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Abstract
In this article we extend and strengthen the seminal work by Niyogi, Smale, and Weinberger on the
learning of the homotopy type from a sample of an underlying space. In their work, Niyogi, Smale,
and Weinberger studied samples of C2 manifolds with positive reach embedded in Rd. We extend
their results in the following ways:

As the ambient space we consider both Rd and Riemannian manifolds with lower bounded
sectional curvature.
In both types of ambient spaces, we study sets of positive reach – a significantly more general
setting than C2 manifolds – as well as general manifolds of positive reach.
The sample P of a set (or a manifold) S of positive reach may be noisy. We work with two
one-sided Hausdorff distances – ε and δ – between P and S. We provide tight bounds in terms
of ε and δ, that guarantee that there exists a parameter r such that the union of balls of radius
r centred at the sample P deformation-retracts to S. We exhibit their tightness by an explicit
construction.

We carefully distinguish the roles of δ and ε. This is not only essential to achieve tight bounds,
but also sensible in practical situations, since it allows one to adapt the bound according to sample
density and the amount of noise present in the sample separately.
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1 Introduction

Can we infer the topology of a set if we are only given partial geometric information about
it? Under which conditions is such inference possible?

These questions were first motivated by the shape reconstruction of objects in 3-
dimensional Euclidean space. There, the partial geometric information was represented
by a finite, in general noisy, set of points obtained from photogrammetric or lidar measure-
ments [10, 19, 21, 22, 32].

More recently, the same questions have arisen in the context of learning and topological
data analysis (TDA). In these fields, one seeks to recover a (relatively) low-dimensional
support of a probability measure in a high-dimensional space, given a (finite) data set drawn
from this probability measure [23, 29, 40, 38]. Assuming the support is a manifold, one calls
this process manifold learning [62].

In [60], Niyogi, Smale, and Weinberger showed that, given a C2 manifold of positive reach1

embedded in Euclidean space and a sufficiently dense point sample on (or near) the manifold,
the union of balls of certain radii centred on the point sample captures the homotopy type of
the manifold. By the nerve theorem [40], the homotopy type of the union of balls is shared
by the Čech complex [20, 41] and α-complex [39] of the point sample. From these complexes
we can then learn the topological information such as the homology groups of the underlying
manifold. Niyogi, Smale, and Weinberger’s homotopy learning result has led to numerous
generalizations including [11, 15, 27, 52, 69].

In this article, we revisit the work of Niyogi, Smale, and Weinberger, generalizing the
settings of their work in various ways.

The first generalization is in terms of ambient space – we consider both the Euclidean
space Rd and Riemannian manifolds with bounded sectional curvature. To this end, we
introduce a new version of the reach in the Riemannian setting inspired by the cut locus (see
Definition 13).

The second generalization lies in the types of sets we study – we consider sets of positive
reach and manifolds of positive reach. Sets of positive reach need not be manifolds – in
fact, they can have varying dimensions (see for example Figure 1). Manifolds with positive
reach are C1,1 smooth2, i.e., differentiable with Lipschitz derivative. This is a significantly
larger family of sets in comparison to C2 manifolds with positive reach, considered by Niyogi,
Smale, and Weinberger.

As in the work of Niyogi, Smale, and Weinberger, our settings consist of a set (or a
manifold) S of positive reach and its sample P . We distinguish two sample quality parameters
– sample density ε and sample noisiness δ, which we encode using one-sided Hausdorff distances
between P and S. We provide explicit conditions on ε and δ, under which there exists a

1 We recall that the reach of a closed subset in Euclidean space is the distance from the set to its medial
axis. In turn, the medial axis of a set consists of those points in Euclidean space that do not have a
unique closest point on the set. Both notions are defined in [13, Definition 18].

2 Topologically embedded manifolds with positive reach are C1,1 embedded [42, 58, 59, 63, 64].
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parameter r such that the union of balls of radius r centred at the sample P deformation-
retracts to S. This result expands on the work of Niyogi, Smale, and Weinberger, who
considered the cases δ = 0 and δ = ε only, and only achieved tight bounds in the latter case
(see Figure 2).

