
Fully Dynamic Maximum Independent Sets of
Disks in Polylogarithmic Update Time
Sujoy Bhore #

Department of Computer Science and Engineering, Indian Institute of Technology Bombay,
Mumbai, India

Martin Nöllenburg #

Institute of Logic and Computation, Algorithms and Complexity Group, TU Wien, Austria

Csaba D. Tóth #

Department of Mathematics, California State University Northridge, Los Angeles, CA, USA
Department of Computer Science, Tufts University, Medford, MA, USA

Jules Wulms #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Abstract
A fundamental question is whether one can maintain a maximum independent set (MIS) in polylog-
arithmic update time for a dynamic collection of geometric objects in Euclidean space. For a set of
intervals, it is known that no dynamic algorithm can maintain an exact MIS in sublinear update
time. Therefore, the typical objective is to explore the trade-off between update time and solution
size. Substantial efforts have been made in recent years to understand this question for various
families of geometric objects, such as intervals, hypercubes, hyperrectangles, and fat objects.

We present the first fully dynamic approximation algorithm for disks of arbitrary radii in the
plane that maintains a constant-factor approximate MIS in polylogarithmic expected amortized
update time. Moreover, for a fully dynamic set of n unit disks in the plane, we show that a
12-approximate MIS can be maintained with worst-case update time O(log n), and optimal output-
sensitive reporting. This result generalizes to fat objects of comparable sizes in any fixed dimension d,
where the approximation ratio depends on the dimension and the fatness parameter. Further, we
note that, even for a dynamic set of disks of unit radius in the plane, it is impossible to maintain
O(1 + ε)-approximate MIS in truly sublinear update time, under standard complexity assumptions.

Our results build on two recent technical tools: (i) The MIX algorithm by Cardinal et al.
(ESA 2021) that can smoothly transition from one independent set to another; hence it suffices to
maintain a family of independent sets where the largest one is an O(1)-approximate MIS. (ii) A
dynamic nearest/farthest neighbor data structure for disks by Kaplan et al. (DCG 2020) and Liu
(SICOMP 2022), which generalizes the dynamic convex hull data structure by Chan (JACM 2010),
and quickly yields a “replacement” disk (if any) when a disk in one of our independent sets is deleted.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Dynamic algorithm, Independent set, Geometric intersection graph

Digital Object Identifier 10.4230/LIPIcs.SoCG.2024.19

Related Version Full Version: https://arxiv.org/abs/2308.00979

Funding Csaba D. Tóth: Research was partially supported by the NSF award DMS-2154347.

1 Introduction

The maximum independent set (MIS) problem is one of the most fundamental problems in
theoretical computer science, and it is one of Karp’s 21 classical NP-complete problems [29].
In the MIS problem, we are given a graph G = (V, E), and the objective is to choose a
subset of the vertices S ⊆ V of maximum cardinality such that no two vertices in S are

© Sujoy Bhore, Martin Nöllenburg, Csaba D. Tóth, and Jules Wulms;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Computational Geometry (SoCG 2024).
Editors: Wolfgang Mulzer and Jeff M. Phillips; Article No. 19; pp. 19:1–19:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sujoy@cse.iitb.ac.in
https://orcid.org/0000-0003-0104-1659
mailto:noellenburg@ac.tuwien.ac.at
https://orcid.org/0000-0003-0454-3937
mailto:csaba.toth@csun.edu
https://orcid.org/0000-0002-8769-3190
mailto:j.j.h.m.wulms@tue.nl
https://orcid.org/0000-0002-9314-8260
https://doi.org/10.4230/LIPIcs.SoCG.2024.19
https://arxiv.org/abs/2308.00979
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

adjacent. The intractability of MIS carries even under strong algorithmic paradigms. For
instance, it is known to be hard to approximate: no polynomial-time algorithm can achieve
an approximation factor n1−ε (for |V | = n and a constant ε > 0) unless P=ZPP [39]. In
fact, even if the maximum degree of the input graph is bounded by 3, no polynomial-time
approximation scheme (PTAS) is possible [7].

Geometric Independent Set. In geometric settings, the input to the MIS problem is a
collection L = {ℓ1, . . . , ℓn} of geometric objects, e.g., intervals, disks, squares, rectangles,
etc., and we wish to compute a maximum independent set in their intersection graph G.
That is, each vertex in G corresponds to an object in L, and two vertices form an edge if
and only if the two corresponding objects intersect. The objective is to choose a maximum
cardinality subset L′ ⊆ L of independent (i.e., pairwise disjoint) objects.

A large body of work has been devoted to geometric MIS problems, due to their wide
range of applications in scheduling [4], VLSI design [26], map labeling [1], data mining [30, 6],
and many others. Stronger theoretical results are known for the geometric MIS problem:
For instance, even for unit disks in the plane, the problem remains NP-hard [18] and W[1]-
hard [34], but it admits a PTAS [26]. Later, PTASs were also developed for arbitrary disks,
squares, and more generally hypercubes and fat objects in constant dimensions [27, 14, 2, 21].

In their seminal work, Chan and Har-Peled [17] showed that for an arrangement of
pseudo-disks,1 a local-search-based approach yields a PTAS. However, for non-fat objects,
the scenario is quite different. For instance, it had been a long-standing open problem to find
a constant-factor approximation algorithm for the MIS problem on axis-aligned rectangles.
In a recent breakthrough, Mitchell [36] answered this question in the affirmative. Through a
refined analysis of the recursive partitioning scheme, a dynamic programming algorithm finds
a constant-factor approximation. This constant factor was subsequently improved to 3 [22].

Dynamic Geometric Independent Set. In dynamic settings, objects are inserted into or
deleted from the collection L over time. The typical objective is to achieve (almost) the
same approximation ratio as in the offline (static) case while keeping the update time, i.e.,
the time to update the solution after insertion/deletion, as small as possible. We call it the
Dynamic Geometric Maximum Independent Set problem (for short, DGMIS).

Henzinger et al. [25] studied DGMIS for various geometric objects, such as intervals,
hypercubes, and hyperrectangles. Many of their results extend to the weighted version
of DGMIS, as well. Based on a lower bound of Marx [35] for the offline problem, they
showed that any dynamic (1 + ε)-approximation for squares in the plane requires Ω(n1/ε)
update time for any ε > 0, ruling out the possibility of sub-polynomial time dynamic
approximation schemes. On the positive side, they obtained dynamic algorithms with update
time polylogarithmic in both n and N , where the corners of the objects are in a [0, N]d
integer grid, for any constant dimension d. Gavruskin et al. [23] studied DGMIS for intervals
in R under the assumption that no interval is contained in another interval and obtained an
optimal solution with O(log n) amortized update time. Bhore et al. [8] presented the first
fully dynamic algorithms with polylogarithmic update time for DGMIS, where the input
objects are intervals and axis-aligned squares. For intervals, they presented a fully dynamic
(1 + ε)-approximation algorithm with logarithmic update time. Later, Compton et al. [19]
achieved a faster update time for intervals, by using a new partitioning scheme. Recently,

1 In an arrangement of pseudo-disks the boundaries of each pair of objects intersects at most twice.

S. Bhore, M. Nöllenburg, C. D. Tóth, and J. Wulms 19:3

Bhore et al. [10] studied the MIS problem for intervals in the streaming settings, and obtained
lower bounds. Very recently, Bhore and Chan [9] showed that the complement of DGMIS,
i.e., dynamic vertex cover, can be maintained efficiently for a wide class of geometric objects.

