
A Universal In-Place Reconfiguration Algorithm for
Sliding Cube-Shaped Robots in a Quadratic
Number of Moves
Zachary Abel #

Massachusetts Institute of Technology, Cambridge, MA, USA

Hugo A. Akitaya #

University of Massachusetts Lowell, MA, USA

Scott Duke Kominers #

Harvard University, Cambridge, MA, USA
a16z crypto, New York, NY, USA

Matias Korman #

Siemens Electronic Design Automation, Wilsonville, OR, USA

Frederick Stock #

University of Massachusetts Lowell, MA, USA

Abstract

In the modular robot reconfiguration problem, we are given n cube-shaped modules (or robots) as
well as two configurations, i.e., placements of the n modules so that their union is face-connected.
The goal is to find a sequence of moves that reconfigures the modules from one configuration to the
other using “sliding moves,” in which a module slides over the face or edge of a neighboring module,
maintaining connectivity of the configuration at all times.

For many years it has been known that certain module configurations in this model require
at least Ω(n2) moves to reconfigure between them. In this paper, we introduce the first universal
reconfiguration algorithm – i.e., we show that any n-module configuration can reconfigure itself into
any specified n-module configuration using just sliding moves. Our algorithm achieves reconfiguration
in O(n2) moves, making it asymptotically tight. We also present a variation that reconfigures in-place,
it ensures that throughout the reconfiguration process, all modules, except for one, will be contained
in the union of the bounding boxes of the start and end configuration.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases modular reconfigurable robots, sliding cube model, reconfiguration

Digital Object Identifier 10.4230/LIPIcs.SoCG.2024.1

Related Version This paper extends and subsumes an earlier preprint by Abel and Kominers [1].
Full Version: https://arxiv.org/abs/0802.3414

Funding Scott Duke Kominers: Part of this work was conducted during the Simons Laufer Mathe-
matical Sciences Institute Fall 2023 program on the Mathematics and Computer Science of Market
and Mechanism Design, which was supported by the National Science Foundation under Grant No.
DMS-1928930 and by the Alfred P. Sloan Foundation under grant G-2021-16778.

Acknowledgements The authors would like to thank Maarten Löffler and for his contributions
during early discussions as well as the authors of [11] and the anonymous reviewers for their valuable
comments. Finally, we would like to thank Kevin Li and Colton Wolk for implementing preliminary
versions of the algorithms proposed in this paper.

© Zachary Abel, Hugo A. Akitaya, Scott Duke Kominers, Matias Korman, and
Frederick Stock;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Computational Geometry (SoCG 2024).
Editors: Wolfgang Mulzer and Jeff M. Phillips; Article No. 1; pp. 1:1–1:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zabel@mit.edu
mailto:hugo_akitaya@uml.edu
https://orcid.org/0000-0002-6827-2200
mailto:kominers@fas.harvard.edu
mailto:matias.korman@siemens.com
mailto:frederick_stock@student.uml.edu
https://doi.org/10.4230/LIPIcs.SoCG.2024.1
https://arxiv.org/abs/0802.3414
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 A Universal In-Place Reconfiguration Algorithm for Sliding Cube-Shaped Robots

1 Introduction

A modular self-reconfigurable robotic system is a set of robotic units (called modules) that
can communicate, attach, detach and move relative to each other; various models of such
robots have received considerable attention by the computational geometry community [1,
6, 7, 9, 8, 2, 14]. When analyzing a model of modular robots, the typical goal is to find a
universal reconfiguration algorithm defined as follows: A (reconfigurable robot) configuration
is an arrangement of modules in space that is required to be connected. A move is a local
rearrangement involving one module that transforms one configuration into another. During
a move, the set of stationary modules is also required to be connected (known as the single
backbone condition [9]).

We say that reconfiguration is universal if given any two configurations s and t, there is
always a series of moves that reconfigures s to t; an algorithm that computes this sequence
of moves is a universal reconfiguration algorithm. For many models of reconfigurable robots,
universal reconfiguration is impossible [2, 14], and furthermore, it is often NP or PSPACE-
complete to determine if one can even reconfigure between two configurations [3].

We consider the sliding (hyper-)cube model, in which each module is a (hyper-)cube, and
a configuration comprises a placement of the cubes into lattice-aligned positions so that the
interior of their union is connected. Two (d-dimensional hyper-)cubes are adjacent if they
share a face (i.e., a (d − 1)-dimensional facet). A module can slide along a face of an adjacent
module, either moving to be adjacent to a new module or rotating around a corner of a
module (see Figure 1). The free-space requirement for a move is the set of lattice positions
that are required to be empty for a move to be collision-free.

Figure 1 (Left) Slide Move and (right) Rotation Move.

This sliding cube model has attractive properties relative to other popular reconfigurable
robot systems. In the pivoting model, robots rotate around a shared edge instead of sliding
on a face [14]; this model requires more free space, making reconfiguration more difficult or
only possible in limited cases [2]. In the crystalline model [6], robots move via expansions
and contractions, and universal reconfiguration requires 2 × 2 × 2 meta-modules, small
sub-arrangements of modules which are treated as the atomic units. Furthermore, 2 × 2 × 2
crystalline meta-modules can simulate sliding moves and, thus, any reconfiguration algorithm
for the sliding cube model can also be used for the crystalline model [5].1

The problem of sliding cube reconfiguration is fairly well understood in two dimensions:
Dumitrescu and Pach [8] were the first to show a universal reconfiguration algorithm for n

modular sliding 2-cubes, using O(n2) moves. Moreno and Sacristán [13] adapted their result
to run in-place, i.e., at any time only one robot is outside the union of the bounding boxes
of the start and target configurations. Recently, Akitaya et al. [4] showed that finding the
shortest reconfiguration (in terms of number of moves) is NP-hard in 2D. They also improved
on Moreno and Sacristán’s algorithm by maintaining in-place property while simultaneously
making the algorithm input-sensitive. Effectively, they reduced the number of moves to
O(Pn) moves, where P is the maximum perimeter of the two bounding boxes.

