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Abstract
We consider the edge collapse (introduced in [Boissonnat, Pritam. SoCG 2020]) process on the
Erdős-Rényi random clique complex X(n, c/

√
n) on n vertices with edge probability c/

√
n such that

c >
√

η2 where η2 = inf{η|x = e−η(1−x)2
has a solution in (0, 1)}. For a given c >

√
η2, we show that

after t iterations of maximal edge collapsing phases, the remaining subcomplex, or t-core, has at most
(1 + o(1))

(
n
2
)
p(1 − (c2/3)(1 − (1 − γt)3)) and at least (1 + o(1))

(
n
2
)
p(1 − γt+1 − c2γt(1 − γt)2) edges

asymptotically almost surely (a.a.s.), where {γt}t≥0 is recursively determined by γt+1 = e−c2(1−γt)2

and γ0 = 0. We also determine the upper and lower bound on the final core with explicit formulas.
If c <

√
η2 then we show that the final core contains o(n

√
n) edges. On the other hand, if, instead of

c being a constant with respect to n, c >
√

2 log n then the edge collapse process is no more effective
in reducing the size of the complex.

Our proof is based on the notion of local weak convergence [Aldous, Steele. In Probability
on discrete structures. Springer, 2004] together with two new components. Firstly, we identify
the critical combinatorial structures that control the outcome of the edge collapse process. By
controlling the expected number of these structures during the edge collapse process we establish
a.a.s. bounds on the size of the core. We also give a new concentration inequality for typically
Lipschitz functions on random graphs which improves on the bound of [Warnke. Combinatorics,
Probability and Computing, 2016] and is, therefore, of independent interest. The proof of our lower
bound is via the recursive technique of [Linial and Peled. A Journey Through Discrete Mathematics.
2017] to simulate cycles in infinite trees. These are the first theoretical results proved for edge
collapses on random (or non-random) simplicial complexes.
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21:2 On Edge Collapse of Random Simplicial Complexes

1 Introduction

Simple collapse is a combinatorial process that simplifies a simplicial complex without
changing its topology. It can be expressed as a series of elementary moves of removals of
pairs of simplices σ and τ , such that σ is uniquely contained in τ . The notion of simple
collapse was introduced by J.H.C Whitehead [29] to study homotopy types of cell complexes.
Since then it has found usage in many different areas of topology, especially in computational
topology. Recently new variants of simple collapses have been introduced, called strong
collapses and more generally d-collapses [6, 8, 5]. In such collapses, one removes special
vertices (more generally d-simplices) called dominated vertices (d-simplices) whose link is
a simplicial cone. This can again be expressed as a series of simple collapses. They have
been shown to be very powerful tools to solve many problems in computational topology. In
particular, the recent studies [9, 8, 31] have shown that strong collapses and edge collapses
(d-collapse for d = 1) can be used for efficient computation of one parameter as well as
multi-parameter persistence homology (PH). Efficient computation of persistent homology is
one of the central topics of research in topological data analysis (TDA).

The computation of persistent homology involves computing homology groups of a nested
sequence of simplicial complexes called filtrations. This requires O(n3) time and O(n2) space,
where n is the total number of simplices in the filtration. The general technique developed
in [9, 7, 8, 11, 31] is to reduce a filtration to a smaller filtration using strong or edge collapse
such that the persistent homology is preserved. In [9, 7, 8, 11, 31], it has been established
through experiments that in practice the reduced filtrations are very small, and thereafter
computation of persistent homology is extremely fast. The gain in efficiency is quite dramatic
in the case of the flag (or clique) complexes, where the strong collapse and edge collapse can
be computed using only the graph (1-skeleton) of the given complex [7, 11, 31]. One of the
commonly used simplicial complexes in TDA is the Vietoris–Rips complex which is a flag
complex.

As mentioned above the observed success of the procedure reported in [9, 7, 11, 31] is
experimental and there is no theoretical guarantee over the size reduction. This is because
in general the amount of reduction depends on the individual complex and its combinatorial
structure. In fact, the reduction is dependent even on the order of the collapses and a different
order can result in a different core, except in the case of the strong collapse. This makes it
even harder to analyze when we reduce in a filtered simplicial complex. This motivates us to
consider the case of random simplicial complexes and study the average reduction size by
collapses.

Besides intrinsic mathematical interest, the study is motivated by the need for a theoretical
explanation of the experimental success of [30, 7, 8]. These results also provide an average
case analysis for edge collapse when no extra information about the data set is provided.
With more structural information about the data set (which is often the case in practice),
there is a greater reduction in size.

Even a constant fraction reduction in the number of edges translates to a much greater
reduction in the size of the simplicial complex and hence in the PH computation time since
the number of d-simplices is typically O(md−2) (m= # edges). Usual experimental gain is
by a constant factor of 2-3 in magnitude. Secondly, in experiments, the dataset and the
Vietoris-Rips complex (=clique complex) have additional geometric structure, which further
helps the collapse process.

Edge collapse accelerates PH computation. Observed experimental and practical successes
have led to its deployment in software packages like GUDHI. It performs several simple
collapses in one step, so is more efficient than simple collapse. In flag complexes, it can be
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performed using only the underlying graph structure, avoiding the need to store the entire
complex. Ours is an average-case analysis to explain the observed experimental reductions
and provides a starting point for more specific theoretical bounds.

