
Discrete Fréchet Distance Oracles
Boris Aronov #

Department of Computer Science and Engineering, Tandon School of Engineering,
New York University, Brooklyn, NY, USA

Tsuri Farhana #

Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Matthew J. Katz #

Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Indu Ramesh #

Department of Computer Science and Engineering, Tandon School of Engineering,
New York University, Brooklyn, NY, USA

Abstract
It is unlikely that the discrete Fréchet distance between two curves of length n can be computed in
strictly subquadratic time. We thus consider the setting where one of the curves, P , is known in
advance. In particular, we wish to construct data structures (distance oracles) of near-linear size
that support efficient distance queries with respect to P in sublinear time. Since there is evidence
that this is impossible for query curves of length Θ(nα), for any α > 0, we focus on query curves of
(small) constant length, for which we are able to devise distance oracles with the desired bounds.

We extend our tools to handle subcurves of the given curve, and even arbitrary vertex-to-vertex
subcurves of a given geometric tree. That is, we construct an oracle that can quickly compute the
distance between a short polygonal path (the query) and a path in the preprocessed tree between
two query-specified vertices. Moreover, we define a new family of geometric graphs, t-local graphs
(which strictly contains the family of geometric spanners with constant stretch), for which a similar
oracle exists: we can preprocess a graph G in the family, so that, given a query segment and a pair
u, v of vertices in G, one can quickly compute the smallest discrete Fréchet distance between the
segment and any (u, v)-path in G. The answer is exact, if t = 1, and approximate if t > 1.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases discrete Fréchet distance, distance oracle, heavy-path decomposition, t-local
graphs

Digital Object Identifier 10.4230/LIPIcs.SoCG.2024.10

Related Version Full Version: https://arxiv.org/abs/2404.04065 [3]

Funding Boris Aronov: Work partially supported by NSF Grant CCF-20-08551. Part of the work
was done while visiting Institute of Science and Technology Austria.
Tsuri Farhana: Work partially supported by the Lynne and William Frankel Center for Computer
Science and by BSF Grant 2019715.
Matthew J. Katz: Work partially supported by Grant 2019715/CCF-20-08551 from the US-Israel
Binational Science Foundation/US National Science Foundation.
Indu Ramesh: Work supported by a Tandon School of Engineering Fellowship and by NSF Grant
CCF-20-08551.

Acknowledgements We would like to thank an anonymous reviewer of an earlier version of this
paper for a suggested improvement.

© Boris Aronov, Tsuri Farhana, Matthew J. Katz, and Indu Ramesh;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Computational Geometry (SoCG 2024).
Editors: Wolfgang Mulzer and Jeff M. Phillips; Article No. 10; pp. 10:1–10:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:boris.aronov@nyu.edu
https://orcid.org/0000-0003-3110-4702
mailto:tsurif@post.bgu.ac.il
mailto:matya@cs.bgu.ac.il
https://orcid.org/0000-0002-0672-729X
mailto:ir914@nyu.edu
https://orcid.org/0009-0008-9967-0819
https://doi.org/10.4230/LIPIcs.SoCG.2024.10
https://arxiv.org/abs/2404.04065
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Discrete Fréchet Distance Oracles

1 Introduction

The continuous Fréchet distance is often used as a measure of similarity between curves [2].
The discrete Fréchet distance [12] is sometimes viewed as a simplified version of the (continu-
ous) Fréchet distance, but it is also the preferred version in some application domains, such
as protein alignment (see, e.g., [19]).

Let A = (a1, . . . , am) and B = (b1, . . . , bn) be two sequences of points in Rd representing
polygonal curves. A (monotone) walk of A and B is a sequence of pairs (c1, . . . , cl), where
(i) c1 = (a1, b1), (ii) cl = (am, bn), and (iii) the pair succeeding ck = (ai, bj), for 1 ≤ k < l,
is one of the following: ck+1 = (ai+1, bj) (when i < m), ck+1 = (ai, bj+1) (when j < n), or
ck+1 = (ai+1, bj+1) (when i < m and j < n). Each pair ck = (ai, bj) in a walk (c1, . . . , cl) of A

and B yields a distance ∥ai − bj∥, and the cost of the walk is the maximum of these distances.
The discrete Fréchet distance between A and B, denoted ddF(A, B), is the minimum over
the cost of all walks of A and B.

The discrete Fréchet distance between A and B can be computed in roughly O(mn)
time [1, 12]. It is unlikely that it can be computed exactly, or even approximated within
a factor less than 3, in strictly subquadratic time [4, 6, 7]. It is therefore natural to ask
whether one can do better when, e.g., one of the curves is given in advance. Indeed, let G be
a geometric graph, that is, G’s vertices correspond to points in the plane, and the weight
of an edge of G is the Euclidean distance between the points represented by its vertices.
Denote the set of paths from u to v in G, where u and v are vertices of G, by PG(u, v).
(If G is a tree, then PG(u, v) = {Πuv}, where Πuv is the unique path in G from u to v.)
The discrete Fréchet distance between a polygonal curve Q and G (with respect to u and v)
is minΠ∈PG(u,v) ddF(Q, Π), and we denote this distance by ddF(Q, PG(u, v)). Now, assume
that we are expecting a stream of polygonal curves Q1, Q2, . . ., each with a corresponding
pair (ui, vi) of vertices of G, and for each arriving Qi we need to compute the distance
ddF(Qi, PG(ui, vi)). We thus wish to construct a compact data structure based on G, so that
given a query curve Q and two vertices u and v of G, one can compute ddF(Q, PG(u, v))
efficiently. In other words, we wish to construct a distance oracle for G.

To construct such a data structure, we focus on the case where the curves Qi are of
constant size, i.e., consist of a constant number of vertices (at the other extreme, when
queries have size Θ(nα), for α > 0, it may be impossible to gain anything by polynomial-time
preprocessing [5, 15]). In this case, the challenge is to construct a near-linear size data
structure such that given a curve Q, one can compute ddF(Q, PG(u, v)) in sublinear time. We
identify several rather general settings where this is possible. Specifically, if G is a tree with
n nodes, we can process query curves of size up to three in O(polylog n) time and curves of
size four in O∗(n1/2) time; the O∗(·) notation hides subpolynomial factors. (We get slightly
better bounds for the special case where the tree is actually a polygonal curve.) Moreover,
we define a class of geometric graphs, called 1-local graphs, which includes the Delaunay
graph, for which we can answer segment queries in O∗(n1/2) time.

