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—— Abstract

Finding a totally geodesic surface, an embedded surface where the geodesics in the surface are also
geodesics in the surrounding manifold, has been a problem of interest in the study of 3-manifolds.
This has especially been of interest in hyperbolic 3-manifolds and knot complements, complements of
piecewise-linearly embedded circles in the 3-sphere. This is due to Menasco-Reid’s conjecture stating
that hyperbolic knot complements do not contain such surfaces. Here, we present an algorithm
that determines whether a given surface is totally geodesic and an algorithm that checks whether
a given 3-manifold contains a totally geodesic surface. We applied our algorithm on over 150,000
3-manifolds and discovered nine 3-manifolds with totally geodesic surfaces. Additionally, we verified
Menasco-Reid’s conjecture for knots up to 12 crossings.
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1 Introduction

Studying surfaces in 3-manifolds has been a theme since the field of 3-manifolds began.
Knowing the topology of these surfaces may give some information about the ambient
3-manifolds. In particular, this paper focuses on hyperbolic 3-manifolds containing surfaces
satisfying the property that the geodesic between any two points of the surface is the geodesic
of those same two points when viewed as points in the 3-manifold. These surfaces are called
totally geodesic. For precise definitions and conventions please see Section 2.

One class of 3-manifolds we are interested in is knot complements, complements of a
properly embedded circle into S3. Similarly, link complements are complements of a disjoint
union of properly embedded circles into S3. We explore surfaces in hyperbolic knots in the
context of a conjecture of Menasco and Reid in [25]:

» Conjecture 1. Let K be a knot in S® whose exterior S3\ K has a complete hyperbolic
structure. Then S\ K does not contain a closed, embedded, totally geodesic surface.
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In reference to Conjecture 1, we assume throughout that all surfaces are closed and embedded,
unless stated otherwise. Conjecture 1 is known to hold for the following classes of knots:
alternating knots [25], Montesinos knots [28], 3-bridge knots and double torus knots [19].
However, Conjecture 1 does not extend to links, as there are links that contain such surfaces
(see Figure 2 in [25]).

Although the context of the conjecture focuses on knot complements, we looked at many
different censuses of 3-manifolds throughout this paper in order to find totally geodesic
surfaces. We looked more generally at the class of hyperbolic manifolds called cusped
hyperbolic 3-manifolds. These are manifolds which decompose into a compact 3-manifold
with n tori, 72, boundary components and n 3-manifolds each homeomorphic to T2 x [1, 00).
In particular, we look at covers of small-volume manifolds and knot and link complements
which have a hyperbolic structure. While we focus on cusped hyperbolic manifolds, using the
work of [16], we believe that computations could be extended to include closed manifolds.
Now, let us define problems related to totally geodesic surfaces in hyperbolic 3-manifolds.

ToTALLY GEODESIC SURFACE:

INPUT: An oriented hyperbolic cusped 3-manifold M, given as an ideally triangulated
3-manifold, a lift p of its holonomy representation, and coordinates of a normal surface F.
OutrpuT: YES, if F is isotopic to a totally geodesic surface in M, NO otherwise.

Next, we extend this decision problem to an enumeration version.

ENUMERATE TOTALLY GEODESIC SURFACES:

INPUT: An oriented hyperbolic cusped 3-manifold M, given as an ideally triangulated
3-manifold, along with a lift p of its holonomy representation.

OutpUT: The complete list of all normal surfaces in M that are isotopic to totally geodesic
surfaces, each given as a vector of normal coordinates.

The algorithm which solves ENUMERATE TOTALLY GEODESIC SURFACES terminates in a
finite number of steps by the argument found in Section 3 above Algorithm 3.

In Section 3 we produce several algorithms to solve these problems. These algorithms
come from the realization that with available tools like Regina [8], finding embedded surfaces
in 3-manifolds is computationally tractable, along with the fact that determining whether
a surface is totally geodesic reduces to linear algebraic conditions [30]. Algorithm 1 gives
an embedding of the fundamental group of the surface into the fundamental group of the
3-manifold. Algorithm 2 solves TOTALLY GEODESIC SURFACE and Algorithm 3 solves
ENUMERATE TOTALLY GEODESIC SURFACES. In Section 4, we do extensive computations
on 150,000+ manifolds to demonstrate our algorithm and find previously unknown manifolds
that contain totally geodesic surfaces, as well as give evidence for Conjecture 1. Section 5
discusses other possible classes of surfaces to apply our algorithms to in order to extend
our work. Additional background and supplementary material, proofs for most propositions,
lemmas and theorems, as well as information about where to find our code and how to run it
can be found in the extended version on the ArXiv.

