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Abstract
A non-crossing spanning tree of a set of points in the plane is a spanning tree whose edges pairwise
do not cross. Avis and Fukuda in 1996 proved that there always exists a flip sequence of length at
most 2n − 4 between any pair of non-crossing spanning trees (where n denotes the number of points).
Hernando et al. proved that the length of a minimal flip sequence can be of length at least 3

2 n. Two
recent results of Aichholzer et al. and Bousquet et al. improved the Avis and Fukuda upper bound
by proving that there always exists a flip sequence of length respectively at most 2n − log n and
2n −

√
n when the points are in convex position.

We pursue the investigation of the convex case by improving the upper bound by a linear factor
for the first time in 30 years. We prove that there always exists a flip sequence between any pair
of non-crossing spanning trees T1, T2 of length at most cn where c ≈ 1.95. Our result is actually
stronger since we prove that, for any two trees T1, T2, there exists a flip sequence from T1 to T2 of
length at most c|T1 \ T2|.

We also improve the best lower bound in terms of the symmetric difference by proving that there
exists a pair of trees T1, T2 such that a minimal flip sequence has length 5

3 |T1 \ T2|, improving the
lower bound of Hernando et al. by considering the symmetric difference instead of the number of
vertices.

We generalize this lower bound construction to non-crossing flips (where we close the gap between
upper and lower bounds) and rotations.
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1 Introduction

Let C be a set of n points in the plane in convex position. A spanning tree T on the set of
points C is a subset of edges that forms a connected acyclic graph on C. A spanning tree
T on C is non-crossing if every pair of edges of T (represented by the straight line interval
between their endpoints) are pairwise non-crossing.
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22:2 Reconfiguration of Plane Trees in Convex Geometric Graphs

Let us denote by S(C) the set of all non-crossing spanning trees on the point set C. Let
T ∈ S(C). A flip on T consists of removing an edge e from T and adding another edge f

so that the resulting graph (T ∪ f) \ e is also a non-crossing spanning tree. A flip sequence
is a sequence of non-crossing spanning trees such that consecutive spanning trees in the
sequence differ by exactly one flip. Equivalently, one can define the configuration graph on
the vertex set S(C) where two trees T, T ′ are adjacent if they differ in exactly one edge (that
is |T \ T ′| = |T ′ \ T | = 1). A (minimal) flip sequence is a (shortest) path in the configuration
graph.

1.1 Flips between non-crossing spanning trees

Avis and Fukuda [4] proved that there always exists a flip sequence between any pair of
non-crossing spanning trees of length at most 2n − 4 by showing that there is a star (that is
a spanning tree with at most one vertex of degree at least 2) S on C such that T1 and T2
can be turned into S with at most n − 2 flips. In fact, they showed that this flip sequence
exists even if the point set C is in general position.

Given two spanning trees T1, T2, the symmetric difference between T1 and T2 is denoted
by ∆(T1, T2) = (T1 \ T2) ∪ (T2 \ T1). We denote by δ(T1, T2) = |∆(T1, T2)|/2 the number of
edges in T1 and not in T2, which is a trivial lower bound on the length of a flip sequence
from T1 to T2.

It is well-known that the set of spanning trees of a graph G forms a matroid. In particular,
for any possible pair of spanning trees T1, T2, there is a (non geometric) flip sequence that
transforms T1 into T2 in exactly δ(T1, T2) flips. So if we do not care about geometric
properties of the representation of the spanning trees, it is always possible to transform a
spanning tree T1 into T2 using at most n − 1 flips. One can wonder if the same holds if we
want to keep non-crossing spanning trees all along the flip sequence. Hernando et al. [9]
answered this question in the negative by providing, for every n, two non-crossing spanning
trees T1, T2 on a convex set of n points whose minimal flip sequence needs 3

2 n − 5 flips (we
give their example in Figure 1).

Figure 1 A minimal flip sequence between T1 (in black) and T2 (in red) has length exactly
⌊ 3

2 n⌋ − 5 = 10.

During 30 years, no improvement of the lower or upper bound has been obtained until
a recent result of Aichholzer et al. [2]. They showed that the upper bound of Avis and
Fukuda can be improved when points are in convex position by proving that there exists a
flip sequence between any pair of non-crossing spanning trees of length at most 2n − Ω(log n).
Their result has been further improved by Bousquet et al. [5] who proved that 2n − Ω(

√
n)

flips are enough. However, until now, there does not exist any general proof that there always
exists a flip sequence of length at most (2 − ϵ)n for some ϵ > 0.
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In both papers, the authors prove as well the existence of shorter flip sequences when
one (or both) of the trees has a special shape. Aichholzer et al. [2] proved that when the
points are in convex position and T1 is a path then there exists a flip sequence of length at
most 3

2 n − 2 − |T1 ∩ T2| = n+|∆(T1,T2)|
2 − 1. Bousquet et al. [5] proved that there exists a flip

sequence of length at most 3
2 n when the points are in convex position and T1 is a path or a

nice caterpillar1.
Bousquet et al. [5] conjectured that the lower bound of Hernando et al. [9] is essentially

tight:

▶ Conjecture 1. Let C be a set of n points in convex position. There exists a flip sequence
between any pair of non-crossing spanning trees of length at most 3

2 n.