In this article, we study the problem of reduction size achieved by the edge collapses of a
clique complex defined over an Erdős-Rényi random graph. This algorithm can be applied to
real datasets to effectively reduce its size while preserving homology. More details can be
found in [8].

Previous Work

The study of random simplicial complexes was initiated in the seminal paper of Linial
and Meshulam [19]. Later Meshulam and Wallach [22] generalized the model of random
complexes to obtain the Linial-Meshulam (LM) model of d-dimensional random complexes.
Since then a large body of work from several authors has emerged on many different models
of random simplicial complexes, studying various topological and geometric properties of such
complexes [15]. Random clique complex was introduced in [14]. The study of simple collapses
for random simplicial complexes has also been of interest to researchers and there have been
numerous works in this direction. In the d-dimensional LM model, Kozlov [18] proved bounds
on the threshold for vanishing of the d-th homology. Simple collapses on random complexes
were first studied by Aronshtam, Linial, Łuczak, and Meshulam [4], who improved Kozlov’s
bound to get a tight bound on the threshold and also gave a bound on the threshold for
collapsibility in the d-dimensional LM model. Later Aronshtam and Linial [2, 3] extended
this line of work, obtaining first the threshold for the vanishing of the d-th homology in [2]
and then the threshold for non-collapsibility of the d-dimensional LM complex [3]. In [20]
Linial and Peled obtained precise asymptotic bounds on the size of the core of such complexes.
Recently, Malen [21] has shown that the ER clique complex X(n, p) is (k + 1)-collapsible
with high probability for p = n−α when α > 1/(k + 1). This result was improved in [16]
by establishes asymptotic limits on Betti numbers of X(n, p) with p =

(
c
n

) 1
k+1 with local

weak convergence of the X in different probability regimes. Their work generalizes to any
random simplicial complex satisfying homogeneity and spatial independence properties. [24]
discusses d-collapsibility of X ∼ X(n, c

d
√

n
) for c < 1

22d+1d
. They have shown that the pure

d-dimensional part of the core consists of face disjoint copies of (d + 1)-dimensional cross
polytope boundary. Note that this (d + 1)-dimensional cross polytope boundary is the
minimal supporting structure for non-trivial dth homology for flag complex. In particular,
setting d = 2 gives the structure of the core which is the concern of the current paper. But it
should be noted that, in this case, this result holds for c < 1

5·25 = 0.00625 while our results
hold for any constant c >

√
η2 ≈ 1.57.

Thus, to the best of our knowledge, work on collapses in random complexes has so far
considered only simple collapses. We add that it is not too hard to show that the core
from the strong collapse of X ∼ X(n, c/n) is essentially the 2-core of the corresponding
Erdős-Rényi (ER) random graph. (The k-core of a graph G is the largest induced subgraph
of G where each vertex has degree at least k. The size of the k-core for random graphs has
been well studied [25, 13, 23].)

2 Our Contribution

We give bounds on the size of the t-core (i.e. the remaining complex after t phases of edge
collapse as described in Algorithm 1) of a random simplicial complex in terms of the number
of edges remaining. We show that for n-vertex Erdős-Rényi (ER) clique complexes with

SoCG 2024



21:4 On Edge Collapse of Random Simplicial Complexes

edge probability lying in a certain regime, the size of the t-core is a.a.s. a constant fraction
of already existing edges, with the constant depending only on the edge probability, and
bounded away from 1. Further, we also find a precise expression for the constant. Our first
theorem is stated below.

For a simplicial complex K, we use fi(K) to denote the set of i−simplices of the complex.
In a pruning phase run on K, a maximal subset of all the dominated (edge-collapsible, see
Section 3) edges of K are collapsed by collapsing them one by one. Let Rt(K) denote a
complex obtained by running t pruning phases over K, i.e., t-core of K. The probability space
of clique complexes on G ∼ G(n, p) will be referred to as the Erdos Renyi Clique Complexes
and denoted as X(n, p). Throughout this paper, we shall use the notation asymptotically
almost surely (a.a.s.) for a series of events (En)n≥1, when the probability of occurrence of
En goes to 1 as n → ∞. Define η2 = inf{η|x = e−η(1−x)2has a solution in (0, 1)}. Note that
η2 is well-defined because x = e−2.5(1−x)2 has a solution in (0, 1). In particular, η2 ≈ 2.45.

