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Abstract
The problem Level Planarity asks for a crossing-free drawing of a graph in the plane such that
vertices are placed at prescribed y-coordinates (called levels) and such that every edge is realized as a
y-monotone curve. In the variant Constrained Level Planarity (CLP), each level y is equipped
with a partial order ≺y on its vertices and in the desired drawing the left-to-right order of vertices
on level y has to be a linear extension of ≺y. Ordered Level Planarity (OLP) corresponds
to the special case of CLP where the given partial orders ≺y are total orders. Previous results by
Brückner and Rutter [SODA 2017] and Klemz and Rote [ACM Trans. Alg. 2019] state that both
CLP and OLP are NP-hard even in severely restricted cases. In particular, they remain NP-hard
even when restricted to instances whose width (the maximum number of vertices that may share
a common level) is at most two. In this paper, we focus on the other dimension: we study the
parameterized complexity of CLP and OLP with respect to the height (the number of levels).

We show that OLP parameterized by the height is complete with respect to the complexity class
XNLP, which was first studied by Elberfeld, Stockhusen, and Tantau [Algorithmica 2015] (under a
different name) and recently made more prominent by Bodlaender, Groenland, Nederlof, and Swen-
nenhuis [FOCS 2021]. It contains all parameterized problems that can be solved nondeterministically
in time f(k) · nO(1) and space f(k) · log n (where f is a computable function, n is the input size,
and k is the parameter). If a problem is XNLP-complete, it lies in XP, but is W[t]-hard for every t.

In contrast to the fact that OLP parameterized by the height lies in XP, it turns out that CLP
is NP-hard even when restricted to instances of height 4. We complement this result by showing
that CLP can be solved in polynomial time for instances of height at most 3.
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20:2 Constrained and Ordered Level Planarity Parameterized by the Number of Levels

1 Introduction

In an upward drawing of a directed graph, every edge e = (u, v) is realized as a y-monotone
curve that goes upwards from u to v, i.e., the y-coordinate strictly increases when traversing e

from u towards v. Also known as poset diagrams, these drawings provide a natural way
to visualize a partial order on a set of items. The classical problem Upward Planarity
asks whether a given directed graph admits a drawing that is both upward and planar (i.e.,
crossing-free). It is known to be NP-hard [17], but becomes solvable in polynomial time if the
y-coordinate of each vertex is prescribed [11, 18, 21]. In contrast, when both the y-coordinate
and the x-coordinate of each vertex is prescribed, the problem is yet again NP-hard [23].
The paper at hand is concerned with the parameterized complexity of (a generalization of)
the latter variant of Upward Planarity, the parameter being the number of levels. Next,
we define these problems more precisely, adopting the notation and terminology used in [23].

Level planarity. A level graph G = (G, γ) is a directed graph G = (V, E) together with a
level assignment, which is a surjective map γ : V → {1, 2, . . . , h} where γ(u) < γ(v) for every
edge (u, v) ∈ E. The vertex set Vi = {v | γ(v) = i} is called the i-th level of G. The width of
level Vi is |Vi|. The levelwidth of G is the maximum width of any level in G and the height
of G is the number h of levels. A level planar drawing of G is an upward planar drawing of G

where the y-coordinate of each vertex v is γ(v). We use Li to denote the horizontal line with
y-coordinate i. Algorithms for computing level planar drawings usually just determine a
level planar embedding of a level planar drawing, which for each i ∈ {1, 2, . . . , h} lists the
left-to-right sequence of vertices and edges intersected by Li. Note that this corresponds to
an equivalence class of drawings from which an actual drawing is easily derived. The level
graph G is called proper if γ(v) = γ(u) + 1 for every edge (u, v) ∈ E.

The problem Level Planarity asks whether a given level graph admits a level planar
drawing. It can be solved in linear time [11, 18, 20, 21]; see [16] for a more detailed discussion
on this series of papers. It is easy to see that Level Planarity is polynomial time/space
equivalent to the variant where γ maps to h arbitrary distinct real numbers.

Constrained and ordered level planarity. In 2017, Brückner and Rutter [8] and Klemz
and Rote [23] independently introduced and studied two closely related variants of Level
Planarity, defined as follows. A constrained (ordered) level graph G = (G, γ, (≺i)1≤i≤h) is
a triplet corresponding to a level graph (G, γ) of height h equipped with a family containing,
for each 1 ≤ i ≤ h, a partial (total) order on the vertices in Vi. A constrained (ordered)
level planar drawing of G is a level planar drawing of (G, γ) where, for each 1 ≤ i ≤ h, the
left-to-right order of the vertices in Vi corresponds to a linear extension of ≺i (is ≺i). For a
pair of vertices u, v ∈ Vi with u ≺i v, we refer to u ≺i v as a constraint on u and v.

The problem Constrained Level Planarity (CLP) / Ordered Level Planarity
(OLP) asks whether a given constrained / ordered level graph admits a constrained / ordered
level planar drawing, in which case the input is called a constrained / ordered level planar
graph. The special case where the height of all instances is restricted to a given value h is
called h-level CLP / h-level OLP. In CLP, each partial order ≺i is assumed to be given
in form of a directed acyclic graph including all of its transitive edges. In OLP, each total
order ≺i is encoded by equipping each vertex of level Vi with an integer that is equal to its
rank in the order ≺i. Note that OLP is polynomial time/space equivalent to the variant of
Level Planarity where each vertex is equipped with a prescribed x-coordinate, implying
that the only challenge is to draw the edges.
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Klemz and Rote [23] showed that OLP (and, thus, CLP) is NP-hard even when restricted
to the case where the underlying undirected graph of G is a disjoint union of paths. Note that
such a graph has bounded pathwidth (and treewidth), maximum degree, and feedback vertex
set number, ruling out efficient parameterized algorithms with respect to these classical
parameters. Additionally, the instances produced by their reduction have a levelwidth of
only two. Independently, Brückner and Rutter [8] provided a very different reduction for
showing that CLP is NP-hard (in fact, their reduction shows the NP-hardness of Partial
Level Planarity, which can be seen as a generalization of OLP and a special case of
CLP; see below). The instances constructed by their reduction are connected and have
bounded maximum degree. They also present a polynomial time algorithm for CLP for the
case where the graph has a single sink, which they later sped up [9].