One can easily prove that there exists a flip sequence of length at most 2δ(T1, T2) between
any pair of non-crossing spanning trees in convex position. The improvement of Aichholzer
et al. [2] also holds in that setting. Since in the example of Hernando et al. the intersection
is reduced to two edges, one can wonder if Conjecture 1 can be extended to the symmetric
difference, namely:

▶ Conjecture 2. Let C be a set of n points in convex position. There exists a flip sequence
between any pair of non-crossing spanning trees T1, T2 of length at most 3

2 δ(T1, T2).

Our main results, discussed in more details in the next paragraphs, first consist in
(i) improving the best known upper bound by breaking the linear factor 2 of the threshold
on the length of a minimal flip sequence (even in terms of the symmetric difference) and
(ii) disproving Conjecture 2 by proving that the best upper bound factor we can hope for is
5
3 . We complete these results by providing improved upper and lower bounds on the length
of transformations in the non-crossing and rotation models defined later. In particular, we
close the gap between upper and lower bounds in the case of non-crossing flips.

Improved upper bound. The first main result of this paper is to improve the best upper
bound of [5] by a linear factor by proving that the following holds:

▶ Theorem 3. Let C be a set of n points in convex position. There exists a flip sequence
between any pair of non-crossing spanning trees T1 and T2 of length at most c · δ(T1, T2) with
c = 1

12 (22 +
√

2) ≈ 1.95.
In particular, there exists a flip sequence of length at most cn ≈ 1.95n between any pair of
non-crossing spanning trees.

One can note that our result is expressed in terms of the symmetric difference, which is
also the case for the upper bound of [2]. Note that some of the partial results obtained in [2]
depend on both n and ∆.

Our proof technique is completely different from the previous approach of [5] whose goal
is to transform at least one spanning tree into a very rigid structure that does not really
take into account the specific structure of both trees. On the contrary, our approach depends
on the local structure of both trees. This idea stems from [2] and works along the following
lines: if two non-crossing trees T, T ′ contain a common chord, we divide our problem into
two sub-problems: the “left” and the “right” problem where the common chord becomes an

1 A caterpillar is a tree such that the set of nodes that are not leaves induces a path. Without giving the
exact definition, a nice caterpillar is a caterpillar such that every chord cuts in a nice way the geometric
representation.
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22:4 Reconfiguration of Plane Trees in Convex Geometric Graphs

edge of the convex hull in both cases. In particular, if we can create a common chord with
few modifications, we can apply induction. This approach is safe since our upper bound
depends on the size of the symmetric difference and not on n. Unfortunately, this cannot
work in general since we may have to modify a lot of edges until we can create a common
edge (see e.g. the example of Figure 1). We prove that we can find a chord e in T and
one side of that chord (say “left”) such that T ′ has not too many endpoints in that side.
The difference with the argument above is that the “not too many” here is not a universal
constant but depends on the size of the side. We then prove that, by only modifying a small
linear fraction of these edges, we can transform “left” into what we call a very good side.
Informally speaking, “left” is a very good side if (i) no edge of T ′ has both endpoints in “left”
(in other words, all the edges with one endpoint in left have the other endpoint in the right
part) and, (ii) the number of such edges in T ′ is equal to the size of “left”. We then prove
that, in that case, we can perform flips in order to be sure that both trees agree on the left
of e in at most 5

3 times the number of vertices2 to the left of e.
Our proof is self-contained and is algorithmic. So a flip sequence of length at most cn can

be obtained in polynomial time. Moreover, it is robust since it can be adapted to improve
the best upper bounds for rotations for instance. Note that we did not try to optimize the
constant c to keep the proof as simple as possible.

Lower bound in terms of the symmetric difference. Our second set of results consists
in proving stronger lower bounds in terms of the symmetric difference. In particular, we
disprove Conjecture 2:

▶ Theorem 4. For every k > 0, there exist two trees Tk and T ′
k such that δ(Tk, T ′

k) = 3k

and every flip sequence between Tk and T ′
k has length at least 5k = 5

3 δ(Tk, T ′
k).

The proof of Theorem 4 consists in first proving the case k = 1 by providing two spanning
trees T1, T ′

1 on 8 vertices for which δ(T1, T ′
1) = 3 and such that the minimal flip sequence

between T1 and T ′
1 needs 5 flips (see Figure 13). One of the reasons of the hardness comes

from the fact that, for every common edge e of the convex hull, the endpoint of e that is used
to connect this edge to the rest of the tree is different in both trees. This allows us to increase
the number of crossings between the trees, and then the length of the flip sequence. Note
that our example is not a counterexample to Conjecture 1 since the pair of trees contains a
lot of common edges.

We then prove that if we glue many instances of (T1, T ′
1) appropriately, we can obtain

a similar example with arbitrarily large value of k. The idea is as follows. If we assume
that there always exists a minimal flip sequence that does not break common edges, the
conclusion immediately follows. Unfortunately, this statement, known as the Happy Edge
conjecture [2], is only known to be true for common edges of the convex hull but not for
chords. So we have to prove that it is never worthwhile to break a common edge which we
succeed to do in this particular case (in other words, the Happy Edge Conjecture holds in
this case).

We have not found any example for trees T1, T2 for which a flip sequence of length more
than 5

3 δ(T1, T2) is necessary. We therefore leave the following as an open problem:

2 Actually, the size of a side will be defined as the number of non-edges of the convex hull and not simply
of vertices in the side which explains why we obtain a bound in terms of the symmetric difference.
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▶ Question 5. Let C be a set of points in convex position and T1, T2 two non-crossing
spanning trees on C. Does there always exist a flip sequence between T1 and T2 of length at
most 5

3 δ(T1, T2)?