Our results. We first formally state the main problem studied in this paper.

▶ Problem (Distance Oracle). Let G be a geometric graph. Construct a compact data
structure such that, given a query polygonal curve Q of length (i.e., number of vertices) k

and two vertices u and v of G, one can quickly compute ddF(Q, PG(u, v)).

We assume that the sets of points underlying G and Q are in the plane, and we focus on
the case where k is a small constant, often between two and four. We consider three main
versions of the problem, depending on the graph G.

B. Aronov, T. Farhana, M. J. Katz, and I. Ramesh 10:3

Table 1 Distance oracles for curves. Decision problem answers questions of the form: “given
Q and r, is ddF(P, Q) ≤ r?” Optimization problem computes the discrete Fréchet distance. We
also offer a variant where at query time one can restrict the query to an arbitrary vertex-to-vertex
subcurve of P .

size of Q decision problem optimization problem
k for P for subcurve of P for P for subcurve of P

1 O(log n) O(log2 n) O(log n) O(log2 n)
2 O(log2 n) O(log2 n) O(log2 n) O(log2 n)
3 O(log2 n) O(log2 n) O(log3 n) O(log3 n)
4 O∗(n1/2) O∗(n1/2) O∗(n1/2) O∗(n1/2)

(i) G is a polygonal curve P of length n. This is the most basic version of the problem; we
summarize the results in Table 1. We state running times for both decision and optimization
algorithms, depending on the number k of vertices in the query curve. For k = 2 (i.e., directed
segments) and for k = 3 (i.e., three-vertex curves), we construct data structures of size
O(n log n), so that ddF(P, Q) can be computed in O(log3 n) time, see Sections 4.1 and 4.2,
respectively. The description of the data structure of size O∗(n) for k = 4 (i.e., four-
vertex curves), so that ddF(P, Q) can be computed in O∗(n1/2) time is deferred to the full
version of the paper [3, Section 4.3]. In each of these cases, one can restrict the query to a
vertex-to-vertex subcurve of P , specified at query time.

The case where the query curves are line segments was studied by Buchin et al. [8] for the
continuous (rather than discrete) Fréchet distance. They presented an O(nκ3+ε + n2)-size
data structure, where κ ∈ [1, n] is a parameter set by the user and ε > 0 is an arbitrarily
small constant, such that given a query segment ab one can compute the Fréchet distance
between ab and P in O((n/κ) log2 n) time (alternatively, between ab and a point-to-point
subcurve of P , specified at query time, in O((n/κ) log2 n + log4 n) time). Thus, to achieve
polylogarithmic query time, they need a data structure of size roughly O(n4), in contrast to
O(n log n) for the discrete Fréchet distance (see Sections 4.1–4.2).

It is not surprising that the bound on the size of the data structure that we obtain in the
case of segment queries is much better than the bound of Buchin et al. [8]. On the other
hand, it is somewhat surprising that one can obtain a polylogarithmic bound (for queries of
up to three vertices) and a sublinear bound (for four-vertex queries), using near-linear space
(see Table 1).

Our results for the curve version are relatively technical and we defer them to Section 4.
They form the basis for the following, more general version.

(ii) G is a tree T with n nodes. The main idea is to decompose T into heavy paths [18] and
use the aforementioned curve oracles. We show in Section 2 that one can construct discrete
Fréchet distance oracles for a tree with n vertices with query times O(log3 n), O(log3 n),
O(log4 n), and O∗(

√
n) for query sizes one, two, three, and four, respectively, where the

structures require O(n log n) space for query sizes up to three and O∗(n) for query size four.

(iii) G is a local graph with n vertices and m edges. Let t ≥ 1 be a real parameter. We
say that G is t-local if the following condition holds: For any disk D and for any two points
p, q ∈ P ∩ D (where P is the point set underlying G), there exists a path in G between p

and q that does not exit tD, where tD is the disk obtained from D by scaling it by a factor
of t around its center, that is, p and q are connected in the subgraph of G that is induced by
the set P ∩ tD. We say that a graph is local if it is t-local for some constant t ≥ 1.

SoCG 2024

10:4 Discrete Fréchet Distance Oracles

In Section 3, we first show that the class of local graphs strictly contains the class of
geometric spanners. Next, we show that any 1-local graph contains the Delaunay triangulation
(which itself is 1-local). We construct an O∗(n + m)-size distance oracle for a given 1-local
graph (and in particular an O∗(n)-size oracle for the Delaunay triangulation), which handles
a segment query in O∗(n1/2) time. When t > 1, the oracle returns an approximation of the
requested distance which depends on t.

More related work. We restrict our discussion of related work to distance oracles. In
general, most of the related work deals with the continuous (rather than discrete) Fréchet
distance, and with the construction of approximate oracles that return an approximation of
the requested distance (rather than the exact distance). All the results below are for the
continuous Fréchet distance unless mentioned otherwise.

As for exact oracles, we already mentioned the result of Buchin et al. [8] for arbitrary
segment queries with respect to a given curve P . For earlier results geared to horizontal
segment queries see [8, 10,17]. Recently, Cheng and Huang [9] described a distance oracle
for k-vertex query curves of size O(kn)poly(d,k) than can process a query with respect to a
point-to-point subcurve of P (specified at query time) in time O((dk)O(1) log(kn)).

As for approximate oracles, Filtser and Filtser [13] construct a (1+ε)-approximate distance
oracle for a given n-vertex curve P and k-vertex query curves. Its size is O(1

ε)kd log 1
ε and it

computes a (1 + ε)-approximation of the discrete Fréchet distance between P and a k-vertex
query curve in O∗(kd) time. Driemel and Har-Peled [11] present a (1 + ε)-approximate
distance oracle for segment queries (i.e., k = 2) of size O((1

ε)2d · log2 1
ε) and query time

O(d). They also consider the version in which the query is with respect to a point-to-point
subcurve of P , specified at query time. For this version, the size of their data structure is
O(n(1

ε)2d · log2 1
ε) and the query time is O(ε−2 log n log log n). Filtser [14] considered the

latter version for the discrete Fréchet distance. By adapting techniques from Driemel and
Har-Peled, she constructed a data structure of the same size and query time O(log n). Finally,
for general k, Driemel and Har-Peled [11] provide a constant-factor approximate distance
oracle of size O(nd log n), which can answer distance queries between any subcurve of P and
a k-curve query in O(k2d log n log(k log n)) time.

