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Abstract
Geometric matching is an important topic in computational geometry and has been extensively
studied over decades. In this paper, we study a geometric-matching problem, known as geometric
many-to-many matching. In this problem, the input is a set S of n colored points in Rd, which
implicitly defines a graph G = (S, E(S)) where E(S) = {(p, q) : p, q ∈ S have different colors}, and
the goal is to compute a minimum-cost subset E∗ ⊆ E(S) of edges that cover all points in S. Here
the cost of E∗ is the sum of the costs of all edges in E∗, where the cost of a single edge e is the
Euclidean distance (or more generally, the Lp-distance) between the two endpoints of e. Our main
result is a (1 + ε)-approximation algorithm with an optimal running time Oε(n log n) for geometric
many-to-many matching in any fixed dimension, which works under any Lp-norm. This is the
first near-linear approximation scheme for the problem in any d ≥ 2. Prior to this work, only the
bipartite case of geometric many-to-many matching was considered in R1 and R2, and the best
known approximation scheme in R2 takes Oε(n1.5 · poly(log n)) time.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases many-to-many matching, geometric optimization, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.SoCG.2024.12

Related Version Full Version: https://arxiv.org/abs/2402.15837

1 Introduction

A central topic in computational geometry is the study of optimization problems on edge-
weighted graphs that are defined geometrically (sometimes known as geometric graphs).
Typically, geometric graphs use points in Rd as their vertices, and the Euclidean distance
(or distance under other norms) between two points naturally defines the weight of an edge.
Many fundamental graph optimization problems have been investigated on geometric graphs,
including minimum spanning tree [2, 30, 38], Steiner trees [8, 12, 39], traveling salesman
problem [4, 5, 17], spanners [6, 24, 29], matching [1, 44, 45], etc. By exploiting the underlying
geometry, these problems can usually be solved much more efficiently on geometric graphs,
compared to general edge-weighted graphs.

In this paper, we focus on a particularly important class of problems on geometric graphs,
the matching-related problems. These problems have applications in a wide range of areas,
e.g., computational biology [11], data mining [10], computational music [40, 41], machine
learning [37], etc. When studying matching problems on geometric graphs, there are two
settings commonly used in the literature. The first one, called the bipartite setting, requires
the input points to be bichromatic and the graph considered is the complete bipartite graph
consisting of edges between points with different colors. The second one, called the complete
setting, simply considers the complete graph induced by the input points.
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12:2 Approximation for Geometric Many-To-Many Matching

One of the matching problems that has received most attention on geometric graphs is
the classical minimum-weight perfect matching problem, where the goal is to compute a set
of vertex-disjoint edges with minimum total weight that cover all vertices. The problem can
be solved in O(nm + n2 log n) time on any graph with n vertices and m edges, by the seminal
work of Fredman and Tarjan [21]. A popular line of research [1, 25, 26, 33, 42, 44, 45] in
computational geometry investigated minimum-weight perfect matching on geometric graphs,
leading to much faster exact and approximation algorithms. The exact algorithms were
designed for the problem in R2. The best algorithm for the bipartite setting [26] runs in
O(n2 · poly(log n)) time where n is the number of input points, while the best algorithm for
the complete setting [44] runs in O(n1.5 ·poly(log n)) time. The approximation algorithms are
much more general and efficient. It was known that in both bipartite and complete settings,
the problem admits (1 + ε)-approximation algorithms with running time Oε(n · poly(log n))
in Rd for any fixed d [1, 33, 45]. Here Oε(·) hides factors depending only on ε.

The minimum-weight perfect matching problem has an interesting variant, which is also
a classical problem known as many-to-many matching or edge cover [20, 23, 27, 31, 32, 46].
In this variant, the only difference is that the edges in the solution need not to be vertex-
disjoint. In other words, it simply asks for a set of edges with minimum total weight that
cover all vertices. Many-to-many matching can be reduced to minimum-weight perfect
matching [27], and is thus polynomial-time solvable. On geometric graphs, many-to-many
matching, while having received less attention than minimum-weight perfect matching, also
has a long history. Eiter and Mannila [18] introduced the problem for the first time in 1997,
under the name of link distance, in order to mesure the similarity between two sets of points.
Colannino and Toussaint [15] showed that bipartite geometric many-to-many matching in
R1 can be solved in O(n2) time. Later, Colannino et al. [14] improved this result and
obtained an optimal O(n log n)-time algorithm, which completely settles the complexity of
the problem in R1 (for the bipartite setting). Several variants of the problem in R1 have also
been considered [34, 35, 36]. Recently, Bandypadhyay et al. [9] studied bipartite geometric
many-to-many matching in R2 and designed two algorithms. The first algorithm solves the
problem in O(n2 · poly(log n)) time. This algorithm is based on the general reduction from
many-to-many matching to perfect matching, and exploits various geometric data structures
to implement the reduction and the Hungarian algorithm [28] for perfect matching in an
efficient way. The second algorithm is a (1 + ε)-approximation algorithm which runs in
Oε(n1.5 · poly(log n)) time. The basic idea of this algorithm is similar to the first one, but it
uses the multi-scale algorithm of Gabow and Tarjan [22] for perfect matching instead of the
Hungarian algorithm, which can be implemented more efficiently in the geometric setting
by losing a factor of at most 1 + ε in cost. In higher dimensions, no nontrivial results for
geometric many-to-many matching were known, to the best of our knowledge.

As one can see in the above discussion, in terms of exact algorithms, the best known
bounds for geometric many-to-many matching are similar to the bounds for geometric
(minimum-weight) perfect matching, at least in the bipartite setting – both problems can be
solved in near-quadratic time in R2 [9, 26] and are open in higher dimensions. However, in
terms of approximation, geometric many-to-many matching is much less well-understood
than geometric perfect matching. Even in R2, no approximation scheme for geometric
many-to-many matching with near-linear running time was known, while geometric perfect
matching admits near-linear approximation schemes in any fixed dimension [1, 33, 45]. This
motivates the following natural question, which is the subject of this paper.

Question: Does geometric many-to-many matching admit a (1 + ε)-approximation
algorithm with running time Oε(n · poly(log n)) in Rd for any fixed d?
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We answer the above question affirmatively by giving such an approximation scheme for
geometric many-to-many matching. In fact, our results are much stronger and more general.
Our algorithm has an optimal Oε(n log n) running time, works under any Lp-norm, and
applies to both bipartite and complete settings (and beyond). We shall discuss our results in
detail in the next section.