Furthermore, given a set of positive reach S and its sample P , we identify an interval
of radii r (equation (4)) for which the union of balls of radius r centred at the sample P

deformation-retracts to S. Thus, we provide a guarantee for a successful homotopy inference
of the set S from the sample P . Moreover, we show that for a specific choice of S and P

(see Propositions 8, 9, [13, Proposition 47], and [13, Proposition 48]), the homotopy of S is
not inferrable from P if our conditions on ε and δ are not satisfied, proving that our bounds
are, in terms of ε and δ, tight.

p0
p1

p2

p3

Figure 1 Left: A fish shaped set S of positive reach (in blue). Its medial axis (in purple) is at a
positive distance. For 0 ≤ i ≤ 3, we also represent the normal cone of pi with respect to S (after an
intersection with a small disk and a translation to pi). The normal cone of the point p2 is p2 itself.
Right: The set S with a sample P and a thickening of P . We see that the thickening has the same
homotopy type as S.

This article provides a solid overview of our results. We concentrate on carefully explaining
the setting and only state our results. We shifted most proofs and technical details, and in
particular the vast machinery we used to prove our statements for subsets and submanifolds
of Riemannian manifolds, into the full version of the article [13].

2 State-of-the-art

2.1 Sets of positive reach
Our extension of Niyogi, Smale, and Weinberger’s result to sets of positive reach – as well
as improvement of their results on manifolds – relies on the work of Federer [42], which
Niyogi, Smale, and Weinberger have not cited. In particular, we use Federer’s generalization
of normal spaces to normal cones (see Figure 1 (left) for a pictorial introduction and [13,
Appendix A.1] for a full definition) and his different characterizations of the normal cone as a
key building block. We recall the relevant results from Federer’s work in [13, Appendix A.1].

We note that the reach can be estimated from a sample [2, 3, 17, 35, 37].
Subsets of positive reach of Riemannian manifolds were studied extensively by Kleinjohann

[53, 54] and Bangert [16] in generalization of Federer’s theory [42] for subsets of Euclidean
space. Boissonnat and Wintraecken investigated yet another definition of the reach for
subsets of Riemannian manifolds in [24].

SoCG 2024
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2.2 Homotopy learning
For some particular cases, the best previously known bounds on the distance between a
manifold (or a set) of positive reach and its sample that guarantee successful homotopy
inference, can be found in [15] and [60]. Attali et al. [15], Chazal et al. [27], and Kim et
al. [52] expanded homotopy learning to even more general subsets of Euclidean space, such as
subsets with positive µ-reach. Their proofs are, however, different from ours, more involved,
and their bounds are not shown to be tight.

2.3 Manifold and stratification learning
Although this article focuses on homotopy learning, our work should also be seen as part
of recent developments in manifold learning [4, 5, 43, 44, 45, 66]. The goal of this field is
to reconstruct a manifold from a “reasonable” sample lying on or near it – at least up to a
homeomorphism, but usually an ambient isotopy.

At the moment work is ongoing to expand this strategy to more general spaces – see for
example the work of Aamari et al. [1] on manifolds with boundary.

Although inferring the homotopy of a manifold is simpler than manifold learning, the
sets we consider are more general than manifolds or manifolds with boundary. The extension
of learning from subsets of Euclidean space to subsets of Riemannian manifolds also departs
from the usual track. We are only aware of one work in computational geometry and topology
which operates within this context, namely [30]. These are the first steps in the developing
field of stratification learning. Homotopy inference in the hyperbolic space was considered
in [11].

3 Contribution

3.1 Subsets of Euclidean space
Let M denote a manifold of positive reach, S a set of positive reach and let P be a sample.
All sets are assumed to be compact unless stated otherwise. We denote the reach of a set X by
rch(X ) and let R be a non-negative real number such that R ≤ rch(S) (resp. R ≤ rch(M)).

We denote the bound on the one-sided Hausdorff distance3 from P to S (resp. M) by ε,
and the one-sided Hausdorff distance from S (resp. M) to P by δ.

In this article we establish conditions on ε and δ which, if satisfied, guarantee the existence
of a radius r > 0 such that the union of balls of radius r centred at the sample P deformation-
retracts onto M (resp. S). The set of pairs (ε, δ) that satisfy these conditions is depicted in
Figure 2 on the left. The precise conditions are given in Propositions 5 and 7.

Distinguishing the two one-sided Hausdorff distances seems natural to the authors, because
in measurements one would expect the measurement error δ (with the exception of some small
number of outliers) to be often smaller than the sampling density ε. Similar assumptions seem
to be common in the learning community, see e.g. [56]. Niyogi, Smale, and Weinberger [60]
also made similar assumptions on the support of the measure from which they sampled.