▶ Theorem 1. Let X ∼ X(n, p) such that p = c/
√

n with c >
√

η2. Let {γt}t≥0 be defined
recursively by γt+1 = e−c2(1−γt)2 and γ0 = 0. Fix t ≤ log n/(8 log log n) − 1. Then with
probability greater than (1 − O(1/n11/2))

(1 + o(1))
Ç

n

2

å
p(1 − γt+1 − c2γt(1 − γt)2) ≤ |f1(Rt(X))|, (1)

|f1(Rt(X))| ≤ (1 + o(1))
Ç

n

2

å
p(1 − (c2/3)(1 − (1 − γt)3)). (2)

▶ Remark 2. For X ∼ X(n, p), let P (X) denote the number of dominated edge-
dominating vertex pairs. It can be shown that E[P (X)] = O(n3p3 (1 − p2(1 − p)

)(n−3)) =
O(n3p3 exp(−np2(1 − p))). Now if p ≥

√
2 log(n)/n then E[P (X)] = on(1). Thus, by

Markov’s inequality, with high probability, there is no dominated edge to start the collapsing
procedure. On the other hand if p <

√
η2/n then it can be shown that the expected number

of surviving edges after t pruning phases is (O(1/2t)+o(1))n
√

n. Hence for t = θ(log(log(n)))
the expected number of 2-simplices in the core becomes o(n

√
n). So we focus on the regime

where p = c/
√

n with c >
√

η2.
We ran experiments on ER clique complexes X(n, c/

√
n) and plotted the size of the

t-core against the number of vertices n ∈ [100, 5000] for different values of the parameters c

and t. These experiments (Figure 1) clearly validate our theoretical results. In a different
set of experiments (Fig. 2a) over ER clique complexes X(n, c/

√
n), we varied the constant

c ∈ [1.6, 2.5] keeping the number of vertices fixed to n = 1500. Python codes for these
experiments can be found at https://github.com/soumikdt/Edge-Collapse-On-Random-
Clique-Complex.

We also provide an upper and lower bound on the size of the final core, also referred to
as the core, obtained by applying Algorithm 1 with t large enough so that no dominated
edge is left at the end.

▶ Theorem 3. Define η2 = inf{η|x = e−η(1−x)2has a solution in (0, 1)}. Let X ∼ X(n, p)
with p = c/

√
n and c >

√
η2. Let γ be the smallest positive solution of the equation

x = e−c2(1−x)2 . Then a.a.s.

|f1(R∞(X))| ≤ (1 + o(1))
Ç

n

2

å
(c/

√
n)(1 − (c2/3)(1 − (1 − γ)3)), (3)

(1 + o(1))
Ç

n

2

å
p(1 − γ − c2γ(1 − γ)2) ≤ |f1(R∞(X))|. (4)

https://github.com/soumikdt/Edge-Collapse-On-Random-Clique-Complex
https://github.com/soumikdt/Edge-Collapse-On-Random-Clique-Complex
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(a) Size of the 5-core with c = 2.0. (b) Size of the 8-core with c = 1.7.

Figure 1 Figure 1a shows the number of edges in the 5-core of X ∼ X(n, 2/
√

n) along with the
initial number of edges. The solid line indicates the theoretical upper and lower bounds on the
expected number of edges. Figure 1b shows the same thing for the 8-core of X ∼ X(n, 1.7/

√
n).

(a) Size of the core plotted against c. (b) Upper and lower bound of the size of the core.

Figure 2 In Figure 2a, we plotted the number of edges in the core of X ∼ X(1500, c/
√

1500) for
c ∈ [1.6, 2.5] along with the initial number of edges. The solid lines indicate the theoretical upper
and lower bounds on the expected number of edges. Note that these bounds tend to coincide as c

increases as shown in the figure. In Figure 2b, we ran the pruning procedure until there were no
more dominated edges. The figure shows the number of edges in the final core of X ∼ X(n, 1.7/

√
n)

along with the initial number of edges. The solid line indicates the theoretical upper bound on the
expected number of edges.

We also ran experiments (Figure 2b) on the size of the final core over ER clique complexes
X(n, c/

√
n). We varied the number of vertices n ∈ [100, 5000] keeping the constant fixed to

c = 1.7.
Next, we prove the abstract version of the concentration inequality that we use in the

subsequent sections. Fix n to be the number of vertices of a graph G, p < 0.5, and set
m = n(n−1)

2 . We order every pair of vertices G in an arbitrary manner. Let ei denote the
i-th such pair. We set ei = 1 if the corresponding edge exists and ei = 0 otherwise. For

SoCG 2024



21:6 On Edge Collapse of Random Simplicial Complexes

1 ≤ i ≤ m, let ei ∼ Bernoulli(p) be i.i.d. random variables. Clearly the Erdős-Rényi random
graph G(n, p) is equivalent to X(n, p) = e1 × · · · × em as probability spaces. We shall use
these notions interchangeably. Define ei(G) be the graph obtained after flipping the value ei

in G, i.e., if the potential edge ei does not exist in G it exists in ei(G) and vice versa. Let
CG(H) denote the number of copies of H in G as a subgraph.

▶ Theorem 4. Assume notations as above. Let G be the set of labeled graphs on n vertices
and H be an arbitrary but fixed graph on less than n vertices. Let f : G → R be a function
that satisfy the following modified Lipschitz conditions:
1. If CG(H) = 0 and Cei(G)(H) = 0 ∀i ∈ {1, · · · , m} then |∆ei(f(G))| :=

|f(G) − f(ei(G))| ≤ C ∀i.
2. Otherwise |∆ei

(f(G))| ≤ D ∀i ∈ {1, · · · , m}.
Now let G ∼ G(n, p) with p ≤ 1/2 and B := E[CG(H)]. Then for all T > B

Pr{|f − E[f ]| > s} ≤ 2 exp
Å

− s2

2(C + DT/p)(mpC + mDT + s/3)

ã
+ B/T. (5)

▶ Remark 5. [28] as well as several earlier papers [17, 27] have used stopped martingales to
obtain concentration bounds on functions that are Lipschitz “on average”. The idea is that at
each step of the martingale process, we choose to continue if the function in the current point
in the space, behaves “nicely” i.e. it is Lipschitz, or stop, if the function shows non-Lipschitz
behavior. Thus the stopped martingale process works over a Lipschitz function and therefore
provides a strong tail bound. However, one still needs to compute the probability that the
stopped process differs from the original. To bound this, previous works have mainly used
the union bound over the probability of stopping at each step.