1 The analogous statement is true for higher-dimensional systems.

Z. Abel, H. A. Akitaya, S. D. Kominers, M. Korman, and F. Stock 1:3

For three (and higher) dimensions, sliding cube configuration has also received significant
attention, yet not so much is known. The sliding cube model was first described by Fitch,
Butler, and Rus [10]. They proposed a simple universal reconfiguration strategy for a
configuration C of n modules: find a module m on the outer boundary of C that will not
break connectivity if removed, move m on top of a fixed extreme position on the boundary,
and repeat this operation n − 2 more times. The Fitch, Butler, and Rus approach would lead
to a reconfiguration algorithm that requires O(n2) moves. It is known that Ω(n2) moves are
sometimes necessary for reconfiguration in 3D (explicit construction shown in [12]), which
would make their algorithm optimal.

Critically, Fitch, Butler, and Rus [10] rely on the continuous existence of the desired
module m. However, Miltzow et al. [12] recently presented a configuration where no such
module exists. In other words, there are configurations of sliding cubes where no module on
the outer boundary of C can move without breaking connectivity – implying that a more
complex approach is necessary.

In 2008, Abel and Kominers announced a universal reconfiguration algorithm for di-
mensions 3 and higher in an arXiv preprint [1]. In essence, their algorithm requires O(n2)
moves to adaptively ensure that the condition of Fitch, Butler, and Rus [10] is satisfied,
which leads to an overall O(n3) algorithm. Their result was never formally published and
unfortunately, the analysis has some minor flaws.2 Parallel to our work, another group of
researchers announced a universal in-place reconfiguration algorithm for three and higher
dimensions [11]. Their algorithm is input-sensitive, and the number of moves is bounded by
the overall sum of coordinates of modules in both configurations (values that range from
Ω(n4/3) to O(n2)).

Contribution

After we present the key definitions and model framework in Section 2, Section 3 introduces
topological properties that are foundations of the algorithms presented in this paper. In
Section 4, we show that a slight modification of the Abel–Kominers [1] algorithm achieves
universal reconfiguration for the sliding (hyper-)cubes model. (In Section 4.1 we identify
and fix a small mistake in the Abel–Kominers [1] manuscript.) Moreover, by improving the
analysis (and with our minor corrections to the algorithm), we can reduce the required moves
to O(n2), making the algorithm optimal.

In Section 5, we modify the algorithm further to obtain a new in-place algorithm for sliding
cube reconfiguration; by in-place we mean during reconfiguration, moving modules stay
within O(1) distance of the union of the bounding boxes of the start and target configurations,
as in [13]. In addition, our algorithm is input-sensitive, similar to Akitaya et al.’s result [4].
A natural 3-dimensional extension of their O(Pn) algorithm would use O(V n) moves (V
being the volume of the configuration) but our algorithm requires fewer – the bound is closer
to O(Pn) than O(V n); a formal statement is in Section 5.

2 Preliminaries: The Sliding Cube Model

Let M be a set of n distinct d-dimensional hypercube modules. A labeled configuration of M

is an injective function from M to the set of unit cells in the d-dimensional hyper-cube lattice.
(Here, by a cell, we mean an axis-aligned unit cube with vertices on the integer grid.) The
image of a labeled configuration in the hypercubic lattice is called an unlabeled configuration.

2 Historical note: This document subsumes and further extends the results presented in the Abel–Kominers
preprint [1]. We acknowledge that a lot of time has passed since [1] was initially posted online, so in the
remainder of this document, we treat it as a separate document.

SoCG 2024

1:4 A Universal In-Place Reconfiguration Algorithm for Sliding Cube-Shaped Robots

For an unlabeled configuration C, we say that a lattice cell is occupied if it is in C; the
cell is empty otherwise. We sometimes abuse terminology by referring to the occupied cells
of C as simply the “cells of C.” We refer to the (d − 1)- and (d − 2)-dimensional facets a
lattice cell as faces and edges, respectively. Two cells are adjacent if they share a face.

Let GC be the graph whose vertices are the cells of C with edges connecting pairs of
cells that share one face. We say that C is connected if GC is connected. Note that a
connected configuration is a polyhypercube (a generalization of a polyomino to dimension d).
Although we focus on unlabeled configurations, for clarity we may refer to them by way of
their labeled counterparts, using language such as “move module m from cell a to cell b.”
We also sometimes abuse notation by referring to a cell by the module that occupies it in a
configuration, for example, saying that two modules are “adjacent” in a configuration if the
cells they occupy are adjacent, or using the notation “C \ {m}” to denote the configuration
obtained by subtracting from C the cell occupied by a module m.

Note that the complement C of C might be disconnected, and C has exactly one
unbounded component. Let ∂C denote the boundary of C and let the outer boundary of
C be the boundary of the unbounded component of C. Let Bout(C) be the set of modules
in C that have at least one face on the outer boundary. The faces of C in ∂C comprise
the boundary faces of C. We define the outer boundary of components of C in a symmetric
fashion; therefore, the boundary faces of the unbounded component of C are the same as the
boundary faces of C.

A move transforms a configuration C into a configuration C ′ that differs from C by the
position of a single module m; we refer to m as the moving module and say that the other
modules are stationary. Only certain types of moves are considered valid, as we specify next.
If for any starting configuration C and target configuration C ′ there is a sequence of valid
moves that can reconfigure C into C ′, then we say that the model is universal; an algorithm
that performs such reconfiguration on arbitrary input is likewise called universal.