We only consider samples for which we have precise bounds on ε and δ. In [60], the
authors also consider a setting where the point sample is drawn from a distribution centred
on the manifold. They still recover the homotopy type of the underlying manifold with high
probability. Our results can be applied to improve the bounds also in this context. However,
we have not discussed this in detail, since combining both results is straightforward.

3 We recall that the one sided Hausdorff distance from X to Y , denoted by do
H(X; Y ), is the smallest ρ

such that Y is covered by the union of balls of radius ρ centred at X, that is, Y ⊆
⋃

x∈X
B(x, ρ).
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Figure 2 The blue-gray region bounded by the blue dashed curve represents the set of pairs (ε, δ)
for which there exists a radius r such that the union of balls of radius r centred at P captures the
homotopy type of a set of positive reach R = 1. The equivalent region for a manifold of reach R = 1
is depicted in yellow and is a superset of the previous one. The two regions coincide above the
diagonal δ = ε. The bounds for the Euclidean setting are indicated on top, for an ambient manifold
with positive curvature bound (Λℓ = +2) in the middle, and for an ambient manifold with negative
curvature bound (Λℓ = −2) bottom. In the top picture, the black points indicate the bounds that
were known to Niyogi, Smale, and Weinberger.

We stress that in [23, 60], and [69], the authors use ε/2 instead of our ε. We also stress
that ε and δ have precisely opposite meanings in [52] compared to this paper.

Our conditions on ε and δ are optimal for sets of dimension at least 2 in the following
sense: if the conditions are not satisfied, we can construct a set of positive reach S (resp.
manifold M) and a sample P , such that there is no r ≥ 0 for which the union of balls of
radius r centred at P would have the same homology as S (resp. M). These constructions
are explained in Section 4.4.

We would like to emphasize that for noiseless samples, (that is, when δ = 0,) both
the constant

(√
2 − 1

)
(for general sets of positive reach), and the constant

(
2 −

√
2
)

(for
manifolds) compare favourably with the previously best known constant 1

2

√
3
5 from [60] for

manifolds.4

4 It should be noted that in [60] r was not considered as a variable, but set equal to 2ε, which (at least
partially) explains the suboptimal result in that paper.

SoCG 2024
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In Proposition 7.1 of [60], one encounters the condition ε < (3 −
√

8)R for a particular
case of the setting we consider, namely when the sampling condition is expressed through an
upper bound ε on the Hausdorff distance (δ = ε in our setting). The same constant 3 −

√
8

appears independently in [14, Theorem 4] for general sets of positive reach. Our results
(Propositions 8 and 9) show that this bound is optimal when δ = ε, both for general sets of
positive reach and for manifolds.

To contrast the two related results in [60], for δ = 0 and δ = ε respectively, with our
bounds, we portray them as black dots in Figure 2.

Homotopy reconstruction of manifolds with boundary has been studied in [69, Theo-
rem 3.2], assuming lower bounds on both the reach of the manifold and the reach of its
boundary. We also improve on this result by treating a manifold with boundary as a particular
case of a set of positive reach, while our bounds only depend on the reach of the set itself
and not the one of its boundary.

3.2 Subsets of Riemannian manifolds
In the second part of this article we extend the homotopy reconstruction results to sets S
and manifolds M of positive reach embedded in a Riemannian manifold whose sectional
curvatures5 are bounded.

Also in this Riemannian setting we find tight6 bounds on the one-sided Hausdorff distances
ε and δ between S (resp. M) and its sample P . The set of pairs (ε, δ) that satisfy these
conditions is depicted in Figure 2 (centre and right). The precise bounds are given in
Propositions 15 and 16.

The main pillar of this part of our work is comparison theory. We recall the most essential
definitions and results in [13, Appendix C], and refer to [18, 25, 26, 34, 47, 51] for further
reading.

For the extension to the Riemannian setting we also formulate a new generalization
of the reach. To establish some of its properties, we use results on the gradient of the
distance function [9], see also [57]. These results in turn require non-smooth analysis [36]
and semi-concave functions [8]. We refer to [13, Appendix G] for discussion.