2 Background

In this paper, we assume that all 3-manifolds are oriented, hyperbolic, and cusped, with an
ideal triangulation satisfying the gluing equations that give the unique complete hyperbolic
structure. We will explain these terms in detail in this section. All surfaces considered will
be closed and embedded.
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Figure 1 A model of H®. OH? is given in green, while two examples of geodesics are given in blue.

2.1 Hyperbolic 3-manifolds

First, we give a brief introduction to the general theory of hyperbolic 3-manifolds along with
details on some of the more specific computational background. A complete background is
outside of the scope of this paper but readers can find much of the theory in [29] and [4].
We start by reviewing some of the fundamentals of hyperbolic space and hyperbolic
manifolds. Recall that n-dimensional hyperbolic space H'™ is the unique simply connected
space of constant curvature —1. It can be modeled as the n-dimensional upper half-space,
{Z € R™: z, > 0} with the Riemannian metric determined by ds = %. With this
model of H", we define the boundary of H" to be {Z € R™ : z,, = 0} U{oo}. Note that
topologically the boundary is homeomorphic to S”~!. The orientation-preserving isometries of
H", Isom™ (H™) correspond bijectively to conformal (angle-preserving) maps on the boundary.
In particular, for n = 3, if we identify the embedded plane {Z € R® : x,, = 0} with C, the
boundary then becomes the Riemann sphere and the orientation-preserving isometries of H?

can be identified with the group of Mébius transformations which is isomorphic to PSL(2, C).

An orientable hyperbolic 3-manifold M is then a quotient of 3-dimensional hyperbolic space
H? by a torsion-free discrete subgroup I' of PSL(2,C). This manifold has H? as its universal
cover with the deck transformations corresponding to the elements of I'. We say that M is

finite-volume if the volume of M with respect to the metric inherited on M from H? is finite.

Every finite-volume hyperbolic 3-manifold can be decomposed uniquely into a compact core
and some collection of cusps [17]. The compact core consists of a compact manifold whose
boundary is a possibly empty disjoint union of tori. The cusps consist of disjoint unions of
T? x [1,00). The two parts are glued together along their boundary tori to form M.

In order to work with manifolds concretely, it is often convenient to decompose them
into simple pieces. For cusped hyperbolic 3-manifolds, it is generally more convenient to use

an ideal triangulation. Before that, we must introduce the concept of an ideal tetrahedron.

Topologically, an ideal tetrahedron is simply a tetrahedron with its vertices removed. We can
endow these with a hyperbolic geometric structure by taking an ideal tetrahedron to be the
“convex hull” of any 4 distinct points in the boundary of H?3. The use of quotes here denotes
the fact that we want to take the portion of that tetrahedron only in H® and not on the
boundary. For every edge e connecting the “ideal” vertices a and b of an ideal tetrahedron,
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Figure 2 The shape parameter z for the edge e of the given ideal tetrahedron.

we can find an orientation-preserving isometry which takes a to 0, and b to oo, and maps the
remaining two ideal vertices to 1 and some complex number z lying in {z + iy € C: y > 0}.
This number z is called the shape parameter of the edge of the tetrahedron.

We mention here that for cusped hyperbolic manifolds M we deal with throughout this
paper, its ideal triangulation admits a partially flat angle structure as defined in [21].

2.2 Totally Geodesic Surfaces

A compressing disk for a closed, connected, embedded surface F in a 3-manifold M is a disk
D C M such that DN F = 0D and 0D does not bound a disk in F'. A closed orientable
surface is incompressible if it does not have a compressing disk and is not a 2-sphere. A
closed orientable surface F' in M is 0-parallel if F is isotopic into OM. A closed orientable
surface is essential if it is incompressible and is not 0-parallel.

For a closed non-orientable surface F', we say that F' is incompressible or essential if the
boundary of a regular neighborhood of F' has that property. For a hyperbolic 3-manifold,
an equivalent definition for incompressible is that the fundamental group of F', where F is
not a 2-sphere, injects into the fundamental group of M, i.e. m(F) < 71 (M) is injective.
We note that even for non-orientable F, w1 (F) — w1 (M) being injective implies that F is
incompressible. Let F' be an embedded surface in M. F' is said to be totally geodesic if and
only if every geodesic arc in F’ with its induced Riemannian metric is also a geodesic in M.

