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Abstract
Metric spaces (X, d) are ubiquitous objects in mathematics and computer science that allow for
capturing pairwise distance relationships d(x, y) between points x, y ∈ X. Because of this, it is
natural to ask what useful generalizations there are of metric spaces for capturing “k-wise distance
relationships” d(x1, . . . , xk) among points x1, . . . , xk ∈ X for k > 2. To that end, Gähler (Math.
Nachr., 1963) (and perhaps others even earlier) defined k-metric spaces, which generalize metric
spaces, and most notably generalize the triangle inequality d(x1, x2) ≤ d(x1, y) + d(y, x2) to the
“simplex inequality” d(x1, . . . , xk) ≤

∑k

i=1 d(x1, . . . , xi−1, y, xi+1, . . . , xk). (The definition holds for
any fixed k ≥ 2, and a 2-metric space is just a (standard) metric space.)

In this work, we introduce strong k-metric spaces, k-metric spaces that satisfy a topological
condition stronger than the simplex inequality, which makes them “behave nicely.” We also introduce
coboundary k-metrics, which generalize ℓp metrics (and in fact all finite metric spaces induced by
norms) and minimum bounding chain k-metrics, which generalize shortest path metrics (and capture
all strong k-metrics). Using these definitions, we prove analogs of a number of fundamental results
about embedding finite metric spaces including Fréchet embedding (isometric embedding into ℓ∞)
and isometric embedding of all tree metrics into ℓ1. We also study relationships between families of
(strong) k-metrics, and show that natural quantities, like simplex volume, are strong k-metrics.
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1 Introduction

Metric spaces (X, d) consist of a set of points X and a metric function d that specifies
pairwise distances between elements in X. Metric spaces capture and abstract most familiar
notions of distance, such as the ℓp distance between pairs of points in Rm and the length of
the shortest path between pairs of vertices in a weighted graph. A major line of research
has studied metric embeddings, which work to relate different families of metrics and classify
them according to their “richness.” Formally, it seeks to construct isometric or low-distortion
embeddings between different families of metric spaces. Well-known examples of such results
are Fréchet embedding into ℓ∞ [13], Bourgain’s theorem for embedding into ℓ1 [5], the
Johnson-Lindenstrauss lemma for dimension reduction in ℓ2 [20], the embeddability of tree
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13:2 Topological k-Metrics

metrics into ℓ1 [24], and Bartal’s theorem for embedding into a distribution of tree metrics [3].
See Matoušek [25] for a survey. Besides being inherently mathematically interesting, these
results have many applications in computer science, including most notably in the design of
approximation algorithms for problems involving flows and cuts, as well as for problems in
network design. See, e.g., [2, 22, 3, 21, 1].

Generalizing to larger k. Although metrics capture pairwise distance relationships between
points, they do not (directly) capture relationships among more points. Moreover, notions
of “distance” that capture such relationships among k > 2 points have been studied less
extensively, and much less is known about their structural properties and possible applications.
In fact, it is not even a priori clear what the right way to generalize metric spaces to k > 2
points is. Potentially the most notable and natural generalization of metric spaces is k-metric
spaces, which were apparently introduced by [17]. 1 (In fact, the definition of k-metrics may
have been introduced even earlier, e.g., by Menger [26].) The theory of k-metric spaces is
rich (although somewhat disjointed). Indeed, Deza and Rosenberg [8] in their work on the
subject state that Gähler created an (apparently unpublished) bibliography of hundreds of
works that discuss k-metrics. See also [9]. These k-metric spaces are defined analogously to
normal metric spaces, as the following definition makes precise.

Let k ≥ 2 be an integer, let X be a finite set, and let d : Xk → R. We call (X, d) a
k-metric space, and d a k-metric function if for any x1, . . . , xk ∈ X:
(1) d(x1, . . . , xk) ≥ 0.
(2) d(x1, . . . , xk) = 0 if and only if the values x1, . . . , xk are not all distinct.
(3) d(x1, . . . , xk) = d(xπ(1), . . . , xπ(k)) for any permutation π : [k] → [k].
(4) d(x1, . . . , xk) ≤

∑k
i=1 d(x1, . . . , xi−1, y, xi+1, . . . , xk) for any y ∈ X.

It is straightforward to check that plugging k = 2 into the above definition yields the
definition of a “standard” metric space, and so k-metrics do in fact capture and generalize
metric spaces. Perhaps the most interesting aspect of this definition is its generaliza-
tion of the triangle inequality d(x1, x2) ≤ d(x1, y) + d(y, x2) to the simplex inequality
d(x1, . . . , xk) ≤

∑k
i=1 d(x1, . . . , xi−1, y, xi+1, . . . , xk) in Item 4. However, the condition in

the simplex inequality is not the only natural generalization of the triangle inequality, and is
not obviously strong enough to prove good analogs of many of the core embedding results
for finite metric spaces mentioned above.