Other related work. The problem Partial Level Planarity (PLP) (introduced and
studied by Brückner and Rutter [8]), asks whether a given level planar drawing of a subgraph H

of the input graph G can be extended to a level planar drawing of G. This can be seen as a
generalization of OLP and, in the proper case, as a specialization of CLP. Several other
problems related to the construction of level planar drawings have been studied, including
problems with other kinds of ordering constraints (e.g., Clustered Level Planarity [15,
1, 23] and T-Level Planarity [26, 1, 23]), problems with a more geometric touch (see,
e.g., [19, 22]), and variants of Level Planarity seeking drawings on surfaces different from
the plane (see, e.g., [3, 2, 4]).

Contribution and organization. As stated above, Klemz and Rote [23] showed that OLP
(and, thus, CLP) is NP-hard even when restricted to instances of levelwidth two. In this
paper, we focus on the other “dimension”: we study CLP and OLP parameterized by height.

We show that OLP parameterized by the height is complete with respect to the complexity
class XNLP, which was first studied by Elberfeld, Stockhusen, and Tantau [13] (under the
name N[f poly, f log]) and recently made more prominent by Bodlaender, Groenland,
Nederlof, and Swennenhuis [7]. It contains all parameterized problems that can be solved
nondeterministically in time f(k) · nO(1) and space f(k) · log n (where f is a computable
function, n the input size, and k the parameter). Elberfeld et al. and Bodlaender et al. study
properties of (problems in) this class and provide several problems that are XNLP-complete.
In particular, if a problem is XNLP-complete, it lies in XP, but is W [t]-hard for every t [7].

▶ Theorem 1. Ordered Level Planarity parameterized by the height of the input graph
is XNLP-complete (and, thus, it lies in XP, but is W [t]-hard for every t). XNLP-hardness
holds even when restricted to the case where the input graph is connected. Moreover, there is
a constructive XP-time algorithm for Ordered Level Planarity (w.r.t. the height).

Parameterizing OLP by height captures the “linear” nature of the solution – this is
reminiscent of recent results by Bodlaender, Groenland, Jacob, Jaffke, and Lima [6] who
established XNLP-completeness for several problems parameterized by linear width measures
(e.g., Capacitated Dominating Set by pathwidth and Max Cut by linear cliquewidth).
However, to the best of our knowledge, this is the first graph drawing (or computational
geometry) problem shown to be XNLP-complete. The algorithms are described in Section 2,
whereas the hardness is shown in Section 3. In contrast to the fact that OLP parameterized
by the height lies in XP, it is not difficult to see that the socket/plug gadget described by
Brückner and Rutter [8] can be utilized in the context of a reduction from 3-Partition
to show that (PLP and, thus) CLP remains NP-hard even when restricted to instances of
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constant height. In fact, the unpublished full version of [8] features such a construction with
a height of 7 [25]. Here, we present a reduction that is tailor-made for CLP, showing that
it is NP-hard even when restricted to instances of height 4. We complement this result by
showing that the (surprisingly challenging) case of instances with height at most three can
be solved in polynomial time.

▶ Theorem 2. Constrained Level Planarity is NP-hard even when restricted to height 4,
but instances of height at most 3 can be solved constructively in polynomial time.

We show the hardness in [5], sketch the algorithm in Section 4, and state open problems
in Section 5. Proofs of statements marked with a (clickable) ⋆ are in the full version [5].

Notation and conventions. Given an integer k > 0, we use [k] as shorthand for {1, 2, . . . , k}.
Given a directed or undirected graph G, let V (G) denote the vertex set of G, and let E(G)
denote the edge set of G. Recall that level graphs are directed with each edge (u, v) pointing
upwards, i.e., γ(u) < γ(v). As a shorthand and when the direction is not important, we use
both uv and vu to refer to a directed edge (u, v).

2 An XP / XNLP Algorithm for Ordered Level Planarity

In this section, we show that Ordered Level Planarity is in XNLP (and thus in XP)
when parameterized by the height h of the input graph. Moreover, we show how to construct
an ordered level planar drawing (if it exists) in XP-time. The main idea of our approach
is to continuously sweep the plane with an unbounded y-monotone curve s from left to
right in a monotone fashion such that for each edge (u, v), there is a point in time where u

and v are consecutive vertices along s. When this happens, the edge can be drawn without
introducing any crossings due to the fact that s moves monotonically. To discretize this idea
and turn it into an algorithm, we instead determine a sequence of unbounded y-monotone
curves S = (s1, s2, . . . , sz) that is sorted from left to right (i.e., no point of si+1 is to the left
of si), has a length of z ∈ O(n), and contains for every edge (u, v) a curve si along which u

and v are consecutive vertices. Now, given S, the desired drawing can be constructed in
polynomial time; for an illustration see Figure 1. Moreover, the sequence S can be obtained
in XP-time/space by exhaustively enumerating all possibilities or in XNLP-time/space by
nondeterministic guessing. Let us proceed to formalize these ideas.