A problem closely related to ours is the following. Construct a compact data structure
for a geometric graph G, such that given a query polygonal curve Q of length k one can
quickly compute the minimum Fréchet distance between Q and any vertex-to-vertex path
in G. This is the query version of the well-known map matching problem. Gudmundsson and
Smid [16] studied the problem for a c-packed tree T . (A set of edges is c-packed if for any
disk the total length of the portions of the edges contained in the disk is at most c times the
radius of the disk.) More precisely, they studied a corresponding decision problem with some
additional restrictions. Recently, Gudmundsson et al. [15] studied this problem for c-packed
graphs. As an intermediate result, they construct a data structure of size O(c m log m) for a
c-packed graph G of complexity m, so that given a pair of query vertices u and v, one can
return in O(log m) time a 3-approximation of the Fréchet distance between Q and PG(u, v).
The preprocessing time is O(c m2 log2 m).

2 Distance oracles for trees

A geometric tree is a tree whose vertices are points in the plane and whose edges are line
segments connecting the corresponding points. In this section, we construct a discrete Fréchet
distance oracle for a given geometric tree T . In other words, we describe how to preprocess a

B. Aronov, T. Farhana, M. J. Katz, and I. Ramesh 10:5

tree T on n vertices, so that, given a polygonal curve Q of size k and two vertices u and v

of T , one can efficiently compute the discrete Fréchet distance between Q and the path Πuv

in T from u to v (which is a polygonal curve), that is, one can quickly return ddF(Q, Πuv).
As mentioned, we focus on the case where k is a small constant. In this case, one can

compute ddF(Q, Πuv) without any preprocessing in linear time, so the goal is to do it in
sublinear time after some preprocessing. More precisely, we only allow near-linear time
preprocessing and storage.

We present a reduction of our problem (discrete Fréchet distance oracle for trees) to that
for polygonal curves. Specifically, assuming we already know how to construct a discrete
Fréchet distance oracle for a polygonal curve and queries of size at most k, we construct
a discrete Fréchet distance oracle for T and queries of size k, at the cost of an additional
logarithmic factor in the query bound. In Section 4, we obtain discrete Fréchet distance
oracles for polygonal curves that accept queries of size one, two, three, and four. Thus, by
our reduction, we immediately obtain the corresponding discrete Fréchet distance oracles for
trees.

Black box: Distance oracle for curves. Fix k ∈ N. Assume we have a black box that
preprocesses a polygonal curve P = (p1, . . . , pn) in near-linear time such that, given a
subcurve of P between vertices i and j, denoted P [i, j] with 1 ≤ i ≤ j ≤ n, and a query
curve Q of size at most k, it computes the discrete Fréchet distance between Q and P [i, j] in
tk(n) time. We assume that tk−1(n) ≤ tk(n). Section 4 presents an implementation of the
black box for query size up to four.

2.1 Data structures
Let T = (V, E) be a geometric tree on n vertices. We first pick a root of T arbitrarily and
decompose T into heavy paths [18]. The heavy-path decomposition of a rooted tree T has
the following properties: it is a collection of “heavy paths;” each heavy path is a (possibly
degenerate) subpath of a leaf-to-root path in T , beginning at a leaf; the top endpoint of each
path (unless it is the root of T) links to a node in another heavy path, in such a way that
for any two vertices u, v of T the path between them in T switches between at most O(log n)
heavy paths; every link in T is either a heavy-path link or a link between the top node of a
heavy path and its parent in T . See Figure 1.

Recall that, for vertices u, v of the T , Πuv denotes the path from u to v in T . Given
u, v, one can compute the list of the O(log n) subpaths (of the decomposition’s paths) whose
concatenation is Πuv in O(log n) time, where each subpath is specified by the indices of its
endpoints, as shown in [18]. (The simpler data structure in [18] supporting O(log2 n)-time
query is sufficient for our purposes, as this is not the bottleneck in our approach.)

Next, for each path in the decomposition, we construct a discrete Fréchet distance oracle
for polygonal curves for queries of size at most k.

2.2 The Algorithm
Let u, v ∈ V and let Q = (q1, q2, . . . , qk). We describe how to compute ddF(Πuv, Q),
using the data structures above. We begin by computing the representation of Πuv as the
concatenation of O(log n) subpaths P1, P2, . . . , Pm (i.e., Πuv = P1 · P2 · . . . · Pm, where “·”
denotes concatenation of paths). If k = 1, then Q = (q1) and

ddF(Πuv, (q1)) = max
i∈{1,...,m}

{ddF(Pi, (q1))}, (1)

which can be computed in time mt1(n) = O(t1(n) log n).

SoCG 2024

10:6 Discrete Fréchet Distance Oracles

u

v

P1

P2

P3

P4

Figure 1 The heavy-path decomposition. The heavy paths are drawn in bold; the path Πuv is
the concatenation of the subpaths P1, . . . , P4.

For k > 1, consider an optimal walk of Πuv and Q, and let Pj be the last subpath to
which q1 is assigned, let qℓ be the last point of Q that is assigned to Pj (it is possible that
ℓ = 1), and let qℓ′ be the first point of Q that is assigned to Pj+1. Then 1 < ℓ′ ≤ k and
ℓ′ ∈ {ℓ, ℓ + 1}, and

ddF(Πuv, (q1 . . . qk)) = max{ddF(P1 · P2 · . . . · Pj−1, (q1)),
ddF(Pj , (q1, . . . , qℓ)),
ddF(Pj+1 · . . . · Pm, (qℓ′ , . . . , qk))}.

(2)

A recursive algorithm. If k = 1, return max
i∈{1,...,m}

{ddF(Pi, (q1))}, according to Eq. (1).

Otherwise, according to Eq. (2), for each j ∈ {1, . . . , m} and for each ℓ ∈ {1, . . . , k} and ℓ′ ∈
{ℓ, ℓ+1}, 1 < ℓ′ ≤ k, compute max{ddF(P1·P2·. . .·Pj−1, (q1)), ddF(Pj , (q1, . . . , qℓ)), ddF(Pj+1·
. . . · Pm, (qℓ′ , . . . , qk))} (when j + 1 > m or j − 1 < 1, we ignore the relevant component) and
return the smallest of all these values.