Checking for totally geodesic surfaces is deeply related to the holonomy representation
and we review the work of [25] for notions we use in our algorithms. For a complete hy-
perbolic manifold M, there is a unique (up to conjugation) discrete, faithful representation
p:m (M) — PSL(2,C) called the holonomy representation. This is the group of isometries
used to construct the 3-manifold. It is often more convenient to work with a lift of the
holonomy representation to SL(2,C) which always exists by [11]. For a surface F' embedded
in a 3-manifold M, the inclusion map i : F — M induces a map i, : m(F) — m (M)
which composed with the holonomy representation, gives a representation from the funda-
mental group of F' to PSL(2,C) (or SL(2,C) when considering the lift of the holonomy
representation).

The group of orientation-preserving isometries of H? is PSL(2,C). Let G < PSL(2,C)
be a discrete group and let = € H? be any point. The limit set of G is the set of accumulation
points on OH? of the orbit G(z). A discrete subgroup of PSL(2,C) is called a Kleinian
group. A Kleinian group I' acting on the Riemann sphere C U oo is quasi-Fuchsian if its limit
set is a Jordan curve. I is called Fuchsian if the Jordan curve is a geometric circle.
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A surface F is called Fuchsian if the induced representation p(m (F)) is Fuchsian. For an
embedded non-orientable essential surface F' in M, if the induced representation p(m (F))
is contained in the normalizer of PSL(2,R) in PSL(2,C) then F is totally geodesic. Note
that for non-orientable surfaces, the property of being isotopic to a totally geodesic surface
is equivalent to being Fuchsian. This is not true for orientable surfaces since the double
cover F' of a non-orientable Fuchsian surface F' will also be Fuchsian, but F' cannot be totally
geodesic in M. However, we have that if F' is Fuchsian, then either F is isotopic to a totally
geodesic surface or is a double cover of a non-orientable totally geodesic surface. Moreover,
there is a topological obstruction to the existence of essential non-orientable surfaces.

» Proposition 2 (Proposition 2.4 [14]). Suppose M is a finite-volume orientable hyperbolic
3-manifold. Then every closed surface in M is orientable if and only if the inclusion map
i: Ho(OM;Fo) — Ho(M;F2) is surjective.

Being totally geodesic implies Fuchsian, giving a necessary condition for a surface to be

totally geodesic. For totally geodesic surfaces, we also have the following well-known lemma.

» Lemma 3. A totally geodesic surface in a hyperbolic 3-manifold is essential.

» Proposition 4 ([29] Example 12.11). Let M be a complete hyperbolic 3-manifold with
discrete, faithful representation p : m (M) — PSL(2,C) and F a closed essential surface
in M. If F is orientable, then F is Fuchsian if and only if p(m1(F)) can be conjugated into
PSL(2,R) < PSL(2,C). If F is non-orientable, then F is Fuchsian if and only if p(m (F))
can be conjugated into the normalizer of PSL(2,R) < PSL(2,C).

The above also holds for SL(2,C). Since it is more convenient to work with matrices
compared to projective matrices, we will deal with a lift of the holonomy representation
into SL(2,C) throughout this paper. Checking whether or not an SL(2,C) representation
conjugates into SL(2,R) is difficult, so we reduce it to something simpler.

» Lemma 5 ([27] Proposition Il.1.1). For an irreducible representation ¢ of the fundamental
group G of a surface into SL(2,C) such that for all g € G, tr(¢(g)) € R, ¢ is either conjugate
into SU(2) or SL(2,R).

If F is a closed essential surface, then p restricted to 71 (F) is an irreducible representation.

Elements of SU(2) as isometries of H? all have fixed points so cannot represent elements of

the fundamental group of M and therefore cannot represent elements of the fundamental

group of F. Hence, if p restricted to 71 (F') has all real traces, then it must be conjugate into

SL(2,R) and thus F is totally geodesic or is a double cover of a totally geodesic surface.
The following lemma helps to simplify things further.

» Lemma 6 ([24] Lemma 3.5.3). For a subgroup G of SL(2,C) generated by {g1,...,9n},
the smallest field containing all of the traces of elements of G is generated by the traces of
the elements in {g:,9i95, 9:9;9% : 1 < i < j <k <n}.

From the above, we get the following corollary.

» Corollary 7. Let M be a hyperbolic 3-manifold with discrete, faithful representation
p:m(M)— PSL(2,C) and F an essential orientable surface in M. Let {g1,...,9n} be a
set of generators of the subgroup p(w1(F)). Then F is Fuchsian if and only if the traces of
all the elements in the set {g;, gig;,9:9;9x : 1 <i < j <k <n} are real.
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Figure 3 The 7 disk types.

