the case that the
distance matrix can have entries equal to co and ¢ = 1 [12]. It would be interesting to
analyze the complexity for finite-valued distance matrices and for ¢ > 1. For the problem
variant where a maximum allowed label L is specified as part of the input (i.e., a bound on
the lifetime of the temporal graph that can be built to realize D), our NP-hardness proofs
of Section 3 should translate. We expect that our FPT algorithms for parameter n and for
parameter vc + A (which then becomes ve + L) can also be adapted to that case even if the
distance matrix contains entries of value co.
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Given that we have shown that MULTI-LABEL PERIODIC TGR is NP-hard even if

dmax = 3 for every £ > 1, and that it can be solved in polynomial time if dy,a.x < 2 for all
£ > 2, it would be interesting to settle the complexity of the problem for £ =1 and dyax = 2.
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—— Abstract

In the field of distributed computing by robot swarms, the research comprehends manifold models

where robots operate in the Euclidean plane through a sequence of look-compute-move cycles. Models
under study differ for (%) the possibility of storing constant-size information, (%) the possibility
of communicating constant-size information, and (%) the synchronization mode. By varying
features (%,4i), we obtain the noted four base models: OBLOT (silent and oblivious robots), FST.A
(silent and finite-state robots), FCOM (oblivious and finite-communication robots), and LUMZT
(finite-state and finite-communication robots). Combining each base model with the three main
synchronization modes (fully synchronous, semi-synchronous, and asynchronous), we obtain the well-
known 12 models. Extensive research has studied their computational power, proving the hierarchical
relations between different models. However, only transparent robots have been considered.

In this work, we study the taxonomy of the 12 models considering collision-intolerant opaque
robots. We present six witness problems that prove the majority of the computational relations
between the 12 models. In particular, the last witness problem depicts a peculiar issue occurring in
the case of obstructed visibility and asynchrony.
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1 Introduction

In the far-ranging field of distributed computing, a significant area concerns computing by
mobile entities [16, 17], where tasks are required to be solved by multiple simple and limited
entities (also called robots) that can move in the environment. In this realm, manifold
theoretical models have been introduced to formalize realistic scenarios (e.g. sensor or drone
swarms, dynamic networks, software agents). One of the most studied is the look-compute-
move (LCM) model [16, 17], where robots, once activated, execute a cycle of three steps: they
look at the environment, they compute the next position executing a distributed algorithm,
and they move to the computed position.

Under the umbrella of the LCM macro-model, a vast combination of models has been
proposed to formalize different robot capabilities and to study how model settings affect
its computational power. In this respect, robots are assumed to possess very limited and
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restricted features, in order to find the minimal sets of capabilities which are required to
achieve a given task. Accordingly, robots are assumed to be autonomous, indistinguishable,
anonymous, and homogeneous: namely, they act without any central control, they cannot
distinguish themselves by external appearance or by ids, they possess the same features,
they execute the same algorithm in a decentralized way. Moreover, most of the literature
considers punctiform robots that cannot communicate with other robots (silent), without
any persistent memory (oblivious), without any agreement on a global coordinate system,
or chirality, or a unit measure (disoriented). Besides robot capabilities, different model
environments have been proposed to study diverse scenarios. The existing models can
be mainly divided into two groups: the models where robots act on the Fuclidean plane
[1, 14, 18, 23], and the models where robots act on discrete spaces (generally graphs, rings,
or lattices) [7, 9, 12, 24]. According to the synchronization, robots may adhere to different
modes (fair/unfair, synchronous/asynchronous, sequential...) [8]. In general, robots may
be synchronized (time is globally divided into rounds) or not. Specifically, three modes are
mainly studied in literature: the fully synchronous mode (FULLY), where all robots execute
each step of the LCM cycle synchronously in one round, the semi-synchronous mode (SEMI),
where at each round an arbitrary but nonempty subset of robots act synchronously, and the
asynchronous mode (ASYNCH), where robots act without any synchronization assumption.

The traditional problems studied for swarms of mobile entities include Pattern
Formation [1, 13, 14, 18, 26, 29, 30, 31|, Gathering [5, 7, 12, 15, 22|, Scattering [21, 25],
Flocking [4]. A common goal of the algorithmic investigation is to reduce the model capa-
bilities required to solve a given problem or to prove the impossibility of solving it under a
certain set of capabilities. This approach has led to describing the computational power of a
given model (i.e. the set of problems it can solve) and outlining the hierarchical relations
(dominance, equivalence, or orthogonality) among different models. In the last decade,
multiple works [2, 6, 9, 10, 11, 19] have inspected and compared the computational power of
different models which differ in robot features and synchronization mode. According to the
robot features, they have investigated how the communication and storage capabilities affect
the computational power of the robots. Starting from the classical model where robots are
both oblivious and silent (i.e. without any means of storage or communication), researchers
have investigated how the possession of a persistent memory or communication means changes
the power of such models. To characterize these extra properties, they proposed to add a
constant-size light to each robot which can assume a color chosen among a constant and fixed
set of colors. Such light is persistent (so the color is maintained until the next update), it
can be updated at the beginning of a move step, and it can be internally or externally visible.
Specifically, the literature focuses on four classes of robots: the OBLOT class, where robots
are assumed to be oblivious and silent, the FST A class, where each robot is embedded with
an internal light (visible just to the robot, thus providing a persistent memory), the FCOM
class, where each robot is embedded with an external light (visible just to the other robots,
thus providing communication means), and the LUMZ class, where each robot is embedded
with an external and internal light. According to the synchronization mode, each class has
been studied under the three settings: FULLY, SEMI, and ASYNCH.