For axis-aligned squares in R2, Bhore et al. [8] presented a randomized algorithm with an
expected approximation ratio of roughly 212 (generalizing to roughly 22d+5 for d-dimensional
hypercubes) with amortized update time O(log5 n) (generalizing to O(log2d+1 n) for hyper-
cubes). Moreover, Bhore et al. [11] studied the DGMIS problem in the context of dynamic
map labeling and presented dynamic algorithms for several subfamilies of rectangles that also
perform well in practice. Cardinal et al. [13] designed dynamic algorithms for fat objects in
fixed dimension d with sublinear worst-case update time. Specifically, they achieved Õ(n3/4)
update time2 for disks in the plane, and Õ(n1− 1

d+2) for Euclidean balls in Rd.
However, despite the remarkable progress on the DGMIS problem in recent years, the

following question remained unanswered.

▶ Question. Does an algorithm exist that, for a given dynamic set of disks in the plane,
maintains a constant-factor approximate MIS in polylogarithmic update time?

Our Contributions. In this paper, we answer this question in the affirmative (Theorems 1–3);
see Table 1. As a first step, we address the case of unit disks in the plane.

Table 1 Summary of results on dynamic independent sets for n geometric objects.

Objects Approx. Ratio Update time Reference

Intervals 1 + ε O(ε−1 log n) [19]
Squares O(1) O(log5 n) amortized [8]
Arbitrary radii disks O(1) (log n)O(1) expec. amortized Theorem 3

Unit disks
O(1) O(log n) worst-case Theorem 1
1 + ε n(1/ε)Ω(1) Theorem 4

f -fat objects in Rd Of (1) Of (log n) worst-case Theorem 2
d-dimensional hypercubes (1 + ε) · 2d Od,ε(log2d+1 n · log2d+1 U) [25]

▶ Theorem 1. For a fully dynamic set of unit disks in the plane, a 12-approximate MIS can
be maintained with worst-case update time O(log n), and optimal output-sensitive reporting.

We prove Theorem 1 in the full version [12]. Similarly to classical approximation algorithms
for the static problem [26], we lay out four shifted grids such that any unit disk lies in a grid
cell for at least one of the grids, see Figure 1. For each grid, we maintain an independent
set that contains at most one disk from each grid cell, thus we obtain four independent
sets S1, . . . , S4 at all times, where the largest one is a constant-factor approximation of the
MIS. Using the MIX algorithm [13], we can maintain an independent set S ⊂

⋃4
i=1 Si of size

Ω(max{|S1|, |S2|, |S3|, |S4|}) at all times, which is a O(1)-approximation of the MIS.
Moreover, our dynamic data structure for unit disks easily generalizes to fat objects of

comparable sizes in Rd for any constant dimension d ∈ N (see the full version [12]).

2 The Õ(·) notation ignores logarithmic factors.

SoCG 2024

19:4 Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

G1

G3

G2

G4

(a) (b)

Figure 1 (a) The four shifted grids G1, . . . , G4, which respectively do not intersect the blue,
green, yellow, and red disks. (b) The radius-1 squares inside grid cells, along with the center points
of the disks that lie completely inside grid cells, as crosses. In the bottom right, besides red squares
for G4, the squares of all other grids are added to show that the squares together partition the plane.

▶ Theorem 2. For every d, f ∈ N and real parameters 0 < r1 < r2, there exists a constant
C with the following property: For a fully dynamic collection of f-fat sets in Rd, each of
size between r1 and r2, a C-approximate MIS can be maintained with worst-case update time
O(log n), and optimal output-sensitive reporting.

Our main result is a dynamic data structure for MIS of disks of arbitrary radii in R2.

▶ Theorem 3. For a fully dynamic set of disks of arbitrary radii in the plane, an O(1)-
approximate MIS can be maintained in polylogarithmic expected amortized update time.

To prove Theorem 3, we extend the core ideas developed for unit disks with several new
ideas, see Section 3. Specifically, we still maintain a constant number of “grids” such that
every disk lies in one of the grid cells. Due to the different disk sizes, however, we need
shifted grids at multiple scales, where each disk lies in a grid cell of comparable size. We
achieve this with a new nonatree data structure, which recursively subdivides squares into
3 × 3 congruent subsquares. For each shifted nonatree, we maintain an independent set
Si that contains at most one disk from each cell. While the set Si can be computed in a
bottom-up traversal of the nonatree using the greedy strategy [33, 20], the challenge is to
perform dynamic updates in polylogarithmic update time even though ascending paths in the
nonatrees can be of linear length. We address this challenge with a combination of techniques
outlines in Section 3.2. One key component is the use of the dynamic farthest neighbor data
structure by Kaplan et al. [28] (which generalizes Chan’s famous dynamic convex hull data
structure [15, 16]). We adapt this data structure to work in concert with nonatrees to find
the next level where we can add another disk of the same or larger size to greedily add to
the independent set in polylogarithmic time, and with polylogarithmic expected amortized
update time. Finally, we use again the MIX algorithm for disks in the plane [13] to maintain
a single independent set S ⊂

⋃
i Si, which is a constant-factor approximation of the MIS.

One bottleneck in this framework is the farthest neighbor data structure [28, 32], which
provides expected amortized polylogarithmic update time and works only for families of “nice”
objects in the plane (such as disks or homothets of a convex polygon, etc.). This is the only
reason why our algorithm does not guarantee deterministic worst-case update time, and it
does not extend to balls in Rd for d ≥ 3, or to arbitrary fat objects in the plane. All other
steps of our machinery support deterministic polylogarithmic worst-case update time, as well
as balls in Rd for any constant dimension d ∈ N, and fat objects in the plane.

S. Bhore, M. Nöllenburg, C. D. Tóth, and J. Wulms 19:5

Another limitation for generalizing our framework is the MIX algorithm, which smoothly
transitions from one independent set to another. It was established by Cardinal et al. [13] for
fat objects in Rd for any constant d ∈ N and their proof heavily relies on separator theorems.
However, they show, e.g., that a sublinear MIX algorithm is impossible for rectangles in R2.

Finally, we note that, even for a dynamic set of unit disks in the plane, it is impossible
to maintain a (1 + ε)-approximate MIS with amortized update time nO((1/ε)1−δ) for any ε,
δ > 0, unless the Exponential Time Hypothesis (ETH) fails. This follows from a reduction to
a result by Marx [35], resembling the same result for hypercubes by Henzinger et al. [25].