In computer vision, many papers have argued in favour of using Riemannian manifolds
as the main setting without embedding the Riemannian manifold in Euclidean space. In
particular, symmetric positive definite matrices and Grassmannians form the natural stage
for some data [68, 71]. Symmetric positive definite matrices occur as diffusion tensors [61]
(used in e.g. magnetic resonance imaging), in image segmentation [46, 65], and in texture
classification [67], while Grassmanians are used in image matching and recognition [48, 49].
Although it is possible to embed these manifolds in Euclidean space, it is not natural and
would increase the dimensionality significantly. In [70], time-series obtained from observations
of dynamical systems are encoded as positive semi-definite matrices, produced by forming
Hankel matrices and taking their Gram matrices. Thus, the problem of analysing time-series
data is transformed into the problem of analysing point set data on a Riemannian manifold,
namely the one formed by semi-positive definite matrices.

5 We recall (one of) the (equivalent) definition(s) of sectional curvatures of the Riemannian manifold N :
For a point p ∈ N let Π ⊆ TpN be a two dimensional plane in the tangent space to p at N . If U ⊆ Π is
a sufficiently small neighbourhood of p in Π, then expp(U) is a surface. The Gauss curvature of this
surface at p is the sectional curvature of N at p for the directions that span Π.

6 When the curvature of the ambient manifold is positive we face a subtle issue because the manifold has
a small volume. In that case, the meaning of optimality becomes less straightforward.
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4 Results for subsets of the Euclidean space

4.1 Setting
We denote the closed ball in Euclidean space centred at a point p with radius r by B(p, r).

The thickening of a set A ⊆ Rd by parameter r > 0 is denoted by A⊞r, that is,

A⊞r :=
⋃

a∈A

B(a, r).

▶ Remark 1. We use the notation A⊞r to remind the reader of the Minkowski sum. It is
indeed true that in Rd, A⊞r = A ⊕ B(0, r). However, the above notation is also well-defined
for subsets of manifolds, whereas the Minkowski sum is not.

While working with subsets of the Euclidean space (Section 4 and [13, Appendix A]) we
assume the following:

▶ Universal assumption in the Euclidean setting 2. We work with a closed set
S ⊆ Rd with positive reach rch(S), and let R > 0 be a constant satisfying R ≤ rch(S).
Furthermore, we consider a set P ⊆ Rd, such that the one-sided Hausdorff distance
from P to S is at most δ, and the one-sided Hausdorff distance from S to P is at
most ε. That is,

S ⊆ P⊞ε and P ⊆ S⊞δ.

We assume that δ, ε < R. If the set S is a submanifold of Rd, we denote it by M.

For most applications the assumption δ ≤ ε seems natural, but we do not need this.
However, when S = M, we achieve better bounds when δ ≤ ε. See [13, Remark 29] for more
details.

4.2 The geometric argument
We show that if the thickening P⊞r =

⋃
p∈P B(p, r) covers a sufficiently large thickening of S

– quantified by parameter α – and the parameter r is not too big, P⊞r deformation-retracts
to S.

We start by recalling that the normal cone at a point p of a set of positive reach is the
set of directions such that if you move from p in that direction the closest point projection
will remain p. For a definition we refer to [13, Definition 19].

▶ Theorem 3. Assume that a parameter α > 0 is small enough, so that the α-neighbourhood
S⊞α of the set S is contained in P⊞r. In other words,

S⊞α ⊆ P⊞r. (1)

If, moreover,

r2 ≤ (R − δ)2 − (R − α)2, (2)

then, for any point q ∈ S, the intersection (q + Nor(q, S)) ∩ B(q, R) ∩ P⊞r of the normal
cone q + Nor(q, S), the ball B(q, R), and the union of balls P⊞r, is star-shaped, with the
point q as its “centre”. Furthermore, P⊞r deformation-retracts onto S along the closest point
projection.

SoCG 2024
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▶ Remark 4. The statement of Theorem 3 does not use the hypothesis S ⊆ P⊞ε from the
Universal Assumption 2.

We refer to Figure 3 for a pictorial overview of the proof of Theorem 3. Further in
the paper, we express the parameter α in terms of r and the quality parameters ε and
δ. The expression differs depending on whether S is a set or a manifold of positive reach.
Inserting the appropriate expression into bound (2) yields the final bounds on ε and δ (see
Propositions 5 and 7).

(a) Any point in q + Nor(q, S) a distance less
than α from S is covered by P⊞r.

(b) If (q + Nor(q, S)) ∩ P⊞r is not star-shaped there
exists a point x where the segment L reenters a ball
B(p′, r) (in blue) in P⊞r after having left P⊞r closer
to q.