2.3 Normal Surfaces

In this section we review some basic normal surface theory following the work in [34]. Let M
be a 3-manifold with a triangulation 7. An elementary disk E in a tetrahedron A of T is a
properly embedded disk that meets each edge of A in at most one point and each face of
A in at most one line. A surface is said to be normal if it is in general position with the
1-skeleton 7(!) of T and meets each tetrahedron only in elementary disks. We follow the
convention that if £N 7T is a planar set then F is planar and if not then F is the cone
b« OF where b is the centroid of the 3-simplex A spanned by EN 7M. Elementary disks
and hence normal surfaces are uniquely determined by their intersection points with 7).
A normal isotopy of M is an isotopy that leaves every simplex of 7 invariant. There are
exactly 7 normal isotopy classes of elementary disks: four triangles that each cut off a vertex
and three quadrilaterals that separate the three pairs of disjoint edges. We call such normal
isotopy classes the disk types of a tetrahedron. Similarly, the normal isotopy classes of arcs t
from the intersection of elementary disks and each 2-face of A are called the arc types.
The following demonstrates the generality of normal surfaces.

» Theorem 8 ([20] Theorem 1.2, see Theorem 5.2.14 in [30] for proof). Let M be irreducible
and let S be a closed, incompressible surface in M. For any given triangulation T there is a
normal surface 8 isotopic to S.

The significance of understanding normal surfaces is that they can be expressed uniquely
as a tuple of non-negative numbers. Fix an ordering di,ds,...,d7 on all disk types in
T (t is the number of tetrahedra in 7). To a normal surface F' we can assign a 7t-tuple

= (z1,22,...,27) where x; is the number of elementary disk types of type d; in F. is
called the normal coordinate of F. Any normal surface is uniquely determined by its normal
coordinate up to normal isotopy.

A normal coordinate @ is said to be admissible if the corresponding normal surface has
at most one nonzero quadrilateral disk type in every tetrahedron. There is a one-to-one
correspondence between all admissible solutions in the solution space of R™ and normal
surfaces in M.

3 The Algorithms

In this section we present an algorithm that determines whether or not a 3-manifold contains
a totally geodesic surfaces.
3.1 Computational Representations of Mathematical Objects

We first introduce the specific computational descriptions of the mathematical objects we
use in our algorithms in this section.
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A cusped hyperbolic 3-manifold can be represented by an ideal triangulation. This is a
list of ideal tetrahedra, their shape parameters, and how each face of each tetrahedron is
glued. Fundamental groups of 3-manifolds and surfaces can be written using a specific group
presentation: a set of generators {ay,...,a,} for the group and a specific set of relations
{r1,...,7m} expressed as trivial words in the group. A detailed treatment of generating sets
for fundamental groups will be given in Section 3.2. Every fundamental group element can
be represented as a word in the alphabet consisting of generators and their inverses.

The holonomy representation of an element of the fundamental group described in
Section 2.1 can be found from its group presentation and a set of matrices representing the
generators as follows: any element a;, a;, - - - a;, in the group presentation is represented by
the product of matrices that correspond to each of the generators a;,, ..., a;, . Due to the
following result, holonomy representations of manifolds are of a certain form:

» Theorem 9 (Theorem 3.1.2 and Corollary 3.2.4 of [24]). For a finite-volume hyperbolic
3-manifold M, the holonomy representation p can always be conjugated to lie in PSL(2,Q(a))
where a is some algebraic number.

This allows us to avoid some of the theoretical downsides of working with approximate
numbers by using a representation of a number field in the following way, as found in [10].
Given an arbitrary algebraic field extension Q(«) where « is a root of the irreducible
degree n polynomial p(z) € Q[z], every element 5 € Q[z] can be uniquely represented as
co+ a4+ .. +ep1a™

In addition to fields, we also need information about specific embeddings of a field into C.
Specifically, we need to determine whether a given embedding of a field into C is contained in
R. This can be done numerically as follows. Every embedding of Q(«) into C is completely
determined by which root ag of p(z) « is sent to. Therefore, it suffices to determine whether
or not ayg is a real root of p(x) or not. Using Sturm’s theorem or one of its generalizations
(as in [32]), the number of real roots r of p(z) can be determined exactly. The complex roots
can be approximated by one’s favorite convergent numerical method which will ensure that
the root will not fall on the real line. Once n — r complex roots have been determined, the
remaining roots must be real.

3.2 Checking Whether a Surface is Totally Geodesic
We state two lemmas on finding the fundamental group of a space from a cellulation.

» Lemma 10 ([15] Lemma 3.2). Assume that F is a closed connected surface with a cellu-
lation C by polygons. Then one can construct a 2-dimensional dual cellulation D which is
homeomorphic to F. Let T be a spanning tree of the 1-skeleton of D. Then the edges in
D\ T form a generating set in some presentation of the fundamental group of F'.