Besides some trivial relations between a pair of models that only differ because the
first one enjoys a capability that the second one lacks, other model relations may not be
obvious to identify. This is especially true for models characterized by completely different
capabilities, so it may be difficult to understand which combination of capabilities is more
powerful. In these cases, the literature has attempted to illustrate some simulators to prove
the equivalence between models, or some witness problems to prove their strict dominance
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or orthogonality. Specifically, in [2, 6, 19, 20], the authors study the computational power
of transparent robots that can move on the Euclidean plane, assuming multiple robots can
occupy the same positions (multiplicity). In [9, 10, 11], the authors make the same effort but
for robots acting on graphs. In [3], the authors consider energy-constraint robots, i.e. robots
that necessitate an idle round to restore the needed energy to perform a new cycle.

Related works and our contributions. Our work is inspired by the papers [2, 6, 19, 20]
where the authors exhibit the complete taxonomy of the 12 models of robots that can freely
move on the Euclidean plane. Such models vary for the synchronization mode and for the
possibility to memorize and communicate. However they are assumed to be transparent, thus
always guaranteeing complete visibility for the swarm, and collision-tolerant, thus allowing
robots to occupy the same position at the same time.

In this paper, we investigate the computational power of opaque robots, i.e. robots that
cannot see beyond a collinear robot. Opaqueness introduces a remarkable difficulty in the
design of correct algorithms to solve some classical problems [1, 13, 14]. In fact, the obstructed
visibility leads to critical issues to be addressed in the algorithmic strategies: robots may
not be aware of the cardinality of the swarm, robots may not be aware if there are some
moving robots in the ASYNCH mode, robots may not know the complete topology of the
current configuration, robots may compute the next action based on partial information. As

a matter of fact, ad hoc techniques are needed to cope with this visibility limitation [27, 28].

Besides the opaqueness feature, our model differs from [2, 6, 19, 20] since robots do not
tolerate collisions (so we drop the multiplicity assumption). The reason behind this choice is
twofold, and it is coherent with the related literature [1, 13, 14, 27, 28]. Firstly, assuming
collision intolerance leads to the formalization and analysis of more realistic models, as does
assuming robot opaqueness. Secondly, dropping the multiplicity assumption is coherent
with the hypothesis of obstructed visibility in the case of collinearity. As a matter of fact,
a multiplicity of two robots forms a “degenerate” collinearity with any other robot of the
swarm, for which it would be unnatural to state the visibility relation in this special case. In
this respect, some witness problems introduced in [2, 20] cannot be applied under our model,
which needs a new study with specific witness problems.

In the first part of this work, we expose a preliminary study of the relations between
transparent and opaque models. Intuitively, a transparent model seems to computationally
dominate the same model but with opaque robots. In Section 3 we formally prove this strict
dominance: endowing a model with transparency increases its computational power, allowing
it to solve more problems. As a consequence, this result highlights that constant-size (internal
or external) lights are not always sufficient to compensate for robot obstructed visibility.

In the second part of this work (Section 4), we present six witness problems showing the
majority of the hierarchical relations among models of collision-intolerant opaque robots, thus
providing a first overview of their computational taxonomy. For the sake of space, all relations
proved in this work will be compactly shown in the theorems in Section 4 (i.e. without
splitting them in multiple corollaries). See Appendix A for the proofs of such theorems.

2 Preliminaries

2.1 Models

This work compares 12 robot models that differ in some features. We here introduce in detail
all the core features that such models share, and the variable features under study.
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Core features. We investigate swarms of autonomous computational mobile robots, which
act in the Euclidean plane R?. Robots are indistinguishable (they cannot be distinguished by
external appearance), anonymous (they are not provided with any id), homogeneous (they
execute the same algorithm), and punctiform entities. We consider opague robots so that in
the case of three collinear robots p, ¢, r, the endpoint robots p, r cannot see each other. We
assume robots are in the worst condition about orientation: they are completely disoriented
so that they do not share a global common coordinate system (i.e. no agreement on origin,
axis direction, chirality, or unit distance). Moreover, we assume that the local coordinate
system of any robot may change from one activation to another (variable disorientation).

All the robots in the swarm are provided with the same deterministic algorithm, which
is executed every time the robot is activated. At each time, a robot can be either idle or
active, according to the scheduler. When activated, a robot r executes a Look-Compute-Move
cycle: it takes the snapshot of its visible area (look), it executes the algorithm using the sole
snapshot as input (compute), and it travels along a straight trajectory towards the computed
destination (move). The snapshot of r contains all the positions (according to the coordinate
system of r) and, possibly, the external colors of the robots visible to 7: no other information
about the swarm can be perceived (e.g. whether robots are idle/active, still/moving, ...). If
the computed destination position is equal to the current one, r is said to perform a null
movement. After the mowve step, r becomes idle again. We consider rigid models, i.e. no
adversary can stop the motion of a robot!.

We deal with a collision-intolerant model meaning that it does not tolerate either
multiplicity (i.e. no robot can occupy the same location as another robot at the same time)
or overlapping trajectories (robots r and s have overlapping trajectories if (i) r is moving
from a to @/, (ii) s is moving from b to &', and (iii) the segments aa’ and bb’ have points in
common). We refer to both multiplicity and overlapping trajectories as collisions.

Variable features. Regarding the memory and communication features of robots, we consider
the four models mainly proposed in the literature. In the OBLOT model, robots are assumed
to be oblivious (i.e. they do not have any persistent memory to store data about past cycles)
and silent (i.e. they do not have any means to communicate with other robots). In the
FST A model, robots are provided with a persistent internal light which can assume a color
chosen from a constant-size set. Such internal light plays the role of a constant-size persistent
memory. In the FCOM model, robots are equipped with a persistent external light visible
only to other robots, which can assume a color chosen in a constant-size set of colors. Indeed,
external lights can be exploited by the swarm to communicate some messages to the visible
robots. Lastly, the LUMZ model gather the features of both FSTA and FCOM. This
model assumes luminous robots, which are equipped with a light that can be colored using a
constant-size set of colors. Such light is both visible to the robot itself (working as an internal
state) and visible to the other robots (working as an external communication means).
Regarding the activation and synchronization of robots, we consider the three modes
mainly studied in the literature. In the fully synchronous mode (FULLY), time is split into
atomic rounds, within which all robots are activated together and execute their LCM steps
completely synchronously. The semi-synchronous mode (SEMI) differs from FULLY just for
the fact that at each round an arbitrary but nonempty subset of robots is activated. In the
asynchronous mode (ASYNCH), every robot is activated independently from the others, and