We say that m is articulate in configuration C if the cell occupied by m is a cut vertex
of GC ; m is nonarticulate otherwise. We require the single backbone condition: for any
configuration C, all valid moves must result in a configuration C ′ with C ∩ C ′ connected;
that is, any valid move must leave the configuration of cells occupied by stationary modules
connected. The single backbone condition is equivalent to requiring that only nonarticulate
modules move.

In the sliding model, two types of moves are allowed: slides and rotations. These sliding
moves are as follows (refer to Figure 1, where the moving module m is shown in dark grey):

A slide moves m from a cell a to an adjacent empty cell b, and requires that there are
adjacent occupied cells a′ and b′ such that a is adjacent to a′ and b is adjacent to b′.
A rotation moves m from a cell a to an empty cell b where a and b share a common edge
e, and are both adjacent to an occupied cell c, and requires that the cell d /∈ {a, b, c} that
contains e is empty. Note that every edge e is incident to exactly 4 cells.

We now define a relationship called slide-adjacency on the boundary faces of C based
on sliding moves. Intuitively, this will allow us to argue about the possible positions that a
module m can occupy after performing a sequence of sliding moves on C \ m. We say that
a nonarticulate module m is attached at a face f if f is in the common boundary between
m and C \ {m}. We define a pair of boundary faces f and f ′ to be slide-adjacent if they
share an edge and, either (i) both are incident to an empty cell a (Figure 2(a)) or (ii) f is
incident to an empty cell a and f ′ is incident to an empty cell b, and if a module attaches to
f , it can move to b with a single sliding move (Figure 2(b)). Two boundary faces f and f ′

Z. Abel, H. A. Akitaya, S. D. Kominers, M. Korman, and F. Stock 1:5

could share an edge and yet a single sliding move cannot bring a module attached to f to
a position where it would be attached to f ′. This happens when an edge e is pinched, i.e.,
exactly two of the four cells containing e are occupied and not adjacent (Figure 2(c)).

f
f'

f f'

e
f

e f

f'

f'

Figure 2 Examples of slide adjacency. (Left) and (center), f and f ′ are slide-adjacent; (right)
shows how two faces f and f ′ can share an edge but not be slide-adjacent.

The slide-adjacency graph of C is the graph representing the slide-adjacency relations
on the boundary faces of C. Note that by definition, for every boundary face f and edge e

contained in f there is a unique boundary face f ′ that is slide-adjacent to f and shares e.

3 Reconfiguration Framework

In Section 4 we revisit the O(n3)-move universal reconfiguration algorithm of Abel and
Kominers [1] and modify it, showing that it actually performs O(n2) moves. Thus, we prove
the following main theorem:
▶ Theorem 1. Given any two connected unlabeled configurations C and C ′ each having
n ≥ 2 modules, there exists a reconfiguration of C into C ′ using O(n2) sliding moves.

Similar to the approach of Dimitrescu and Pach [8], we prove our main result by showing
that any configuration can be reconfigured into a straight chain of modules, called the
canonical configuration. This suffices to prove the result, as it follows that any configuration C

can be reconfigured into this canonical straight position, and may then be reconfigured into
any other configuration C ′. Note that the straight configuration may easily be relocated and
reoriented in space by rotations and slides. Indeed, in Section 5, we modify the reconfiguration
algorithm to be in-place by placing the modules in a more compact form. However, before
we can prove Theorem 1 in Section 4, we need several additional definitions and lemmata
presented here.

3.1 Structural Properties
In this section, we show some structural properties that are the basis for our algorithms. For
ease of description, our figures focus on the case where d = 3, but we note that our results
are topological and thus extend to higher dimensions. Our analysis ignores the dependency
of the dimension in the number of moves (alternatively, it considers that the dimension d is
constant).

We also note that the properties listed below assume neither the start nor the end
configuration fit in a 2-dimensional plane. Thus, we assume neither configuration fits in a
subspace of smaller dimension. If only one configuration fits in a 2-dimensional subspace
we virtually perform a single rotation to move a module outside the 2-dimensional space.
We use the modified configuration as the initial/target for our algorithm and then undo the
move as the first or last step. If both configurations lie in the 2D subspace, we can use a
known two-dimensional reconfiguration algorithm (such as [4]).

It is known that any connected graph G on n ≥ 2 vertices contains at least two distinct
non-cut vertices; it follows immediately that any connected configuration C on n ≥ 2 modules
contains at least two non-articulate modules.

SoCG 2024

1:6 A Universal In-Place Reconfiguration Algorithm for Sliding Cube-Shaped Robots

Figure 3 Lemma 2: removing x (black) disconnects y (dark gray) from the boundary Bout(C).
(Two views are presented.)

▶ Lemma 2. Suppose x ∈ Bout(C) is an articulate module, and further suppose that x is
adjacent to a module y (along face f of x) such that the connected component of C \ {x}
containing y is disjoint from Bout(C). Without loss of generality, y is the bottom neighbor
of x. Then, as pictured in Figure 3:
1. The face fop of x opposite f is on the outer boundary of C;
2. any module w ̸= y adjacent to x is in a component of C \ {x} not disjoint from Bout(C);

and
3. x is adjacent to at least one such module w ̸= y.
4. Moreover, if a cell horizontally adjacent to x is empty, then the cell directly above it is

occupied by a module in Bout(C).

Proof. Suppose part (1) is false, meaning fop is not on the outer boundary of C. Module x
has some face g on the outer boundary, which is neither f nor fop. Such a g is edge-adjacent
to f . Let p be the empty cell adjacent to x at g, and let q be the cell not containing x
adjacent to both p and y. Since g is on the outer boundary, p is empty. But since y is
not in Bout(C), q must contain a module mq. However, this means y is adjacent to mq,
and mq ∈ Bout(C). This contradicts the assumption that the component of y in C \ {x} is
disjoint from Bout(C), thus proving part (1).