» Lemma 11. Assume that M is a 3-manifold with a cellulation C by ideal tetrahedra. Then
one can construct a 2-dimensional dual cellulation D which is homotopy equivalent to M.
Let T be a spanning tree of the 1-skeleton of D. Then the edges in D\ T form a generating
set in a presentation of the fundamental group of M.

We present algorithms that determine whether or not a given surface is totally geodesic.

» Algorithm 1. Given a normal surface F' in a triangulated 3-manifold M, we get an

embedding iy : w1 (F) — w1 (M) by the following process:

a) Choose a basepoint for the fundamental group of F in some normal disk in F.

b) Obtain generating sets for w1 (F) and 71(M) as in Lemmas 10 and 11 with the spanning
trees given by Tr and Tyy.

14:7
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Figure 4 An example application of Lemma 10 on a cellulation of a torus by polygons. The blue
and red edges together form the dual 1-skeleton, with the blue edges making up the tree 7 and the
red edges forming the generating set.

Figure 5 A partial drawing of a triangulated 3-manifold with its dual 1-skeleton as in Lemma 11.
The blue and red edges together form the dual 1-skeleton, with the blue edges belonging to the tree
T and the red edges belonging to the generating set.
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Figure 6 Suppose F intersects the two tetrahedra in this figure in two triangles. e is an element
of the generating set of w1 (F') and it corresponds to the edge E in the dual 1-skeleton of M.

c) Each element of the generating set for wi(F) corresponds to an edge e in the dual 1-
skeleton of F'. The edge e in turn, lies transversely to a face in the triangulation of M
which corresponds to an edge in the dual 1-skeleton of M. See Figure 6.

d) Get a loop in F by taking a path in Tr from the basepoint disk to e and then taking a path
from e back to the basepoint in Tp. This gives a cycle v in the dual 1-skeleton of F.

e) For each edge in vy, we get the corresponding edge in the dual 1-skeleton of M.

f) The list of edges in the cycle v then correspond to an element of w1 (M).

» Lemma 12. Algorithm 1 terminates and the output is correct.

» Algorithm 2. Given an essential normal surface F in a triangulated 3-manifold M and
a lift of the holonomy representation of p : m (M) — SL(2,Q(«x)), the following algorithm
solves TOTALLY GEODESIC SURFACE.

a) If F is non-orientable, replace F with 2F, its orientable double cover, in the following.

b) Compose the holonomy representation of p : w1 (M) — SL(2,Q(«)) and the embedding
s : T (F) = 71 (M) found in Algorithm 1.

c) Take the generators found in Lemma 10 as matrices in SL(2,Q(c)).

d) Construct the smallest field extension Q(B) (as a subfield of Q(a)) containing the traces
of all generators and all products of pairs and triples of generators, using results from
Section 4.5 of [9]. By Lemma 6 this field will contain the traces of all elements in mi(F).

e) Check whether the embedding of Q(8) into C is real. If not, the surface F' cannot be totally
geodesic. Output NO.

f) If F was originally non-orientable, then F is totally geodesic. Output YES.

g) The only case that remains is if F is orientable and the embedding of Q(B) into C is
real. We now need to check that F is not the double cover of a non-orientable surface.
Let x(F) = X. First enumerate all normal surfaces of Euler characteristic X/2. From
Theorem 6.9 of [14] we can find all isotopy classes of essential normal surfaces of Euler
characteristic X. Check if there is any normal surface in the isotopy class of F that is a
double of some normal surface of Euler characteristic X/2.

14:9
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h) If yes, F' can be isotoped to a double of a surface and F is not totally geodesic (but it is
the double cover of a totally geodesic surface). Output NoO.

i) If the code has made it to this step, then F' is Fuchsian and is not the double cover of a
non-orientable totally geodesic surface and is thus totally geodesic. Qutput YES.

» Theorem 13. Algorithm 2 produces a correct output.

Proof. This follows from Corollary 7. <

3.3 Detecting Totally Geodesic Surfaces in a 3-manifold

Now given a 3-manifold, we describe an algorithm that checks whether it contains a totally
geodesic surface. The idea is to enumerate all normal surfaces in the 3-manifold and implement
the algorithm in the previous section. The 3-manifold and normal surfaces should first satisfy
certain volume constraints. By a result of Miyamoto (Theorem 4.2 [26]), we obtain a lower
bound on the volume of all 3-manifolds containing a closed totally geodesic surface. Moreover,
if a given 3-manifold M contains such a surface, the result also gives an upper bound on the
Euler characteristic of a totally geodesic surface.