Our approach differs from the previous approaches in that we choose to continue or stop
the martingale based on the expected Lipschitz (or non-Lipschitz) behavior of the function
at each step. We use a coupled martingale process which stops if and only if the original
process stops, and control the probability of the martingale stopping, using the Optional
Stopping Theorem. These ideas will be made precise in Section 6. This provides a sharper
bound on the probability of ever stopping. To compare, in the same setting as Theorem 4,
the inequality proved in [28] will have the following form

Pr{|f − E[f ]| > s} ≤ 2 exp
Å

− s2

2(C + DT/p)(mpC + mDT + s/3)

ã
+ mB/T. (6)

In general, the m in the non-exponential part of the bound would be replaced by the
length of the martingale. Thus when the length of the martingale is large the non-exponential
part of the bound often makes the inequality ineffective. On the other hand, if one tries
to improve the non-exponential part by increasing T then that increment in T kills the
exponential part.

While our analysis of the edge collapse shares the general flow of the analysis of the simple
collapsibility of LM complexes in e.g. [4, 2, 3, 20], there are several differences and difficulties.
Firstly, our goal is to find the size of the t-core in a non-homogeneous complex (i.e., the
maximal simplices of the complex do not have any fixed dimension, also known as non-pure
complex), and for that, we need to define the local neighborhood of our graph appropriately.
We only need edges that are susceptible to edge collapse in our local neighborhood rather
than all possible edges. Secondly, as we are running the collapsing procedure in phases, it
should be noted that all the edges that are dominated at the start of a phase do not get
collapsed at that phase. Thus it is not enough to calculate the probability that some edge gets
dominated in a certain phase to calculate the expected size of the t-core. We need to consider
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the higher-order structures in the complex to get proper estimates. Also, our analysis should
accommodate the non-homogeneity of the complex. That is, maximal simplices in this model
can have different sizes. Further, unlike in the LM model, the existence of a maximal simplex
is not independent of the existence of all other possible maximal simplices. Finally, perhaps
the most interesting difference of the random ER clique complex model in our context, is
that the effect of collapsing an edge is not necessarily localized – a fact that requires a fair
bit of innovation to handle (in several places).

Outline of the sections. Proof of Theorem 1 is done in two steps. First, Similar to [3],
we show that a certain tree-like model of random simplicial complexes provides a good
approximation of local neighborhoods, which is done in Section 4. This provides the bounds
on the expected size of the t-core as shown in Section 5. Then we prove that the size of the
t-core is concentrated around its expectation with probability in Section 7 using Theorem 4
which we discuss in Section 6. Theorem 3 is discussed in Section 8 and Section 9.

3 Preliminaries

In this section, we briefly introduce some topological and probabilistic notions. Readers can
refer to [12] for a comprehensive introduction to topics related to topology and [10] for topics
related to probability theory and random structures.

An abstract simplicial complex K is a collection of subsets of a non-empty finite set
X such that the collection is closed under taking subsets of its elements. More formally, (i)
K ⊂ 2X and (ii) A ∈ K and B ⊂ A implies B ∈ K.

An element of K of cardinality d + 1 is called a d-dimensional simplex or d-face in
short. The set of d-dimensional simplices of K will be denoted by fd(K). Elements of f0(K)
and f1(K) are often referred to as vertices and edges respectively. If σ, τ ∈ K such that
σ ⊂ τ then we say τ is a coface of σ. A simplex is called maximal if it is not a proper
subset of any other simplex in K. A sub-collection L of K is called a subcomplex if it is a
simplicial complex itself. A subcomplex K ′ of K is called a d-skeleton of K if it contains
all the simplices of K of dimension at most d.

Dominated vertex and edge. A vertex u ∈ K is dominated by another vertex v ∈ K if all the
maximal simplices of K that contain u also contain v. Similarly, an edge e := {u, w} ∈ f1(K)
is dominated by a vertex v ∈ f0(K) \ {u, w} if all the maximal simplices of K that contain e

also contain v.

Edge collapse. Given a complex K, the action of removing a dominated edge e and all its
cofaces from K is called a edge collapse [8], denoted as K↘↘1{K \ e}. If after a series of
edge collapses on a simplicial complex K produces another complex L then we write K ↘↘1

L. We further call a complex K edge collapse minimal if it does not have any dominated
edge. A subcomplex L of K is called a core under edge collapse if K ↘↘1 L and L is edge
collapse minimal. A core of a complex K under edge collapse is not unique. Like simple
collapses, edge collapses preserve the homotopy type of a simplicial complex.

For an abstract simplicial complex K and σ ∈ K, define link of σ as Lk(σ) := {τ ∈
K | τ ∩ σ = ∅, τ ∪ σ ∈ K}.