Dynamic programming procedure. Our algorithm computes the values in Eqs. (1) and (2)
bottom up. For each subpath Pj of P and Q[ℓ1, ℓ2] of Q, we calculate ddF(Pj , (qℓ1 , . . . , qℓ2))
using the curve oracle black box. Since k is a constant, these calculations take O(tk(n) log n +
tk−1(n) log n + · · · + t1(n) log n) = O(tk(n) log n), since we assumed tk−1(n) ≤ tk(n).

Then, for each 1 ≤ j1 < j2 ≤ m and for each 1 ≤ ℓ ≤ k, we calculate ddF(Pj1 ·. . .·Pj2 , (qℓ)).
Again, we calculate the values bottom up, starting from j2 − j1 = 1 (computing ddF(Pj1 · . . . ·
Pj2+1, (qℓ)) takes O(1) time if the answer to ddF(Pj1 · . . . · Pj2 , (qℓ)) and ddF(Pj2+1, (qℓ)) is
known). We calculate O(log2 n) values in O(1) time each, so this step takes O(log2 n) time
in total.

Next, we calculate ddF(Pj1 ·. . .·Pm, (qℓ1 , . . . , qk)) for each 1 ≤ j1 < m and each 1 ≤ ℓ1 ≤ k,
starting from j1 = m − 1 and ℓ1 = k, then j1 = m − 1 and ℓ1 = k − 1, etc. Note that if all
“smaller” values are already calculated, computing

ddF(Pj1 · . . . · Pm, (qℓ1 , . . . , qk)) =

min
j∈{j1,...,m}
ℓ∈{ℓ1,...,k}

ℓ′∈{ℓ,ℓ+1}∧ℓ1<ℓ′≤k


max{ddF(Pj1 · Pj1+1 · . . . · Pj−1, (qℓ1)),

ddF(Pj , (qℓ1 , . . . , qℓ)),
ddF(Pj+1 · . . . · Pm, (qℓ′ , . . . , qk))}



B. Aronov, T. Farhana, M. J. Katz, and I. Ramesh 10:7

takes O(log n) time. There are O(log n) such computations, so all of them together take
O(log2 n) time. Hence, the total running time of the algorithm is O(log2 n + tk(n) log n).

Using the results from Section 4 (see Table 1) for the black box implementation, we
can therefore conclude with the following summary; for the construction time and space,
preprocessing for individual heavy paths dominates the costs.

▶ Theorem 2.1. For a geometric tree on n vertices, one can construct discrete Fréchet
distance oracles with query times O(log3 n), O(log3 n), O(log4 n), and O∗(

√
n) for query

sizes one, two, three, and four, respectively. The structures require O(n log n) space for query
sizes up to three and O∗(n) for query size four.

3 Distance oracles for local graphs

A geometric graph G is a graph defined over a (finite) set P of points in Rd as vertices, and
in which the weight of an edge e = (p, q), p, q ∈ P , is the Euclidean distance ∥p − q∥ between
p and q. Let t ≥ 1 be a real parameter. We say that G is t-local if the following condition
holds: For any ball B and for any two points p, q ∈ P ∩ B, there exists a path in G between p

and q that does not leave tB, where tB is the ball obtained from B by scaling it by a factor
of t around its center, that is, p and q are connected in the subgraph of G induced by the set
P ∩ tB. We say that a graph is local if it is t-local for some constant t ≥ 1.

We first examine the connection between geometric spanners and local graphs. Recall
that G = G(P, E) is a t-spanner, if for any any two points p, q ∈ P , there exists a path in G

between p and q of length at most t · ∥p − q∥ where the length of a path is the sum of the
lengths of its edges. A spanner is a graph that is a t-spanner for some constant t ≥ 1.

▶ Observation 3.1. Any geometric t-spanner is 2t-local.1

Proof. Suppose G = G(P, E) is a t-spanner. We will show that G is 2t-local.
Consider an arbitrary pair of points p, q ∈ P and put d := ∥p − q∥. By assumption,

there is a path P (p, q) of length at most td in G. Let D be the disk with segment pq as the
diameter. Let x be a point of P (p, q). By the triangle inequality, we have

∥p − x∥ + ∥q − x∥ ≤ |P (p, x)| + |P (q, x)| = |P (p, q)| ≤ td , (3)

where P (p, x) and P (q, x) are the appropriate subpaths of P (p, q). The locus of points x

satisfying Eq. (3) is an elliptical region E with foci p and q and major axis td. In particular,
it fits into tD. This proves the observation for disk D, as clearly tD ⊆ 2tD.

Now, let D′ be any other disk containing both p and q. We show that tD ⊆ 2tD′ and
therefore P (p, q) ⊆ 2tD′. Let o′ and d′ be the center and diameter of D′, respectively.
Then, d′ ≥ d and ∥o′ − p∥, ∥o′ − q∥ ≤ d′/2 (and therefore also ∥o′ − o∥ ≤ d′/2, where o

is D’s center). Let a be any point on the boundary of tD, then, by triangle inequality,
∥o′ − a∥ ≤ ∥o′ − o∥ + ∥o − a∥ ≤ d′/2 + td/2 = d′(1/2 + t/2) ≤ td′ (since t ≥ 1), and therefore
a ∈ 2tD′, completing the proof. ◀

The opposite implication does not hold, as formalized in Theorem 3.2 below, the proof of
which is deferred to the full version of the paper [3, Section 3]. We conclude that the locality
property is weaker than the spanning property, i.e., the class of local graphs strictly contains
the class of spanner graphs.

1 We believe that the constant 2 can be improved with some additional effort.

SoCG 2024

10:8 Discrete Fréchet Distance Oracles

▶ Theorem 3.2. There exists a constant t > 1, such that for any t′ ≥ 1, one can construct a
graph that is t-local, but not a t′-spanner.

Hereafter, we assume that d = 2 and that the points in P are in general position, i.e, no
line passes through three or more points of P and no circle passes through four or more of
them.

1-local graphs. We begin with the case t = 1, which is especially interesting. Let DT (P)
denote the Delaunay triangulation of P . We think of DT (P) as a graph over P , and prove
below that any 1-local graph over P contains DT (P) as a subgraph, and that DT (P) itself
is 1-local.