! In (2, 6, 19, 20], the authors consider both rigid and non-rigid models. In the next model comparisons
(transparent vs opaque), we consider only rigid models.
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every cycle step lasts a finite but unpredictable amount of time. For the SEMI and ASYNCH
modes, robots do not know which are the activated robots at each instant. Moreover, we
always assume the fairness condition: for each time t and for each robot r, there exists a
time ¢’ > ¢ such that r is activated. This condition allows us to compute time complexity
considering the number of epochs, where an epoch is a minimal time frame within which
each robot is activated at least once. The selection of the subset of robots activated at every
time is made by an adversarial scheduler. Formally, let R = {r1,...,7,} be a swarm of
n robots, and let 7 be a time domain which can be discrete N>¢ (in FULLY and SEMI) or
continuous Rxq (in ASYNCH). An activation scheduling is a function S : T — 2R defining the
subset of the swarm that is activated at a specific time.

Notation. We use the notation x" to indicate a model for opaque robots that possess
all the above core features and that has X as communication-storage setting and Y as
synchronization mode, where X € {OBLOT,FSTA,FCOM,LUMTI} and Y € {F,S,A}
(FULLY, SEMI, ASYNCH, resp.). Consistently with the notation used in [2, 6, 19, 20], we indicate
with XY the same model as X but considering transparent robots which tolerate collisions.
We refer to these two classes of models as the opaque and transparent framework.

2.2 Problems

Robot swarms are distributed systems aimed at solving problems. Since in these models
robots can just move in the plane, the literature studies problems requiring a swarm to form
(a sequence of) geometric patterns, and/or to travel along specific trajectories. Formally, let
us assume a swarm of n robots R = {r1,...,r,} on the Euclidean plane. When no ambiguity

arises, we indicate with r; both the robot and the point on the plane where r; is located.

Given an absolute coordinate system Z on R?, we define the configuration of the swarm at
time t as the set C = {(x1,11),..., (¥n,ln)} where x; € R? is the position of 7; according to
Z, and [; is the light color of r;, at time ¢. In the OBLOT model, we always assume [; = off
for every r; € R. A configuration is valid if x; # x;, for each i # j. We define C as the set
of all the valid configurations for R. We say that a configuration C' guarantees complete
visibility if there are no collinearities among robots.

A problem P for a swarm of robots is defined? by a sequence (do, 0, @1, 71, - -+ s By T -+ - )
where each ¢; is a condition on the configuration of the swarm, and where 7; is a condition
on the intermediate configurations that the swarm is requested to fulfill while reaching a new

configuration where ¢;11 holds true. We call such sequence the request of the problem P.

The initial condition ¢y must include the clause stating that I; = off for every r; € R. Except
for this clause, since P might be solved without lights and under any synchronization mode,
¢;, 7, must not impose any conditions on light colors or the number of cycles, for each 1.
Starting from an initial configuration Cy for which ¢q is true, P is said to be solved
under a scheduling mode if, for each scheduling ¥ under the given mode, there exists an
algorithm A through which the swarm forms a sequence of configurations (Cy,...,Cpy,...)
such that ¢; holds in C; for each ¢ > 1, and such that 7;_; holds during the formation of C;
starting from C;_;. If the request of the problem is finite, the last condition 7, requires the
swarm to stay still after having satisfied the last condition ¢,, of the request. If ¥ works
on a time domain 7 € {N>o,R>¢}, we define the evolution of A w.r.t. ¥ and Cy as the
function € : T — C such that £(0) = Cp and E(t) is the configuration reached at time ¢ > 0

2 For our purposes.
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executing A according to the scheduling. Indeed, there must exist a sequence of time instants
0 <t <ty <-+ < tp... upon which the evolution of A both satisfies £(¢;) = C; and
guarantees the validity of the conditions 7; in the corresponding time intervals.

2.3 Computational relations

Given a model M, we indicate with P (M) the set of problems solved under M, i.e. the

computational power of M. Given two models M7, M5, we define the following relations:
M is computationally not less powerful than Ms, formally My > My, if P (My) 2 P (Ms),
i.e any problem solvable in M is solvable in Mj;
M is computationally more powerful than My, formally My > My, if P (M7) D P (Ms),
i.e any problem solvable in M, is solvable in M; and there exists a problem solvable in
M that is not solvable in Ms;
M is computationally orthogonal to Ma, formally My L My, if P (My)\ P (Mz) # () and
P (M) \ P (M) # B, i.e there exists a problem solvable in M; (Ma, resp.) that is not
solvable in My (M, resp.);
M is computationally equivalent to My, formally My = My, if P (My) =P (My), i.e My
and Ms solve the same set of problems.

The following relations trivially follow from the definitions of the models:

LUMTY > FSTAY > O0BLOTY and LUMTIY > FCOMY > OBLOTY
XF> x5 > x*t

where Y € {F,8,A} and X € {OBLOT ,FSTA, FCOM, LUMZT}. Indeed, the same rela-
tions hold in the opaque framework.

3 Transparent vs opaque robots

» Theorem 1. Let P be a problem solved in X" Then P is solved under XY .

Proof. Let A be an algorithm solving P under X" We can easily construct an algorithm A
solving P under XY . Given a robot r and given its snapshot as input ¢ of all the robots,
A computes A(c) := A(7) where 7 is the snapshot obtained by o removing all the robots
which would be hidden from r in case of opaqueness. A perfectly simulates A, thus correctly
solving P for transparent robots. |

» Corollary 2. For each'Y € {F,S,A} and X € {OBLOT ,FSTA, FCOM, LUMT},
X" < xY.

» Problem 1 (Line-Stretch). Let us consider an initial configuration where n > 3 robots
are equally spaced along the same line, say . Let d be the distance between two adjacent
robots. The problem asks the endpoint robots to move away from their adjacent robot and
stop in order to form a new distance d + % with them. They are allowed to travel only along
~. The other robots must stay still. See Figure 1.