Strong k-metric spaces. In this work, we introduce strong k-metrics, which replace the
simplex inequality (Item 4) in the definition of k-metric spaces with a stronger, topological
condition. Furthermore, we introduce strong k-metric analogs of norm metrics (that is,
metrics in which d(x, y) = ∥x − y∥ for some norm ∥·∥) called coboundary k-metrics, and of
graph shortest path metrics called minimum bounding chain k-metrics. We show that these
strong k-metric spaces “behave nicely,” and have many properties of regular metric spaces,
which allows us to prove analogs of a number of well-known embedding results for metric
spaces, including Fréchet embedding and isometric embedding of tree metrics into ℓ1. See
Table 2 for a summary and Section 1.1 for a more detailed discussion of these results.

1 We note that some other work on k-metrics – including [8] and [9], which calls them m-hemi-metrics –
defines them in an off-by-one way from this work. In this work, the k in k-metric refers to the arity of
the function d, whereas in some other works it refers to the dimension k of the simplex spanned by
k + 1 affinely independent points. I.e., a k-metric space in this work is a (k − 1)-metric space in [8, 9],
and in particular a (standard) metric space is a 2-metric space in this work but a 1-metric in theirs.
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Table 1 Five families of (pseudo) k-metric spaces together with the corresponding family of
metric space (i.e., 2-metric space) that they generalize. The family of minimum bounding chain
k-metrics is equivalent to the family of strong k-metrics Sk (analogously to how the family of shortest
path metric spaces is equivalent to the family of finite metric spaces).

Symbol k-metric space Corresponding (2-)metric space
Wk Weak k-metrics Finite metric spaces
Sk Strong k-metrics Finite metric spaces

Minimum bounding chain k-metrics Shortest path metrics on graphs
Tk Hypertree k-metrics Shortest path metrics on trees

Ck,∥·∥ Coboundary k-metrics Norm metric spaces (with d(x, y) = ∥x − y∥)
Vk (k − 1)-dimensional volume Euclidean distance

Table 2 A list of our strong k-metric embedding results and the corresponding results for
(standard) metrics that they generalize. The last result concerns embedding ℓ2 (respectively, Ck,2)
into ℓp (respectively, Ck,p) for p ∈ [1, ∞) with (1 + ε) distortion.

The k-metric generalization The (2-)metric embedding result
Ck,∞ = Sk ℓ∞ metrics contain all finite metrics
Ck,p̸=∞ ⊊ Sk ℓp̸=∞ metrics do not contain all finite metrics
Tk ⊆ Ck,1 Any tree metric is an ℓ1 metric
Dimension reduction in Ck,2 Johnson-Lindenstrauss lemma
Ck,2 (1 + ε)-embeds into Ck,p ℓ2 (1 + ε)-embeds into ℓp

Future work and applications. We view this paper as initial work on strong k-metrics,
coboundary k-metrics, and minimum bounding chain k-metrics. We hope that this work and
further work in the area will result in valuable tools for solving problems in computational
topology. For example, our hope is that a strong k-metric analog of Bourgain’s theorem [5]
would result in a good approximation algorithm for the topological sparsest cut problem [28,
29]. 2 Moreover, a variant of the Bartal tree theorem [3] could be used to solve problems about
chains, such as the minimum bounding chain problem [4], via embedding into topological
hypertrees.

1.1 Summary of Results and Techniques
In this section, we give a summary of our results and the techniques we use to show them.
We refer the interested reader to the full version of this paper cited on the first page. Table 1
and Table 2 give summaries of the notation that we use as well as some of the results in the
paper. In this summary, we use standard terminology from algebraic topology and metric
geometry. We quickly review some of this terminology, but refer the reader to the full version
of this paper for detailed definitions.

1.1.1 Strong k-metrics
Item 4 in the definition of k-metrics is called the (weak) simplex inequality. As motivation
for the definition of strong k-metrics, we start by noting that the triangle inequality in
“standard” metric spaces actually enforces a stronger structural property than the weak

2 There is also a more combinatorial generalization of the sparsest cut problem, for which we refer the
reader to [14, 15, 16].

SoCG 2024



13:4 Topological k-Metrics

Figure 1 Left: two s, t-flows, the top one splits the unit flow between two paths, the bottom one
is just a path. Both are checked by the strong triangle inequality but not the weak one. Middle-left:
an s, t-flow that happens to be a path of length two, checked by the strong and weak triangle
inequality. Middle-right: a 2-chain whose boundary is the blue triangle, checked by the strong
simplex inequality but not the weak one. Right: a simpler 2-chain whose boundary is a the blue
triangle, checked by the strong and weak simplex inequality.

simplex inequality does when k > 2 in a precise sense. Let (X, d) be a finite (2-)metric space,
and let G = (X, E, d) be the complete graph whose edges are weighted according to d (i.e.,
with edge weights d(u, v) for (u, v) ∈ E). Specifically, we note that for any s, t ∈ X, d(s, t) is
at most the cost of any unit (s, t)-flow.

A unit (s, t)-flow f : E → R is a function on (directed) edges of G where (1) the total
flow out of the source s is 1, (2) the total flow into the sink t is 1, and (3) flow is conserved
at all vertices v ∈ V \ {s, t}. The cost of a (unit) (s, t)-flow f is

∑
(u,v)∈E |f(u, v)| · d(u, v).