» Lemma 14. Let M be a hyperbolic 3-manifold. If M contains an embedded closed totally
geodesic surface F, then

vol M > 2u3(0) area F' = 4z (0)|x (F)],

where p3(0) ~ 0.29156 as in [26]. For orientable surfaces F we have that volM >
2p3(0)area F' 2 7.3277 and for non-orientable F' we have that volM > 2u3(0) area F' 2
3.66385. Moreover, if a given 3-manifold M contains a closed totally geodesic surface F, then

the Fuler characteristic of F' is at most 4;‘:}3%).

It remains to find all surfaces in a given 3-manifold M that satisfy this volume bound to
check if it is totally geodesic.

» Lemma 15. For a triangulated 3-manifold M and some number e, there is a finite number
of isotopy classes of essential surfaces with Fuler characteristic larger than e.

Upon finding all normal surfaces, by using Theorem 4.2 of [20] we can determine whether
each normal surface is essential in order to obtain a finite list of all essential normal surfaces
up to a certain Euler characteristic.

» Algorithm 3. Given a triangulated 3-manifold M and a lift of the holonomy representation

of p:m (M) — SL(2,Q(«)), there is an algorithm to enumerate the totally geodesic surfaces

in M, solving ENUMERATE TOTALLY (GEODESIC SURFACES.

a) If vol M < 3.66385, then return false.

b) Enumerate all isotopy classes of essential surfaces of M which satisfy the Euler charac-
teristic bounds of Lemma 14.

c) Apply Algorithm 2 to all surfaces found in the previous step.

4 Computations

4.1 Practical Algorithm Considerations

Our computations were all performed in SageMath [31] on KEELING, the School of Earth,
Society & Environment computer cluster at the University of Illinois Urbana-Champaign. It
made use of the programs Regina [8] and SnapPy [12]. In particular, all surface enumeration
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Figure 7 Approximation of the limit set of a quasi-Fuchsian surface that is not totally geodesic.

was done by Regina based on the work in [6]. The data sets which we ran our algorithm on
come from a variety of censuses in SnapPy. More details for these censuses can be found
in Section 4.2. Geometric information about the manifolds included in these censuses were
provided by SnapPy.

While the algorithms specify an exact solution to the gluing equations, finding and

working with an exact form of the holonomy representation is computationally expensive.

To speed up and simplify our computations, we instead chose to work with double precision
and then check that the traces are real by ensuring that the imaginary parts are less than
a specified threshold. A middle ground between these two approaches would be to use
interval arithmetic along with verified computations of the holonomy representation as found
in [13]. This would have the advantage of being able to provably rule out any non-totally
geodesic surfaces with only very minor performance losses. However, we opted for double
precision because the observed values used to rule out the surfaces were high enough to
be unambiguous (nearly always at least 1). With the large proportion of negative results
we expected our code to find, we chose the threshold to be quite large (.01) so that if the
algorithm ruled out the surface we could be confident that it did so correctly. However, even
with this large threshold, it is still unlikely for the algorithm to return a false positive, given
that the trace of every checked matrix (and recall that the number of these matrices is cubic
in the number of generators of the fundamental group of the surface) would have to have its
imaginary part below this threshold. Because of this high threshold, we still decided to do
further checks to ensure that every surface the algorithm marked as positive was, in fact,
totally geodesic.

To confirm that a surface identified as possibly totally geodesic is indeed totally geodesic,
we plotted the limit set of the Kleinian group I' corresponding to the surface’s fundamental
group. Applying an isometry corresponding to a long geodesic in the surface to any point in
OH? will result in a point very close to one of the ends of the geodesic on the boundary. In
order to get these points, we need only find the isometries corresponding to long words in
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Figure 8 Approximations of limit sets of surfaces with an accidental parabolic.

the fundamental group of M and then apply them on any point in OH?. As mentioned in
Section 2, if the surface is totally geodesic, then the limit set of I' must be a geometric circle,
not just a topological one. We present some examples of approximations of limit sets of
surfaces that are not totally geodesic. Figure 7 is the limit set of an essential quasi-Fuchsian
surface that is not totally geodesic found in [3]. In particular, it is a surface of genus 2 in the
exterior of the knot in Figure 7(a) of [3]. Figure 8 are limit sets of essential surfaces in the
exterior of alternating knots. They are surfaces of genus 2 found in the exteriors of knots
816 and 929, names for these knots follow the online database, KnotInfo:Table of Knots [23].
These surfaces are all known to have an accidental parabolic. Details on the parameters used
to plot these approximations is given in the description of Figure 13 of Section 4.3.