Figure 1 Line-Stretch.
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» Lemma 3. Line-Stretch is solved under OBLOT™.

Proof. The problem is solved under the weakest model of the transparent framework. In
fact, the endpoint robots can compute and head to their destination since they can count all
the robots and at least two internal robots fix d. The final configuration is stable. |

» Lemma 4. Line-Stretch cannot be solved under £UMIF.

Proof. The problem cannot be solved under the strongest model of the opaque framework.
Since the n robots are always collinear by request and are provided with constant-size lights,
they cannot compute n either by sight or by using their lights to communicate/store the
cardinality of the swarm, and so the endpoint robots will never accomplish the task. In fact,
lights are inefficient for keeping a counter of the robots, due to their constant size. <

» Theorem 5. For each Y € {F,8,A} and X € {OBLOT ,FSTA, FCOM,LUMT},
X" < xY.

Proof. The result derives by combining Corollary 2 with Lemma 3 and Lemma 4. In fact, it
holds that Line-Stretch € P (XY) whereas Line-Stretch ¢ P (YY) for any X,Y. |

» Theorem 6. Let P be a problem solved by an algorithm A under XY always avoiding
collisions, such that P is defined for a swarm with fized cardinality, say k. If, given any
evolution of A, every robot can see k robots, then the problem can be solved even in X .

Proof. Since at any activation, each robot is aware it sees the whole swarm, it can compute
its next action by executing A. This computation results in the solution of the problem
considering opaque robots. |

4 Taxonomy of opaque models

We present our witness problems to prove some strict dominance (>) and orthogonality (L)
relations among opaque models. Thanks to Theorem 1 and Theorem 6, one of the witness
problems presented in [2] can be used to prove some hierarchical relations to hold in our
opaque framework too. However, other witness problems in [2, 20] are not compliant with
our collision-intolerant models; thus, we present specific problems that fit our assumptions.

4.1 Weakness of OBLOT

» Problem 2 (Triangle Round-Trip). Let C be a configuration where 3 robots are placed
so that two of them lay on the vertices of an equilateral triangle (let a be the empty vertex),
while the third robot lays on the triangle center. From C, the robot in the center has to
move to a, forming the new configuration C’. Then, robots have to form C again, where a is
again the empty vertex. See Table 1.

Triangle Round-Trip is a sub-case of the problem N-gon Round-Trip defined in [2] (see
Definition 1).

» Lemma 7. Triangle Round-Trip ¢ P ((’)BE(’)TF).

Proof. The problem has been shown to not belong to OBLOTT (see Lemma 3 in [2]). In
fact, using oblivious and silent robots, there is no way to identify the former empty vertex a
due to the full symmetry of C’. By the contrapositive of Theorem 1, the result holds. <«
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Table 1 Configurations in Triangle Round-Trip.
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» Lemma 8. Triangle Round-Trip € (77 (TTAA) nP (WA)>

Proof. The problem has been shown to be solved in FST.A* and FCOM"* (see Lemma,
4-5 in [2]). Since in this version of the problem the cardinality of the swarm is fixed and
the robots never create collinearities or collisions, we can apply T heorem 6 to state that
Triangle Round-Trip can be solved both in FSTA" and FCOM". <

» Theorem 9. Given the schedulers Y1 =F, Yo =8, Y3 = A, it holds

{Yj}JZi

FSTA" > OBLOT

FCOM' ' > OBLOT s>
CUMT" > OBLOT 717>,

4.2 Orthogonality between FST . A and FCOM

» Problem 3 (Flip-Flop-Flip). Let p, ¢ and r be three robots forming a strictly isosceles
triangle so that dist(p,r) = dist(q,r). Let v be the perpendicular bisector to the line segment
pq passing through the point b € pg. Let 4/ (7", resp.) be the semi-line of 7 starting from
b and which contains (does not contain, resp.) r. The problem requires r to perpetually
perform three subsequent actions (see Table 2), in an infinite loop: (%) r must reach a point
on 7"\ {b}; (¥i) r must reach a different point on " in order to move away from p, ¢; (iii) r
must reach a point on «'\ {b}. The problem requires r to never leave v and to never stop so
that p, ¢, r form an equilateral triangle. Robots p, ¢ must stay still.

Table 2 Configurations in Flip-Flop-Flip.

re re Pe
5" O¢--m-=== ‘ Y| A oe-- ‘ O : —————————— >0 o4
70 7@ q@
First Flip Flop Second Flip

» Lemma 10. Flip-Flop-Flip € (77 (WA) np (WF))

Proof. We solve the problem in these two models using three colors (flipl, flop and flip2),
assuming w.l.o.g. all robots start with the color flipl. The problem request guarantees that
each robot can recognize its role by geometric conditions. In fSTAA, r moves along -y
changing its internal color following the perpetual scheme (flipl — flop — flip2)>°, so that at
each activation, r knows which is the current action to be performed. The robots p,q do
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not need to change their colors. In the fC(’)MF model, all the robots synchronously update
their external colors following the above scheme, so that at each round each robot knows
what actions (color setting and move step) have to be accomplished. <

> Lemma 11. Flip-Flop-Flip ¢ (7? (W) uP (WS))

Proof. Flip-Flop-Flip cannot be solved under an OBLOT model since r would not have
any means to understand which movement it has to perform. Suppose by contradiction that
there exists an OBLOT algorithm A solving Flip-Flop-Flip. Let o be the snapshot taken
by r which makes A compute its first Flop action. Being in OBLOT, ¢ contains only the
positions of the three robots in the current local coordinate system of r. Let us now assume
that Flip-Flop-Flip starts from an initial configuration where the snapshot taken by r is
identical to ¢. Since A has no further information as input, its output is still a Flop, which
causes r to perform an erroneous action. Contradiction.