(c) The centre p′ of the ball B(p′, r) lies inside
the half-space H. The half-space H lies at least
a distance α from q.

(d) The ball of radius R is “tangent” to the set S,
thus it cannot contain any point of S in its interior.
Since the distance between p′ and S is bounded by δ,
p′ has to lie outside of the ball of radius R − δ. This
contradicts the fact that p′ lies in the half-space H
and is not too far from the normal space q+Nor(q, S).

Figure 3 A pictorial overview of the proof. The pink shaded region represents a part of the set
S, the union of balls P⊞r is coloured orange. The thickened blue segment shows those points of the
segment L that lie a distance less than α from S. Per assumption, this segment is contained in the
union of balls P⊞r.
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Proof of Theorem 3. We prove the claim by contradiction. For any point q ∈ S, the set
(q + Nor(q, S)) ∩

(
S⊞α

)
is contained in the union of balls P⊞r. In Figure 3a, we illustrate

this for the case where the set q + Nor(q, S) consists of one ray. Assume that there exists a
point q ∈ S and a vector v ∈ Nor(q, S), with ∥v∥ = 1, such that the intersection of P⊞r with
the segment

L =
def.

{q + λv | λ ∈ [0, R)}

consists of several connected components (as illustrated in Figure 3b). Thanks to Equation (1),
the connected component that contains q has length at least α. Let x be first point along
L, seen from q, lying inside a connected component of

(
P⊞r

)
∩ L that does not contain q.

Then x lies at the intersection of the segment L and a ball B(p′, r), with p′ ∈ P . We have
∥x − q∥ ≥ α. Furthermore, the point p′ is contained in the open half-space H orthogonal to
the vector v, that does not contain q, and whose boundary contains x. We stress that if p′

lies on the boundary of H then the line L is tangent to the sphere ∂B(p′, r), which is still
compatible with star-shapedness. The situation is illustrated in Figure 3c.

Let z = q + Rv be the open endpoint of L. Since, by Federer’s result [42, Theorem 4.8
(12)] (recalled in [13, Theorem 22]), the intersection S ∩ B(z, R)◦ is empty and the distance
between p′ and S is bounded by δ, we know that p′ /∈ B(z, R − δ)◦. Thus,

p′ ∈ A =
def.

H ∩ (Rd \ B(z, R − δ)◦).

Figure 4 The centre of the ball creating a new connected component along one direction in the
normal cone q + Nor(q, S) (in blue) is constrained to belong to the set A (in green). The set S is
coloured pink, the half-plane H in light blue.

The sphere ∂B(z, R − δ) has a non-empty intersection with the plane ∂H. Indeed, the sphere
passes through point q + δv which does not belong to H while its centre z belongs to H;
see Figure 3d. We can thus pick a point y in the intersection ∂H ∩ ∂B(z, R − δ). By the
Pythagorean theorem, the minimal squared distance between A and L is:

inf
a∈A
ℓ∈L

∥a − ℓ∥2 = ∥x − y∥2 = ∥z − y∥2 − (∥z − q∥ − ∥x − q∥)2 ≥ (R − δ)2 − (R − α)2,

SoCG 2024



11:10 Learning Homotopy in Euclidean Spaces and Riemannian Manifolds

as illustrated in Figure 4. Hence, if

r2 ≤ (R − δ)2 − (R − α)2, (2)

the ball B(p′, r) does not intersect L. Therefore, L ∩ (P⊞r) cannot have more than one
connected component. The set (q + Nor(q, S)) ∩ B(q, R) ∩ (P⊞r) is thus star-shaped with
centre q.

Since r satisfies Equation (2), we deduce that δ + r < R, and thus

P⊞r ⊆
(

S⊞R
)◦

.

Thanks to this, the fact that the set (q + Nor(q, S)) ∩ B(q, R) ∩ (P⊞r) is star-shaped with
centre q, and Federer’s result [42, Theorem 4.8 (12)] (recalled in [13, Theorem 22]), the map

H :[0, 1] × (P⊞r) → P⊞r,

(t, x) 7→ (1 − t)x + tπS(x),

is well-defined.
Furthermore, since S has positive reach, then, thanks to Federer’s theorem [42, Theo-

rem 4.8 (12)] (recalled in [13, Theorem 21]), the projection πS is (Lipschitz) continuous.
Thus, the map H is a deformation retract from the union of balls P⊞r to the set S. ◀

In [13, Appendix E], we provide an alternative proof of Theorem 3, similar to an argument
presented in [32].