Improved lower bounds for the other models. Several other types of flips have been
introduced in the literature (see e.g. [14] for an overview of the results in the different models).
We proved that we can strengthen the best lower bounds in terms of the symmetric difference
for two other types of flips: non-crossing flips and rotations.

Let T be a spanning tree, e be an edge of T and f be an edge such that (T ∪ f) \ e is
non-crossing. We say that the flip is non-crossing if T ∪ f does not contain any crossings. In
other words, we restrict to flips where the new edge does not cross the edge that is deleted.
We say that the flip is a rotation if e and f share an endpoint. In other words, every flip
must rotate an edge around a point in that case.

Upper and lower bounds in terms of n for the longest minimal transformation have already
been studied (see [14]). Note that the best known lower bounds for all the models are the
same and are given by the construction of Hernando et al. which gives a lower bound (in
terms of n) of size 3

2 n. We improved the lower bounds in terms of the symmetric difference
for both non-crossing flips and rotations.

For non-crossing flips, one can easily remark that, by flipping edges on the convex hull,
we can always find a non-crossing flip sequence between any pair of trees of length at most
2δ(T1, T2) (see Lemma 10 for a formal proof). We prove that this bound is tight by giving
a pair of trees that reach this bound, which completely closes the gap between lower and
upper bounds for non-crossing spanning trees in terms of symmetric difference. Namely we
prove that the following holds:

▶ Theorem 6. For every k > 0, there exist two trees Tk and T ′
k such that δ(Tk, T ′

k) = k and
every flip sequence between Tk and T ′

k has length at least 2k = 2δ(Tk, T ′
k).

We finally consider the rotation model. One can easily remark that there is always a
rotation sequence between T1 and T2 of length at most 4δ(T1, T2) by flipping edges on the
convex hull. Actually one can prove that this 4 can be improved into a 3 with a simple clever
analysis.

Our last result consists in improving the best lower bound for rotation by showing that
the following holds:

▶ Theorem 7. For every k > 0, there exist two trees Tk and T ′
k such that δ(Tk, T ′

k) = 3k

and every rotation sequence between Tk and T ′
k has length at least 7k = 7

3 δ(Tk, T ′
k).

While the family of trees reaching that bound is similar to the family constructed for
flips, the analysis that this family works is much more involved. We end this part with a last
open problem:

▶ Question 8. Let C be a set of points in convex position and T1, T2 two non-crossing
spanning trees on C. Does there always exist a rotation sequence from T1 to T2 of length at
most 7

3 δ(T1, T2)?

1.2 Related work
Flip distance between geometric structures. Flips between combinatorial structures have
been widely studied in computational geometry and combinatorics. One of the most studied
problem, known as the Flip Distance problem, aims at computing the minimum number

SoCG 2024



22:6 Reconfiguration of Plane Trees in Convex Geometric Graphs

of flips needed to transform one triangulation into another (a flip in that case consists in
replacing one diagonal of a quadrilateral into the other). The problem has been proven to be
NP-complete when considering n points in non-convex position [16, 13], and in that case, the
flip graph of triangulations of a point set may have diameter Θ(n2) [11]. When the n points
are in convex position, the maximum flip distance between triangulations is linear and equal
to 2n − 10 when n ≥ 9. A first proof for n large was found using hyperbolic geometry [18],
while a combinatorial proof for all n ≥ 9 was only given decades later [17]. However, the
complexity of the Flip Distance problem is, as far as we know, still an open problem in
that case.

Flip graphs and their diameter for other geometric objects have been studied, such
as non-crossing perfect matchings or rectangulations. For both of these objects there are
several natural notions of flips, yielding various flip graphs. A natural way of defining a
flip for perfect matchings is by allowing two edges to be removed and two other edges to
be added such that the resulting matching is still non-crossing. When the n points are in
convex position and n is even, Hernando, Hurtado and Noy [8] showed that the flip graph of
non-crossing perfect matchings has diameter n

2 − 1. Houle et al. [10] gave a result on general
point sets when using the notion of flip where M1 is connected to M2 in the flip graph where
the symmetric difference of M1 and M2 contains a single non-crossing cycle. They showed
that there is a transformation of linear length between any pair of non-crossing matchings,
whereas Aichholzer et al. [3] showed that, if multiple non-crossing cycles are allowed in a flip,
then any minimal transformation has length at most O(log n).

Ackerman et al. [1] considered flips of rectangulations with two elementary flip operations,
where one flip changes a horizontal line to a vertical line and vice versa and the other flip is
a rotation around a point (by splitting the line segment into two parts). They showed that
the maximum flip sequence over all n points is of the order Θ(n log n). A natural point set
for rectangulations to consider is a diagonal point set, for which Ackerman et al. showed
that the flip graph has diameter at most 11n.

Combinatorial Reconfiguration. In the last decade, an important line of work has con-
sisted in finding transformations between solutions of a problem such as graph colorings or
independent sets (see e.g. [15] for a recent survey). Amongst all these works, some of them
studied transformations between restricted spanning trees. While we focus in this work on a
restriction to the geometric representation of the spanning trees (non-crossing), these works
focus on combinatorial properties of the spanning trees such as their maximum degree [7] or
their number of leaves [6]. In these cases, the existence of a transformation is not guaranteed
and the goal is to design efficient algorithms determining, given a pair of spanning trees,
whether one can transform one into the other. These works focus on the token jumping
model which essentially corresponds to flips and very little is known on the token sliding
model (which is an analogue of rotations).