Gaps and positions. Let G = (G = (V, E), γ, (≺i)1≤i≤h) be an ordered level graph and
consider one of its levels Vi. Let (v1, v2, . . . , vλi) be the linear order of Vi corresponding to ≺i.
In an ordered level planar drawing of G, the vertices Vi divide the line Li into a sequence of
open line-segments and rays, which we call the gaps of Li. A position on Li is a gap of Li or
a vertex of Vi. Each position on Li is encoded by an index in Pi = {0} ∪ [2λi]: the index 0
represents the gap that precedes v1; an odd index p represents the vertex v⌈p/2⌉; and an even
index p ̸= 0 represents the gap that succeeds v⌈p/2⌉.

Separations. A separation for G is an element of P1 ×P2 ×· · ·×Ph. Intuitively, a separation
s = (p1, p2, . . . , ph) represents the equivalence class of unbounded y-monotone curves that
intersect line Li in position pi for each 1 ≤ i ≤ h; see Figure 1. We say that a vertex v ∈ V

is on s if pγ(v) represents v. Moreover, we say that v is to the left (right) of s if the index
corresponding to the position of v is strictly smaller (larger) than pγ(v). Consider two vertices
u, v ∈ V that are on s and where γ(u) < γ(v). We say that u and v are consecutive on s if
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all of the indices pγ(u)+1, pγ(u)+2, . . . , pγ(v)−1 represent gaps. In this case, v is the successor
of u on s and u is the predecessor of v on s. We say that s uses an edge e = (u, v) ∈ E if u

and v are consecutive along s.

Sweeping sequences. A sweeping sequence for G is a sequence S = (s1, s2, . . . , sz) of
separations for G such that for each j ∈ [z − 1], we have sj ≤ sj+1, componentwise. We say
that a sweeping sequences uses an edge e ∈ E, if it contains a separation that uses e.

▶ Lemma 3 (⋆). Let G = (G = (V, E), γ, (≺i)1≤i≤h) be an ordered level graph and let
S = (s1, s2, . . . , sz) be a sweeping sequence for G that uses every edge of E. Given G and S,
an ordered level planar drawing of G can be constructed in O(zh + n2) time, where n is the
number of vertices.

Let S = (s1, s2, . . . , sz) be a sweeping sequence for our ordered level graph G. We say
that S is nice if for each i ∈ [z − 1], the separation si+1 is obtained from si by incrementing
exactly one component by 1. Moreover, we say that S is exhaustive if it is nice and
s1 = (0, 0, . . . , 0) and sz = (|P1| − 1, |P2| − 1, . . . , |Ph| − 1); see Figure 1.

▶ Lemma 4 (⋆). Let G = (G = (V, E), γ, (≺i)1≤i≤h) be an ordered level graph. Then G
admits an ordered level planar drawing if and only if there is an exhaustive sweeping sequence
for G that uses every edge in E.

Proof (sketch). The “if”-direction follows from Lemma 3. For the “only if”-direction, we
show that the drawing can be internally triangulated by inserting y-monotone edges (allowing
the use of parallel edges). For each y-monotone path P that spans all levels, there is a nice
sweeping sequence from s1 = (0, . . . , 0) to the separation corresponding to P that uses all
edges left of P . This is shown by arguing inductively on the number of triangles left of P . ◀

We remark that an exhaustive sweeping sequence using all edges corresponds directly to a
particularly well-structured path decomposition. Thus, Lemma 4 implies that every (ordered)
level planar drawing of height h represents a graph of pathwidth at most h − 1; a statement
that was independently proven in [12]. However, the path decompositions constructed in the
proof of [12, Lemma 1] do not exhibit the same properties that are inherent to exhaustive
sweeping sequences and on which our algorithms heavily rely. In particular, these path
decompositions may contain bags with multiple vertices of a given level (unless the drawing
is proper). Moreover, the existence of a path decomposition of width at most h − 1 for an
ordered level graph G of height h does not characterize the fact that G is ordered level planar
(recall that, in fact, OLP is NP-hard even when restricted to instances of pathwidth 1 [23]).

▶ Lemma 5 (⋆). There is an algorithm that determines whether a given ordered level
graph admits an exhaustive sweeping sequence using all of its edges. It can be implemented
deterministically using O∗(2(h

2) ∏
j∈[h](2λj + 1)) ⊆ O∗(2(h

2)(2λ + 1)h) ⊆ O∗(2(h
2)(2n + 1)h)

time and space, or nondeterministically using polynomial time and O(h2 + h log I) space,
where λ and h denote the width and height of the input graph, respectively, n denotes the
number of vertices, λj denotes the width of level j ∈ [h], and I denotes the input size. Further,
the deterministic version can report the sequence (if it exists).