Our results
We study geometric many-to-many matching in a colored setting which simultaneously
generalizes the aforementioned bipartite and complete settings for geometric graphs. Here,
each input point is associated with a color (the total number of colors can be unbounded) and
the graph considered has edges between every pair of points with different colors. Clearly,
the colored setting is equivalent to the bipartite setting when there are only two colors and
is equivalent to the complete setting when all points have distinct colors. Let S be a set of
colored points in Rd. We write E(S) = {(p, q) : p, q ∈ S have different colors} as the edge
set of the geometric graph induced by S. The Lp-cost of an edge e ∈ E(S) is the Lp-distance
between its two endpoints, and the Lp-cost of a subset E ⊆ E(S) is the sum of the Lp-costs
of all edges in E. We say E ⊆ E(S) covers a point in S if the point is an endpoint of an
edge in E. The geometric many-to-many matching problem is formally defined as follows.

Geometric Many-to-Many Matching
Input: A set S of n colored points in Rd.
Goal: Compute E∗ ⊆ E(S) with minimum Lp-cost which covers all points in S.

When studying the problem, we assume that the input points in S are already clustered
by their colors so that we do not need extra time to compute the color-partition of S.
Alternatively, one can assume the colors belong to [n] = {1, . . . , n} and thus the color-
partition of S can be computed in linear time. Our main result is the following theorem.

▶ Theorem 1. For any fixed d ∈ N and p ≥ 1, geometric many-to-many matching in Rd

under the Lp-norm admits a (1 + ε)-approximation algorithm with running time Oε(n log n).

Note that the running time in Theorem 1 is optimal up to a factor depending on ε. Indeed,
as observed in [14], any approximation algorithm for geometric many-to-many matching in
R1 requires Ω(n log n) time, due to a reduction from set equality.

Interestingly, our algorithm in Theorem 1 completely bypasses the reduction from many-to-
many matching to minimum-weight perfect matching. This allows us to avoid the techniques
for perfect matching such as augmenting paths, which were commonly used in the previous
algorithms for geometric matching problems [1, 9, 33]. Instead, our algorithm exploits the
nice structures of the many-to-many matching problem itself, and solves the problem by
nontrivially combining Baker’s shifting technique [7], grid techniques, approximate nearest-
neighbor search [13], and the FPT algorithm for integer linear programming [16].

2 Preliminaries

Basic notations. We use N to denote the set of natural numbers including 0. For a
number n ∈ N, we write [n] = {1, . . . , n}. A colored point in Rd is a point p ∈ Rd with
a color, which we denote by cl(p). Let S be a set of colored points in Rd. We define
E(S) = {(p, q) : p, q ∈ S and cl(p) ̸= cl(q)} as the edge set on S. Here, the pairs in E(S) are
unordered, i.e., (p, q) and (q, p) are viewed as one element in E(S). For a subset E ⊆ E(S),
we denote by V (E) ⊆ S the subset consisting of the endpoints of the edges in E.

SoCG 2024



12:4 Approximation for Geometric Many-To-Many Matching

Foreign neighbors. Let S be a set of colored points in Rd. For a point p ∈ S, a foreign
neighbor of p in S refers to another point q ∈ S satisfying cl(q) ̸= cl(p). We say q is a c-
approximate nearest foreign neighbor of p in S (with respect to a metric dist : Rd ×Rd → R≥0)
if dist(p, q) ≤ c · dist(p, q′) for all foreign neighbors q′ of p in S. The following lemma is a
direct consequence of the dynamic approximate nearest neighbor data structure of Chan et
al. [13]. We omit its proof here, which can be found in the full version of the paper.

▶ Lemma 2. Given a set S of n colored points in Rd, one can compute in Oε(n log n) time
a function ann : S → S which maps each point in S to a (1 + ε)-approximate nearest foreign
neighbor (with respect to the Euclidean distance) of that point in S. The algorithm generalizes
to the Lp-norm for any fixed p ≥ 1.

Grids. A d-dimensional grid refers to a (infinite) set of axis-parallel hyperplanes that
partition Rd into same-sized axis-parallel hypercubes (called grid cells or simply cells). A
d-dimensional grid can be characterized by a number w > 0 called the cell-size and a
vector (k1, . . . , kd) ∈ Rd called the offset. Specifically, the grid with cell-size w and offset
(k1, . . . , kd), denoted by Γw(k1, . . . , kd), consists of the hyperplanes whose equations are of
the form xi = wt + ki for i ∈ [d] and t ∈ Z. In other words, Γw(k1, . . . , kd) is the (unique)
grid in which the cells are hypercubes of side-length w and (k1, . . . , kd) is a grid point (i.e., a
vertex of a cell). Figure 1 presents the 2-dimensional grid Γ3(1, 2).

(1, 2)

(1, 5)

(1, 8)

(4, 2)

(4, 5)

(4, 8)

(7, 2)

(7, 5)

(7, 8)

(10, 2)

(10, 5)

(10, 8)

Figure 1 The 2-dimensional grid Γ3(1, 2). The numbers are the coordinates of the grid points.

For a set S of points in Rd, a (d-dimensional) grid naturally induces a partition of S in
which each part consists of the points in one grid cell. To guarantee that every point in Rd

belongs to exactly one grid cell, we define the cells as hypercubes that are closed on the lower
side and open on the higher side. Formally, every grid cell of Γw(k1, . . . , kd) is a hypercube∏d

i=1[tiw + ki, (ti + 1)w + ki) where (t1, . . . , td) ∈ Zd.

3 The approximation scheme

We present our approximation scheme under the Euclidean norm. Its extension to any
Lp-norm is straightforward, and will be briefly discussed in Section 3.4.

Let S be a set of n colored points in Rd. For each point p, let nn(p) ∈ S be the nearest
foreign neighbor of p in S (with respect to the Euclidean distance). For simplicity of
exposition, we shall first present our algorithm under the assumption that nn(p) for every
p ∈ S is known to us. It is unlikely to compute all nearest foreign neighbors in near-linear
time for d ≥ 3 [19]. However, as we only want an approximation algorithm, it turns out that
knowing approximate nearest foreign neighbors (which can be computed efficiently using
Lemma 2) is already sufficient. We shall discuss this in Section 3.4.
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We define ϕ(p) as the distance between p and nn(p) for all p ∈ S. The feasible solutions
for geometric many-to-many matching on S are subsets E ⊆ E(S) satisfying V (E) = S. It
is more convenient to consider an equivalent formulation of the problem where all subsets of
E(S) are feasible solutions, which we call the penalized formulation. In this formulation, we
allow the solution to not cover all points in S, but for every uncovered point p ∈ S, there is a
penalty of ϕ(p) added to the cost of the solution. Formally, the cost of a solution E ⊆ E(S)
is

∑
e∈E |e| +

∑
p∈S\V (E) ϕ(p), where |e| denotes the length of e, i.e., the Euclidean distance

between the endpoints of e. To see this formulation is equivalent to the original one, let opt
(resp., opt′) be the optimum of the original (resp., penalized) formulation of the problem.
Clearly, a solution of the original formulation is also a solution of the penalized formulation
with the same cost, which implies opt ≥ opt′. The following lemma shows opt ≤ opt′.