Now we present the algorithms to find the t-core of simplicial complexes under edge
collapse.

SoCG 2024



21:8 On Edge Collapse of Random Simplicial Complexes

Algorithm 1 Compute t-core under edge collapse.

Data: Simplicial complex X

Result: Rt(X), i.e., t-core of X under edge collapse
1 Calculate the set D of all the dominated edges of the current complex;
2 Shuffle elements of D uniformly randomly;
3 for e in D do
4 If e is dominated by some vertex in the current complex collapse e and all its

cofaces.
5 end
6 Repeat the above steps t times.

▶ Remark 6. Note that all the edges present in the set D in the above algorithm can not
be removed at once because deleting one edge may change the dominated status of its
neighboring edges as shown in Figure 3. This explains that all dominatd edges in a pruning
phase can not be collapsed simultaneously. We need to use some fixed but arbitrary order
of deletion. The resulting complex depends on this order. While random ordering is not
necessary to perform this collapse, we use it in our analysis. Using a non-random ordering
gives rise to a different process.

Clique complex. A clique or a flag complex of a graph G is a simplicial complex where
each clique of size k in G makes a k − 1-face of K. Note that if K is a flag complex and L

is any subcomplex of K obtained by edge collapses then L is also a flag complex. In this
paper, our main focus will be to analyze the effect of the Algorithm 1 on Erdős-Rényi Clique
Complexes X(n, p).

4 Random 2-tree and local 2-neighborhood structure

In this section, we shall first describe the process of building random 2-trees recursively
which will be useful later. This construction is similar to the construction of Galton-Watson
trees. It will be proved that for e ∈ f1(X), where X ∼ X(n, c/

√
n) with c >

√
η2, the local

neighborhood of the edge e looks like a random 2-tree. More formally, the random simplicial
complex exhibits a local weak convergence [1] to the Poisson 2-tree with parameter c2.

▶ Definition 7. A 2-tree is built recursively as follows: (i) Start with a single edge(root).
(ii) Each 1-simplex added in the i − 1st iteration shall have m children 2-simplices in the ith
iteration where m ∼ Poisson(c′) with c′ ∈ R+. In other words, we draw a random variable
with Poisson distribution with parameter c′ for each 1-simplex added in the last iteration and
add that many 2-simplices to it in the current iteration.

Let Tn denote the set of all possible rooted trees after nth iteration for n ≥ 1 and T0 being
the root itself. We also define the infinite Poisson tree T∞ as the resulting tree when the
number of iterations becomes unbounded. Define T :=

⋃
n∈N Tn.

Let γt be the probability that a tree T ∈ Tt is pruned to the root in no more than t − 1
steps. Note that, in this process, we never prune the root itself even if its degree is 1. We call
such a process root collapsing. Clearly, γ1 = e−c′ . Set γ0 = 0. Observe that the root survives
the t + 1st pruning phase if at least one of the children of the root survives the t-th pruning
phase. In other words, to prune a rooted edge, all its children 2-simplices must be pruned,
i.e. at least one edge from each child 2-simplex must be collapsed. This probability for one
child 2-simplex is (1 − (1 − γt)2). Thus, we have the following recursive relation which is
true in general:
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γt+1 = 1 −
∞∑

k=0
(1 − (1 − (1 − γt)2)k)c′ke−c′

k! = e−c′(1−γt)2
.

Note that γt depends on c′ and t. Sometimes we shall indicate this fact by writing γt(c′)
instead of γt to avoid any confusion. Define γ ≡ γ(c′) := limt→∞ γt. Define βt := 1 − γt+1.
Thus, βt is the probability that at least t + 1 root collapsing steps are needed to isolate the
root of a tree T ∈ Tt.

▶ Lemma 8. For c > η2, we have γ − γt ≤ e−c

1−f ′(γ) (f ′(γ))t and f ′(γ) < 1.

The last lemma provides an estimate of the rate of convergence of the sequence {γt}t≥0.
It is to be noted that, as f ′(γ) < 1, the sequence converges to γ exponentially fast with
respect to t. We shall leverage this fact while calculating the upper bound on the size of the
final core.

Now we shall analyze the properties of the local neighborhood of an edge e in X ∼
X(n, c/

√
n). Due to the probabilistic nature of the complex, the properties we consider are

not absolute, rather, as we shall prove, they hold with high probability. As we are working on
the edge collapse in non-homogeneous simplicial complexes, there are simplices neighboring e

that do not have any effect on the edge collapsing procedure. Thus, for an effective analysis,
we need to craft the definition of local neighborhoods carefully. Note that, for a flag complex
K, an edge e ∈ K is dominated by another vertex v ∈ K, if and only if all the vertices in K

that have an edge with both vertices of e also have an edge with v. This suggests that we
should only consider those vertices as neighbors that are adjacent to both the vertices of e.
So we adopt the following definition of the neighborhood for our purpose. Note that Cl(X)
denotes the simplicial closure of X.

▶ Definition 9. Let e = {u, v} ∈ X. Define f0(N (e)) := {w ∈ f0(X)|e ∪ {w} ∈ X}. Let
X[f0(N (e))] be the induced subgraph on the vertex set f0(N (e)). We define the neighborhood
complex of e as N1(e) := Cl(X[f0(N (e))]) which is the clique complex build on X[f0(N (e))].
Also define deg(e) := |{w ∈ X|{u, v, w} ∈ f2(X)}|.