An (s, t)-path is captured by the special case of a unit flow where the flow values are binary,
i.e., where f(u, v) ∈ {0, 1} for all u, v ∈ V . Thus, d(s, t) being at most the cost of any unit
(s, t)-flow is a (not necessarily strictly) stronger condition than d(s, t) being at most the
length of any (s, t)-path in G, which in turn is a (not necessarily strictly) stronger condition
than the triangle inequality (which considers paths of length 2). We call the first of these
conditions – that d(s, t) is at most the cost of any unit (s, t)-flow – the strong triangle
inequality. Yet, for (standard) metrics one can show that these three conditions – the strong
triangle inequality, that d(s, t) is at most the length of any (s, t)-path, and the (standard)
triangle inequality – are all equivalent. Moreover, many metric embedding results crucially
rely on this equivalence. However, unfortunately, the analogous equivalence does not hold
for k-metrics with k > 2.

The strong simplex inequality. We next define a notion of k-metrics that does enforce the
higher-dimensional analog of the strong triangle inequality, which we call the strong simplex
inequality. To give this definition, we first need to define the higher-dimensional analog of
flows. To do this, we use the language of algebraic topology.

A simplicial complex K of a point set X is a set of downward-closed subsets of X (i.e.,
if Y ∈ K and Y ′ ⊆ Y then Y ′ ∈ K). Subsets of X of cardinality i are called (i−1)-simplices
of K (e.g., vertices are 0-simplices and edges are 1-simplices). We denote the set of all
i-simplices of K by Ki. An i-chain α is a real-valued function on the (oriented) i-simplices
of K (e.g., flows are 1-chains). Equivalently, one can view i-chains as vectors α ∈ RKi , i.e.,
as real-valued vectors indexed by the |Ki| elements of Ki. 3 4 We denote the space of all

3 i-chains are defined on oriented i-simplices t of K, i.e., on i-simplices whose vertices are ordered.
However, the value of an i-chain on one orientation of a simplex induces values of the chain on all
other orientations of the simplex, and so it suffices to specify the value of an i-chain on an arbitrary
orientation of each i-simplex. Because of this, we identify i-chains with |Ki|-dimensional vectors and
not (i! · |Ki|)-dimensional vectors. See the full version for more details.

4 We will use boldface symbols like α to emphasize that a variable, such as a chain, is a vector.
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i-chains in K by Ci(K). We will use et for i-simplices t ⊆ K to denote the i-chain that has
value 1 on t and value 0 on all other i-simplices (i.e., et ∈ Ci(K) with et[t] = 1 and et[t′] = 0
on non-equivalent simplices t′).

The boundary of an i-simplex t is an (i−1)-chain that is ±1 (according to the orientation
of t) on all (i − 1)-faces of t (all subsets of t with cardinality i) and 0 everywhere else. We
also extend the definition of boundary from individual simplices to chains by defining the
boundary of an i-chain α to be the weighted sum of the boundaries of its simplices. We
denote the boundary of α by ∂k−1 · α, and remark that ∂k−1 is a linear operator.

With each k-metric (X, d), we associate a complete (k − 1)-simplicial complex K, i.e.,
the set of all subsets of X with cardinality at most k. We define the cost of an (k − 1)-chain
α to be the dot product |α| · d =

∑
τ∈Ki

|α[τ ]| · d(τ), where |α| := (|α[τ ]|)τ∈Kk−1 and
d := (d(τ))τ∈Kk−1 .

See also Figure 1 for examples of unit (s, t)-flows (which are 1-chains) and of 2-chains
whose boundaries are three-edge-cycles (i.e., cycles of length three). These help illustrate
(chains quantified by) the strong simplex inequality when k is 2 and 3. We now formally
present the definition of the strong simplex inequality and strong k-metric spaces.

Let X be a finite set, and let d : Xk → R. We call (X, d) a strong k-metric space,
and d a strong k-metric function if any elements x1, . . . , xk ∈ X satisfy Items 1–3 in the
definition of a k-metric space, and the following strong simplex inequality.
4′. Let K be the complete (k − 1)-dimensional simplicial complex on the vertex set X. Let

t be the (k − 1)-simplex in K with vertices x1, . . . , xk, and let α ∈ Ck−1(K) be such that
∂k−1 · α = ∂k−1 · et (i.e., the boundary of the (k − 1)-chain α is the same as the boundary
of et). Then

d(x1, . . . , xk) = d(t) ≤ |α| · d =
∑

τ∈Kk−1

|α[τ ]| · d(τ) ,

where |α| := (|α[τ ]|)τ∈Kk−1 and d := (d(τ))τ∈Kk−1 .
Following standard terminology for metrics, we say that (X, d) is a (strong) pseudo k-metric
if Item 2 is replaced with the weaker property d(x1, . . . , xk) = 0 if xi = xj for any i ̸= j,
and that it is a meta (strong) k-metric if Item 2 is replaced with the weaker property
d(x1, . . . , xk) = 0 only if xi = xj for some i ̸= j. Following standard practice, we sometimes
drop the word “pseudo” and do not differentiate between pseudo and non-pseudo k-metric
spaces in what follows.