As a final remark, spanning trees are, as we already mentioned, a particular case of
matroids (called graphic matroids). Other reconfiguration results related to generalizations
of matroids have also been studied in the literature, see e.g. [12].

Organization of the paper. After giving some definitions and simple observations in
Section 2, we prove Theorem 3 in Section 3. In Section 4 we prove Theorems 4, 6 and 7. Due
to space constraints, we only sketch the main ideas of each proof. The full versions can be
found on arXiv.
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2 Basic definitions and observations

Let C be a set of points in convex position and T be a non-crossing spanning tree on C. We
say two points of a convex set C are consecutive if they appear consecutively on the convex
hull of C. We say we perform e ⇝ e′ in T if we perform the flip consisting in removing e

and adding e′ in T .
Let A ⊆ C. We denote by T [A] the induced subgraph of T on A, that is the subforest of

T with vertex set A where uv is an edge if and only if uv is an edge of T . Note that T [A] is
a non-crossing forest. A border edge (for T ) is an edge between consecutive points. An edge
of T which is not a border edge is called a chord. A hole of T is a pair of consecutive points
that is not a border edge. We will say that we fill a hole when we apply a flip where the
created edge joins the pair of points of the hole.

One can remark that, for each chord e of T , the line containing e splits the convex hull
of C in two non-trivial parts. A side of a chord e is the subset of points of C contained in
one of the two closed half-planes defined by the line containing the two endpoints of e (see
Figure 2 for an illustration). A side of T is a side of a chord e for some e ∈ T . We say an
edge (or a hole) is in a side A if both its endpoints are in A.

In the following, for every side A of a chord, we will denote by kA the number of holes in
A, which is also the number of chords of T in A. Since T is acyclic, we also have kA > 0.
Note that each chord e of T defines two sides A and B whose intersection is exactly the
endpoints of e. Moreover, T has exactly kA + kB holes.

Let e be a chord of T and A be a side of e. For every chord e′ in A, the side of e′ (w.r.t. A)
is the side of e′ that is contained in A. Note that for every pair of chords e1, e2 in A, the
sides of e1 and e2 (w.r.t. A) are either disjoint or contained in each other. The chord e1 is
inclusion-wise minimal if no side of a chord e′ in A is included in the side of e1 w.r.t. A. By
connectivity, we can easily note the following.

▶ Remark 9. Let e be a chord of T and A be a side of e. Let A′ be the side of an inclusion-wise
minimal chord e′ in A. Then kA′ = 1.

h1

h2

h3e

v1

v4

v3

v2v6

v5

Figure 2 The side A (in grey) of the chord e is is the subset of vertex {v1, v4, v5, v6} and the
other side B (in red) of e is {v1, v4, v2, v3}. The edges of T in A are the edges v5v6, v1v5 and v1v4.
The holes h1 and h2 of T are in A and h3 is in B. So we have kA = 2 and kB = 1.

Let A be a side of a chord e of T . We define the degree of a side A in a tree T ′ as the
number of chords of T ′ crossing e plus twice the number of chords of T ′ with both endpoints
in A (see Figure 3 for an illustration). Note that, if T ′ has no chords with both endpoints in
A, then the degree of A in T ′ is equal to the number of chords of T ′ crossing e.

The following lemma appeared in [5].

SoCG 2024



22:8 Reconfiguration of Plane Trees in Convex Geometric Graphs

v4

v1

v2

v3

v5

v6v7

Figure 3 The side A of the edge v1v5 highlighted in grey contains v1, v2, v3, v4 and v5. The
degree of A in the red tree is equal to 4 : v4v6 and v4v7 cross v1v5, and v1v3 has both endpoints in
A. Note that v1v2 is not a chord, thus it does not increase the degree of A in T ′.

▶ Lemma 10. Let T be a tree and e be a border edge not in T . Then there exists a non-
crossing flip that adds e in T without removing any border edge of T (except if T only contains
border edges).

3 Upper bounds

This section aims at proving Theorem 3 by induction. Let TI , TF be two trees on a convex
point set C, and assume that Theorem 3 holds for every pair of trees T ′

I and T ′
F , which are

either defined on the same set of points and δ(T ′
I , T ′

F ) < δ(TI , TF ) or on a smaller set of
points.

Before giving all the details of the proof, let us first explain the main steps of the proof
(see Figure 4 for an illustration). First, we prove in Section 3.1 that we may assume that
TI and TF have the same border edges and no common chord. In Section 3.2 we define a
τ -extremal side, which is a side which always exists in a nice pair of trees (and hence which
we can also find in TI and TF ). We give tools in Section 3.3 to transform a τ -extremal side
to what we call a very good side without using too many flips. In Section 3.4, we will observe
that in very good sides, we can match the kA chords in the side using at most 5

3 kA flips in
total.

3.1 Basic properties of TI, TF

Cutting the pair TI , TF along a common chord gives two smaller pairs of trees. We may
then reconfigure TI into TF applying a minimal flip sequence on each smaller pair separately.
This yields the following.

▶ Lemma 11. If TI and TF share a common chord, there exists a flip sequence from TI to
TF of length at most c · δ(TI , TF ).

Observe that every border edge appearing only in one of TI , TF can be added to the other
tree using only one flip. Therefore, we get:

▶ Lemma 12. If there is a border edge in the symmetric difference of TI and TF , there exists
a flip sequence from TI to TF of length at most c · δ(TI , TF ).
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τ -extremal side

Lemma 17

fill bad holes

good side

Lemma 18remove extra
crossing chords

very good side

Lemma 19

match remaining
chords

matched side

Figure 4 The main steps in the proof of Theorem 3. The goal is to match the chords in a side
using few steps. (We define τ -extremal, bad, good and very good later).