Next, we extend the previous definition to define a neighborhood of arbitrary depth. we
start with a fixed edge and then we define the neighborhood recursively. At each recursive
step, we add the neighborhood of already existing edges.

▶ Definition 10. As before, fix e = {u, v} ∈ X. We recursively define the t-neighborhood
of the edge e to be Nt(e) := Cl(X[

⋃
h∈f1(Nt−1(e)){u ∈ f0(X)|h ∪ {u} ∈ X}]) and N0(e) :=

{{u}, {v}, {u, v}}. We shall write Nt(e) as 2-neighborhood of e of depth t.

First, we shall show that the degree of an edge, defined earlier, is bounded by O(log n)
with high probability.

▶ Lemma 11. Define event E := {deg(e) ≤ log n ∀e ∈ f1(X)}. Then Pr{E} = 1 − on(1).

We now show that the neighborhood is a 2-tree with high probability.

▶ Lemma 12. Let X ∼ X(n, c/
√

n) and e ∈ f1(X). Then, for t ≤ log n/(8 log log n) − 1,
Pr{{Nt ∈ T } ∩ E} = 1 − O(n−1/4) .

The degree of an edge of this 2-tree comes from Bin(n − 2, c2/n). For large n this
distribution can be approximated by Poisson(c2). In short, the local neighborhood is a
random 2-tree from the Poisson distribution with parameter c2.

SoCG 2024
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Now we shall briefly recall the notion of local weak convergence [1]. We shall modify the
framework a little to suit our purpose. An edge-rooted (possibly infinite) simplicial complex
(X, e) is a simplicial complex X with a distinguished edge e ∈ f1(X) called root of X. Let X⋆

be the set of all such edge-rooted complexes. Under proper metric, X⋆ becomes a complete
and separable metric space that has its Borel σ-algebra (denoted by Σ). So one can define
weak convergence of probability measures in this space.

Given a finite simplicial complex X one can then describe a probability measure on X⋆

by choosing a root of X uniformly randomly from f1(X). Let us call this measure X[U ]. For
a sequence (Xn)n∈N of finite simplicial complexes, we say that Xn → X∞ locally weakly in
(X⋆, Σ) if Xn[U ] → X∞[P ] where P : f1(X∞) → R+ ∪ {0} is some probability measure on
the 1-simplices of X∞. In other words, if we fix any vertex of Xn to be the root uniformly
randomly and calculate the neighborhood with respect to that root then that neighborhood
will converge (under the distance metric introduced in the last paragraph) to X∞ where the
root in X∞ is chosen using probability measure P on the vertices of X∞. Under the above
framework, the previous lemma implies that X(n, c/

√
n) → T∞(c2) locally weakly. Thus for

any bounded continuous function f

E[f(X(n, c/
√

n))] → E[f(T∞(c2))].

5 Expected size of the t-core

As stated earlier edge collapses will be carried out in phases (also referred to as pruning
phases). In each phase, a maximal set of the existing dominated edges shall be collapsed.
Recall that, in a flag complex K, an edge e = {u, w} is dominated by a vertex v if and only
if all the common neighbors of u and w are also a neighbor of v.

As the complex locally looks like a random 2-tree, an edge survives the t-th collapsing
phases if the neighborhood 2-tree is not collapsed to its root edge until the t-th phase. Due
to the tree structure collapsing an edge in a 2-tree is effectively like removing a 2-simplex
from the tree. t-core is achieved after t many pruning phases. In each phase, we mark all the
dominated edges and randomly collapse a maximal set from the marked edges. Let us first
calculate the lower bound on the size of the t-core.

Lower bound on the expected size of the t-core. To estimate the lower bound we shall
calculate the total number of unmarked edges after t phases. Note that an edge e ∈ f1(X)
unmarked after k pruning phases only if it had degree deg(e) ≥ 2 after k − 1 pruning phases.
As probability of such an event is (1 − γt − c2γt(1 − γt−1)2) , using Lemma 12, we get

E[f1(Rt(X))] ≥ (1 − O(n−1/4))
Ç

n

2

å
p(1 − γt+1 − c2γt(1 − γt)2).

Upper bound on the expected size of the t-core. Calculating the upper bound is less
straightforward because, in any particular phase, not all dominated edges get collapsed. For
example, consider Figure 3.

Even if all the edges of an isolated triangle are dominated in any particular phase only
one can be collapsed. Because after collapsing one edge rest of the edges are not dominated
anymore. Thus not all the marked edges are collapsed. To get around this issue we observe
the following lemma. We say a 2-simplex is marked if any of its edges are marked. By
maximal 2-simplex we mean a 2-simplex which is also a maximal simplex.
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a

b

c

a

b

c

Figure 3 In the left complex each edge is dominated by the vertex opposite to it. In particular
{a, b} is dominated by c. So we collapse this edge to the figure on the right. But in the figure on
the right, as we can check, the edges {c, b} and {a, c} are not dominated anymore.