▶ Theorem 4. For a fully dynamic set of unit disks in R2, no (1+ε)-approximation algorithm
exists for DGMIS with amortized update time nO((1/ε)1−δ), for any ε, δ > 0, unless ETH fails.

Due to space constraints, some details are deferred to the full paper on ArXiv [12].

2 Preliminaries

MIX Algorithm. A general strategy for computing an MIS is to maintain a small number
of candidate independent sets S1, . . . , Sk with a guarantee that the largest set is a good
approximation of an MIS, and each insertion and deletion incurs only constantly many changes
in Si for all i = 1, . . . , k. To answer a query about the size of the MIS, we can simply report
max{|S1|, . . . , |Sk|} in O(k) time. Similarly, we can report an entire (approximate) MIS by
returning a largest candidate set. However, if we need to maintain a single (approximate)
MIS at all times, we need to smoothly switch from one candidate to another. This challenge
has recently been addressed by the MIX algorithm introduced by Cardinal et al. [13]:

MIX algorithm: The algorithm receives two independent sets S1 and S2 whose sizes
sum to n as input, and smoothly transitions from S1 to S2 by adding or removing
one element at a time such that at all times the intermediate sets are independent
sets of size at least min{|S1|, |S2|} − o(n).

Cardinal et al. [13] constructed an O(n log n)-time MIX algorithm for fat objects in Rd,
for constant dimension d ∈ N, which we use as follows. Assume that D is a fully dynamic
set of disks in the plane, and we are given candidate independent sets S1, . . . , Sk with the
guarantee that max{|S1|, . . . , |Sk|} ≥ c · OPT at all times, where OPT is the size of the MIS
and 0 < c ≤ 1 is a constant; further assume that the size of Si, i ∈ {1, . . . , k}, changes by at
most a constant u ≥ 1 for each insertion or deletion in D. We show that MIX can be used to
maintain a single approximate MIS S at all times, when we are allowed to make up to 10u

changes in S for each insertion or deletion in D.

▶ Lemma 5. For a collection of candidate independent sets S1, . . . , Sk, the largest of which
is a c-approximate MIS at all times, we can dynamically maintain an O(c)-approximate MIS
with O(1) changes per update.

Dynamic Farthest Neighbor Data Structure. Given a set of functions F = {f1, . . . , fn},
fi : R2 → R for i = 1, . . . , n, the upper envelope of F is the graph of the function U : R2 → R,
L(p) = max{fi(p) | 1 ≤ i ≤ n}. A vertical stabbing query with respect to the upper envelope,
for query point p ∈ R2, asks for the function fi such that U(p) = fi(p).

Given a set D of n disks in the plane, we can use this machinery to find, for a query
disk dq, the disk in D that is farthest from dq. Specifically, for each disk d ∈ D centered at cd

with radius rd, define the signed Euclidean distance function fd : R2 → R, fd(p) = |pcd| − rd,

SoCG 2024

19:6 Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

which is negative if p is in the interior of d, positive if p is in the exterior of d and 0 if p is on
the boundary of d. For F = {fd | d ∈ D} we have U(p) = fd(p) for a disk d ∈ D farthest
from p. Importantly, for query disk dq, we find a farthest disk from dq by querying its center.

In the fully dynamic setting, functions are inserted and deleted to/from F , and we wish
to maintain a data structure that supports vertical stabbing queries w.r.t. the upper envelope
of F . For linear functions fi (i.e., hyperplanes in R3), Chan [15] devised a fully dynamic
randomized data structure with polylogarithmic query time and polylogarithmic amortized
expected update time. After several incremental improvements, the current best version is
a deterministic data structure for n hyperplanes in R3 with O(n log n) preprocessing time,
O(log4 n) amortized update time, and O(log2 n) worst-case query time [16].

Kaplan et al. [28] generalized Chan’s data structure for dynamic sets of functions F ,
where the upper (or lower) envelope of any k functions has O(k) combinatorial complexity.
This includes, in particular, the signed distance functions from disks [3]. Their data structure
requires O(n log3 n) storage in expectation and supports insertions in O(λs(log n) log5 n)
amortized expected time, deletions in O(λs(log n) log9 n) amortized expected time, and
vertical stabbing queries in O(log2 n) worst-case deterministic time. Here n is the number
of functions currently in F and λs(t) is the maximum length of a Davenport-Schinzel
sequence [37] on t symbols of order s. Subsequently, Liu [32, Corollary 16] improved the
deletion time to O(λs(log n) log7 n) amortized expected time. For signed Euclidean distances
of disks, we have s = 6 [28] and λ6(t) ≪ O(t log t) ≪ O(t2). For simplicity, we assume
O(log9 n) expected amortized update time and O(log2 n) worst-case query time. We obtain
the following.

▶ Lemma 6. For a dynamic set D of n disks of arbitrary radii in the plane, there is a
randomized data structure that supports disk insertion in O(log7 n) amortized expected time,
disk deletion in O(log9 n) amortized expected time, and the following disjointness query in
O(log2 n) worst-case time: For a query disk dq, find a disk in D disjoint from dq, or report
that all disks in D intersect dq.

We refer to the data structure in Lemma 6 as the dynamic farthest neighbor (DFN)
data structure. We remark that Chan [16] improved the update time when the functions
F = {f1, . . . , fn} are distances from n point sites in R2. De Berg and Staals [5] generalized
these results to dynamic k-nearest neighbor data structures for n point sites in R2.

3 Disks of Arbitrary Radii in the Plane

In this section, we study the DGMIS problem for a set of disks of arbitrary radii. The
general idea of our new data structure is to break the set of disks D into subsets of disks
of comparable radius. We will use several instances of shifted grids Gi

1, . . . , Gi
4, as we also

use in the unit disk case, where the grid cells now have side length 3i, and are shifted by 3i

2 ,
for i ∈ Z. The resulting hierarchies of recursively 3 × 3 subdivided grid cells forms so-called
nonatrees. In Section 3.1, we explain how to compute a constant-factor approximation for
static instances by bottom-up traversals of the nonatrees. We then make several changes in
the static data structures, to support efficient updates, while maintaining a constant factor
approximation. Since the height of a nonatree (even a compressed nonatree) may be Θ(n) for
n disks (see Figure 2), we cannot afford to traverse ascending paths in their entirety with our
polylogarithmic budget for the update time. We address this challenge with a combination of
the techniques outlined in Section 3.2. One key component is the use of the dynamic farthest
neighbor data structure of Lemma 6. Finally, in Section 3.3, we stitch all these ingredients
together to show how to maintain a constant-factor approximate maximum independent set
in a fully dynamic setting, with expected amortized polylogarithmic update time.

S. Bhore, M. Nöllenburg, C. D. Tóth, and J. Wulms 19:7

Figure 2 A nonatree with height linear in the number of stored disks, whose radii decay
exponentially. A compressed nonatree (with compressed nodes) has linear height.