4.3 Bounds on the sampling parameters
Recall that throughout the paper we assume the Universal Assumption 2. For sets of positive
reach, we obtain the following bounds on the quality parameters ε and δ:

▶ Proposition 5. If ε and δ satisfy

ε +
√

2 δ ≤ (
√

2 − 1)R, (3)

there exists a radius r > 0 such that the union of balls P⊞r =
⋃

p∈P B(p, r) deformation-
retracts onto S along the closest point projection. In particular, r can be chosen as:

r ∈
[

1
2

(
R + ε −

√
∆
)

,
1
2

(
R + ε +

√
∆
)]

, (4)

where ∆ = 2(R − δ)2 − (R + ε)2.

▶ Remark 6. The interval for r as given in (4) can be slightly extended to

r ∈

[
1
2

(
R + ε −

√
∆
)

,

√
1
2(R − δ)2 + 1

2(R + ε)
√

∆
]

, (5)

as we show in an alternative proof of Proposition 5 in [13, Appendix E]. It is not obvious
that even this improved bound is tight.
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If the set is a manifold, the bounds on ε and δ can be improved as follows:

▶ Proposition 7. If ε and δ satisfy

(R − δ)2 − ε2 ≥
(

4
√

2 − 5
)

R2 (6)

and δ ≤ ε, there exists a radius r > 0 such that the union of balls P⊞r deformation-
retracts onto M along the closest point projection. The radius r can be chosen as in [13,
equation (18)].

(a) At first, the thickening of the sample has three connected components per annulus. The thickening
thus has three times as many connected components as the set S.

(b) As the radius of the thickening grows, the connected components merge. However, at all times there
exists an additional cycle at one of the annuli (annulus A1 in this case).

(c) At the moment when the cycle at annulus A1 vanishes, another cycle is formed at annulus A2.

Figure 5 A pictorial explanation of why P⊞r never has the homotopy type of the set S. We
only depict three annuli in the sequence of Ais. The set S is in blue, the sample P in red, and the
thickening of P in pink. The black circles indicate the location of the two isolated sample points of
P associated to each annulus.

Both in Propositions 5 and 7, the interval for r tends to [0, R] as ε and δ tend to zero.

4.4 Tightness of the bounds on the sampling parameters

Our sampling criteria for homotopy inference of sets of positive reach are tight in the following
sense:
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▶ Proposition 8. Suppose that the dimension d of the ambient space Rd satisfies d ≥ 2, and
the one-sided Hausdorff distances ε and δ fail to satisfy bound (3). Then there exists a set S
of positive reach and a sample P that satisfy Universal Assumption 2, while the homology of
the union of balls P⊞r does not equal the homology of S for any r.

We construct the set S and the sample P explicitly in R2. The set S consists of a finite
family of annuli Ai, the first three of which are depicted in Figure 5. The sample P is
the union of a circle and two points for every annulus. In Figure 5, we illustrate that the
thickening of the sample never captures the homotopy type of the set S. The details of the
construction and the proof of Proposition 8 are provided in [13, Section A.3.1].

Ti Ci
pi p̃i

C′
i

Figure 6 The (half of the) torus Ti depicted in blue; the sample – the set Ci and the points pi

and p̃i – in red. In black we indicate the circle C′
i on which the points pi and p̃i lie. The closest

point projection of this circle onto M is indicated in blue.

▶ Proposition 9. Suppose that the dimension d of the ambient space Rd satisfies d ≥ 3, the
one-sided Hausdorff distances ε and δ fail to satisfy bound (6), and δ ≤ ε. Then there exists
a manifold M of positive reach and a sample P that satisfy Universal Assumption 2, while
the homology of the union of balls P⊞r does not equal the homology of M for any r.

We again construct the manifold M and the sample P explicitly, this time in R3. The
manifold M is the union of a finite family of tori Ti. The sample P consists of one set Ci

and one pair of points {pi, p̃i} for each torus Ti. The set Ci is constructed by taking a copy
of Ti, decreasing the minor radius and cutting out a part close to the axis of revolution.
We illustrate the manifold M =

⋃
i Ti together with the sample P =

⋃
i Ci ∪ {pi, p̃i} in

Figure 6, and sketch why the underlying homology is not captured in Figure 7. The proof of
Proposition 9 as well as details on the construction are provided in [13, Section A.3.2].