▶ Lemma 3. Given a subset E ⊆ E(S), one can compute in O(n + |E|) time another subset
E′ ⊆ E(S) such that V (E′) = S and

∑
e∈E′ |e| ≤

∑
e∈E |e| +

∑
p∈S\V (E) ϕ(p).

Proof. We simply set E′ = E ∪ {(p, nn(p)) : p ∈ S\V (E)}, which can be computed in
O(n + |E|) time (given the nearest foreign neighbors). Clearly, V (E′) = S. For an edge
e = (p, nn(p)), we have |e| = ϕ(p). Thus,

∑
e∈E′ |e| ≤

∑
e∈E |e| +

∑
p∈S\V (E) ϕ(p). ◀

As opt = opt′, a c-approximation solution for the original formulation is also a c-
approximation solution for the penalized formulation. On the other hand, Lemma 3 shows
that given a c-approximation solution for the penalized formulation, one can compute in linear
time a c-approximation solution for the original formulation. Thus, the two formulations are
equivalent, and it suffices to solve the penalized formulation.

We sort the points in S by their coordinates in every dimension, and also by their ϕ-values.
The benefit of considering the penalized formulation is that it allows us to properly define
subproblems. Specifically, for R ⊆ S and E ⊆ E(R), we write

costR(E) =
∑
e∈E

|e| +
∑

p∈R\V (E)

ϕ(p).

We define a subproblem Prob(R) for every R ⊆ S, which aims to compute E ⊆ E(R)
that minimizes costR(E). Note that Prob(R) is not exactly equivalent to the (penalized)
geometric many-to-many matching problem on R, as the penalty ϕ(p) for p ∈ R is defined by
the nearest foreign neighbor of p in S (rather than R). We observe the following simple fact.

▶ Fact 4. Let R ⊆ S and E∗ ⊆ E(R) be an optimal solution of Prob(R). Then any edge
e = (p, q) ∈ E∗ satisfies |e| ≤ ϕ(p) + ϕ(q).

Proof. Assume there exists e = (p, q) ∈ E∗ with |e| > ϕ(p) + ϕ(q). Then costR(E∗\{e}) ≤
costR(E∗) − |e| + ϕ(p) + ϕ(q) < costR(E∗), contradicting the optimality of E∗. ◀

Clearly, our final goal is to compute a (1+ε)-approximation solution for Prob(S). Without
loss of generality, assume ε ≤ 1. For R ⊆ S, we denote by opt(R) = minE⊆E(R) costR(E) as
the optimum of subproblem Prob(R). Our algorithm first applies two reductions, which
eventually reduce Prob(S) to certain well-structured subproblems. These reductions are
presented in Sections 3.1 and 3.2. Then we use grid technique together with the FPT
algorithm for integer linear programming to solve these subproblems, which is discussed in
Section 3.3. Finally, we put everything together and prove Theorem 1 in Section 3.4.

SoCG 2024



12:6 Approximation for Geometric Many-To-Many Matching

3.1 First reduction
In the first step, we reduce the problem Prob(S) to subproblems Prob(R) where the points
in R have similar ϕ-values. For R ⊆ S, let ∆R = maxp∈R ϕ(p)/ minp∈R ϕ(p). Our goal in
this section is to prove the following lemma.

▶ Lemma 5. Suppose for every subset R ⊆ S satisfying ∆R ≤ ( 3
ε )⌈ 3

ε ⌉, one can compute
in Oε(|R|) time a (1 + ε

2 )-approximation solution for Prob(R). Then one can compute in
Oε(n) time a (1 + ε)-approximation solution for Prob(S).

The basic idea of this reduction is the following. We distinguish the edges in E(S) as
balanced edges and unbalanced edges. The balanced edges are those whose two endpoints
have similar ϕ-values. It turns out that the unbalanced edges can be “ignored” almost for
free. Regarding only the balanced edges, we can then apply Baker’s shifting technique [7] on
the ϕ-values to decompose the problem. Below we discuss the reduction in detail.

For each point p ∈ S, we write ϕ′(p) = log3/ε ϕ(p). We say an edge e = (p, q) ∈ E(S) is
balanced if |ϕ′(p) − ϕ′(q)| ≤ 1, and unbalanced otherwise.

▶ Observation 6. For any unbalanced edge e = (p, q) ∈ E(S), ϕ(p) + ϕ(q) ≤ (1 + ε
3 ) · |e|.

Proof. Without loss of generality, assume ϕ(p) ≥ ϕ(q). As e is unbalanced, |ϕ′(p)−ϕ′(q)| > 1
and thus ϕ(p) > 3

ε · ϕ(q). Note that |e| ≥ ϕ(p) by the definition of ϕ(p). Therefore, we have
ϕ(p) + ϕ(q) ≤ (1 + ε

3 ) · ϕ(p) ≤ (1 + ε
3 ) · |e|. ◀

Set w = ⌈ 3
ε ⌉. For each i ∈ [w], we construct the (1-dimensional) grid Γw(i) – recall that

Γw(i) is the grid with cell-size w and offset i. For an edge e = (p, q) ∈ E(S), we define
Ie = {i ∈ [w] : ϕ′(p) and ϕ′(q) lie in the same cell of Γw(i)}.

▶ Observation 7. For any balanced edge e ∈ E(S), |Ie| ≥ w − 1.

Proof. Suppose e = (p, q). Since e is balanced, |ϕ′(p) − ϕ′(q)| ≤ 1 and thus there exists at
most one integer i∗ ∈ [ϕ′(p), ϕ′(q)). For any i ∈ [w], i /∈ Ie iff i∗ exists and i is congruent
with i∗ modulo w. Thus, |Ie| = w if i∗ does not exist and |Ie| = w − 1 if i∗ exists. ◀

For each i ∈ [w], the grid Γw(i) induces a partition of the values in {ϕ′(p) : p ∈ S}, which
in turn induces a partition Ri of S. In other words, Ri partitions S into subsets each of
which contains the points in S whose ϕ′-values lying in one cell of Γw(i).

▶ Observation 8. There exists i ∈ [w] such that
∑

R∈Ri
opt(R) ≤ (1 + ε

3 ) · opt(S).