3.1 Static Hierarchical Data Structures
Dividing Disks over Buckets. The shifted grids Gi

1, . . . , Gi
4 form the set Gi. In this set Gi

we store disks with radius r, where 3i−1

4 < r ≤ 3i

4 . We refer to the data structures associated
with one value i as the bucket i. Compared to the unit disk case, in which we consider only
disks of radius 1

4 times the side length of the grid cells, we now have to deal with disks of
varying sizes even in one set Gi of shifted grids. In both cases, every disk is completely inside
at least one grid cell. To see this, observe that no two vertical or two horizontal grid lines
in one grid of bucket i can intersect a single disk with a radius lying in the range (3i−1

4 , 3i

4].
Indeed, such disks have a diameter at most 3i

2 , while grid lines are at least 3i apart.
Furthermore, our choice for side length 3i for bucket i was not arbitrary: Consider also

adjacent bucket i − 1 and observe that each cell c of grid Gi
1 is further subdivided into nine

cells of grid Gi−1
1 , in a 3 × 3 formation. We say that c is aligned with the nine cells in bucket

i − 1. We define the same parent-child relations as in a quadtree: If a grid cell c in a lower
bucket is inside a cell cp of an adjacent higher bucket, we say that c is a child (cell) of cp, or
that cp is the parent (cell) of c. In general, we write c1 ≺ c2 if cell c1 is a descendant of cell
c2; c1 ⪯ c2 if equality is allowed. We call the resulting structure a nonatree, and we will refer
to the nonatree that relates all grids Gj

1 as N1. In Figure 3a we illustrate the grids of two
consecutive buckets in a nonatree.

Crucially, all grids Gj
2 also align, and the same holds for Gj

3 and Gj
4. This happens

because horizontally and vertically, grid cells are subdivided into an odd number of cells
(three in our case), and the shifted grids are displaced by half the side length of the grid
cells. Thus, for Gj

2 and Gj
4, the horizontal shift in buckets i and i − 1 ensures that every

third vertical grid line of bucket i − 1 aligns with a vertical grid line of bucket i. The exact
same happens for the horizontal grid lines of Gj

3 and Gj
4, due to the vertical shift. Thus, the

horizontally shifted grids also form a nonatree N2, and similarly, we define N3 and N4.
For each bucket i, we maintain five self-balancing search trees. Let Di ⊆ D be the subset

of disks stored in Gi and let S1, . . . , S4 be an independent set in Gi
1, . . . , Gi

4, then we maintain
in T i

D all disks in Di and in T i
1, . . . , T i

4 the disks in S1, . . . , S4.

Approximating a Maximum Independent Set. We will now use the data structures to
compute an approximate MIS for disks with arbitrary radii. Note that, we defined buckets
for i ∈ Z, but we will use only those buckets that store any disks, which we call relevant
buckets. Within these buckets, we call grid cells that contain disks the relevant grid cells.
Figure 3 illustrates the concepts introduced in this paragraph and the upcoming paragraphs.

Let B be the sequence of relevant buckets, ordered on their parameter i. To compute a
solution, we will consider the buckets in B in ascending order, starting from the lowest bucket,
which holds the smallest disk, and has grids with the smallest side length, up to the highest

SoCG 2024

19:8 Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

(a) (b)

i

i+ 1

i+ 2

bucket

Compressed nonatree N1Gi
1 Gi+1

1

Figure 3 (a) Two compatible grids in buckets i and i + 1, with (blue) disks of D in relevant
cells. In particular, the green cell in Gi

1 is relevant, but its (green) parent cell in Gi+1
1 is not. Three

(yellow) obstacle disks of Gi
1 are drawn in both grids. Only one blue disk in Gi+1

1 is disjoint from
an obstacle, and can be chosen in the greedy bottom-up strategy. (b) Part of the compressed
nonatree N1 corresponding to (a): The colored nodes of bucket i + 2 correspond to colored squares
in (a) of the same color. Because the green cell in Gi+1

1 is not relevant, and does not have relevant
children in two subtrees, it is not represented in N1. Instead, the green node, corresponding to the
green relevant cell in Gi

1, directly connects to an ancestor in bucket i + 2 (by the green edge).

bucket with the largest disks, and largest side lengths. We follow a greedy bottom-up strategy
for finding a constant-factor approximation of an MIS of disks. To prevent computational
overhead in this approach, our nonatrees are compressed, similar to compressed quadtrees [24,
Chapter 2]: Each nonatree consists of a root cell, all relevant grid cells, and all cells that
have relevant grid cells in at least two subtrees. As such, each (non-root) internal cell of
our nonatrees either contains a disk, or merges at least two subtrees that contain disks, and
hence the total number of cells in a compressed nonatree is linear in the number of disks it
stores, which is upper bounded by O(n).

Specifically, two high-level steps can be distinguished in our approach:
1. In the lowest relevant bucket, we simply select an arbitrary disk from each relevant grid

cell. In other relevant buckets, we consider for each grid cell c ∈ Gi
k the subdivision of

c in Gj
k in the preceding relevant bucket j < i. We try to combine the independent set

from the relevant child(ren) of c with at most one additional disk in c. To communicate
upwards which disks have been included in our independent set, we use obstacle disks
(these are not necessarily input disks; see the next step). Once all relevant cells have been
handled, we output the largest independent set among the four sets computed for the
shifted nonatrees N1, . . . , N4, to get an O(1)-approximation, as shown in Lemmata 7–9.

2. The obstacle disk in the previous step may cover more area than the disks in the
independent set of the children of c. Hence, we consider computing the obstacle disk
only for independent sets originating from a single child cell. In this case, we choose
as the obstacle the smallest disk covering the contributing child cell in question. The
obstacle will then be of comparable size to that child cell, and hence also comparable to
the contributed disk, intersecting at most a constant number of disks in the parent cell c.
Otherwise, if the independent set of the children originates from more than one child, we
simply do not add a disk from c, even if that may be possible. Lemmata 10 and 11 show
that we still obtain a constant-factor approximate MIS under these constraints.

We will now elaborate on the high-level steps, and provide a sequence of lemmata that
can be combined to prove the approximation ratio of the computed independent set.

S. Bhore, M. Nöllenburg, C. D. Tóth, and J. Wulms 19:9

In the first step, we deviate from an optimal solution in three ways: We follow a greedy
bottom-up approach, we take at most one disk per grid cell, and we do not combine the
solutions of the shifted nonatrees. We focus on the latter concern first, starting by defining
the intersection between a disk and a nonatree, as follows. We say that a disk d intersects
(the grid lines of) a nonatree Nk, if and only if its radius rd is in the range (3i−1

4 , 3i

4] and it
intersects grid lines of Gi

k.

▶ Lemma 7. For a set S of disks in R2, the grid lines of at least one nonatree, out of the
shifted nonatrees N1, . . . , N4, do not intersect at least |S|/4 disks.