▶ Observation 3.3.
(i) DT (P) is 1-local.
(ii) Any 1-local graph G over P contains DT (P).

Proof. (i) Let D be a disk such that |P ∩ D| ≥ 2 and let p, q ∈ P ∩ D. We need to show that
there exists a path in DT (P) between p and q that does not leave D, but this is a known
property of DT (P). (ii) Let e = pq be an edge of DT (P). Then, there exists a disk D such
that P ∩ D = {p, q}. Since G is 1-local, there exists a path in G between p and q that does
not leave D, so e is an edge of G. We thus conclude that G contains DT (P). ◀

We now return to our main topic, namely, discrete Fréchet distance oracles, and study
the following problem. Let G be a t-local graph defined over a set P of n points in the plane.
For any two vertices u and v of G, let PG(u, v) denote the set of all paths between u and
v in G. Then, we define the discrete Fréchet distance between a polygonal curve Q and G

(with respect to u and v) to be minΠ∈PG(u,v) ddF(Q, Π), denoted by ddF(Q, PG(u, v)). We
wish to preprocess G, so that given a query curve Q and two vertices u and v of G, one can
compute ddF(Q, PG(u, v)) efficiently.

We begin with the special case where the queries are line segments connecting two vertices
of G.

G is 1-local and Q = uv, where u, v are vertices of G. Let r be the smallest radius for
which there exist two vertices u′, v′ of G, such that u′ ∈ diskr(u), v′ ∈ diskr(v), and (u′, v′)
is an edge of G, where diskr(w) denotes the disk of radius r centered at w. (Notice that if
(u, v) is an edge of G, then r = 0.) Our solution is based on the following claim.

▷ Claim 3.4. ddF(uv, PG(u, v)) = r.

Proof. Let Π = (u = w1, . . . , wk = v) ∈ PG(u, v) be a path between u and v such that
ddF(uv, PG(u, v)) = ddF(uv, Π), and set d∗ = ddF(uv, Π). Let ℓ, 1 ≤ ℓ < k, be a split index,
i.e., if we associate (w1, . . . , wℓ) with u and (wℓ+1, . . . , wk) with v, then

max
{

max
1≤i≤ℓ

∥u − wi∥, max
ℓ+1≤i≤k

∥v − wi∥
}

= d∗ .

We first observe that d∗ is at least r. Indeed wℓ ∈ diskd∗(u), wl+1 ∈ diskd∗(v), and (wl, wl+1)
is an edge of G.

To complete the proof we show that r ≥ d∗. For a contradiction, assume that r < d∗.
Let u′ and v′ be two vertices such that u′ ∈ diskr(u), v′ ∈ diskr(v), and (u′, v′) is an edge of
G. Then, since G is 1-local, there exists a path from u to u′ contained in the disk around u

of radius ∥u − u′∥ ≤ r, and there exists a path from v to v′ contained in the disk around
v of radius ∥v − v′∥ ≤ r. Therefore, there exists a path from u to v whose discrete Fréchet
distance from uv is at most r – a contradiction. ◁

B. Aronov, T. Farhana, M. J. Katz, and I. Ramesh 10:9

The data structure. In the preprocessing stage, we first construct a data structure Tedge
of near-linear size for disk range searching in P (see also the data structure description and
references in the full version [3, Section 4.3]). This data structure allows us to compute the
set P ∩ D, for a query disk D, as the union of pre-stored pairwise-disjoint canonical subsets,
in O∗(

√
n) time. For a subset P ′ of P , let N(P ′) be the neighbor set of P ′ in G = G(P, E);

that is, N(P ′) = {q ∈ P | ∃p ∈ P ′ with (p, q) ∈ E}. We now augment Tedge as follows. For
each canonical subset P ′, we compute V (P ′ ∪ N(P ′)), the Voronoi diagram of P ′ ∪ N(P ′),
and associate it with P ′. The final size of Tedge is therefore near-linear in n + m, where
m = |E|.

We also construct a second data structure Tannu of near-linear size for annulus range
searching in P . This data structure allows us to compute the set P ∩ A, for a query annulus
A, in O∗(

√
n + k) time, where k = |P ∩ A|.

The decision problem. We describe how to determine whether ddF(uv, PG(u, v)) ≤ d,
where u and v are any two vertices of G and d > 0 is a given value, in O∗(

√
n) time.

By arguments similar to those given above, ddF(uv, PG(u, v)) ≤ d if and only if either
P ∩ diskd(u) ∩ diskd(v) ̸= ∅, or there exist points u′ ∈ diskd(u) and v′ ∈ diskd(v) such that
(u′, v′) is an edge of G. We thus use Tedge to compute a representation of P ∩ diskd(u) as
the union of pairwise-disjoint canonical subsets, and for each of these subsets P ′, we search
in its associated Voronoi diagram V (P ′ ∪ N(P ′)) for the point that is closest to v. Finally, if
at least one of the closest points that were found is within distance d of v, then we return
yes, and otherwise we return no.

Optimization. We now describe how to compute ddF(uv, PG(u, v)), which is one of the
O(n) distances between u or v and a point in P . Let S be a random sample of size

√
n of

these O(n) distances. We find a pair of consecutive distances d1 < d2 in S ∪ {0, ∞}, by a
binary search using the decision procedure. The expected number of distances between u or
v and a point in P that lie in the range (d1, d2] is O(

√
n), and we can find them in O∗(

√
n)

expected time by querying the second data structure Tannu with the annuli A(u, d1, d2) and
A(v, d1, d2). Once we have these distances, we can find the smallest among them, d∗, that is
still greater or equal than ddF(uv, PG(u, v)), by another binary search. We conclude that
ddF(uv, PG(u, v)) = d∗.

G is 1-local and Q = ab, where a, b are arbitrary points in the plane. We remark that
the query segment Q does not have to be the segment between the specified vertices (u and v)
of G. The only difference is in the algorithm for the decision problem, where we need to take
into account that a must be “matched” to u and b must be “matched” to v. In particular, if
d < max{∥a − u∥, ∥b − v∥}, then we immediately return no. Otherwise, we proceed as above,
except that we consider the disk diskd(a) (rather than diskd(u)) and search in the Voronoi
diagrams for the point closest to b (rather than to v).

The following theorem summarizes our result for t = 1.