Now suppose w ̸= y is adjacent to x along face h. Let r be the cell adjacent to x at
fop, and let t be the cell adjacent to r and w not containing x. If t is empty, then clearly
w ∈ Bout(C). Otherwise, the module mt in cell t is adjacent to r (which is empty), so
mt ∈ Bout(C). In either case, w is in a component of C \ {x} not disjoint from Bout(C),
hence part (2) holds.

Third, since x is articulate in C, x has degree at least 2, so it is adjacent to at least one
module w ̸= y, proving part (3).

Finally, let e be a cell horizontally adjacent to a face fe of x. Assume e is empty. Then
let e+ be the cell above e. Now suppose part (4) is false and e+ is empty as well. Then, fe

must be adjacent to fop, as all faces of x except the one it shares with y are adjacent to
fop. As e and e+ are both empty, fe and fop are slide-adjacent – and hence fe is also on
the outer boundary of C. However, fe is also slide-adjacent, along its bottom edge, to some
face of y or a face of some neighbor z of y. In the former case, we have y ∈ Bout(C) which
contradicts that y is disjoint from Bout(C). In the latter case, we have z ∈ Bout(C) and,
since z is adjacent to y, the component of C \ {x} containing y is not disjoint from Bout(C),
another contradiction. Thus, we have part (4). ◀

▶ Definition 3. For a configuration C of n modules, a module m on Bout(C) is said to
be nearly non-articulate if C \ {m} has exactly two connected components, one of which is
disjoint from Bout(C).

Z. Abel, H. A. Akitaya, S. D. Kominers, M. Korman, and F. Stock 1:7

Our algorithm works by moving non-articulate modules on the boundary of C and
repeatedly stacking them on some module s. Therefore, we prove that we indeed can
find some module m ̸= s on the boundary that either is non-articulate or can be made
non-articulate.

▶ Lemma 4. For any configuration C of n ≥ 2 modules and a module s ∈ Bout(C), there is a
module m ∈ Bout(C) with m ̸= s such that m is either non-articulate or nearly non-articulate
in C.

Proof. As observed at the start of Section 3.1, C contains at least two non-articulate
modules; hence, C has at least one non-articulate module m1 ̸= s. If m1 ∈ Bout(C), then no
further argument is required. Otherwise, suppose we have a set Mi−1 = {m1, . . . , mi−1} ⊆
C \ Bout(C) such that for each j with 1 ≤ j < i, the module mj is non-articulate in
C \ {m1, . . . , mj−1}. Then C \ Mi−1 is connected, so as before, C \ Mi−1 contains at least
one non-articulate module mi ̸= s. Set Mi = Mi−1 ∪ {mi}.

For some minimal t > 1, the module mt found in this way must be in Bout(C), as there
are only finitely many modules in C. If mt is a non-articulate module of C, then we have the
desired result. Otherwise, by the connectivity of C \ Mt, all of Bout(C) \ {mt} lies in a single
connected component of C \{mt}, so mt must have a neighboring cell not in Bout(C). Hence,
mt must be adjacent to mi for some 1 ≤ i < t. By Lemma 2 with x = mt, all modules not
in the component of mi in C \ {mt} are in the component containing Bout(C) \ {mt} (recall
that Bout(C) is in a single component), thus removing mt leaves exactly two components
one of which is disjoint from Bout(C). Hence, mt is nearly non-articulate, as required. ◀

▶ Definition 5. A set F of cell faces is closed if every edge of a face in F is incident to an
even number of faces in F .

We now show the converse result.

▶ Lemma 6. Every compact set of cell faces F is the boundary of a bounded set of cells.

Proof. Let c be a cell and −→rc be the vertical upwards ray from the center of c. We refer to
the parity of c as the parity of the number of faces in F that −→rc intersects. Let PF be the
set of all cells c with odd parity. Let D be the symmetric difference between ∂PF and F

(viewing ∂PF as a set of faces). Notice that D is closed since both ∂PF and F are. We claim
that D has no faces parallel to the xy-plane. For the sake of seeking a contradiction, assume
face f ∈ D is horizontal. If f ∈ F , then it is incident to two cells c1 and c2 with different
parity. Then exactly one of the two is in PF and f ∈ ∂PF , a contradiction. Similarly, f

cannot be in ∂PF .
We now claim that D is empty. For contradiction, let f be a highest face in D. Recall

that f must not be parallel to the xy-plane. Let e be the top edge of f . By the choice of
f , e is not incident to a face in D above it, and D has no horizontal faces. Then, D is not
closed, a contradiction. We conclude that ∂PF = F .

It remains to show that PF is bounded. We show that PF is contained in the bounding
box of F . For contradiction, let c ∈ PF be a cell below the bounding box. Let p be the
shortest path of adjacent cells connecting c to a cell c′ which is not below the bounding box
of F . Since c′ has even parity, c′ /∈ PF , and p must have crossed a face f on the boundary
of PF . But f /∈ F since it lies below the bounding box. This is a contradiction because
∂PF = F , as proven before. ◀

SoCG 2024

1:8 A Universal In-Place Reconfiguration Algorithm for Sliding Cube-Shaped Robots

▶ Lemma 7. Let C be a connected configuration with a connected complement (where the
connectedness of the complement is defined as in Section 2). Then, the slide-adjacency graph
of C is connected.

Proof. Let B be a component of the slide-adjacency graph of C. By the definition of
slide-adjacency, V (B) is closed, where V (B) represents the vertices of B, i.e., a subset of
boundary faces of C. Let PB be the set of cells described by Lemma 6, with ∂PB = V (B).
We first claim that PB ⊆ C. For contradiction, let c be a cell in PB \ C. Then c ∈ C and
C ⊆ PB because there are no boundary faces between adjacent cells in C. Then PB is
unbounded, a contradiction.