We show that taking only a single disk per grid cell into our solution is a 35-approximation
of a MIS, using a simple packing argument [31]; see also [38].

▶ Lemma 8. If S is a MIS of the disks in a grid cell of a nonatree Nk, then |S| ≤ 35.

To round out the first step, we prove that our greedy strategy contributes at most a
factor 5 to our approximation factor.

▶ Lemma 9. Let S be a maximum independent set of the disks in a nonatree Nk such that
each grid cell in Nk contributes at most one disk. An algorithm that considers the grid cells
in Nk in bottom-up fashion, and computes an independent set S′ by greedily adding at most
one non-overlapping disk per grid cell to S′, is a 5-approximation of S.

For the second step, we use several data structures and algorithmic steps that help us
achieve polylogarithmic update and query times in the dynamic setting. For now we analyze
solely the approximation factor incurred by these techniques. We start by analyzing the
approximation ratio for not taking any disk from a cell c, if several of its children contribute
disks to the computed independent set.

▶ Lemma 10. Let S be a MIS of the disks in a nonatree Nk such that each grid cell in Nk

contributes at most one disk. The independent set S′ ⊂ S, that contains all disks in S except
disks from cells that have two relevant child cells, is a 2-approximation of S.

Next we consider the obstacle disk that we compute when only one child cell contributes
disks to the independent set. Before we elaborate on the approximation ratio of this
algorithmic procedure, we first explain the steps in more detail.

For the leaf cells of a nonatree, it is unnecessary to compute an obstacle disk, since these
cells contribute at most a single disk, which can act as its own obstacle disk. For a cell c

that is an internal node of the nonatree, with at most one relevant child that contributes to
the independent set, we have two options for the obstacle disk of c. We use the obstacle disk
of the child cell to determine whether there is a disk in c disjoint from the child obstacle, to
either find a disjoint disk d or not. If we find such a disk d, we compute a new obstacle disk
for c, by taking the smallest enclosing disk of c. If there is no such disk d, then we use the
obstacle disk of the child as the obstacle disk for c. This ensures that the obstacle disk does
not grow unnecessarily, which is relevant when proving the following approximation factor.

▶ Lemma 11. Let c be a cell in bucket i of nonatree Nk that contributes a disk to an
independent set. The computed obstacle disk do can overlap with no more than 23 pairwise
disjoint disks in higher buckets.

▶ Lemma 12. For a set of disks in the plane, one of our shifted nonatrees N1, . . . , N4
maintains an independent set of size Ω(|OPT|), where OPT is a MIS.

SoCG 2024

19:10 Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

3.2 Modifications to Support Dynamic Maintenance
In Section 3.1, we defined four hierarchical grids (nonatrees) N1, . . . , N4, described a greedy
algorithm to compute independent sets S1, . . . , S4 that are consistent with the grids, and
showed that a largest of the four independent sets is a constant-factor approximate MIS.

In this section, we make several changes in the static data structures, to support efficient
updates, while maintaining a constant-factor approximation. Then in Section 3.3, we show
that the modified data structures can be maintained dynamically in expected amortized
polylogarithmic update time. We start with a summary of the modifications:

Sparsification. We split each nonatree Ni, i ∈ {1, . . . , 4}, into two trees Nodd
i and

N even
i , one containing the odd levels and the other containing the even levels. As a result,

the radii of disks at different (non-empty) levels differ by at least a factor of 3.
Clearance. For a radius-r disk d, let 3d denote the concentric disk of radius 3r. Recall
that our greedy strategy adds disks to an independent set S in a bottom-up traversal of
a nonatree. When S contains a disk d ∈ D, then larger disks that intersect 3d cannot be
added to S. In particular, we use obstacle disks of the form 3d′, where d′ is the smallest
enclosing disk of a cell. A simple volume argument shows that this modification still
yields a constant-factor approximation. As a result, if a new disk is added, it intersects
at most one larger disk in S. This simplifies the update operation in Section 3.3.
Obstacle Disks and Obstacle Cells. In Section 3.1, we defined obstacle disks for
the disks in Sk. To support dynamic updates, we use slightly larger obstacle disks, to
implement the clearance in our data structures. These obstacle disks are associated with
cells of the nonatree Nk, which are called obstacle cells (true obstacles). Cells of the
nonatree with two or more children are also considered as obstacle cells (merge obstacles),
thus the obstacle cells decompose each nonatree into ascending paths.
Barrier Disks. The naïve approach for a dynamic update of the independent set S in a
nonatree N would work as follows: When a new disk d is inserted or deleted, we find a
nonatree N and a cell c ∈ N associated with d; and then in an ascending path of N from
c to the root, we re-compute the disks in S associated with the cells. Unfortunately, the
height of the nonatree may be linear (recall Fig. 2), and we cannot afford to traverse an
ascending path from c to the root. Instead, we run the greedy process only locally, on an
ascending path of N between two cells c1 ≺ c2 that contain disks s1, s2 ∈ S, respectively.
The greedy process guarantees that new disks added to S are disjoint from any smaller
disk in S, including s1. However, the new disks might intersect the larger disk s2 ∈ S. In
this case, we remove s2 from S, keep it as a ”placeholder” in a set B of barrier disks, and
ensure that S ∪ B remains a dominating set of D.

Sparsification. Recall that for a set D of n disks, Di denoted the subset of disks of radius
r, where 3i−1

4 < r ≤ 3i

4 , for all i ∈ Z. Let N1, . . . , N4, be the four nonatrees defined in
Section 3.1. For every k ∈ {1, . . . , 4}, we create two copies of Nk, denoted N even

k and Nodd
k .

For i even (resp., odd), we associate the disks in Di to the nonatrees N even
k (resp., Nodd

k).
We state a simple corollary to Lemma 12.

▶ Lemma 13. For a set of disks in R2, one of our shifted nonatrees N1, . . . , N8 maintains
an independent set of size |OPT|/C, where OPT is a MIS and C is an absolute constant.

The advantage of partitioning the nonatrees into odd and even levels is the following.

▶ Lemma 14. Let d1, d2 ∈ D be disks of radii r1, r2 > 0, respectively, associated with cells c1
and c2 in a nonatree Nk, k ∈ {1, . . . , 8}. If c1 ≺ c2, then 3 r1 < r2.

S. Bhore, M. Nöllenburg, C. D. Tóth, and J. Wulms 19:11

Clearance. The guiding principle of the greedy strategy is that, if we add a disk d to the
independent set, we exclude all larger disks that intersect d. For our dynamic algorithm, we
wish to maintain a stronger property:

▶ Definition 15. Let S be an independent set of the disks in a nonatree Nk such that each
grid cell in Nk contributes at most one disk. For λ ≥ 1, we say that S has λ-clearance if
the following holds: If d1, d2 ∈ S are associated with cells c1 and c2, resp., and c1 ≺ c2, then
d2 is disjoint from λ d′

1, where d′
1 is the smallest enclosing disk of c1.