We use Sk to denote the family of all strong pseudo k-metric spaces. We use Wk to
denote the family of all pseudo k-metric spaces, which we sometimes call weak pseudo
k-metric spaces for contrast with strong pseudo k-metric spaces. We show that, as the
names suggest, the strong simplex inequality is in fact stronger than (at least as tight as) the
(weak) simplex inequality and therefore that Sk ⊆ Wk. We additionally show that S2 = W2
coincides with the family of all finite pseudo metric spaces and therefore strong k-metric
spaces generalize (standard) metrics spaces. On the other hand, we show that Sk ⊊ Wk for
k ≥ 3. We also show that it can be verified whether a k-metric space is a strong k-metric
space in polynomial time, via solving multiple linear programs.

Similar to graph shortest paths metrics, we can define minimum bounding chain
k-metrics for a given (k −1)-simplicial complex with positive weights on its (k −1)-simplices,
with complete (k − 2)-skeleton, in which every (k − 2)-cycle is a boundary cycle. Let K

be such a complex with vertex set X. The minimum bounding chain k-metric d, assigns
to a simplex t = (x1, . . . , xk) the minimum cost of any (k − 1)-chain with boundary ∂t. A
minimum bounding chain satisfies the strong simplex inequality by its definition, as well as
other properties of a strong k-metric. If we allow (non-negatively) weighted (k − 1)-simplices,
then the minimum bounding chain k-metrics can express all (finite) strong k-metrics.

SoCG 2024
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Examples of strong k-metrics. We next give several simple examples of strong (potentially
pseudo or meta) k-metrics. An important and intuitive example of a pseudo k-metric space
(x, d) is what we call a volume k-metric Vk. Specifically, for a finite subset X of m-dimensional
Euclidean space (X ⊂ Rm for some m), we define d(x1, . . . , xk) to be the (k − 1)-dimensional
volume of the convex hull of x1, . . . , xk ∈ X, which is a k-simplex. In the special case where
k = 3, d(x1, x2, x3) is the area of the triangle spanned by points x, y, z ∈ X, and we call
(X, d) an area metric. We focus on studying volume k-metrics (i.e., Vk metrics) in this paper,
where in particular we show that volume k-metrics are strong (pseudo) k-metrics.

The following theorem describes a few other natural examples that satisfy the strong
simplex inequality, and some that are strong meta k-metrics. See the full version for its
proof.

▶ Theorem 1. For any k ≥ 2, the following four (X, d) pairs satisfy the strong simplex
inequality:
(1) X ⊂ Rm, and d(x1, . . . , xk) is the maximum length of an edge in the simplex spanned

by x1, . . . , xk ∈ X.
(2) X ⊂ Rm, and d(x1, . . . , xk) is the minimum diameter of a Euclidean ball containing

x1, . . . , xk ∈ X.
(3) X ⊂ Rm, and d(x1, . . . , xk) is the surface area of the simplex spanned by x1, . . . , xk ∈

X. 5

(4) G = (X, E) is a graph with positive edge weights, and d(x1, . . . , xk) is the weight of the
minimum Steiner tree of x1, . . . , xk ∈ X.

Moreover, Item 1, Item 2 and Item 4 are meta k-metrics, and Item 3 is a meta 3-metric
when k = 3.

We note that the (k − 1)-simplices in the Vietoris–Rips and Čech complexes of X are
exactly the k-tuples of distinct points x1, . . . , xk ∈ X such that d(x1, . . . , xk) ≤ c for some
constant c > 0 with respect to the k-metric functions d defined in Items 1 and 2, respectively.
These two simplicial complexes are extensively studied in topological data analysis.

1.1.2 Norms and Coboundary k-metrics
We next introduce coboundary k-metric spaces, a family of strong k-metric spaces that
generalize (finite) metric spaces induced by norms. (We show that coboundary k-metrics as
defined are strong (pseudo) k-metrics in the full version of the paper.) That is, coboundary
k-metrics generalize metric spaces (X, d) satisfying X ⊆ Rm and d(x, y) = ∥x − y∥ for all
x, y ∈ X and some norm ∥·∥. In particular, coboundary k-metric spaces generalize (finite)
ℓp spaces. We then discuss how coboundary k-metrics relate to other k-metrics (including
other coboundary k-metrics). In particular, we show generalizations of some key embedding
results for ℓp spaces to coboundary k-metrics.

A coboundary k-metric (X, d) of dimension m with respect to a given vector norm
∥·∥ is defined roughly as follows. (See Figure 2 for examples of 2- and 3-coboundary metrics
of dimension m = 2 with respect to the ℓ2 norm, and see the full version of the paper for
a formal definition.) Let K be the complete (k − 1)-simplicial complex on vertex set X

(i.e., K contains all simplices corresponding to sets of k or fewer points in X), and assign
fixed orientations to the (k − 2)-simplicies in K. Additionally, assign vectors in Rm to the
(k −2)-simplices of K. These vectors can be arranged as the rows of a matrix F ; in particular,
the rows of F are indexed by the (k − 2)-simplices of K. We also note that the columns

5 The surface area of the (k − 1)-simplex K spanned by x1, . . . , xk is equal to
∑k

i=1 volk−2(K \ {xi}),
i.e., the sum of the (k − 2)-dimensional volumes of the faces of K.