Proof (sketch). Let G = (G = (V, E), γ, (≺i)1≤i≤h) be an ordered level graph and let
s = (p1, p2, . . . , ph) be a separation for G. Further, let U ⊆ E be a subset of the edges that
are joining pairs of (not necessarily consecutive) vertices on s. We define T [s, U ] = true if
there exists a nice sweeping sequence for G that starts with s1 = (0, 0, . . . , 0), ends with s,
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U5 = {(1, 2), (2, 3), (2, 4), (3, 4)}

s1 = (0, 0, 0, 0)

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

U1 = ∅
U2 = ∅
U3 = {(1, 2)}
U4 = {(1, 2), (2, 4)}

U6 = {(1, 3), (3, 4)}
U7 = {(3, 4)}
U8 = ∅
U9 = ∅

s2 = (1, 0, 0, 0) s3 = (1, 1, 0, 0)

s4 = (1, 1, 0, 1) s5 = (1, 1, 1, 1) s6 = (1, 2, 1, 1)

s7 = (2, 2, 1, 1) s8 = (2, 2, 2, 1) s9 = (2, 2, 2, 2)

Figure 1 An exhaustive sweeping sequence using all edges of the depicted graph and the
corresponding (cf. Lemma 3) ordered level planar drawing, as well as the corresponding sequence
of true dynamic programming table entries T [s, U ] (cf. Lemma 5). Note that in any ordered level
planar drawing of the graph, exactly one of the edges (2, 4), (1, 3) is located to the left of the path
(1, 2, 3, 4), while the other is located to the right. Similarly, in any exhaustive sweeping sequence
containing separation s5, exactly one of the edges (2, 4), (1, 3) is used by a separation preceding s5,
while the other is used by a separation succeeding s5. Hence, when iteratively building an exhaustive
sweeping sequence, it is key to remember which edges between vertices of the current separation
have already been used – this is exactly the purpose of the sets U . E.g., the fact that (2, 4) ∈ U5

corresponds to (2, 4) being used before s5 (in s4), from which one can infer how to proceed.

and uses all edges in U , as well as all edges in E incident to at least one vertex to the left of s.
Otherwise, T [s, U ] = false. Additionally, we allow U = ⊥, in which case T [s, U ] = false.
Figure 1 illustrates several true table entries T [si, Ui] along with the corresponding sweeping
sequences s1, s2, . . . , si. Our goal is to determine T [(|P1| − 1, |P2| − 1, . . . , |Ph| − 1), ∅], which
is true if and only if there exists an exhaustive sweeping sequence for G using all edges in E.

We will determine the entries T [s, U ] by means of a dynamic programming recurrence.
For the base case, we simply set T [(0, 0, . . . , 0), ∅] = true. Now assume that s ≠ (0, 0, . . . , 0).
For each index 1 ≤ j ≤ h where pj ≥ 1, we define a separation

s′
j = (p1, p2, . . . , pj−1, pj − 1, pj+1, . . . , ph).

Further, we define an edge set U ′
j ⊆ E as follows:

If pj represents a vertex v, then
U ′

j = ⊥ if U contains edges joining v with vertices on s that are not its predecessor or
successor on s;
otherwise U ′

j is created from U by removing the (up to two) edges incident to v.
If pj represents a gap and, thus, pj−1 represents a vertex v, then

U ′
j = ⊥ if v is adjacent to a vertex to the right of s;

otherwise U ′
j is created from U by

∗ removing the edge between the predecessor and successor of v along s′
j (if it exists

and is contained in U); and
∗ adding all edges in E that join v with some vertex on s′

j .
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For illustrations, refer to Figure 1 (where for each i ∈ [9] and s = si and U = Ui, we
have s′

j = si−1 and U ′
j = Ui−1 for some j ∈ [4]). The following technical claim describes our

recurrence relation.

▶ Claim 6 (⋆). T [s, U ] = true if and only if there exists an index 1 ≤ j ≤ h where pj ≥ 1
and such that T [s′

j , U ′
j ] = true.

Our table T has 2(h
2) ∏

j∈[h](2λj + 1) entries. In view of Claim 6, we can compute
the value of a table entry T [s, U ] in polynomial time (disregarding the time spent for the
recursive calls) by simply constructing the tuples (s′

1, U ′
1), . . . , (s′

h, U ′
h) and then setting

T [s, U ] =
∨

j∈[h] T [s′
j , U ′

j ] (only taking into account the defined quantities). Hence, by em-
ploying memoization and the usual back-linked strategy, we obtain the claimed deterministic
algorithm. For the nondeterministic algorithm, we perform 2n steps. In each step, we
nondeterministically guess the next separation s and its set of prescribed edges U and check
whether for some j ∈ [h], the previous separation s′ is equal to s′

j and the previous set of
prescribed edges U ′ is equal to U ′

j (starting with s′ = (0, 0, . . . , 0) and U ′ = ∅). At each
point in time, we only need to keep two separations, two edge sets, and O(1) pointers in
memory, which can be done using O(h2 + h log I) space. ◀

As a corollary of Lemmas 3–5, we obtain the algorithmic statements in Theorem 1.

3 XNLP-Hardness of Ordered Level Planarity

For the ease of presentation, we first show that the OLP problem is W [1]-hard. To this
end, we use a parameterized reduction1 from Multicolored Independent Set (defined
below) with k colors to Ordered Level Planarity with O(k) levels. We then describe
how to extend this reduction to obtain XNLP-hardness of OLP. We start by introducing
the building blocks of our reductions. Recall that, normally, the level assignment γ of a level
graph surjectively maps to a set [h] of consecutive numbers. In this section, to facilitate the
description of our gadgets, we relax this condition by temporarily allowing level graphs in
which not every level is occupied – nevertheless, the final outcome of our reduction will be
an ordered level graph G in the original sense.