We now observe that no cells in PB are adjacent to cells in C – as otherwise, the face
between a pair of such cells would be in the boundary of PB ⊆ ∂C, a contradiction. We then
conclude that PB = P , because P is connected. Thus, B is the entire slide-adjacency graph
of C. ◀

In the following, we show that once a module reaches the outer boundary, it can reach
any other position in the outer boundary without leaving it.

▶ Corollary 8. Let C be a connected configuration. The subgraph of the slide-adjacency graph
of C induced by the faces of the outer boundary of C is connected.

During the execution of our algorithm, we need paths that a module can travel along
while avoiding a particular face. The following result allows us to reroute a path in the
slide-adjacency graph.

f f
f

f
f

Figure 4 For a face f , with four neighbors f↑, f→, f↓, and f←, there are four cycles – one per
vertex v – which visit f and its two neighbors that are adjacent to v.

▶ Lemma 9. Given a face f with two faces f1 and f2 which are slide-adjacent to f there
exists a path from f1 to f2 in the slide-adjacency graph which does not use f . Moreover, such
a path has length O(1) for any fixed dimension d.

The following is the primary technical tool that allows us to show that we can “free” a
module on the boundary of any given configuration.

▶ Lemma 10. Given a configuration C of n ≥ 2 modules and a module s ∈ Bout(C), it is pos-
sible to reconfigure C to a configuration C ′, keeping Bout(C) fixed during the reconfiguration,
so that C ′ has a non-articulate module x ̸= s in Bout(C ′) = Bout(C).

Proof. We induct on n, the number of modules in C. When n = 2, both modules are
non-articulate and must be in Bout(C), so this is trivially true even without reconfiguration.
For the general case, we may find by Lemma 4 a module x ∈ Bout(C) \ {s} which is either
non-articulate or nearly non-articulate in C.

In the former case, C = C ′, x is the chosen module and we are done.
In the latter case, x is nearly non-articulate therefore C \{x} has exactly two components,

the “outer” component O and the “inner” component I; specifically, I is the component
disjoint from Bout(C), and O = C \ (I ∪ {x}). By Lemma 2(2), there is a unique module

Z. Abel, H. A. Akitaya, S. D. Kominers, M. Korman, and F. Stock 1:9

y ∈ I adjacent to x. By Lemma 2(3), there is a module w /∈ I adjacent to x, and by
Lemma 2(2) w cannot be opposite from y. So, let c be the cell adjacent to y and w not
containing x. Cell c must be empty since w /∈ I. Let f be the face of y adjacent to cell c; it
is clear that f is on the outer boundary of I (this is a direct consequence of Lemma 2).

Thus, since I has fewer modules than C, the inductive hypothesis shows that we may
reconfigure I to I ′ without moving Bout(I) and then find a non-articulate module m ∈ Bout(I ′)
that is distinct from y. It is then enough to show that we can move m to a position where it
is adjacent to both O and I, making x non-articulate. To do that, we find a path on the
outer boundary of I ′ \ {m} to f . If m can indeed move along this path, then it can reach
f and, by its definition, we are done. Else, its movement is obstructed either by x or by a
module in O. We show that, at such position, m becomes adjacent to both O and I ′. In
order to prevent a collision between m and x, we make sure that the path that m follows
does not contain the face fxy shared by x and y. Note that I ′ \ {m} is connected, and that
by Corollary 8, its outer boundary is connected in the slide-adjacency graph. Let fm be a
face to which m is attached, and note that fm is on the outer boundary of I ′ \ {m}. We
can then find a path from fm to f . If such a path uses fxy we use Lemma 9 to obtain the
required path. We note that the fact that such path does not contain fxy is not enough to
guarantee that the movement of m does not intersect x.

It remains to show that when m cannot move along the computed path m already
connects I ′ and O. Any two adjacent faces g, g′ on the path are connected at either a 90◦

solid dihedral angle (as in Figure 1(c)), a 180◦ angle (as in Figure 1(a)), or a 270◦ angle.
Assume that m is attached to g. If g, g′ form a 270◦ dihedral angle, then m is already
attached to g′. If g, g′ form a 180◦ dihedral angle, m can perform a slide to attach to
g′. If that position is occupied by a module in O then O and I ′ are already adjacent, a
contradiction. If that position is occupied by x then either g′ = fxy (contradicting the
definition of the path) or g′ is a vertical face which would imply that x has a neighbor in
I ′ different than y (contradicting Lemma 2(2)). If g, g′ form a 90◦ dihedral angle, m can
perform a rotation unless the edge shared by g and g′ is pinched due to a module not in I ′.
If it is pinched due to a module in O, then m is already adjacent to such a module. Similarly,
if it is pinched due to x, then by Lemma 2(4) m is already adjacent to a module in O. ◀

3.2 Reconfiguring into a Canonical Configuration
Using the results from above, we show any configuration C can be reconfigured into a
straight chain (a canonical configuration), proving the first part of Theorem 1. That is, any
configuration C can be reconfigured into another configuration C ′. This result will be the
basis of our algorithm that is presented in Section 4.

▶ Lemma 11. Any configuration C can be reconfigured into a straight chain of modules (a
canonical configuration).

Proof. Let s ∈ Bout(C) be a module with maximal x1-coordinate, and let f be the face
of s in the positive x1-direction. Initially, denote C0 = C and Z0 = ∅. We will iterate,
maintaining the following invariants: After step i − 1 (1 ≤ i ≤ n − 1), s has not moved,
and the configuration has the form Ci−1 ∪ Zi−1, where Zi−1 is a straight chain of i − 1
modules emanating from face f of s in the positive x1 direction, Ci−1 is connected, and
s ∈ Bout(Ci−1).