Proof. Let E∗ ⊆ E(S) be an optimal solution of Prob(S). Also, let B∗ ⊆ E∗ and U∗ ⊆ E∗

be the subsets consisting of balanced and unbalanced edges in E∗, respectively. For i ∈ [w],
define N∗

i = {e ∈ B∗ : i /∈ Ie}. By Observation 7, each balanced edge e ∈ B∗ is contained in
at most one set N∗

i . Thus, we have
∑w

i=1
∑

e∈N∗
i

|e| ≤
∑

e∈B∗ |e|, which implies the existence
of an index i ∈ [w] such that

∑
e∈N∗

i
|e| ≤ (

∑
e∈B∗ |e|)/w ≤ ε

3 · (
∑

e∈B∗ |e|). We show that∑
R∈Ri

opt(R) ≤ (1 + ε
3 ) · opt(S). Note that N∗

i contains exactly the balanced edges in E∗

whose two endpoints belong to different sets in Ri. Therefore, we have∑
R∈Ri

opt(R) ≤
∑

R∈Ri

costR(B∗ ∩ E(R)) ≤ costS(E∗) −
∑

e∈U∗∪N∗
i

|e| +
∑

p∈V (U∗∪N∗
i

)

ϕ(p).

By Observation 6,
∑

p∈V (U∗) ϕ(p)−
∑

e∈U∗ |e| ≤ ε
3

∑
e∈U∗ |e|. Furthermore, every e = (p, q) ∈

E(S) satisfies |e| ≥ max{ϕ(p), ϕ(q)} ≥ 1
2 (ϕ(p) + ϕ(q)) by the definition of ϕ. Therefore,
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∑
e∈N∗

i
|e| ≥ 1

2
∑

p∈V (N∗
i

) ϕ(p). It follows that
∑

p∈V (N∗
i

) ϕ(p) −
∑

e∈N∗
i

|e| ≤
∑

e∈N∗
i

|e| ≤
ε
3

∑
e∈B∗ |e|, where the second inequality follows from the choice of i. Now,∑

R∈Ri

opt(R) ≤ costS(E∗) −
∑

e∈U∗∪N∗
i

|e| +
∑

p∈V (U∗∪N∗
i

)

ϕ(p)

≤ costS(E∗) +

 ∑
p∈V (U∗)

ϕ(p) −
∑

e∈U∗

|e|

 +

 ∑
p∈V (N∗

i
)

ϕ(p) −
∑

e∈N∗
i

|e|


≤ costS(E∗) + ε

3
∑

e∈U∗

|e| + ε

3
∑

e∈B∗

|e|

≤
(

1 + ε

3

)
· costS(E∗),

where the last inequality follows from the fact
∑

e∈U∗ |e|+
∑

e∈B∗ |e| =
∑

e∈E∗ |e| ≤ costS(E∗).
As costS(E∗) = opt(S), we conclude that

∑
R∈Ri

opt(R) ≤ (1 + ε
3 ) · opt(S). ◀

Using the above observation, we can now prove Lemma 5. We consider every i ∈ [w]
and compute the partition Ri of S. Note that Ri can be computed in O(n) time as we
sorted the points in S by their ϕ-values. For every R ∈ Ri, the ϕ′-values of the points
in R differ by at most w and thus ∆R ≤ ( 3

ε )w = ( 3
ε )⌈ 3

ε ⌉. Therefore, by our assumption,
for every R ∈ Ri, we can compute in Oε(|R|) time a (1 + ε

2 )-approximation solution
E∗

R ⊆ E(R) for Prob(R). The union E∗
i =

⋃
R∈Ri

E∗
R is a solution of Prob(S) and

costS(E∗
i ) =

∑
R∈Ri

costR(E∗
R) ≤ (1 + ε

2 )
∑

R∈Ri
opt(R). The total time for constructing E∗

i

is Oε(n), because
∑

R∈Ri
|R| = n. We construct the solution E∗

i for all i ∈ [w] and finally
output the best one among them. Observation 8 guarantees the existence of i ∈ [w] such that

costS(E∗
i ) ≤

(
1 + ε

2

) ∑
R∈Ri

opt(E∗
R) ≤

(
1 + ε

2

) (
1 + ε

3

)
· opt(S) ≤ (1 + ε) · opt(S).

Therefore, our algorithm gives a (1 + ε)-approximation solution for opt(S). Since w = Oε(1),
the total running time is still Oε(n). This completes the proof of Lemma 5.

3.2 Second reduction
In this section, we further reduce a subproblem Prob(R) with bounded ∆R to subproblems
Prob(Q) where Q has a small bounding box compared to the values ϕ(p) for p ∈ Q. For
Q ⊆ S, let WQ be the side-length of the smallest axis-parallel hypercube containing Q. Our
goal in this section is to prove the following lemma.

▶ Lemma 9. Suppose for every subset Q ⊆ S satisfying WQ ≤ 2⌈ 4d
ε ⌉( 3

ε )⌈ 3
ε ⌉ · minp∈Q ϕ(p),

one can compute in Oε(|Q|) time a (1 + ε
5 )-approximation solution for Prob(Q). Then for

every subset R ⊆ S satisfying ∆R ≤ ( 3
ε )⌈ 3

ε ⌉, one can compute in Oε(|R|) time a (1 + ε
2 )-

approximation solution for Prob(R).

This reduction is done again by a shifting technique. But this time, we apply grid shifting
to the space Rd. As the points in R have similar ϕ-values, the edges in an optimal solution
of Prob(R) also have similar lengths by Fact 4. This nice property allows us to use a shifted
grid to decompose the problem by losing a factor of 1 + O(ε) in cost.

Consider a subset R ⊆ S satisfying ∆R ≤ ( 3
ε )⌈ 3

ε ⌉. Let E∗ ⊆ E(R) be an optimal solution
of Prob(R). Set r = ⌈ 4d

ε ⌉, ϕ = maxp∈R ϕ(p), and w = r · 2ϕ. We say an edge e ∈ E∗ is
compatible with a tuple (k1, . . . , kd) ∈ [r]d if the two endpoints of e lie in the same cell of the
d-dimensional grid Γw(k1 · 2ϕ, . . . , kd · 2ϕ).
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12:8 Approximation for Geometric Many-To-Many Matching

▶ Observation 10. Every e ∈ E∗ is compatible with at least (r − 1)d tuples in [r]d.