We say that two trees T and T ′ form a nice pair of trees if the two trees have no common
chord and have the same border edges. Note that for a nice pair of trees, every pair of
consecutive points is either a common hole or a common border edge. Thus, for a nice pair
of trees (T, T ′), we will refer to a hole of T or T ′ simply as a hole. Lemmas 11 and 12 ensure
that the following holds:

▶ Corollary 13. If TI and TF is not a nice pair of trees, there exists a flip sequence from TI

to TF of length at most c · δ(TI , TF ).

Using this result, we may now assume for the rest of the proof that (TI , TF ) form a nice
pair of trees.

3.2 τ -extremal sides
The goal of this section is to define and state the existence of the so-called τ -extremal sides
that are the starting point of the transformation sketched above.

Let T, T ′ be a nice pair of trees and τ > 2. We say a side A of a chord e of T is τ -extremal
for a tree T ′ if the degree of A in T ′ is at most τ · kA, and, for every side A′ ⊊ A of T ′, the
degree of A′ in T is more than τ · kA′ . We first prove that such a side exists in TI or TF . To
this end, we start from an arbitrary side and use an iterative greedy argument until we get a
τ -extremal side.

▶ Lemma 14. Let T1 and T2 be a nice pair of trees that are not border paths and τ > 2,
then either T1 or T2 contains a τ -extremal side.

Our process starts from a τ -extremal side and refines it until we can show it can be
matched using few flips. This refinement starts by removing bad holes. A hole h in a side A

of T w.r.t. T ′ is bad if it is also in a side B ⊊ A of T ′, see Figure 5. For our process to yield
the desired number of flips, we need to show that the refinement process is not too expensive,

SoCG 2024



22:10 Reconfiguration of Plane Trees in Convex Geometric Graphs

and in particular that a τ -extremal side has not too many bad holes. This is summarized in
the following lemma, whose proof relies on double counting the degrees of sides included in a
τ -extremal side. Containing too many bad holes would violate the τ -extremality.

e′

e

h

h′

Figure 5 Let T1 be the black tree and T2 the red tree. The hole h is a bad hole of the side A (in
grey) w.r.t T2 since it is inside the side of e′ included in A.

▶ Lemma 15. Let T1 and T2 be a nice pair of trees, and A be a τ -extremal side of a chord e

of T with τ > 2. Then the side A contains at most 2
τ kA bad holes w.r.t. T2.

3.3 Refining a τ -extremal side
By Lemma 14, a τ -extremal side S exists in TI or TF , say TI by symmetry. Moreover,
informally speaking, it does not have too large degree (by definition) and does not contain
too many bad holes by Lemma 15.

Let T and T ′ be a nice pair of trees. We say that a side of T is good w.r.t. T ′ when it
contains no bad hole, or equivalently no chord in T ′. Our goal in this section is first to make
S good w.r.t. TF by removing its bad holes, and then by reducing its degree. The former
step relies on the following observation.

A face f of a tree T is a face, different from the outer face, of the plane graph obtained by
filling the holes of T with edges. Note that, since T is connected, every face contains exactly
one hole on its boundary and every hole is on the boundary of exactly one face. Thus, there
is a bijection between holes and faces of a tree. The face containing a hole h of a tree T is
the face f such that h belongs to the boundary of f . We say that the hole h is contained in
the face f in T .

h1

h2

h3

f1

f2
f3

Figure 6 The tree T has three faces f1, f2 and f3. The face fi contains the hole hi in T .

▶ Observation 16. For every hole h, we can fill h in T by flipping any chord on the boundary
of the face of T containing h.
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Lemma 17 explains how we can fill one bad hole in S, and our goal is to apply it several
times to obtain a good side.

▶ Lemma 17. Let T1, T2 be a nice pair of trees, A be a side of a chord e of T1 that contains
at least two holes including at least one bad hole h w.r.t T2. Then, we can fill h in T1 by
flipping a chord different from e and we can fill h in T2 by flipping a chord with both endpoints
in A, see Figure 7.

Moreover, the resulting pair of trees after these two flips is still nice, and A has one less
bad hole.

e′e∗

e

h

h′

flip e∗ into h

flip e′ into h

e

h

h′

Figure 7 An example of a side A (in grey) of the chord e in the tree T1 (in black) contains two
holes h and h′, with h a bad hole of A w.r.t the tree T2 (in red) because of the chord e′. We fill h in
both trees by flipping e′ in T2, and by finding a chord e∗ ̸= e in T1.

By Lemma 15, S contains at most 2kS

τ < kS bad holes, hence it contains a good hole.
Therefore, each time we update TI , TF applying Lemma 17 on S, the good holes in S are
not filled, which ensures we can repeatedly apply the lemma until no bad hole remains. Let
T ′

I , T ′
F be the resulting trees after this process. Observe that we filled m ≤ 2kS

τ bad holes
w.r.t. TF in 2m flips, and S is now a good side of T ′

I w.r.t. T ′
F of size k′

S = kS − m.
Our goal is now to reduce the degree of S in order to transform S into a very good side.