Flip-Flop-Flip cannot be solved under the FCOM"® model too. By contradiction,
suppose that the problem is solved by an algorithm A. Let S be a SEMI activation scheduling
under which A solves the problem. We show that there exists a SEMI activation scheduling S’
such that F1lip-Flop-F1lip is not solved by A. Let ¢ be the first round in S where r executes
the first Flip. Let S’ be a scheduling such that S’(t') = S(t'), V¢’ < t. Clearly, r executes its
first Flip at the ¢-th round under S’. Suppose that, in the (¢ + 1)-th activation round under
S’ r is the only one that gets activated, namely S’(¢ + 1) = {r}. Yet, r has no memory of
the previous activation rounds. As a consequence, r makes again a Flip. Contradiction. <«

LUMI" > FCOM', TUMI > FCOM ™",

» Theorem 12. F s F SA
LUMT > FCOM™, FCOM > FCOM .

» Problem 4 (Newcomer Introducing). Consider n + 2 robots, with n > 7. Let n robots
be placed on the same circle whose ray length is p. Let ¢ be a robot lying in the center of
the circle. Let s be a robot external to the circle so that s can see ¢. The problem requires
sequentially forming two configurations. First, s must travel along the line sc and stop on
the boundary of the circle. Second, ¢ must travel along the radius defined by s and stop in a
position ¢’ so that dist(s,d') = %p. All the other robots must stay still. See Table 3.

Table 3 Configurations in Newcomer Introducing.

(N (N e
° ,o"v °
. c : c , c 3
s@---- 0 ° ° s® ° ° s@®@ O<-® L]
) L )
e . @ e . @ e . @
First Configuration (a) Second Configuration (b) | Third Configuration (c)

» Lemma 13. Newcomer Introducing ¢ P (]:STAF).

Proof. The impossibility of solving the problem with just internal lights derives from the
fact that starting from the second configuration (see Table 3.b) ¢ has no way to recognize
which robot is s. Since s can be anywhere in the disposition of the n + 1 robots on the circle,
a constant set of colors would not be sufficient to store robot indices. <
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» Lemma 14. Newcomer Introducing € P (]:COMA),

Proof. We show a possible FCOM" algorithm solving Newcomer Introducing with two
colors: off and s. All the robots are initially set to color off. Each robot can determine its
role by the geometry of the configurations (¢ sees n > 7 robots equidistant from itself and an
external robot, s sees at least four robots forming a circle with a robot on its center, while
the other robots can see they lay on a circle with at least other n — 2 > 5 robots). When
s is activated, it sets its light to s and starts to move. This color is maintained also in its
next activations. When c is activated, if it sees a robot s on the circle, it can compute its
destination correctly. The last configuration is stable: no other robot will move. <

» Theorem 15. Given the schedulers Y1 =F, Yo =8, Y3 = A,

» Theorem 16. FSTAF’S’A 1L FCOMS’A,

4.3 Power of FULLY

» Problem 5 (Spinning). The problem is defined recursively, without any stop conditions.
Consider a configuration C' where n > 5 robots {rg, ..., ,—1} are located on a circle centered
in O. Let ag,...,a,—1 be the related positions of the robots such that it is possible to
establish a global clockwise direction (e.g. the one going from ag to ag, passing through a;).
Let o be the angle aoéal, which is the minimum angle in {aiéai_l'_l}ogién_l. The problem
requires the given configuration to form a new configuration C’ by rotating each r; from a;
to a; of an angle §, following the agreed clockwise direction. Robots are required only stop
on the target points lying on the circumference. Recursively, the problem demands the same

request starting from C’. See Table 4.

Table 4 Configurations in Spinning.
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» Lemma 17. Spinning € (P (W) nPp (W))

Proof. The problem is solvable in OBLOT ' : each robot always has complete visibility of
the swarm, so it is able to determine the rotation center and the rotation angle. The FULLY
mode guarantees that all the robots agree on the same rotation-angle, at each round.

The problem is solvable under ,CZ/I./\/IZA, by using these colors: off, a0, al, moving0,
movingl, m0, m1l, moving, moved, end. The algorithm solving the problem executes the
same sub-routine perpetually. This sub-routine implements a complete circle rotation of the
swarm. At the beginning of each circle rotation, all robots are off. In the first epoch, the
robots 7o and r; set their lights as a0 and al, respectively. After this setting, robot a0 (al,
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resp.) computes its destination position, sets its light to moving0 (movingl, resp.) and starts
moving. If a robot 7, which is not moving0 or movingl colored, sees a moving0Q or movingl
robot, r does nothing. When a moving0 (movingl, resp.) robot is activated, it just updates
its light to m0 (m1, resp.). Once the rotation angle through m0 and m1 has been fixed, the
other robots can start their rotation. If an off robot r sees both m0 and m1 on the circle,
it sets its light as moving and starts its rotation. When a moving robot is activated, it sets
its light to moved. When a robot sees only m0, m1, moved, or end robots, then it updates
its color to end. In the last phase of the sub-routine, if an end robot can see only end or
off robots, it resets its color to off. Once all robots are off, the circle rotation is ready to
restart. |

» Lemma 18. Spinning ¢ (73 (]:TTAS) uP (WS))

Proof. Spinning is not solvable under JF. STAS since an activated robot r cannot know what
movements other robots have already made, thus it cannot determine the rotation-angle.
Spinning is not solvable under FCOM". Suppose that, by contradiction, there exists
an algorithm A solving Spinning. In particular, the problem is solved under an activation
scheduler S. Let rg be the robot in position ag. Let t; be the activation time, under .S, of
the first round during which rg performs a non-null movement. Let S’ be another scheduling
such that S'(¢) := S(¢) Vt <t; and S'(t1) = S'(t1 + 1) := {ro}. If A is executed under S,
then the execution is the same as S until time ¢; — 1. At time ¢1, 79 behaves in the same way
as it did under scheduling S but, as no other robot has been activated, then there is no way
to keep track of the fact that ry has already moved. At time ¢ + 1, rg is activated again but
it cannot understand from geometric conditions that it must stay still. Contradiction. <«

> TheoreLn 19. . - sa
OBLOT > OBLOT ™", FSTA >FSTA™,

OBLOT L FCOM™, OBLOT LFSTA™

FCOM > FCOM™,

» Problem 6 (Angle-Shift). Consider an initial configuration with three robots forming an
acute and scalene triangle. Let a, b, ¢ be the three robots, where a is placed on the greatest
angle, say «, whereas c is placed on the smallest angle. Fixing a as the rotation center and
following the direction given by a, b, ¢, the problem requires b to rotate of a and ¢ to rotate
of m — a.. The robots are not allowed to stop anywhere else on the plane. Afterwards, the
robots must stay still. See Table 5.