W. Barkan, H. Bennett, and A. Nayyeri 13:7

Figure 2 Left: The labeling corresponds to a pair of 0-chains and its implied 2-coboundary

metric with the ℓ2 norm; F =
(

0 0 1
1 0 0

)T

, Right: The labeling corresponds to a pair of 1-

chains and its implied 3-metric with ℓ2 norm, for example, the norm of the shaded triangle is∥∥∥(1
0

)
−
(

2
0

)
−
(

1
1

)∥∥∥
2

=
√

5; F =
(

0 1 0 1 2 2
1 1 0 0 1 0

)T

.

of F are (k − 2)-chains of K. Then, apply the coboundary operator δk−2 (column-wise) to
F to obtain F ′ := δk−2F , where the rows of F ′ are indexed by the (k − 1)-simplices of K.
The row of F ′ indexed by a (k − 1)-simplex s is a (±1)-linear combinations of the vectors
assigned to the (k − 2)-faces of s. (The columns of F ′ are (k − 1)-chains of K.) Finally, to
obtain our metric value on a (k − 1)-simplex t, we compute the norm of the row of F ′ that
corresponds to t, i.e., set d(t) = ∥eT

t · F ′∥ = ∥eT
t · δk−2 · F∥ (multiplying by eT

t is to select
the row that corresponds to t).

We remark that coboundary 2-metrics with respect to ∥·∥ are equivalent to (standard)
metrics induced by ∥·∥. Indeed, as shown in Figure 2, if one labels the vertices v of a
complete graph with vectors xv ∈ Rm, then the induced coboundary metric d satisfies
d(u, v) = ∥xu − xv∥.

We denote the space of all coboundary k-metrics in m dimensions with respect to norm ∥·∥
by Cm

k,∥·∥. We slightly simplify notation for ℓp norms and write Cm
k,p for Cm

k,∥·∥p
. Furthermore,

we define Ck,∥·∥ =
⋃

m∈Z+ Cm
k,∥·∥ and Ck,p =

⋃
m∈Z+ Cm

k,p. As noted above, it is straightforward
to show that Cm

2,p is the family of (finite) ℓm
p metrics in the usual sense, and that, analogously,

C2,p is the family of ℓp metrics. So, coboundary k-metrics generalize (standard) metrics
induced by norms. There is a wealth of results regarding embeddings from and to different
ℓp metrics [25]. We attempt to generalize some of these results to our coboundary metrics.

1.1.3 The Power of ℓ∞

It is well-known that any (finite) metric space is isometrically embedabble into ℓ∞, via a
map that is usually known as the Fréchet embedding. We next describe a generalization
of this result that we show for coboundary metrics. Specifically, we show that any strong
pseudo k-metric belongs to Ck,∞, and therefore Ck,∞ = Sk).

Fréchet’s isometric embedding of finite metric spaces into ℓ∞ is simple and elegant. We
sketch the idea here. Let (X, d) be a finite metric space, and fix x, x′ ∈ X. The main idea is
that there is an embedding of X into the line (R1) that (1) does not expand any distance
and (2) exactly preserves the distance from x to x′. For example, the embedding that maps
each y ∈ X to d(x, y) has this property. To obtain an isometric embedding of (X, d) with
n := |X| into ℓ∞, one can concatenate the

(
n
2
)

line embeddings corresponding to distinct
pairs of elements x, x′ ∈ X. 6 Note that each distance is never expanded and is preserved at
least once, and so this does in fact give an isometric embedding into ℓ∞.

6 In fact, it suffices to use n line embeddings in the Frćhet embedding as each line embedding preserve
all distances to a single point. But, we find this embedding (which uses

(
n
2

)
line embeddings) more

conducive to generalization to k-metrics.

SoCG 2024
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We follow the outline of the proof above to show that any strong k-metric (X, d) is in
Cm

k,∞, where m =
(

n
k

)
. First, we construct analogs of the line embeddings used above. Namely,

for each k-tuple t = (x1, . . . , xk) ∈ Xk we construct a k-metric ϕt in C1
k,∞ that preserves the

value of d(t) and does not increase the value of d(t′) for any other such k-tuple t′. Then, we
concatenate the m =

(
n
k

)
functions ϕt to obtain a k-metric ϕ in Cm

k,∞ that preserves all d

values.
While the latter step is straightforward and similar to the case of standard metrics, the

former presents a greater challenge as explicit constructions, like the mapping y 7→ d(x, y)
used for standard metrics, are not readily available.

Instead, we show how to obtain such a coboundary k-metric as the solution of a certain
(feasible) linear program. To that end, let t = (x1, . . . , xk). We will attempt to find a
k-metric in C1

k,∞ = C1
k,|·| that preserves the value of d(t) and does not expand the d value

on other simplices. 7 Equivalently, we look for a (k − 2)-chain f such that |δk−2 · f | ≤ d,
i.e., such that |δk−2 · f | assigns one non-negative value to each (k − 1)-simplex s that is not
larger than d(s), hence not expanding. (Here | · | and ≤ are treated element-wise.) On the
other hand, we want δk−2 · f at t to be as large as possible and ideally equal to d(t). So,
we try to maximize eT

t · δk−2 · f by solving the following linear program with variables f

corresponding to the
(

n
k−1
)

many (k − 2)-simplices.

max eT
t · δk−2 · f

s.t. − d ≤ δk−2 · f ≤ d

∂k−2 · f = 0 .