▶ Theorem 3.5. Let G = (P, E) be a 1-local graph. Then, we can compute ddF(ab, PG(u, v)),
for any pair of vertices u, v ∈ P and any pair of points a, b ∈ R2, in O∗(

√
n) expected time,

after a preprocessing stage in which we construct data structures of size O∗(n + m). In
particular, if G is DT (P), then the size of the data structures is O∗(n).

t-local graphs, t > 1. For t > 1, we use the same data structures and query algorithm
to obtain an oracle that returns an approximation of the desired distance. More precisely,
given two vertices u and v of G, the value r returned by the query algorithm is such that

SoCG 2024

10:10 Discrete Fréchet Distance Oracles

r ≤ ddF(uv, PG(u, v)) ≤ (t + 1)r/2. The proof is identical to the proof of Claim 3.4, except
that now we only know that there exists a path from u to u′ that is contained in the disk
centered at u of radius (t + 1)∥u − u′∥/2 ≤ (t + 1)r/2 and similarly for v and v′. This follows
from the t-locality property of G applied to the disk of radius r/2 centered at the midpoint
between u and u′.

As for the case t = 1, we can also handle arbitrary segment queries. The following
theorem summarizes our result for t > 1.

▶ Theorem 3.6. Let G = (P, E) be a t-local graph, t > 1. Then, for any pair of vertices
u, v ∈ P and any pair of points a, b ∈ R2, we can compute a value r such that r ≤
ddF(uv, PG(u, v)) ≤ (t + 1)r/2 in O∗(

√
n) expected time, after O∗(n + m) time and space

preprocessing.

By Observation 3.1 we obtain the following corollary.

▶ Corollary 3.7. Let G = (P, E) be a t-spanner, t > 1. Then, given a query as above, we
can compute a value r such that r ≤ ddF(uv, PG(u, v)) ≤ (2t + 1)r/2 in O∗(

√
n) expected

time, after a preprocessing stage as above.

4 Black box revealed: Distance oracles for curves

Notation and definitions. Recall that we write P [k, ℓ], for 1 ≤ k ≤ ℓ ≤ n, to denote the
(contiguous) subcurve (pk, pk+1, . . . , pℓ) of P . For a point q in the plane, the distance from q to
the vertex of P [k, ℓ] farthest from (nearest to) it, is denoted dmax(P [k, ℓ], q) (dmin(P [k, ℓ], q)).

Consider another curve Q = (q1, . . . , qlast). Put ∆ = ∆(P, Q) := max{∥p1 − q1∥, ∥pn −
qlast∥}. From the definition of a walk, it follows that ddF(P, Q) ≥ ∆(P, Q).

For two points a and b (which will usually be q1 and qlast) and a real number r ≥
max{∥p1−a∥, ∥pn−b∥}, let P⊢(r) denote the longest prefix of P , for which dmax(P⊢(r), a) ≤ r,
and let P⊣(r) denote the longest suffix of P for which dmax(P⊣(r), b) ≤ r.

As a warm-up, we show how to solve the distance oracle problem for k = 1. In this
case ddF(P, (a)) = dmax(P, a) and can be computed in logarithmic time by precomputing
the farthest-neighbor Voronoi diagram of P and preprocessing it for point-location queries.
The subcurve version of the problem (that is, computing ddF(P [k, ℓ], (a)) = dmax(P [k, ℓ], a))
can be solved in O(log2 n) time using the Tfvd structure defined below. Clearly, solving
the optimization problem answers the decision question within the same time bound. This
completes row k = 1 in Table 1.

4.1 k = 2
Let P = (p1, . . . , pn) be a sequence of points in the plane representing a polygonal curve. We
construct a near-linear size data structure, that, given a 2-vertex query curve Q = (a, b), can
compute in O(log2 n) time the discrete Fréchet distance ddF(P, Q) between P and Q.

We begin with some definitions. We say a distance d satisfying d ≥ ddF(P, (a, b)) is
feasible. As already observed, d < ∆ := max(∥p1 − a∥, ∥pn − b∥) is not feasible. If d ≥ ∆ is a
feasible distance with dmax(P⊢(d), a) = d, we say that d is prefix-feasible. Alternatively, if d

is feasible with dmax(P⊣(d), b) = d, we say that it is suffix-feasible.

▶ Observation 4.1. A distance d ≥ ∆ is feasible if and only if P⊢(d) and P⊣(d) cover P .

Proof. As already observed, any d < ∆ is infeasible. A feasible d corresponds to a walk that
assigns a (non-empty) prefix of P to a and a (non-empty) suffix to b, covering P . The prefix
is contained in P⊢(d) and the suffix in P⊣(d), completing one direction of the proof.

B. Aronov, T. Farhana, M. J. Katz, and I. Ramesh 10:11

Conversely, if P⊢(d) and P⊣(d) cover P (neither can be empty, as d ≥ ∆), there is a
(prefix,suffix) pair that can be assigned to a and b respectively, producing a walk of cost at
most d, completing the proof. ◀

The data structure. We construct a binary tree, Tfvd, which stores the farthest-neighbor
Voronoi diagram (FVD) of subsequences of P . At the root of Tfvd, we store the FVD diagram
of P [1, n] together with a corresponding point location structure. In the left and right
children of the root, we store the FVDs of P [1, ⌈ n

2 ⌉] and P [⌈ n
2 ⌉ + 1, n], respectively, etc. It is

easy to see that the size of Tfvd is O(n log n), and that given a query point q and indices k, ℓ

(1 ≤ k ≤ ℓ ≤ n), one can find the distance dmax(P [k, ℓ], q) in O(log2 n) time. Moreover, given
any distance d ≥ ∆, one can compute P⊢(d) and P⊣(d) in O(log2 n) time (roughly speaking,
we descend Tfvd from the root checking canonical subsets for being within distance d of a

or b); we refer to this as a prefix (resp., suffix) computation. Together with Observation 4.1,
this gives an O(log2 n) time test for feasibility, both for full P and a subsequene of P .

Optimization. The algorithm consists of two symmetric parts, a left-to-right part and a
right-to-left part.

The left-to-right part performs a binary search in P to find the smallest prefix-feasible
distance dL. We start by finding the distance d⌈ n

2 ⌉ = dmax(P [1, ⌈ n
2 ⌉], a) (if d⌈ n

2 ⌉ < ∆, it is
not prefix-feasible). Next, we compute P⊢(d⌈ n

2 ⌉) and P⊣(d⌈ n
2 ⌉), by performing a prefix and a

suffix computation using Tfvd. If together they cover P , then d⌈ n
2 ⌉ is prefix-feasible. If so,

we guessed too high. If not, we guessed too low. We continue with the binary search on half
of the remaining sequence.