Given a pair of trees (T, T ′), a good side A of T is very good (w.r.t. T ′) if the degree of A in
T ′ is at most kA, see Figure 8. Note that, for a good side A of an edge e of T , the degree of
A in T ′ is equal to the number of chords of T ′ crossing e.

e

h

h′

Figure 8 Let T1 be the black tree and T2 the red tree. The side A (in grey) of e is a good side of
T1 w.r.t. T2 since there is no chord of T2 inside A, but A is not very good w.r.t T2 since the degree
of A in T2 is 3 > kA = 2.

For now, if S is not very good, then there are too many chords of T ′
F crossing the unique

chord e on the boundary of S. The goal of Lemma 18 is to remove these extra crossings. To
make S very good, we will apply it iteratively until we reach the right amount of chords.
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▶ Lemma 18. Let T1, T2 be a nice pair of trees, A be a good side of a chord e of T1 w.r.t T2
which is not very good w.r.t. T2. Then there exists a hole h not in A such that: (i) we can
fill h in T1 by flipping a chord distinct from e and (ii) we can fill h in T2 by flipping a chord
crossing e, see Figure 9.

Moreover, the resulting pair of trees after these two flips is still nice.

e
ei

h

e∗ flip e∗ into h

flip ei into h

e

h

Figure 9 An example of a nice pair T1 (in black) and T2 (in red) with the side A of e (in grey)
being good w.r.t T2. We can fill h in T1 by flipping a chord e∗ ̸= e on the face (hatched in grey) of
T1 containing h, and in T2 by flipping a chord ei which crosses e and on the face of T2 containing h.

Let dS be the degree of S in TF . Since we filled m bad holes in S to obtain T ′
F , the degree

of S in T ′
F is dS − 2m ≤ τkS − 2m. Applying Lemma 18 until S gets degree k′

S transforms
(T ′

I , T ′
F ) into (T ′′

I , T ′′
F ) using 2(dS − 2m − k′

S) ⩽ 2(τ − 1)kS − 2m flips and we get that S is a
very good side of T ′′

I w.r.t. T ′′
F of size k′′

S = k′
S .

3.4 Very good sides
Using Lemma 17 and Lemma 18, we are able to ensure that S is a very good side. However,
at each step, we use 2 flips and fill only one hole. We now show that we can compensate
for this costly procedure using the fact that S is very good. More precisely, we show the
following.

▶ Lemma 19. Let T1 and T2 be a nice pair of trees, e be a chord of T1, and A be a very
good side of e (w.r.t. T2). Then, we can match kA pairs of chords of T1 and T2 using at
most 5

3 kA flips in total.

This result heavily relies on the structure of very good sides in a nice pair of trees. The
full description can be found in the full version, but we summarize here their main properties
(see Figure 10). The set of border edges in a very good side A of T1 induces kA + 1 paths
(possibly reduced to a single point), two of which contain an endpoint of e. Each of the
kA − 1 remaining paths contains one endpoint of a chord of T2 crossing e. Except these
chords, there may be at most one extra chord e∗ of T2 crossing e. In particular, we use that
a minimal side of T1 contained in A has degree at most 3.

With this information, we may now sketch the proof of Lemma 19. The main idea consists
in applying inductively the following result (proved in the full version) on a minimal side
A′ ⊆ A of T1, defined by a chord e′. Recall that A′ has degree d ≤ 3 in T2:

▷ Claim 20. If d > 0 (resp. d = 0), in at most 5
3 d (resp. 1) flips, we can obtain from T1 and

T2 a nice pair of trees T ′
1, T ′

2 that agree on A′ by filling d − 1 (resp. 0) holes of A in both T1
and T2 and creating the chord e′ in T2, see Figure 11. Moreover, if kA > d, then we do not
flip e and the number of edges in T ′

2 crossing e decreases by d (resp. 1).
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e

e∗

A′

Figure 10 In a nice pair, the very good side A of T1 (in black) w.rt. T2 (in red), defined by a
chord e, with a possible extra chord e∗ (in blue). Then, a minimal side A′ of T1 (hatched) contained
in A has degree at most 3. Note that border edges are common.

h

h∗ h′
e′

e∗
1 e′

1

e2e1e3

flip e∗
1 and e3

into h∗

Case d = 3

Case d = 2

h

h′
e′

e′
1

e2e1

flip e′
1 and e2

into h′

h

h′
e′

e′
1

e2e1

Case d ≤ 1

h

e′

e1

h

e′

e1

h

h′

e′ ∈ T1 ∩ T2

h

flip e1 into e′

Figure 11 Illustration of Claim 20 on some examples T1 (in black) and T2 (in red). We consider
several cases according to the degree d of A′ w.r.t. T2.
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After applying Claim 20 on the minimal side A′, we can forget the points and edges
inside A′ (where both resulting trees now agree). This makes e′ a common border edge, and
A remains a very good side with fewer holes, so the induction carries out and we obtain
Lemma 19.

Since there is at most one extra chord in a very good side, observe that the case d = 3
in Claim 20 only happens once during the whole induction process. Hence, with a deeper
analysis, the 5

3 kA bound of Lemma 19 can be improved to ⌈ 3
2 kA⌉. However, there is an

example of a small very good side A of T1 w.r.t T2, such that we cannot match the kA chords
in A of T1 with chords of T2 in less than 5

3 kA = ⌈ 3
2 kA⌉ flips, see Figure 12. This example

was the base on which we built the lower bounds of Section 4.

e1e3 e2

e∗
1

e = e′
1

e′

h

h′h∗

Figure 12 An example of a very good side A where 5
3 kA = 5 flips are required to make the two

trees agree on A.