▶ Lemma 13. Any marked maximal 2-simplex σ gets collapsed in the same pruning phase it
got marked.

It can be shown that the expected number of non-maximal 2-simplices is O(n). So the
expected number of marked maximal 2-simplices is essentially the same as the expected
number of marked 2-simplices. So, we can use marked 2-simplices to count collapsed 2-
simplices. Let di denote the number of collapsed i-simplices during the t pruning phases. We
shall focus on the expected values of d1 and d2. It can be shown that:

▶ Lemma 14. E[d2] ≥ (1 + o(1))(1 − (1 − γt)3)
(

n
3
)
(c/

√
n)3.

Now to calculate a lower bound on the expected number of collapsed edges, i.e. d1, we
need the following combinatorial observations.

▶ Lemma 15. At any stage of the pruning phases, if collapsing one dominated edge removes
k 2-simplices then at least k − 1 3-simplices are also removed due to this.

Proof. Let us assume that the edge {u, w} is part of k 2-simplices, namely, {u, w, v} and
{u, w, ui} for 1 ≤ i ≤ k − 1. Also assume, without loss of generality, that v dominates {u, w}.
Then the edges {v, ui} exist for 1 ≤ i ≤ k − 1. Thus the arrangement shown in Figure 4
is necessary for the event that collapsing one edge ({u, w} in the figure) removes k many
2-simplices.

Therefore, removing {u, w} kills the {u, v, w, ui} for 1 ≤ i ≤ k − 1. So, at least k − 1
3-simplices are removed. ◀

▶ Corollary 16. let d1, d2 and d3 as defined before. Then d2 ≤ d3 + d1.

Proof. Let d2,i and d3,i denote the number of collapsed 2-simplices and 3-simplices respect-
ively for ith edge collapse during the pruning phases. By Lemma 15, we have d3,i ≥ d2,i − 1.
Thus d3 =

∑d1
i=1 d3,i ≥

∑d1
i=1 d2,i −

∑d1
i=1 1 = d2 − d1. ◀

Hence, d2 ≤ d1 + d3 ≤ d1 + f3(X). After taking expectation we get

E[d1] ≥ E[d2] − E[f3(X)] ≥ E[d2] − (1 + o(1))(c6/24)n ≥ (1 + o(1))E[d2].

So we get the desired upper bound. But

E[f1(Rt(X))] ≤ E[f1(R0(X))] − E[d1] ≤ (1 + o(1))
Ç

n

2

å
(c/

√
n)(1 − (c2/3)(1 − (1 − γt)3)).
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v

u w

u1 ui uk−1
. . .

Figure 4 Observe that the edge {u, w} is part of k 2-simplices, namely, {u, w, v} and {u, w, ui}
for 1 ≤ i ≤ k − 1. Also, {u, w} is part of k − 1 3-simplices, namely, {v, u, w, ui} for 1 ≤ i ≤ k − 1.

Thus we get the following theorem:

▶ Theorem 17. Define η2 = inf{η|x = e−η(1−x)2has a solution in (0, 1)}. Let X ∼
X(n, c/

√
n) with c >

√
η2. Let E(|f1(Rt(X))|) denote the number of edges in X after t

edge collapse phases and γt is as defined above. Then,

(1 + o(1))
Ç

n

2

å
p(1 − γt+1 − c2γt(1 − γt)2) ≤ E(|f1(Rt(X))|),

E(|f1(Rt(X))|) ≤ (1 + o(1))
Ç

n

2

å
p(1 − (c2/3)(1 − (1 − γt)3)).

6 The concentration inequality

We use the martingale method to prove Theorem 4. In fact, we use two coupled martingales
defined on the same filtration of σ-algebras such that one martingale stops if and only if
the other martingale also stops. One of the martingales is to control the deviation of the
concerned function f from its expected value. The purpose of the other martingale is to
control the probability of stopping. The stopping time would be the moment when the
conditional expected number of the subgraph H of G exceeds some certain threshold. This
stopping probability can be estimated using the Optional Stopping Theorem.

7 Concentration of the size of the t-core

As we are working on the Erdős-Rényi clique complexes, the effect of edge collapse is not
localized only in the neighborhoods of the collapsed edges throughout the pruning phases.
Collapse of a dominated edge can affect a large region of the flag complex. But the occurrence
of such events implies the existence of a specific class of subcomplexes, which we call Critical
Complexes. It is easy to show that the probability of occurrence of these subcomplexes is
vanishingly low in the original random complex. Thus the effect of edge collapse is typically
bounded. This observation indicates that we can use Theorem 4 to prove the concentration
of the size of the t-core. In this section, we shall prove the following concentration result
using the theorem developed in the last section.
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v

u w

u1 ui uk−1
. . .

Figure 5 Critical Complex of order k.

▶ Theorem 18. Let X ∼ X(n, p) with p = c/
√

n for some constant c. Let |f1(Rt(X))| be
the number of edges after t edge collapsing phases and Y0 = E(|f1(Rt(X))|) be its expected
value. Then for any s ≥ 0, we have,

Pr{||f1(Rt(X))| − Y0| ≥ s · n} ≤ 2 exp(−s2Θ(
√

n)) + O(1/n5.5).