By Lemma 10, we may reconfigure Ci−1 to C ′
i−1 while keeping Bout(Ci−1) fixed in such

a way that there is a module x ∈ Bout(C ′
i−1) different from s that is non-articulate in C ′

i−1.
This implies that x is non-articulate in C ′

i−1 ∪ Zi−1. By Corollary 8, the subgraph of the

SoCG 2024

1:10 A Universal In-Place Reconfiguration Algorithm for Sliding Cube-Shaped Robots

slide adjacency graph induced by the outer boundary of C ′
i−1 ∪ zi−1 is connected so we may

move x along the boundary of C ′
i−1 ∪ Zi−1 \ {x} so that it extends the chain Zi−1. Let Zi

be this new chain of length i, and let Ci be C ′
i−1 \ {x}. These clearly satisfy the required

invariants.
After stage n − 1, the reconfiguration is complete. ◀

4 LocateAndFree-based Algorithm

The proof given in Section 3.2 gives rise to a simple algorithm to reconfigure an n-module
configuration C into a straight chain. Here we present this algorithm (Algorithm 2) and
prove its correctness. We first require a recursive method that, given a configuration C and
a module s ∈ Bout(C) (along with a particular face of s on the outer boundary), modifies
C and returns a module x according to Lemma 10. We assume that each module m has
previously been assigned a attribute PostOrder(m) which sorts the modules of C in the
order of finishing times of a depth-first search in GC beginning at s.

See Algorithm 1, which converts Lemma 10 to a routine LocateAndFree. Most of
Algorithm 1 follows Lemma 10 directly. To prove Algorithm 1 correct, we must address the
comments in lines 3 and 9.

Algorithm 1 Locate a module x ∈ Bout(C) satisfying Lemma 10, and reconfigure the interior of
C to render x non-articulate. Assumes PostOrder attributes in C have been set.

1: LocateAndFree(C, s) :=
2: Locate all faces in the outer boundary of C by DFS from s. We obtain Bout(C).
3: Choose x ∈ Bout(C) with smallest PostOrder. {x is (nearly) non-articulate}
4: Compute all modules in the component O of C \ {x} containing s by DFS.
5: if O contains all neighbors of x then
6: return x.
7: else
8: Let y be the neighbor of x in the other component I := C \ (O ∪ {x}).
9: Let m = LocateAndFree(I, y). {Use existing PostOrder labels.}

10: Move m to connect O and I as in Lemma 10, locating its path by DFS across the
outer boundary of C \ {m}.

11: return x.
12: end if
13: end LocateAndFree

First, we must show that the module x ∈ Bout(C) with minimal PostOrder is non-
articulate or nearly non-articulate. If x is articulate in C, then a path from s to any module
t ̸∈ O must pass through x, meaning

PostOrder(t) ≤ PostOrder(x).

This means t cannot be in Bout(C), by the minimality of PostOrder(x). Thus, any
connected component of C \ {x} not containing s is disjoint from Bout(C), so Lemma 2
applies, proving that x is indeed nearly non-articulate.

We must also prove that the attribute PostOrder sorts the modules of I in a post-order
from y. By choice of x, the original depth-first tree restricted to I must itself be a valid
depth-first tree of I rooted at y, and thus the PostOrder field is correctly sorted, as needed.

Z. Abel, H. A. Akitaya, S. D. Kominers, M. Korman, and F. Stock 1:11

Now we present Algorithm 2, which rearranges C into a straight chain, using Algorithm 1
as a subroutine. The proof of correctness of Algorithm 2 follows directly from the results in
Section 3.2.

Algorithm 2 Reconfigure C into a straight chain {s} ∪ Zn−1.

1: Fix a module s ∈ C with maximal x1-coordinate.
2: Set C0 = C and Z0 = ∅.
3: for 1 ≤ i < n do
4: Set the PostOrder fields with a depth-first search rooted at s.
5: Define x := LocateAndFree(Ci−1, s).
6: By depth-first search across the outer boundary faces of Ci−1 ∪ Zi−1 \ {x}, move x to

extend Zi−1. Define Ci := Ci−1 \ {x} and Zi = Zi−1 ∪ {x}.
7: end for

4.1 Algorithm Analysis
We first briefly comment on the analysis from [1]: Each of the n − 1 iterations of Algorithm 2
may in principle make O(n) recursive calls to LocateAndFree. In each recursive call, m
moves O(n) times; thus, the overall number of moves is O(n3). Relative to [1], we are more
careful in how we define the path in the proof of Lemma 10. In [1], Abel and Kominers use a
similar induction on C, taking the interior component I of C, and reconfiguring it into I ′;
they then define their path on the outer boundary of I ′. The Abel and Kominers [1] analysis
gave no proof of connectivity of the outer boundary of I ′. Additionally x /∈ I ′, so the face
fyx that y shared with x is on the boundary of I ′ even though it is actually inaccessible as x
is attached to fyx, so this path would need to avoid collision with x. Finally, since the path
is defined on the outer boundary of I and not I ′ \ {m}, it would be possible that the path
found uses a face adjacent to the initial position of m, which no longer exists as m is the
mobile module, hence the path needs to avoid m’s initial position as well. The latter two
issues were also unaddressed in [1].

We now present an improved analysis of the algorithm, addressing the connectivity issue
along the way. We show that although LocateAndFree may recursively call itself O(n)
times, it only uses O(n) moves over the entire execution of the algorithm. Therefore we can
use LocateAndFree to make a single module on the boundary non-articulate with O(n)
moves. For this, we need to assume that the path computed in Lemma 10 is the shortest
path from fm to f while avoiding fxy – this can be computed with breadth-first search after
deleting fxy from the slide adjacency graph of I ′ \ {m}.