It should be noted that some manifolds took significantly longer amounts of time to
run the program on than other manifolds. Thus, in order to save time and increase the
quantity of manifolds computed, the program terminated for manifolds after exceeding a
certain chosen runtime. This runtime was chosen to be 5,000 seconds, based on the average
runtime of census manifolds. To ensure the algorithm ran on all knot exteriors with at most
12 crossings, a few manifolds whose runtime exceeded 5,000 were allowed but their data is
not included in the average calculation or plots in Section 4.2.

4.2 Results

We observed a variety of 3-manifolds provided by databases from SnapPy. We mainly
looked at link exteriors and covers of orientable cusped hyperbolic manifolds. The knot
and link exteriors that were considered came from the census of 15 crossing knots and links
of Hoste-Thistlethwaite-Weeks [18]. We only take link exteriors in S3 with volume larger
than 7.2 (Lemma 14) as these link exteriors do not contain non-orientable essential surfaces
since S® does not have such surfaces. Moreover, we exclude alternating links [25] where the
result is already known, to get that the list contained 279,649 manifolds. The triangulation
information we used came from the census HTLinkEzteriors in SnapPy.
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Figure 9 The top figure is a histogram of runtimes for enumerating surfaces measured in seconds.

The bottom one is a histogram of runtimes for running Algorithm 2.
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Figure 10 Scatter plot of the two different runtimes in seconds of 5000 randomly chosen manifolds.

The second census that was considered are covers of 3-manifolds provided by the Ori-
entable CuspedCensus in SnapPy [7]. This census consists of orientable cusped hyperbolic
3-manifolds that can be triangulated with at most 9 ideal tetrahedra. It contains 61,911
manifolds, some of which contain multiple cusps. To give ourselves plenty of examples to work
with we took n-fold covers of these manifolds where n allows the volume to be large enough
to admit a totally geodesic surface but small enough so that the volume of the resulting
cover is at most 20 (at this volume, our algorithm’s runtime starts to get prohibitively long).

We have currently completed computation for 142,409 manifolds in the HTLinkFExteriors
census in SnapPy and 15,992 covers of manifolds in the OrientableCuspedCensus in SnapPy.
The average total runtime was 1483.37 seconds.

Figure 9 are histograms of the runtimes of manifolds for which we completed our compu-
tation. We have made the distinction between the time it takes to enumerate surfaces in a
manifold and applying Algorithm 2 to these found surfaces. On average, enumerating surfaces
constituted 87% of the the entire runtime whereas applying Algorithm 2 constituted 13%.
Since for small manifolds the runtimes for both procedures are very small and have almost
no difference this average can be a somewhat coarse indicator. A more detailed comparison
is given in Figure 10. Notice in Figure 10 that in general, runtimes for enumerating surfaces
are relatively larger than the runtime for applying Algorithm 2. It is also interesting to
examine results regarding runtimes of enumeration of normal surfaces in [5]. In the worst
case, finding all normal surfaces below the given genus bound of Algorithm 3 is known
to scale exponentially with the volume of the manifold. Even in the average case, there
is evidence that the number of normal surfaces scales exponentially with the number of
tetrahedra, limiting the size of manifolds we can run the algorithm on.

We speculate that the number of tetrahedra and volume of the manifold have the biggest
effect on runtimes. Relations between runtimes of our algorithm and number of tetrahedra
and volume are presented in Figures 11 and 12 respectively. We chose to plot the log of
runtimes to make the relation more explicit. Moreover, in Figures 10, 11 and 12, manifolds
where no surfaces were detected (hence Algorithm 2 did not run at all) were not plotted.
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Table 1 List of manifolds which were covers of manifolds in the OrientableCuspedCensus that
contained totally geodesic normal surfaces. In this table, the information is enough to uniquely
identify these manifolds (note however, that the starred entry needs the additional piece of information
that its symmetry group is the product of Z, with the octahedral group.)

Base manifold | Degree of covering H,
m003(0,0) 9 710 ® Z10 D Z
m004(0,0) 9 24 D72y DL

m412(0,0)(0,0) 3 Zo®Zo 73
$594(0,0) 3 Lo ®Zo® 2y DL
$594(0,0) 4 Zo®ZDZ*

$596(0,0)(0,0)* 3 ZodZ*
$955(0,0) 3 Zao ©Z
$956(0,0) 3 Zo®Zs® L
$957(0,0) 3 ZLs ® Lo ® Z

Determining whether or not a given normal surface is essential can be an immensely time
consuming computation. Algorithm 2 usually takes much less time than checking if a surface
is essential, hence we chose to run our algorithm on all normal surfaces only excluding the
simple compressible surfaces identified by a method provided by David Letscher. For surfaces
found to be totally geodesic, we check their limit sets to make sure that the surface found
was indeed totally geodesic or homotopic to a totally geodesic surface. This surface could be
homotopic to a totally geodesic surface because for any totally geodesic surface F' (which
would be essential by Lemma 3) we can add a trivial handle to that surface to create a
non-essential and non-totally geodesic surface F’. However, our algorithm would still detect
F’ as a totally geodesic surface because the image of the fundamental group through the
holonomy representation would be the same as F. If our algorithm does find such an F’, we
do know that there exists some F' in M which is totally geodesic.