Table 5 Angle-Shift.

C C
7 ’ 0 b
k ’ .
O .ﬁ
a b a b c a
Initial configuration. | Required movements. | Final configuration.

» Lemma 20. Angle-Shift € (73 (WF) \ P (WS))

Proof. Angle-Shift is solvable under any FULLY model: if b and ¢ perform their cycles at
the same time, then they correctly compute their target position. The final configuration is
stable since it always forms an obtuse triangle (terminal condition).
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Instead, the swarm can suffer from information loss in SEMI, making Angle-Shift
unsolvable even under EUMIS. In fact, suppose that in the initial configuration only b
is activated. After b’s movement, the three robots turn out to be collinear in the reached
configuration. As a result, ¢ has no means to recompute «, whether ¢ uses the geometry of the
configuration or uses constant-size lights. The same happens even if only c is activated. <«

» Theorem 21. ZUMZ > LUMZ ", OBLOT L LUMI"*, FSTA L LUMT™".

4.4 Opaqueness and asynchrony

We now introduce the Pseudo-Polygon problem which shows a peculiar issue occurring in
case of obstructed visibility and asynchrony.

» Definition 22. Given a reqular n-gon N, for any n > 4, a pseudo-polygon Q is a subset
of vertices of N, such that |Q| > % +1. We call N the associated polygon with respect to Q.

Given a pseudo-polygon Q, it is always possible to determine the associated polygon,
which is unique. In fact, as Q contains at least three vertices, the circumscribed circle is
univocally defined. Moreover, since Q contains more than half of the vertices of the associated
n-gon, there always exist at least two vertices that are adjacent in /. So, it is always possible
to univocally establish the associated polygon from a pseudo-polygon.

» Definition 23. A safe zone of a reqular polygon is the locus of all points x in the plane
such that:
x is external to the reqular polygon;
x is not aligned with any of the two vertices of the associated polygon;
x does not lie on the bisector of any edge of the associated polygon (equivalently, x is not
equally distanced from any two adjacent vertices);
if £ is the length of the edge of the polygon, then the distance between x and any vertex of
the polygon is at least .
Figure 2 depicts the (complement of the) safe zone of a square.

Figure 2 The safe zone of the square comprehends all the points not belonging to the blue-colored
(infinite) lines and zones.

» Problem 7 (Pseudo-Polygon). Let N be a regular n-gon with n > 6 vertices. Let Q be a
pseudo-polygon of m > & + 2 vertices, associated with A. Consider a swarm of m 41 robots,
where m robots lay on Q and let the last robot, w, lay in the safe zone of A/. Let a be the
farthest robot from w. Let b, ¢ be the first two found robots, starting from a and following
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both directions on the perimeter of the associated polygon, one per each direction taken.
Assume dist(b,w) > dist(c,w). The problem requires a to move away from b towards a point
x such that (i) z belongs to the safe zone of N, (i) x belongs to the halfplane delimited
by the line be that does not contain a, and (4i) x must not be on any line passing by the
position of w and any other robot on Q. Note that requests (%,7) are imposed in order to
have x visible by every robot. See Figure 3.

w e

Figure 3 The Pseudo-Polygon problem associated with an octagon.

» Lemma 24. Pseudo-Polygon ¢ P (.FST.AA).

Proof. Pseudo-Polygon cannot be solved in the ASYNCH mode, only using internal lights. Let
us consider the problem instance given by Figure 3 where the pseudo-polygon of the initial
configuration is composed of 5 + 3 vertices, with n = 8. Let us assume b is activated for the
first time during the movement of a, when a is hidden by ¢ (i.e. b, ¢, a are collinear). When b
looks at its snapshot, it recognizes a feasible initial configuration (it sees a pseudo-polygon
with 4 + 2 robots, and the robot w). According to this configuration, b erroneously elects
itself as the robot that has to move away from the pseudo-polygon. It has no means to
understand if a exists or not. On the other hand, a has no means to know if b has updated
its internal light to memorize it is not the elected robot to move. |

False election. The impossibility of solving Pseudo-Polygon in the asynchronous modes
with just internal lights derives from a critical issue that is typical of swarms with obstructed
visibility. This critical issue can be described as the false election phenomenon. Such
phenomenon can be informally described as follows: from a stable configuration, the given
problem requires the use of a leader election routine to elect the unique robot (the true
leader) which has to execute a non-null movement to reach the next configuration. All the
other robots have to stay still. In ASYNCH, a robot r executes its look step while the true
leader is moving and is hidden from r. However, r cannot deduce the presence of the true
leader from its snapshot. So, applying the same leader election routine, r elects itself as the
(false) leader, thus starting an unrequested movement.

The false election phenomenon must be examined when trying to transpose a SEMI
algorithm in ASYNCH. In particular, the use of lights must be considered as a possible method
to avoid false elections. As we have shown in Lemma 24 for Pseudo-Polygon, internal lights
are not sufficient to cope with them. Instead, the next lemma proves that external lights are
required (and sufficient) to correctly solve the Pseudo-Polygon problem in ASYNCH.