Basic building blocks of our reduction. Our construction of G is heavily based on two
gadgets that we call plugs and sockets (a very basic version of these gadgets was already used
earlier, in an NP-hardness proof for CLP [8]; here we introduce generalized versions). We
define both in terms of the list of levels their vertices occupy. Their ≺i orderings are according
to the indices of their vertices. The vertices are deliberately given in an unintuitive order to
allow for the ordering in ≺i by indices and to make the (degenerate) cases behave nicely later.
Let ℓ1, ℓ2, ℓ3, ℓ4 ∈ [h] such that ℓ1 < ℓ2 < ℓ3 < ℓ4. A (non-degenerate) (ℓ1, ℓ2, ℓ3, ℓ4)-plug, see
Figure 2a, contains vertices u1, u2, u3, u4, u5, and u6, where γ(u5) = ℓ1, γ(u3) = γ(u6) = ℓ2,
γ(u2) = γ(u4) = ℓ3, and γ(u1) = ℓ4. It contains the edges u1u2, u2u3, u3u4, u4u6, and u6u5;
i.e., a plug is a path that traverses its four levels in the order ℓ4, ℓ3, ℓ2, ℓ3, ℓ2, ℓ1. Similarly, an
(ℓ1, ℓ2, ℓ3, ℓ4)-socket, see Figure 2b, consists of vertices v1, v2, . . . , v10 such that γ(v3) = ℓ1,
vertices v2, v4, v5, v9 occupy level ℓ2, vertices v1, v6, v7, v10 occupy level ℓ3, and γ(v8) = ℓ4. It
contains the edges v1v2, v2v3, v3v5, v5v7, v4v6, v6v8, v8v10, and v10v9. Observe that a socket
consists of two disconnected paths whose vertices interleave on levels ℓ2 and ℓ3. Let vertices v1

1 For an overview of this standard technique, refer to a standard textbook [10].
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and v9 of plugs and vertices u1 and u5 of sockets be connecting vertices. Connecting vertices
of sockets will be identified with other vertices of the construction and connecting vertices of
some plugs may be connected to other plugs via additional edges.

1
2
3
4
5
6
7

u5

u6

u4

u3

u1

u2

(a)

v10

v9

v8
v6

v4
v7

v5
v3

v2

v1

(b)

u1 u4

u5u3

(c)

v9

v8

v5

v4
v1

v3

(d)

a1
s1
a2
s2 = s3
a3
s4
a4

(e)

Figure 2 Plugs and sockets; (a) a (1, 3, 5, 7)-plug, (b) a (2, 3, 5, 6)-socket, (c) a degenerate
(3, 3, 5, 5)-plug, (d) a degenerate (2, 4, 4, 6)-socket, (e) a (1, 3, 5, 7)-plug that is linked to a degenerate
(2, 4, 4, 6)-socket. Connecting vertices are filled in black. Note how in degenerate gadgets ((c) and
(d)), the edges and vertices of the repeated levels are contracted.

Now we lift the strict inequality restriction on the levels of our gadgets. For plugs we only
require ℓ1 ≤ ℓ2 < ℓ3 ≤ ℓ4 and for sockets we require ℓ1 < ℓ2 ≤ ℓ3 < ℓ4 and we call a plug or a
socket degenerate if it has at least one pair of repeated levels, i.e., for some i ∈ [3], ℓi = ℓi+1.
We create the degenerate plugs and sockets by contracting the edges between vertices of the
repeated levels while keeping the vertex with the lower index; see Figure 2c and 2d.

Let P be a plug, and let com(P ) be the connected component of P in G. A plug fits
into a socket if the gadgets could be “weaved” as illustrated in Figure 2e. Formally, we say
an (a1, a2, a3, a4)-plug P fits into a (s1, s2, s3, s4)-socket S when minv∈com(P ){γ(v)} ≤ s1,
maxv∈com(P ){γ(v)} ≥ s4, and s1 < a2 < s2 ≤ s3 < a3 < s4. In an ordered level planar
drawing of G, we say a plug P links to an (s1, s2, s3, s4)-socket S when P fits into S, and P

is drawn between the connecting vertices of S (that is, the edges of P traversing level s3 are
to the right of v1 and the edges of P traversing level s2 are to the left of v9); see Figure 2e.

A defining feature of our constructions is a division into vertical strips, which is accom-
modated by the following notion. Given a set L of levels, a wall of L is a path that starts
in a vertex on the bottommost level in L, goes through a vertex on each intermediate level
of L, and ends at a vertex on the topmost level of L. Note that each gadget type essentially
has a unique drawing in the sense that it corresponds to an ordered level planar graph for
which all of its ordered level planar drawings have the same level planar embedding. This
and further gadget properties are detailed in the full version [5]. We use Lemma 7 to design
specific plugs that can or cannot link to specific sockets in the same ordered level planar
drawing.

▶ Lemma 7 (⋆). Consider an ordered level graph G that contains an (a1, a2, a3, a4)-plug A, a
(b1, b2, b3, b4)-plug B, and an (s1, s2, s3, s4)-socket S that occupy three disjoint sets of levels.
There is an ordered level planar drawing of the subgraph of G spanned by A, B, and S where
A and B link to S if and only if both A and B fit into S and a2 < b2 and a3 < b3, or, both
vice versa, a2 > b2 and a3 > b3.