Proof. Let e ∈ E∗. As ϕ = maxp∈R ϕ(p), by Fact 4, we have |e| ≤ 2ϕ. Thus, for every i ∈ [d],
there exists at most one integer k∗

i ∈ N such that the hyperplane xi = k∗
i · 2ϕ separates

the two endpoints of e. Note that e is compatible with a tuple (k1, . . . , kd) ∈ [r]d iff for
every i ∈ [d] such that k∗

i exists, ki and k∗
i are not congruent modulo r. For i ∈ [d], define

Ki = [r] if k∗
i does not exist and Ki = {k ∈ [r] : k is not congruent with k∗

i modulo r} if k∗
i

exists. Then the tuples which e is compatible with are exactly those in
∏d

i=1 Ki. We have
|Ki| ≥ r − 1 for all i ∈ [d]. Therefore, |

∏d
i=1 Ki| ≥ (r − 1)d. ◀

For a tuple σ = (k1, . . . , kd) ∈ [r]d, we denote by Qσ the partition of R induced by the
grid Γw(k1 · 2ϕ, . . . , kd · 2ϕ).

▶ Observation 11. There exists a tuple σ ∈ [r]d such that
∑

Q∈Qσ
opt(Q) ≤ (1 + ε

4 ) · opt(R).

Proof. For σ ∈ [r]d, denote by N∗
σ = {e ∈ E∗ : e is not compatible with σ}. By Observa-

tion 10, each e ∈ E∗ is contained in at most rd − (r − 1)d sets N∗
σ . Thus, we have∑

σ∈[r]d

∑
e∈N∗

σ

|e| ≤ (rd − (r − 1)d) ·
∑

e∈E∗

|e| ≤ (rd − (r − 1)d) · costR(E∗).

So there exists some σ ∈ [r]d such that
∑

e∈N∗
σ

|e| ≤ (rd − (r − 1)d)/rd · costR(E∗). Note
that (rd − (r − 1)d)/rd ≤ drd−1/rd = d/r ≤ ε

4 , which implies
∑

e∈N∗
σ

|e| ≤ ε
4 · costR(E∗). We

show that σ satisfies the condition
∑

Q∈Qσ
opt(Q) ≤ (1 + ε

4 ) · opt(R). Clearly,∑
Q∈Qσ

opt(Q) ≤
∑

Q∈Qσ

costQ(E∗ ∩ E(Q)) ≤ costR(E∗) −
∑

e∈N∗
σ

|e| +
∑

p∈V (N∗
σ )

ϕ(p).

Every edge e = (p, q) ∈ E(S) satisfies |e| ≥ max{ϕ(p), ϕ(q)} ≥ 1
2 (ϕ(p) + ϕ(q)) by the

definition of ϕ. Therefore,
∑

e∈N∗
σ

|e| ≥ 1
2

∑
p∈V (N∗

σ ) ϕ(p). It follows that

costR(E∗) −
∑

e∈N∗
σ

|e| +
∑

p∈V (N∗
σ )

ϕ(p) ≤ costR(E∗) +
∑

e∈N∗
σ

|e|,

which implies
∑

Q∈Qσ
opt(Q) ≤ costR(E∗) +

∑
e∈N∗

σ
|e|. Since

∑
e∈N∗

σ
|e| ≤ ε

4 · costR(E∗),
we finally have

∑
Q∈Qσ

opt(Q) ≤ (1 + ε
4 ) · costR(E∗) = (1 + ε

4 ) · opt(R). ◀

Using the above observation, we can now prove Lemma 9. We consider every tuple
σ ∈ [r]d. For each σ ∈ [r]d, we first compute the partition Qσ of R, which can be done in
O(|R|) time as the points in R are sorted in every dimension. For every Q ∈ Qσ,

WQ ≤ w = 2rϕ ≤ 2
⌈

4d

ε

⌉
· max

p∈R
ϕ(p) = 2

⌈
4d

ε

⌉
· ∆R min

p∈R
ϕ(p),

and thus WQ ≤ 2⌈ 4d
ε ⌉( 3

ε )⌈ 3
ε ⌉ · minp∈Q ϕ(p) as ∆R ≤ ( 3

ε )⌈ 3
ε ⌉ and minp∈R ϕ(p) ≤ minp∈Q ϕ(p).

Therefore, by our assumption, for every Q ∈ Qσ, we can compute in Oε(|Q|) time a (1 + ε
5 )-

approximation solution E∗
Q ⊆ E(Q) for Prob(Q). The union E∗

σ =
⋃

Q∈Qσ
E∗

Q is a solution
of Prob(R) and costR(E∗

σ) =
∑

Q∈Qσ
costQ(E∗

Q) ≤ (1 + ε
5 )

∑
Q∈Qσ

opt(Q). The total time
for constructing E∗

σ is Oε(|R|), because
∑

Q∈Qσ
|Q| = |R|. We construct the solution E∗

σ for
all σ ∈ [r]d and finally output the best one among them. Observation 11 guarantees the
existence of σ ∈ [r]d such that

costR(E∗
σ) ≤

(
1 + ε

5

) ∑
Q∈Qσ

opt(Q) ≤
(

1 + ε

5

) (
1 + ε

4

)
· opt(R) ≤

(
1 + ε

2

)
· opt(R).

Therefore, our algorithm gives a (1 + ε
2 )-approximation solution for opt(R). Since rd = Oε(1),

the total running time is still Oε(|R|). This completes the proof of Lemma 9.
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3.3 Solving a well-structured subproblem
By the reductions of Lemmas 5 and 9, it now suffices to show that for every Q ⊆ S satisfying
WQ ≤ 2⌈ 4d

ε ⌉( 3
ε )⌈ 3

ε ⌉ · minp∈Q ϕ(p), one can compute in Oε(|Q|) time a (1 + ε
5 )-approximation

solution for Prob(Q). In other words, our goal is to prove the following lemma.

▶ Lemma 12. For every subset Q ⊆ S satisfying WQ ≤ 2⌈ 4d
ε ⌉( 3

ε )⌈ 3
ε ⌉ · minp∈Q ϕ(p), one can

compute in Oε(|Q|) time a (1 + ε
5 )-approximation solution for Prob(Q).

The basic idea to solve such a subproblem Prob(Q) is the following. Using the fact
ϕ(p) = Ωε(|WQ|) for all p ∈ Q, we can partition the bounding box of Q into Oε(1) small
hypercubes such that the points in each hypercube have the same color and very similar
ϕ-values. This allows us to view the points in a small hypercube as a single “point” and
formulate an integer linear program with Oε(1) variables. We then apply the FPT algorithm
for integer linear programing [16] to solve the problem. Below we discuss this in detail.