» Lemma 25. Pseudo-Polygon € (77 (W) npP (WA))
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Proof. Pseudo-Polygon is solvable in OBLOT" (i.e. in any synchronous model), since
complete visibility is guaranteed at any activation time and all the movements (null and non-
null) are univocally determined by geometric conditions. In fact, each robot can determine
Q, the watcher w, and the robot a (the farthest from w). The robot a can compute its final
destination and move there. If a robot is not the farthest from the watcher, or if it sees two
robots that are not part of the pseudo-polygon, then it stands still.

Pseudo-Polygon needs at least external lights to be solvable in the ASYNCH mode. We
show here an algorithm that needs 4 colors: off (default), on, a, b. In the first epoch, every
robot updates its color according to its role: robot a turns into a, robot b turns into b,
whereas the remainder turns into on. Afterward, let r» be an activated robot that sees no off
robots and that notes there is only one robot (the watcher) out of the pseudo-polygon. Let
V.. be the set of colors r can see.

if V. = {a,b,on}, r turns into on and stays still;

if V. = {a,on}, r turns into b and stays still;

if V. = {b,on}, and if r is the farthest robot from w, it turns into a and starts moving;

if V. = {on}, it means r is b and stays still (robot a is hidden).

If a robot r sees two robots not belonging to the pseudo-polygon, then r does not move (the
final configuration is already formed or is about to be formed). <

» Theorem 26. OBLOT > OBLOT, FSTA >FSTA, FSTA L OBLOT .

5 Relation map

Table 6 summarizes the results proved in this work, showing the relations (>, <, L, and =)
that hold between the pairs of models in our opaque framework. The map shows also which of
the six witness problems (TRT for Triangle Round-Trip, FFF for Flip-Flop-Flip, NWC for
Newcomer Introducing, SPIN for Spinning, ASH for Angle-Shift, PSE for Pseudo-Polygon)
have been used to prove such relations. For some pairs of models (gray cells), the knowledge
about what kind of relation holds is still now incomplete. E.g. between F. STA and FCOM'
two possible relations (< or L) can exist: so far we have built Newcomer Introducing as

witness problem proving that Newcomer Introducing € (P (fCOMF> \ P (fSTAF>).
To prove the orthogonality relation, we should find a witness problem B such that B €
(P (fSTAF) \ P (fCOMF)). Instead, to prove the strict dominance relation, we should

find that any problem in FST. A" can be solved also under FCOM . For the pairs of models
where the relation is unknown in the opaque framework, we have reported the relation

holding in the transparent framework in red.

6 Conclusions

We have investigated the computational power of the 12 models of collision-intolerant opaque
robots, thus presenting the taxonomy of the problems solved in such framework. We have
taken inspiration from [2, 6, 19, 20] where the authors provide the complete map of the
relations held by the same 12 models but considering collision-tolerant transparent robots.

Thus far, the relations proven here in our opaque framework are the same as in the
corresponding transparent framework. The natural question that arises from this observation
is whether the relation map of the opaque models is completely identical to the relation map
of the transparent models. To answer this question, future works should find the missing
relations among the twelve opaque models in order to obtain the complete hierarchy in the
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Table 6 Relation map.

| -

‘ LUMT ‘ FCOM ‘ FSTA ‘ OBLOT ‘ LUMT ‘ FCOM ‘ FSTA ‘ OBLOT ‘ LUMT ‘ FCOM ‘ FSTA ‘
ARFAT < < < < < < < < < < <
OBLOf TRT TRT TRT SPIN TRT TRT TRT PSE TRT TRT TRT
FSTA < <orl, < < 1 < i < 1 < €L
NWC NWC, SPIN TRT, SPIN NWC NWC, FFF PSE PSE, TRT NWC NWC, FFF
WA < < 1 1 < <or=s, < 1 >orl, L <
: FFF FFF FFF, NWC NWC, SPIN FFF FFF, NWC NWC, ER
1, < L L <or=, = >or L, > >orl, > >orl, >
IA < <orl, B 5 )
LM ASH ASH, ASH, NWC ASH, TRT Inlzie, NWC, TRT,
47,5 < < < < < < <
OBLO TRT TRT TRT SPIN TRT TRT TRT
—=aS < <orl, < < 1 < €1
FETA NWC NWC, SPIN TRT, SPIN NWC NWC, FFF
= A < < AL AL <
FCoM FFF FFF FFF, NWC SPIN, NWC FFF
T < <orl, < 1 1
T ASH ASH, ASH, NWC ASH, TRT
ARFAT < < <
OB£O7F TRT TRT TRT
G i < <orl,<
FSTA NWC NWC,
WF <or =, =

opaque framework. Among the others, it is worth mentioning the yet unknown relation
between LUMZ and ZUMZ . In the transparent framework, the two models were proven
to be computationally equivalent [6] through the design of a simulator which, with the help
of extra light colors, simulates any SEMI algorithm in the ASYNCH mode. This simulator
is not adequate to prove the same relation considering opaque robots, precisely because

of their obstructed visibility. With the Pseudo-Polygon problem, we have presented the
false election phenomenon whose formalization and investigation will be preparatory to
answer this interesting open question: is it possible to simulate a LUMZ algorithm in the
ASYNCH mode, thus proving that LUMT and LUMTZ" are two equivalent models also in
the opaque framework? Are constant-size lights sufficient to always avoid the phenomenon

of false elections? In addition, it would be necessary to formalize and study all the critical
issues caused by obstructed visibility: such formalizations may be essential for the correct
investigation of the missing relations.

In conclusion, further research directions could broaden the range of robot models to be
compared by considering non-rigid models and/or less popular synchronization modes (e.g.
sequential, round-robin, etc.).
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1<j<h

» Theorem 9. Given the schedulers Y1 =F, Yo =8, Y3 = A, it holds

FSTA" > OBLOT 1=
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FCOM' ' > OBLOT 1=
CUMT" > OBLOT 1=,

Proof. Triangle Round-Trip cannot be solved under oBLoT " (by Lemma 7) but it can
be solved under {FSTA, FCOM, LUMZ}*5F (by Lemma 8). Combining the results, we
obtain that OBLOT is strictly dominated by FST.A and FCOM for a given synchronization
mode Y; € {F,8,A}. The other strict dominances are derived by transitivity. <

» Theorem 12.