The equality is added for technical reasons. Namely, it ensures that the feasible region of the
linear program is bounded while maintaining the same optimal value. We refer the reader to
the full version of this paper for details. Because its feasible region is a (bounded) polytope,
this linear program has an optimal solution that is a vertex of this polytope. We show that
this optimal solution corresponds to a “non-expanding” d, in which d(t) is preserved.

Using the fact that δk−2 = ∂T
k−1, we rewrite the objective function of the linear program

as (∂k−1 ·et)T ·f , and the first set of constraints as −d(τ) ≤ (∂τ ·eτ )T ·f ≤ d(τ) for all (k−1)-
simplices τ . We let {t1, . . . , tr} be the simplices whose inequality constraints are tight at the
optimal solution f∗, and we assume (without loss of generality) that (∂k−1 · eti)T · f = d(ti)
for i ∈ [r]. Since f∗ is an (optimal) solution to the linear program, the coefficient vector
∂k−1 · et in the linear program must be in the cone of vectors of the tight constraint. That
is, there are non-negative β1, . . . , βr such that,

∂k−1 · et =
r∑

i=1
βi · (∂k−1 · eti) = ∂k−1 ·

(
r∑

i=1
βieti

)
. (1)

From that, we show

r∑
i=1

βi · d(ti) ≥ d(t) ≥ (∂k−1 · et)T f∗ =
r∑

i=1
βi · d(ti).

7 We note that all ℓp norms are equivalent in one dimension. I.e., for scalars x ∈ R and p, q ∈ [1, ∞] we
have that ∥x∥p = ∥x∥q = |x|. Because of this, C1

k,∞ = C1
k,|·|.
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Figure 3 A visualization of apex extension. The initial metric is the coboundary (pseudo) 2-metric
induced by the black vertices, which are 0-simplices. It has value one on the bold blue edges and
zero on other edges. By including the apex vertex (shown at the top in yellow), this is transformed
into a coboundary 3-metric that has value one on the shaded blue triangles and zero on all other
triangles.

The first inequality uses the strong simplex inequality (the condition holds by Equation (1)),
and the second holds since the coboundary metric induced by f∗ is non-expanding. Therefore,
we have that d(t) = (∂k−1 · et)T f∗, as desired. We also remark that we crucially used the
fact that (X, d) was a strong (pseudo) k-metric space, which we believe is good motivation
for our definition of strong k-metrics.

1.1.4 Other ℓp Metrics are Not as Powerful

Other ℓp metrics are not as expressive as ℓ∞. Indeed, for any p ̸= ∞, there is a finite
metric space (X, d) that is not an ℓp metric. In this work, we show the analogous result
for coboundary metrics. Specifically, we show that for any p ̸= ∞ there is a strong pseudo
k-metric that is not in Ck,p.

Apex extension. In order to prove this, we use a simple but powerful technique called apex
extension for constructing a (k +1)-metric space from a k-metric space in such a way that the
new space shares certain properties of the original space. Somewhat more specifically, given
a k-metric (X, d), apex extension builds a point set X ′ and a function d′ : (X ′)k+1 → R such
that (X, d) is in Ck,p if and only if (X ′, d′) is in Ck+1,p. We can then combine this technique
with examples of non-ℓp-metric spaces (i.e., examples of finite metric spaces not isometrically
embeddable into ℓp) to construct strong k-metric spaces that do not belong to Ck,p for all
k ≥ 3. See Figure 3 for an illustration of apex extension.

Let (X, d) be a k-metric, and let a be an element not in X that we call apex. Now, let
X ′ = X ∪ {a}, and let d′ be a function on (k + 1)-tuples of X ′ defined as follows.

(i) For any x1, . . . , xk+1 ∈ X ′, if x1, . . . , xk+1 are not distinct or do not include a,
d′(x1, . . . , xk+1) = 0.

(ii) Otherwise, if xi = a for some i, d′(x1, . . . , xk+1) = d(x1, . . . , xi−1, xi+1, . . . , xk+1).
We call (X ′, d′) the apex extension of (X, d). In addition to the fact that (X ′, d′) is a weak
(k + 1)-metric, we show that (X ′, d′) is in Ck+1,∥·∥ for any k ≥ 2 and any norm if any only if
(X, d) is in Ck,∥·∥. Since Sk = Ck,∞, the statement above in particular implies that (X ′, d′)
is a strong pseudo (k + 1)-metric if and only if (X, d) is a strong pseudo k-metric. We use
this fact to build pseudo k-metrics that are not strong pseudo k-metrics for k > 3 from an
explicit 3-metric that is not a strong 3-metric.
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1.1.5 Other Generalizations of Embedding Results
We also generalize several other well-known results from the study of metric embeddings.
First, we give a “meta” result for converting linear norm embedding results to results for
coboundary metrics. From this, we get two corollaries: (1) a generalization of the Johnson-
Lindenstrauss lemma [20] for dimension reduction in ℓ2 and (2) a generalization of embedding
ℓ2 into ℓp nearly isometrically, which is (a strengthening of a special case of) Dvoretzky’s
theorem [10, 12]. Specifically, we show any n-point k-metric in Cm