If all points in Q have the same color, then E(Q) = ∅ and the subproblem Prob(Q) is
trivial. So assume Q contains points of at least two colors. Let □ be a hypercube containing
Q with side-length w = 2⌈ 4d

ε ⌉( 3
ε )⌈ 3

ε ⌉ · minp∈Q ϕ(p). We set r = 2d⌈ 4d
ε ⌉( 3

ε )⌈ 3
ε ⌉⌈ 44

ε ⌉ and evenly
partition □ into rd smaller hypercubes with side-length w

r . Let C be the set of the smaller
hypercubes which contain at least one point in Q. We have the following observation.

▶ Observation 13. For every C ∈ C, all points in Q ∩ C have the same color.

Proof. Equivalently, we show no edge in E(Q) has both endpoints in C. Assume e = (p, q)
with p, q ∈ Q ∩ C. Then |e| ≤ dw

r < ϕ(p), contradicting the fact that |e| ≥ ϕ(p). ◀

By the above observation, for each C ∈ C, we can define the color of C, denoted by
cl(C), as the color of the points in Q ∩ C. For a subset E ⊆ E(Q), we define a function
fE : C × C → N, where fE(C, C ′) is equal to the number of edges in E whose one endpoint
is in C and the other endpoint is in C ′. Also, we define a function gE : C → N, where
gE(C) = |Q ∩ C| − |V (E) ∩ C| is the number of points in C not matched by E.

▶ Observation 14. Let f : C × C → N and g : C → N be two functions. If there exists
E ⊆ E(Q) such that fE = f and gE = g, then the following conditions hold.
1. For any C, C ′ ∈ C, we have f(C, C ′) = f(C ′, C) = 0 if cl(C) = cl(C ′), and f(C, C ′) =

f(C ′, C) ≤ |Q ∩ C| · |Q ∩ C ′| if cl(C) ̸= cl(C ′).
2. For any C ∈ C, we have g(C) +

∑
C′∈C f(C, C ′) ≥ |Q ∩ C|.

Conversely, if f and g satisfy the conditions, then one can compute E ⊆ E(Q) in Oε(|Q|)
time such that fE(C, C ′) ≤ f(C, C ′) for all (C, C ′) ∈ C × C and gE(C) ≤ g(C) for all C ∈ C.

Proof. Suppose fE = f and gE = g for some E ⊆ E(Q). By the definition of fE , it is
clear that f(C, C ′) = f(C ′, C) for any C, C ′ ∈ C. For any C, C ′ ∈ C with cl(C) = cl(C ′),
there cannot be any edge in E with one endpoint is in C and the other endpoint is in
C ′, and thus f(C, C ′) = 0. For any C, C ′ ∈ C with cl(C) ̸= cl(C ′), there can be at most
|Q ∩ C| · |Q ∩ C ′| edges in E with one endpoint is in C and the other endpoint is in C ′, and
thus f(C, C ′) ≤ |Q ∩ C| · |Q ∩ C ′|. So condition 1 holds. To see condition 2, observe that for
any C ∈ C, |V (E) ∩ C| ≤

∑
C′∈C fE(C, C ′). Thus, by the definition of gE , we directly have

g(C) +
∑

C′∈C f(C, C ′) ≥ g(C) + |V (E) ∩ C| = |Q ∩ C|.
Now suppose f and g satisfy the two conditions. For (C, C ′) ∈ C × C with f(C, C ′) > |Q|,

we set f(C, C ′) = |Q|. After this change, f and g still satisfy the conditions. We construct
the desired subset E ⊆ E(Q) as follows. Initially, set E = ∅. For every C, C ′ ∈ C with
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cl(C) ̸= cl(C ′), we shall pick f(C, C ′) edges in E(Q) with one endpoint is in C and the other
endpoint is in C ′, and add them to E; this is possible since f(C, C ′) ≤ |Q ∩ C| · |Q ∩ C ′| by
condition 1. The resulting E guarantees fE = f (and thus the fE-values are smaller than or
equal to the original f -values). To further guarantee gE(C) ≤ g(C) for all C ∈ C, we use the
following rule to pick edges. When we want to pick an edge e with one endpoint in C and
the other endpoint in C ′ (and add it to E), we always choose the endpoints of e among the
points in Q ∩ C and Q ∩ C ′ that are not the endpoints of the edges in the current E; if no
such points exist, we then choose the endpoints of e arbitrarily. In this way, we can guarantee
that at the end, for every C ∈ C, either |V (E) ∩ C| =

∑
C′∈C f(C, C ′) or Q ∩ C = V (E) ∩ C.

In the former case, gE(C) = |Q ∩ C| − |V (E) ∩ C| = |Q ∩ C| −
∑

C′∈C f(C, C ′) ≤ g(C) by
condition 2. In the latter case, gE(C) = 0 ≤ g(C). This simple construction of E can be
done in Oε(|Q|) time since f(C, C ′) ≤ |Q| for all (C, C ′) ∈ C × C. ◀

For convenience, we write ϕ(C) = minp∈Q∩C ϕ(p) for C ∈ C. For C, C ′ ∈ C, let dist(C, C ′)
denote the Euclidean distance between the centers of the hypercubes C and C ′. Now for
functions f : C × C → N and g : C → N, we define

cost(f, g) = 1
2

∑
(C,C′)∈C×C

(f(C, C ′) · dist(C, C ′)) +
∑
C∈C

(g(C) · ϕ(C)).

▶ Observation 15. For every subset E ⊆ E(Q), we have(
1 − ε

21

)
cost(fE , gE) ≤ costQ(E) ≤

(
1 + ε

21

)
cost(fE , gE).

In particular, for any two subsets E, E′ ⊆ E(Q) satisfying cost(fE , gE) ≤ c · cost(fE′ , gE′),
we have costQ(E) ≤ (1 + ε

10 )c · costQ(E′).

Proof. We first show for any e ∈ E(Q), (1 − ε
21 ) · dist(C, C ′) ≤ |e| ≤ (1 + ε

21 ) · dist(C, C ′),
where C, C ′ ∈ C are the hypercubes containing the two endpoints of e. Suppose e = (p, q)
where p ∈ C and q ∈ C ′. We have |e| ≥ max{ϕ(p), ϕ(q)} ≥ w

r · d⌈ 44
ε ⌉. Observe that the

distance between any two points in C (or C ′) is at most w
r · d. Thus, the difference between

|e| and dist(C, C ′) is at most (2/⌈ 44
ε ⌉) · |e| ≤ ε

22 · |e|, which implies dist(C, C ′) ≥ 21
22 · |e|. It

follows that the difference between |e| and dist(C, C ′) is at most ε
21 · dist(C, C ′). So we have

(1 − ε
21 ) · dist(C, C ′) ≤ |e| ≤ (1 + ε

21 ) · dist(C, C ′).
Next, we show that for any p ∈ Q, ϕ(C) ≤ ϕ(p) ≤ (1 + ε

21 ) · ϕ(C), where C ∈ C is the
hypercube containing p. The inequality ϕ(C) ≤ ϕ(p) follows from the definition of ϕ(C).
To see ϕ(p) ≤ (1 + ε