▶ Lemma 12. LocateAndFree(C, s), with all its recursive calls, executes O(|I|) moves in
any fixed dimension, where |I| is the number of modules in the configuration I as defined in
Algorithm 1.

Proof. We use induction on the number of recursive calls. If LocateAndFree(C, s) does
not make any recursive call, then no move is performed. We consider the recursive call
LocateAndFree(I, y) in line 9 of Algorithm 1. Let O1, I1, x1 = m and m1 play the
role of O, I, x and m for the recursive call, respectively. Thus O1 ∪ I1 ∪ {m} = I. By
inductive hypothesis, LocateAndFree(I, y) performs O(|I1|) moves, transforming I into
a configuration I ′ with the same number of modules. It indeed only changes I1 into I ′

1,
maintaining O1 by construction. It is then enough to show that m moves at most O(|O1|)
times. The general structure of O, I, O1, I1, . . . are depicted in Figure 5.

SoCG 2024

1:12 A Universal In-Place Reconfiguration Algorithm for Sliding Cube-Shaped Robots

O

I

I1

x
y

m
y1

s

O1

Figure 5 Oi and Ii are connected by one module; Oi+1 and Ii+1 are a subset of Ii.

Recall that m moves on the outer boundary of I ′ \ {m}. Thus it moves on the outer
boundary of O1 ∪ I ′

1. By choice of x1 = m, f lies on the boundary of O1. By Lemma 2(3),
if |I1| ≠ 0, m is adjacent to a module in Bout(O1) of which one face is fm. Without
loss of generality, assume the top face of m is on the outer boundary of I ′. Note that
Bout(I ′) = Bout(O1 ∪ {m} ∪ I ′

1) = Bout(O1 ∪ {m}), i.e., I ′
1 is completely “inside”, only

getting exposed when we delete m. Thus, the four faces that are slide-adjacent to the top
face of m are the only faces of ∂O1 that are slide-adjacent to faces of ∂I ′

1 in the outer
boundary of O1 ∪ I ′

1. Note that fm is slide adjacent through its top edge to at least one of
these four faces. The path taken by m might use faces of I ′

1 but it eventually enters O1 for
the last time to reach f , thus passing through one of these four faces. By Lemma 9, the
distance between these four faces is O(d). Thus, the path uses O(d) faces of I ′

1, and the path
length is O(|O1|) given constant dimension. ◀

5 Bounded-Space Algorithm

LocateAndFree can be used to design a different reconfiguration algorithm with two
significant properties. First, the algorithm is in-place – during the whole reconfiguration
process, stationary modules will be contained in the bounding box of the union of the
start and end configuration (plus possibly a small O(1) margin). Second, the algorithm is
input-sensitive – the number of moves needed is bounded by the number of modules n and
the volume of the start and end configurations.

Due to size constraints, a description of the algorithm has been omitted but can be found
in the full version of this paper (https://arxiv.org/abs/0802.3414). The general idea is
to use LocateAndFree to free a number of modules, which build a “scaffolding” around
the configuration, making it easy to compact into a parallelogram, which is the new canonical
configuration.

Let B be the bounding box of the union of the start and end configurations with
dimensions xM × yM × zM . By translation and coordinate reflection, we can assume that
one of the corners of B is the origin and that its opposite corner is (xM , yM , zM). Moreover,
by renaming the axis, we can also assume that 2 ≤ xM ≤ yM ≤ zM . With these definitions,
we can state the Bounded-Space algorithm:

▶ Theorem 13. Given any two connected unlabeled configurations C and C ′ each having n ≥ 2
modules, there exists an in-place reconfiguration of C into C ′ using O(n ·min{n, xM yM +zM })
sliding moves.

https://arxiv.org/abs/0802.3414

Z. Abel, H. A. Akitaya, S. D. Kominers, M. Korman, and F. Stock 1:13

6 Conclusions and Future Work

The algorithms presented in this paper raise our understanding of the 3D (and higher) sliding
cube configuration problem to a level comparable to the 2D counterpart. Although our
algorithms are optimal from several points of view (maximum required number of moves,
workspace size and input-sensitiveness), several issues remain open:

Due to the practical constraints of physical robots it is desirable for these algorithms to
run in a distributed fashion using mostly local information. Although LocateAndFree
transforms connectivity questions into relatively cheap postorder count comparisons,
currently this information cannot be easily updated after a module has been freed. Can
the update be somehow localized?
The key property for LocateAndFree is Lemma 2. Since the result is topological, it
applies to any dimension d > 2. Although it would not make much sense to extend
the results to higher dimensions, it would be interesting to explore if there are other
meaningful module shapes for which the same lemma (possibly with minor variations)
applies.
The current Bounded-Space algorithm compares n to xM yM and either uses one slab
or none (see Appendix). This leads to a serial algorithm, it would be interesting to
modify the algorithm to be parallelizable – say, construct c equally spaced slabs (for some
c = c(n, xM yM , zM)), and have each one be responsible for a fraction of the domain. This
would not impact the total number of moves but would reduce the makespan required to
execute them.
As stated in Section 1, sliding cube algorithms can be applied to the crystalline model via
2 × 2 × 2 meta-modules (sub-arrangements of modules that are treated as atomic units).
Are there meta-modules for other models of modular robots that emulate sliding cubes
and can therefore use our algorithms for universal configuration?
Akitaya et al. [4] proved it was NP-hard to compute the shortest reconfiguration sequence
in the 2D sliding square model. Can their result be extended to higher dimensions?

References
1 Zachary Abel and Scott D. Kominers. Universal reconfiguration of (hyper-)cubic robots. arXiv

preprint, 2008. arXiv:0802.3414v3.
2 Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmović, Robin

Flatland, Matias Korman, Belen Palop, Irene Parada, André van Renssen Renssen, and Vera
Sacristán. Universal reconfiguration of facet-connected modular robots by pivots: The O(1)
Musketeers. Algorithmica, 83:1316–1351, 2021. doi:10.1007/s00453-020-00784-6.