3.5 Bounding the number of flips
Let (T ∗

I , T ∗
F ) be the pair of trees obtained after applying Lemma 19 to S. We are now

ready to conclude the proof of Theorem 3. Our transformation is as follows: first, we
transform (TI , TF ) into (T ∗

I , T ∗
F ) by matching m + (dS − 2m − k′

S) + k′′
S = dS − m pairs

using 2m + 2(dS − 2m − k′
S) + 5

3 k′′
S = 2dS − kS/3 − 5m/3 flips. Then, we apply induction on

(T ∗
I , T ∗

F ) and get a transformation from T ∗
I to T ∗

F using at most cδ(T ∗
I , T ∗

F ) flips.
In order to conclude the proof of Theorem 3, we need to make sure that we save enough

using Lemma 19 to compensate for the expensive use of Lemmas 17 and 18. More precisely,
we need that the total number of flips we used to get (T ∗

I , T ∗
F ) is at most c(d − m). Using

that dS ⩽ τkS (since S is τ -extremal) and that m ⩽ 2kS

τ by Lemma 15, this boils down to an
inequality implying only c and τ , which is satisfied when plugging in the values τ = 2 +

√
2

and c = 1
12 (22 +

√
2).

4 Lower bounds

This section aims at presenting several lower bounds. We provide three results, whose proofs
share a similar structure and rely on counting arguments. We first present in Section 4.1
the family of pairs of trees providing the lower bound for flips from Theorem 4. We then
briefly explain in Section 4.2 how to adapt the arguments to obtain lower bounds for the
other types of flips considered in Theorems 6 and 7.

4.1 Flips and Theorem 4
Construction of the trees. Let us denote by T1 and T ′

1 the pair of non-crossing spanning
trees on a convex set C of size 8 represented in Figure 13. Note that we have δ(T1, T ′

1) = 3.
For every k, we denote by Tk, T ′

k the pair of non-crossing spanning trees obtained by taking



N. Bousquet, L. de Meyer, T. Pierron, and A. Wesolek 22:15

v5

v2

v6

v1

v8

v3

v7

v4 vi+1
6vi+1

5vi
7 = vi+1

2vi
4vi

3

vi
5 vi

6 vi
8 = vi+1

1 vi+1
3 vi+1

4

vi
1

vi
2 vi+1

7

vi+1
8

Figure 13 On the left, the tree T1 in black and the tree T ′
1 in red. On the right, the subgraph

induced by Ci and Ci+1 in a pair Tk (in black) and T ′
k (in red).

k disjoint copies of T1, T ′
1 and identifying the points v7 and v8 of the i-th copy respectively

with the points v2 and v1 in the (i + 1)-th copy for i < k. (Note that the identification
is performed upside down, which will be of importance in the proof, see Figure 13 for an
illustration of two successive copies). We define Ci as the set of points of the i-th copy, and
vi

j the point corresponding to vj in Ci. Observe that δ(Tk, T ′
k) = 3k for all k ≥ 1.

Properties of a minimal flip sequence. We first claim that for every k ≥ 1, there is a flip
sequence from Tk to T ′

k of length 5
3 δ(Tk, T ′

k) = 5k. Indeed, the following flip sequence gives
a transformation from T1 to T ′

1: we perform in order the flips v6v1 ⇝ v2v5, v3v8 ⇝ v4v7,
v3v6 ⇝ v4v5, v2v5 ⇝ v2v4, and finally v4v7 ⇝ v5v7. We can adapt this flip sequence for
every k > 1 between Tk and T ′

k into a sequence of length 5k by applying the former in each
copy of T1 and T ′

1 independently. The rest of the proof of Theorem 4 consists in proving by
induction on k that the above mentioned sequences are minimal. First, we obtain the base
case k = 1 by observing that, regardless of the two first flips, a transformation needs at least
three additional flips.

▶ Lemma 21. A minimal flip sequence between T1 and T ′
1 has length at least 5.

Let k > 1 be such that for ℓ < k, a minimal flip sequence from Tℓ to T ′
ℓ has length at

least 5ℓ. First, we prove the following by observing that if a common chord is not modified,
every minimal flip sequence can be split into two minimal ones that independently modify
each side of the chord.

▶ Lemma 22. If there exists a common chord e that is not modified during a flip sequence S
from Tk to T ′

k, then S has length at least 5k.

Therefore, it only remains to show that flip sequences that modify every common chord
of Tk and T ′

k have length at least 5k. Let S be such a sequence. We use a double counting
argument. More precisely, we distribute one unit of weight to a subset of {C1, . . . , Ck} for
every flip of S. The core of our counting argument consists in proving that some intermediate
edges are created during S due to connectivity. The flips in S involving these edges will
provide extra weight to every set Ci. We essentially show that the total weight given by S
to every set Ci is at least 5, which ensures that S has length at least 5k.

To sum up, we finally obtain the following, which concludes the proof of Theorem 4.

SoCG 2024
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▶ Lemma 23. Let S be a minimal flip sequence between Tk and T ′
k such that all the common

chords are modified. Then, S has length at least 5k.

4.2 Other models
Non-crossing flips. To prove Theorem 6, we provide a construction similar to the previous
section but with a much simpler base tree (see Figure 14). The proof goes along similar lines,
but the counting is easier.

v2

v1

v4

v3
vi

3 = vi+1
1

vi
4 = vi+1

2

vi
1

vi
2 vi+1

3

vi+1
4

Figure 14 On the left, the tree T1 in black and the tree T ′
1 in red. On the right, the subgraph

induced by Ci and Ci+1 in a pair Tk (in black) and T ′
k (in red).