21 ) · ϕ(C), suppose ϕ(C) = ϕ(q) for q ∈ Q ∩ C. By Observation 13,
cl(p) = cl(q). This implies |ϕ(p) − ϕ(q)| ≤ d · w

r , since the side-length of C is w
r . Note that

d · w
r ≤ ε

44 ϕ(q) ≤ ε
21 ϕ(q). Therefore, ϕ(p) ≤ (1 + ε

21 ) · ϕ(q).
Now we prove the observation. For each p ∈ Q, we denote by Cp ∈ C the hypercube

containing p. Let E = {e1, . . . , em} ⊆ E(Q) and suppose ei = (pi, qi) for i ∈ [m]. Then we
have costQ(E) =

∑m
i=1 |ei| +

∑
p∈Q\V (E) ϕ(p). As shown above, (1 − ε

21 ) · dist(Cpi
, Cqi

) ≤
|ei| ≤ (1 + ε

21 ) · dist(Cpi
, Cqi

) for all i ∈ [m] and ϕ(Cp) ≤ ϕ(p) ≤ (1 + ε
21 ) · ϕ(Cp) for all

p ∈ Q\V (E). Therefore, if we set α =
∑m

i=1 dist(Cpi
, Cqi

) +
∑

p∈Q\V (E) ϕ(Cp), then we have
(1 − ε

21 ) · α ≤ costQ(E) ≤ (1 + ε
21 ) · α. It suffices to show α = cost(fE , gE). By the definitions

of the functions fE and gE , we have

α = 1
2

m∑
i=1

(dist(Cpi
, Cqi

) + dist(Cqi
, Cpi

)) +
∑

p∈Q\V (E)

ϕ(Cp)

= 1
2

∑
(C,C′)∈C×C

(fE(C, C ′) · dist(C, C ′)) +
∑
C∈C

(gE(C) · ϕ(C)).
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Thus, α = cost(fE , gE). To see the second statement in the observation, let E, E′ ⊆ E(Q)
satisfying cost(fE , gE) ≤ c · cost(fE′ , gE′). Write α = cost(fE , gE) and α′ = cost(fE′ , gE′)
for convenience. It follows that

costQ(E) ≤
(

1 + ε

21

)
· α ≤

(
1 + ε

21

)
c · α′ ≤

(1 + ε
21 )c

1 − ε
21

· costQ(E′).

As (1 + ε
21 )/(1 − ε

21 ) ≤ 1 + ε
10 , we have costQ(E) ≤ (1 + ε

10 )c · costQ(E′). ◀

Thanks to Observation 14 and 15, we can use the following idea to compute a (1 + ε
5 )-

approximation solution for Prob(Q). We say a pair (f, g) of functions f : C × C → N and
g : C → N is valid if it satisfies the two conditions in Observation 14. First, we compute a
valid pair (f, g) satisfying cost(f, g) ≤ (1+ ε

11 ) ·cost(f ′, g′) for any valid pair (f ′, g′). We shall
show later how to efficiently compute such a pair (f, g) by solving an integer linear program.
Then we use Observation 14 to compute in Oε(|Q|) time a subset E ⊆ E(Q) satisfying
fE(C, C ′) ≤ f(C, C ′) for all (C, C ′) ∈ C × C and gE(C) ≤ g(C) for all C ∈ C. We claim that
E is a (1 + ε

5 )-approximation solution of Prob(Q). To see this, suppose E∗ ⊆ E(Q) is an
optimal solution of Prob(Q). The pair (fE∗ , gE∗) is valid by Observation 14. So we have
cost(fE , gE) ≤ cost(f, g) ≤ (1 + ε

11 ) · cost(fE∗ , gE∗). Then by Observation 15,

costQ(E) ≤
(

1 + ε

10

) (
1 + ε

11

)
· costQ(E∗) ≤

(
1 + ε

5

)
· costQ(E∗).

Now we show how to compute a valid pair (f, g) satisfying cost(f, g) ≤ (1+ ε
11 ) ·cost(f ′, g′)

for any valid pair (f ′, g′). This is done by formulating an integer linear program with Oε(1)
variables and applying the FPT algorithm for integer linear programming [16]. We view the
values f(C, C ′) for (C, C ′) ∈ C × C and g(C) for C ∈ C as integer variables. The objective
function to be minimized is cost(f, g), which is a linear function of the variables. To check if
(f, g) is valid, it is equivalent to check if (f, g) satisfies the two conditions in Observation 14,
which can be described as linear constraints on the variables. Therefore, finding a valid pair
(f, g) with minimum cost(f, g) is equivalent to assigning (non-negative) integer values to the
variables to minimize the objective function under the linear constraints. Note that this is
not exactly an integer linear program, because the coefficients of the objective function are
real numbers (while the coefficients of the linear constraints are all integers). However, as
we only need a valid pair (f, g) with approximately minimum cost(f, g), we can round these
real coefficients to integers without changing the program too much. Observe that for any
distinct C, C ′ ∈ C, dist(C, C ′) ≥ w

r . Furthermore, ϕ(p) ≥ w
r for all p ∈ Q and thus ϕ(C) ≥ w

r

for all C ∈ C. We replace every coefficient η in the objective function with a new coefficient
⌊⌈ 11

ε ⌉ · η
w/r ⌋ and obtain a new objective function

cost′(f, g) =
∑

(C,C′)∈C×C

(
f(C, C ′) ·

⌊⌈
11
ε

⌉
· dist(C, C ′)

w/r

⌋)
+

∑
C∈C

(
g(C) ·

⌊⌈
11
ε

⌉
· ϕ(C)

w/r

⌋)
.

▶ Observation 16. Let (f, g) be a valid pair with minimum cost′(f, g). Then cost(f, g) ≤
(1 + ε

11 ) · cost(f ′, g′) for any valid pair (f ′, g′).