Note that d1 ⊂ d′
1 and λ d1 ⊂ λ d′

1. In particular λ-clearance implies that d2 is disjoint from
λ d1. This weaker property suffices for some of our proofs (e.g., Lemma 16). An easy volume
argument shows that a modified greedy algorithm that maintains 3-clearance still returns a
constant-factor approximate MIS. The key advantage of an independent set with 3-clearance
is the following property, which is helpful for our dynamic algorithm (see Figure 4a):

▶ Lemma 16. Let S be an independent set of the disks in a nonatree Nk such that each grid
cell in Nk contributes at most one disk; and assume that S has 3-clearance. Then every disk
that lies in a cell in Nk intersects at most one larger disk in S.

Obstacle Cells: Decomposing a Nonatree into Ascending Paths. A cell c ∈ Nk is an
obstacle cell if it is associated with a disk in Sk (a true obstacle), or it has at least two
children that each contain a disk in Sk (a merge obstacle). For every obstacle cell c, we
define an obstacle disk as o(c) = 3d′, where d′ is the smallest enclosing disk of the cell c. The
obstacle cells decompose the nonatree into ascending paths in which each cell has relevant
descendants in only a single subtree (see Figure 5a). Inside an ascending path, disks either
intersect the obstacle disk of the (closest) obstacle cell below them, or are part of Sk and
therefore define a true obstacle cell (see Figures 5b and 5c). We show a useful property of
the obstacle disks, that allows us to consider ascending paths independently.

▶ Lemma 17. When a disk d in cell c ∈ Nk is added to Sk, it can intersect only the
disk do ∈ Sk associated with the next obstacle cell co in the ascending path P (d) from c

towards the root, if do even exists.

Barrier Disks. For a set of disks D, we will maintain an independent set S ⊂ D, and a set
B ⊂ D of barrier disks. When a disk d associated with a cell c ∈ Nk is inserted or deleted
from D, we re-run the greedy process on the nonatree locally, between the cells c1 ⪯ c ≺ c2
that contain disks s1, s2 ∈ S. If any of the new disks added to S intersects s2, then we remove

(a) (b)

d0

d1

d2

Figure 4 Constructions for Lemmata 16 and 17, respectively: (a) The light yellow disk representing
3d1 is disjoint from d2 because of 3-clearance. (b) The light blue disk can intersect only a disk of Sk

in the red cell co; larger disks in Sk are disjoint from the yellow obstacle disk defined by co.

SoCG 2024

19:12 Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

(a) (b) (c)

Figure 5 (a) Decomposition of a nonatree into ascending paths between merge obstacle cells.
Only relevant leaves are drawn and hence all leaves are obstacle cells (disks) as well. The (square)
root is not necessarily an obstacle cell. One ascending path between merge nodes is highlighted in
grey. The structure of the highlighted ascending path is shown (b) abstractly and (c) geometrically:
The merge obstacle cells at the top and bottom (with yellow obstacle disks) each have no disk of Sk

associated with them. Every other obstacle cell on the path also defines a brown obstacle disk. Each
such cell contains a (dark blue) disk of Sk, which is disjoint from the (closest) obstacle disk below it
(indicated by red crosses). All (light blue) disks on the (red) ascending path above an obstacle cell
are intersected by the obstacle below. Green colors identify cells between (b) and (c).

s2 from S, and add it to B as a barrier disk. Such a barrier disk defines a barrier clearance
disk o(cb) = 3db, where db is the smallest enclosing disk of the barrier cell cb containing s2.
This obstacle disk also implements the clearance (defined above), to guarantee that the new
disks added to S in this process do not intersect any disk in S larger than s2. Importantly,
we maintain the properties that (i) the obstacle disks, for all obstacle cells and barrier cells,
form a dominating set for D, that is, all disks in D intersect an obstacle disk of some obstacle
cell or the barrier clearance disk of a barrier cell; and (ii) on any ascending path there is
always an obstacle cell between two barrier cells.

The latter property ensures that |B| ≤ 2 |S| and is maintained as follows. We maintain
an assignment β between barrier disks and the closest obstacle cells below them. Each
barrier disk β(c1) lies in one of the cells of the nonatree along an ascending path between
two obstacle cells c1 ≺ c2. Each path contains at most one barrier disk.

In the full paper, we introduce six invariants that guarantee that the largest of the eight
independent sets, S1, . . . , S8, is a constant-factor approximate MIS of D. It then suffices to
show that the invariants can be efficiently maintained under dynamic changes.

3.3 Dynamic Maintenance Using Farthest Neighbor Data Structures
On a high level, for a dynamic set of disks D, we maintain eight nonatrees N1, . . . N8, and
for each k ∈ {1, . . . , 8} two sets of disks: an independent set Sk and a set of barrier disks Bk.
In this section, we sketch how to maintain these data structures with polylogarithmic update
times. For that, we use the dynamic farthest neighbor (DFN) data structure (Lemma 6) to
efficiently find disks that are disjoint from obstacle disks in ascending paths of our nonatrees.

More specifically, when a disk d associated with a cell c ∈ Nk is inserted or deleted, then
c lies in an ascending path P (d) between two obstacle cells, say c1 ⪯ c ≺ c2. To update
the independent set Sk and the barrier disks Bk, in general we run the greedy algorithm
in this path. The greedy process queries the DFN data structure to find disks that are
disjoint from any smaller disk in Sk. Now we distinguish between three cases (see Figure 6):
(a) If c2 is a merge obstacle cell, then it does not contain a disk in Sk, and hence we are done.

S. Bhore, M. Nöllenburg, C. D. Tóth, and J. Wulms 19:13

(a) (c)(b)

c2

c2

c2

β(c2)

c1 c1 c1 c1

Figure 6 Greedy updates in an ascending path: (a) There is no disk s2 ∈ Sk in c2 that can
intersect the new (brown) obstacle disks in the gray ascending path. (b) The disk s2 ∈ Sk in c2 is
turned into a barrier if it overlaps the obstacle disk of the highest new disk in the light green cell.
(c) If β(c2) exists, remove c2 from Sk and run the greedy algorithm up to the dark green cell.

(b) However, if c2 is a true obstacle cell, then the last disk added to Sk may intersect the disk
s2 ∈ Sk associated with c2. If this is the case, we delete s2 from Sk, insert it into Bk, and
assign it to the highest disk in Sk in P (d) below s2; this highest disk in P (d) is necessarily
the disk added last to Sk, causing the intersection with s2. (c) Finally, if s2 was already
associated with a barrier disk, β(c2), then adding s2 to Bk would result in two barrier disks
between consecutive obstacle cells, which is not allowed. For this reason, if β(c2) exists, we
remove s2 from Sk, run the greedy algorithm on a longer path, up to the cell associated with
β(c2), and then reassign β(c2) to the largest disk in Sk found by the greedy algorithm.