k,2 is ε-close to (1) a k-metric
CO(k log n/ε2)

k,2 , and (2) a k-metric in Cm′

k,p for p ∈ [1, ∞) and m′ = poly(m, n).
Second, we show the generalization of the fact that all tree metrics are ℓ1-metrics (see,

e.g., [25, Chapter 1, Exercise 4]). We start by defining a higher-order analog of tree metrics
called hypertree k-metrics, the family of which we denote by Tk. We then show that Tk ⊆ Ck,1.
Hypertree k-metrics are a special case of minimum bounding chain k-metrics where the
underlying complex K is a (k − 1)-hypertree, that is, K does not have any (k − 1)-cycles
and all of its (k − 2)-cycles are boundaries of (k − 1)-chains. 8 In particular, 1-trees are
“standard” trees from graph theory, i.e., they are acyclic and connected graphs.

1.1.6 Volume k-metrics
We conclude by studying what is likely the most natural generalization of Euclidean distance
to k points instead of 2: the (k − 1)-dimensional volume of the simplex spanned by the k

points (i.e., the volume of the convex hull of the points). For points x1, . . . , xk, we denote
this volume by volk−1(x1, . . . , xk). More formally, we study the spaces (X, d) where X ⊊ Rm

is a finite set and d : Xk → R is the function that assigns to each k-tuple (x1, . . . , xk) the
(k − 1)-dimensional volume of the simplex with vertices x1, . . . , xk. We denote the family
of all such metrics by Vm

k , and the family of all volume k-metrics (in any dimension) by
Vk =

⋃
m∈Z+ Vm

k .
As volume k-metrics (Vk spaces) and coboundary k-metrics with respect to the Euclidean

norm (Ck,2 spaces) are both generalizations of Euclidean distance, it is natural to compare
them with each other. To that end, we show that for all k ≥ 3, Vk ⊊ Ck,2, and thus
coboundary k-metrics are (strictly) richer. (We note that this result stands in contrast to
the situation for k = 2: C2,2 = V2.)

We prove that Vk ⊊ Ck,2 in two parts. First, we show that for any m ∈ Z+, Vm
k ⊆ Cm′

k,2,
where m′ =

(
m

k−1
)
. Second, we show that for every k ≥ 3, there exists a k-metric in Cm

2,k,
with m =

(3k−5
k−1

)
that is not in Vk.

We also complement our second result by showing that there exists a C1
3,2 metric that is

not even approximately captured by a low-dimensional volume metric. More precisely, we
give n-point C1

3,2 spaces that do not embed into Vm
3 spaces with any constant distortion and

m = o(log n) dimensions.
We now summarize the proofs of the first two of these results.

Volume k-metrics are coboundary k-metrics with respect to the ℓ2 norm. We sketch
the proof of Vm

k ⊆ Cm′

k,2, m′ =
(

m
k−1
)

for the special case of k = 3. The Cauchy-Binet theorem
implies that the area of any triangle with vertices in Rm equals the ℓ2 norm of the vector
of the areas of its

(
m
2
)

projections into axis-aligned planes; see the left image in Figure 4
for an illustration of these projections when m = 3. This allows us to reduce showing that
Vm

3 ⊆ Cm′

3,2 (m′ =
(

m
k−1
)

=
(

m
2
)
) to showing that V2

3 ⊆ C1
3,2 = C1

3,|·|.

8 A (k − 1)-cycle is a non-zero (k − 1)-chain with no boundary. In particular, 1-cycles are circulations in
a graph, i.e., flows that have net value zero on every vertex.
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Figure 4 Left: a triangle in R3 and its projection onto the
(3

2

)
axis-aligned planes in R3. Middle-left:

f(x, y) equals the area of the red triangle, f(v, z) is the area of the blue triangle, f(y, x) = −f(x, y),
and f(v, z) = −f(z, v). Middle: the coboundary 3-metric at (x, y, z) is f(x, y) + f(y, z) + f(z, x),
which is the area of the triangle (x, y, z). Middle-right: the coboundary 3-metric at (x, y, z) is
f(x, y) + f(y, z) − f(z, x), which is the area of the triangle (x, y, z). Right: the coboundary 3-metric
at (x, y, z) is −f(x, y) − f(y, z) + f(z, x), which is the area of the triangle (x, y, z).

To this end, we define the 1-chain f on the edges of the complete 2-complex K with
vertex set X as f(x, x′) is the signed area of the triangle (o, x, x′), where o is the origin. The
signed area of a triangle is the area of the triangle times 1 if the (o, x, x′) is counter clockwise
and −1 otherwise. See the middle-left image in Figure 4 for an example.