Proof. We first claim that ⌈ 11
ε ⌉ · η

w/r ≤ (1 + ε
11 ) · ⌊⌈ 11

ε ⌉ · η
w/r ⌋ for any coefficient η of the cost

function. As observed before, η ≥ w
r and thus ⌊⌈ 11

ε ⌉ · η
w/r ⌋ ≥ ⌈ 11

ε ⌉. So we have⌈
11
ε

⌉
· η

w/r
≤

⌊⌈
11
ε

⌉
· η

w/r

⌋
+ 1 ≤

(
1 + ε

11

)
·
⌊⌈

11
ε

⌉
· η

w/r

⌋
.
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This implies that ⌈ 11
ε ⌉ · cost(f,g)

w/r ≤ (1 + ε
11 ) · cost′(f, g). By the choice of (f, g), it then follows

that ⌈ 11
ε ⌉ · cost(f,g)

w/r ≤ (1 + ε
11 ) · cost′(f ′, g′) for any valid pair (f ′, g′). By the definition of

cost′, we directly have cost′(f ′, g′) ≤ ⌈ 11
ε ⌉ · cost(f ′,g′)

w/r . Therefore, for any valid pair (f ′, g′),
⌈ 11

ε ⌉ · cost(f,g)
w/r ≤ (1 + ε

11 ) · ⌈ 11
ε ⌉ · cost(f ′,g′)

w/r and thus cost(f, g) ≤ (1 + ε
11 ) · cost(f ′, g′). ◀

With the above observation, it suffices to minimize the new objective function cost′(f, g),
which is a linear function of the variables with integer coefficients. Therefore, our task
becomes solving an integer linear program. The numbers of variables and constraints are
both Oε(1). The coefficients in the linear constraints are bounded by |Q|O(1). To bound
the coefficients in the objective function, observe that dist(C, C ′) ≤ dw for any C, C ′ ∈ C
(because the side-length of □ is w) and thus dist(C,C′)

w/r = Oε(1). Also, since Q contains points
of at least two colors, every point p ∈ Q has a foreign neighbor in Q (which has distance
at most dw to p) and thus ϕ(p) ≤ dw. It follows that ϕ(C) ≤ dw for all C ∈ C and thus
ϕ(C)
w/r = Oε(1). So the coefficients in the objective function are bounded by Oε(1). The

entire integer linear program can be encoded in Oε(log |Q|) bits. It is well-known [16] that
an integer linear program encoded in L bits with s variables can be solved in sO(s) · LO(1)

time. Therefore, our program can be solved in Oε(logO(1) |Q|) time. Including the time for
constructing the program and finding the set E using Observation 14, the total time cost is
Oε(|Q|), which proves Lemma 12.

3.4 Putting everything together
Combining Lemmas 5, 9, and 12, we can compute a (1 + ε)-approximation solution for
Prob(S) in Oε(n) time. Including the time for pre-sorting, we see that geometric many-
to-many matching in any fixed dimension admits a (1 + ε)-approximation algorithm with
running time Oε(n log n), assuming the nearest foreign neighbors of the points are given.

Finally, we provide the last missing piece of our result: how to solve the problem without
knowing the nearest foreign neighbors. While it is well-known that the all-nearest-neighbor
problem can be solved in O(n log n) time in any fixed dimension [43], computing all nearest
foreign neighbors is much more challenging: it admits an O(n log n)-time algorithm only for
d = 2 [3] and has a conjectured Ω(n4/3) lower bound for d ≥ 3 [19]. However, as we only
want to compute an approximation solution, we can actually use (1 + ε)-approximate nearest
foreign neighbors (instead of the exact nearest foreign neighbors) which can be computed in
Oε(n log n) time by Lemma 2. For a point p ∈ S, let ann(p) ∈ S be a (1 + ε)-approximate
nearest foreign neighbor of p in S. We use ϕ′(p) = dist(p,ann(p))

1+ε as the penalty of a point
p ∈ S, where dist denotes the Euclidean distance. Note that ϕ′(p) ≤ ϕ(p) ≤ (1 + ε) · ϕ′(p). It
is easy to see the following analogy of Lemma 3.

▶ Lemma 17. Given a subset E ⊆ E(S), one can compute in O(n + |E|) time another subset
E′ ⊆ E(S) such that V (E′) = S and

∑
e∈E′ |e| ≤ (1 + ε) · (

∑
e∈E |e| +

∑
p∈S\V (E) ϕ′(p)).

Proof. Like what we did in the proof of Lemma 3, we simply set E′ = E ∪ {(p, ann(p)) :
p ∈ S\V (E)}. Clearly, V (E′) = S. For an edge e = (p, ann(p)), we have |e| = (1 + ε) · ϕ(p).
Thus,

∑
e∈E′ |e| ≤ (1 + ε) · (

∑
e∈E |e| +

∑
p∈S\V (E) ϕ′(p)). ◀

Now it suffices to consider the penalized formulation with the new penalty function ϕ′.
The same algorithm still works. Indeed, in our algorithm, we only use two properties of the
old penalty function ϕ. First, we need |e| ≥ max{ϕ(p), ϕ(q)} for every edge e = (p, q) ∈ E(S).
This also holds for ϕ′. Second, in the proof of Observation 15, we need the inequality that
for any p ∈ Q, ϕ(C) ≤ ϕ(p) ≤ (1 + ε

21 ) · ϕ(C), where C ∈ C is the hypercube containing p
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and ϕ(C) = minp∈Q∩C ϕ(p). When replacing ϕ with ϕ′ and setting ϕ′(C) = minp∈Q∩C ϕ′(p),
we still have ϕ′(C) ≤ ϕ′(p) ≤ (1 + O(ε)) · ϕ′(C), because ϕ′(p) ≤ ϕ(p) ≤ (1 + ε) · ϕ′(p).
Therefore, applying the same algorithm with the new penalty function ϕ′, we can obtain a
(1 + O(ε))-approximation solution, which is sufficient for the purpose of an approximation
scheme, since we can always choose ε to be smaller than the required approximation ratio by
a constant factor. This completes the proof of Theorem 1 for the Euclidean case.

Generalization to Lp-norms. Our algorithm directly applies to geometric many-to-many
matching under the Lp-norm for any p ≥ 1. The only thing we need to adjust is the parameter
r in Section 3.3: for different norms, we need to partition the hypercube □ into different
numbers of smaller hypercubes to make Observations 13 and 15 hold.

4 Conclusion and future work

In this paper, we studied the geometric many-to-many matching problem. We give a
(1 + ε)-approximation algorithm with running time Oε(n log n) for geometric many-to-many
matching in any fixed dimension under the Lp-norm for any p ≥ 1. Our result significantly
improves and generalizes the previous work on the problem.

We pose two open questions for future study. First, the running time of our algorithm
has an exponential dependency on 1

ε , which comes from both the reduction in Section 3.1
and the FPT algorithm for integer linear programming used in Section 3.3. It is interesting
to see whether one can improve the bound to ( 1

ε )O(1) · n log n. Second, as mentioned in the
introduction, several variants of geometric many-to-many in R1 have been studied in the
literature [34, 35, 36]. One can ask whether the techniques in this paper can be applied to
obtain nontrivial results for these variants in higher dimensions.
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