Proof (sketch). To distinguish the vertices of the plugs A and B, we use the name of the
plug as superscript, so, e.g., we refer to uA

3 and uB
3 . If the conditions are satisfied, we can

draw both plugs as depicted in Figure 3b. Towards a contradiction, assuming the conditions
are not satisfied, we observe that the drawing must locally “nest” plug B into plug A while
drawing them around the edge v4v6 of S, at the same time B “nests” into A while going
around the edge v7v5 of S; see Figure 3a. The first nesting implies that the edge uB

3 uB
4 is to

the left of uA
3 uA

4 and the second nesting implies the opposite order – a contradiction. ◀

https://arxiv.org/pdf/2403.13702
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a2
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s2
s3

uA
3
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2

uB
2

b3
a3

uA
4

uB
3

uB
4

uB
6

uA
6

v4 v7
v6

v5

(a) If the order of the layers follows the pattern
a2, b2, b3, a3, then there is no crossing-free draw-
ing that has both A and B linked to S.

s4

s1
a2
b2
s2
s3
a3
b3

v10
v9

v8

v6
v4 v7

v5

v3

v2

v1
uA
2

uB
2

uA
6

uB
6

uB
3

uA
3

uA
4

uB
4

(b) If the order of the layers follows the pattern
a2, b2, a3, b3, then there is a crossing-free drawing
that has both A and B linked to S.

Figure 3 Sketches for the proof of Lemma 7. The edges of the socket S are bold.

W [1]-hardness. Multicolored Independent Set (MCIS) is a well-known W [1]-hard
problem [14, 24]. In this problem, we are given a graph H, an integer k (the parameter), and
a k-partition C1, C2, . . . , Ck of V (H), and the task is to decide whether H has an independent
set X ⊆ V (H) that contains, for every j ∈ [k], exactly one vertex of Cj . We may assume
without loss of generality that in H, there is no edge whose endpoints have the same color Cj .

▶ Theorem 8 (⋆). Ordered Level Planarity is W [1]-hard with respect to the height.

Proof (sketch). We give an overview of a parameterized reduction from MCIS to OLP;
refer to Figure 4 for an illustration. The ordered level graph constructed in this reduction
admits a grid-cell structure where the vertical strips are separated by walls and the horizontal
strips represent related groups of levels. More precisely, we allocate a constant number of
consecutive levels per color of the MCIS instance, to which we refer as a color band. Between
each pair of neighboring color bands, we have a collision band. We group several consecutive
vertical strips to obtain blocks. We call the leftmost and rightmost block choice blocks and the
other blocks edge blocks. Edge blocks correspond bijectively to edges of the MCIS instance.

In the grid cells of the color bands, we insert sockets and we add as many plugs as we
have sockets there. No two plugs can link to the same socket, so all available sockets are
occupied by one plug. Each plug is a separate connected component, which allows that plug
to freely “choose” a socket within its color band where it fits. However, we have different
types of plugs and sockets – the first type of plug, called high plug, fits only into the sockets
of the choice blocks. In a drawing of our ordered level graph, the number of high plugs that
link to the left (and not to the right) choice block within a color band forces the second type
of plugs, called color plugs, to be shifted further to the right. In the MCIS instance, a shift
by i corresponds to selecting the i-th vertex of the respective color to be in the solution.

To obtain an independent set, we need to prevent that the shifts select both endpoints of
an edge. To that end, we model an edge uv as follows. The color plugs of one color band all
occupy the same set of levels so they form a sequence specified in the ordered level graph.
Because of this, we can identify, for a given shift, what socket a particular color plug links
to. Consider the edge block of uv and the color plugs that necessarily link to its sockets (a
block has circa twice as many sockets than the maximal shift). For an illustration of the
construction, assume that we have a shift in the color band of u that selects u and a shift in
the color band of v that selects v. We select a specific color plug of the color band of u and
one in the color band of v to be extended so that they “reach” towards each other and end
up in the same cell of a collision band. To this cell, we add a collision socket. If at most
one extended plug ends up in a collision socket, then it can be drawn planarly. However, if
both extended plugs end up in the same collision socket, then this cannot be drawn without
crossings. Hence, there is an ordered level planar drawing of our ordered level graph if and
only if there is a solution (i.e., an independent set) to the given MCIS instance. ◀
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Figure 4 Example of our parameterized reduction from Multicolored Independent Set
(MCIS) to Ordered Level Planarity. On the left side, there is an instance of MCIS with
k = 5 colors. On the right side, there is the schematized grid structure of the ordered level graph
constructed from the MCIS instance. The orange disks in the edge blocks represent the places where
the collision sockets are placed. Here, the solution {v2, v3, v6, v7, v8} for the MCIS instances is found.

XNLP-hardness. We now extend our construction for W [1]-hardness to obtain XNLP-
hardness as well. We design a parameterized tractable log-space reduction [7, Section V.B.] –
a parameterized reduction that runs in O(g(k) · nc) time and uses only O(f(k) · log n) space
for internal computation, where g and f are computable functions, k is the parameter, and
n is the input size. It suffices to design the reduction such that it returns a single bit of the
output on demand. Observe that with such a reduction, we can retrieve the entire output
by requesting one bit at a time. We reduce from Chained Multicolored Independent
Set (CMCIS) – an XNLP-complete problem defined by Bodlaender et al. [7], which is a
sequential version of MCIS. As in MCIS, we are given a k-colored graph H with color classes
C1, . . . , Ck and, additionally, there is an r-partition V1, . . . , Vr of V (H) such that for every
vw ∈ E(H), if v ∈ Vi and w ∈ Vj , then |i − j| ≤ 1. The task is to select an independent set
X ⊆ V (G) such that, for each i ∈ [r] and for each color j ∈ [k], |X ∩ Vi ∩ Cj | = 1.

▶ Theorem 9 (⋆). Ordered Level Planarity is XNLP-hard with respect to the height.