We first prove some combinatorial results that will be useful to construct the ’bad’
subgraph H of G, i.e., the 1-skeleton of a critical complex, so that we can use the concentration
theorem from the last section.

▶ Lemma 19. Pr{Collapsing a dominated edge e gives birth to 2k newly generated dominated
edges for k ≥ 2} ≤ O( 1

(
√

n)k−4 )

Proof. We shall use the fact that for a general simplicial complex K: An edge e ∈ K is
dominated by another vertex v ∈ K, if and only if all the maximal simplices of K that contain
e also contain v. Let e, e′ ∈ K. Let v dominate e := {u, w} and only after collapsing of e, e′

gets dominated by v′. Assume that v ̸= v′. Then there is a maximal simplex σ that contains
both e and e′ but v′ ̸∈ σ. First, assume that e and e1 do not share any common vertex.
So, e1 ⊂ σ ∩ Lk(e). Collapsing e breaks the maximal simplex σ into two maximal simplices
consisting of at least 3 vertices each, namely, Cl((σ ∩Lk(e))∪{u}) and Cl((σ ∩Lk(e))∪{w}),
both containing e1. Then v′ ∈ Lk(e) ∩ σ ⊂ σ which is a contradiction. Thus e1 must be
of the form {u, u1} or {w, u1}, i.e., e1 ⊂ e ∪ {u1} for some u1 ∈ K. The case v = v′ is not
possible as there can not be any maximal simplex σ1 such that e, e′ ∈ σ1 but v ̸∈ σ1.

Now if u1 ̸= v then the edge {u1, v} must exist. Thus the arrangement shown in Figure 5
is necessary for the case that collapsing e generates 2k − 2 newly dominated edges. Including
the case that u1 = v we get that Figure 5 is necessary for the event that collapsing e generates
2k newly dominated edges. We call the complex shown in Figure 5 a Crtitical Complex of
order k.

It requires k + 2 vertices and 3k edges. Expected number is O( 1
(
√

n)k−4 ). Hence the result
follows from the Markov’s inequality. ◀

SoCG 2024
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Proof of Theorem 18. We shall use the notations introduced in Theorem 4. Fix H to be
the 1-skeleton of the critical complex (as shown in Figure 5) of order k = 20. It has 22
vertices and 60 edges. So B = E[CG(H)] = O(1/n8). Flipping one edge in the initial complex
will have a cascading effect on the consequent t pruning phases. But as H is forbidden, at
the end of the t phases at most 39t+1−1

38 ≤ 40t edges would be flipped. On the other hand,
if we do not put any constraint on the structure of the initial complex then at the end of
the pruning phases all edges can be flipped. Thus we get C = 40t and D = n2. Then by
Theorem 4 we have

Pr{||f1(Rt(X))| − Y0| ≥ s·n} ≤ 2 exp(− s2 · n2

2(40t + n2.5T/c)(n1.5 + n4T + sn/3))+O(1/n8T ).

Setting T = 1/n2.5 we get

Pr{||f1(Rt(X))| − Y0| ≥ s · n} ≤ 2 exp(−s2Θ(
√

n)) + O(1/n5.5). ◀

Proof of Theorem 1. Using Theorem 17 and Theorem 18 we get the desired result. ◀

8 Upper bound on the size of the core

In this section, we shall study the effect of a maximal number of edge-collapsing phases on
random simplicial complexes. In other words, we keep running the pruning phases until
there is no more dominated edge and observe the size of the core obtained in this way. Even
though letting t → ∞ in Equation 2 produces Equation 4 proving so is less straightforward
simply because our initial assumption about tree-like neighborhood no longer is valid for
arbitrary t. But Lemma 12 provides a bound on the largest t that still keeps our previous
analysis valid. Fortunately, this bound is decent enough for our purpose.

Idea behind the proof of Theorem 3. First we observe that, for a fixed flag complex X,
|f1(Rt(X))| ≥ |f1(Rt+1(X))|. Thus |f1(Rt(X))| ≥ |f1(R∞(X))|. Thus for any t ≥ 1,
|f1(Rt(X))| is an upper bound of the size of the final core. In particular, we shall take t = ρ :=
log n/16 log log n. It can be shown that a.a.s. (1 +o(1))

(
n
2
)
(c/

√
n)(1− (c2/3)(1− (1−γ)3)) ≥

(|f1(Rρ(X))|. Then the result follows immediately as |f1(Rρ(X))| ≥ |f1(R∞(X))|. ◀

9 Lower Bound on the size of the core

The proof for the lower bound on the size of the core follows a different approach, adapted
from [20, 26]. The idea is, roughly speaking, to craft two properties, P and A, defined on the
space of rooted random 2-trees. The property A says that a 2-tree can not be pruned within
a fixed finite number of steps. The property P implies that sufficiently lower descendant
leaves of the root of the tree have property A. Then one shows that property A implies
property P with high probability. This recursive nature implies that 2-trees with property A
can not be pruned in any finite number of steps. Thus calculating the expected number of
trees with property A yields the following theorem.

▶ Theorem 20. Let X ∼ X(n, c/
√

n) with c >
√

η2. Then a.a.s

f1(R∞(X)) ≥ (1 + o(1))(1 − γ − c2γ(1 − γ)2)c/
√

n

Ç
n

2

å
.
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