A video animating our construction has been submitted to the Media Exposition at
Computational Geometry Week 2024 [12].
▶ Remark 10. For simplicity, the sets constructed, see Figures 7 and 5 (or [13, Example 31]
and [13, Example 34] for details), are not connected. However, in each construction one can
glue the connected components together in a way that preserves the reach, and the resulting
examples still yield Propositions 8 and 9. See Figure 8 for a sketch of the modification
needed.
▶ Remark 11. Propositions 8 and 9 show that the bounds (3) and (6) are tight in (ambient)
dimensions d ≥ 2, resp. d ≥ 3. We did not construct similar examples in lower dimensions.
Nevertheless, our intuition is that, in these cases, the bounds (3) and (6) can be improved
further.
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T0

p0 p̃0 p1 p̃1 p2 p̃2

T1 T2

C⊞r
0

C0

C⊞r
1

C1

C⊞r
2

C2

(a) At first, the balls around the points pi and p̃i do not intersect the thickening of the set Ci, and thus
the number of connected components of the thickening (in pink) of P is different from the number of
components of the manifold.

T0

p0 p̃0 p1 p̃1 p2 p̃2

T1 T2

C⊞r
0

C0

C⊞r
1

C1

C⊞r
2

C2

(b) Then we create a (or possibly multiple) spurious cycle(s) for the first torus in the sequence (on the
left).

T0

p0 p̃0 p1 p̃1 p2 p̃2

T1 T2

C⊞r
0

C0

C⊞r
1

C1

C⊞r
2

C2

(c) By the time the spurious cycles at the first torus have disappeared, others have been created at the
second torus. This process is then repeated for all tori in the sequence as r increases.

Figure 7 The construction for manifolds imitates the construction for general sets of positive
reach as much as possible. The manifold M is depicted in blue, the sample P in red, and the
thickening in pink. We only display the part of objects below a horizontal clipping plane.

Figure 8 The connected variants of our sets S and M are a topological disc with k holes and a
genus k surface. On the left we sketch both the sample and the set of positive reach, on the right we
only give the sample for the manifold setting because of visualization constraints.

5 Results for subsets of Riemannian manifolds

5.1 Setting

In the second part of this paper we consider subsets of a (C2) Riemannian manifold N . In
this Riemannian setting we denote (geodesic) balls with radius r > 0 centred at a point
p ∈ N by B(p, r), and write A⊞r =

⋃
a∈A B(a, r) for the union of (geodesic) balls of radius

r centred at a subset A ⊆ N . Similarly, the one-sided Hausdorff distance from X ⊆ N
to Y ⊆ N is defined as the smallest ρ such that the union of (geodesic) balls of radius ρ

centered at X covers Y .
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To be able to proceed as in the Euclidean setting and state tight bounds on the sampling
parameters, we need a notion of the reach in the Riemannian setting. To this end, we
introduce a new definition, inspired by the cut locus (which is defined for example in [18]):

▶ Definition 12 (Cut locus). Given a closed subset S ⊆ N , the cut locus of S is the set
clN (S) of points p ∈ N for which there are at least 2 geodesics of minimal length from p to
some point in S.

▶ Definition 13 (Cut locus reach). The cut locus reach rchcl
N (S) of a closed set S ⊆ N is

the infimum of distances between S and its cut locus clN (S):

rchcl
N (S) =

def.
inf

p∈S,
q∈clN (S),

dN (p, q).

Our definition is a refinement of the notion used by Bangert and Kleinjohann [16, 53, 54],
as well as the reach defined in [24]. We explain why our new definition is appropriate for the
learning of topological features in [13, Appendix F]. Using the new extension of the reach we
assume the following conditions, which resemble the ones in the Euclidean setting closely:

▶ Universal assumption in the Riemannian setting 14. We work with a closed set
S ⊆ N with positive cut locus reach rchcl

N (S), and let R > 0 be a constant satisfying
R ≤ rchcl

N (S). Furthermore, we consider a set P ⊆ N , such that the one-sided
Hausdorff distance from P to S is at most δ, and the one-sided Hausdorff distance
from S to P is at most ε. That is, S ⊆ P⊞ε and P ⊆ S⊞δ. We assume that δ, ε < R.
We also assume that the sectional curvatures of the manifold N are lower bounded by
a constant Λℓ ∈ R. When Λℓ > 0 and S = M is a manifold, we can safely assume,
thanks to [13, Lemma 62], that R ≤ π

2
√

Λℓ
.