In the right-to-left-part, we perform a binary search in P to find the smallest distance dR

which is suffix-feasible. Finally, we output ddF(P, Q) = min{dL, dR}.

▶ Lemma 4.2. The algorithm above outputs the correct discrete Fréchet distance between P

and Q in time O(log2 n).

Proof. Assume, without loss of generality, that d∗ = ddF(P, Q) is determined by the distance
between a and pk, for some 1 ≤ k ≤ n − 1. Then d∗ is prefix-feasible, and, since dL is the
smallest distance which is prefix-feasible, we have dL ≤ d∗. On the other hand, we have
dL, dR ≥ d∗. We conclude that the algorithm returns d∗ as claimed.

As for the running time, each iteration of the main binary search costs O(log2 n) time,
which can be improved to O(log n) time per iteration with a little more care (see the full
version of the paper [3, Section 4.1]). Thus, the total cost is O(log2 n) time. ◀

The following theorem summarizes the main result of this section.

▶ Theorem 4.3. Given a curve P = (p1, . . . , pn) in the plane, one can construct a data
structure of size O(n log n) such that, for any 2-vertex query curve Q, ddF(P, Q) can be
computed in O(log2 n) time. The same running time can be obtained with a subcurve of P

specified at query time.

4.2 k = 3

Let P = (p1, . . . , pn) be a sequence of points in the plane representing a polygonal curve. We
construct a near-linear size data structure that, given a 3-vertex query curve Q = (a, b, c),
computes in O(log3 n) time the discrete Fréchet distance ddF(P, Q) between P and Q.

SoCG 2024

10:12 Discrete Fréchet Distance Oracles

▷ Claim 4.4 (Feasibility Test). For a distance d ≥ ∆ := max{∥p1 −a∥, ∥pn −c∥}, the following
procedure decides if d is feasible, that is, if d ≥ ddF(P, Q):

Let i, j be the indices defined by P⊢(d) = P [1, i] and P⊣(d) = P [j, n]. Now, (i) if
j > i+1, then d is feasible if dmax(P [i+1, j−1], b) ≤ d, (ii) if j = i+1, then d is feasible
if dmin(P [i, j], b) ≤ d, and (iii) if j < i + 1, then d is feasible if dmin(P [j, i], b) ≤ d.

Indeed, it is easy to verify that in each of the three cases, d is feasible if and only if the
appropriate condition holds.

We begin by adapting the definitions of prefix-feasible and suffix-feasible from Section 4.1.
We say that d ≥ ∆ is prefix-feasible if d is feasible and dmax(P⊢(d), a) = d. Alternatively, it
is suffix-feasible if it is feasible and dmax(P⊣(d), c) = d.

The data structure. We construct two binary trees, Tfvd and Tvd. The former has been
described in Section 4.1 and the latter is its analog for nearest-neighbor Voronoi diagrams.

▶ Observation 4.5. The feasibility test takes O(log2 n) time. In particular, given a distance
d ≥ ∆, such that dmax(P⊢(d), a) = d (resp. dmax(P⊣(d), c) = d), one can determine whether
d is prefix-feasible (resp., suffix-feasible) in O(log2 n) time.

Proof. Find in O(log2 n) time the indices i and j, such that P⊢(d) = P [1, i] and P⊣(d) =
P [j, n], as in the previous section. Next, depending on whether j > i + 1, j = i + 1, or
j < i + 1, we verify the appropriate condition in O(log2 n) time using Tfvd or Tvd. ◀

Optimization. We assume for simplicity that all 3n distances are distinct and ddF(P, Q) > ∆.
(We can check whether ddF(P, Q) = ∆, by checking if ∥p1 − a∥ is prefix-feasible or if ∥pn − c∥
is suffix-feasible, depending on which of the distances determines ∆.)

The algorithm consists of two symmetric parts, a left-to-right part and a right-to-left
part. Each part outputs a distance, and the smaller of these two distances is the desired
distance, i.e., ddF(P, Q).

We describe the left-to-right part. We first perform a binary search to find the smallest
distance dL which is prefix-feasible. Next, we find the largest distance dL which is not
prefix-feasible. More precisely, let pL be the point of P for which ∥pL − a∥ = dL. Then
dL is determined by the point farthest from a among the points of P [1, L − 1]. Clearly,
dL < dL and P⊢(dL) is strictly shorter than P⊢(dL). Next, we perform the process described
in Claim 4.4 above with the distance dL to obtain the value d′. That is, let 1 ≤ i, j ≤ n

be the indices such that P⊢(dL) = P [1, i] and P⊣(dL) = P [j, n]. Now, (i) if j > i + 1, then
set d′ = dmax(P [i + 1, j − 1], b), (ii) if j = i + 1, then set d′ = dmin(P [i, j], b), and (iii) if
j < i + 1, then set d′ = dmin(P [j, i], b). Finally, the output of this part of the algorithm is
d1 = min{dL, d′}.

The output of the second part of the algorithm is d2 = min{dR, d′′}, where dR is the
smallest distance which is suffix-feasible, and d′′ is the value obtained by performing the
analogous process with the distance dR. Given the outputs of both parts, we conclude that
ddF(P, Q) = min{d1, d2}.

▶ Lemma 4.6. The algorithm above is correct, i.e., it outputs the discrete Fréchet distance
between P and Q. Moreover, its running time is O(log3 n).

Proof. Let d∗ denote the discrete Fréchet distance between P and Q, i.e., d∗ = ddF(P, Q).
We distinguish between three cases, depending on which vertex of Q defines d∗. Cases I and
II are symmetric and easy, while Case III is more involved.

B. Aronov, T. Farhana, M. J. Katz, and I. Ramesh 10:13

Case I: d∗ = ∥pk − a∥. This implies that d∗ is prefix-feasible. Moreover, it is clearly the
smallest distance which is prefix-feasible, so d∗ will be found in the first part of the
algorithm.