Update Time Analysis. For maintaining our invariants, we show that it suffices to re-run
the greedy algorithm on O(1) ascending paths; and in each such path, the greedy algorithm
terminates after O(1) iterations, each of which adds one new disk to Sk that is disjoint from
obstacle disks below. Thus each dynamic update involves only O(1) queries to the DFN data
structure (Lemma 6); in fact, we use a hierarchical version of this data structure incurring
extra logarithmic factors (see the full version [12]). As these queries dominate the update
time, our algorithm achieves polylogarithmic amortized expected update time.

By Lemma 5, we can smoothly transition from one independent set to another using the
MIX algorithm, with amortized O(1) changes in the ultimate independent set per update in
D, and conclude the following theorem.

▶ Theorem 3. For a fully dynamic set of disks of arbitrary radii in the plane, an O(1)-
approximate MIS can be maintained in polylogarithmic expected amortized update time.

4 Conclusions

We studied the dynamic geometric independent set problem for a collection of disks in the
plane and presented the first fully dynamic algorithm with polylogarithmic update time.
First, we showed that for a fully dynamic set of unit disks in the plane, a constant factor
approximate maximum independent set can be maintained in polylogarithmic update time.
Moreover, we showed that this result generalizes to fat objects in any fixed dimension. Our
main result was a dynamic data structure that maintains a constant factor approximate
maximum independent set in polylogarithmic amortized update time. One bottleneck in our
framework is the nearest/farthest neighbor data structure [28, 32] (as discussed in Section 1),
which provides only expected amortized polylogarithmic update time. This is the only reason

SoCG 2024

19:14 Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

why our algorithm does not guarantee deterministic worst-case update time, and it does not
extend to balls in Rd for d ≥ 3, or to arbitrary fat objects in R2. It remains open whether
there is a dynamic nearest/farthest neighbor data structure in constant dimensions d ≥ 2 with
worst-case polylogarithmic update and query time: Any such result would immediately carry
over to a fully dynamic algorithm for an approximate MIS for balls in higher dimensions.

References
1 Pankaj K Agarwal, Marc Van Kreveld, and Subhash Suri. Label placement by maxi-

mum independent set in rectangles. Comput. Geom., 11(3-4):209–218, 1998. doi:10.1016/
S0925-7721(98)00028-5.

2 Jochen Alber and Jirí Fiala. Geometric separation and exact solutions for the parameterized
independent set problem on disk graphs. J. Algorithms, 52(2):134–151, 2004. doi:10.1016/j.
jalgor.2003.10.001.

3 Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi Diagrams and Delaunay Triangu-
lations. World Scientific, 2013. doi:10.1142/8685.

4 Reuven Bar-Yehuda, Magnús M Halldórsson, Joseph Naor, Hadas Shachnai, and Irina
Shapira. Scheduling split intervals. SIAM J. Computing, 36(1):1–15, 2006. doi:10.1137/
S0097539703437843.

5 Sarita de Berg and Frank Staals. Dynamic data structures for k-nearest neighbor queries.
Comput. Geom., 111:101976, 2023. doi:10.1016/j.comgeo.2022.101976.

6 Piotr Berman, Bhaskar DasGupta, S. Muthukrishnan, and Suneeta Ramaswami. Efficient
approximation algorithms for tiling and packing problems with rectangles. J. Algorithms,
41(2):443–470, 2001. doi:10.1006/jagm.2001.1188.

7 Piotr Berman and Toshihiro Fujito. On approximation properties of the independent set
problem for low degree graphs. Theory Comput. Syst., 32:115–132, 1999. doi:10.1007/
s002240000113.

8 Sujoy Bhore, Jean Cardinal, John Iacono, and Grigorios Koumoutsos. Dynamic geometric
independent set. In Abst. of 23rd Thailand-Japan Conference on Discrete and Computational
Geometry, Graphs, and Games (TJCDCG’21), 2021. doi:10.48550/arXiv.2007.08643.

9 Sujoy Bhore and Timothy M. Chan. Fully dynamic geometric vertex cover and matching.
CoRR, abs/2402.07441, 2024. doi:10.48550/arXiv.2402.07441.

10 Sujoy Bhore, Fabian Klute, and Jelle J. Oostveen. On streaming algorithms for ge-
ometric independent set and clique. In Proc. 20th Workshop on Approximation and
Online Algorithms (WAOA’22), volume 13538 of LNCS, pages 211–224. Springer, 2022.
doi:10.1007/978-3-031-18367-6_11.

11 Sujoy Bhore, Guangping Li, and Martin Nöllenburg. An algorithmic study of fully dynamic
independent sets for map labeling. ACM J. Exp. Algorithmics, 27(1):1–36, 2022. doi:
10.1145/3514240.

12 Sujoy Bhore, Martin Nöllenburg, Csaba D. Tóth, and Jules Wulms. Fully dynamic maximum
independent sets of disks in polylogarithmic update time. CoRR, abs/2308.00979, 2023.
doi:10.48550/arXiv.2308.00979.

13 Jean Cardinal, John Iacono, and Grigorios Koumoutsos. Worst-case efficient dynamic geometric
independent set. In Proc. 29th European Symposium on Algorithms (ESA’21), volume 204 of
LIPIcs, pages 25:1–25:15, 2021. See also arXiv:2108.08050. doi:10.4230/LIPIcs.ESA.2021.25.

14 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms, 46(2):178–189, 2003. doi:10.1016/S0196-6774(02)00294-8.

15 Timothy M. Chan. A dynamic data structure for 3-D convex hulls and 2-D nearest neighbor
queries. J. ACM, 57(3):16:1–16:15, 2010. doi:10.1145/1706591.1706596.

16 Timothy M. Chan. Dynamic geometric data structures via shallow cuttings. Discret. Comput.
Geom., 64(4):1235–1252, 2020. doi:10.1007/s00454-020-00229-5.

https://doi.org/10.1016/S0925-7721(98)00028-5
https://doi.org/10.1016/S0925-7721(98)00028-5
https://doi.org/10.1016/j.jalgor.2003.10.001
https://doi.org/10.1016/j.jalgor.2003.10.001
https://doi.org/10.1142/8685
https://doi.org/10.1137/S0097539703437843
https://doi.org/10.1137/S0097539703437843
https://doi.org/10.1016/j.comgeo.2022.101976
https://doi.org/10.1006/jagm.2001.1188
https://doi.org/10.1007/s002240000113
https://doi.org/10.1007/s002240000113
https://doi.org/10.48550/arXiv.2007.08643
https://doi.org/10.48550/arXiv.2402.07441
https://doi.org/10.1007/978-3-031-18367-6_11
https://doi.org/10.1145/3514240
https://doi.org/10.1145/3514240
https://doi.org/10.48550/arXiv.2308.00979
https://doi.org/10.4230/LIPIcs.ESA.2021.25
https://doi.org/10.1016/S0196-6774(02)00294-8
https://doi.org/10.1145/1706591.1706596
https://doi.org/10.1007/s00454-020-00229-5

S. Bhore, M. Nöllenburg, C. D. Tóth, and J. Wulms 19:15

17 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum inde-
pendent set of pseudo-disks. Discret. Comput. Geom., 48(2):373–392, 2012. doi:10.1007/
s00454-012-9417-5.