Rotations. For rotations, we show that the construction of the previous section (see
Figure 13) actually satisfies also the conclusion of Theorem 7. However, the arguments we
use are more involved and the proof is overall more technical.

References
1 Eyal Ackerman, Michelle M Allen, Gill Barequet, Maarten Löffler, Joshua Mermelstein, Diane L

Souvaine, and Csaba D Tóth. The flip diameter of rectangulations and convex subdivisions.
Discrete Mathematics & Theoretical Computer Science, 18(Combinatorics), 2016.

2 Oswin Aichholzer, Brad Ballinger, Therese Biedl, Mirela Damian, Erik D Demaine, Matias
Korman, Anna Lubiw, Jayson Lynch, Josef Tkadlec, and Yushi Uno. Reconfiguration of
non-crossing spanning trees. arXiv preprint, 2022. arXiv:2206.03879.

3 Oswin Aichholzer, Sergey Bereg, Adrian Dumitrescu, Alfredo García, Clemens Huemer, Ferran
Hurtado, Mikio Kano, Alberto Márquez, David Rappaport, Shakhar Smorodinsky, et al.
Compatible geometric matchings. Computational Geometry, 42(6-7):617–626, 2009.

4 David Avis and Komei Fukuda. Reverse search for enumeration. Discrete Appl. Math., 65(1-
3):21–46, 1996. First International Colloquium on Graphs and Optimization (GOI), 1992
(Grimentz).

5 Nicolas Bousquet, Valentin Gledel, Jonathan Narboni, and Théo Pierron. A note on the flip
distance between non-crossing spanning trees. arXiv preprint, 2023. arXiv:2303.07710.

6 Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Paul Ouvrard, Akira
Suzuki, and Kunihiro Wasa. Reconfiguration of spanning trees with many or few leaves. In
28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy
(Virtual Conference), pages 24:1–24:15, 2020. doi:10.4230/LIPIcs.ESA.2020.24.

7 Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Paul Ouvrard, Akira
Suzuki, and Kunihiro Wasa. Reconfiguration of spanning trees with degree constraints or di-
ameter constraints. Algorithmica, 85(9):2779–2816, 2023. doi:10.1007/s00453-023-01117-z.

8 Carmen Hernando, Ferran Hurtado, and Marc Noy. Graphs of non-crossing perfect matchings.
Graphs and Combinatorics, 18:517–532, 2002.

https://arxiv.org/abs/2206.03879
https://arxiv.org/abs/2303.07710
https://doi.org/10.4230/LIPIcs.ESA.2020.24
https://doi.org/10.1007/s00453-023-01117-z


N. Bousquet, L. de Meyer, T. Pierron, and A. Wesolek 22:17

9 M.C. Hernando, F. Hurtado, A. Márquez, M. Mora, and M. Noy. Geometric tree graphs of
points in convex position. Discrete Applied Mathematics, 93(1):51–66, 1999. 13th European
Workshop on Computational Geometry CG ’97. doi:10.1016/S0166-218X(99)00006-2.

10 Michael E Houle, Ferran Hurtado, Marc Noy, and Eduardo Rivera-Campo. Graphs of
triangulations and perfect matchings. Graphs and Combinatorics, 21:325–331, 2005.

11 F Hurtado, M Noy, and J Urrutia. Flipping edges in triangulations. Discrete & Computational
Geometry, 22(3):333–346, 1999.

12 Yusuke Kobayashi, Ryoga Mahara, and Tamás Schwarcz. Reconfiguration of the union of
arborescences. CoRR, abs/2304.13217, 2023. doi:10.48550/arXiv.2304.13217.

13 Anna Lubiw and Vinayak Pathak. Flip distance between two triangulations of a point set is
NP-complete. Comput. Geom., 49:17–23, 2015. doi:10.1016/j.comgeo.2014.11.001.

14 Torrie L Nichols, Alexander Pilz, Csaba D Tóth, and Ahad N Zehmakan. Transition operations
over plane trees. Discrete Mathematics, 343(8), August 2020.

15 Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018. doi:10.3390/
a11040052.

16 Alexander Pilz. Flip distance between triangulations of a planar point set is APX-hard.
Comput. Geom., 47(5):589–604, 2014. doi:10.1016/j.comgeo.2014.01.001.

17 Lionel Pournin. The diameter of associahedra. Advances in Mathematics, 259:13–42, 2014.
doi:10.1016/j.aim.2014.02.035.

18 Daniel D Sleator, Robert E Tarjan, and William P Thurston. Rotation distance, triangulations,
and hyperbolic geometry. Journal of the American Mathematical Society, pages 647–681, 1988.

SoCG 2024

https://doi.org/10.1016/S0166-218X(99)00006-2
https://doi.org/10.48550/arXiv.2304.13217
https://doi.org/10.1016/j.comgeo.2014.11.001
https://doi.org/10.3390/a11040052
https://doi.org/10.3390/a11040052
https://doi.org/10.1016/j.comgeo.2014.01.001
https://doi.org/10.1016/j.aim.2014.02.035

	1 Introduction
	1.1 Flips between non-crossing spanning trees
	1.2 Related work

	2 Basic definitions and observations
	3 Upper bounds
	3.1 Basic properties of T_I,T_F
	3.2 tau-extremal sides
	3.3 Refining a tau-extremal side
	3.4 Very good sides
	3.5 Bounding the number of flips

	4 Lower bounds
	4.1 Flips and Theorem 4
	4.2 Other models