Proof (sketch). The main idea in our reduction from CMCIS to OLP is to use r instances
of the W [1]-hardness construction from Theorem 8. We have one instance for each subgraph
induced by Vi (for i ∈ [r]) where additionally the edges connecting Vi with Vi−1 and Vi+1
(if existent) are represented by edge blocks shared by the corresponding two instances; see
Figure 5. To this end, we arrange all instances in a zigzag pattern in the top and the bottom
half of the combined construction. Now to make it a parameterized tractable log-space
reduction, which outputs bit by bit, we essentially traverse the grid structure with a vertical
sweep-line from left to right (i.e., column by column) and save as the status only the O(k)
information belonging to the current column and the O(log n) information telling us in which
column we are currently globally. We describe this in more detail in the full version [5]. ◀

The construction in the proof of Theorem 9 can be altered to make the graph connected
as we show in the full version [5]. The main idea is to add a new vertex q on top of the
construction and connect all connected components to it. All sockets are already connected
to walls and from walls it suffices to create edges to q from their topmost vertex. For the
plugs, we duplicate every column into a left and a right part such that each left part behaves
as before, while each right part hosts paths that connect the “old” plugs to q. These paths
are made of a sequence of a new kind of plugs. This comes at the expense of using more levels,
namely Θ(k2) instead of Θ(k). This yields the XNLP-hardness statement in Theorem 1.

https://arxiv.org/pdf/2403.13702
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Figure 5 Comparison of the W [1]-hardness construction (left) and the XNLP-hardness construc-
tion (right) with r = 3 and k = 5. The thick walls terminating the choice blocks have vertices on all
levels. Vertical bars and orange disks between color bands represent the extended plugs and the
collision sockets, respectively, which are used for the collision mechanism.

4 Tractability of 3-Level Constrained Level Planarity

In this section, we sketch our polynomial-time algorithm for 3-level CLP (see Theorem 2).
For simplicity, we assume that the given level graph G is constrained level planar and show
how to compute a constrained level planar drawing of G. We ask the reader to consult the
figures to which we refer in order to get an intuitive understanding of the notions that we
cannot define formally due to space constraints. For details and proofs, see the full version [5].

Without loss of generality, we make the following assumptions: (i) G is proper; otherwise
we subdivide each edge that crosses level 2. (ii) G has no isolated vertices; they can
easily be inserted in a postprocessing step. (iii) The component–constraint graph H is
strongly connected. This directed graph has a node for each connected component (for
short, component) of G and an arc for each pair (C, C ′) of components such that there is a
constraint from a vertex in C to a vertex in C ′.

We often refer to level 1 as bottom level, to level 2 as middle level, and to level 3 as top
level. Similarly, we call the pair of bottom and middle level lower band and the pair of middle
and top level upper band. Our algorithm successively adds new constraints to the given
constrained level graph G that do not violate planarity. We deduce these new constraints
from the structure of (G, γ) and from the current set of constraints. In the end, this yields a
total order of the vertices for each of the three levels and, hence, a constrained level planar
drawing of G. In the very beginning and whenever we add new constraints, we exhaustively
add the following implicit constraints:

transitivity: ∀a, b, c ∈ V (G), ∀i ∈ [3] : a ≺i b ∧ b ≺i c ⇒ a ≺i c

planarity: ∀ab, cd ∈ E(G) with i := γ(a) = γ(c) and j := γ(b) = γ(d) :
a ≺i c ⇒ (b ≺j d ∨ b = d)

The former ensures that the orderings (≺i)i∈[3] remain transitive while the latter can be
added without violating realizability, as they need to be respected in every constrained level
planar drawing. The propagation of these constraints is quite useful as it can dictate the
relative positions of vertices that are initially unrelated, see Figure 6.

In a constrained level planar drawing of G, a component C ′ hooks into a component C if
there are vertices u ̸= v of C and vertices u′ ̸= v′ of C ′ such that u, u′, v, v′ occur in this
order on the middle level, u′ ≺2 v, and u and v′ are the leftmost and rightmost middle-level
vertices of C ∪ C ′, respectively (as C7 hooks into C3 in Figure 7). We guess a pair (C, C ′) of
components in order to find, with the help of H, a unique sequence ⟨C = C1, C2, . . . , Ck = C ′⟩
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(a) Initial situation with the
given constraint b1 ≺1 b2 but
without implicit constraints.
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m1 m2

b1 b2

p1 p2 p3
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(b) Constraint b1 ≺1 b2 and edges
b1m1 and b2m2 yield m1 ≺2 m2; edges
m1t1 and m2t2 then yield t1 ≺3 t2.

t1
t2

m1 m2

b1 b2

p1 p2 p3
m3

(c) From t1 ≺3 t2, m1 ≺2 m3 fol-
lows via the edges t1m1 and t2m3.
Hence, m3 cannot be placed at p1.

Figure 6 Given a constrained level graph with only one constraint (b1 ≺1 b2). Among the three
possible positions (p1, p2, and p3) to place the middle-level leaf m3 relative to the neighbors (m1

and m2) of its parent t2, position p1 is excluded due to the implicit constraints ensuring planarity.

C1

C2
C3C4

C5 C6 C7

u u′ v v′

a

a′

(a) constrained level planar drawing of G

C1

C2 C3

C4

C5

C6C7

(b) the corresponding graph H

Figure 7 Finding the hook chain ⟨C1, C2, C3, C7⟩ (corresponding arcs marked in orange).

of components such that, for i ∈ [k−1], Ci+1 hooks into Ci. We call ⟨C1, C2, . . . , Ck⟩ the hook
chain of G. Let G1 be a copy of G where we add, for each pair of consecutive components in
the hook chain, two edges that connect these components; see the green edges in Figure 8. We
show that G1 is constrained level planar. Note that G1 consists of a single main component and
enclosed components that are forced (by constraints) to “nest” within the main component.
Enclosed components (as C4, C5, or C6 in Figure 7a) do not hook.