We then show that the coboundary 3-metric |δ1 · f | is the vector of areas of the triangles,
which is what we need (here | · | denotes element-wise absolute value). Specifically, we show
the area of any triangle t equals |eT

t · δ1 · f |. See the middle, middle-right, and right images
of Figure 4 for illustration of different cases.

Not all coboundary k-metrics are volume k-metrics. We next show that for any k ≥ 3,
Ck,2 ⊈ Vk, by showing an O(k)-point, 2O(k)-dimensional k-coboundary pseudometric with
respect to the Euclidean norm that is not a volume k-metric (in particular, Vk ⊊ Ck,2.

For this, we start by showing that for k ≥ 2, the “all-ones” (discrete) k-metric (X, d)
(that assigns a 1 to every k-tuple of distinct points) with n := |X| = Ω(k) is an example of a
high-dimensional volume k-metric (and hence also coboundary k-metric) that is not a Vk−1

k

metric.
We then construct Ck,2 spaces that are not Vk spaces for k ≥ 3 as follows. We start with

an all-ones Vk−1 space (X, d) that is not a Vk−2
k−1 space (as described above), and take its apex

extension to get a Ck,2 space (X ∪ {a}, d′). We then suppose for the sake of contradiction
that (X ∪ {a}, d′) is a Vk space. Specifically, suppose that there exists an embedding
f : (X ∪ {a}) → Rm for some m such that d′(y1, . . . , yk) = volk−1(f(y1), . . . , f(yk)) for all
y1, . . . , yk ∈ X ∪ {a}.

By the definition of apex extension, d′(xi1 , . . . , xik
) = 0 for any points xi1 , . . . , xik

∈ X,
and so f(X) must be contained in a (k − 2)-dimensional hyperplane H. On the other hand,
for any points xi1 , . . . , xik−1 ∈ X, d′(xi1 , . . . , xik−1 , a) = d(xi1 , . . . , xik−1) is proportional to
h · volk−2(f(xi1), . . . , f(xik−1)), where h is the distance between H and f(a). Therefore,
d(xi1 , . . . , xik−1) is also proportional to volk−2(f(xi1), . . . , f(xik−1)), which, because f(X) ⊂
H, implies that (X, d) ∈ Vk−2

k−1 . This is a contradiction.

1.2 Related Work
As we have already discussed, prior work on k-metrics is closely related to this work. See,
e.g., [17, 18, 8, 9, 27]. We also again note that according to [8], around 1990 Gähler collected
a bibliography of over a hundred works related to k-metrics, and it seems that a substantial
amount of additional work has been done since then (e.g., [27]). We do not attempt to
summarize this extensive body of work, but note that, to the best of our knowledge, none of
it has defined or studied our topological (i.e., strong) k-metrics.
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Past that, the large body of work on (finite) metric spaces and (algorithmic applications
of) metric embeddings is related to this paper. We refer the interested reader to the books and
surveys [25, 19, 23] for summaries of this body of work. Indeed, we have provided higher-order
analogs of most of the standard concepts in metric spaces, and it will be interesting to see
which results on metric embeddings can be adapted to these higher-order analogs and what
algorithmic applications these results have.

Additionally, we note two other notions of “higher-order metrics” besides k-metrics. First,
we note the work of Feige [11], which defines a notion of “volume” for finite metric spaces in
terms of embeddings into Euclidean space and studies volume-preserving embeddings. More
specifically, Feige defines the volume of k points in a finite metric space (X, d) to be the
maximum volume of the convex hull of their images for any non-expanding embedding f into
Euclidean space (i.e., embedding f such that ∥f(x) − f(y)∥ ≤ d(x, y) for all x, y ∈ X). Then,
he uses embeddings that (nearly) preserve this notion of volume to design an approximation
algorithm for the minimum bandwidth problem. While our work is not directly related to
this type of (nearly) volume-preserving embedding, we pose as an open question whether
Feige’s notion of volume is a (strong) k-metric.

Second, we note the work of Bryant and Tupper [6, 7] on diversities. Diversities are
spaces (X, d) where d is a function from (finite) subsets S ⊆ X to the non-negative reals that
satisfies the “triangle inequality” condition d(A ∪ C) ≤ d(A ∪ B) + d(B ∪ C) for all finite
subsets A, B, C ⊆ X with B non-empty. They note that the restriction of d to subsets S of
size 2 induces a “standard” metric, and so one can view diversities as a different generalization
of metrics from (strong) k-metrics. Indeed, we note that diversities are substantially different
from (strong) k-metrics. In particular, the d in diversities is defined on sets of elements of
different sizes, and the “triangle inequality” in diversities upper bounds a given evaluation
of d as the sum of two other evaluations of d (as with the “standard” triangle inequality)
as opposed to k other evaluations of d in the (weak) simplex inequality. A primary goal
of Bryant and Tupper’s work on diversities is to extend graph algorithms based on metric
embeddings to hypergraph algorithms based on diversity embeddings. Their definition and
techniques indeed seem well-suited to hypergraph problems, however, our definition is better
suited to problems in computational topology (i.e., problems on simplicial complexes) like
the topological sparsest cut problem and the minimum bounding chain problem.
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