Case II: d∗ = ∥pk − c∥. The argument is entirely symmetric to Case I.
Case III: d∗ = ∥pk − b∥. This implies that d∗ < dL, dR. On the other hand, d∗ > dL, dR,

since dL is not prefix-feasible and dR is not suffix-feasible. Assume without loss of
generality that dL ≥ dR. We now claim that P⊢(dL) = P⊢(d∗). This is true, since dL is
the second largest distance among the distances between a and the vertices of P⊢(dL) up
to the vertex that determines dL and d∗ < dL. Similarly, we get that P⊣(dR) = P⊣(d∗),
and therefore also P⊣(dL) = P⊣(d∗). This implies that the distance d1 = d′ returned by
the left-to-right part of the algorithm is equal to d∗. ◀

The following theorem summarizes the main result of this section.

▶ Theorem 4.7. Given a curve P = (p1, . . . , pn) in the plane, one can construct a data
structure of size O(n log n) such that for any 3-vertex query curve Q, ddF(P, Q) can be
computed in O(log3 n) time. The same running time can be obtained with a subcurve of P

specified at query time.

We defer to the full version [3, Section 4.3] the proof of the following theorem:

▶ Theorem 4.8. Given a curve P = (p1, . . . , pn) in the plane, one can construct a data
structure of expected size O∗(n) such that for any 4-vertex query curve Q, ddF(P, Q) can be
computed in O∗(n1/2) time. The same running time can be obtained with a subcurve of P

specified at query time.

References
1 P. K. Agarwal, R. Ben Avraham, H. Kaplan, and M. Sharir. Computing the discrete Fréchet dis-

tance in subquadratic time. SIAM J. Comput., 43(2):429–449, 2014. doi:10.1137/130920526.
2 H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. Int. J.

Comput. Geom. Appl., 5:75–91, 1995. doi:10.1142/S0218195995000064.
3 Boris Aronov, Tsuri Farhana, Matthew J. Katz, and Indu Ramesh. Discrete Fréchet distance

oracles. arXiv, 2024. doi:10.48550/arXiv.2404.04065.
4 K. Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subquadratic

algorithms unless SETH fails. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 661–670. IEEE
Computer Society, 2014. doi:10.1109/FOCS.2014.76.

5 K. Bringmann, M. Künnemann, and A. Nusser. Discrete Fréchet distance under translation:
Conditional hardness and an improved algorithm. ACM Trans. Algorithms, 17(3):25:1–25:42,
2021. doi:10.1145/3460656.

6 K. Bringmann and W. Mulzer. Approximability of the discrete Fréchet distance. J. Comput.
Geom., 7(2):46–76, 2016. doi:10.20382/jocg.v7i2a4.

7 K. Buchin, T. Ophelders, and B. Speckmann. SETH says: Weak Fréchet distance is
faster, but only if it is continuous and in one dimension. In Timothy M. Chan, editor,
Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages 2887–2901. SIAM, 2019.
doi:10.1137/1.9781611975482.179.

8 M. Buchin, I. van der Hoog, T. Ophelders, L. Schlipf, R. I. Silveira, and F. Staals. Efficient
Fréchet distance queries for segments. In 30th Annual European Symposium on Algorithms, ESA
2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 29:1–29:14.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ESA.2022.29.

SoCG 2024

https://doi.org/10.1137/130920526
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.48550/arXiv.2404.04065
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1145/3460656
https://doi.org/10.20382/jocg.v7i2a4
https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.4230/LIPIcs.ESA.2022.29

10:14 Discrete Fréchet Distance Oracles

9 S.-W. Cheng and H. Huang. Solving Fréchet distance problems by algebraic geometric methods.
CoRR, abs/2308.14569, 2023.

10 M. de Berg, A. D. Mehrabi, and T. Ophelders. Data structures for Fréchet queries in trajectory
data. In J. Gudmundsson and M. H. M. Smid, editors, Proceedings of the 29th Canadian
Conference on Computational Geometry, CCCG 2017, July 26-28, 2017, Carleton University,
Ottawa, Ontario, Canada, pages 214–219, 2017.

11 A. Driemel and S. Har-Peled. Jaywalking your dog: Computing the Fréchet distance with
shortcuts. SIAM J. Comput., 42(5):1830–1866, 2013. doi:10.1137/120865112.

12 T. Eiter and H. Mannila. Computing discrete Fréchet distance. Technical Report CD-TR
94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria, 1994.

13 A. Filtser and O. Filtser. Static and streaming data structures for Fréchet distance queries. In
Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1150–1170. SIAM, 2021.
doi:10.1137/1.9781611976465.71.

14 O. Filtser. Universal approximate simplification under the discrete Fréchet distance. Inf.
Process. Lett., 132:22–27, 2018. doi:10.1016/j.ipl.2017.10.002.

15 J. Gudmundsson, M. P. Seybold, and S. Wong. Map matching queries on realistic input graphs
under the Fréchet distance. In N. Bansal and V. Nagarajan, editors, Proceedings of the 2023
ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25,
2023, pages 1464–1492. SIAM, 2023. doi:10.1137/1.9781611977554.ch53.

16 J. Gudmundsson and M. H. M. Smid. Fast algorithms for approximate Fréchet matching
queries in geometric trees. Comput. Geom., 48(6):479–494, 2015. doi:10.1016/J.COMGEO.
2015.02.003.

17 J. Gudmundsson, A. van Renssen, Z. Saeidi, and S. Wong. Translation invariant Fréchet
distance queries. Algorithmica, 83(11):3514–3533, 2021. doi:10.1007/s00453-021-00865-0.

18 D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput. Syst. Sci.,
26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

19 T. Wylie and B. Zhu. Protein chain pair simplification under the discrete Fréchet distance. IEEE
ACM Trans. Comput. Biol. Bioinform., 10(6):1372–1383, 2013. doi:10.1109/TCBB.2013.17.

https://doi.org/10.1137/120865112
https://doi.org/10.1137/1.9781611976465.71
https://doi.org/10.1016/j.ipl.2017.10.002
https://doi.org/10.1137/1.9781611977554.ch53
https://doi.org/10.1016/J.COMGEO.2015.02.003
https://doi.org/10.1016/J.COMGEO.2015.02.003
https://doi.org/10.1007/s00453-021-00865-0
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1109/TCBB.2013.17

	1 Introduction
	2 Distance oracles for trees
	2.1 Data structures
	2.2 The Algorithm

	3 Distance oracles for local graphs
	4 Black box revealed: Distance oracles for curves
	4.1 k=2
	4.2 k=3