18 Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discret. Math.,
86(1-3):165–177, 1990. doi:10.1016/0012-365X(90)90358-O.

19 Spencer Compton, Slobodan Mitrovic, and Ronitt Rubinfeld. New partitioning techniques and
faster algorithms for approximate interval scheduling. In Proc. 50th International Colloquium
on Automata, Languages, and Programming (ICALP’23), volume 261 of LIPIcs, pages 45:1–
45:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ICALP.
2023.45.

20 Alon Efrat, Matthew J. Katz, Frank Nielsen, and Micha Sharir. Dynamic data structures
for fat objects and their applications. Comput. Geom., 15(4):215–227, 2000. doi:10.1016/
S0925-7721(99)00059-0.

21 Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes
for geometric intersection graphs. SIAM J. Computing, 34(6):1302–1323, 2005. doi:10.1137/
S0097539702402676.

22 Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy Pittu,
and Andreas Wiese. A 3-approximation algorithm for maximum independent set of rectangles.
In Proc. 33rd Symposium on Discrete Algorithms (SODA’22), pages 894–905, 2022. doi:
10.1137/1.9781611977073.38.

23 Alexander Gavruskin, Bakhadyr Khoussainov, Mikhail Kokho, and Jiamou Liu. Dynamic
algorithms for monotonic interval scheduling problem. Theor. Comput. Sci., 562:227–242,
2015. doi:10.1016/j.tcs.2014.09.046.

24 Sariel Har-Peled. Geometric Approximation Algorithms, volume 173 of Mathematical Surveys
and Monographs. AMS, 2011. URL: https://bookstore.ams.org/surv-173/.

25 Monika Henzinger, Stefan Neumann, and Andreas Wiese. Dynamic approximate maximum
independent set of intervals, hypercubes and hyperrectangles. In Proc. 36th Symposium on
Computational Geometry (SoCG’20), volume 164 of LIPIcs, pages 51:1–51:14. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.SoCG.2020.51.

26 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM, 32(1):130–136, 1985. doi:10.1145/2455.
214106.

27 Harry B. Hunt III, Madhav V. Marathe, Venkatesh Radhakrishnan, S. S. Ravi, Daniel J.
Rosenkrantz, and Richard Edwin Stearns. NC-approximation schemes for NP- and PSPACE-
hard problems for geometric graphs. J. Algorithms, 26(2):238–274, 1998. doi:10.1006/jagm.
1997.0903.

28 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar Voronoi diagrams for general distance functions and their algorithmic applications.
Discret. Comput. Geom., 64(3):838–904, 2020. doi:10.1007/s00454-020-00243-7.

29 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103. Springer, Boston, MA, 1972.
doi:10.1007/978-1-4684-2001-2_9.

30 Sanjeev Khanna, Shan Muthukrishnan, and Mike Paterson. On approximating rectangle tiling
and packing. In Proc. 9th Symposium on Discrete Algorithms (SODA’98), pages 384–393,
1998. doi:10.5555/314613.314768.

31 Kerstin Kirchner and Gerhard Wengerodt. Die dichteste Packung von 36 Kreisen in einem
Quadrat. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry,
25:147–160, 1987.

32 Chih-Hung Liu. Nearly optimal planar k nearest neighbors queries under general distance
functions. SIAM J. Comput., 51(3):723–765, 2022. doi:10.1137/20m1388371.

SoCG 2024

https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.1016/0012-365X(90)90358-O
https://doi.org/10.4230/LIPIcs.ICALP.2023.45
https://doi.org/10.4230/LIPIcs.ICALP.2023.45
https://doi.org/10.1016/S0925-7721(99)00059-0
https://doi.org/10.1016/S0925-7721(99)00059-0
https://doi.org/10.1137/S0097539702402676
https://doi.org/10.1137/S0097539702402676
https://doi.org/10.1137/1.9781611977073.38
https://doi.org/10.1137/1.9781611977073.38
https://doi.org/10.1016/j.tcs.2014.09.046
https://bookstore.ams.org/surv-173/
https://doi.org/10.4230/LIPIcs.SoCG.2020.51
https://doi.org/10.1145/2455.214106
https://doi.org/10.1145/2455.214106
https://doi.org/10.1006/jagm.1997.0903
https://doi.org/10.1006/jagm.1997.0903
https://doi.org/10.1007/s00454-020-00243-7
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.5555/314613.314768
https://doi.org/10.1137/20m1388371

19:16 Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

33 Madhav V. Marathe, Heinz Breu, Harry B. Hunt III, Sekharipuram S. Ravi, and Daniel J.
Rosenkrantz. Simple heuristics for unit disk graphs. Networks, 25(2):59–68, 1995. doi:
10.1002/net.3230250205.

34 Dániel Marx. Efficient approximation schemes for geometric problems? In Proc. 13th European
Symposium on Algorithms (ESA’05), volume 3669 of LNCS, pages 448–459. Springer, 2005.
doi:10.1007/11561071_41.

35 Dániel Marx. On the optimality of planar and geometric approximation schemes. In Proc.
48th Symposium on Foundations of Computer Science (FOCS’07), pages 338–348, 2007.
doi:10.1109/FOCS.2007.26.

36 Joseph S.B. Mitchell. Approximating maximum independent set for rectangles in the plane.
In Proc. 62nd Symposium on Foundations of Computer Science (FOCS’21), pages 339–350,
2022. doi:10.1109/FOCS52979.2021.00042.

37 Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel Sequences and their Geometric
Applications. Cambridge University Press, 1995.

38 Péter Gábor Szabó and Eckard Specht. Packing up to 200 equal circles in a square. In
Models and Algorithms for Global Optimization: Essays Dedicated to Antanas Žilinskas on
the Occasion of His 60th Birthday, pages 141–156. Springer, Boston, 2007. doi:10.1007/
978-0-387-36721-7_9.

39 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory Comput., 3(1):103–128, 2007. doi:10.4086/toc.2007.v003a006.

https://doi.org/10.1002/net.3230250205
https://doi.org/10.1002/net.3230250205
https://doi.org/10.1007/11561071_41
https://doi.org/10.1109/FOCS.2007.26
https://doi.org/10.1109/FOCS52979.2021.00042
https://doi.org/10.1007/978-0-387-36721-7_9
https://doi.org/10.1007/978-0-387-36721-7_9
https://doi.org/10.4086/toc.2007.v003a006

	1 Introduction
	2 Preliminaries
	3 Disks of Arbitrary Radii in the Plane
	3.1 Static Hierarchical Data Structures
	3.2 Modifications to Support Dynamic Maintenance
	3.3 Dynamic Maintenance Using Farthest Neighbor Data Structures

	4 Conclusions