In Table 1 we present a list of manifolds that we found to contain a totally geodesic
surface. All manifolds were covers of a manifold in the OrientableCuspedCensus provided by
SnapPy. Through private correspondence with Nathan Dunfield, he has informed us that
all of these manifolds are commensurable to the figure-8 knot complement m004 which is
known to have infinitely many immersed closed totally geodesic surfaces.

It is worth mentioning that of the 142,409 link exteriors we ran the algorithm on, none
contained totally geodesic surfaces. Our algorithm finished running for all non-alternating knot
exteriors of up to 12 crossings and we anticipate more to be completed as our computations
are ongoing. These results give strong support for Menasco and Reid’s conjecture.

4.3 An Example Containing a Totally Geodesic Surface

Here we specifically look in detail at the last manifold in Table 1, the 3-fold cover of the
census manifold m412(0,0)(0,0) which we will call Y. The triangulation information we used
for our computation is recorded as a tight encoding of a Triangulation3 class in Regina:

1%") n_n (*&Il*ll+ll)*\'ll (" ,II**/II . ,+,OII/’_, . IIO, s ll_*/ll ’*O||+*.*/*0*

This triangulation had 15 tetrahedra and its volume was 15.2241240961448. Algorithm 3
found one potential totally geodesic surface which we will call S. S was a surface of genus 2

whose corresponding normal coordinate S is given as the following vector:
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Figure 13 Limit set of the surface S.

? =(0,0,0,2,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,0,
0,0,2,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,0,
2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,
0,0,0,0,0,2,0,0,0,0,0,0,0,2,0,0,0,0,2,0,0,
2,0,0,0,0,0,0,0,0,0,2,0,0,0,0,2,0,0,0,0,0)

Let T’ denote the fundamental group representation of S into PSL(2,C) using the

holonomy representation of Y as in Algorithm 3. An approximation of the limit set of S is
presented in Figure 13. All limit set approximations in this paper consist of 10,000 points

obtained by applying up to 2000 randomly chosen matrices in I" to the complex point (1,0).

It is evident from Figure 13 that the approximation resembles a geometric circle.

We also computed the trace field of I'. To compute the trace field of I', we computed
the traces of all generators and products of pairs and triples of all of the generators. Using
SageMath, we calculated the smallest field containing these traces. The result was that the

trace field of I' is Q(+/3). The traces of all elements of " are real and the surface S is Fuchsian.

Note that all coordinates of the vector of S are even. Hence S = 2F for some non-orientable
surface F'. By above, we have that F' is totally geodesic while S is just Fuchsian.

5 Future Work

One avenue we hope to expand our work is to enlarge the class of surfaces to look at. One
possibility could be to examine embedded totally geodesic surfaces with boundary. There are
known embedded totally geodesic surfaces with boundary, for example Seifert surfaces in a

knot complements (see [1]) and thrice-punctured spheres in hyperbolic 3-manifolds (see [2]).

It would be interesting to determine if there are additional examples of embedded totally

geodesic surfaces with boundary which are not Seifert surfaces nor thrice punctured spheres.
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Using the idea of spun normal surfaces, this would be a natural and reasonable extension.
Spun normal surfaces are a generalization of normal surfaces due to unpublished ideas of
Thurston in the context of hyperbolic 3-manifolds with cusps which allows for infinitely many
triangles in tetrahedra. These infinitely many triangles would not be a problem as the surfaces
generally deformation retract onto a subcomplex with only finitely many triangles [33]. The
key here is that the number of quads is always finite, and can be solved for using a similar
set of equations to regular normal surfaces. So after enumerating the normal surfaces in this
way, we can find finite cellulations of them by quads and triangles and the remainder of the
algorithm will work without much modification.

We also plan to extend our current work on plotting limits sets of surfaces and build on
the idea of Thurston. It is known that one can determine whether or not a surface is essential
by looking at the shape of its limit set. Utilizing our method may produce a computationally
efficient and practical algorithm that verifies if a given normal surface is essential.
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