3 Hugo A. Akitaya, Erik D. Demaine, Andrei Gonczi, Dylan H. Hendrickson, Adam Hesterberg,
Matias Korman, Oliver Korten, Jayson Lynch, Irene Parada, and Vera Sacristán. Characterizing
universal reconfigurability of modular pivoting robots. In Kevin Buchin and Éric Colin de
Verdière, editors, Proceedings of the 37th International Symposium on Computational Geometry
(SoCG 2021), volume 189 of Leibniz International Proceedings in Informatics (LIPIcs), pages
10:1–10:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.SoCG.2021.10.

4 Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada, Willem
Sonke, Bettina Speckmann, Ryuhei Uehara, and Jules Wulms. Compacting squares: Input-
sensitive in-place reconfiguration of sliding squares. In Artur Czumaj and Qin Xin, editors,
Proceedings of the 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT
2022), volume 227 of Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–
4:19, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.SWAT.2022.4.

SoCG 2024

https://arxiv.org/abs/0802.3414v3
https://doi.org/10.1007/s00453-020-00784-6
https://doi.org/10.4230/LIPIcs.SoCG.2021.10
https://doi.org/10.4230/LIPIcs.SWAT.2022.4
https://doi.org/10.4230/LIPIcs.SWAT.2022.4

1:14 A Universal In-Place Reconfiguration Algorithm for Sliding Cube-Shaped Robots

5 Greg Aloupis, Sébastien Collette, Mirela Damian, Erik D Demaine, Dania El-Khechen,
Robin Flatland, Stefan Langerman, Joseph O’Rourke, Val Pinciu, Suneeta Ramaswami,
Vera Sacristán, and Stefanie Wuhrer. Realistic reconfiguration of crystalline (and telecube)
robots. In Algorithmic Foundation of Robotics VIII: Selected Contributions of the Eight
International Workshop on the Algorithmic Foundations of Robotics, pages 433–447. Springer,
2009. doi:10.1007/978-3-642-00312-7_27.

6 Greg Aloupis, Sébastien Collette, Mirela Damian, Erik D Demaine, Robin Flatland, Stefan
Langerman, Joseph O’Rourke, Suneeta Ramaswami, Vera Sacristán, and Stefanie Wuhrer.
Linear reconfiguration of cube-style modular robots. Computational Geometry, 42(6-7):652–663,
2009. doi:10.1016/j.comgeo.2008.11.003.

7 Greg Aloupis, Sébastien Collette, Erik D. Demaine, Stefan Langerman, Vera Sacristán,
and Stefanie Wuhrer. Reconfiguration of cube-style modular robots using o(log n) parallel
moves. In Proceedings of Algorithms and Computation: 19th International Symposium,
ISAAC 2008, Gold Coast, Australia, December 15-17, 2008, pages 342–353. Springer, 2008.
doi:10.1007/978-3-540-92182-0_32.

8 Adrian Dumitrescu and János Pach. Pushing squares around. Graphs and Combinatorics,
22(1):37–50, 2006. doi:10.1007/s00373-005-0640-1.

9 Adrian Dumitrescu, Ichiro Suzuki, and Masafumi Yamashita. Motion planning for metamorphic
systems: Feasibility, decidability, and distributed reconfiguration. IEEE Transactions on
Robotics and Automation, 20(3):409–418, 2004. doi:10.1109/TRA.2004.824936.

10 Robert Fitch, Zack Butler, and Daniela Rus. Reconfiguration planning for heterogeneous
self-reconfiguring robots. In Proceedings of the 2003 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2003), volume 3, pages 2460–2467. IEEE, 2003.
doi:10.1109/IROS.2003.1249239.

11 Irina Kostitsyna, Tim Ophelders, Irene Parada, Tom Peters, Willem Sonke, and Bettina
Speckmann. Optimal in-place compaction of sliding cubes. arXiv preprint, 2024. arXiv:
2312.15096.

12 Tillmann Miltzow, Irene Parada, Willem Sonke, Bettina Speckmann, and Jules Wulms.
Hiding sliding cubes: Why reconfiguring modular robots is not easy (media exposition). In
Proceedings of the 36th International Symposium on Computational Geometry (SoCG 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.SoCG.2020.78.

13 Joel Moreno and Vera Sacristán. Reconfiguring sliding squares in-place by flooding. In
Proceedings of the 36th European Workshop on Computational Geometry (EuroCG’20), 2020.
Art. 32.

14 Cynthia Sung, James Bern, John Romanishin, and Daniela Rus. Reconfiguration planning for
pivoting cube modular robots. In Proceedings of the 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 1933–1940. IEEE, 2015. doi:10.1109/ICRA.2015.
7139451.

https://doi.org/10.1007/978-3-642-00312-7_27
https://doi.org/10.1016/j.comgeo.2008.11.003
https://doi.org/10.1007/978-3-540-92182-0_32
https://doi.org/10.1007/s00373-005-0640-1
https://doi.org/10.1109/TRA.2004.824936
https://doi.org/10.1109/IROS.2003.1249239
https://arxiv.org/abs/2312.15096
https://arxiv.org/abs/2312.15096
https://doi.org/10.4230/LIPIcs.SoCG.2020.78
https://doi.org/10.1109/ICRA.2015.7139451
https://doi.org/10.1109/ICRA.2015.7139451

	1 Introduction
	2 Preliminaries: The Sliding Cube Model
	3 Reconfiguration Framework
	3.1 Structural Properties
	3.2 Reconfiguring into a Canonical Configuration

	4 LocateAndFree-based Algorithm
	4.1 Algorithm Analysis

	5 Bounded-Space Algorithm
	6 Conclusions and Future Work