LUMT" > FCOM"

LUMT > Fcom*t
LUMT > FCOM™
FCOM > FCOM™.

A,SF

Proof. Flip-Flop-Flip is solved under FCOM' and LUMT (by Lemma 10) but it
cannot be solved under FCOM ™" (by Lemma 11). Combining the results, the strict
dominance relations follow. |

» Theorem 15. Given the schedulers Y1 =F, Yo =8, Y3 = A, it holds

CUMT" > FST A=

Proof. By Lemma 14, Newcomer Introducing is solved under LUMT ST, By Lemma 13,
———FS,A
Newcomer Introducing cannot be solved under FST.A = . Combining the results, the

strict dominance relations follow. |

» Theorem 16.

FSTA Y | Feom™.

Proof. By Lemma 10 and Lemma 11, F1ip-Flop-Flip is solved in FSTA** but not in

FCOM™. By Lemma 14 and Lemma 13, Newcomer Introducing is solved in FCoM™*
R — N

but not in FSTA ™. Combining the results, the orthogonality relations follow. |

» Theorem 19.

OBLOT > 0BLoT *

FSTA >FSTA™

FCOM' > FCoM™
OBLOT' L FCOM™
OBLOT L FSTA™

Proof. The above relations hold combining the previous lemmas and by transitivity:
the strict dominance of X' over X" derives from Lemma 17 and Lemma 18, for each X €
{OBLOT,FSTA, FCOM}. In fact, Spinning is solved in {OBLOT , FST A, FCOM}F
but it is not solved in {OBLOT , FSTA, FCOM }5*;
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the orthogonality between OBLOT" over FCOM ™ holds since Spinning is solved in
OBLOT ' but not in ]:COMS’A, and since Newcomer Introducing is solved in FCoM™*
but not in OBLOT (by Lemma 14, Lemma 13);

the orthogonality between OBLOT" over FSTA " holds since Spinning is solved in
OBLOT' but not in FST A", and since Triangle Round-Trip is solved in FSTA™
but not in OBLOT (by Lemma 8, Lemma 7). <

» Theorem 21.

LUMT > UMzt

OBLOT L umz*
FSTA L LUMT ™.

Proof. The above relations hold combining the previous lemmas and by transitivity:

the strict dominance of LUMZ over LUMZ " straightforwardly derives from Lemma 20.
In fact, Angle-Shift is solved in LUMT but it is not solved in EUMIS’A;

the orthogonality between OBLOT over LUMZ " holds since Angle-Shift is solved in
OBLOT' but not in /JUMIS’A, and since Triangle Round-Trip is solved in UMz
but not in OBLOT (by Lemma 8, Lemma 7);

the orthogonality between FSTA over LUMZ ™" holds since Angle-Shift is solved in
FSTA but not in LUMZ ", and since Newcomer Introducing is solved in UMz
but not in FSTA (by Lemma 14, Lemma 13). <

» Theorem 26.

OBLOT' > OBLOT"

FSTA® > FSTA
FSTA' L OBLOT .

Proof. The above relations hold combining the previous lemmas and by transitivity:
for each X € {OBLOT,FSTA}, x° strictly dominates X" since Pseudo-Polygon can
be solved in X° but not in X (by Lemma 25 and Lemma 24);
the orthogonality between FSTA" and OBLOT " holds since Pseudo-Polygon is solved
in OBLOT " but not in }"ST.AA, and since Triangle Round-Trip is solved in FSTA"
but not in OBLOT (by Lemma 8 and Lemma 7). <
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—— Abstract

In the arbitrary pattern formation problem, n autonomous, mobile robots must form an arbitrary

pattern P C R?. The (deterministic) robots are typically assumed to be indistinguishable, disoriented,
and unable to communicate. An important distinction is whether robots have memory and/or a
limited viewing range. Previous work managed to form P under a natural symmetry condition if
robots have no memory but an unlimited viewing range [23] or if robots have a limited viewing range
but memory [26]. In the latter case, P is only formed in a shrunk version that has constant diameter.

Without memory and with limited viewing range, forming arbitrary patterns remains an open
problem. We provide a partial solution by showing that P can be formed under the same symmetry
condition if the robots’ initial diameter is < 1. Our protocol partitions P into rotation-symmetric
components and exploits the initial mutual visibility to form one cluster per component. Using a
careful placement of the clusters and their robots, we show that a cluster can move in a coordinated
way through its component while “drawing” P by dropping one robot per pattern coordinate.

2012 ACM Subject Classification Theory of computation — Self-organization

Keywords and phrases Swarm Algorithm, Swarm Robots, Distributed Algorithm, Pattern Formation,
Limited Visibility, Oblivious

Digital Object Identifier 10.4230/LIPIcs.SAND.2024.14
Related Version Extended Version: https://arxiv.org/abs/2404.02771 [14]

Funding Jonas Harbig: This work was partially supported by the German Research Foundation(DFG)
under the project number ME 872/14-1.

1 Introduction

Swarm robotics considers many, simple autonomous robots that must coordinate to reach a
common goal. Applications include exploration and rescue missions in hazardous environments
(like the deep sea or space [15]), medicine (for precise surgery or drug injection [19]), or
biology (to model and understand the behavior of animal populations [21]). While the degree
of necessary cooperation varies between applications, a central aspect is almost always the
deployment of robots to a given set of coordinates.

Model & Problem. The mentioned deployment aspect motivates the arbitrary pattern
formation problem, where a swarm of n € N autonomous, mobile robots must form (in an
arbitrary rotation and translation) a pattern P C R? of |P| = n coordinates. We assume the
well-known OBLOT (OBLivious robOT) model [10] for (deterministic) point robots in R?
with the following characteristics: Robots are oblivious (have no memory), anonymous (have
no IDs), homogeneous (execute the same protocol), and identical (look the same). They are
also disoriented, such that each robot perceives its surroundings in its own, local coordinate
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