This assumption is used in Section 5 and [13, Appendix B].

5.2 Bounds on the sampling parameters
Also in the Riemannian setting we provide (tight) bounds that the sample P needs to satisfy
in order to be able to infer homotopy. For sets of positive (cut locus) reach, we obtain the
following bounds on ε and δ:

▶ Proposition 15. If ε and δ satisfy

2 cos
(√

Λℓ(R − δ)
)

− cos
(√

Λℓ(R + ε)
)

≤ 1 if Λℓ > 0,
√

2(R − δ) − (R + ε) ≤ 0 if Λℓ = 0, (7)

2 cosh
(√

|Λℓ|(R − δ)
)

− cosh
(√

|Λℓ|(R + ε)
)

≥ 1 if Λℓ < 0,

there exists a radius r > 0 such that the union of balls P⊞r deformation-retracts onto S along
the closest point projection. In particular, r can be chosen as:

r = 1
2 (R + ε) . (8)

If the set is a manifold, the bounds on ε and δ can be improved as follows:
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▶ Proposition 16. Let x̃ =
√

|Λℓ|x. For δ ≤ ε satisfying(
2 cos ε̃ cos R̃ − 3 cos

(
R̃ − δ̃

))2 ≤

(
cos ε̃ − cos

(
R̃ − δ̃

)
cos R̃

sin R̃

)2

+ cos2 (R̃ − δ̃
)

if Λℓ > 0, (9)

(R − δ)2 − ε2 ≥
(
4
√

2 − 5
)

R2

if Λℓ = 0, (6)

2 cosh ε̃ cosh R̃ ≤ 3 cosh
(
R̃ − δ̃

)
and

cosh2 (R̃ − δ̃
)

≤

(
cosh ε̃ − cosh

(
R̃ − δ̃

)
cosh R̃

sinh R̃

)2

+
(
2 cosh ε̃ cosh R̃ − 3 cosh

(
R̃ − δ̃

))2

if Λℓ < 0, (10)

there exists a radius r > 0 such that P⊞r deformation-retracts onto M along the (geodesic)
closest point projection πM. The interval from which r can be chosen can be recovered from
[13, equations (42), (18), and (45)] respectively.

The computation of Čech complexes in a Riemannian manifold can be difficult (depending
on the manifold). Fortunately, we can avoid this step and still recover the homology:
▶ Remark 17. The results of Chazal and co-authors [33] on the interleaving between the
Čech and Rips complexes extend to the Riemannian setting. By combining their results with
the results of this paper, one can recover the homology type of a subset of positive reach of a
Riemannian manifold using persistent homology of Rips complexes.
The Rips complex is easier to calculate than the Čech complex, since the calculation only
involves distances between pairs of points.

5.3 Tightness of the bounds on the sampling parameters
We exhibit the tightness of the bounds on ε and δ from Propositions 15 and 16 by constructions
of examples in (simply connected) spaces of constant curvature. These constructions are
similar to the Euclidean setting – they also consist of annuli and tori, see Figure 9. However,
due to the curvature of the ambient manifold, the proof of the tightness of the bounds is
significantly more involved (see [13, Appendix B.4]).

Figure 9 The construction for sets of positive reach on a manifold with (constant) positive
curvature (the sphere). For a detailed version of the figure see [13, Figure 23].
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6 Future work

This article leaves several important questions unanswered. We mention three.
First of all, we consider the union of balls centered on a sample P whose homotopy type

is equal to that of the Čech complex of P and, when the ambient space is a Riemannian
manifold, the radius of balls is smaller than the convexity radius.

It would be interesting to see if our work would help understanding the same question for
Rips complexes. For related work see e.g. [6, 7, 50, 55].

Second, we consider sets embedded in Riemannian manifolds whose sectional curvature is
lower bounded. A natural question is under which conditions do our results generalize to a
larger class of metric spaces with lower bounded curvatures.

The generalized gradient of the distance function and its flow have been used to generalize
results on subsets of positive reach in Euclidean space to subsets with positive µ-reach and
weak feature size [27, 28, 31, 33]. Our work on the cut locus reach makes it possible to
extend the notations of positive µ-reach and weak feature size to Riemannian manifolds. It
is expected that many of the main results from the Euclidean setting still hold with minor
modifications in this more general context.
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