Next we guess a pair (s, t) of vertices of the main component such that removing all
vertices that lie on simple s–t paths yields components that lie either on the lower or on the
upper band (and hence, have simple structure). Let the backbone be the set of all vertices
that lie on any s–t path. In Figure 9, the backbone is marked in red. Each component that
hangs off the backbone (including its anchor vertex on the backbone) is called a piece (orange
in Figure 9). E.g., in Figure 9, m14 is part of two pieces. Let G2 to be the constrained level
graph based on G1 and our choice of s and t, with the additional constraint u ≺i v for every
pair (u, v) of vertices such that i = γ(u) = γ(v) and u comes before v on a simple s–t path.
(This implies that s is the first and t is the last middle-level vertex of the backbone.) We
show that there is a pair (s, t) such that G2 is constrained level planar.

C1 C3 C4

C2 C5 C6

C7

a6

a′7w6

w′
7

Figure 8 Constructing the main component: original components are colored in gray, hooking
constraints in blue, and component-connecting edges in green.
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Figure 9 Drawing of the main component of a level graph with special vertices s = m1 and
t = m30: backbone edges are colored in red, enclosed components in gray, pieces in orange (edges
connecting fingers to their anchors dashed) and edges incident to leaves in purple.

Let a finger be a piece that lies on the upper (lower) band whereas its anchor lies on the
bottom (top) level; see the orange subgraphs with gray shading in Figure 9. Let G3 be a copy
of G2 where we remove all edges (dashed-orange in Figure 9) that connect fingers to their
anchors and add constraints that keep each finger in the interval between the surrounding
middle-level vertices on the backbone. We show that G3 is constrained level planar. Note
that the remainder of each finger is an enclosed component.

Then we set up a 2-SAT formula Φ to decide whether to place the remaining flat pieces
(orange-gray in Figure 10) to the left or to the right of their anchor. This depends on chains
of enclosed components that alternate between upper and lower band, are separated by the

p1 p2 p3 p5

p4

p6

C1 C2 C4 C6

C3 C5

Figure 10 We set up a 2-SAT formula to restrict the positions of the flat pieces (orange-gray)
with respect to their anchors; e.g., p1 must be left, p5 and p6 must be on different sides, p2 cannot
be right while p3 is left, p4 and p6 force each other to the left and right respectively. (The main
component is red, the black components are enclosed, and the blue arrows are constraints.)

backbone, and connected by constraints. The chains are indicated by the blue arrows in
Figure 10. If Φ is satisfiable, we add constraints to fix the flat pieces to the respective sides
of their anchors, which at the same time fixes their orientation. Let G4 be the result. Then
G4 is constrained level planar. Next we restrict and then place the enclosed components.

A separator vertex is a backbone vertex on the middle level that has a neighbor on the
top level and a neighbor on the bottom level. Let a gap be a pair (a, c) of separator vertices
such that a ≺2 c and there is no separator vertex b with a ≺2 b ≺2 c. An upper (lower) gap
can accommodate enclosed components only from the upper (lower) band. E.g., the gap
(v1, v13) in Figure 11a is upper. Now we go though the enclosed components in topological
order (of a kind of component–constraint graph) and fix each enclosed component from the
upper (lower) band into an upper (lower) gap as far left in G4 as possible, respecting the
constraints from components placed before. Then the result G5 is constrained level planar.

Finally, for each gap g, we set up a directed graph Hg that has a node (dashed in
Figure 11) for each enclosed component and for some of the middle-level vertices inside
the gap (those not “covered” by an enclosed component). The arcs of Hg correspond to
constraints. Topologically sorting Hg yields a total order of the enclosed components and
determines their orientation (if it is not arbitrary). Let G6 be the result of adding the
constraints that fix these placements. Then G6 is constrained level planar. The remaining
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C2C1 C3 C4 C5

v1 v2 v3 v4

v5

v6

v7

v8 v9 v11

v12
v13v10

(a) Constrained level planar drawing of g with middle-level vertices v1, . . . , v13 and its enclosed components.
Vertices of Hg are marked by (red) dashed ellipses. Component C2 covers v3, whereas v4 is not covered.

C1 C2 C3 C4 C5

v1 v2 v4 v9 v10 v13

(b) The directed graph Hg has a node for every enclosed component and non-covered middle-level vertex.

Figure 11 Arranging the enclosed components C1, . . . , C5 in a gap g of the main component.
Constraints between vertices of G5 are indicated by blue arrows and arcs between nodes of Hg are
indicated by green arrows. For clarity, implicit constraints, constraints along the backbone, and
transitive arcs are omitted.

missing decisions involve leaves and pairs of middle-level vertices on the backbone that
do not lie on the same s–t path. By topologically sorting the vertices on the three levels
independently, we get a constrained level planar drawing of G6. Finally, we insert the isolated
vertices and the edges incident to the fingers, and we remove the dummy edges between the
hooked components. This yields a constrained level planar drawing of G.

5 Open Problems

1. We have shown that 3-level CLP can be solved in polynomial time, without optimizing
the runtime of our algorithm. Can 3-level CLP be solved in, say, quadratic time?

2. In the problem variant Connected CLP, we insist that the given constrained level graph
is connected. It is easy to make the graph in our NP-hardness proof for 4-level CLP
connected by adding two new levels, so 6-level Connected CLP is NP-hard. What is
the complexity of 5-level Connected CLP?
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